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Zusammenfassung

Die effiziente Verarbeitung von aggressiven fliissigen Werkstoffen, wie Aluminium oder
Kupfer, erfordert haufig die Kenntnis von Durchflussraten und der raumlichen Verteilung
des Geschwindigkeitsfeldes. Es ist das erklarte Ziel der lokalen Lorentzkraftanemometrie
derartiges zu leisten. Dabei wird an einem kleinen Magneten die Lorentzkraft, die durch
das in der Nahe flieBende Metall induziert wird, gemessen. Jedoch nimmt diese Kraft auch
auf das Fluid Einfluss und verformt das Stromungsprofil.

Von welcher Art diese Verformung ist und ob diese die messbare Kraft verandert, wurde in
der vorliegenden Arbeit mittels analytischer und numerischer Methoden untersucht. Als
Magnetfeld wird die einfachste rdaumlich variable Konfiguration gewahlt, ein magnetisches
Dipolfeld.

Dazu werden die magnetohydrodynamischen Gleichungen in quasistatischer Naherung,
d.h. fiir kleine magnetische Reynoldszahlen, mittels direkter numerischer Simulation un-
tersucht. Zwei dimensionslose Kennzahlen sind hierbei mafigebend: die Hartmannzahl Ha
und die Reynoldszahl Re. Zuséitzlich spielen der Abstand des Dipols zur Fliissigkeits-
oberflache und die Orientierung des magnetischen Moments eine Rolle.

Die Abhangigkeit der messbaren Lorentzkraft vom Abstand h wird durch zwei Potenzge-
setze bestimmt. Fiir sehr kleine Abstinde ist die Kraft proportional zu h=2, fiir sehr grofie
Abstinde zu h~7. Die Deformation des Stromungsprofils verursacht eine Auftriebskraft,
proportional zu Ha*, wihrend die messbare Zugkraft sich wie Ha? verhilt. Die Art der
Verformung hangt von der Orientierung des magnetische Moments ab und kann in Regionen
von Rickstromungen, also Wirbeln, und lokalen Hartmannschichten, also beschleunigter
Stromung, unterteilt werden. Die Stromung bleibt zeitunabhéngig fiir niedrige Reynolds-
zahlen. Fir Re > 2000 wurden periodische Wirbelablosungen gefunden, falls Ha > 80 und
der Abstand h = 1.6 ist sowie das Dipolmoment in Spannweitenrichtung zeigt.

Der untersuchte Parameterraum iiberschreitet zwar den im Laborexperiment erreichbaren,
lieferte jedoch trotzdem niitzliche Hinweise fiir die Auswertung der Messergebnisse. In
der vorliegenden Studie wurden erstmalig die Einflussparameter fiir eine dreidimensionale
Stromung unter Einwirkung eines inhomogenen, lokalen Magnetfelds untersucht. Die Un-
tersuchungen bieten interessante Perspektiven fiir die Stromungsbeeinflussung und folglich
auch fiir die Stromungskontrolle.






Abstract

In industrial applications, it is often required to measure the flow properties of hot and
aggressive liquid metals such as aluminum and copper. Besides the flow rate, the spatial
distribution of the velocity is of interest. Local Lorentz force velocimetry aims to resolve
the spatial distribution of the flow by measuring Lorentz forces at a small permanent
magnet brought into the vicinity of the liquid. In addition, these forces acts on the fluid
and may deflect the flow.

The question, on the nature of this deflection and its impact on the measured forces, will
be answered in the present work by means of analytical and numerical methods. The small
magnet is modeled by a magnetic point dipole that acts on the laminar flow inside a square
duct with insulating walls.

Direct numerical simulations are used to solve the magnetohydrodynamic equations in the
quasi-static approximation for low magnetic Reynolds numbers. The system depends on
two non-dimensional parameters: the Hartmann number Ha and the Reynolds number
Re. Additional influence is given by the geometry, e.g. the distance of the dipole to the
surface of the liquid h and the orientation of the magnetic moment of the dipole. These
influences are investigated in detailed parameter studies.

Two power laws are found for the dependency of the total Lorentz force on the distance.
For small distances the drag force is proportional to h=2 and for large distances to A7,
respectively. This force is proportional to Ha?. The deflection of the flow gives rise to a
lift force that depends on Ha*. The shape of the deflection depends on the orientation.
Regions of reversed flow and local Hartmann layers are created. For low Reynolds numbers
the flow stays laminar, while for Re > 2000 vortex shedding is observed for the spanwise
oriented dipole if Ha > 80 and h = 1.6.

The parameter range considered here exceeds the range, that can be exploited by recent
laboratory experiments. Nevertheless, the investigations may provide useful hint for the
evaluation of the measured forces. The present study provides for the first time a detailed
parameter study for three-dimensional flow under the influence of an inhomogeneous lo-
calized magnetic field. It opens new perspectives for the flow manipulation and thus also
for flow control.
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Vectors and scalars
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coordinates

velocity field
magnetic flux density
magnetic moment
electric currents
Lorentz force density
total Lorentz force
torque

vorticity

electric potential
enstrophy
deformation parameter

Material properties

symbol meaning

characteristic value in laboratory experiments

P density

o conductivity

L characteristic length, i.e.
half of the duct width

h distance from the dipole

to the surface of the fluid

w mean velocity

Biaz maximal magnetic flux density
inside the fluid

v kinematic viscosity

Non-dimensional parameters

6363.13 kg m™—3
3.3-10Sm™!
0.025 m

>0.01 m (based on the center of the magnet)

<0.130174 m s~ !
0.147 T

3.4-107"m?s™!

symbol meaning typical range in numerical study
Re = % Reynolds number 0.1...3000

Ha = Bpa. L, /ﬁ Hartmann number 0...130

N = I}Qf interaction parameter 1...1000

Rm = pooulL

magnetic Reynolds number < 0.015






1. Introduction

This chapter introduces the background of magnetohydrodynamic duct flow in the presence
of a magnetic point dipole. Section 1.1 highlights some applications of magnetohydrody-
namics and classifies this work. Then follows in section 1.2 with a review of selected works
on magnetohydrodynamic duct flow that range from homogeneous and inhomogeneous
magnetic fields to localized magnetic fields. The flow measurement technique that takes
advantage of these physical principles — Lorentz force velocimetry — is explained in section
1.3. Finally, the scope of the thesis is presented in section 1.4.

1.1. Applications of Magnetohydrodynamics

Magnetohydrodynamics (MHD) studies the interaction of electromagnetic fields with elec-
trically conducting fluids. The term "magnetohydrodynamics“ was first recorded by Hannes
Alfvén in 1945 in the context of the cosmogony of the solar system (Alfvén, 1946). In as-
trophysics, the considered fluid is plasma — ionized gas. The ionization is ignored in MHD
calculations, which is leading to statements as “MHD is the poor cousin of plasma physics
(Schnack, 2009). Nevertheless, as the same author acknowledges, ”MHD seems to work“,
and it plays a central role in several physical phenomena such as the dynamics in the in-
terior and atmosphere of stars (Biskamp, 1993; Riidiger & Hollerbach, 2004) or in nuclear
fusion (Niu, 1989). In a nutshell, MHD breaks down when electron and ionic components
have to be considered separately, i.e., when the different Larmor radii become essential.

The scope of applications of magnetohydrodynamics is much broader and not limited to
plasma physics. In industrial applications, MHD leaves its role as the "poor cousin“ and
becomes the "rich uncle“ of metallurgy. Magnetohydrodynamic shear flows are encountered
in industrial applications involving molten metals, such as in metal processing or in the
blanket of future nuclear fusion reactors (Knaepen & Moreau, 2008). MHD is also exploited
in multiphysics problems, where electromagnetic forces are used to control solidification,
e.g. in crystal growth (Langlois, 1985; Kirkpatrick, 1975; Lantzsch et al., 2007).

Although the range of applications is wide, the underlying physical principles are the
same. A key parameter, that enables to distinguish between astrophysical and metallurgical
applications, is the magnetic Reynolds number. This dimensionless quantity describes the
ratio of advection to diffusion of the magnetic field (Davidson, 2006; Moreau, 1990). In
astrophysical applications, the magnetic Reynolds number is large, i.e. of the order 10°
to 10%, such that the magnetic field is almost frozen in the flow. In contrast, metallurgic
applications involve magnetic Reynolds numbers between 1072 and 10~*. This work is
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dedicated to liquid metal flow in industrial applications (Davidson, 1999), with negligible
magnetic Reynolds numbers.

In this range of metallurgy, many applications are available. They are all based on use of the
Lorentz force that is induced due to Lenz rule. An oscillating Lorentz force can damp the
perturbations in the boundary layer of the flow over a flat plate , e. g. Tollmien-Schlichting
waves (Albrecht et al., 2006, 2008; Shatrov & Gerbeth, 2006). Besides damping, the Lorentz
force may also accelerate the fluid. This is used for induction pumps (Khripchenko et al.,
2010), where an alternating magnetic field directed normally to the plane of a channel give
rise to the pumping effect.

An open problem can be found in casting (Schrewe, 1989; Beddoes & Bibby, 1999), where
it is desirable to control the mass flow of the liquid metals. Furthermore, it is interesting
to measure the spatial velocity distribution, e.g. the velocity field in the mold during the
continuous casting of steel (Timmel et al., 2010; Thomas & Chaudhary, 2009). Here, the
aim is to improve the quality and cleanness of the the steel (Zhang & Thomas, 2003). Al-
though there exists a variety of methods for low measurement in liquids and gases at room
temperature or slightly above it (Baker, 2004; Nitsche & Brunn, 2006), the possibilities to
measure velocities in hot, opaque and aggressive liquids like aluminum or copper melts are
limited. Being in direct contact with the material, standard sensors are rapidly destroyed
due to heat and chemical reactions, while contactless optical measurement systems fail due
to the opaqueness.

Several efforts of the last decade aimed at overcoming this limitation, such as the magnetic
induction tomography (Korjenevsky et al., 2000; Stefani et al., 2004) and the Lorentz Force
Velocimetry (LFV) (Thess et al., 2006), which provide contactless methods to measure flow
velocities in melts. The two methods follow a similar approach, but induction tomography
uses an oscillating magnetic field and LFV takes advantage of permanent magnets. The
present state-of-the-art is however still limited to the measurement of mean velocities or
volumes fluxes of the liquid metal flow. Nevertheless, it is was already possible to distin-
guish the different flow regimes and to detect individual bubbles with induction tomography
(Terzija et al., 2011). This was done in a laboratory experiment that simulates the contin-
uous casting process. Measurements in industrial environment by Kolesnikov et al. (2011)
demonstrate the feasibility of measuring the flow rate with LFV for open channels. Recent
works investigate local LF'V in laboratory experiments (Pulugundla et al., submitted) and
(Heinicke et al., 2012) with the aim to resolve the spacial properties of the flow. The
present work continues these studies.

1.2. Review of selected research

Early works on MHD studied the Hartmann flow, a laminar flow in a duct under a uniform
magnetic field (Hartmann, 1937; Hartmann & Lazarus, 1937). The magnetic field induces
electric currents in the flow. These currents form closed loops in the fluid and lead to the
Lorentz force. Due to Faraday’s law of induction the Lorentz force is created that deflects
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Figure 1.1.: Sketch of principle for the Hartmann flow with streamlines of electric currents
(left) and velocity profile (right). Data obtained by DNS with Re = 1000 and Ha = 30.

the flow. For laminar flow, this velocity profile is known analytically (Miiller & Biihler,
2001). In the turbulent case, the secondary mean flow was investigated for hydrodynamic
duct flow, e. g. by Huser & Biringen (1993) and Uhlmann et al. (2007), and for the turbulent
Hartmann flow in ducts by Shatrov & Gerbeth (2010).

The velocity profile of the Hartmann flow (cf. figure 1.1) is divided into three parts: The
bulk region, the Hartmann and Shercliff layers (Hunt & Shercliff, 1971; Hunt, 1965). In
the bulk flow, the velocity profile is flattened due to braking Lorentz forces. The velocity
boundary layer with a magnetic field perpendicular to the wall is called the Hartmann
layer. This layer has the key property that viscous friction and electromagnetic forces
balance each other. Here, the fluid is accelerated due to the electromagnetic forces. The
thickness of the Hartmann layer is proportional to the inverse of the Hartmann number Ha
(Miiller & Biihler, 2001). The Hartmann number is defined by the ratio of electromagnetic
to viscous forces and is a measure for how strong the fluid flow is changed by the magnetic
field. In laboratory experiments, Ha is in the range of 10 to 103, while in the blanket of
fusion reactors it is even higher, i.e. 103 to 10* (Knaepen & Moreau, 2008). The presented
work focuses on Hartmann numbers of order 10%, which is the same range as in laboratory
experiments by Heinicke (2012) that are used for the validation in section 3.3. The Shercliff
layers are the side layer with a magnetic field parallel to the wall. They are less stable than
the bulk and the Hartmann layers. Krasnov et al. (2010) computed optimal perturbations
to a laminar state for a transverse uniform magnetic field in a duct with insulating walls.
The stability of the Hartmann layer was a subject of several investigations (Lingwood &
Alboussiere, 1999; Gerard-Varet, 2002; Moresco & Alboussiere, 2003; Kobayashi, 2008).

If the walls of the duct are conducting, a stronger damped profile of the velocity is observed
(Hunt & Shercliff, 1971; Hunt & Stewartson, 1965; Kinet et al., 2009). Spatial variations
in the conductivity give rise to vortices and deformations of the flow (Hunt, 1966). Works
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by Alpher et al. (1960) and Biihler (1996) describe the creation of internal shear layers by
non-uniform electrical boundary conditions at the channel walls. To reduce complexity, we
restrict the investigations in this work to insulating walls.

Further investigations involve variation of the geometry. A duct whose width increases lin-
early in the flow direction was investigated by Walker et al. (1972) and Walker & Picologlou
(1995). Three-dimensional flow in sudden expansion has been investigated numerically for
both the hydrodynamic (Mistrangelo, 2011a) and the magnetohydrodynamic case (Mis-
trangelo, 2005, 2011b). Experimental investigations correlated to the application in fusion
reactors were performed by Biihler et al. (2007). On the contrary, it is the aim of this
work to understand the fundamentals of the Lorentz force velocimetry (cf. section 1.3), we
consider a square duct as a basic geometry.

As we keep the geometry fixed, the focus is on the variation of the shape of the magnetic
field. The first step is to study the fringing magnetic field — a model in which the fluid
enters the field of a huge permanent magnet. Sterl (1990) investigates the redistribution of
the fluid in the region where the magnetic field changes. Large axial currents are induced
leading to the “M-shaped” velocity profile, which are characteristic for MHD flows in
inhomogeneous magnetic fields.

Besides the fringing magnetic fields, recent research considered the so-called magnetic
obstacles. This term is originated in the fact that a localized magnetic field influences
the fluid in a similar way as a solid obstacle. The basic effects of this interaction were
shown by Shercliff (1965) in an educational film. In this experiment, a magnet system
was moved along an open channel filled with mercury. The movement led to creation of
vortices in the liquid. Some early experiments and numerical investigations were done for
two-dimensional creeping flow by Gelfgat & Olshanskii (1978) and Gelfgat et al. (1978).
UDV measurements’ in channel flow, performed by Andreev et al. (2006), show that the
incoming flow transforms into an M-shaped profile, in the region were the magnetic field is
strongest. The flow is further characterized by large-scale vortical structures downstream
of the magnetic field. A detailed study of the vortex structures in the liquid is given by
Votyakov et al. (2007). These numerical results were recently validated by Kenjeres et al.
(2010) and ten Cate (2009). A numerical study on the influence of the size of the magnet
on the flow distribution is given in Votyakov et al. (2008) for three-dimensional stationary
flow. The number of attached vortices decrease with decreasing magnetic size. The case of
quasi two-dimensional time-dependent flow is studied in Cuevas et al. (2006b). Here, the
magnetic field induces a vortex shedding similar to the von Karman vortex street behind
a solid cylinder. It is possible to give analytic solutions for the two-dimensional creeping
flow (Cuevas et al., 2006a), when the permanent magnet is approximated with a magnetic
point dipole.

In general, it is impossible to find an analytical solution for the electromagnetic force
acting on the fluid, even when the motion of the conducting liquid is very simple as for the
laminar flow. Only a few cases which replace the real magnet system by a magnetic dipole

'UDV = Ultrasonic Doppler Velocimetry.
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or simple coil are known to have analytical solutions (Reitz, 1970; Palmer, 2004; Thess
et al., 2007; Priede et al., 2009, 2011b). These simplified problems are of great importance
for the theory of Lorentz force velocimetry because they allow a deeper understanding of
the involved processes and provide reference data for complex numerical simulations.

1.3. Lorentz force velocimetry

Lorentz force velocimetry (LFV) is a contactless technique for measuring flow rates and ve-
locities of moving conducting liquids (Thess et al., 2006, 2007). It can be used in situations
where mechanical contact of a sensor with the flowing medium must be avoided due to
environmental conditions (high temperatures, radioactivity) and chemical reactions. Possi-
ble applications include flow measurement during the continuous casting of steel (Schrewe,
1989), in ducts and open channel flows of liquid aluminum alloys in aluminum produc-
tion (Kolesnikov et al., 2011), and in other metallurgical processes where hot liquid metal
or glass flows are involved (Davidson, 1999).

Besides LFV, other techniques exist for low rate measurements in opaque conducting lig-
uids (Argyropoulos, 2000). However, none of the known techniques have found commercial
application in metallurgy. Invasive probes, such as the Vives probe (Ricou & Vives, 1982)
or mechanical reaction probes (Szekely et al., 1977), are not very suitable for flow rate
measurements at high temperatures because they require direct contact between the sen-
sor and the often aggressive liquid metal. Ultrasound sensors (Takeda, 1987) have similar
problems, but can be used for hot melts with temperatures up to 800°C (Eckert et al.,
2003). Commercially available electromagnetic flowmeters (Shercliff, 1962; Bevir, 1970)
are often not usable either, since rough operating conditions are typical for metallurgical
applications. Inductive flow tomography (Stefani et al., 2004) can be used sometimes for
reconstruction of the melt flow structure in closed ducts. This technique, however, is too
complex to be applied for simple flow metering and requires solution of inverse problems.
So its adaption to industrial processes seems to be overly complicated.

