Zero dynamics and stabilization for linear DAEs

Thomas Berger

2013
Zero dynamics and stabilization for linear DAEs

Thomas Berger

Abstract We study linear differential-algebraic multi-input multi-output systems which are not necessarily regular and investigate the asymptotic stability of the zero dynamics and stabilizability. To this end, the concepts of autonomous zero dynamics, transmission zeros, right-invertibility, stabilizability in the behavioral sense and detectability in the behavioral sense are introduced and algebraic characterizations are derived. It is then proved, for the class of right-invertible systems with autonomous zero dynamics, that asymptotic stability of the zero dynamics is equivalent to three conditions: stabilizability in the behavioral sense, detectability in the behavioral sense, and the condition that all transmission zeros of the system are in the open left complex half-plane. Furthermore, for the same class, it is shown that we can achieve, by a compatible control in the behavioral sense, that the Lyapunov exponent of the interconnected system equals the Lyapunov exponent of the zero dynamics.

Keywords Differential-algebraic equations · Zero dynamics · Transmission zeros · Right-invertibility · Stabilizability · Detectability · Lyapunov exponent

Mathematics Subject Classification (2010) 34A09 · 15A22 · 93B05 · 93B07 · 93B25

The author was supported by DFG grant IL 25/9.

Thomas Berger
Institut für Mathematik, Technische Universität Ilmenau,
Weimarer Straße 25, 98693 Ilmenau, Germany
e-mail: thomas.berger@tu-ilmenau.de
Thomas Berger

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N}, \mathbb{N}_0)</td>
<td>the set of natural numbers, (\mathbb{N}_0 = \mathbb{N} \cup {0})</td>
</tr>
<tr>
<td>(\mathbb{C}+ (\mathbb{C}-))</td>
<td>open set of complex numbers with positive (negative) real part, resp.</td>
</tr>
<tr>
<td>(\mathbb{R}[s])</td>
<td>the ring of polynomials with coefficients in (\mathbb{R})</td>
</tr>
<tr>
<td>(\mathbb{R}(s))</td>
<td>the quotient field of (\mathbb{R}[s])</td>
</tr>
<tr>
<td>(\mathbb{R}^{n \times m})</td>
<td>the set of (n \times m) matrices with entries in a ring (\mathbb{R})</td>
</tr>
<tr>
<td>(\text{Gl}_n(\mathbb{R}))</td>
<td>the group of invertible matrices in (\mathbb{R}^{n \times n})</td>
</tr>
<tr>
<td>(| \cdot |)</td>
<td>(= \sqrt{x^\top x}), the Euclidean norm of (x \in \mathbb{R}^n)</td>
</tr>
<tr>
<td>(| M |)</td>
<td>(= \max {| Mx | \mid x \in \mathbb{R}^n, | x | = 1}), induced norm of (M \in \mathbb{R}^{n \times m})</td>
</tr>
<tr>
<td>(\mathcal{C}^\infty(\mathbb{R}; \mathbb{R}^n))</td>
<td>the set of infinitely-times continuously differentiable functions (f : \mathbb{R} \to \mathbb{R}^n)</td>
</tr>
<tr>
<td>(\mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n))</td>
<td>the set of locally Lebesgue integrable functions (f : \mathbb{R} \to \mathbb{R}^n), where (\int_K | f(t) | , dt < \infty) for all compact (K \subseteq \mathbb{R})</td>
</tr>
<tr>
<td>(\dot{f} (f^{(i)}))</td>
<td>the ((i\text{-th})) weak derivative of (f \in \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n), i \in \mathbb{N}_0), see [1, Chap. 1]</td>
</tr>
<tr>
<td>(\mathcal{W}^{k,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^n))</td>
<td>(= { f \in \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n) \mid f^{(i)} \in \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n), i = 0, \ldots, k }, k \in \mathbb{N}_0)</td>
</tr>
<tr>
<td>(f \overset{\text{a.e.}}{=} g)</td>
<td>means that (f, g \in \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n)) are equal “almost everywhere”, i.e., (f(t) = g(t)) for almost all (a.a.) (t \in \mathbb{R})</td>
</tr>
<tr>
<td>(\text{ess-sup}_I | f |)</td>
<td>the essential supremum of the measurable function (f : \mathbb{R} \to \mathbb{R}^n) over (I \subseteq \mathbb{R})</td>
</tr>
<tr>
<td>(f</td>
<td>_I)</td>
</tr>
</tbody>
</table>

1 Introduction

We consider linear constant coefficient DAEs of the form

\[
\frac{d}{dt}Ex(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t),
\]

where \(E, A \in \mathbb{R}^{\ell \times n}, B \in \mathbb{R}^{\ell \times m}, C \in \mathbb{R}^{p \times n}\). The set of these systems is denoted by \(\Sigma_{\ell,n,m,p}\) and we write \([E, A, B, C] \in \Sigma_{\ell,n,m,p}\). In the present paper, we put special emphasis on the non-regular case, i.e., we do not assume that \(sE - A\) is regular, that is \(\ell = n\) and \(\det(sE - A) \in \mathbb{R}[s] \setminus \{0\}\).
The functions $u : \mathbb{R} \rightarrow \mathbb{R}^m$ and $y : \mathbb{R} \rightarrow \mathbb{R}^p$ are called input and output of the system, resp. A trajectory $(x, u, y) : \mathbb{R} \rightarrow \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ is said to be a solution of (1) if, and only if, it belongs to the behavior of (1):

$$\mathcal{B}_1 := \left\{ (x, u, y) \in L^1_\text{loc}(\mathbb{R}; \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p) \mid \begin{array}{l} Ex \in W^{1,1}_\text{loc}(\mathbb{R}; \mathbb{R}^r) \text{ and } (x, u, y) \\
\text{solves (1) for a.a. } t \in \mathbb{R} \end{array} \right\}.$$

Recall that any function $z \in W^{1,1}_\text{loc}(\mathbb{R}; \mathbb{R}^r)$ is in particular continuous.

Particular emphasis is placed on the zero dynamics of (1). These are, for $[E, A, B, C] \in \Sigma_{r,n,m,p}$, defined by

$$\mathcal{Z}_D(1) := \left\{ (x, u, y) \in \mathcal{B}_1 \mid y \equiv 0 \right\}.$$

By linearity of (1), $\mathcal{Z}_D(1)$ is a real vector space.

The zero dynamics of (1) are called autonomous if, and only if,

$$\forall w_1, w_2 \in \mathcal{Z}_D(1) \forall I \subseteq \mathbb{R} \text{ open interval : } \left. w_1 \right|_I = \left. w_2 \right|_I \Rightarrow \left. w_1 \right|_{a.e.} = \left. w_2 \right|_{a.e.};$$

and asymptotically stable if, and only if,

$$\forall (x, u, y) \in \mathcal{Z}_D(1) : \lim_{t \to \infty} \text{ess-sup}_{[t, \infty)} \| (x, u) \| = 0.$$

Note that the above definitions are within the spirit of the behavioral approach [15] and take into account that the zero dynamics $\mathcal{Z}_D(1)$ are a linear behavior. In this framework the definition for autonomy of a general behavior is given in [15, Sec. 3.2] and the definition of asymptotic stability in [15, Def. 7.2.1].

(Asymptotically stable) zero dynamics are the vector space of those trajectories of the system which are, loosely speaking, not visible at the output (and tend to zero).

