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Glossary 

 

experimental meadow: six meadows, along a gradient of plant species richness,  
were home and away grasshopper populations have been 
caged on (see Chapter II) 
 

meadow of origin: meadows on which the parents have been caught (see 
Chapter II) 
 

home grasshopper populations: grasshopper populations which originated from the 
experimental meadow they have been caged on, these 
populations have never been relocated  (see Chapter II) 
 

away grasshopper populations: grasshopper populations which do not originated from the 
experimental meadow on which they have been relocated 
on (see Chapter II) 
 

meadow attributes: certain attributes of grassland meadows that have any 
explanatory power for describing grasshopper performance 
like: plant species richness, plant species richness of grass, 
plant species richness of legumes, plant species richness of 
grass and legumes together, biomass, and also the fitness of 
the parental generation on each meadow (see Chapter II) 
 

Delta attributes: the difference in meadow attributes between experimental 
meadow and meadow of origin (see Chapter II) 
 

laboratory-reared grasshoppers: individuals hatched from eggs in the laboratory, laid by 
females caught on meadows in the study area one year 
before the experiment was started (see Chapter III) 
 

field-caught grasshoppers: third and fourth instar grasshoppers which have been caught 
in the study area by sweep netting in the year the 
experiment has been conducted (see Chapter III) 
 

meadow diet: contains the most abundant food plant species in the 
grasshoppers original habitat (see Chapter III) 
 

standard diet: consisting of only two food plant species (Dactylis glomerata 
and Trifolium pratense) (see Chapter III) 
 

(grasshopper) origin refers to the origin of the grasshoppers, either reared in the 
laboratory (laboratory – reared) or caught in the field (field 
caught) (see Chapter III) 
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General Introduction 

Insects in general – generalists in particular 

Due to the great number of herbivore insect species living on and from their host plants the impact of 

food plant quality, diversity and composition on herbivore performance is a key interest in ecological 

research. In this context, the relationship between insects and plants is characterized by the 

approximated amount of 400.000 herbivorous insects which are living on more of 300.000 vascular 

plants (Schoonhoven et al., 1998) whereas, the most species of any organism class on planet earth 

belongs to insects, and the greatest part of land biomass is provided by green plants. In this regard the 

question after the effect of diversity on plant insect- relationships has been addressed by studies 

dealing with the interaction between plant diversity and the diversity of insect herbivores (e.g. 

Haddad et al., 2001; Koricheva et al., 2000; Mulder et al., 1999; Scherber et al., 2010; Siemann et al., 

1998; Unsicker et al., 2006; Weisser & Siemann, 2004). 

 From the top-down point of view insect herbivores annually remove an average of 10% of plant 

biomass (Crawley, 1983; Scherber et al., 2010; Schoonhoven et al., 1998) which considerably varies 

according several biotic and abiotic factors (Scherber et al., 2010). The bottom up effects of plant 

resource quality on insect herbivores are among the three most important factors influencing insect 

herbivore abundance and performance in terrestrial ecosystems due to the water, nutrient and 

secondary compound content of food plant resources (Ritchie, 2000).  On the top of this Price et al. 

(2002) states that plant-insect food webs represents more than 40% of global terrestrial biodiversity 

(Novotny & Basset, 2005). As many biologists discovered the herbivore plant system as an ideal model 

system to study fundamental aspects of ecology, evolution and ecological physiology (Schoonhoven et 

al., 1998) it is finally clear why so much interest has been appeared in working on insect-plant 

relationships. 

By feeding on green plants herbivorous insects shows a degree of dietary specialization or 

generalization from monophagous species (feeding on a few closely related plant species) over 

oligophagous species (feeding on a number of plant species which all belong to the same plant family) 

to polyphagous species (feeding on many plant species belonging to different plant 

families)(Schoonhoven et al., 1998), although the majority of herbivores are not that easy to classify 

into this system. Most studies therefore rather distinguish specialist and generalist insect herbivores, 

classified after a very narrow vs. a more broad food plant spectrum. However, the degree of dietary 

specialization is important to disentangle biodiversity effects on insect community-levels, as the 

predicted response on plant species loss differs between specialized and generalized insect 

herbivores. For insect specialists the clearly predicted response is to decrease in abundance with 
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increasing plant diversity (Hector et al., 1999; Otway et al., 2005; Tahvanainen & Root, 1972). This 

assumption is based on Roots ‘resource concentration hypothesis’ which states that herbivores find 

and remain on plants more often in pure stands than in  communities consisting of more plant 

species(Root, 1973). In contrast, no general theory concerning the influence of plant diversity on 

generalist insect herbivores exists. Generalist insect herbivores have been shown to cope with highly 

variable host plant quality (e.g. Bernays et al., 1994; Bernays & Chapman, 1970a; b; Berner et al., 

2005; Miura & Ohsaki, 2004; Raubenheimer & Jones, 2006; Raubenheimer & Simpson, 2003; Simpson 

et al., 2004; Unsicker et al., 2008) a phenomenon often explained by the dietary mixing hypothesis. 

 

Dietary mixing hypothesis – a predictor for generalist insect herbivore 

performance in habitats diverse in food plant species? 