LFV belongs to the group of electromagnetic flow measurement methods (Shercliff, 1962).
Let us briefly review these techniques before defining the problem to be considered in the
present work. In all methods, the flow of an electrically conducting fluid is exposed to
a magnetic field leading to a Lorentz force that deflects the paths of the charge carriers
inside the fluid, where the magnitude of the resulting eddy currents depends on the fluid
velocity. The first to use this effect was Michael Faraday, when he attempted to determine
the velocity of the river Thames flowing through Earth’s magnetic field by measuring the
induced voltage in two electrodes placed on either side of the river (Faraday, 1832). The
first successful implementation of an inductive flowmeter was then done by Wollaston in
1851 (Wollaston, 1881).

A slightly different method is used in the eddy current flowmeter as proposed by Feng
et al. (1975). It consists of a system of driver and pickup coils that induce and detect
eddy currents, respectively. By applying an AC magnetic field, a phase-shift flowmeter can
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(a) A permanent magnet is brought close
to the conduit.
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secondary magnetic field.
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(b) Eddy currents are induced in the
conducting liquid.
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fluid and its counter force can be
measured at the magnet.

Figure 1.2.: Principle of Lorentz force velocimetry. Courtesy to the Institute of Thermo-

dynamics and Fluid Mechanics of TU Ilmenau.
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measure velocities via phase disturbances in the surrounding electromagnetic field that
are caused by the flow field (Priede et al., 2011a). A step towards spatial resolution in a
bulk flow is represented by the contactless inductive flow tomography (Baumgartl et al.,
1993; Stefani et al., 2004). This method exposes a melt to a weak magnetic field and then
reconstructs the velocity field from the secondary magnetic field outside the melt. Closely
related to LF'V are the rotary flowmeters that have the advantage of being independent
of the electrical conductivity and thus of the temperature of the melt. These flowmeters
employ permanent magnets which are set in rotation by the torque generated by the
interaction of the magnetic field with the moving fluid (Bucenieks, 2000; Thess et al.,
2006; Priede et al., 2009). In addition to the torque, there acts an accelerating force on
the magnet system which is the counterpart of the braking Lorentz force inside the fluid.

Estimates show that the Lorentz force density follows to I’ ~ ouB?, where ¢ is the electrical
conductivity of the moving conductor, u is the magnitude of the velocity and B is the
magnitude of the magnetic induction. Measuring this force, which acts on the magnetic
system, allows to determine the mean velocity of the moving conductor. Since the drag
force is proportional to the square of the magnetic induction, it is possible to improve the
sensitivity of the measurement technique by increasing the magnetic field intensity. The
method, therefore, can be applied to poorly conducting substances like electrolytes or glass
melts. Recently, Wegfra$ et al. (2012) proved the feasibility of LF'V in electrolyte pipe flow.
However, this still requires further optimization of the design of the magnetic system as
well as further improvement of the force measurement system (Wegfrafl, 2012).

LFV has the potential to be extended to the use of a small permanent magnet, possibly
allowing for not only global flow measurement such as the determination of the flux through
a pipe or channel, but also for local low measurement. The specific goal of the present
work is to characterize the interaction between the utilized small magnet and the flow.

The principle of LFV is shown in figure 1.2. Inside the pipe, a laminar pressure-driven
flow of an electrically conducting liquid exists, u = u,(y, z)e, (cf. figure 1.2a). When a
magnetic dipole is brought close to the flow, the magnetic field induces electric currents
inside the flow in accordance to Ohm’s law (cf. figure 1.2b). These currents remain inside
the flow when the side walls are insulating. This is accompanied by two effects. First,
the presence of electric currents in the moving liquid induces a secondary magnetic field
(cf. figure 1.2c¢). This secondary magnetic field will be much weaker than the primary
field of the point dipole. In many applications in metallurgy, one can assume that the
secondary magnetic field is negligible relative to the primary field. This idea coincides
with the assumption that the magnetic Reynolds number Rm (Davidson, 2006; Moreau,
1990) is very small. In the present simulation, we neglect the secondary field and apply
the quasistatic approximation. Physically, this means that the flow is unable to deform the
field lines of the magnetic dipole. Second, the currents induced by the primary magnetic
field of the dipole generate a Lorentz force F' which acts back on the liquid and changes
the structures of the flow (cf. figure 1.2d). We will observe that this Lorentz force gives
rise to a deformation of the velocity profiles (see chapter 5) and is even able to trigger a
transition to turbulence (see chapter 6). Due to Newtons third law, a counter force —F
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acts on the magnetic dipole which is of same magnitude as the total Lorentz force in the
conduit, but has opposite sign.

The first part of this work is focused on the determination of this force and the derivation
of mean flow properties from its magnitude. Hereafter, we will zoom in and focus to
the particular impact of the Lorentz force on the velocity field and the resulting flow
transformation.

1.4. Scope of the Thesis

The aim of this work is to study the influence of localized and inhomogeneous magnetic
fields on a three-dimensional shear flow. For the magnetic field the natural choice is a point
dipole — as it has the advantage of being described by an analytical expression (Jackson,
1998). Such a point dipole was also considered by Cuevas et al. (2006a,b) for a two-
dimensional flow. The present work focuses on the flow in a square duct. This is one of
the most investigated shear flows and known to be linearly stable (Tatsumi & Yoshimura,
1990). In addition, the structures for the turbulent regime are well investigated (Gavrilakis,
1992; Uhlmann et al., 2007).

Accurate laboratory measurements in MHD flows are difficult and expensive. The choice of
the used liquid metal is here for example between an expensive GalnSn alloy that is liquid at
room temperature or a cheaper metal that requires higher temperatures to melt. Moreover,
technical limitations can restrict the experiment to a defined range of parameters, e.g. a
fixed strength of the permanent magnet.

Direct numerical simulations (DNS) can fill this gap in parts by providing the fully resolved
space-time evolution of three-dimensional velocity fields and Lorentz force components
that affect the motion. On the one hand, cases of transient or turbulent fluid motion will
then remain limited to a moderate range of dimensionless parameters, which will be the
Reynolds and Hartmann numbers.? On the other hand, DNS is the only method to study
the local impact of the magnetic field and to investigate related parameter dependencies
systematically. The last point sets the main motivation for the present analysis.

In the framework of the Lorentz force velocimetry, it is desired to obtain as much informa-
tion as possible about the measured forces that are influenced by the flow. However, the
approach of the present work is to investigate the behavior of the flow itself. As a matter
of fact, the force that is measured at the magnet will influence the structures in the liquid.
This influence might lead to unknown or even unwanted effects and thereby changes the
measured force. To identify the principles of these effects, we investigate the influence of
a magnetic point dipole on liquid metal flow in a square duct.

Several questions arise in this investigation. Before considering the reaction of the flow in

2The Reynolds number is defined as the ratio of inertial forces to viscous forces inside the fluid and the
Hartmann number as the ratio of electromagnetic to viscous forces. Both parameters are defined in
section 2.1 on page 11.
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detail, it is reasonable to consider an unperturbed profile and to ask:

1. How strong is the total force that acts on this system? The answer definitely depends
on several parameters. Thus, the question can be divided into:

a) What is the influence of the strength and the shape of the magnetic field? This
can be quantified with the Hartmann number and the position of the dipole.

b) What is the influence of the state of the flow on the total force, i.e., is there a
different behavior for laminar and turbulent flow? The answer can be found by
investigating the force as a function of the Reynolds number.

Having obtained some information on the total force, one may proceed to the investigation
of the Lorentz force density and its local effects. The acting force leads to a certain
deflection of the flow, as was found in the magnetic obstacle study (Votyakov et al., 2008).

2. What kind of deflection occurs? What is the physical mechanism driving such a
phenomenon?

3. What is the difference in the total force between the case of an undeflected and a
deflected flow? Is there a certain range within which the flow can be approximated
by an unaffected hydrodynamic profile?

An interesting regime for hydrodynamic investigations is the transitional regime, i.e. the
state, where the flow is still laminar, but likely to become turbulent. Considering this
regime gives rise to more questions, such as:

4. How are the forces affected when the flow changes from the creeping to the transi-
tional regime?

5. Can the dipole trigger turbulence in the originally laminar flow? Is there a threshold
in the strength of the magnetic field for the transition to occur?

In order to answer these questions, several numerical calculations are performed. Based
on this framework, this thesis is organized as follows. In this introduction, we give a
short review of previous research that is related to the subject and the basic principles of
Lorentz force velocimetry. The geometry and setting of the problem under consideration
are discussed in section 2.1. The numerical method of the DNS code is described in
sections 2.2 and 2.3. In chapter 3, the focus is on the detailed verification and validation
of the results. Chapter 4 is devoted to the investigation of the kinematic problem. In
this regime, the flow is not influenced by the magnetic field. Thus, it is possible to derive
analytic correlations and to investigate the questions la) and 1b). The results for low
Reynolds numbers describe the basic deformations of the flow field in section 5 for the
stationary regime. This regime exists for lower Reynolds numbers and persists when both,
Hartmann and Reynolds number, are increased to a certain point. The three sections on
the basic principles of the deformation (section 5.1), the Hartmann (section 5.2) and the
Reynolds dependence (section 5.3) are each devoted to the corresponding question 2, 3 and
4, respectively. The last question will be answered in chapter 6, where the transition to
turbulence is discussed for the case of increasing Reynolds number. The conclusion and a
brief outlook is given in chapter 7.




1. Introduction

Contributions to this work

Chapter 4 is based on Heinicke et al. (2012) and Kirpo et al. (2011). Only results that
were contributed by the author to these articles are repeated in the present work.

Thomas Boeck gave the derivation for the semianalytic presentation for small distances,
that is presented in this chapter and published in Heinicke et al. (2012).

The derivation of the power law for large distances was already published in Kirpo et al.
(2011) and is based on an idea of André Thess for a vertically oriented dipole.
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2. Methods

Several questions were posed in section 1.4. In this chapter, the methods are presented that
are applied to solve the tasks of section 1.4. In the beginning, we explain the setup and
the equations of motions that are solved by direct numerical simulations. This is followed
by the numerical algorithm and a detailed description of the relaminarisation zone that is
used for calculations in the regime of high Reynolds numbers.

2.1. Equations of motion and setup

We consider the flow of an electrically conducting fluid in a square duct exposed to an
inhomogeneous magnetic field. The magnetic field is provided by a point dipole, that is
placed above the top surface of the duct in a certain distance h. A sketch of the setup
is shown in figure 2.1. We use Cartesian coordinates, where the streamwise direction is
denoted as x, spanwise as y and vertical wall-normal as z. The origin is chosen to be at
the centerline of the duct. Thus, the duct extents in y and z-direction from -1 to 1. The
position of the dipole is then given by rq = (0,0, h + 1), symmetrically above the vertical
center plane.

The analytic expression of the magnetic flux density for the dipole is given by (Jackson,

1998) Bier ] (3m T m) 7 (2.1)

k2 + k2 + 4k2 75 3

where m = ke, +kye,+k.e. is the orientation of the magnetic moment with k2+ k> +k2 =
1 and » = & — 7. The magnetic flux density in equation (2.1) is normalized such that the
maximal magnitude inside the liquid equals one.

The orientation of the magnetic moment of the point dipole, or shorter the dipole orien-
tation, is one of the key parameters in the following study. We will call the orientation
streamwise if m = e,, spanwise if m = e, and vertical if m = e,. We restrict our
study to these three main orientations, but preliminary studies have shown, that oblique
orientations lead to more complex structures in the flow.

In addition to the geometry parameters, we have the two dimensionless parameters, Re
and Ha. The Reynolds number Re is defined as

al
Re= "% (2.2)

v
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Figure 2.1.: Setup of the problem. The mean velocity u of the duct flow points in positive
z-direction. The center of the coordinate system is placed at the center of the duct. The
distance between magnetic point dipole and fluid surface is denoted as h. The orientation
of the magnetic moment of the point dipole is labeled as m. The characteristic length
scale of this setup is chosen to be the half-width of the duct. All lengths are expressed in
this unit.

where @ is mean streamwise velocity, L is the characteristic length scale, which is for the
present case the duct half width, and v denotes the kinematic viscosity. The strength of
the magnetic field can be quantified by the Hartmann number which is given by

Ha= By Ly |~ (2.3)
pv

where B, is the maximal magnetic field flux density inside the liquid, p the mass density
and o the conductivity. While there is a unique definition of the Hartmann number in the
case of a uniform magnetic field, the definition of Ha in the present case of a non-uniform
field involves an ambiguity related to the choice of the magnetic flux density. Here, we
define Ha based on the maximum of the magnetic flux density B,,,, which occurs at the
upper boundary of the duct right below the dipole at point * = y = 0 and z = 1. It
should be noted that in general B,,,, is a complicated function of m and h. For the sake
of generality, we define Ha in terms of B,,,, rather than in terms of m and h.

With the given parameters m, h, Ha and Re, several numerical simulations are presented
in this work. These can be classified in the two-dimensional parameter-subspace spanned
by the Reynolds number Re and the Hartmann number Ha depicted in figure 2.2. Each
point in the graph denotes a simulation. The distance h from the dipole to the surface of

12
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Figure 2.2.: Range of Hartmann and Reynolds numbers, Ha and Re, as presented in the
work. Each point denotes a separate direct numerical simulation. The distances h of the
dipole from the top surface of the duct is h = 0.4 (circles) or h = 1.6 (squares), measured
in units of the half width of the duct.

the liquid is set to h = 0.4 for low Reynolds numbers and kinematic simulations. Thereby;,
one reaches the regime that can be investigated in laboratory experiments (Heinicke et al.,
2012). As the focus is on the integral values in this regime, the orientation of the magnet
plays a minor role. For higher Reynolds numbers h = 1.6 is used, because in this setting,
time-dependent flow structures are observed. In this distance, the orientation of the dipole
is important as it influences the deflection and thus the obtained structures in the flow.

In the calculations, the fluid is assumed to be in a laminar state before it interacts with
the dipole field. The velocity profile matches the approximation u = ﬁex, with

1)n+m

8
B -
o ; CEA

cos(B,y) - cos(Bmz). (2.4)

with 3, = Qm;'lw. This is an approximation to the analytic formula for the laminar flow
profile (Pozrikidis, 1997). In the simulations, the velocity is normalized such that the flux

equals one.

The laminar profile also represents the initial state of the flow. As stated in section 1.3,
the magnetic field induces electric currents j in the flow, that can be determined with the
help of Ohm’s law,

j=-Vyo+uxB.

Here, ¢ denotes the electric potential. The currents give rise to the Lorentz force density

Ha? .
fzﬁ(JXB)
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2. Methods

inside the fluid. The fluid deflects due to this forces and reaches an equilibrium state
after a certain settling time. To model the interaction between the Lorentz force and the
conducting liquid, we solve the Navier-Stokes equations

1 Ha?

Viu+ ——(-Vyo+ux B) x B (2.5)

du+ (u-V)u=—-Vp+ e e

for an incompressible fluid, i.e.
V-u=0. (2.6)

The electric potential is calculated with the Poisson equation
Ap =V (ux B). (2.7)
We use no-slip boundary conditions for the velocity, i.e.,
u=0, (2.8)
at all walls. Furthermore all walls are insulating and thus we apply

¢ _

= 2.
o, 29)

where n denotes the corresponding normal direction perpendicular to the walls. In the
streamwise direction we apply periodic boundary conditions in our simulations. For higher
Reynolds numbers we model inflow/outflow conditions with the help of the so-called fringe
force as described in the following chapter 3.

2.2. Numerical method

In computational magnetohydrodynamics several numerical methods are used to solve the
Navier Stokes equations. Before deciding on a model to use, we have to determine the
level of approximation that is needed to provide the required resolution for the considered
problem (Sagaut, 1998). The more details one intents to obtain the more effort one has to
put in. This is shown in the conceptional graph in figure 2.3. Here, three common methods
are compared according to needed effort and the received completeness: Reynolds averaged
Navier-Stokes (RANS), Large Eddy Simulations (LES) and Direct Numerical Simulations
(DNS).

In RANS simulations and LES, an additional modeling is applied to minimize the com-
putational costs (cf. Widlund (2000)). Both methods are used in computational MHD
(Knaepen & Moreau, 2008). RANS simulations are frequently applied in research of com-
plex systems, e.g. MHD dynamo (Kenjeres & Hanjali¢, 2007b; Stefani et al., 2009), blood
flow (Kenjeres, 2008) or magnetoconvection (Cierpka et al., 2007). In scientific research
with focus on flow structures in turbulence the method of choice is LES (Knaepen et al.
(2005), Kawai & Larsson (2012), Viré & Knaepen (2009)) due to its ability to show time

14
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Figure 2.3.: Conceptional comparison of Reynolds averaged Navier-Stokes (RANS) simu-
lations, Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS).

dependent evolution of vortical structures. Combinations of both methods, so-called hy-
brid RANS-LES, are used for simulations in plane channel flow (Bhushan & Walters, 2012).
The verification of these models is usually done with fully resolved DNS, e.g. Kenjeres &
Hanjali¢ (2007a) and Viré et al. (2011). Such a fully resolved DNS solves the discretized
equations on a very fine mesh down to the viscous scale. Due to its high accuracy, DNS
need huge computational resources, but provide detailed information of the flow structures,
e.g. turbulence.

As the aim of the present work is to understand the underlying principles of the interaction
between the magnetic field and the flow, DNS is appropriate to reveal time-dependent and
small scale structures in the velocity field. This advantage over RANS simulations and
LES motivates the use of DNS in the present work.

The here presented direct numerical simulations are performed using an in-house code
Ducat! (Duct canal turbulence), that has been verified for Hartmann flow in channels and
ducts by Krasnov et al. (2011). The finite difference code uses a second order scheme on a
collocated grid arrangement. The Navier-Stokes equations are discretized in time with an
explicit Adam-Bashforth/Backward Differentiation scheme. With this, the equation

du =—Vp — (u~V)u+LAu—|—H—a2(j x B) (2.10)
Re Re
becomes U _ dgg 4 gL
=2R"— R"'

20t

'The main part of the code was written by Dmitry Krasnov. The author adjusted several routines in the
code to solve the given problem.
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with R being the right-hand side of equation (2.10). The superscript, e.g. n, denotes the
time step and Jt the time step size. The used algorithm takes advantage of the projec-
tion method. This method is based on a time-splitting discretization which decouples the
computation of velocity and pressure. Here, an auxiliary field w* is obtained from the mo-
mentum equation with the incompressibility constraint and the pressure gradient ignored
and is used in a second step to solve the Poisson equation for the pressure. This provides
the correction of the velocity field for the next time step. Thus, the obtained velocity w"*!
automatically satisfies the incompressibility constraint. The convergence of this method
was first proved by Chorin (1968) and Temam (1969), independently. First applications
were given by Chorin (1969) for Bénard convection. The accuracy of the projection method
was investigated by E & Liu (1995, 1996, 2001), who focused on influence of the boundary
conditions on the convergence of the scheme.