In the present paper, we show for the class of right-invertible systems with autonomous zero dynamics, that asymptotic stability of the zero dynamics is equivalent to the three conditions: stabilizability in the behavioral sense, detectability in the behavioral sense and the condition that all transmission zeros are in the open left complex half-plane. Furthermore, we show that we can achieve, by a compatible control in the behavioral sense, that the Lyapunov exponent of the interconnected system equals the Lyapunov exponent of the zero dynamics. In Section 2 we collect some basic control theoretic concepts such as transmission zeros, right-invertibility, stabilizability in the behavioral sense and detectability in the behavioral sense, and give algebraic characterizations of them. The first main result of the present paper, that is Theorem 3.1, is then stated and proved in Section 3 and some consequences for regular systems are derived. In Section 4 we introduce the concepts of compatible control (in the behavioral sense) and Lyapunov exponent for DAE systems and prove the second main result, namely Theorem 4.4.
In this section we recall the concepts used in the present paper in a control theoretic way and give useful algebraic characterizations. These concepts include transmission zeros, right-invertibility, stabilizability in the behavioral sense and detectability in the behavioral sense. We start with characterizations of autonomous and asymptotically stable zero dynamics, which have been introduced in Section 1.

Lemma 2.1 (Autonomous and stable zero dynamics). Let \([E,A,B,C] \in \Sigma_{l,n,m,p}\). Then we have the following equivalences:

(i) \(ZD_{(1)}\) are autonomous \(\iff\) \(\text{rk}_{[s]} \begin{bmatrix} sE - A & -B \\ -C & 0 \end{bmatrix} = n + m\).

(ii) \(ZD_{(1)}\) are asymptotically stable \(\iff\) \(\forall \lambda \in \mathbb{C}_+ : \text{rk}_{[\lambda]} \begin{bmatrix} \lambda E - A & -B \\ -C & 0 \end{bmatrix} = n + m\).

Proof. (i) follows from [4, Prop. 3.6] and (ii) from [4, Lem. 3.14]. \(\square\)

The autonomy of the zero dynamics allows for a decomposition of the system, provided that \(C\) has full row rank. The main result of the present paper (see Section 3) is based on this decomposition.

Lemma 2.2 (System decomposition [4, Thm. 4.6]). Let \([E,A,B,C] \in \Sigma_{l,n,m,p}\) with autonomous zero dynamics and \(\text{rk} C = p\). Then there exist \(S \in \text{Gl}_l(\mathbb{R})\) and \(T \in \text{Gl}_n(\mathbb{R})\) such that

\[
\begin{bmatrix} s\hat{E} - \hat{A} \hat{B} \\ \hat{C} \ 0 \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & I_p \end{bmatrix} \begin{bmatrix} sE - A & B \\ C & 0 \end{bmatrix} \begin{bmatrix} T & 0 \\ 0 & I_m \end{bmatrix},
\]

where

\[
\begin{bmatrix} I_k & 0 & 0 \\ 0 & E_{22} & E_{23} \\ 0 & E_{32} & N \\ 0 & E_{42} & E_{43} \end{bmatrix}, \quad \hat{A} = \begin{bmatrix} Q & A_{12} & 0 \\ A_{21} & A_{22} & 0 \\ 0 & 0 & I_n \end{bmatrix}, \quad \hat{B} = \begin{bmatrix} 0 \\ I_m \\ 0 \end{bmatrix}, \quad \hat{C} = [0,I_p,0],
\]

\(k = \dim ZD_{(1)},\)

and \(N \in \mathbb{R}^{n_3 \times n_3}, n_3 = n - k - p,\) is nilpotent with \(N^v = 0\) and \(N^{v-1} \neq 0\), \(v \in \mathbb{N}, E_{22},A_{22} \in \mathbb{R}^{m \times p}\) and all other matrices are of appropriate sizes.

An important characterization of asymptotically stable zero dynamics is the following.

Lemma 2.3 (Stable zero dynamics [4, Cor. 4.10]). Let \([E,A,B,C] \in \Sigma_{l,n,m,p}\) with autonomous zero dynamics and \(\text{rk} C = p\). Then, using the notation from Lemma 2.2, the zero dynamics \(ZD_{(1)}\) are asymptotically stable if, and only if, \(\sigma(Q) \subseteq \mathbb{C}^-\).

Next, in order to define transmission zeros, we introduce the Smith-McMillan form of a rational matrix function.
Definition 2.4 (Smith-McMillan form [12, Sec. 6.5.2]). Let $G(s) \in \mathbb{R}(s)^{m \times p}$ with $\text{rk}_{\mathbb{R}(s)} G(s) = r$. Then there exist $U(s) \in \mathbb{GL}_m(\mathbb{R}[s])$, $V(s) \in \mathbb{GL}_p(\mathbb{R}[s])$ such that

$$U(s)G(s)V(s) = \text{diag} \left(\frac{e_1(s)}{\psi_1(s)} , \ldots , \frac{e_r(s)}{\psi_r(s)} , 0_{(m-r) \times (p-r)} \right),$$

where $e_i(s), \psi_i(s) \in \mathbb{R}[s]$ are monic, coprime and satisfy $e_i(s)|e_{i+1}(s), \psi_{i+1}(s)\psi_i(s)$ for $i = 1, \ldots , r-1$. The number $s_0 \in \mathbb{C}$ is called zero of $G(s)$ if, and only if, $e_r(s_0) = 0$ and pole of $G(s)$ if, and only if, $\psi_1(s_0) = 0$.

In the following we give the definition of transmission zeros for the system $[E,A,B,C]$. In fact, there are many different possibilities to define transmission zeros of control systems, even in the ODE case, see [10]; and they are not equivalent. We go along with the definition given by Rosenbrock [16]: For $[I,A,B,C] \in \Sigma_{n,m,p}$, the transmission zeros are the zeros of the transfer function $C(sI - A)^{-1}B$. This definition has been generalized to regular DAE systems with transfer function $C(sE - A)^{-1}B$ in [6, Def. 5.3]. In the present framework, we do not require regularity of $sE - A$ and so a transfer function does in general not exist. However, it is possible to give a generalization of the inverse transfer function if the zero dynamics of $[E,A,B,C] \in \Sigma_{n,m,p}$ are autonomous: Let $L(s)$ be a left inverse of $[sE - A - B]$ over $\mathbb{R}(s)$ (which exists by Lemma 2.1) and define

$$H(s) := -[0, I_m]L(s) \begin{bmatrix} 0 \\ L_p \end{bmatrix} \in \mathbb{R}(s)^{m \times p}. \tag{5}$$

It can be shown that $H(s)$ is independent of the choice of the left inverse $L(s)$ [4, Lem. A.1] and if $sE - A$ is regular and $m = p$, then $H(s) = (C(sE - A)^{-1}B)^{-1}$ [4, Rem. A.4], i.e., $H(s)$ is indeed the inverse of the transfer function in case of regularity. The fact that the zeros of $H(s)^{-1}$ are the poles of $H(s)$ and vice versa motivates the following definition.

Definition 2.5 (Transmission zeros). Let $[E,A,B,C] \in \Sigma_{n,m,p}$ with autonomous zero dynamics. Let $L(s)$ be a left inverse of $[sE - A - B]$ over $\mathbb{R}(s)$ and let $H(s)$ be as given in (5). Then $s_0 \in \mathbb{C}$ is called transmission zero of $[E,A,B,C]$ if, and only if, s_0 is a pole $H(s)$.

Now we recall the definition of right-invertibility of a system from [17, Sec. 8.2].