Broadening the diet by constantly switching between complementary food plants describes the theory 

of dietary mixing to balance nutrients and/or to dilute toxins in the food and to enhance or maintain 

fitness in generalist insect herbivores (Bernays et al., 1992; Kaufmann, 1965; Macfarlane & 

Thorsteinson, 1980; Pulliam, 1975; Rapport, 1980). ‘Nutrient complementation’ and ‘toxin dilution’ are 

the two hypotheses which have been brought forward to explain the beneficial effects of dietary 

mixing on generalist insect herbivores. To reach an optimal nutrient intake and therefore a good 

performance, insect herbivores expand their diet as it is assumed that a single food plant does not 

contain all the necessary nutrients (‘nutrient complementation hypothesis’) (Pulliam, 1975; Rapport, 

1980). Selective feeding on the basis of nutrient regulation in unbalanced diets has been shown in 

studies with grasshoppers (Simpson & Raubenheimer, 1993), aphids (Abisgold et al., 1994) and 

caterpillars (Simmonds et al., 1992; Waldbauer et al., 1984). Plant toxins are diluted by mixing up 

single food plants whereas the negative effect caused by the toxin is supposed to decrease (‘toxin 

dilution hypothesis’) (Behmer et al., 2002; Freeland & Janzen, 1974; Marsh et al., 2006; Singer et al., 

2002). To distinguish if the nutrient complementation or the toxin dilution hypothesis was decisive to 

achieve a fitness benefit due to a mixed diet is not trivial (Hagele & Rowell-Rahier, 1999). Still, the 

mechanism of dietary mixing has been shown in several studies with herbivorous insects, either by 

feeding them with real food plants (Bernays et al., 1992; Bernays et al., 1994; Hagele & Rowell-Rahier, 

1999; Miura & Ohsaki, 2004; Unsicker et al., 2008) or on artificial diets(Behmer, 2009; Bernays et al., 

1994; Chambers et al., 1995; Howard et al., 1994; Raubenheimer & Simpson, 2003; Waldbauer et al., 

1984). In most feeding experiments the performance (growth rate, survival, fecundity) of generalist 

insect herbivores, mostly grasshoppers or lepidopteran, was enhanced on mixtures of diets (Bernays & 

Bright, 1993; Bernays et al., 1994; Hagele & Rowell-Rahier, 1999; Miura & Ohsaki, 2004; Unsicker et 
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al., 2008), but studies showing no  benefit of dietary mixing can also be found in the literature 

(Bernays & Minkenberg, 1997; Singer, 2001).  

Nevertheless, the mechanism of dietary mixing can serve as a predictor for generalist insect herbivore 

response on increased plant species richness, especially if nutrients are unevenly distributed among 

plants and habitats, both in space and time (Behmer et al., 2002; Gusewell & Koerselman, 2002; Joern 

& Behmer, 1998; Oleksyn et al., 2002; Osier & Lindroth, 2001; Raubenheimer & Simpson, 2003; von 

Fircks et al., 2001; Westoby, 1978). Feeding on a broader spectrum of food plants should generally 

increase the probability of obtaining a well- balanced mixture of macronutrients for generalist insect 

herbivores.  

Within the discussion of dietary mixing and self-regulation of nutrients the hypothesis of nitrogen 

limitation in insect herbivores is often debated.  The ‘nitrogen limitation hypothesis’ states that the 

presence and concentration of nitrogen in food plants is the most important factor influencing 

herbivore performance (Davison, 1995; Mattson, 1980; White, 1993) which was supported by several 

studies (Davison, 1995; Heidorn & Joern, 1987; Joern & Behmer, 1997; Ritchie, 2000). Although 

herbivores show indeed a higher nitrogen limitation by feeding on plants which contain far more 

carbohydrates than nitrogen, studies showed contrary results to the nitrogen limitation hypothesis 

and a uniform explanation is not likely for all herbivorous insects (Cease et al., 2012; Fischer & Fiedler, 

2000; Joern & Behmer, 1998; Ritchie, 2000). Overall, the results rather emphasizes that nitrogen 

content alone is a weak predictor of food plant quality and that other plant nutrients, plant secondary 

metabolites and physical properties as well as abiotic conditions like temperature and solar radiation 

influences food plant quality and are at least as important for herbivore performance. 

 

Constraints in the field - generalist insect herbivore performance under (semi -) 

natural conditions 

Foraging under more natural conditions by feeding on real food plants comprises far more for 

herbivorous insects than only regulating nutrients to achieve a good performance. This fact is 

emphasizing the circumstance that experiments dealing with mechanism of nutritional balancing and 

dietary mixing in insect herbivores has been mostly conducted in the laboratory using artificial food or 

in some few studies also real food plants. Aspects like secondary compounds in the food plants, 

differences in food plant diversity and composition as well as direct and indirect effects of biotic and 

abiotic conditions (predation and anti-predation behavior, temperature, solar radiation, moisture, 

CO2elevation) are influencing insect herbivore performance in the field and were thereby broadly 
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neglected in laboratory experiments. Foraging in the field is therefore not only restricted by changed 

food plant quality due to abiotic factors but also inhibited by predation and anti-predation behavior 

which leads to the fact that the insect herbivore can not freely forage on every food plant existing in 

its habitat. 

Generalist insect herbivores are able, due to a broader food plant spectrum, to exist in habitats that 

differ in food plant species diversity and composition. In grasslands for example – a typical habitat for 

a great number of generalist insect herbivores - plant species richness is a function of land use and 

abiotic conditions (Unsicker 2010). Apart from the direct effect of abiotic conditions on generalist 

insect herbivore performance, herbivores have to deal with changed food plant quality due to the 

effect of temperature, solar radiation and elevated CO2 in different grassland habitats.  In contrast to 

highly controlled laboratory studies it is important to keep in mind that by conducting experiments 

under natural (e.g. field observations) or even semi- natural conditions (e.g. cage experiments in the 

field, laboratory feeding studies with real food plants) all these factors might act on herbivore 

performance.  