In detail, the algorithm for proceeding from time step n to n + 1 with a time step size 0t
reads as follows (Krasnov et al., 2011).

1. Solve electric potential equation Ag"™ =V - (u™ x B).
2. Compute electric current 3" = —V¢" + (u™ x B).
n n n n (12 *T
3. Compute R" = —(u" - V)u" + 2-Au" 4+ 2= (5" x B).
4. Compute auxiliary velocity field Buduwtu L opn Rl
5

26t
. Solve pressure equation Ap"t! = %V -u* with the boundary conditions
6%7:1 = s> at the walls and n being the vector normal to the wall.

6. Update velocity field u"* = u* — 26t Vp™*t,

For the projection method, a wide range of numerical schemes are available (Brown et al.,
2001). To obtain physical results, it is desirable to conserve properties like kinetic energy,
mass and momentum. Systematic studies provide such schemes for hydrodynamics (Morin-
ishi et al., 1998; Vasilyev, 1998) and magnetohydrodynamics (Ni et al., 2007). The code
Ducat takes advantage of such highly conservatives scheme. We like to emphasize here the
usage of a collocated grid arrangement, that allows to calculate velocity and current fluxes
in the half-integer points in addition to the usual variables in the staggered grid positions.
A skillful application of this grid provides the highly conservative scheme as used in Ducat.
For more details on the algorithm and the scheme, we refer the interested reader to the
work of Krasnov et al. (2011).

2.3. Relaminarisation of the velocity profile

About 90% of the computational time is needed to solve the Poisson equations in our
problem (cf. steps 1 and 5 in the alogorithm above). Therefore, it is reasonable to chose
a fast Poisson solver and accept the necessity of additional modeling. The subsequent
paragraphs are devoted to this problem and answer the questions how we model a laminar
inflow for Reynolds numbers at which the flow become turbulent.
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2.3. Relaminarisation of the velocity profile

Figure 2.4.: Example for a function A(z) used as a prefactor in the fringe force.

Our aim is to reduce the computational costs by solving the Poisson equations with the
2D-Poisson solver FishPack (Adams et al., 1999). FishPack is a collection of subroutines
for solving separable partial differential equations by means of the cyclic reduction algo-
rithm (Bini & Meini, 2009). To use this Poisson solver, we have to use periodic boundary
conditions and a uniform grid in streamwise direction to apply Fast Fourier Transform
(FFT). By this, we obtain for each wave coefficient a 2D Poisson problem that is solved by
FishPack and retransform it into physical space. Despite the additional FFTs, the solution
is calculated much faster than with the 3D multigrid solver MudPack (Adams, 1991).

The resulting drawback is the need to ensure that a laminar unperturbed duct flow profile
is maintained upstream of the magnetic dipole. Thus, the computational domain has to be
increased with increasing Reynolds number, when the flow is below the threshold to tran-
sition to turbulence. For Re = 100, a duct length of 207 was found to be sufficiently long
such that the perturbations decay downstream and the laminar duct profile is completely
reestablished at the end of the domain. This procedure increases the computational costs
rapidly when Re is enhanced.

For higher Reynolds numbers, e.g. Re = 2000, the flow may become turbulent and this
strategy breaks down completely. The conflict with the periodic boundary conditions is cir-
cumvented by application of an additional fringe force which acts in the final downstream
section of the duct and relaminarises the partially or fully turbulent flow. This fringe
method (Nordstrom et al., 1999), sometimes also called sponge method, is a common nu-
merical approach for relaminarisation of velocity fields and is mostly used in simulations of
turbulent boundary layers (Schlatter & Orlii, 2010; Albrecht et al., 2006). Our simulations
show that it can also be applied for magnetohydrodynamic duct flows. This way we can
take advantage of the faster Poisson solver.

The fringe method applies an artificial body force F pringe = M Uigminar — @) to the right

hand side of the Navier Stokes equation (2.5). It only influences the flow when the prefactor
A(z) is non-zero. The shape of the prefactor is in our case given by the stepwise defined

function
X — Tstart L — Tend
A®) = A |8 (E Bt} _ g 7“)}
( ) |: ( Am’se ) ( Afall

with

0, xz <0,

S(x) =10.5—0.5cos8(xm), 0<uz<l,
1, x> 1.
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magnetic obstacle
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instability

relaminarisation
in the fringe region

Figure 2.5.: Sketch of principle of the fringe method. The laminar flow is deflected by the
dipole that acts as a magnetic obstacle. The wake is strongly deformed and may become
turbulent. In the region close to the end of the duct, the fringe force relaminarise the flow.
At the end of the domain, the profile is laminar again. This method allows to use periodic
boundary conditions in the streamwise direction.

This function was used by Albrecht et al. (2006) and is shown in figure 2.4. In preliminary
investigations, we studied the influence of the parameters, i.e. the maximal amplitude
Amaz, steepness of the curve in the beginning A,;;. and in the end Ay, as well as the total
length |Zeng — Tspare| Of the fringe zone. The higher A, the stronger is the damping. In
our calculations, \,,,; = 1 is suitable to relaminarise the flow. Some additional tests are
done with an alternative function

0, x <0,
Salter(x) = 1/[1 + eXp(ﬁ + %)], 0<z< 1,
1 x> 1,

Y

but no advantages are detected in comparison to the original function.

An example for the resulting velocity profiles is shown in figure 2.5. Here, the transforma-
tion of the flow by the magnetic dipole for h = 1.6, Re = 3000 and Ha = 100 is illustrated.
This computation is performed with 8192 x 256% grid points (in z,y, z) and a duct length
of 307. Before verifying the applied fringe method in section 3.2, we provide some details
on the used meshes in the following section.
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This chapter is devoted to the verification and validation of the numerical code. In the
first section, we provide a grid sensitivity study. This is followed by a detailed verification
of the DNS code with three other numerical methods. We prove that the relaminarisation
zone introduced in section 2.3 correctly models the inflow/outflow conditions. Last, the
turbulent mean velocity profile and Lorentz forces obtained from the DNS are validated
with experimental results.

3.1. Grid sensitivity studies

There are three challenges that need to be captured for a proper resolution in a DNS:
the boundary layers, small scales in turbulent flow and the steep gradient of the magnetic
field of the point dipole. They become increasingly important for higher Hartmann and
Reynolds numbers, where strong gradients of velocity and magnetic flux have to be resolved
in thin boundary layers, which leads to a transition to turbulence in the wake.

Two approaches to solve this problem are employed here. The first and most simple ap-
proach is to increase the number of grid points. This naturally increases the computational
cost, i.e. the random accessible memory and single CPU time. Therefore, as a second ap-
proach, a grid stretching is applied that increases the number of points in the boundaries.
The stretching functions are given by (Krasnov et al., 2011)

_ tanh(ay,n) (3.1)
tanh(ay) '
based on the hyperbolic tangent and
. T
y = Bysin(nZ) + (1= 5,)n

for a Chebychev based stretching. Here, 1 is the coordinate on a uniform grid, y denotes
the transformed coordinate, while «, and 3, are the stretching coefficients. The stretching
in z-direction is given analogously. This grid refinement at the walls provides a better
resolution in the boundary layer while keeping the total number of grid points unchanged.
Both approaches, the grid refinement and the stretching give rise to an increase in the total
computational time of the present explicit numerical scheme. According to the Courant-
Friedrichs-Lewy condition (Ferziger & Peric, 2002),

At < uAz,
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the minimal separation between two grid points Az gives a constraint on the maximal time
step At. This may increase the real calculation time drastically. A refinement of the grid by
factor two in every spacial direction will result in a factor of 16 for the computational time.
The parallelization of the code (MPI + OpenMP) can compensate this if the computing
capacity is available.

For each regime, that is considered in the investigation, a characteristic setting is chosen.
Then, we provide for these examples a grid study with maximal grid refinement. The
definition of “maximal” is hereby determined by constraints on the computing capacities.
With this study we select a resolution and a stretching coefficient that is assumed to provide
physical results and at the same time reduces the computational costs. This resolution is
then used for the parameter studies.

The consecutive paragraphs give the details of the grid studies that are relevant to the
three following chapters. We consider first the kinematic regime and meet the challenge of
proper resolution in the study on the distance of the magnetic point dipole. Second, we have
to resolve strong gradients in velocity and magnetic field for the regime of low Reynolds
numbers. Finally, transitional Reynolds numbers require resolution of time dependent flow
structures combined with the need for a longer computational domain (for investigations
of the wake).

Parameter studies in the kinematic regime have one big advantage. As the velocity field is
not influenced by the magnetic field, only one time step is necessary to compute the currents
and the Lorentz force. The total Lorentz force F} is highly dependent on the velocity and
the magnetic field. It is also the main output quantity in the kinematic studies. Therefore,
F, is an appropriate characteristic value to determine whether the resolution is sufficient or
not. For strong variations in the dipole distance, as considered in chapter 4, it is found that
the force highly depends on the chosen grid. Therefore, the maximal possible number of
grid points is used throughout the parameter study in the kinematic regime. The number
of grid points is hereby limited by the computer resources. The main technical constraint
is the random access memory (RAM), which is restricted to 256 GB.!

The study for large dipole distances with h between 50 and 500 requires a long duct
to resolve the physical effects. Here, the duct length is increased to 7.57(h + 1) while
10240 x 2562 grid points are used. A different grid is needed in the case of a magnetic
point dipole at a very small distance to the surface of the liquid. Here, the magnetic field
possesses strong gradients in the boundary layer. The parameter study for dipole distances
with h between 10732 and 5- 107! in chapter 4 need very fine grids up to 1024 x 6402 grid
points on a geometry of 4 x 2 x 2 and a tanh-stretching with o, = o, = 2.0 to provide a
proper resolution.

At low Reynolds numbers the flow stays laminar. Nevertheless, the gradients of velocity
and magnetic field demand a sufficient fine grid in the boundary layers. The calculations
for the resolution are done for Re = 10, Ha = 100, h = 0.4 and a vertical oriented dipole,

!This study was done in 2010 at the computer center of TU Ilmenau. By this time the code was not yet
parallelized with MPI. The calculations were therefore performed on a single node with 256 GB RAM.
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domain size grid points stretching
Gavrilakis (1992) 20m x 2 x 2 1000 x 127 x 127 a = 1.8417
Huser & Biringen (1993) 6.4x1x1 97x101x 101 algebraic stretching
Kinet et al. (2009) dm x 2 x 2 512 x 100 x 100 not specified
Votyakov et al. (2008) 50 x 10 x 2 64 x 64 x 64  varies in all directions
present work low Re B X 2 X 2 1024 x 96 x 96 a=1.5
present work transient Re 15m x 2 x2 2048 x 96 x 96 a=2.0
present work turbulent flow 80 x 2 x 2 5120 x 128 x 128 8 =0.95

Table 3.1.: Comparison of resolution in literature and the present work.

which represents the basic setting in chapter 5. The finest grid is 4096 x 2562 grid points
on a geometry of 57 x 2 x 2 and a tanh-stretching with a, = o, = 1.5. In the presented
calculations for low Reynolds numbers, we use a structured grid with 1024 x 96* grid points
on the same geometry. The difference between the resulting Lorentz forces is less than 2%.

The third regime of interest is the transient flow at high Reynolds numbers, where the
wake behind the magnetic obstacle may become turbulent. Therefore, it is desirable to
resolve the small vortices in the turbulent flow. This is possible for resolutions like in
Gavrilakis (1992) or Huser & Biringen (1993) (see table 3.1). We study the grid sensitivity
for Re = 2000 , Ha = 100 and a spanwise oriented dipole in distance of h = 1.6 with the
duct length of 307 (see chapter 6). This setting is chosen as it results in time dependent
flow structures and a wake that transforms into turbulent flow. The size of the grid is
increased up to 8192 x 2562 with stretching coefficients o = 1.5 and 1.75. Also smaller
grid sizes with similar refinement at the boundary are considered, e.g. 4096 x 1282 with
stretching coefficient of 2.0. The obtained Lorentz forces are equal for the finest grids
8192 x 2562 and 4096 x 1282, Due to the explicit scheme of the code, it is not possible
to use a finer mesh in the grid study?. Having already reached the technical limitations
in the very fine grids, we focus on coarser grids in order to investigate how effectively
the computational costs can be minimized. The grid study shows that the same physical
effects (e.g. the vortex shedding that is described in chapter 6) are still obtained with a
resolution of 1024 x 482

In order to reduce the computational costs, the length of the duct is reduced to 157. This
reduction of the duct length has two effects. First, half of the grid points are necessary for
the same resolution in streamwise direction, which is required to resolve the wake. Second,
this reduces the calculation time, because the equilibrium state is obtained quicker. The
parameter studies in section 6 are performed with 2048 x 962 grid points. The accuracy
of the code was again determined with the total Lorentz force. It is found that the force
for the finest grids, i.e. 8192 x 2562 and 4096 x 1282, differs by 0.5% from the values for
2048 x 962.

2This calculations for the finest grid were performed in Jiilich Scientific Computing Center on 1024 CPUs
of JUROPA and took about 200000 CPU hours.
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With the chosen grids, we operate within the technical constraints and use resolutions
that are similar to other DNS as shown in table 3.1. We therefore are convinced that
the simulations provide physically reasonable results. To that end, the following sections
present the verification (in section 3.2) and validation (in section 3.3).

3.2. Verification with other numerical codes

In the course of this PhD work, two verifications were performed for the code. The first test
with kinematic setting only checks the electromagnetic part of the solver. This comparison
is performed with two commercial softwares: Fluent and Comsol. The second verification
is conducted with YALES, a finite volume DNS code and mainly used to verify the relam-
inarisation zone. To distinguish clearly between the two DNS codes, the code used in this
thesis is referred to as Ducat.

The results of the first test are displayed in figure 3.1. The Fluent simulations are provided
by Pulugundla (2012), while the Comsol simulations are taken from Kirpo et al. (2011).
FLuent uses the finite volume method (FVM) while Comsol applies the finite element
method (FEM). In these calculations, the kinematic approximation is applied, i.e. the
velocity is given by an unperturbed laminar profile. The magnetic point dipole is positioned
at a distance of h = 0.4, producing a magnetic field with Ha = 185.4. The Reynolds
number is set to 2000.

The comparison in figure 3.1 shows the force, the induced currents and the electric potential
along two lines: the top line at x = 0, z = 1 and a mid line at z = 0, y = 0. The figures
reveal a slight underprediction of the Lorentz force and of the current directly below the
dipole (at z = 0, y = 0, z = 1) from the Fluent simulations. This is caused by interpolation
error in Fluent. The Comsol simulation used a refined mesh below the dipole to avoid this
effect. The values for the electric potential, and thus the comparison of the Poisson solvers,
show a very good agreement.

The comparison with the Comsol code is continued in Kirpo et al. (2011). In the study on
the dependence of Lorentz force on distance variation with h between 2 and 80, it is found
that the largest relative error between the results obtained with the two different codes
was not greater than 2%.

The second verification is done through a set of calculations with YALES.? The For-
tran90 code YALES is used for calculation of MHD problems with homogeneous fields
by Vantieghem et al. (2009). Although there is a detailed description on YALES available
(Vantieghem, 2011), we provide some facts in the following paragraph to familiarize the
reader with this finite volume code. YALES applies the Crank-Nicolson scheme for the
time discretization and solves the obtained algebraic equation by Jacobi method. For the
subsequent verifications, the magnetic flux density is modified by inserting the analytic
expression for the inhomogeneous magnetic fields in YALES. The Lorentz force term is

3Courtesy to Bernard Knaepen and Stijn Vantieghem for providing the code and support.
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Figure 3.1.: Comparison of (a,c) Lorentz force, (b,d) currents and (e) electric potential
along (a,b,e) top line with z = 0, z = 1 and (c¢,d) mid line with z = 0, y = 0 as obtained
from Comsol by (Kirpo et al., 2011), Fluent by (Pulugundla, 2012) and DNS as used in
the presented work.

treated explicit in YALES and Ducat. This leads to a restriction of the time step, i.e.

2p

At < .
UBmax

For details of this constraint and its derivation, we refer the reader to the thesis of Stijn
Vantieghem (2011) page 57. The Poisson equation is solved in YALES with an algebraic
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pO1
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—— pgrad

Figure 3.2.: Characteristic properties along the duct for fringing magnetic field. The
comparison between simulations of Sterl (1990) (diamonds) and YALES (line) for the
case of Re = 2.5, Ha = 50 and a = 0.3 shows a good agreement. This verification
was done for conducting walls with conductivity coefficient of 0.1. Along the streamwise
direction of the duct the following values are given: (By) magnetic field, (p00) pressure at
the centerline, (p01) pressure at the sidewall, (pgrad) streamwise pressure gradient, ()
transverse potential difference, (u,.) center of velocity distribution;

multigrid solver (AMG). Thus it is possible to choose the grid to be structured but non-
equidistant in every direction. For the wall-normal direction a boundary layer of a certain
thickness and with a certain number of cells is defined. In the bulk of the domain the
grid is stretched with a hyperbolic tangent function, cf. equation (3.1) with a factor of
a = 1.5674. In streamwise direction a refinement of the grid in the middle of the duct was
achieved by the stretching function z — (z+a,2?)/(a,;+1). In the presented calculations,
a stretching coefficient of o, = 2.0 is used.

Unlike Ducat, YALES is capable of using inflow-outflow-conditions. The inlet is chosen

to match the approximation for laminar flow as given in equation (2.4). At the outflow,
convective boundary conditions are used for the velocity, i. e.

at'u' + Ucmwanu = 0.