Definition 2.6 (Right-invertibility). $[E,A,B,C] \in \Sigma_{n,m,p}$ is called right-invertible if, and only if,

$$\forall y \in \mathcal{E}^m(\mathbb{R}; \mathbb{R}^p) \exists (x,u) \in \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n) \times \mathcal{L}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^m) : (x,u,y) \in \mathcal{B}_{E(1)}.$$

Right-invertibility may be characterized for systems with autonomous zero dynamics in terms of the form (3).

Lemma 2.7 (Right-invertibility and system decomposition [4, Prop. 4.11]). Let $[E,A,B,C] \in \Sigma_{n,m,p}$ with autonomous zero dynamics. Then, using the notation from Lemma 2.2,
\[[E, A, B, C] \text{ is right-invertible } \iff \begin{cases} \text{rk} C = p, \; E_{42} = 0, \; A_{42} = 0 \quad \text{and} \\ E_{43}N^{j}E_{32} = 0 \quad \text{for } j = 0, \ldots, \nu - 1. \end{cases} \]

We are now in a position to characterize the transmission zeros in terms of the form (3).

Corollary 2.8 (Transmission zeros in decomposition). Let \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\) be right-invertible and have autonomous zero dynamics. Let \(L(s)\) be a left inverse of \([sE - A - B - C]\) over \(\mathbb{R}(s)\) and let \(H(s)\) be given as in (5). Then, using the notation from Lemma 2.2,

\[
H(s) = sE_{22} - A_{22} - A_{21}(sI - Q)^{-1}A_{12} - s^{2}E_{23}(sN - I_{n})^{-1}E_{32}
\]

and \(s_{0} \in \mathbb{C}\) is a transmission zero of \([E, A, B, C]\) if, and only if, \(s_{0}\) is a pole of \(A_{21}(sI - Q)^{-1}A_{12}\).

Proof. The representation of \(H(s)\) follows from [4, Lem. A.1] and the characterization of transmission zeros is then immediate since \(sE_{22} - A_{22} - s^{2}E_{23}(sN - I)^{-1}E_{32}\) is a polynomial as \(N\) is nilpotent and hence

\[
(sN - I)^{-1} = -I - sN - \ldots - s^{\nu - 1}N^{\nu - 1}. \tag{6}
\]

\[\square\]

In the remainder of this section we introduce and characterize the concepts of stabilizability and detectability in the behavioral sense. (Behavioral) stabilizability for systems \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\) is well-investigated, see e.g. the survey [7]. Detectability has been first defined and characterized for regular systems in [2]. For general DAE systems, a definition and characterization can be found in [11]; see also the equivalent definition in [15, Sec. 5.3.2]. The latter definition is given within the behavioral framework, however it is yet too restrictive for our purposes and it is not dual to the respective stabilizability concept. We use the following concepts of behavioral stabilizability and detectability.

Definition 2.9 (Stabilizability and detectability). \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\) is called

(i) **stabilizable in the behavioral sense** if, and only if,

\[
\forall (x, u, y) \in \mathcal{B}(1) \exists (x_{0}, u_{0}, y_{0}) \in \mathcal{B}(1) : \left(\forall t < 0 : (x(t), u(t)) = (x_{0}(t), u_{0}(t)) \right) \wedge \lim_{t \to \infty} \text{ess-sup}_{t \in [t, \infty)} \| (x_{0}, u_{0}) \| = 0.
\]

(ii) **detectable in the behavioral sense** if, and only if,

\[
\forall (x, 0, 0) \in \mathcal{B}(1) \exists (x_{0}, 0, 0) \in \mathcal{B}(1) : \left(\forall t < 0 : x(t) = x_{0}(t) \right) \wedge \lim_{t \to \infty} \text{ess-sup}_{t \in [t, \infty)} \| x_{0} \| = 0.
\]
In order to derive duality of the above concepts it is useful to consider, for \(E, A \in \mathbb{R}^{\ell \times n} \), the DAE
\[
\frac{d}{dt}Ex(t) = Ax(t)
\]
without inputs and outputs. The behavior of (7) is given by
\[
\mathfrak{B}(7) := \left\{ x \in L^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n) \mid Ex \in W^{1,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^\ell) \text{ and } x \text{ solves (7) for a.a. } t \in \mathbb{R} \right\}.
\]

Definition 2.10 (Stabilizability [7, Def. 5.1]). Let \(E, A \in \mathbb{R}^{\ell \times n} \). Then \([E, A]\) is called **stabilizable in the behavioral sense** if, and only if,
\[
\forall x \in \mathfrak{B}(7) \exists x_0 \in \mathfrak{B}(7): \left(\forall t < 0 : x(t) = x_0(t) \right) \land \lim_{t \to \infty} \text{ess-sup}_{[t, \infty)} \|x_0\| = 0.
\]

We are now in a position to derive a duality result.

Lemma 2.11 (Duality). Let \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\). Then the following statements are equivalent:

(i) \([E, A, B, C]\) is stabilizable in the behavioral sense.

(ii) \([E^\top, 0, A^\top, -B^\top]\) is stabilizable in the behavioral sense.

(iii) \([E^\top, A^\top, C^\top, B^\top]\) is detectable in the behavioral sense.

(iv) \([E^\top, A^\top, C^\top, B^\top]\) is detectable in the behavioral sense.

Proof. It follows from the definition that (i)⇔(ii) and (iii)⇔(iv). By [7, Cor. 5.2], (ii) is equivalent to
\[
\forall \lambda \in \mathbb{T}_+: \text{rk}_\mathbb{C}[\lambda E - A, -B] = \text{rk}_{\mathbb{R}(s)}[sE - A, -B].
\]

Since ranks are invariant under matrix transpose, we find that (ii) is equivalent to
\[
\forall \lambda \in \mathbb{T}_+: \text{rk}_\mathbb{C}\begin{bmatrix} \lambda E^\top - A^\top \\ -B^\top \end{bmatrix} = \text{rk}_{\mathbb{R}(s)}\begin{bmatrix} sE^\top - A^\top \\ -B^\top \end{bmatrix},
\]
which, again by [7, Cor. 5.2], is equivalent to (iv). This completes the proof. \(\square\)

In view of Lemma 2.11 and [7, Cor. 5.2] we may infer the following.

Corollary 2.12 (Characterization of stabilizability and detectability). Let \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\). Then the following holds true.

(i) \([E, A, B, C]\) is stabilizable in the behavioral sense if, and only if,
\[
\forall \lambda \in \mathbb{T}_+: \text{rk}_\mathbb{C}[\lambda E - A, -B] = \text{rk}_{\mathbb{R}(s)}[sE - A, -B].
\]

(ii) \([E, A, B, C]\) is detectable in the behavioral sense if, and only if,
\[
\forall \lambda \in \mathbb{T}_+: \text{rk}_\mathbb{C}\begin{bmatrix} \lambda E - A \\ -C \end{bmatrix} = \text{rk}_{\mathbb{R}(s)}\begin{bmatrix} sE - A \\ -C \end{bmatrix}.
\]
3 Stable zero dynamics

In this section we state and prove one of the main results of the present paper and derive some consequences for regular systems.

Theorem 3.1 (Characterization of stable zero dynamics). Let \([E, A, B, C] \in \Sigma_{\ell, n, m, p}\) be right-invertible and have autonomous zero dynamics. Then the zero dynamics \(ZD(1)\) are asymptotically stable if, and only if, the following three conditions hold:

(i) \([E, A, B, C]\) is stabilizable in the behavioral sense,
(ii) \([E, A, B, C]\) is detectable in the behavioral sense,
(iii) \([E, A, B, C]\) has no transmission zeros in \(\mathbb{C}_+\).