 

Study organism and Study area 

The study organism used for the presented studies is the meadow grasshopper Chorthippus parallelus 

(Zetterstedt), which is one of the most abundant grasshopper species throughout Europe. This 

grasshopper occurs in different grassland habitats from wet meadows, moist and semi-dry grasslands, 

along waysides and gramineous forest tracks, in orchard meadows and sometimes on bog meadows 

(Ingrisch & Köhler, 1998). Chorthippus parallelus is known to feed preferentially on grasses but it has 

been observed that it´s diet also contains a number of forbs and legumes (Bernays& Chapman, 1970b; 

Franzke et al., 2010; Gangwere, 1961; Ingrisch & Köhler, 1998; Specht et al., 2008; Unsicker et al., 

2008) thereby characterizing the species as a generalist insect herbivore. This grasshopper species has 

been served as study object for studies on dietary selection in insect herbivores (Bernays & Chapman, 

1970a; b) and to study the use and consumption of food plants (Köhler, 1981). Furthermore, the 

fitness response of  Chorthippus parallelus on food plant species richness from a broad vs. a narrow 

diet in the laboratory (Unsicker et al., 2008)and in a field biodiversity experiment  (Specht et al., 2008) 

has been tested together with its feeding on varying food plant mixtures from different meadow 

habitats  (Franzke et al., 2010). C. parallelus is very territorial and has, like most European grasshopper 

species, a low dispersal rate due to winglessness (Ingrisch & Köhler, 1998). The studies of this thesis 

have been conducted within the BIOLOG project (BIOLOgical diversity and Global change), a 

transdisciplinary scientific program which was funded from 2000 – 2010 by the Federal Ministry of 
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Education and Research. BIOLOG DIVA Jena, a long-term biodiversity experiment, as a part of the 

BIOLOG Europe project, tried to disentangle the relationship between biodiversity and ecosystem 

functioning in semi-natural grassland ecosystems. The study area which contained 20 hay meadows 

varying in plant species richness and composition was located in the Franconian Forest in Central 

Germany which is a low mountain range at the border of Bavaria and Thuringia (50°21’N and 11°00-

11°37’E) (see Figure 1).A main selection criterion for these meadows was extensive management for 

at least the last decade, including no fertilization, no grazing, a moderate mowing schedule of two cuts 

per year and a pH value of above 5.0 (Kahmen et al., 2005). 

 

Figure 1: Extensively managed meadows (blue dots) in the study area of the 

Schiefergebirge/Franconian forest which is located at the border between Thuringia and Bavaria 

(black box in the general map of Germany).  

 

Aim and Main Questions 

Based on the studies of dietary mixing with generalist insect herbivores it can be assumed that feeding 

in a more diverse habitat with the possibility of finding more potential food plants increases generalist 

insect herbivores performance due to obtaining a well – balanced intake of macronutrients. Tests in 

field experiments (Pfisterer et al., 2003; Specht et al., 2008) and feeding experiments with natural or 

original food plants (from meadow habitats in the study area) under laboratory conditions (Unsicker et 
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al., 2008; Franzke et al., 2010) shows contradicting results. Whereas the performance of the 

grasshopper species Parapleurus alliaceus increased with increasing plant species richness in a field 

biodiversity experiment (Pfisterer et al.) no such effect was shown in the grasshopper species 

Chorthippus parallelus(Specht et al., 2008). However, a clear indication for the positive effect of 

dietary mixing for generalist insect herbivore performance was given by the laboratory feeding 

experiment with C. parallelus by Unsicker et al. (2008). In contrast, no effects of composition and 

species richness in the diet on grasshopper performance were detected during another feeding 

experiment with C. parallelus (Franzke et al., 2010).  

In the field experiment conducted by Specht et al. (2008) fourth instar nymphs of field caught 

individuals of C. parallelus had been transferred into cages to test the effect of an experimental 

gradient of plant diversity. However, neither plant species richness nor plant functional group richness 

affected grasshopper fitness (Specht et al., 2008) but it was indicated that, at least in the field, 

grasshopper fitness was more influenced by plant functional group identity, i.e. the presence of 

grasses, than by plant species richness per se.  By feeding individuals of C. parallelus on diet mixtures 

consisting of one, three and up to an maximum of eight food plants throughout a grasshopper lifetime 

it was shown that grasshopper survival and fecundity was highest in the most diverse host plant 

mixture consisting of eight plant species offered and lowest in treatments with only single host plants 

(Unsicker et al., 2008). Furthermore a strong dependency of food plant choice on grasshopper 

developmental stage was revealed. In the study by Franzke et al. (2010) individuals of C. parallelus 

were fed on food plant mixtures containing 11 to 15 food plant species simulating four different 

grassland habitats from the BIOLOG study area. Although no difference in grasshopper performance 

occurs by feeding on the four different diets the study revealed differences in the conversion 

efficiency to body mass explained by selective dietary mixing which supports the active encounter of 

quality deficiencies in the food. One possible explanation for the different results between the 

laboratory feeding studies of Unsicker et al. (2008) and Franzke et al. (2010) could be the total number 

of food plants in the diets. Franzke et al. (2010) tried to simulate natural conditions by offering the 

highest amount of food plants per meadow diet, from minimal 11 to maximum 15 plants per diet.  In 

Unsicker et al. (2008) only mixtures from one, three to maximum eight food plants were offered 

throughout grasshopper lifetime and thus it is conceivable that beneficial effects through dietary 

mixing in grasshoppers are only evident below a certain threshold number of available food plants 

throughout grasshopper ontogeny. There are, however, a number of additional differences between 

these three studies conducted with C. parallelus. Differences might be derived by contrasting 

treatments of the study organism in the first nymphal stages. Grasshoppers were caught in the field 

before subjected to the experimental treatments in the study by Specht et al. (2008) whereas in 

Unsicker et al. (2008) effects of plant species richness were found in individuals reared from eggs in 
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the laboratory. The early experience of nymphs in the field may therefore have affected subsequent 

results. As in fact literature showed very different performance response of the generalist insect 

herbivore C. parallelus on plant species richness and composition the aim of the present thesis was to 

further disentangle this relationship with field studies and laboratory experiments. Gaining knowledge 

about the mechanisms underlying generalist insect herbivore performance in natural systems was 

another goal of this thesis. Furthermore insect feeding ontogeny and early feeding experiences are 

often neglected while describing insect herbivore responses to food plant quality in the literature, 

although especially early instar feeding experiences have shown to be important for later insect 

development and fitness (Barrett et al., 2009; Colasurdo et al., 2009; Metcalfe & Monaghan, 2001; 