Here, U, is a characteristic velocity of the flow, as determined in the code. For the electric
potential and the pressure, homogeneous Neumann boundary conditions are applied at

inlet and outlet. This boundary condition is equivalent to the divergence-free constraint
V - u =0 (Gresho & Sani, 1987; Sani et al., 2006).

In YALES, Shercliff’s thin wall-condition (Shercliff, 1956) is applied to simulate conducting
walls. For the electric potential, the boundary conditions are specified with help of the
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3.2. Verification with other numerical codes

Sterl(1990) Ducat YALES

maximum of velocity distribution 0.7339 0.7038 0.7059
velocity distribution in homogeneous

magnetic field 0.4327 0.4471 0.4511
maximal pressure difference,

i.e. max, |p(x,0,0) — p(z,0,1)] 0.0976 0.1313 0.1314
maximal potential difference,

i.e. max, |p(z,1,0) — ¢(z,0,1)] 1.0390 1.0078 1.0158

Table 3.2.: Comparison between the codes YALES and Ducat with the reference article
Sterl(1990) of some characteristic values for the case of insulating walls with Ha = 50,
Re =2.5 and a = 0.3.

wall conductivity coefficient ¢ by

+0yp(£1, 2) = 8.[cO.p(+1, 2)],
+0,0(y, £1) = 0.[cD.0(y, £1)).

The case ¢ = 0 stands for insulating walls, while ¢ — oo emerges as the perfect conducting
walls. Details on this implementation can be found in Vantieghem (2011).

For the first comparison, we choose a simplified setting with an inhomogeneous but non-
physical magnetic field, i.e. B = Bye, with

B 1

- 14+ exa/2
This field is not curl free, i.e. V x B # 0. The shape of the field is such that it is zero in
the beginning of the duct and increases to |B| = 1 in the end. The coefficient a describes

the steepness of the field in the transition zone and is chosen as a = 1 and a = 0.3. The
shape of this fringing magnetic field models the entrance of a magnet.

B,(x) = 0.5+ 0.5 tanh(ax). (3.2)

Several simulations are done with both codes for Hartmann number of Ha = 50 and two
Reynolds numbers: Re = 2.5 and Re = 250. One calculation with parameters Ha = 50,
Re = 2.5, a = 0.3 and conducting walls with ¢ = 0.1 serves for the verification of YALES
with the results from Sterl (1990).

We compare the following characteristic curves along the streamwise direction as suggested
in Sterl (1990).
(By) magnetic field B, at y =0 and z =1
00 ressure at the centerline, p at y =0 and 2 =0
(p p ,paty
01 ressure at the sidewall, pat y =0 and z =1
(p p ,paty
rad) streamwise pressure gradient d,p at y = 0 and z =0
(pgrad) p g paty
(D) transverse potential difference |p(x,1,0) — o(z,0,1)]
( Jo yue(z,y,0)dy
’ fl Uy ($7y’0) dy
( Jo zux(2,0,2) dz
’ fol ug (x,0,2) dz

Uyy) center of velocity distribution at z = 0

Uy, ) center of velocity distribution at y = 0
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3. Verification and Validation

(a) fringing magnetic field for (b) fringing magnetic field for
Ha =50. Re =250. a =0.3 Ha=50. Re=25.a=1

(¢) streamwise oriented dipole with (d) spanwise oriented dipole with
Ha =100, Re =10 and h = 0.8 Ha =100, Re =10 and h = 0.8
05 ‘ ‘ ‘ -
0.4 Q |
0.31 po1r |
—p00
— pgrad

0.2

0.1p

(e) vertical oriented dipole with (f) sketch of used values
Ha =100, Re =10 and h = 0.8

Figure 3.3.: Characteristic properties along the duct for fringing magnetic field (a,b) and for
magnetic field of point dipole in the 3 main orientations (c,d,e). Curves along z-direction
with values as indicated in (f): (By) magnetic field, (p00) pressure at the centerline, (p01)
pressure at the sidewall, (pgrad) streamwise pressure gradient, (®) transverse potential
difference, (u,, ug,) center of velocity distribution in y = 0 and z = 0, respectively;
YALES: continuous lines and Ducat: dashed lines.
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3.2. Verification with other numerical codes
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Figure 3.4.: Verification of the relaminarisation zone for fringing magnetic field. Values as
shown in the sketch on the left with same notation as in 3.3. YALES: continuous lines and
Ducat: dashed lines. The blue line at x = 4 marks the position, where YALES has the
outflow and the relaminarisation zone starts for Ducat. The gray area resembles the range
with maximal fringe force, i.e. A(z) = 1.

In the beginning, the code YALES is verified with the data from Sterl (1990) as shown
in figure 3.2. A very good agreement is achieved for the pressure and pressure gradient.
The calculated potential difference is higher than the reference data. This is also the case
for the comparison of Mistrangelo (2005) with Sterl (1990). One reason may be the lower
resolution in the calculations of Sterl (1990). In almost the same manner the velocity
distribution is higher, which might also be a side effect of the lower resolution. It was
stated by Sterl (1990) that “calculations done with 323 points and 22 x 40 x 40 points at
Ha = 10? show differences of less than 5 %.” Following this argument, we consider the
verification with this reference data as acceptable as the physical behavior is qualitatively
the same.

A comparison for the characteristic curves between Ducat and Sterl (1990) suffers from
a lack of data for insulating walls in the reference. We restrict ourselves here to given
maximal values for insulating walls with Ha = 50, Re = 2.5 and a = 0.3. In table 3.2
these values are compared with both codes. These values show a better agreement between
YALES and Ducat than with the given reference. This may be caused by the coarse grid
that was used in Sterl (1990). In the reference the resolution was 24 x40 x40 and 32x 32 x 32
on a duct of size 8 x 2 x 2, while the simulations with YALES had 1000 x 100 x 100 grid
points and the one with Ducat had 384 x 96 x 96, respectively. Additionally YALES and
Ducat use grid stretching to refine the boundaries.

Figure 3.3 shows the comparison for the fringing magnetic field (3.2). Both codes give
identical results in the physically relevant part of the computational domain. The relami-
narisation zone and the region of the outlet are not plotted here.
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3. Verification and Validation

As a second setting we use the liquid metal duct flow with the magnetic field of a point
dipole (2.1) as considered in the present work. Similar to chapter 5, we consider a low
Reynolds number flow (at Re = 10) that is deflected by a strong magnetic field with
Hartmann number of 100 and a dipole distance of A = 0.8 to the surface. This leads to a
well pronounced deflection of the velocity profile as shown in figure 5.1 on page 44. Both
codes give equivalent results (see figure 3.3).

To verify the vortex shedding observed for higher Reynolds number in chapter 6, a quali-
tative calculation with coarse grid of 652 x 48 x 48 grid points and duct with a geometry
of 60L x 2L x 2L was done in YALES. The result is qualitatively the same as with Ducat,
i.e., the flow shows the same time dependent behavior.

Finally, we analyze the end of the domain and focus on the relaminarisation zone in the
Ducat code. Due to the deformation of the flow by the Lorentz force, small scale structures
are advected downstream and may reflect at the outlet or the relaminarisation zone. Both
methods, the outlet boundary conditions in YALES and the relaminarisation zone in Ducat,
are supposed to prevent such reflections, but show peculiarities in the end of the domain.
To quantify these in size and magnitude, we compare the effect of the outlet in YALES with
the one in Ducat in figure 3.4. This calculation for Reynolds number Re = 250 is done on
the same calculation geometry of 2 x 2 x 8, i.e. the relaminarisation zone is placed behind
the computational domain with an additional length of 4.566. In the YALES calculation,
small scale oscillations are amplified at the outlet. One possible reason for this is assumed
to be the combination of strong grid stretching in streamwise direction and the multigrid
solver. These instabilities may appear at inlet and outlet where the grid size is highest and
are less pronounced in tests with uniform grids.

The influence of the relaminarisation region in Ducat is much higher than the influence of
the outlet in YALES. As shown in figure 3.4, the pressure gradient (pgrad) is affected for
about 2 characteristic length units. However, nor unusual effects are found in the velocity
field which is also indicated by the center of velocity distribution (u,.). In all calculations,
the observed unphysical effects never increases or moved into the computational domain.
This confirms the reports by Albrecht (2010) on the good properties and the reliability
of the relaminarisation zone. Nevertheless, it is ensured that the presented results in this
thesis are obtained from flow structures sufficiently far from the relaminarisation zone. The
artificial example in figure 3.4 shows also that the relaminarisation zone is only efficient if
the computational domain is appropriately long.

The given verifications in this section show that the results of the code agree very well
with commercial software as well as with YALES, a second DNS code. Calculations were
presented for a well known case of a fringing magnetic field and the case of a point dipole.
As the latter is not often considered in literature, we provide an additional validation in
the following section. This will complete the proof of having obtained physical results.
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3.3. Validation with experimental data

DNS
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Figure 3.5.: Validation of the mean velocity profile for turbulent flow. Experimental data is
given by Kawahara et al. (2000) at Re = 3535. Numerical data is calculated at Re = 3500,
by taking the spatial mean values for fully developed turbulent flow. Values for the mean
streamwise velocity are given along two lines: (a) at y = 0.5 and (b) at y = 0.7. The
curves show a good agreement, especially at the boundary.

3.3. Validation with experimental data

Though the chosen setting is quite far from reality, we attempt a validation of two aspects
in our calculations. The first part of the validation concerns the hydrodynamic velocity
profile, while the second part focuses on the electromagnetic force.

The parameter study in section 4.3 considers the Lorentz force for turbulent mean pro-
file. Thus the subsequent paragraphs refer to the task of how a proper mean profile for
the turbulent flow is obtained. For one of the profiles a validation is provided with the
experimental data by Kawahara et al. (2000).

The hydrodynamic velocity profile is well known for the laminar duct flow (Pozrikidis,
1997). Using the first eight terms of the analytic solution (2.4) provides a proper laminar
profile in the relaminarisation zone. For turbulent mean flow no analytic formula is known
so far. Reference data is mostly provided by numerical simulations (Gavrilakis, 1992; Huser
& Biringen, 1993). The main challenge is to resolve the secondary flow. Several works
focused on this problem, e.g. Kawahara & Kamada (2000); Petterson Reif & Andersson
(2002); Bottaro et al. (2006); Uhlmann & Pinelli (2007); Uhlmann et al. (2007); Wedin
et al. (2008); Biau et al. (2008); Uhlmann et al. (2010) and Pinelli et al. (2010).

The investigation of the dependence of the Lorentz force on the profile of the velocity
field in section 4.3 (cf. figure 4.4 on page 40) is based on mean profiles. These profiles are
obtained as spatial mean values of fully developed turbulent flow in a duct of size 80 x 2 x 2
on 5120 x 128 x 128 grid points. It has to be noted here that used spatial average is not
appropriate to obtain the statistical values with same accuracy as in the literature above.
In the presented benchmark, only the primary flow has an influence on the resulting Lorentz
force. This is an effect of the symmetry of the setting. Hence, the probably underresolved
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3. Verification and Validation

secondary flow will not enter the results. Thus the following validation is only concerned
with the primary flow, i.e. the mean of the streamwise velocity component.

The mean profiles for turbulent flow are validated with experimental data from Kawahara
et al. (2000).* Figure 3.5 gives the validation for the turbulent profiles that are used for
kinematic calculations in section 4.3. The experimental data by Kawahara et al. (2000) are
given for Reynolds number 3535, while the numerical simulation used 3500. Nevertheless,
the comparison shows a very good agreement (see figure 3.5). A slight mismatch is observed
in the bulk in figure 3.5b. For the later calculation the profile close to the boundary plays
an important role. It is the boundary where the Lorentz force reaches its highest value.
The agreement between the experiment and numerical data is therefore sufficient for our
investigations.

The second validation case concerns the laboratory experiments by Heinicke (2012). A
sketch of the experimental setup is given in figure 3.6a. A small magnet (depicted in green
in the figure) is mounted on a measurement system that is positioned at a certain distance
h from the square duct. The duct is filled with Galinstan, a Gallium-Indium-Tin-alloy that
is liquid at room temperature. A electromagnetic pump (not shown in the picture) drives
the fluid with the adjusted velocity.

Before attempting the comparison of the measured Lorentz forces, the following question
arises: How strong is the disagreement in the magnetic flux density between a magnetic
point dipole and a permanent magnet as used in the experiment? Figure 3.6b compares the
magnetic field of a dipole and of a permanent magnet of 1 cm?® as used in the experiments.
The comparison considers the strongest component of the magnetic field along the line of
magnetization. The data are normalized such that both magnet systems have a Hartmann
number of Ha = 165 at a distance of h = 0.4. This distance is the smallest where Lorentz
forces can be measured in the experiment. The decay of the field is stronger in short
distance for a point dipole than for a cube magnet. For high distances, both magnetic
fields coincide as the permant magnet corresponds more to the model of a point dipole.

A comparison of the total Lorentz force is shown in figure 3.6¢ for laminar flow and in
figure 3.6d for a turbulent case. The measured Lorentz forces and the simulated values
show a good agreement. The numerical simulations are done in the kinematic setting (cf.
section 4). The choice of this simplified setting can be justified by the drastic increase
of computational costs for a parameter study with the full equations solved. Here, the
laminar velocity field for simulations at Re = 754 in figure 3.6¢ is given by the analytic
formula (2.4). The simulations for the turbulent case with Re = 9279 are done with a
spatially averaged velocity profile that was obtained numerically by spatial averaging as in
the validation above (cf. figure 3.5). A benchmark with turbulent flow plus the deflection
due to the Lorentz forces would demand not only long time averaging, but also the use of
inflow /outflow conditions. With the present periodic boundary conditions in streamwise
direction, the distortion due to the Lorentz forces may built up and artificially amplify.
Therefore, the validation for the high Reynolds numbers had to be done with the kinematic

4Courtesy to Markus Uhlmann for providing these data.
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Figure 3.6.: Comparison with experimental data provided by Heinicke (2012). (a) Sketch of
the experimental setup (courtesy of Heinicke (2012)) (b) Hartmann numbers in dependence
on the distance for a 1 cm? cube permanent magnet with a point dipole of same Hartmann
number at h = 0.4. (c) Lorentz force for laminar flow at Re = 754 and d) for turbulent
flow at Re = 9279.

approximation.

For both Reynolds numbers the numerical simulation in figures 3.6¢ and 3.6d overpredicts
the measured values. A simple reason for this mismatch may lie in the kinematic approxi-
mation. When the deflection of the liquid inside the duct is ignored, the resulting Lorentz
force increases. This effect is strongest for high Hartmann numbers (cf. figure 5.5d) that
correspond to small distances. A second source of errors would be the use of different mag-
netic fields. As shown in figure 3.6b, the magnetic point dipole underpredicts the strength
of the magnetic field of the permanent magnet. As the different shapes of the magnetic
fields would lead to an underprediction of the total force, this effect must be much weaker
than the effect of the flow distortion.

Nevertheless, the validation showed that the simplified setting of a point dipole is able to
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3. Verification and Validation

predict the qualitative behavior of the total Lorentz force in the duct. For high Reynolds
numbers (cf. figure 3.6d), the calculated values are within the range of the error bars
of the measurement values. The good agreement between our kinematic DNS and the
laboratory experiment shall motivate some detailed investigations in the following chapter
which is dedicated to the kinematic simulations. However, as the overpredicted forces at
small distances show that the deflection of the flow is not negligible, we then proceed to
the investigation of the flow deflection in chapter 5.
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4. Kinematic regime

We start our investigation with the case when the Lorentz force is too weak to influence
the flow. This kinematic regime is of considerable practical importance since in most
metallurgical applications the influence of the Lorentz forces is indeed weak. Typically,
the influence is describes by the electromagnetic interaction parameter N = Ha?/Re.
More specifically, with Reynolds numbers of the order 10° and Hartmann numbers of the
order 10? one obtains N ~ 0.1 which demonstrates that the inertial forces dominate over
the Lorentz forces in metallurgical flows.

4.1. General properties

Our general procedure to obtain F,(h, m, Re, Ha) is to calculate the velocity of the liquid
metal from the Navier-Stokes equation (2.5) without the Lorentz force in which case the
computation becomes a purely hydrodynamic problem. The determined velocity field and
the given magnetic field are then used to compute the right-hand side of the Poisson
equation (2.7). Once this equation has been solved, the eddy currents are obtained from
Ohm’s law. i.e. 3 = =V +u x B. Together with the imposed magnetic field this current
distribution is subsequently used to determine the total Lorentz force on the flow and the
magnet, i.e.
Ha? .

F = o /]deV. (4.1)
Hence, the computation of F,(h, m, Re, Ha) can be regarded as a post-processing proce-
dure applied to a purely hydrodynamic velocity field.

In the framework of the kinematic approximation, several properties of F,.(h, m, Re, Ha)
can be derived without any numerical computation. Since the flow is unaffected by the
magnetic field, the integral in equation (4.1) depends only on the Reynolds number and on
the geometry of the magnetic field which is in turn determined by the distance parameter
and the orientation of the dipole. Hence, F, is a product of a prefactor Ha?/Re and a
function that depends only on m, h and Re — through the shape of the velocity profile.
This shows, that the magnitude of the electromagnetic drag is primarily controlled by the
electromagnetic interaction parameter N = Ha?/Re. This property of F, together with
the fact that N is independent of the viscosity of the liquid leads to the useful conclusion
that F, of our fluid can be directly compared with F), of a solid electrically conducting bar
that has been comprehensively studied by Kirpo et al. (2011).
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4. Kinematic regime

The comparison of electromagnetic drag forces between the fluid and a moving solid body
is particularly convenient if we consider a situation in which the magnetic moment m of
the dipole is fixed, whereas its distance h from the fluid can be changed. In this case
the magnetic field at + = y = 0, 2 = 1 depends on the distance through the relation
Binaa = polm|/(2mkh?) with & = |/E2 + k2 4 4k2 which can be derived from the magnetic
field distribution around a point dipole (cf. equation 2.1). Then the Hartmann number
varies as

M

Ha = 53" (4.2)
Here, the parameter
Hom | O
= - 4.3
=\ (4.3)

can be regarded as an intrinsic Hartmann number for a magnetic dipole that is independent
of its distance from the fluid. M represents the Hartmann number which a magnetic dipole
with dipole moment m would create in a fluid if it were located at a distance L from it.
With this step done, the electromagnetic drag force can be rewritten in the form

M2
Fa: = ECRe(m, h) (44)

The function cge(m, h) depends only on the Reynolds number (through the shape of the
mean velocity profile) and on the distance parameter plus the dipole orientation (through
the shape of the magnetic field). Notice that M?/Re is independent of the viscosity as is
the case with Ha?/Re.