Proof. Since right-invertibility of \([E, A, B, C]\) implies, by Lemma 2.7, that \(\operatorname{rk} C = p\), the assumptions of Lemma 2.2 are satisfied and we may assume that, without loss of generality, \([E, A, B, C]\) is in the form (3).

\(\Rightarrow: \) **Step 1**: We show (i). Let

\[
T_1(s) := \begin{bmatrix}
I_k & 0 & 0 & 0 \\
0 & I_p & 0 & 0 \\
0 & 0 & I_{n_3} & 0 \\
-A_{21} sE_{22} - A_{22} sE_{23} - I_m
\end{bmatrix} \in \mathbb{G}l_{n+m}(\mathbb{R}[s])
\]

and observe that, since \(E_{42} = A_{42} = 0\) by Lemma 2.7,

\[
[sE - A, -B]T_1(s) = \begin{bmatrix}
sI_k - Q - A_{12} & 0 & 0 \\
0 & 0 & 0 & I_m \\
0 & sE_{32} & sN - I_{n_3} & 0 \\
0 & 0 & sE_{43} & 0
\end{bmatrix}.
\]

Then, with

\[
T_2(s) := \begin{bmatrix}
I_k & (sI_k - Q)^{-1}A_{12} & 0 & 0 \\
0 & I_p & 0 & 0 \\
0 & 0 & I_{n_3} & 0 \\
0 & 0 & 0 & -I_m
\end{bmatrix} \in \mathbb{G}l_{n+m}(\mathbb{R}(s)),
\]

and

\[
T_3(s) := \begin{bmatrix}
I_k & 0 & 0 & 0 \\
0 & I_p & 0 & 0 \\
0 & -s(sN - I_{n_3})^{-1}E_{32} & I_{n_3} & 0 \\
0 & 0 & 0 & -I_m
\end{bmatrix} \in \mathbb{G}l_{n+m}(\mathbb{R}[s]),
\]

where we note that it follows from (6) that \(T_3(s)\) is a polynomial, we obtain

\[
[sE - A, -B]T_1(s)T_2(s)T_3(s) = \begin{bmatrix}
sI_k - Q & 0 & 0 & 0 \\
0 & 0 & 0 & I_m \\
0 & 0 & sN - I_{n_3} & 0 \\
0 & X(s) & sE_{43} & 0
\end{bmatrix},
\]
where \(X(s) = -s^2 E_{43}(sN - I_{n_3})^{-1}E_{32} = 0\) by Lemma 2.7 and (6). Finally,

\[
S_1(s) := \begin{bmatrix} I_k & 0 & 0 \\ 0 & I_p & 0 \\ 0 & 0 & I_{n_3} \\ 0 & 0 & -sE_{43}(sN - I_{n_3})^{-1} - I_m \end{bmatrix} \in \text{GL}_{n+m}(\mathbb{R}[s])
\]

yields

\[
S_1(s)[sE - A, -B]T_1(s)T_2(s)T_3(s) = \begin{bmatrix} sI_k - Q & 0 & 0 \\ 0 & 0 & I_m \\ 0 & sN - I_{n_3} & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

and hence \(\text{rk}_{\mathbb{R}[s]}[sE - A, -B] = k + n_3 + m = n + m - p\), since \(n_3 = n - k - p\) by Lemma 2.2. Now let \(\lambda \in \mathbb{C}_+\) and observe that, by Lemma 2.3, \(\lambda I_k - Q\) is invertible. Hence, the matrices \(T_1(\lambda), T_2(\lambda), T_3(\lambda)\) and \(S_1(\lambda)\) exist and are invertible. Thus, using the same transformations as above for fixed \(\lambda \in \mathbb{C}_+\) now, we find that \(\text{rk}_{\mathbb{C}}[\lambda E - A, -B] = n + m - p\). This proves (i).

Step 2: We show (ii). Similar to Step 1 it can be shown that

\[
\forall \lambda \in \mathbb{C}_+ : \text{rk}_{\mathbb{C}} \begin{bmatrix} \lambda E - A \\ -C \end{bmatrix} = \text{rk}_{\mathbb{R}[s]} \begin{bmatrix} sE - A \\ -C \end{bmatrix} = n.
\]

Step 3: We show (iii). By Corollary 2.8, the transmission zeros of \([E, A, B, C]\) are the poles of

\[
F(s) := A_{21}(sI_k - Q)^{-1}A_{12}.
\]

Every pole of \(F(s)\) is also an eigenvalue of \(Q\). In view of Lemma 2.3, we have that \(\sigma(Q) \subset \mathbb{C}^-\) and so (iii) follows.

\(\iff\): By Lemma 2.3, we have to show that if \(\lambda \in \sigma(Q)\), then \(\lambda \in \mathbb{C}^-\). Let \(\lambda \in \sigma(Q)\). We distinguish two cases:

Case 1: \(\lambda\) is a pole of \(F(s)\). Then, by Corollary 2.8, \(\lambda\) is a transmission zero of \([E, A, B, C]\) and by (iii) we obtain \(\lambda \in \mathbb{C}^-\).

Case 2: \(\lambda\) is not a pole of \(F(s)\). Then [6, Lem. 8.3] applied to \([I_k, Q, A_{12}, A_{21}]\) and \(\lambda\) yields that

\[
(a) \; \text{rk}_{\mathbb{C}}[\lambda I_k - Q, A_{12}] < k \quad \text{or} \quad (b) \; \text{rk}_{\mathbb{C}}[\lambda I_k - Q^\top, A_{21}^\top] < k.
\]

If (a) holds, then there exists \(v_1 \in \mathbb{C}^k \setminus \{0\}\) such that

\[
v_1^\top [\lambda I_k - Q, A_{12}] = 0.
\]

Let \(v_4 \in \mathbb{C}^{(n-k)+(p-m)}\) be arbitrary and define

\[
v_3 := -\lambda v_4^\top E_{43}(\lambda N - I_{n_3})^{-1}.
\]

Now observe that
\[
(v_1^T, 0, v_3^T, v_4^T) = \begin{bmatrix}
\lambda I_k - Q & -A_{12} & 0 & 0 \\
-A_{21} & \lambda E_{22} - A_{22} & \lambda E_{23} & I_m \\
0 & \lambda E_{32} & \lambda N - I_{n_3} & 0 \\
0 & 0 & \lambda E_{43} & 0
\end{bmatrix} = (0, w^T, 0, 0),
\]

where
\[
w^T = -v_1^T A_{12} + \lambda v_3^T E_{32} = -\lambda^2 v_4^T E_{43}(\lambda N - I_{n_3})^{-1} E_{32} = 0
\]

by Lemma 2.7 and (6). This implies that \(\mathcal{K} := \ker[\lambda E - A, -B]^T \subseteq \mathbb{C}^l \) has dimension \(\dim \mathcal{K} \geq (\ell - n) + (p - m) + 1 \). Therefore,
\[
\text{rk}_C[\lambda E - A, -B] \leq \ell - \dim \mathcal{K} \leq n + m - p - 1
\]

where \(\text{rk}_{R(s)}[sE - A, -B] = n + m - p \) has been proved in Step 1 of “\(\Rightarrow \)”. Hence, (8) together with (i) implies that \(\lambda \in \mathbb{C}_- \).

If (b) holds, then there exists \(v_1 \in \mathbb{C}^k \setminus \{0\} \) such that \(v_1^T [\lambda I_k - Q, A_{21}] = 0 \).