Unsicker et al., 2008). In this context, it was aimed to measure performance response of C. parallelus 

over several developmental stages within the conducted experiments of this thesis. To achieve these 

aims the scope of generalist insect herbivore performance response on food plant quality and 

diversity was expanded and several different topics like the influence of a broad vs. a narrow diet or 

the difference between field vs. laboratory conditions as well as the influence of early feeding 

experiences and maternal effects on generalist insect herbivore performance were highlighted. In this 

context an observational field study analyzed the fecundity of C. parallelus between 15 different 

meadow habitats, and a relocation experiment along a gradient of plant species richness tried to 

discover of how well (meta-) populations of this grasshopper species are established in their meadow 

habitats. A laboratory feeding experiment conducted with different grasshopper populations tried to 

figure out how C. parallelus fitness of laboratory-reared and field-caught individuals is varying by 

feeding on a diverse meadow diet compared to a two-species standard diet.  

Under field conditions herbivore performance is often indirectly influenced by biotic and abiotic 

factors mediated through changed food plant quality (also see: Constraints in the field- generalist 

insect herbivore performance under (semi-)natural conditions). Due to the fact that the experimental 

part of this thesis containing studies conducted either in the laboratory but with real food plants or as 

cage experiment or as observational study in the field, the constraints herbivores are subjected to 

under these conditions have been especially noted and discussed in the framework of a theoretical 

review article. Furthermore this review article tries to expose knowledge gaps concerning the 

nutritional ecology of insect-plant interactions in the field and gives impulses to a new discussion by 

the suggestion to merge findings from two different ecological research fields. 
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The main questions which were asked in the thesis were:  

 

(1) How does plant species diversity affect the performance of C. parallelus under field 

conditions? 

 

(2) How well are different populations of C. parallelus established, expressed by fitness, in their 

meadows in dependence of plant species richness & composition and how important are 

maternal effects due to parental feeding experiences?  

 

(3) How important are early larval (feeding) experiences for the response of C. parallelus 

grasshoppers originating from different populations feeding on broad vs. narrow diets? 

 

(4) What is necessary to further disentangle generalist insect herbivore performance in the field 

by focusing on a strong influence of biotic and abiotic conditions on food plant diversity, 

quality and composition? 
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Abstract 

Theory predicts negative effects of increasing plant diversity on the abundance of specialist insect 

herbivores, but little is known about how plant diversity affects the performance and abundance of 

generalist insect herbivores. We studied oviposition rates and offspring numbers in females of the 

generalist grasshopper Chorthippus parallelus that were collected in 15 montane grasslands in 2005 

and 2007 along a gradient of plant species richness in Central Germany. In addition to plant species 

richness, we determined evenness and plant community composition in the grasslands, and measured 

above-ground plant biomass and other habitat variables such as leaf-area index, vegetation height, 

and solar radiation. There was substantial variation among sites in grasshopper fecundity and the 

number of nymphs that hatched from the egg pods. Both fitness measures were positively influenced 

by plant species richness at the sites, while female fitness did not correlate with any of the other 

habitat parameters. Abundance of C. parallelus in the grasslands was positively correlated with plant 

species richness, plant community composition, and incident solar radiation of the sites. There were 

no phenological differences between grasshoppers from the different study sites. Our results suggest 

that decreasing biodiversity threatens the persistence not only of specialist but also of generalist 

insect herbivores via a variety of mechanisms including a decrease in diversity of the generalists` food 

plants.  

 

Keywords: extensively managed montane grasslands; fecundity; plant community composition; 

reproduction. 
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Introduction 

Recently, increasing attention has been paid to the community-level effects of biodiversity (Hooper et 

al., 2005; Loreau, 2000). While earlier studies on the relationship between biodiversity and ecosystem 

functioning mostly focused on primary producer (e.g. Schulze & Mooney, 1993 and references 

therein), more recent studies have started to address the effects of species diversity on trophic 

interactions (e.g. Cardinale et al., 2006; Duffy, 2002 and references therein; Schmitz, 2003); for 

example, between plants and herbivorous insects (van Ruijven et al., 2005; Weisser & Siemann, 2004). 

With respect to herbivorous insects, research has focused on the effects of plant diversity on 

herbivore diversity or abundance (e.g. Andow, 1991; Jactel et al., 2005; Siemann, 1998). These studies 

were motivated by the work of Root (1973), who predicted that the abundance of herbivores will be 

lower in diverse plant communities than it is in simple communities (‘resource-concentration-

hypothesis’). The mechanism underlying this assumption is that herbivores find and remain on plants 

more often in pure stands than in diverse plant communities (Root 1973). Tests of Root’s hypothesis 

have thus focused on the response of specialist insect herbivores to changes in plant diversity (e.g. 

Otway et al., 2005; Schellhorn & Sork, 1997), often in agricultural systems (Andow, 1991; Tonhasca & 

Byrne, 1994). However, it is essential to also understand the effects of plant diversity on generalist 

herbivore species, as they are an important part of natural ecosystems.  

In contrast to the many theories about specialists, there is no general theory of how increasing plant 

diversity might affect the abundance of generalist herbivores. Predictions can be derived from 

ecophysiological studies investigating the effects of mixed diet on the performance of generalist insect 

herbivores (e.g. Bernays & Chapmann, 1994; Simpson & Raubenheimer, 2000). In most of these 

laboratory studies, the performance (e.g. survival, growth rate, fecundity, etc.) of generalist 

herbivores was better on mixtures of food plant species than on diets containing single plant species 

(e.g. Bernays & Bright, 1993; Unsicker et al., 2008), although there were exceptions in which no 

general benefits of dietary mixing were measurable (e.g. Bernays & Minkenberg, 1997; Singer, 2001).  