The velocity profile of a laminar flow in a square duct can be expressed analytically
(Pozrikidis, 1997). Its shape is independent of the Reynolds number and it is linearly
stable for arbitrary values of Re (Tatsumi & Yoshimura, 1990). Hence, cg.(m, h) is inde-
pendent of Re for the laminar flow. This value will be denoted as co(m, h) and will be
discussed in the next section. By contrast, if the flow is turbulent, the profile of its mean
velocity depends on Re and F, is governed by the dependence of cg, on Re. This function
will be discussed in section 4.3. The case of a translating solid body (Kirpo et al. 2011)
can be formally considered as a flow with Re — oo and is hence described by c,. The
scaling of the electromagnetic drag force in the kinematic case can thus be summarized as
follows:

M?

F, = gco(m, h)  for laminar flow (4.5)
M?

F, = R—cRe(m, h)  for turbulent flow (4.6)
e
M?

F, = R—coo(m, h)  for solid body translation (4.7)
e
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Figure 4.1.: Scaling of the electromagnetic drag force in the kinematic regime for a vertical
oriented dipole: (a) F, as a function of h for an arbitrarily chosen Re=2000 and M =
461.052 as obtained from DNS. (b) ¢y(e., h) as defined by equation (4.5) together with c...
For h < 1 a power law of the form cy(m, h) ~ h~2 has been found. The scaling for large
distances (h > 1) can best be estimated by a F, ~ h~" dependence. For distances roughly
equal to the characteristic length scale — the regime covered by experiments (cf. section
3.3)— the scaling can be described by a Batchelor fit as discussed in the text.

4.2. Laminar flow

Figure 4.1a shows the electromagnetic drag force F), as a function of the distance parame-
ter h as computed for the arbitrarily chosen values Re = 2000 and M = 461.052 from the
laminar velocity profile. For convenience, the computation is performed using the DNS-
code rather than the analytic formula for the laminar profile because the computation of
F, is already integrated into the DNS-code. As one would intuitively expect, the electro-
magnetic drag is a monotonically decreasing function of the distance between the liquid
metal and the magnetic dipole. A closer inspection of the curve reveals that there are three
regions, namely the short-distance region h < 1, the long-distance region h > 1 and the
transition region h ~ 1.

In the short distance region, we find a scaling according to F, ~ h™2 whereas the long-
distance region is characterized by F, ~ h~". To understand these scaling laws, we refer
to figure 4.1b where ¢o(m, h) is compared to the solid-body case described by ¢ (m, h).
Notice that F, and cg. have the same h-dependence. The h~"-scaling in the long-distance
range is the same as the scaling in the case of the solid bar. From this agreement we
conclude that for large distances the small-scale changes of the velocity over the cross
section of the duct are not important and the fluid interacts with the dipole as if it were
a solid bar moving with the mean velocity. The following derivation® of the —7-power law
is therefore given for the simpler case of a solid body motion.

The decay of the Lorentz force with the power h~" at large distances is more rapid than

!The derivation is based on an idea by André Thess and was completed by Thomas Boeck and the author.
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4. Kinematic regime

one would expect from a simple estimate. The straightforward estimation would involve
F, ~ B2V based on a characteristic value By of the magnetic field and an effective volume
V' of the bar affected by the magnetic field. With the dipole field decaying according to
By ~ h™3 and V ~ 4h one would obtain F, ~ h~°. The decay with A7 is therefore not
obvious. It can be explained with the help of asymptotic expansions in the small parameter
¢ := 1/h. Alternatively, the asymptotic approach can be regarded as a long-wave expansion
along the length of the bar.

The goal of our asymptotic approach is to estimate the Lorenz force F} for h > 1 acting on
the dipole with an arbitrary orientation. The solution is based on the rescaled coordinates
r = hz, y =1, 2 = Z, whereby one can exploit the slow variation in z when the parameter
¢ tends to zero. The quantities of interest, i.e. B, ¢, 7, F', are then represented as regular
perturbation expansions in the small parameter €, e.g. for the magnetic field

B(#,3,2) = BY(2) + eB(&,,2) + BX@,5,2) + ... . (4.8)

The superscripts denote the order of approximation for every term. The expressions for
B are given in the appendix A. The velocity field is constant and therefore independent
of e.

The drag component of the Lorentz force is then given by
Fo(,9,2) = FO(8,9.2) + e (8., 2) + €2F2(2,§,2) + . .. .

We would like to limit ourselves by three leading terms of the Lorentz force F) series
expansion:

H 2
F? :R_Z / (5° x B%)_av, (4.9)
H 2
F! :R_“ / (' x B"+3°x B")_aV, (4.10)
e x
Ha?
F? = / (4> x B+ 3' x B' + j° x B?)_dV. (4.11)
e xX

Thus, the evaluation of F, requires computation of these six integrals. Each of them is
considered in detail in the appendix. We only present the key steps of the procedure at
this point.
The Laplace equation, Ay = 0, reduces to

32 900 @2 900

ar oz 0

for the leading term ¢° of the electrical potential. This is easily solved by ¢° = 2B} —
yBY + const. Therefore 4° = 0 and all integrals containing the current 3% vanish. The
first-order term j' of the current does not vanish. We can determine its components in
the yz-plane by a stream function representation. There is no contribution to the Lorentz
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4.2. Laminar flow

Figure 4.2.: Sketch of the Couette flow with magnetic point dipole in distance h of the
surface, as considered for the derivation of the h=2-power law for short distances.

force from such a planar current distribution interacting with a field B® that is constant
on each yz-plane, i.e. [ (jl X BO)ngV = 0. However, there is a contribution from the
interaction with B' by

, 15%-2.253
52/ (4' x B')_ dV = —W@ki + k). (4.12)

For the last remaining integral, we use the continuity equation, V - 3 = 0, and the result
for ©° to get

15
52/ (4> x B) dv = BT (35k2 + 8k. + 57k2). (4.13)

By combining all evaluated integrals, we see that the leading term of the Lorentz force is
given by
Ha*> 15
Re 27h7

We have thereby demonstrated that F,, ~ h~" when h > 1. The asymptotic theory agrees
with the values obtained numerically for large h. The observed differences are less then
2% for all orientations of the dipole.

F, = (45.561k7 + 8k, + 71.785k2) . (4.14)

In the short distance region (h < 1), the scaling behavior ¢y ~ h™? is in contrast to the
scaling c., ~ h~? for the solid bar and for a moving unbounded electrically conducting plate
(Thess et al., 2007; Votyakov & Thess, 2012). This result implies that a dipole interacts
stronger with a solid body than with a flow. This is the case because the magnet is influ-
enced by the metal flow on the magnet side of the duct significantly stronger than by metal
on the opposite site. Immediately adjacent to the wall, the velocity is zero and increases
approximately linearly in the vicinity of the wall in contrast to the moving bar where the
velocity is non-zero at the boundary. We found that the scaling of the electromagnetic
drag on the magnet for very small distances can be estimated by investigating the force
on a magnet beside a plane Couette flow in a semi-infinite space.? We sketch the analysis
below, referring the interested readers to the mathematical details in the appendix B.

2The given derivation was done by Thomas Boeck. It is stated here for completeness as the corresponding
DNS were done by the author.
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4. Kinematic regime

We describe the plane Couette flow by the velocity profile uw = —ze, for z < 0 (cf. figure
4.2). In dimensional variables, this means that the shear rate Q of the Couette flow is
given by 2 = w/L. The Couette flow extends infinitely into the xy-plane and has its top
surface at z = 0. The dipole position is given by rq = (0,0, h). It is straightforward to
show that the Poisson equation for the electric potential (2.7) then becomes

AQO - _By(xaya Z)?

where B, is the spanwise component of the magnetic flux density B of a magnetic dipole
given by the non-dimensional expression (2.1). As demonstrated in the appendix B, the
Poisson equation (2.7) can be solved using the idea of the mirror charge and the Green’s
function G(x,x') = (4r|x — x'|)~*. A lengthy but straightforward calculation yields

K M?*a, +

F=—
(4m)? Re  h?

(4.15)
with
Oy = // ( G(x,y,0,2' ¢/, z’)By(x/,y’, —1Z)dV’ — By(aj,y,())) dxdy, (4.16)
]R3

and
= —/ z(BZ + B;)dV. (4.17)
2<0

The coefficients o, and «, reflect the contributions to the Lorentz force from the electric
potential and the velocity field, respectively. Their numerically calculated values have
been compared to the ones obtained from the numerical solution and found to differ by
less than 1% (compare table B.1 in the appendix B). These coefficent are dependent
on the orientation of the dipole. For a vertical oriented dipole equation (4.15) implies
COouctte(€2, ) = —0.195/h* and is in excellent agreement with the asymptotic behaviour
co(e., h) =~ —0.192/h? of our numerical solution for the case h < 1.

We finally note that the behavior in the intermediate range h ~ 1 can be described by a
Batchelor interpolation formula (Batchelor, 1951) of the form

0.0084 - h~2

o\ 5/1.27
(1+ ()"

which provides a crossover from the short distances to the large distance regime.

Co(h) ~

4.3. Turbulent flow

Although the laminar velocity profile in a square duct is linearly stable for all Reynolds
numbers (Tatsumi & Yoshimura, 1990), finite-amplitude perturbations render the flow
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4.3. Turbulent flow
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Figure 4.3.: Velocity profile in the middle of the duct at y = 0 for laminar and turbulent
flow. The gradient at the wall increases with increasing Reynolds number.

turbulent for Reynolds numbers exceeding values of the order of 2000. In the turbulent
regime, the Lorentz force acting upon the magnetic dipole is time-dependent. In addition,
the interaction paramater N = Ha?/Re becomes small. Thus, the influence of the magnetic
field on the flow is weak which justifies the use of the kinematic approximation. Due to the
linearity of the dependence of F,. on the velocity distribution apparent from equation (5.4)
the mean Lorentz force and thereby cg.(m,h) is determined by the profile of the mean
longitudinal velocity.

The derived analytic formula (4.15) shows a linear dependence of the Lorentz force on
the slope of the velocity profile for small distances. One consequence is that the force on
the dipole is higher for turbulent than for laminar flow. This is also true for intermediate
distances, i.e. h ~ 1. A magnetic point dipole has a very localized magnetic field in the
sense that it is strongly decaying and thus the total Lorentz force is mostly influenced
by fluid motion close to them. When a flow becomes turbulent, while the mean velocity
and therefore the Reynolds number are kept constant, the velocities in the vicinity of the
wall become higher at the expense of the maximum velocity. Figure 4.3 shows this for
Re = 2000. Higher velocities in the area of strong magnetic field lead to an increase in the
Lorentz force on the dipole, the decrease in force contribution due to a reduced velocity
further away from the dipole being negligible. The increase in force solely due to the
change in flow behavior is determined by DNS to be between 30% and 60% depending on
the Reynolds number.

Figure 4.4a shows the dependence of cg. on the distance parameter h for different Reynolds
numbers for the vertical dipole. The profiles for the turbulent flow are obtained as spatial
mean from turbulent snapshots as described and validated in section 3.3. As expected, the
drag force for the turbulent flow is higher than for the laminar flow. However, it obeys the
same scaling laws for the limiting cases h < 1 and h > 1. It is also seen that the drag for
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4. Kinematic regime
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Figure 4.4.: Electromagnetic drag for turbulent flow; (a) cg.(e., h) as obtained from DNS
for Re = 2000, 5000, 10000 in comparison with the curve cq(e., h) for the laminar flow and
with ¢ (e, h) for the solid body for a vertical dipole. Inset shows same curves magnified
at small distances. (b) F,, for Ha = 147 as a function of the Reynolds number at h = 0.4,
(¢) ratio of F,, with turbulent and laminar profile, same data as in 4.4b.
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4.3. Turbulent flow

the turbulent flows is always smaller than the drag for the solid body translation.

In figures 4.4b and 4.4c we show the drag force in dependence on the Reynolds number.
The forces for turbulent flow are higher than for laminar flow (see figure 4.4b) as could
already be seen in figure 4.4a. The obtained factor between the Lorentz forces of laminar
and turbulent flows is changing depending on the Reynolds number (figure 4.4c). This
change can be explained partly by the differences in the mean velocity profile for turbulent
flow. The higher the Reynolds number, the steeper the velocity gradient (2 at the wall
becomes (cf. figure 4.3). As pointed out above, this gradient 2 is a linear factor to the
Lorentz force in case of small distances. In the presented data in figure 4.4, the distance
of the dipole is chosen in the intermediate regime, with A = 0.4. Thus the factor does not
undergo the same strong rise as the velocity gradients, but is also influenced by the bulk
region of the flow profile. These dependencies of the Lorentz force on the flow profile and
thus, on the Reynolds number as well as on the distance, complicates the estimation of the
Lorentz force for h ~ 1.

Before proceeding further to include the effect of the magnetic field on the flow profile in
the next chapter, we shortly summaries the findings in this chapter. At close distances, the
Lorentz force on a magnetic dipole that is placed beside a laminar liquid metal flow will
decrease with increasing distance by F, ~ h~2. At large distances, this behavior changes
to F, ~ h™", with a transition region around h = 1. The change from laminar to turbulent
flow behavior increases the drag force on the dipole by a factor that is dependent on the
Reynolds number and the distance h.
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4. Kinematic regime
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5. Stationary flow at lower Reynolds
numbers

In chapter 4, we investigated the behavior of the Lorentz force in the kinematic regime
when the flow is not altered by the magnetic field. But it is well known since the pioneering
works of Hartmann (1937) and Hartmann & Lazarus (1937) that the Lorentz force modifies
the flow field of a liquid metal. This impact of the Lorentz force on flow dynamics must
be taken into account if striving for a profound understanding of LF'V. Therefore, in the
following sections, we will discuss the effect of the Lorentz force on the flow dynamics. As
a fundamental case, we start the discussion for flows where fluid inertia is negligible, i.e.
at very low Reynolds numbers.

5.1. Mechanisms of flow profile deformation

In the following, we discuss the behavior of the flow in case of low Reynolds numbers.
As a first step, we take a closer look at the particular deformation of the velocity profile
for Reynolds number 10 and Hartmann number 100 and observe the differences in the
deflection depending on the orientation of the magnetic moment of the dipole.

Although being the simplest case, the magnetic field of a dipole is already quite inhomo-
geneous, obeying a full three-dimensional dependence. This aspect is very important in
order to understand the reported effects for a given dipole orientation. Let us consider first
the case of a magnetic field, that is directed vertically, i.e. Blle,, and thus perpendicular
to the flow direction and perpendicular to the top wall. For this case, the situation is sim-
ilar to the one in a Hartmann flow (Hartmann, 1937; Hartmann & Lazarus, 1937) where
a nearly homogeneous magnetic field is considered. In the Hartmann flow, the electric
currents form closed loops inside the duct. This leads to an accelerating Lorentz force at
the top and bottom walls and a braking force in the bulk of the flow (cf. figure 1.1 on
page 3). For the same reasons, one observes a local Hartmann layer positioned directly
below a vertical dipole. Contrary to the classical Hartmann flow configuration, the local
Hartmann layer is present on the top wall and practically absent in the rest of the duct
cross section. In fact, there are also local Hartmann layers for the other dipole orientations.
They will appear whenever a vertical component of the magnetic field is sufficiently strong
at a wall. These layers can be observed in figures 5.1 (bottom) and 5.2a. For a spanwise
orientation of the dipole they are at each side wall close to the edges of the duct. In case of
a streamwise dipole orientation, strong Hartmann layers are found at the centerline right
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5. Stationary flow at lower Reynolds numbers

streamwise velocity
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Figure 5.1.: The point dipole as a magnetic obstacle: Contours of streamwise velocity at
various positions along the duct illustrate the effect of a point dipole on the duct flow
dynamics. From left to right: + = —0.4, —0.1, 0, 0.1, 0.4. Total duct length is 57L and
Re =10, Ha = 100, h = 1.6. Three different orientations of the dipole are presented: top
— spanwise, middle — streamwise and bottom — vertical magnetic moment
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5.1. Mechanisms of flow profile deformation
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Figure 5.2.: Velocity field streamlines for different orientations of the dipole at Re = 10,
Ha =100, h = 1.6. The local Hartmann layer is visible due to higher velocities at the top
surface. Vortices and flow structures are three-dimensional. All three configurations are
shown from two different perspectives in each case: left is a top view and right a side view.
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5. Stationary flow at lower Reynolds numbers

before and right after the dipole position. Weaker layers are also found at the sides.

Another interesting, but not unexpected, effect is the appearance of a reversed flow in the
case of spanwise oriented dipole, i.e. B||e,. The magnetic field is perpendicular to the
flow direction and parallel to the top wall. This results in a similar situation as in the so-
called Shercliff layers (Shercliff, 1962). Here, the Lorentz force is directed in the opposite
direction of the mean flow. If this force is strong enough which is the case when the
Hartmann number is sufficiently large, a local flow reversal is observed in figures 5.1 (top)
and 5.2b. The resulting vortices in figure 5.2 mark now the areas with strong spanwise
magnetic field. This is in fact true for all but one of these vortices.

In the case of streamwise magnetic moment, one may observes five well pronounced vortices
at the top as shown in figure 5.2c. The four small vortices in figure 5.2¢ are produced by
Lorentz forces due to the spanwise component of the magnetic field. The bigger central
vortex has a different origin. The strongly pronounced vortex directly below the dipole is
not generated by the magnetic field in the first place. The main component of the magnetic
field in this area is a streamwise component, i.e. B||e, and thus parallel to the mean flow
direction and the top wall. A streamwise magnetic field cannot produce an electric current
and therefore the action of the Lorentz force vanishes right below the streamwise oriented
dipole. Nevertheless, vortices like the one just discussed were observed for the streamwise
oriented dipole at several Reynolds numbers and strong Hartmann numbers. The origin of
this vortex may be found in the local Hartmann layers that surround it. The Lorentz forces
affect the liquid at the top as follows. The flow is first accelerated at the centerline, then
pushed aside to the two Hartmann layers close to the edges and finally again accelerated at
the centerline. This forcing leaves the liquid right below the dipole no other possibility, but
to swirl as vortex. One has to mention here, that this explanation is more or less descriptive
one and that the flow is three-dimensional. Thus, there may be other reasons, that lead
to this vortex structure. The three-dimensional nature of the flow, is again revealed in
figure 5.2c.