Therefore,
\[
\begin{bmatrix}
\lambda I_k - Q & -A_{12} \\
-A_{21} & \lambda E_{22} - A_{22} & \lambda E_{23} \\
0 & \lambda E_{32} & \lambda N - I_{n_3} \\
0 & 0 & \lambda E_{43} \\
0 & I_p & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
0 \\
0 \\
0
\end{bmatrix} = 0
\]

and thus
\[
\text{rk}_C \begin{bmatrix}
\lambda E - A \\
-\lambda C
\end{bmatrix} < n = \text{rk}_{R(s)}[sE - A, -B],
\]

where \(\text{rk}_{R(s)}[sE - A, -B] = n \) has been proved in Step 2 of “\(\Rightarrow \)”. Hence, (9) together with (ii) implies that \(\lambda \in \mathbb{C}_- \). This completes the proof of the theorem. \(\square \)

For regular systems with invertible transfer function we may characterize asymptotic stability of the zero dynamics by Hautus criteria for stabilizability and detectability and the absence of zeros of the transfer function in the closed right complex half-plane (recall Definition 2.4 for the definition of a zero of a rational matrix function).

Corollary 3.2 (Regular systems). Let \([E, A, B, C] \in \Sigma_{n,n,m,m} \) be such that \(sE - A \) is regular and \(G(s) := C(sE - A)^{-1} B \) is invertible over \(\mathbb{R}(s) \). Then the zero dynamics \(\mathcal{D}_{(1)} \) are asymptotically stable if, and only if, the following three conditions hold:

(i) \(\forall \lambda \in \mathbb{C}_+ : \text{rk}_C[\lambda E - A, -B] = n, \)

(ii) \(\forall \lambda \in \mathbb{C}_+ : \text{rk}_C[\lambda E - A] = n, \)

(iii) \(G(s) \) has no zeros in \(\mathbb{C}_+ \).

Proof. Since \(G(s) \in \text{GL}_m(\mathbb{R}(s)) \) it follows from Lemma 2.1 that \(\mathcal{D}_{(1)} \) are autonomous. Furthermore, \(\text{rk} C = m \) and hence we may infer from [4, Rem. 4.12]
that $[E,A,B,C]$ is right-invertible. Now, we may apply Theorem 3.1 to deduce that
$\mathcal{Z}_{(1)}$ are asymptotically stable if, and only if,
(a) $[E,A,B,C]$ is stabilizable in the behavioral sense,
(b) $[E,A,B,C]$ is detectable in the behavioral sense,
(c) $[E,A,B,C]$ has no transmission zeros in \mathbb{C}_+.

Since regularity of $sE - A$ gives that $\text{rk}_{\mathbb{R}(s)}[sE - A, -B] = \text{rk}_{\mathbb{R}(s)}[sE - A] = n$, we find
that (i)\iff(a) and (ii)\iff(b), (iii)\iff(c) follows from the fact that by [4, Rem. A.4] we
have $H(s) = G(s)^{-1}$ for $H(s)$ as in (5) and that transmission zeros of $[E,A,B,C]$ are,
by definition, exactly the poles of $H(s)$. \square

4 Stabilization

In this section we consider stabilizing control for DAE systems. More precisely, we
introduce the concepts of Lyapunov exponent and compatible control and show that
for right-invertible systems with autonomous zero dynamics it is possible to assign,
via a compatible control, the Lyapunov exponent of the system to a value specified
for right-invertible systems with autonomous zero dynamics it is possible to assign,
via a compatible control, the Lyapunov exponent of the system to a value specified
by the zero dynamics.

The usual concept of feedback is the additional application of the relation $u(t) = Fx(t)$ to the system $\frac{d}{dt}Ex(t) = Ax(t) + Bu(t)$; for instance, high-gain feedback has
been successfully applied to DAEs in [5] in order to achieve stabilization. Feedback
can therefore be seen as an additional algebraic constraint that can be resolved for
the input. Control in the behavioral sense, or control via interconnection [18],
generalizes this approach by also allowing further algebraic relations in which the state
not necessarily uniquely determines the input (see also [7, Sec. 5.3]). That is, for
given (or to be determined) $K = [K_x,K_u] \in \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ and $[E,A,B,C] \in \Sigma_{\ell,n,m,p}$
we consider

$$
\mathcal{W}_{E,A,B}^K = \left\{ (x,u) \in L^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n \times \mathbb{R}^m) \mid \begin{array}{c}
Ex \in \mathcal{W}^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^1) \\
\text{for a.a. } t \in \mathbb{R}, \\
\frac{d}{dt}Ex(t) = Ax(t) + Bu(t) \\
0 = K_x x(t) + K_u u(t) \end{array} \right\}.
$$

We call K the control matrix, since it induces the control law $K_x x + K_u u$. Note
that, in principle, one could make the extreme choice $K = I_{n+m}$ to end up with a
behavior

$$
\mathcal{W}_{E,A,B}^K \subseteq \left\{ (x,u) \in L^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^n \times \mathbb{R}^m) \mid (x,u)^{\perp} \perp 0 \right\},
$$

which is obviously asymptotically stable. This, however, is not suitable from a practical
point of view, since in this interconnection, the space of consistent initial differential variables is a proper subset of the initial differential variables which are consistent with the original system $[E,A,B]$. Consequently, the interconnected system
does not have the causality property - that is, the implementation of the controller at a certain time $t \in \mathbb{R}$ is not possible, since this causes jumps in the differential variables. To avoid this, we use the concept of compatible control.

Definition 4.1 (Compatible control [7, Def. 5.2]). Let $[E,A,B,C] \in \Sigma_{l,n,m,p}$. The control matrix $K = [K_x,K_u] \in \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}$ is called compatible for $[E,A,B,C]$ if, and only if,

$$\forall x^0 \in \left\{ x^0 \in \mathbb{R}^n \mid \exists (x,u,y) \in B(1) : Ex(0) = Ex^0 \right\} \exists (x,u) \in B_{E,A,B}^K : Ex(0) = Ex^0.$$

We construct a compatible control which not only results in an asymptotically stable interconnected system, but also the Lyapunov exponent of the interconnected system is prescribed by the zero dynamics of the nominal system. In order to get a most general definition of the Lyapunov exponent, we use a definition similar to the Bohl exponent in [3, Def. 3.4], not requiring a fundamental solution matrix as in [13].

Definition 4.2 (Lyapunov exponent). Let $E,A \in \mathbb{R}^{l \times n}$. The Lyapunov exponent of $[E,A]$ is defined as

$$k_L(E,A) := \inf \left\{ \mu \in \mathbb{R} \mid \exists M \mu > 0 \forall x \in B(7) \text{ for a.a. } t \geq s : \|x(t)\| \leq M \mu e^{\mu(t-s)}\|x(s)\| \right\}.$$

Note that we use the convention $\inf / 0 = +\infty$.

The (minimal) exponential decay rate of the (asymptotically stable) zero dynamics of a system can be determined by the Lyapunov exponent of the DAE $\left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \right)$.

Lemma 4.3 (Lyapunov exponent and stable zero dynamics). Let $[E,A,B,C] \in \Sigma_{l,n,m,p}$ with autonomous zero dynamics and $\text{rk} C = p$. Then, using the notation from Lemma 2.2 and k as in (4), we have

$$k_L(\mathcal{D}(1)) := \inf \left\{ \mu \in \mathbb{R} \mid \exists M \mu > 0 \forall w \in \mathcal{D}(1) \text{ for a.a. } t \geq s : \|w(t)\| \leq M \mu e^{\mu(t-s)}\|w(s)\| \right\} = k_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \right) = \left\{ \begin{array}{ll} \max \left\{ \text{Re} \lambda : \lambda \in \sigma(Q) \right\}, & \text{if } k > 0 \\ -\infty, & \text{if } k = 0. \end{array} \right.$$

Proof. The first equality follows from a careful inspection of the proof of [4, Lem. 3.14] and using the quasi-Kronecker form from [8, 9]. The second equality then follows from using the decomposition (3).
Note that it follows from Lemmas 2.3 and 4.3 that asymptotic stability of the zero dynamics implies exponential stability of the zero dynamics, i.e., any trajectory tends to zero exponentially.