Based on our results from these ecophysiological studies with generalist herbivores in the laboratory, 

we can predict that under natural conditions in the field, generalist herbivores perform better in more 

diverse habitats where they can take advantage of many species of potential food plants. 

Experimental tests of this prediction in biodiversity experiments involving grasshoppers reared 

outdoors on mixtures of different diets have led to conflicting results (Pfisterer et al., 2003; Specht et 

al., 2008). Plant diversity in natural habitats is often a function of land use and abiotic conditions, all of 

which are likely to affect herbivore performance. To separate the effects on herbivore fitness of land 

use and climate (e.g. vegetation structure and solar radiation) from the effects on herbivore fitness of 



Plant species richness in montane grasslands affects the fitness of a generalist grasshopper 

species 

 

12 

 

diet (e.g. diversity and abundance of food plant species), it is essential to make simultaneous 

measurements of variation in all these parameters. 

In Central European grasslands, grasshoppers (Orthoptera, Acrididae) are an important component of 

the phytophagous insect community and are responsible for a considerable part of total herbivory 

(Köhler et al., 1987). One of the most common acridid species in Central Europe is the meadow 

grasshopper Chorthippus parallelus (Acrididae, Gomphocerinae; Zetterstedt 1821) which has been the 

subject of several classical studies on diet selection in herbivorous insects (Bernays & Chapman, 

1970a; b) as well as of studies relating to the consumption and use of food (Köhler & Schäller, 1981).  

We tested the influence of plant species richness on the fitness and the abundance of C. parallelus by 

collecting females in meadows that were selected along a gradient of plant species richness (Kahmen 

et al., 2005). In addition to plant species richness, we recorded plant community composition, plant 

community biomass, vegetation height, leaf area index, and solar radiation; these are parameters that 

can affect grasshopper performance. The main questions we asked were  

(1) Is there variation in fitness measures such as fecundity and number of hatched offspring of female 

C. parallelus among the different grassland sites?  

 

(2) Does grasshopper fitness correlate with plant species richness? 

 

(3) What are the effects of other habitat variables for grasshopper performance, compared to the 

influence of plant species richness? 

 

 

Materials and methods 

Study sites 

The study was conducted in 15 hay meadows in Frankenwald and Thüringer Schiefergebirge (11°00’-

11°37’E and 50°21‘-50°34’N), a low mountain range at the Bavarian / Thuringian border in Central 

Germany with a maximum elevation of 841 m above sea level. The 15 grassland sites are part an 

interdisciplinary research project. Selection criteria for the sites were (1) no fertilization and (2) no 

grazing during the last 15 years and (3) soil pH higher than 5.0 (Kahmen et al., 2005a). All of the 

meadows have been extensively managed for at least the last 15 years with two mowings per year 

(June/July and August/September). Sites were chosen in order to represent a gradient of plant species 
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richness from about 20 species (species in four plots of one square meter each) in the species poor 

meadows to about 41 species in the most diverse mountain hay meadows.  

 

Habitat variables  

All habitat variables were measured in June 2005 in a 5m2 plot in each of 15 field sites. Aboveground 

community biomass was sampled in four 0.1m2 rectangles (total 0.4 m² for each plot) quadrats within 

the 5x5 m plot, by cutting the vegetation 3 cm aboveground. The community biomass samples were 

dried at 70°C for 48 h and weighed. All plant species were identified in four 1x1 m quadrats that were 

placed close to the center of the 5x5 m plot and percent cover was visually estimated using a modified 

Londo scale (Londo 1976). We use plant species richness as the average species richness in these four 

quadrats.  

The leaf area index (LAI) of each study site was measured four times in a 5 x 5 m plot with a LAI-2000 

Plant Canopy Analyzer (LI-COR Biosciences, USA) and the maximum height of the plant community at 

each site was determined by placing a quadratic piece of polystyrene (30 x 30 cm) on top of the 

vegetation. The height at which the quadrat rested on top of the vegetation was measured. This 

measure was repeated at four points with a distance of 1.5 m from each other, and averaged. To 

characterize the sites, geographic position (GPS coordinates), altitude (range: 595-685 m above sea 

level), exposition (range: pure North to pure South) and inclination (range: 0-20°) were determined. 

Based on exposition and inclination, we calculated mean potential direct solar insolation (PDSI; 

Homann, Schumacher and Perner, unpublished software program, algorithm based on Volz 1959). In 

addition to species richness, we calculated Carmargo’s evenness as another relevant plant diversity 

measure (Krebs, 1999). 

 

Grasshopper abundances in the study area  

At June 17 and 18 in 2005, abundances of C. parallelus in 11 study sites were classified based on the 

sampling success of two people performing sweep netting for 30 min within a 300 m² portion of each 

meadow. Eight categories were used to measure grasshopper abundances: 0: no record; 1: 1-4 

individuals; 2: 5-10; 3: 11-20; 4: 21-30; 5: 31-40; 6: 41-50; 7: 51-60; 8: 61-70 individuals. For all further 

statistical analyses, the highest number of each category was picked (10, 20, 30, 40, 50, 60 and 70).  
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Experimental setup and grasshopper size   

In order to determine fitness parameters in C. parallelus along the gradient of plant species diversity, 

we collected 20 adult females of C. parallelus in each of the 15 meadows (= 300 females) at the end of 

July 2005 (July 26 and 28). Females of one site were placed in plastic boxes (27x17x18 cm Savic, 

Belgium), together with 5-10 males that were caught additionally at each site. Mating of grasshoppers 

caught in the same site was allowed to take place until the start of the experiment. Twenty-four hours 

after the grasshoppers were caught, each female was placed individually in a cage, 14 cm in diameter 

and 17 cm in height, consisting of aluminum mesh (aperture size: 1.5 mm) fixed to the lid of a Petri 

dish (14.5 cm in diameter) with hot-melt adhesive, thus forming a cylinder that slides over the bottom 

part of the Petri dish. Each cage contained a little plastic cup (diameter: 5 cm, height: 3 cm) filled with 

a 50/50 mixture of moistened sand and soil for egg-laying, and a small plastic vial for holding the food 

plant.  