So far, we reported the velocity profiles and the streamlines of the flow. These plots
give us information on the flow structures, but not the Lorentz force components in the
flow volume. In order to do so, we suggest to quantify the influence of the dipole on the
flow with an integral criterion for the balance of Lorentz force, pressure gradient and wall
stresses. A balance equation is obtained directly from the Navier-Stokes equation (2.5).
We integrate the z-component of (2.5) with respect to y and z and apply the assumptions
that the velocity field is smooth, as given in laminar flow and that the flux is normalized
and therefore constant. The balance equation follows to

//A&cpdydz = —//A@x(ui) ddeﬂL//Afxdydz (5.1)
1 ! 1
+ (/1 (ST — dz+/1 [D.ua], 4, dy) ,

where A is the area of the square duct cross section. It contains on the right hand side a
nonlinear advection term (denoted nlt), followed by a Lorentz force term and the contribu-
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5.2. Hartmann number dependence
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Figure 5.3.: Terms of the integrated momentum balance as given by equation (5.1) at Re =
10, Ha = 100, h = 0.4. Streamwise profiles for different dipole orientations are shown.
The pressure gradient term (dpdz) balances the wall shear stresses (7,,), the nonlinear term
(nlt) and the Lorentz force term (f,).

tion from the wall shear stresses 7,,. The pressure gradient term is found on the left hand
side and denoted by dpdz. For a homogeneous magnetic field, the integral of the Lorentz
force per cross section vanishes. In case of a laminar flow, wall stresses are balanced by
the pressure gradient. With an inhomogeneous magnetic field present, the question arises,
which hydrodynamic forces balance the appearing Lorentz forces. Figure 5.3 shows all
terms of the balance equation for the three dipole orientations.

We can see that the contribution of the Lorentz force is mainly based on the presence of
the local Hartmann layers. Therefore, the forces are much stronger for the vertical case
than for the spanwise one. The strongest contribution of the Lorentz force comes from
the streamwise oriented dipole. Here, two Hartmann layers are clearly visible, ahead and
behind the dipole position at x = 0. It also becomes clear that it is mainly the pressure
gradient which balances the Lorentz force. The nonlinear term is small due to the low
Reynolds number of Re = 10. In chapter 6, we will come back to this point and will
see that the nonlinear term has stronger influences for higher Reynolds numbers. Before
increasing the Reynolds number, we shall study the influence of the Hartmann number in
the subsequent section.

5.2. Hartmann number dependence

In this section, we want to quantify the effect of the Hartmann number at given Reynolds
number. The following scalar integral measure for the quantification of the distortion effect
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5. Stationary flow at lower Reynolds numbers
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Figure 5.4.: Distortion of the laminar duct flow as a function of the Hartmann number
for a low Reynolds number duct flow at Re = 10. Deflection of the flow in dependence of
Hartmann number as quantified by Auw.

of the laminar profile w;gmina: (cf. equation (2.4))is suggested:

ff "u' - ulaminar| dy dz
A p—
U(x) ff |ulaminar‘ dy dz

The quantity Au(x) is a local measure of the deviation of the longitudinal velocity profile
from its unperturbed shape. This quantity is confined to the interval 0 < Au < 2.
The lower bound corresponds to an undeformed velocity profile whereas the upper bound
corresponds to a (unphysical) situation where the velocity distribution is an infinitesimally
thin jet with infinite velocity located at the wall of the duct.

(5.2)

An example for the distortion is shown in figure 5.4 for Reynolds number of 10 and a
wall-normal oriented dipole in a distance h = 0.4. The graphs compare the distortion for
several Hartmann numbers which are indicated in the legend. Two effects are observed.
First, there is almost no distortion of the flow for Ha < 25. In this range the flow and the
resulting forces behave to a good approximation as a kinematic and thus unperturbed flow.
Second, the maximal amplitude of Au increases approximately linearly with the Hartmann
number for Ha > 25. Nevertheless, one can assume a saturation of this deformation for
very high Hartmann numbers due to the limitation of the geometry. The curves become
slightly more symmetric for higher Hartmann numbers, while the total length! of the
distorted area increases from Ha = 25 to Ha = 200 only by 10%.

Integrating Au(x) over the length of the duct according to

(Au) — / " Aua) do (5.3)

nlet

IThis length is defined by the distance of the two point with 5% Au.

48



5.2. Hartmann number dependence
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Figure 5.5.: Effect of Ha on the flow dynamics for a point dipole at Re = 10 and h = 0.4
for a vertical oriented dipole. (a) Deformation parameter as defined by equation (5.3) as a
function of Ha. The deformation is negligible for Ha < 20 and varies approximately linear
with Ha for higher Hartmann numbers. (b) F, versus Ha in a linear-linear representation
for both kinematic and dynamic numerical simulations, (c¢) same data but in a double-
logarithmic representation, (d) ratio of kinematic drag force to dynamic drag force versus
Hartmann number. At Ha = 20 the ratio becomes less than 0.99.

provides a single non-dimensional number which we call the deformation parameter and
use to characterize the flow.

The variation of the deformation parameter with Hartmann number is shown in figure
5.5a. For Hartmann numbers up to approximately Ha = 20 the deformation parameter
remains virtually unchanged. For higher Hartmann numbers, the flow profile is increasingly
modified by the Lorentz force. Recall that the integral forces and torques are defined by

2
F:/de:/H—a(—Vgp—i—uxB)deV, (5.4)
% % Re

and

T:/erfdv. (5.5)
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5. Stationary flow at lower Reynolds numbers
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Figure 5.6.: Drag and lift forces and resulting torque as a function of the Hartmann number
for (a) wall-normal and (b) streamwise orientation of the dipole.

Figure 5.5b shows the difference between the kinematic and dynamic simulations. The drag
force for the dynamic case is higher than for the kinematic. This reflects the fact that in the
dynamic case the magnet acts similar to a magnetic obstacle (Votyakov et al., 2007, 2008)
thereby increasing the drag. As explained in the previous section, the drag force increases
like Ha? in the kinematic case. At first glance it may seem that the same Ha?-scaling
applies to the dynamic case since both curves in figure 5.5b seem to increase as the square
of the Hartmann number. A more detailed inspection of the curves shows that the latter
is not true because in the dynamic case the integral in the definition of F) also depends
on the Hartmann number through the changing velocity profile. Figure 5.5¢ displays the
same result as figure 5.5b but in double-logarithmic representation. It shows that the slope
of the curve for the dynamic case becomes slightly lower than Ha? for Hartmann numbers
exceeding 20. In figure 5.5d, we plot the ratio between the kinematic and the dynamic
electromagnetic drag coefficient. In the creeping flow regime the difference between the
two approaches becomes relevant for Hartmann numbers of the order 20.

The dependence of the integral forces on Reynolds and Hartmann number was found to
be practically the same for all orientations (since directional differences are removed by
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5.2. Hartmann number dependence

the integrals). More interestingly, the absolute values of the forces were found to differ
at the same values of Hartmann and Reynolds numbers. The streamwise oriented dipole
gave always stronger forces than the wall-normal vertical one. It has to be recalled that
the Hartmann number is based on B,,.., the maximal value of the magnetic field inside
the duct, and not on the magnetic moment of the dipole. Thus, in an experiment using a
real magnet it will always be found that turning the magnet from vertical to streamwise
orientation decreases the forces simply because this rotation will decrease the Hartmann
number by a factor of two (see equation (2.1)). In all cases, the spanwise oriented dipole
will give the weakest force. The integral torque component behaves in the same way as
the forces. Except that the torque is zero for the spanwise dipole due to the symmetry of
the problem.

In figure 5.6, we compare the total drag force, the total lift force and the total torque for
the wall-normal and the streamwise dipole. We observe that the drag force is higher than
the lift force. The data in figure 5.6 reveal two additional power laws which seem to be
valid up to Ha ~ 25. For higher Hartmann number values, the forces reach a saturation.
As expected, one finds that the torque component T, ~ Ha?. This power law is caused by
the fact, that Ha?/Re is a prefactor of the Lorentz force term in the equations (5.4) and
(5.5). The power law for the lift force is found as F, ~ Ha®. This behavior of the lift force
is not obvious. We try to reveal its nature in the following paragraphs.

Let u be a solution to the Navier Stokes equation (2.5) for a given Hartmann and Reynolds
number. Similar to a perturbative expansion in weakly nonlinear flows, we divide the
velocity field in three parts,

U= Uy +u +us. (5.6)

Here, ug is the base flow, u; describes the distortion of the base flow and w, stands for the
higher-order nonlinear term. The base flow ug describes to a good approximation the flow
with a small interaction parameter Ha?/Re and at a low Reynolds number. It is supposed
to be a steady flow driven solely by the pressure gradient. Thus ug is the solution of

1

0= —
Vp+R6

Viuy. (5.7)
The solution to (5.7) is the laminar flow w,,. As it was shown above, the Lorentz forces
for a given laminar profile and for the full Navier Stokes equation (2.5) are the same in
case of Hartmann and Reynolds numbers below certain thresholds. The present case of
Ha = 25 and Re = 10 satisfies these thresholds and the approximation with a laminar
profile u,,,, gives a good agreement for the drag component of the Lorentz force. However,
the lift force is zero for a laminar velocity profile as it was in the kinematic case.

The second term w; describes the deflection due to the dipole. It is an approximation
which holds for small Reynolds numbers. Again, this flow is steady and viscous forces are
balanced by the Lorentz force.

1 Ha?
@VQ’UQ = —E(—V@O + ug X B) x B. (58)

ol



5. Stationary flow at lower Reynolds numbers

It is clear from this equation that the amplitude u; ~ Ha?. Again, this contribution of
the velocity is not causing a contribution to the lift force which can be shown with the
following argumentation based on Stokes flow. Assume that there is a lift force F,. Then
equation (5.8) for —u; and —p would have to result in an opposite lift force of —F,. Here,
F, will follow and hence the lift force has to vanish. Consequently, the second term of
the expansion (5.6) can also not cause the observed lift force. As a further verification,
figure 5.7b will show the dependence of the lift force on the Reynolds number. For the
creeping flow regime, the lift force is independent of the Reynolds number and the velocity
field is completely described by ug + u;.

The third part of the decomposition, us, is the nonlinear part which mainly reflects effects
of inertia. This term is an approximation, but presents the realistic flow pattern for
moderate Reynolds numbers. Rewriting equation (5.6) to us = ©w — uy — u; in the Navier-
Stokes equation (2.5) for the steady flow case and neglecting all terms of order O(Ha?)
leads to

Viuy = Re ((uy - V)ug + (ug - V)uy) . (5.9)

From this equation one can estimate, that us/L* ~ Reujug/L ~ Re Ha*u2L. Thus,
ugy ~ Re Ha? u3 L? which gives rise to the lift force F, ~ (Ha?/Re)uy and thus the expected
Hartmann number dependence of Ha* for the lift force. We denote in this estimate by L
the characteristic gradient variation scale given in units of the duct half width. It is also
numerically verified that the lift force vanishes, if the nonlinear term (w- V)u is artificially
set to zero. In this case, the flow is symmetric in streamwise direction. This numerical test
confirms that the nonlinear term is responsible for non-symmetric pattern in the flow and
thus, for the lift force.

5.3. Reynolds number dependence

Beside the Hartmann number, the second control parameter Re will affect the structures of
the flow. Following directly from the definition of the Lorentz force (5.4; 5.5), we verify the
dependencies F, ~ 1/Re and T, ~ 1/Re, respectively, in figure 5.7 for several Hartmann
numbers. Furthermore, we see that the lift force F), is constant in the creeping flow regime
for Re < 1 as already discussed above. In case of higher Reynolds numbers, the lift force
decays steeper than 1/Re.

With increasing Reynolds number the contributions of the nonlinear advection term will
increase and manifest in an increasing distortion of the flow. We observe that the dis-
tortion in the wake, Au, measured by equation (5.2) decays as an exponential function
exp(—Az) with respect to the streamwise direction obeying a spatial decay rate A. This is
demonstrated in figure 5.8 for a Hartmann number of Ha = 100. The first observation is
that the maximum of the distortion is decreasing with the Reynolds number — an effect of
the decaying interaction parameter Ha?/Re. The decay of the maximal value may also be
considered as an effect of the nonlinear term. A numeric test case shows, that the values are
not decreasing if the nonlinear term is artificially switched off. If the data is presented in a
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5.3. Reynolds number dependence
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Figure 5.7.: Reynolds number dependence of the force components and the torque. Data
are for a wall-normal magnetic point dipole at a distance of h = 0.4. The dependence
1/Re is indicated for the drag component of the Lorentz force and the torque. It can also
be seen that the lift component of the Lorentz force is independent of Re for very small
values. Data are obtained for several Hartmann numbers as indicated in the legend.

logarithmic scale as in figures 5.8b and 5.8d, the exponential decay is clearly pronounced.
When fitting these data with an exponential function, it becomes clearly visible that the
spatial decay rate is indirectly proportional to the Reynolds number.

The Reynolds number dependence of the decay rate can be rationalized from the following
consideration for steady flow. The Lorentz force term (Ha?/Re)(3 x B) is a localized force
term and will not affect the decay in the wake sufficiently far downstream from the dipole
position, i.e., we can drop it in the wake. The Navier-Stokes equations therefore simplify
to
1

u-V)u=—A~Au— Vp. 5.10

(w: V)u= = Au—~Vp (5.10)
We now represent the distortion as v = w — w,,. It we use this representation, then the
dominant term on the left hand side becomes w,,,0,v. On subtracting the equation for
the laminar flow itself we obtain

1
Ulama$'v = ﬁA’U — Vp/, (511)

where the pressure contribution p’ serves to maintain incompressibility. If we further
approximate the laminar velocity distribution by its mean value w we eventually have

1
uo,v = —Av — Vp'. 5.12
u0,v e v D ( )
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5. Stationary flow at lower Reynolds numbers
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Figure 5.8.: Flow distortion as quantified by equation (5.2) for several Reynolds numbers.
In all cases, Ha = 100 and h = 0.4. Dipole is located at x = 0 with (a) wall-normal
magnetic moment and (c) spanwise magnetic moment, respectively. Panels (b) and (d)
replot the same data on logarithmic-linear axes.

Following usual boundary-layer approximation ideas based on Re > 1 one can further ne-
glect the second derivative with respect to x in the Laplacian. The problem then effectively
reduces to a diffusion problem

1 [0 o

where we have introduced ¢ = z/u. Using separation of variables, it is clear that the decay
of |v| with ¢ is determined by the largest eigenvalue —ay of the two-dimensional Laplacian,
i.e.,

|v| ~ exp(—ant/Re) = exp(—aix/Reu). (5.14)
Therefore, the measure of distortion has to decay similar to exp(—z/Re). The last steps

of the derivation are more heuristic because we eventually had to disregard the remaining
pressure term. Justification of this step may be not straightforward, but we suppose that
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5.3. Reynolds number dependence

it is justified because it amounts to a projection on the space of solenoidal functions, which
should not interfere with the gist of the argument. We also note that the spatial decay
is independent of the orientation of the magnetic dipole. The numerical simulations show
that this is the case for Ha = 100 and Re reaching from 10 up to 2000 with a accuracy of
~ 5%.

To summaries the results for the lower Reynolds numbers, we explained how different
impacts on the flow are observed for different dipole orientations leading to the formation
of local Hartmann layers and areas of reversed flow due to strong Lorentz forces. The
strength of the forces and their effect on the deflection of the flow in dependence on the
Hartmann number was analyzed. The total drag force is found to be proportional to Ha?
and the total lift force is proportional to Ha* in the present Reynolds number regime.
When the Reynolds number is increased, we observe that the length of wake is increased.
It was also shown why the spatial decay rate is proportional to 1/Re. In the next chapter
we will see how the vortex formation process changes when the dipole triggers a transition
to turbulence as the Reynolds number is increased.
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5. Stationary flow at lower Reynolds numbers
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6. Time-dependent flow at higher
Reynolds numbers

In this chapter, we study time-dependent flow structures which start to appear at Reynolds
numbers of about 2000 and higher and for Hartmann numbers above 80. We will observe
vortex shedding for cases when the dipole is positioned sufficiently far in at distance of
h = 1.6 from the top surface of the liquid. For distances smaller than A~ = 1.0 and
Re < 3000, the flow is always stationary. Therefore, we will restrict our study in this
chapter to the case of h = 1.6 which generates qualitatively new features compared to the
last chapter.

6.1. Deformation of the flow

The analysis of the different contributions to the momentum balance (5.1) is shown in
figure 6.1 for Re = 2000 and Ha = 100 for the three dipole orientations: streamwise,
spanwise and wall-normal vertical. The deformations of the flow field show a qualitatively
similar behavior as the low Reynolds number case from chapter 5. Since the Reynolds
number is higher, the nonlinear term contributes now stronger to the momentum balance
as visible by the larger magnitude in the figure. The terms of the momentum balance (5.1)
reveal that the Lorentz force obeys a qualitatively similar behavior as in the low Reynolds
number cases (see also figure 5.3). It is again the pressure gradient, that balances the
additional forces which are now produced by the nonlinear term.

The velocity field streamlines for the three cases are shown in figure 6.2. We observe again
the formation of local Hartmann layers and vortices as described for low Reynolds numbers
in chapter 5. In case of the spanwise oriented dipole a strong vortex in the center of the
duct is formed which now becomes time-dependent, i.e., a vortex shedding is initiated.
For streamwise and wall-normal oriented dipoles the flow in the wake remains stationary.
This could be caused by the local Hartmann layers that stabilize the flow in the range of
Reynolds numbers accessible here!.

It is quite complicated to investigate the criteria for stability as the base flow is dependent
on the Hartmann number. The origin of the vortex shedding can hardly be fully described.
Thus, a simplified criterion for two-dimensional flow is applied. A possible explanation for
the instability and transition to a time-dependent flow is shown in figure 6.2. In the right

'Maximal Reynolds number is 3000.