We are now in a position to prove the main result of this section, which states that for right-invertible systems with autonomous zero dynamics there exists a compatible control such that the Lyapunov exponent of the interconnected system is equal to the Lyapunov exponent of the zero dynamics of the nominal system; in particular, this shows that asymptotic stability of the zero dynamics implies that the system can be asymptotically stabilized in the sense that every solution of the interconnected system tends to zero.

Theorem 4.4 (Compatible and stabilizing control). Let \([E, A, B, C] \in \Sigma_{k,n,m,p}\) be right-invertible with autonomous zero dynamics. If \(\dim \mathcal{D}(1) > 0\), then there exists a compatible control matrix \(K = [K_x, K_u] \in \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}\) for \([E, A, B, C]\) such that

\[
k_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ K_x & K_u \end{bmatrix} \right) = k_L(\mathcal{D}(1)). \tag{10}
\]

If \(\dim \mathcal{D}(1) = 0\), then for all \(\mu \in \mathbb{R}\) there exists a compatible control matrix \(K = [K_x, K_u] \in \mathbb{R}^{q \times n} \times \mathbb{R}^{q \times m}\) for \([E, A, B, C]\) such that

\[
k_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ K_x & K_u \end{bmatrix} \right) \leq \mu. \tag{11}
\]

Proof. Since the Lyapunov exponent is invariant under transformation of the system (see e.g. [3, Prop. 3.17]) we may, similar to the proof of Theorem 3.1, assume that, without loss of generality, \([E, A, B, C]\) is in the form (3). Then, with similar transformations as in Step 1 of the proof of Theorem 3.1, it can be shown that

\[
\forall \lambda \in \mathbb{C} : \text{rk}_\mathbb{C} \begin{bmatrix} \lambda E_{22} - A_{22} & \lambda E_{23} \\ \lambda E_{32} & \lambda N - I_n \end{bmatrix} = \text{rk}_\mathbb{R}(s) \begin{bmatrix} sE_{22} - A_{22} & sE_{23} \\ sE_{32} & sN - I_n \end{bmatrix},
\]

and hence, by [7, Cor. 4.3], the system

\[
[E, \bar{A}, \bar{B}, \bar{C}] := \begin{bmatrix} E_{22} & E_{23} \\ E_{32} & N \\ 0 & E_{43} \end{bmatrix}, \begin{bmatrix} A_{22} & 0 \\ 0 & I_n \end{bmatrix}, \begin{bmatrix} I_n \\ 0 \end{bmatrix}, \begin{bmatrix} I_p \\ 0 \end{bmatrix}
\]

is controllable in the behavioral sense as in [7, Def. 2.1].

We will now mimic the proof of [7, Thm. 5.4] without repeating all of its arguments: It follows from the above controllability in the behavioral sense and [7, Cor. 3.4] that in the feedback form [7, (3.10)] of \([\bar{E}, \bar{A}, \bar{B}]\) we have \(n_p = 0\). Therefore, for any given \(\mu \in \mathbb{R}\) and \(\epsilon > 0\), it is possible to choose \(F_{11}\) and \(K_x\) in the proof of [7, Thm. 5.4] such that the resulting control matrix \(\bar{K} = [K_1, K_2] \in \mathbb{R}^{q \times (n-k)} \times \mathbb{R}^{q \times m}\) is compatible for \([\bar{E}, \bar{A}, \bar{B}, \bar{C}]\) and satisfies...
\[
K_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \tilde{A} \\ K_1 K_2 \end{bmatrix} \right) \leq \mu - \varepsilon. \tag{12}
\]

We show that
\[
K = [K_a | K] := [K_2A_{21}, K_1] K_2 \in \mathbb{R}^{q \times k} \times \mathbb{R}^{q \times (n-k)} \times \mathbb{R}^{q \times m},
\]
is compatible for \([E, A, B, C]\) and satisfies (10) or (11), resp.

Step 1: We show compatibility. Let
\[
x^0 \in \left\{ x^0 \in \mathbb{R}^n \mid \exists (x, u, y) \in \mathcal{B}_{(1)} : E x(0) = E x^0 \right\}
\]
and partition \(x^0 = (x_1^0, x_2^0)^\top\) with \(x_1^0 \in \mathbb{R}^k, x_2^0 \in \mathbb{R}^{n-k}.\) Then there exist \(x_1 \in \mathcal{W}^{1,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^k), x_2 \in \mathcal{L}^{1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^{n-k})\) and \(u \in \mathcal{L}^{1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^m)\) such that \(\dot{E} x_2 \in \mathcal{W}^{1,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^{n-k})\) and
\[
\begin{aligned}
\frac{d}{dt} x_1 &= \tilde{Q} x_1 + [A_{12}, 0] x_2, \\
\frac{d}{dt} \dot{E} x_2 &= \begin{bmatrix} A_{21} \\ 0 \end{bmatrix} x_1 + \tilde{A} x_2 + B u, \\
x_1(0) &= x_1^0, \\
\dot{E} x_2(0) &= \dot{E} x_2^0.
\end{aligned}
\tag{13}
\]
Therefore,
\[
x_2^0 \in \left\{ x_2^0 \in \mathbb{R}^n \mid \exists (x_2, u, \tilde{C} x_2) \in \mathcal{B}_{[\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}]} : \dot{E} x_2(0) = E x_2^0 \right\},
\]
where \(\mathcal{B}_{[\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}]}\) denotes the behavior of (1) corresponding to the system \([\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}],[K_1, K_2]\)
and by compatibility of \([K_1, K_2]\) for \([\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}]\) there exists \((x_2, v) \in \mathcal{B}_{[\tilde{E}, \tilde{A}, \tilde{B}]}\) such that
\[
\begin{aligned}
\frac{d}{dt} \dot{E} x_2 &= \tilde{A} x_2 + \tilde{B} v, \\
0 &= K_1 x_2 + K_2 v,
\end{aligned}
\tag{14}
\]
and \(\dot{E} x_2(0) = E x_2^0.\) Define
\[
x_1(t) := e^{t \tilde{Q}} x_1^0 + \int_0^t e^{(t-s) \tilde{Q}} [A_{12}, 0] x_2(s) \, ds, \quad t \in \mathbb{R},
\]
which is well-defined since \(x_2 \in \mathcal{L}^{1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^{n-k}),\) and let \(u := v - A_{21} x_1.\) Then \((x_1, x_2, u)\) solves (13) and satisfies
\[
K_2 A_{21} x_1 + K_1 x_2 + K_2 u \triangleq K_2 A_{21} x_1 + K_1 x_2 + K_2 v - K_2 A_{21} x_1 \triangleq 0,
\]
which proves that \([K_2 A_{21}, K_1, K_2]\) is compatible for \([E, A, B, C].\)

Step 2: We show that (11) is satisfied in case that \(k = 0\) for \(k\) as in (4). This follows from (12) since
$$k_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ K_1 & K_2 \end{bmatrix} \right) = k_L \left(\begin{bmatrix} \hat{E} & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \hat{A} & \hat{B} \\ K_1 & K_2 \end{bmatrix} \right) \leq \mu - \varepsilon$$

with arbitrary $\mu \in \mathbb{R}$ and $\varepsilon > 0$.