Throughout the experiment, all grasshoppers were fed with Dactylis glomerata (Poaceae), a grass 

species known to be an adequate food source for C. parallelus (Ingrisch & Köhler, 1998; Köhler, 2001; 

Unsicker et al., 2008). The freshly cut grass leaves were put in a plastic vial that was filled with water 

to prevent the grass from wilting. In order to provide sufficient amount of food throughout the 

experiment, the cages were checked daily and if necessary, freshly cut Dactylis glomerata leaves were 

added. The cups with the sand-soil mixture were also kept moist throughout the experiment. As not 

all females could be handled within one day, 144 females (= 50.2%) were kept individually in cages for 

six days and 143 females (= 49.8%) for seven days. Thereafter females were anaesthetised with CO2 

and the length of the left hind femur was measured under a binocular microscope with the help of an 

object slide graved with measuring units. As landmark points for the measurement, we chose the most 

distant points of the outer rim of the upper, larger lobe of the notched base and the outer rim of the 

upper one of the two genicular lobes at the apex (Jentzsch et al., 2003).  

 

Grasshopper reproduction  

In 2005, grasshopper fecundity (egg pod number) and the number of hatchlings from the egg pods 

were taken as fitness measures.  Egg pods laid by each female until the end of the experiment (after 6-

7 days) were counted by carefully washing the egg pods out the egg-laying soil. After counting, the egg 

pods were buried again in an autoclaved sand/soil mixture (50/50) keeping the same orientation as 

they had before with the narrow part of the egg pod facing upwards. The pods laid by a single female 

were placed together in one cup covered with conventional fly mesh to prevent grasshopper progeny 
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from escaping after hatching. For two months the egg pods were kept in the lab at room temperature 

so that the embryos could develop to blastokinesis. Throughout this time, the sand/soil mixture in the 

cups was regularly watered to prevent drying out. At the beginning of October 2005 all cups with egg 

pods were transferred to the refrigerator at 6°C. On January 26 all cups were removed from the 

refrigerator and kept under lab conditions with an average diurnal room temperature of 22°C ± 1.6°C 

(mean ± SD). All pots containing egg pods were checked daily for hatchlings and were watered when 

necessary. Freshly hatched grasshoppers were collected with an aspirator and immediately killed by 

freezing at -20°C. As the experiment was not terminated at the same day for all female grasshoppers, 

the rates per day for both pods laid and hatched offspring were calculated. Thus for each female, egg 

pods per day and number of offspring per day (= number of hatchlings divided by time for oviposition) 

were calculated as variables measuring fecundity and reproductive success respectively.  

In 2007, we repeated our study with slight modifications in order to test if the relationship for 

grasshopper fecundity and plant species richness is reproducible. In mid- July 2007 (July 13 and 17) 10 

to 30 juvenile grasshoppers (nymphal stage 3 and 4) were caught in 9 of the 15 study sites from 2005. 

The investigation of grasshopper abundance in 2007 was part of another research project, which is the 

reason, why the number of field sites investigated differed from the 2005. The nymphs that were 

caught in each site were kept in separate cages (30x30x30cm, MegaView Science Co., Ltd., Taiwan) 

under laboratory conditions. In 2007 the grasshoppers were fed with a food plant mixture consisting 

of the grass species D. glomerata and the legume Trifolium pratense. After maturity moult (end of July 

until middle of August) grasshopper males and females that were originally caught in the same study 

site were allowed to mate and oviposit in cups filled with a sand/soil mixture, just as it was described 

above. The oviposition experiment in 2007 lasted until the grasshoppers died. Thereafter the number 

of egg pods laid by the females in each cage was counted. By dividing the total number of egg pods 

through the number of female grasshoppers present in the cages (cages represent study sites), the 

number of egg pods per female grasshopper was calculated. In 2005 twelve female grasshoppers died 

during the experiment and one escaped, hence the number of valid replicates for the statistical 

analysis was 287.  

 

Grasshopper phenology  

Because in 2005 grasshoppers were only counted without determining the nymphal stages of each 

individual, another survey was conducted in 2007 in order to test for differences in grasshopper 

phenology between sites. We caught C. parallelus grasshoppers by sweep netting along a transect in 
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each of the study sites at the beginning of July 2007 (July 7). Ten beats with the sweep net were 

performed in each site, and the developmental status of each C. parallelus grasshopper caught was 

then recorded (all instars but the first could be found in the study sites).Thus the phenological status 

of each grasshopper population could be determined.  

 

Grasshopper diet breadth experiment  

To test the diet breadth of C. parallelus and to verify the fact that this grasshopper species is a 

generalist feeder rather than a specialist, we performed a cage experiment in which six grasshopper 

females were continuously provided with food plants of a species rich meadow typical for the study 

area. Thirteen plant species were selected as food plants based on their abundance in the study site. 

All plant species in the grassland that had a cover over 1% (plant cover was estimated in four 1m² 

plots) were integrated in the feeding experiment. The selected plant species were seven grass species 

(Agrostis tenuis, Anthoxanthum odoratum, Dactylis glomerata, Festuca rubra, Holcus lanatus, Phleum 

pratense and Trisetum flavescens), four herbaceous species (Alchemilla vulgaris, Hypericum 

maculatum, Plantago lanceolata and Veronica chamaedrys) and two legumes (Trifolium pratense and 

Trifolium repens).  