57



6. Time-dependent flow at higher Reynolds numbers
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Figure 6.1.: Streamwise variation of the different terms of the cross-section averaged mo-
mentum balance (5.1) at Re = 2000, Ha = 100, h = 1.6 for three different orientations
of the dipole. The streamwise pressure gradient dpdz balances the walls stresses 7,,, the
nonlinear term nlt and the Lorentz force f,. Since the spanwise case in the mid panel is
time-dependent, data are time-averaged over one period.

column of the figure we show five cross sections that contain the magnitude cross-stream
gradient of the streamwise velocity which is determined by Vsyu, where V, denotes the
gradient with respect to y and z directions. Furthermore, the inflection point criterion
(Uhlmann & Nagata, 2006) follows with the definition

VQUJJ
n = 6.1
to
Viu, =0. (6.2)

This criterion was suggested to decide whether a flow may become unstable or not. Contour
lines which satisfy (6.2) are added to each of the five cross section plots in figure 6.2. We
observe that in case of a spanwise oriented dipole the magnitude of the gradient close
to the inflection line is higher compared to the other cases. Thus, the probability of an
instability increases. As a consequence, we will restrict our observations and the parameter
studies in this chapter to the spanwise oriented dipole, the most relevant case in view of
the transition to turbulence.

6.2. Mechanisms of vortex creation

Although the basic mechanism of the deformation were already explained in section 5.1,
it is indicated to intensify the understanding for the recent case of interest — the spanwise
oriented dipole. The aim of this estimation is to evaluate the resulting main direction
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6.2. Mechanisms of vortex creation
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Figure 6.2.: Streamlines (left column) and inflection lines (right column) at Re = 2000,
Ha = 100 and h = 1.6 for different orientations. Streamlines are shown along top and
bottom walls. Color indicates the velocity magnitude. The panels to the right show
the corresponding cross sections at streamwise positions © = —2,—1,0,1 and 2. Due
to symmetry only half plane is displayed. The background colours show the magnitude
of cross-stream gradient V, .u,. Black solid lines are the inflection lines as defined in
equation (6.2).

of the Lorentz force by means of the right-hand rule. We recall, that the Lorentz force
density, i.e. the source of the deflection, is given by

H2
f:R—(Z(—ch+uxB)xB.

The magnetic field is of high magnitude and strongly inhomogeneous in the cross-section
directly below the dipole, i.e. at z = 0 (figure 6.3). The electric currents can be obtained in
a first approximation from the right-hand rule by 3 ~ w x B. This estimate would not take
into account the insulating walls and the continuity equation V - 3 = 0. These constraints
force the currents to close inside the duct. Figure 6.3 shows therefore streamlines of the

59



6. Time-dependent flow at higher Reynolds numbers

Figure 6.3.: Sketch of principle for vortex shedding in case of spanwise oriented dipole.
Streamlines (solid) represent the electric currents in the cross-section with = 0 for
Reynolds number Re = 2000, Hartmann number Ha = 100 and dipole distance of h = 1.6.
Red dashed lines indicate the magnetic field lines. Arrows denote the local main direction
of the magnetic field and the currents. In the Hartmann layers (top corners of the duct)
the resulting Lorentz force points then in the same direction as the mean velocity. In the
centerline the Lorentz force brakes the fluid and — if strong enough — drives the vortex
formation.

currents as obtained form a numerical simulation with Re = 2000 and Ha = 100. Note,
that the currents do not have to close inside a single cross-section. What may look like a
sink or a source in figure 6.3 may be explained as a result of the projection on the two-
dimensional cross-section. Nevertheless, this snapshot shows that there are two regions
where the currents oppose the right-hand rule in order to close the currents loop. These
regions are the two top corners. In the rest of the fluid, the currents are largely conform
to the right-hand rule.

With the obtained currents, one may now estimate the resulting Lorentz force distribution
in the duct. Here the right-hand rule gives a braking force in the bulk of the flow. It
should be emphasized that this force is also present in the region directly below the dipole.
Here, the magnetic field is most pronounced. For a sufficient high Hartmann number,
the resulting Lorentz force may not only brake the fluid but also cause a back flow — the
origin of the vortex. In the top corners, the situation is slightly different. As the current
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6.2. Mechanisms of vortex creation

Figure 6.4.: Vortex shedding for a spanwise oriented dipole. Both ducts show the same
snapshot for Reynolds number of Re = 2000, Hartmann number of Ha = 100 and distance
h = 1.6. The left duct displays instantaneous velocity profiles taken at 6 locations between
r = —10 and 40. The right figure shows the isocontours of Ay = —1.

loops close here, the resulting Lorentz force accelerates the flow. Thus, the local Hartmann
layers are created. These layers are of interest when the influence of the Hartmann number
is investigated in section 6.3. In the subsequent paragraph, our concern is on the time-
dependent behavior of the vortex, i.e. the vortex shedding, and the resulting structures in
the wake.

The vortex shedding generates a turbulent wake which is displayed in figure 6.4. In parallel
to several cross sections of the streamwise velocity along the duct isocontours of Ay = —1
are shown where )y is the second largest eigenvalue (A\; > Ay > A3) of the symmetric
matrix

Nij = Sit:Sij + Qirllj (6.3)
which is composed of the rate of strain and vorticity tensors, respectively, i.e.
1 (0u; Ou, 1 /0u; Ou;
Sii == . J d Q== Lo 6.4
J 2 (8@ + 8.’[‘2) al I 2 <8x3 8@01) ( )

Negative values, Ay < 0, denote vortex cores (Jeong & Hussain, 1995) which can be clearly
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6. Time-dependent flow at higher Reynolds numbers

identified as so-called hairpin structures in the figure. They are found close to the top wall
in the beginning of the wake before the whole duct is filled with turbulent flow patterns
further downstream.

Alternatively, the vortex shedding can be observed by the time signal of the Lorentz force
itself. Both, the drag force component F, and the lift force component F,, show a periodic
sinusoidal time dependence. The temporal modulation of the signal is weak compared to
the absolute magnitude (cf. figure 6.8a on page 66). For example, it is F, = —3.28-107' +
9.39-10% and F, = 3.98-1072+1.35- 1072 for Re = 2000 and Ha = 100. Both forces
oscillate with a frequency of 3.15- 107! inverse time units.

The time-dependent structures are shown in figure 6.5 for Re = 2000 in four snapshots
in time intervals of approximately a quarter of the oscillation time. The figure shows the
top view of the duct with the position of the dipole marked as a small black dot. The line
of separation marks the region of locally reversed flow, i.e. points with 0,u = 0. Along
this line the flow detaches from the surface. This criterion was also used by Mistrangelo
(2011b) to determine the size of the vortex that occurs in a duct with sudden expansion in
dependence on the applied homogeneous magnetic field. There, the magnetic field damped
the vortex, in contrary to our investigation with the magnetic field being the source of the
vortex.

In addition, figure 6.5 displays the structures in the wake. Here, the presented top surface
is colored with O,u. This gradient reaches its maximal value in the Hartmann layers.
It should be marked here, that the Hartmann layers and the vortex are not completely
independent of each other. However, the mechanism that describes the interaction of both
— and maybe drives the vortex shedding — has still to be determined.

To characterize the three-dimensional structure of the vortices, the Ao-criterion is used.
The pictures on the right-hand side in figure 6.5 show the isocontours of Ay = —0.5. Each
period a hairpin vortex structure is produced. It starts at time ¢ = 0 with a small vortex
that rotates around y in positive direction, i.e. (V xu), > 0. This vortex is then advected
further and surrounded by reversed flow until it is in the position of the dipole at z = 0 in
time ¢ = 1/4T, T being the oscillation time. The vortex increases the width of the area
of reversed flow as the back flow has to circumvent the vortex. Close to the corners of
the duct, the Hartmann layer accelerate the flow. The accelerated fluid is blocked by the
thickening of the width of the reversed flow. This creates two extension to the vortex at
the sides, that are placed at = 0 in time ¢ = 1/27. The vortex then dives below the
top surface (time ¢t = 3/47T). This way, the backflow can move freely and obtains high
magnitude at the beginning of the area of reversed flow. This creates then a new vortex
at time t = T' (which is same as t = 0).

The vortices are transported into the wake and are stretched due to inertia and the shear
at the top wall. Thereby, their shape forms into a hairpins like structure (Davidson, 2004).
After the hairpin is moved into the wake a new vortex is created by the Lorentz force.
Hairpins are well known to appear in vortical shear layers at walls (Jeong et al., 1997) and
occur in the transition to turbulence in the boundary layer. The development of the wake
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6.2. Mechanisms of vortex creation

timet=1/2T

timet=3/4T

Figure 6.5.: Visualization of the time-dependent structures for Re = 2000, Ha = 100,
h = 1.6 and spanwise magnetic moment. Four snapshots are shown every 0.8 convective
time units. One oscillation time is 3.168 time units. Left: Top surface with velocity
gradient 0,u. Position of the dipole is indicated with a black dot. The black solid line
indicates the line of separation 0,u = 0. Right: isocontours of Ay = —0.5 at same time.
Direction of view in the picture is the same as in figure 6.7.

is determined in the time average with the help of the momentum balance (5.1) in figure
6.6. This figure gives an average over one period, i. e., it shows the mean of 3168 snapshots
at intervals of 0.001 time units, for Re = 2000 and Ha = 100. The well pronounced area
of distortion with high Lorentz forces in the interval —5 < x < 5 is followed by the region
of the vortex shedding 5 < x < 20. In this region, the flow is periodic in time with the
same frequency as in the area of distortion. Here, the time averaged momentum balance
resembles the laminar flow as the pressure balances the wall stresses and the contribution
of the Lorentz force as well as of the nonlinear term are negligibly small. For x > 25 this
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6. Time-dependent flow at higher Reynolds numbers
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Figure 6.6.: Streamwise variation of the different terms of the cross-section averaged mo-
mentum balance (5.1) at Re = 2000, Ha = 100, h = 1.6 for spanwise orientation of the
dipole. The data is time-averaged over one period as in figure 6.1b.

changes to a transitional flow, where the nonlinear forces dominate and the wall stresses
increase up to a higher constant value as known from turbulent flow. In the beginning
of the transitional range, the velocity profiles are found to resemble a turbulent flow but
possess a symmetry plane in y = 0. The flow is not time-periodic anymore. The time
average is not sufficient in the sense that the momentum balance (5.1) that assumes a
stationary flow is not fulfilled here. In this region, large scale vortices fill the whole cross-
section that break up further downstream. Although the computational domain and the
calculation time are too short to obtain statical values for the wake, one may expect a fully
turbulent flow after a certain transition length. The calculation for Re = 3000 indicates
that this length decreases for increasing Reynolds number.

A full parameter study for the Reynolds number dependence cannot be performed due
to the limitations in computational resources. Therefore, we restrict the study to three
exemplary Reynolds numbers: Re = 1000, 2000 and 3000 are examined for fixed Hartmann
number of Ha = 100. The usage of higher Reynolds numbers would raise the question
whether a laminar inflow is still reasonable. The streamlines for the three cases are shown
in figure 6.7 (left). The duct flow is stationary for Re = 1000, the wake remains laminar.
As in the case of Re = 2000, that was discussed above, the wake performs a transition
for Re = 3000. The vortex structure below the dipole position remains similar for all
three cases. The As-criterion reveals here the subtle distinctions (see right-hand side of
figure 6.7). For Re = 1000 only one vortex is pronounced. As described above in case of
Re = 2000, additional vortices are produced in front of the dipole position, at x < 0, and
during the vortex shedding. The amount and the strength of these vortical structures is
enhanced at Re = 3000. This is caused by an increased magnitude of the velocity in the
area of reversed flow due to the decreased viscous forces. The principle mechanism of the
vortex shedding stays the same as the one explained above. The higher Reynolds number
also produces shorter hairpin structures in the wake. Next to the differences in the shape
of the flow, the oscillation time is longer. For Re = 2000 a oscillation time of 3.168 was
calculated, while for Re = 3000 it is 3.636 non-dimensional time units.

We conclude from this section that the vortex shedding is a complex mechanism initiated
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Figure 6.7.: Snapshots of streamlines (left) and isocontours of Ay = —0.5 (right) at different
Reynolds numbers for Ha = 100 and h = 1.6. The dipole is oriented in spanwise direction.




6. Time-dependent flow at higher Reynolds numbers
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Figure 6.8.: Time-dependent behavior of the force. (a) Sinusoidal time signal for Re = 2000
and Re = 3000 with Ha = 100 and spanwise dipole in a distance of h = 1.6. (b) Lift and
drag forces follow approximately the same power laws as in low Reynolds case (figure 5.6).
Points are given at the mean value while the vertical bars indicate the range of the variation
of the time signal.

by the Lorentz force. The Reynolds number determines, how likely it is that the flow forms
vortical structures and transforms the wake into a turbulent flow. As a final step to this
parameter study, it remains to investigate the influence of the Hartmann number on the
created vortex.

6.3. Hartmann number dependence

To investigate the influence of the Hartmann number, we consider Reynolds number of
2000 and vary the Hartmann number between 25 and 130. For very small Hartmann
number, there is almost no deformation of the flow visible. Figure 6.9 shows examples of
the streamlines for several Hartmann numbers. For Ha = 25, one may already observe the
local Hartmann layers, but the Lorentz force is not strong enough to create a flow reversal.
Such reversed flow is indicated by the streamlines from Ha = 50 and higher. A turbulent
wake is observed for Ha > 80.

The dependence of the Lorentz force on the Hartmann number is shown in figure 6.8b.
Here, the mean value of the forces are displayed with points and the range of the variation
due to the vortex shedding is marked with tow bars. Similar to the investigations in
section 5, one finds the same power laws for the total forces, i.e. F, ~ Ha? and F, ~ Ha®*.
The vortex shedding does not influence the power law as the oscillations of F, and F, are
in the order of 1% and 10% of the forces, respectively.

As an additional characteristic the frequency of the vortex shedding can be obtained from
the time signal of the force. Regarding the dipole as a magnetic obstacle, allows to compare
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Figure 6.9.: Streamlines for different Hartmann numbers and spanwise dipole orientation
at Re = 2000, h = 1.6.

this with frequency of vortex shedding behind a solid cylinder (Cuevas et al., 2006b). The
non-dimensional parameter for comparison would be then the Strouhal number

_ /D
- =

St (6.5)
Here, f denoted the frequency, w the mean velocity and D the characteristic length of
the obstacle, e.g. the radius of the cylinder. Whereas the frequency and the velocity are
known in our setting, it is not obvious how to determine the characteristic length of the
mangetic obstacle. A good estimate for the size of the magnetic obstacle is the area in
which the flow is detached from the wall, that was already discussed above (cf. figure 6.5).
This region is stretched along the streamwise direction and the shape may change in time
due to the vortex shedding. We define the characteristic length D of the magnetic obstacle
as the maximal spanwise width of the area that is enclosed by d.u, = 0 at z = 1.
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Figure 6.10.: Characteristics of the vortex shedding. (a) The width of the magnetic obstacle
increases linearly for small Hartmann numbers and comes to a saturation for higher Ha,
where the vortex shedding appears. Increasing the Reynolds number leads to decreased
width. (b) The Strouhal number increases slightly with increasing Hartmann number and
decreases with increasing Reynolds number.

The obtained widths increase with increasing Hartmann number as displayed in figure
6.10a. In addition the width is decreased with increasing Reynolds number. It is worth
to note the influence of the interaction parameter N = Ha?/Re in the following example.
The width is approximately the same for the simulations with Re = 2000 plus Ha = 80
and Re = 3000 plus Ha = 100. Both cases have similar interaction parameter of N = 3.2
and 3.3, respectively. This estimate does not hold for the regime without vortex shedding.

Furthermore, the frequency is found to decrease with increasing Hartmann number. This
behavior was also observed for the two-dimensional flow with a small magnetic obstacle
(Cuevas et al., 2006b). The Strouhal number in Cuevas et al. (2006b) was obtained with
a characteristic length that was fixed by the size of the small magnet. Therefore, they
describe a decrease of the Strouhal number in the dependence on the Hartmann number
with values around St ~ 0.1. In the present work, the width of the area of reversed flow
is used as a characteristic length of the magnetic obstacle. The resulting Strouhal number
increases with a gentle slope and reaches a saturation around St ~ 0.16 (see figure 6.10b).

The result can be compared to the flow around solid cylinders. There, the Strouhal number
is of the order St ~ 0.2 (Williamson, 1996). Dousset & Pothérat (2008) investigated the
influence of a homogeneous magnetic field on the flow around a cylinder. In the regime
of high Reynolds number, the Strouhal number was found to decrease with increasing
Hartmann number. Thus, the homogeneous magnetic field damps the vortical structures.
In our case, the inhomogeneous localized magnetic gives rise to the vortex formation and
subsequent shedding.

The Strouhal number gives a quantitative description for the wake. It is desired to have an
additional quantitative presentation for deflection of the flow that is caused by the dipole.
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6.3. Hartmann number dependence
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Figure 6.11.: The total enstrophy is linear dependent on the Hartmann number. This
behavior is originated in the local Hartmann layers. Data is given for Re = 2000, h = 1.6
and spanwise oriented dipole.

The aim is therefore, to describe the structures in figure 6.9. A possible approach is to
measure the vorticity, w = V x u, of the flow. For this, we consider the enstrophy over a
cube below the dipole, i.e.

1
0= / —|V x ul*dV. (6.6)
[,171]3 2

As the wake contains turbulent vortices, the integral is not applied to the whole domain.
Thus we focus on the area, that is directly influenced by the dipole. Figure 6.11 shows
that the enstrophy increases linearly with the Hartmann number, which is originated in
the increase of the vorticity w = V X w in the vortex as well as the Hartmann layers. The
strongest contribution comes from the derivative 0,u,, which reaches maximal magnitudes
in the Hartmann layer, as already mentioned above (cf. figure 6.5). An integration shows
that the integral f[fl,l}?’ %\8Zux|2dv gives already about 80% of the magnitude of the total
enstrophy 2.

To explain the linear dependence, we recall the properties of the Hartmann layers in
homogeneous magnetic fields. It is known from the analytic solution of the Hartmann
flow (Miiller & Biihler, 2001), that u, ~ cosh(Ha z). We can therefore estimate (9,u;)* ~
(Hasinh(Ha z))* in the Hartmann layer. The width of the Hartmann layer is given with
d ~ 1/Ha. Therefore, the integration of the enstrophy leads to £ ~ f(f |(0.u,)?|dz ~ Ha.