Step 3: We show that (10) is satisfied in case that $k > 0$. Denote

$$\mu := k_L(\mathcal{D}(\mathcal{G}_1)) \overset{\text{Lem. 4.3}}{=} \max \{ \Re \lambda \mid \lambda \in \sigma(Q) \}$$

and let $\rho > 0$ be arbitrary. Then there exists $M_0 > 0$ such that, for all $t \geq 0$, $\|e^{Qt}\| \leq M_0 e^{\rho \mu}$.

Step 3a: We show "\geq" in (10). Since, for any solution $x_1 \in W^{1,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^k)$ of $\frac{dx_1}{dt} = Qx_1$ we have

$$((x_1^T, 0), -A_{21}x_1, 0) \in \mathcal{B}_{E, A, B},$$

it follows that

$$k_L \left(\begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ K_1 & K_2 \end{bmatrix} \right) \geq \mu.$$

Step 3b: We show "\leq" in (10). Let $(x, u) \in \mathcal{B}_{E, A, B}$ and write $x = (x_1^T, x_2^T)^T$ with $x_1 \in W^{1,1}_{\text{loc}}(\mathbb{R}; \mathbb{R}^k)$ and $x_2 \in L^1_{\text{loc}}(\mathbb{R}; \mathbb{R}^{n-k})$. Then we have

\[
\begin{align*}
\frac{dx_1}{dt} & \overset{\text{def.}}{=} Qx_1 + [A_{12}, 0]x_2, \\
\frac{dx_2}{dt} & \overset{\text{def.}}{=} \begin{bmatrix} A_{21} \\ 0 \\ 0 \end{bmatrix} x_1 + \hat{A}x_2 + \hat{B}u, \\
0 & \overset{\text{def.}}{=} K_{12}x_1 + K_{21}x_2 + K_{22}u.
\end{align*}
\]

Observe that $(x_2, w := u + A_{21}x_1)$ solves (14) and hence, by (12) for μ and some $\varepsilon > 0$, there exists $M_1 > 0$ such that

for a.a. $t \geq s$:

$$\left\| \begin{bmatrix} x_2(t) \\ w(t) \end{bmatrix} \right\| \leq M_1 e^{(\mu-\varepsilon)(t-s)} \left\| \begin{bmatrix} x_2(s) \\ w(s) \end{bmatrix} \right\|.$$

Therefore,

$$\left\| x_1(t) \right\| \leq \left\| e^{Q(t-s)} \right\| \cdot \left\| x_1(s) \right\| + \int_s^t \left\| e^{Q(t-\tau)} \right\| \cdot \left\| [A_{12}, 0] \right\| \cdot \left\| \begin{bmatrix} x_2(\tau) \\ w(\tau) \end{bmatrix} \right\| d\tau \leq M_0 e^{\rho \mu (t-s)} \left\| x_1(s) \right\| + M_1 M_0 e^{(\mu+\rho)(t-s)} \cdot \left\| [A_{12}, 0] \right\| \cdot \left\| \begin{bmatrix} x_2(s) \\ w(s) \end{bmatrix} \right\| + \int_s^t e^{-(\rho+\varepsilon)(t-\tau)} d\tau \leq \frac{1}{\varepsilon}$$

for almost all $t, s \in \mathbb{R}$ with $t \geq s$. This implies that
and since $\rho > 0$ is arbitrary the claim is shown. \hfill \Box

Remark 4.5 (Construction of the control). The construction of the control K in the proof of Theorem 4.4 relies on the construction used in [7, Thm. 5.4]. Here we make it precise. We have split up the procedure into several steps.

(i) The first step is to transform the given system $[E, A, B, C] \in \Sigma_{\ell,n,m,p}$ into the form (3). The first transformation which has to be applied in order to achieve this is stated in [4, Thm. 3.7] and uses the maximal (E, A, B)-invariant subspace included in $\ker C$. This subspace can be obtained easily via a subspace iteration as described in [4, Lem. 3.4]. The second transformation which has to be applied is stated in [4, Thm. 4.6]. Denote the resulting system by

\[
\begin{bmatrix}
E & A & B & C \\
0 & 0 & 0 & 0 \\
\end{bmatrix} =
\begin{bmatrix}
P & 0 & 0 & 0 \\
0 & I_p & \cdot & \cdot \\
\end{bmatrix}
\begin{bmatrix}
E & A & B & C \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
Q & 0 & 0 & 0 \\
0 & I_m & \cdot & \cdot \\
\end{bmatrix}.
\]

(ii) Next we have to consider the subsystem

\[
\begin{bmatrix}
\tilde{E} & \tilde{A} & \tilde{B} & \tilde{C} \\
\end{bmatrix} :=
\begin{bmatrix}
E_{22} & E_{23} & 0 & 0 \\
0 & 0 & L_2 & 0 \\
\end{bmatrix} \begin{bmatrix}
A_{22} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{n-3} \\
0 & 0 & 0 & I_{m} \\
0 & 0 & I_{p} & 0 \\
\end{bmatrix}
\]

and transform it into a feedback form. To this end we introduce the following notation: For $j \in \mathbb{N}$, we define the matrices

\[
N_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{bmatrix} \in \mathbb{R}^{j \times j}, \\
K_j = \begin{bmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \\
\end{bmatrix}, \\
L_j = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{bmatrix} \in \mathbb{R}^{(j-1) \times j},
\]

Further, let $e_i^{[j]} \in \mathbb{R}^j$ be the ith canonical unit vector, and, for some multi-index $\alpha = (\alpha_1, \ldots, \alpha_l) \in \mathbb{N}^l$, we define

\[
N_\alpha = \text{diag} \left(N_{\alpha_1}, \ldots, N_{\alpha_l} \right) \in \mathbb{R}^{|\alpha| \times |\alpha|}, \\
K_\alpha = \text{diag} \left(K_{\alpha_1}, \ldots, K_{\alpha_l} \right) \in \mathbb{R}^{(|\alpha|-l) \times |\alpha|}, \\
L_\alpha = \text{diag} \left(L_{\alpha_1}, \ldots, L_{\alpha_l} \right) \in \mathbb{R}^{(|\alpha|-l) \times |\alpha|}, \\
E_\alpha = \text{diag} \left(e_{\alpha_1}^{[\alpha_1]}, \ldots, e_{\alpha_l}^{[\alpha_l]} \right) \in \mathbb{R}^{|\alpha| \times l},
\]

where $|\alpha| = \sum_{i=1}^{l} \alpha_i$; we will further use the notation $L(\alpha) = l$ for the length of α. Then it was shown in [14] that a given system can, via state-space, input-space and feedback transformation, be put into a feedback canonical form. Here we use the feedback form from [7, Thm. 3.3], which is not canonical. Since $[\tilde{E}, \tilde{A}, \tilde{B}]$ is controllable in the behavioral sense as in [7, Def. 2.1] and $\text{rk} \tilde{B} = m$, there exist $S \in \mathbf{GL}_{\ell-k}(\mathbb{R})$, $T \in \mathbf{GL}_{\ell-k}(\mathbb{R})$, $V \in \mathbf{GL}_m(\mathbb{R})$, $F \in \mathbb{R}^{m \times (n-k)}$ such that
$$s\hat{E} - \hat{A}\hat{B} = S(s\hat{E} - \hat{A}\hat{B}) \begin{bmatrix} T & 0 \\ -F & V \end{bmatrix},$$

where

$$\hat{E}, \hat{A}, \hat{B} = \begin{bmatrix} I_{|\alpha|} & 0 & 0 & 0 \\ 0 & K_{\beta} & 0 & 0 \\ 0 & 0 & L_{\gamma}^T & 0 \\ 0 & 0 & 0 & N_{\kappa} \end{bmatrix}, \begin{bmatrix} N_{|\alpha|} & 0 & 0 & 0 \\ 0 & L_{\beta} & 0 & 0 \\ 0 & 0 & K_{\gamma}^T & 0 \\ 0 & 0 & 0 & L_{\delta}^T \end{bmatrix}, \begin{bmatrix} E_{|\alpha|} & 0 \\ 0 & E_{|\beta|} \end{bmatrix},$$

for some multi-indices $\alpha, \beta, \gamma, \delta, \kappa$.