Grasshoppers were reared from oothecae laid in the laboratory by females collected from a field 

population near Jena in 2004. Individuals were kept singly in 6L Fauna boxes (Savic, Belgium) from 

within three days after hatching until death. Freshly cut food plants were randomly arranged in a 

plastic box (115 x 15 x 60 mm) placed in the Fauna box, filled with water and covered with plastic foil 

to prevent plants from desiccation and grasshoppers from drowning. Plants were offered ad libitum.  

Every fourth day, the leaf area (in mm²) of each plant species consumed by the grasshoppers was 

measured with the help of graph paper. To convert the leaf area eaten into dry weight consumed ten 

1cm² leaf discs of each plant species were cut, dried for 48h in a drying oven at 70°C and weighed. 

Here, we only present data on food plant consumption of females during their four larval instars. 

 

Statistical analysis 

All count data were square-root transformed prior to analyses. Means are always displayed with 

standard errors (SE). 
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To account for the effects of plant community composition on the fitness of C. parallelus, we used 

non-metric multidimensional scaling (NMDS) ordination of the plant communities in the 15 study sites, 

using the square-root-transformed plant cover data. NMDS is an ordination method that has been has 

been shown to deliver robust results for vegetation data (Michin 1987, Faith et al. 1987). From a 

matrix of resemblances (similarities or dissimilarities) between pairs of objects, here plant 

communities, NMDS constructs a configuration of points in a specified number of dimensions, such 

that the rank order agreement between the inter-point distances and the resemblance values is 

maximized. As a distance measure, the Bray-Curtis coefficient was used and NMDS analyses were 

conducted using the program PC-ORD  (McCune & Mefford, 1997). We tested if a two-dimensional 

solution does give a sufficiently good fit to the data, indicated by a low ‘stress’-value (Faith et al., 

1987). 

Because we investigated eight habitat variables (plant species richness, community biomass, 

Camargos’s evenness, NMDS1, NMDS2, LAI, vegetation height and solar radiation; Table 1) we tested 

for correlations among the independent variables using a principal component analysis (PCA).  

Multiple linear regressions in a stepwise selection procedure were carried out using SPSS 15.0 for 

Windows (SPSS Inc.) to analyse the effects of habitat variables on grasshopper fitness parameters and 

abundances. In addition to the models presented by the stepwise procedure, models were tested by 

using the forward and backward procedure implemented in SPSS. The AIC (Aikaike’s Information 

Criterion) values of the best model are reported.  

 

Results 

Grasshopper diet breadth experiment  

Female grasshoppers in the experiment lived on average for 97.5 ± 0.89 days. Figure 1 shows the 

larval food consumption of six female grasshoppers from the first nymphal instar to the time of 

maturity moult (45.0 ± 0.97 mg). During their development, the grasshoppers consumed all offered 

plant species except the herbaceous species Alchemilla vulgaris (Figure 1). There were significant 

differences in the amount of food consumed from individual plant species (ANOVA: F 12, 5=25.4, 

p=0.001). The bulk of biomass consumed during the four larval stages was grasses (87.4%) and, to a 

lower extent, herbs (12.6%). The two legume species Trifolium pratense and Trifolium repens 

comprised 12.5% of the total nymphal food consumed. Due to these results, C. parallelus can be 

termed a true generalist feeding on food plants from more than one plant family.  



Plant species richness in montane grasslands affects the fitness of a generalist grasshopper 

species 

 

18 

 

 

 

Figure 1: Food consumption of six females (mean ± SE) of C. parallelus during the four nymphal instars 

in a food plant mixture with seven grasses and six herbs. Note that the y-axis is in log scale.  

 

 

Multivariate analysis of plant communities 

In total 89 plant species occurred in the 15 study sites and their abundances were used for the 

ordination of the plant communities. The NMDS analysis showed that a two-dimensional solution was 

sufficient to achieve low stress values explaining plant species composition in the 15 sites (first 

axis/dimension = 34.7, second axis/dimension = 9.0). Thus for all future analyses, we used the two 

main axes, labeled NMDS1 and NMDS2, to represent plant community composition. For a more 

detailed description of the occurrence of particular plant species along the NMDS gradients please see 

Kahmen et al. (2005). The relationships between the plant species that were tested in the grasshopper 

diet breadth experiment and the two NMDS axes are shown in the supplementary material (Table S1). 
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Multivariate analysis of habitat variables 

The means, standard errors and ranges of all measured habitat variables are given in Table 1. 

Community biomass decreased with increasing plant species richness, with 652.04 g m-1 and 120.74 g 

m-1 at the site with the lowest (20 species) and highest diversity (41 species), respectively. However, 

this relationship was not significant (r² = 0.26, p = 0.062). There was no relationship between plant 

species richness and Camargo’s evenness (r² < 0.01, p = 0.736). The number of grass species was 

positively correlated with the total number of plant species (r² = 0.734, p< 0.001). Community biomass 

was correlated with leaf area index (LAI), vegetation height and NMDS1, whereas NMDS1 was 

correlated with Camargo’s evenness.  

We included the two NMDS axes NMDS1 and NMDS2 into a PCA analysis of all habitat variables. The 

resulting first two PCA axes explained 70% of the total variance in habitat variables (Table 2). The first 

axis was closely positively correlated with community biomass, LAI and vegetation height, and 

negatively correlated with NMDS2. Thus, the composition of the plant community, expressed by 

NMDS2, affected productivity and structural parameters of the plant community (biomass, LAI, 

height). The second axis was mainly determined by NMDS1 and Camargo’s evenness.  