It has to be marked here, that this explanation is not valid for the total enstrophy of
Hartmann flow. Here, the Lorentz forces in the bulk of the flow produces an additional
factor, that depends on the Hartmann number. Thus, only local Hartmann layers produced
by a localized magnetic field reveal the linear dependence of the total enstrophy on the
Hartmann number. Therefore, the qualitative presentation of the flow structures in terms
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6. Time-dependent flow at higher Reynolds numbers

of the enstrophy (6.6) fails to provides details on the reversed flow an the vortex structures.
Nevertheless, it gives a good criterion for the strength of the local Hartmann layers.

In this chapter the time-dependent flow structures were investigated for high Reynolds
numbers. It was shown that the spanwise oriented dipole in a distance of h = 1.6 triggers
vortex shedding in case of sufficient high Hartmann number. Comparing the magnetic
obstacle with solid one, we determined a Strouhal number about 0.16. In addition, it was
found that the enstrophy in the zone that is influenced by the Lorentz force increases linear
with the Hartmann number. An effect that is caused by the local Hartmann layers.
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7. Conclusion and Outlook

The aim of this work was to describe the influence of a magnetic point dipole on liquid
metal flow in a square duct. The magnetic field of a dipole represents the simplest localized
field, that can be described analytically. Due to the strong inhomogeneity it leads to a
complex deflection of the flow, even if the geometry is chosen to be as basic as a square
duct.

To cover all possible aspects in the investigation, direct numerical simulations with an in-
house finite difference code were performed. A detailed verification of the calculations and
a validation with laboratory experiments showed the reliability of the obtained results.

In the beginning of thesis work, five question were raised for the present investigation.

1. How strong is the total force that acts on this system? What is the influence of the
strength and the shape of the magnetic field? What is the influence of the state of
the flow on the total force?

To estimate the total Lorentz force, the kinematic regime was considered, where the flow
is assumed to be not influenced by the force. Through this approximation, it is possible
to describe the drag force for a fixed dipole orientation in dependence of only three non-
dimensional parameters: The distance h of the dipole to the surface of the liquid, the
Hartmann number Ha based on the maximum magnetic field inside the duct and the
hydrodynamic Reynolds number Re. The first two parameters describe the shape and
the strength of the magnetic field. The Hartmann number gives the prefactor Ha? to the
Lorentz force. Two power laws were observed in a parameter study on the distance h.
For very small distances the Lorentz force is proportional to h=2, while for large distances,
it behaves as h~7. Both cases are explained with analytical expressions. The Reynolds
number gives a prefactor of 1/Re to the Lorentz force, but also shows an additional effect,
when the flow is turbulent. Here, the enhanced slope in the boundary layer increases the
Lorentz forces.

2. What kind of deflection occurs? What is the physical mechanism driving such a
phenomenon?

The basic mechanism of the deformation of the flow profile was then explained in the
case of very low Reynolds number. The study was restricted to three orientations of the
magnetic moment of the dipole: streamwise, spanwise and wall-normal vertical. Depending
on the local distribution of the magnetic field, the flow is either accelerated or decelerated.
Thus, local Hartmann layers are formed as well as regions of strong back flow, that lead
to vortices.

3. What is the difference in the total force between the case of an undeflected and a
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7. Conclusion and Outlook

Distance dependence Ha dependence Re dependence
kinematic regime
F,~h2forh<1 F, ~ Ha? F, ~ Re™!
F,~h™"for h>1
F.=0
T, ~ Ha? T, ~ Re™?
dynamic regime
distance F, ~ Ha? F, ~ Re!
defines F, ~ Ha* F, ~ Re® for Re < 1
deflected T, ~ Ha? T, ~ Re™?
area Fiyn = Fn for Ha < 20 exponential wake decay
< Au >~ Ha with decay rate ~ Re™!
for h > 1
vortex shedding for Re = 2000: Re influences
with Ha = 100 Q~ Ha wake instability
and Re = 2000 St =~ 0.16

Table 7.1.: Overview of obtained power laws and dependencies.

deflected flow? Is there a certain range within which the flow can be approximated
by an unaffected hydrodynamic profile?

The undeflected flow was considered in the kinematic regime and may be regarded as the
limiting case of Ha — 0. It was studied, how the increasing Hartmann number leads to
an amplification in the flow deformation. The total drag force and the torque are found
to be proportional to Ha?. This is the same power law as in the kinematic case. In the
range from Ha = 0...20, the flow can be approximated by an undeflected profile. In the
kinematic setting, there is only a force in streamwise direction. This changes with the
distortion of the profile. Through the deflection, a lift force is induced. The total lift force
is proportional to Ha* due to the contribution of the non-linear advection term.

4. How are the forces affected when the flow changes from the creeping to the transi-
tional regime?
The strongest effect is observed for the lift force. It is independent of the Reynolds number
for the creeping flow regime and decays steeper than 1/Re for higher Reynolds numbers.
The drag force and the torque behaves like 1/Re in the whole range of Re = 0.1...3000.
When the Reynolds number is increased, we observe that the length of wake is increased.
It was also shown why the spatial decay rate is proportional to 1/Re.

5. Can the dipole trigger turbulence in the originally laminar flow? Is there a threshold
in the strength of the magnetic field for the transition to occur?

Finally, it was investigated under which conditions the magnetic field of the dipole triggers
turbulence. As the Reynolds number is increased to 2000, the vortex formation process
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changes, and for the spanwise oriented dipole with Ha = 100 in a distance above h = 1,
vortex shedding occurs. The structures are advected into the wake and further secondary
instabilities lead to turbulence. The time-dependent flow structures were then investigated
for high Reynolds numbers. The occurrence of the vortex shedding was found for Hartmann
numbers above 80 with the spanwise oriented dipole at for h = 1.6 and Re = 2000. Below
this threshold no vortex shedding was observed.

The total forces and the total torque still obey approximately the same power law, but the
values are time-dependent. The time signal of the Lorentz force reveals the frequency of
the vortex shedding. Comparing the magnetic obstacle with a solid one, we determined a
Strouhal number of about 0.16. In addition, it was found that the enstrophy in the zone
that is influenced by the Lorentz force increases linearly with the Hartmann number. An
effect that is caused by the local Hartmann layers.

To answer the five questions, direct numerical simulations were provided to describe the
Lorentz force on the magnet and the deformation of the flow for a wide parameter range.
For three different dipole orientations the distance was varied between 1072 and 500, Hart-
mann number was up to 130 and Reynolds number was in the range of 0.1 < Re < 3000.
Although the present work provides a detailed study on the interaction of a duct flow and
magnetic dipole, the subject is far from being completed.

One might remark, that the considered Reynolds numbers are lower than the ones in
industrial applications. In the same manner, the laminar inflow is not given in many
applications. Simulations for those setting request an enhanced version of the code that
is capable to apply inflow/outflow conditions. With this, it would be appropriate to in-
vestigate the influence of the turbulence on the deflection of the flow. Preliminary tests
with fully turbulent flow show that it is quite hard to distinguish between the turbulent
fluctuations and deflection by the dipole in a given snapshot, if the interaction parameter
Ha?/Re is too small. Here, time averaged values are necessary taken for long time series
calculated with very fine mesh. In short, the computational resources have to be increased.

However, further extentions of the analysis are also possible for the laminar inflow. The
present setting offers more parameters, especially geometrical variables. So far, the dipole
is positioned in the centerline of the duct. An offset in spanwise direction would break the
symmetry of the problem and lead to different structures in the wake. Thus the transition
to turbulence can be affected. This opens perspectives for the flow manipulation and thus
also for the flow control.

According to the orientation of the dipole, it would be interesting to investigate interme-
diate orientations. One question to answer would be for which orientations the vortex
shedding is feasible. In addition, new structures in the wake may appear. A preliminary
example is shown in figure 7.1 for a orientation of m = 1/v/2(e, + e,).

A further extension of this work would be the inclusion of finite magnetic Reynolds num-
bers. This requires the solution of the magnetic induction equation inside and outside the
computational domain, because secondary magnetic field is induced in the whole space and
has to be continuous. This can be possibly solved by means of boundary element methods.

73



7. Conclusion and Outlook

Figure 7.1.: Oblique orientations lead to a swirl in the flow. Data is obtained with the
same setting as in figure 6.4 besides that dipole orientation is m = 1/v/2(e, + e,).

A project of this size would (and will) provide sufficient material for further thesis.

Having these future perspectives in mind, the presented work provides a appropriate foun-
dation to further studies on the magnetohydrodynamic duct flow in the presence of a
magnetic point dipole.
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A. Power law for large distances

We assume that the dipole is placed in the symmetry plane y = 0 but allow for arbi-
trary dipole orientation. In this situation, the leading order terms of the non-dimensional
magnetic field components are

1 k(282 — 1) + 3k,

05y —
B = — @
1 -k
0/s) — Yy
B(&) = 5w e
1 —3k,i+ k(2 — 32
B(3) ke

T @2t 1)

They depend only on z. The y-component of the magnetic field vanishes to leading order
for dipoles with orientations m = (0,0,1) and m = (1,0,0), while B? vanishes for m =
(0,1,0).

To obtain the electric currents 5°, 7' and 52 one has to solve the Poisson equation (2.7) for
the electrical potential up to the required order of approximation. We find the correspond-
ing equations and boundary conditions for the electric potential at the different orders by
substitution of the expansions and grouping terms of different orders. For the expansion
of derivatives we note that the Nabla operator takes the form

V:(a 0 a)' (A.1)

ESZy 2%y A~
or ' 0y 0z

For the zero-order approximation the appropriate Laplace equation becomes

200 920
R
0y? 0z?
There is no normal current at insulating walls and
0" _ _po
9y §==+0.5
agpo _ BO
9Z |: 405 !

The solution for the potential is then given by

° = 232 — §B? + const,
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A. Power law for large distances

which gives the currents j° = 0. Hence, the integral (4.9) vanishes, F” = 0. Also, all the
integrands involving j° in equations (4.10) and (4.11) are zero.

The currents in the bar have to fulfill the continuity equation V -3 = 0. Because of the
result (A.1) we have
. -1 .
a]ig + a]f’ + 8‘751 =
or Jdy 0z
This equation can be automatically satisfied for jO = 0 if a stream function ¢ = ¥(z, 7, 2)
is introduced, i. e. jy1 = O/0z and j! = —0 /0. We choose 9 to vanish at the walls and

automatically satisfy boundary conditions for currents 7 - n = 0 because the boundary is
a streamline of electric current.

0.

To obtain an equation for the stream function v, we consider the x component of the
current curl,
_ O Oy _ Pv

oy 0 092 032
Ohm’s law, 3 = =V + u x B, gives

) 0 Ot 0 Ot
n _ 9 ([ 1y 9 ([ _ pl
(V x j L”‘ag( ; +By) az( o B!

OB
or

(Vx3'),

The above result is obtained remembering that the magnetic field of the dipole is solenoidal
and therefore

0BY 0B; 0Bl _
9r oy 9z

Hence, we have to solve the following Poisson equation for the stream function

0* n oy 0BY

_ A2
o> 922~ 0i (4.2)

where ¢|wan = 0. Equation (A.2) also governs the laminar flow profile in a rectangular
duct (Pozrikidis, 1997). It can be solved using an infinite series expansion, whereby one
finds

0.5 0.5
W djds =

—0.5-0.5

2.253 9 BY
64 0

(A.3)

This identity is used to calculate the z component of the first term from integral (4.10)
which also vanishes:

2953 [ OB
/(j1 x B%),dV = . BY a;hdfc = 0.

—00
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The second order terms (4.11) should be evaluated to obtain a non-vanishing F,. There
are two such terms: f(j2 x B%), dV and f(j1 x BY), dV. The latter integral can be solved
using the stream function ¢ by taking into account that

0 0 oBY
.1 1 _ n, 9 1 x
[ By =SB + SLwBl + v

By using Stokes’ theorem we see that the first two terms do not contribute:
05 05

//(%WB;)Jr%(zﬁB;)) dj d2

—0.5-0.5

=7{<$B;dé—$3;dg>:0.

=0 =0

Then the integral can be transformed as

0
/(jl x BY), dV = ///w(xy 2) dgdé%hd:ﬁ.

Using equation (A.3), it integrates to
152 - 2.253
/(jl x BY)pdV = —— 55—

2207Th5

(5k3 + 7TkZ) .

The integral [(j* x B°),dV contains j*. To compute the current at second order, we
again use the continuity equation in the following form

Ojy , 032 _ 0jr _ ¢
oy 0z o 0327

We can use this equation to obtain

0B° 9B
oz Vor

, 1(., 1\&B
Jy=5\0"—7) 5=
2 4 /) Oz

j2 _ _1 22 o 1 aQBZ(J)
N 2 4) 012’

which satisfy the boundary conditions for the current. The  component of the first term
of F? (4.11) is then given by

/ (% x B%),dV = / (2B — j2BY) dV,

which can be computed analytically by integration by parts and variable substitution. We
thereby obtain the expression

@< B av -

15
21675

(35k2 + 8k2 + 57k2) . (A.4)
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A. Power law for large distances
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B. Power law for small distances

A semi-analytic expression for the electromagnetic drag of a magnetic point dipole on a
Couette flow is derived in this appendix. Here, we do not restrict us to special case of
vertical orientated dipole, but consider a the more general case of arbitrary orientation.
Therefore, the analytic expression if the magnetic flux density for the dipole is given by

where m = ke, +k,e,+k.e, is the orientation of the magnetic moment with kg—l—kfﬁtkg =
1, k = \/kZ + k2 + 4k2 and r = & — 7, with the dipole position ro = (0,0, ). The formula
is normalized such that the maximum of the magnetic flux density equals to 1 inside the
fluid. Accordingly, we get

M
Ha = " .
4dmh3
The parameter M is the intrinsic Hartmann number, that we introduced in equation (4.3).
For the velocity field, we consider a Couette flow with the velocity field u = —ze, for z < 0.

The aim is to calculate the Lorentz force, i.e.

_ Ha?

Fx—§/<(—Vgp+uxB)><B> e, dV.

The most difficult part is to find a solution for the Poisson equation for the electric potential,
i.e.

3kyxy + 3k, y* + 3k.(z — h)y k
A(,O(’l”):—< Y ( ) Y )

\/x2+y2+(z—h)25 \/:E2+y2—|—(z—h)23

This Poisson equation is similar to the one that has to be solved in case of rotary flowmeter,
which can be solved analytically (Priede et al., 2011b). To solve this Poisson equation for
the electric potential, one can apply the Green function in free space. We define an analytic
continuation of ¢ its reflection through the surface (z = 0), i.e.

Ap(z,y,z) = —By(x,y, —z) for z > 0.
In R? the Poisson equation can now the written as

AgD(.Z’,y,Z) = —By([B,y, _‘ZD
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B. Power law for small distances

with
 Bkgwy 4 3kyy? 4 3k.(]z] + h)y k,

B (I‘,y,—‘ZD -
Y V2 (2 R VAT (A + A

1

Using the Greens function G(z, z') = ==L, we can write
? 4 |e—a! |’

o(x) = — G(x,x")B, (2", y', —|Z]) dV".

R3

The magnetic flux density is solenoidal, i.e. Vo x B =V X (¢B), thus, we can calculate
the contribution of the potential to the total Lorentz force by

1 Ha?
F,— 2% [ _voxBav
v 2 Re /Z<0 v
1 Ha?
___nw Bdud
5 e /Zzonxgp xdy

1 Ha?

= _iﬁ /ZZOQO(—By€$ + B$€y) dl’dy,

where n = (0,0, 1) is the normal vector on the surface. We find with the solution for the
electric potential that

_1Ha2

Fo=yp | | G@e)B g~ av'| (-Be. + Bue,) dudy
2 Re 2=0 R3

In a similar way, we calculate the contribution from the velocity by

1 Ha?
F, B:__/ (ux B) x BdV
) 2 Re 2<0

1 Ha?

- __“/ (—ze, x B) x BdV
2 Re 2<0

1 Ha?
" 2 Re /KO :(~Ble, — Bye, + B,B.e, + B.Be.)dV.

The total Lorentz force is therefore

1 Ha?

]_HCLZ ! / / / !
= he 3G(a:,a:)By(x,y,—|z |)dV'"| (—Bye, + Bye,) dxdy
z=0 R

+ / z(—-B’e, — B;e$ + B,B,e, + B,B,e.,) dV) .
z<0
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dipole fitted to DNS data numerical integration?
orientation Qty, ay, o Qy, Qy «
vertical -0.5954 0.3970  -0.1920 | -0.589 0.393 -0.195
streamwise | -0.2501 0.1002  -0.1499 | -0.245 0.097 -0.148
spanwise | -0.3450 0.2967  -0.0482 | -0.343 0.294 -0.050

Table B.1.: Coefficient for small distance approximation from equation (4.15), that were
obtained by fitting the power law to the data, that are calculated by DNS and by a
numerical integration of the derived formulas for the coefficients'. Here, «, determines
the velocity distribution and «v, the distribution of the electric potential to the streamwise
Lorentz force. The total coefficient is given by o = a,, + a,.

To show explicitly the dependence of the force on the distance h in the formula above, we
rescale the coordinates by @ = h&. With this rescaling we get Ha = Mr/27, B ~ h™
and G ~ h~!. This result may now be written for the drag component of the Lorentz force
as

M? K (ap + au)

F=-
Re  (47m)%h?

(B.1)

The constants «, and «, represent the integrals as defined in equations (4.16) and (4.17).
The obtained result (B.1) is used for the comparison with the numerical results from the
laminar duct flow with a point dipole in small distances. Details on the results of this
comparison are shown in table B.1. Note that for a duct the definition of the shear rate as
2 =u/L is not valid any more. For the results in table B.1, the shear rate was evaluated
numerically.

It has to be emphasized, that the used method above may be used for every arbitrary
velocity distribution w(x,y, z) and arbitrary mangetic flux density, respectively. The only
requirement is 0, = (u x B), = 0 at z = 0, which ensures the smoothness of the analytic
continuation along the plane of reflection. This condition is automatically fullfilled for
flows with no-slip boundary conditions.

LCourtesy to Thomas Boeck for providing these data.
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