(iii) Let $\mu \in \mathbb{R}$ be arbitrary. We construct a compatible control in the behavioral sense for $[\hat{E}, \hat{A}, \hat{B}]$ such that the interconnected system has Lyapunov exponent smaller or equal to μ. Let $F_{11} \in \mathbb{R}^{L(\alpha) \times |\alpha|}$ be such that

$$\max \{ \Re \hat{\lambda} \mid \hat{\lambda} \in \sigma(N_{|\alpha|} + E_{|\alpha|}F_{11}) \} \leq \mu.$$

This can be achieved as follows: For $j = 1, \ldots, L(\alpha)$, consider vectors

$$a_j = -[a_j_{\alpha_j-1}, \ldots, a_j_{|\alpha_j|}] \in \mathbb{R}^{1 \times \alpha_j}.$$

Then, for

$$F_{11} = \text{diag} (a_1, \ldots, a_{L(\alpha)}) \in \mathbb{R}^{L(\alpha) \times |\alpha|},$$

the matrix $N_{|\alpha|} + E_{|\alpha|}F_{11}$ is diagonally composed of companion matrices, whence, for

$$p_j(s) = s^{\alpha_j} + a_j_{\alpha_j-1}s^{\alpha_j-1} + \ldots + a_j_{0} \in \mathbb{R}[s]$$

the characteristic polynomial of $N_{|\alpha|} + E_{|\alpha|}F_{11}$ is given by

$$\det(sI_{|\alpha|} - (N_{|\alpha|} + E_{|\alpha|}F_{11})) = \prod_{j=1}^{L(\alpha)} p_j(s).$$

Hence, choosing the coefficients a_{ji}, $j = 1, \ldots, L(\alpha), i = 0, \ldots, \alpha_j$ such that the roots of the polynomials $p_1(s), \ldots, p_{L(\alpha)}(s) \in \mathbb{R}[s]$ are all smaller or equal to μ yields the assertion.

Now we find that

$$k_{L} \left[\begin{bmatrix} I_{|\alpha|} & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} N_{|\alpha|} & E_{|\alpha|} \\ F_{11} & -I_{L(\alpha)} \end{bmatrix} \right] \leq \mu.$$

Furthermore, by the same reasoning as above, for

$$a_j = [a_j_{\beta_j-2}, \ldots, a_j_{0}, 1] \in \mathbb{R}^{1 \times \beta_j}$$

with the property that the roots of the polynomials

$$p_j(s) = s^{\beta_j} + a_j_{\beta_j-1}s^{\beta_j-1} + \ldots + a_j_{0} \in \mathbb{R}[s]$$
are all smaller or equal to μ for $j = 1, \ldots, L(\alpha)$, the choice

$K_x = \text{diag} \left(a_1, \ldots, a_{L(\beta)} \right) \in \mathbb{R}^{L(\beta) \times [\beta]}$

leads to

$$k_L \left(\begin{bmatrix} K_y \\ 0 \end{bmatrix}, \begin{bmatrix} L_y \\ K_z \end{bmatrix} \right) \leq \mu.$$

Therefore, the control matrix

$$\hat{K} = [\hat{K}_1, \hat{K}_2] = \begin{bmatrix} F_{11} & 0 & 0 & 0 & 0 \\ 0 & K_x & 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^{q \times (n-k) \times \mathbb{R}^{q \times m}},$$

where $q = L(\alpha) + L(\beta)$, establishes that

$$k_L \left([\hat{E} \; 0], \begin{bmatrix} \hat{A} & \hat{B} \\ K_1 & K_2 \end{bmatrix} \right) \leq \mu.$$

Since the differential variables can be arbitrarily initialized in any of the previously discussed subsystems, the constructed control \hat{K} is also compatible for $[\hat{E}, \hat{A}, \hat{B}]$.

(iv) We show that \hat{K} leads to a compatible control \tilde{K} for $[\tilde{E}, \tilde{A}, \tilde{B}]$ such that the interconnected system has Lyapunov exponent smaller or equal to μ. Observe that

$$\begin{bmatrix} S^{-1} & 0 \\ 0 & I_q \end{bmatrix} \begin{bmatrix} s\hat{E} - \hat{A} & \hat{B} \\ \hat{K}_1 & \hat{K}_2 \end{bmatrix} \begin{bmatrix} T^{-1} & 0 \\ 0 & V^{-1} \end{bmatrix} = \begin{bmatrix} s\tilde{E} - \tilde{A} & \tilde{B} \\ \hat{K}_1 + \hat{K}_2 V^{-1} \tilde{T}^{-1} \hat{K}_2 V^{-1} \end{bmatrix}$$

and hence, by invariance of the Lyapunov exponent under transformation of the system (see e.g. [3, Prop. 3.17]), we find that for

$$[K_1, K_2] := [\hat{K}_1 + \hat{K}_2 V^{-1} \tilde{T}^{-1} \hat{K}_2 V^{-1}] \in \mathbb{R}^{q \times (n-k) \times \mathbb{R}^{q \times m}},$$

we have

$$k_L \left([\tilde{E} \; 0], \begin{bmatrix} \tilde{A} & \tilde{B} \\ K_1 & K_2 \end{bmatrix} \right) \leq \mu.$$

(v) If $k = \dim \mathcal{D}(1) = 0$, then we can choose $\mu \in \mathbb{R}$ as we like and obtain

$$k_L \left([\bar{E} \; 0], \begin{bmatrix} \bar{A} & \bar{B} \\ K_x := K_1 & K_u := K_2 \end{bmatrix} \right) = k_L \left([\tilde{E} \; 0], \begin{bmatrix} \tilde{A} & \tilde{B} \\ K_1 & K_2 \end{bmatrix} \right) \leq \mu.$$

If $k > 0$, then we can choose $\mu < k_L(\mathcal{D}(1))$ and obtain, with

$$[K_x, K_u] := [K_2A_{21}, K_3] \in \mathbb{R}^{q \times k} \times \mathbb{R}^{q \times (n-k) \times \mathbb{R}^{q \times m}},$$

that

$$k_L \left([\bar{E} \; 0], \begin{bmatrix} \bar{A} & \bar{B} \\ K_x & K_u \end{bmatrix} \right) = k_L(\mathcal{D}(1)).$$
This is shown in the proof of Theorem 4.4.
(vi) The desired compatible control \(K \) for \([E, A, B, C] \) is now given by
\[
K = \begin{bmatrix}
K_x \Omega^{-1} K_u
\end{bmatrix}.
\]

Acknowledgements. I am indebted to Achim Ilchmann (Ilmenau University of Technology) for several constructive discussions.

References