To reduce the number of parameters in further multiple regressions, Community biomass was 

selected instead of the closely correlated vegetation height and LAI. While NMDS2 was correlated with 

community biomass (Table 2), both NMDS1 and NMDS2 were kept for future analyses as plant species 

composition represents the host plant combinations in the plant communities, i.e. resource quality, 

whereas productivity is a measure of resource quantity. The six parameters plant species richness, 

Camargo’s evenness, community biomass, NMDS1, NMDS2 and solar radiation were used as 

independent variables in all multiple regressions on grasshopper abundance and fitness-related 

variables.  
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Table 1: Summary of data for eight habitat variables that were measured in the 15 study sites in 

June 2005.  

 

Parameter Mean ± SE Range n* 

Plant species richness 30.4 ± 1.58 20 - 41 15 

Community biomass (g m
-2

) 298.49 ± 36.53 120.74 – 652.04 14 

NMDS1 0.02 ± 0.12 -0.85 – 0.96 15 

NMDS2 -0.03 ± 0.24 -1.68 – 1.06 15 

Camargo´s evenness 0.32 ± 0.015 0.23 – 0.45 15 

Leaf area index (LAI) 3.68 ± 0.37 1.18 – 5.92 14 

Vegetation height (cm) 30.57 ± 6.7 16.0 – 108.0 14 

Solar radiation in site (J / cm²) 
2055.68 ± 32.1 1796.97 –2353.15 

15 

 

 

 

* the differences in the number of replicates for the habitat variables is due to early accidental mowing of one 

study site in June 2005. Thus none of the parameters but plant species richness and solar radiation could be 

investigated at this time.  

 

Grasshopper abundances 

There was a positive relationship between plant species richness and grasshopper abundance in June 

2005 (r² = 0.53, F1, 9 = 10.12, p = 0.011, Figure 2). Increasing community biomass tended to decrease 

the abundance of grasshoppers but the relationship was marginally significant (r = 0.40, F 1, 8 = 5.29, 

p = 0.05). There was no relationship between grasshopper abundance and Camargo’s evenness (r² = 

0.02, F1, 9 = 0.2, p = 0.663) or NMDS1 (r² = 0.09, F1, 9 = 0.86, p = 0.377), but C. parallelus abundances 

were influenced by NMDS2 (r² = 0.55, F1,9 = 11.05, p = 0.009) and solar radiation (r² = 0.42, F 1, 9 = 6.46, 

p = 0.032) in the sites. There was a positive relationship between grasshopper abundance and solar 

radiation. In a multiple linear regression with the six selected habitat variables, only plant species 

richness and NMDS2 remained in the final model (species richness alone: r² = 0.70, F1, 8 = 18.74, AIC = 

51.04, p = 0.003; plant species richness and NMDS2: r² = 0.85, F2, 7 = 20.44, AIC = 45.88, p = 0.001).  

 

Table 2: Eigenvalues and eigenvector coefficients (loadings) of a standardized principal component 
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analysis (PCA) of the eight independent variables. Loadings > 0.5 are bold to emphasize the impact of 

the representative axes.  

 

  PCA1  PCA2 

Eigenvalues 0.5062 0.1904 

Plant species richness -0.573 -0.161 

Community biomass 0.943 0.089 

Camargo´s evenness 0.002 -0.865 

NMDS1 0.126 0.800 

NMDS2 -0.914 0.046 

Leaf area index (LAI) 0.893 -0.150 

Solar radiation  -0.592 0.271 

Vegetation height 0.914 0.066 

 

 

 

 

Figure 2: Relationship between plant species richness and the abundance of C. parallelus in 11 study 

sites. R² = 0.53, F1,9 = 10.12, p = 0.011. Abundance is the number of grasshoppers caught in 30min by 

two people sweep-netting along two transects in the respective study site.  

Grasshopper body size 
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Mean female femur length was independent of overall plant species richness (r² < 0.001, F1,13 < 0.001, 

p = 0.988), community biomass (r² = 0.03, F1, 12 = 0.32, p = 0.581), NMDS1 (r² = 0.001, F1, 13 = 0.01, 

p = 0.911), NMDS2 (r² = 0.01, F1,13 = 0.2, p = 0.658) and solar radiation (r² = 0.004, F1, 13 = 0.05, 

p = 0.833), but there was a significant positive relationship between Camargo’s evenness and mean 

femur length in females of C. parallelus (r² = 0.55, F1, 12 = 16.12, p = 0.001). In a multiple regression the 

best model included Camargo’s evenness and NMDS1 as explanatory variables (Camargo’s evenness 

alone: r² = 0.55, F1, 12 = 14.74, AIC = -43.76, p = 0.002; Camargo’s evenness and NMDS1: r² = 0.71, F2, 11 = 

13.96, AIC = -48.23, p = 0.001).  

 

Grasshopper reproduction 2005  

Females laid between zero and two egg pods within the timeframe of seven days, and 52.3% of the 

287 grasshoppers laid at least one egg pod (193 eggs pods by n = 150 females). The percentage of 

females laying zero egg pods was negatively correlated with plant species richness of the study sites 

(r² = 0.33, p = 0.025). There was a significant positive relationship between mean egg pod number per 

day and overall plant species richness across sites (r² = 0.39, F 1, 13 = 8.39, p = 0.012, Figure 3a). In a 

multiple regression with the six habitat variables only plant species richness emerged as significant 

predictor variable (r² = 0.426, F 1, 12 = 8.891, AIC= -85.76, p = 0.011).  

Hatching started 18 days after the egg pods were removed from the refrigerator. Offspring hatched 

from 134 of the 193 egg pods laid by 99 of the 150 females. Altogether 716 larvae hatched from the 

134 egg pods (3.68 ± 0.28 individuals per egg pod). Grasshopper abundances of C. parallelus in the 

field did not influence the number of offspring per day (r² = 0,113, p = 0.312, n = 11). There was a 

significant positive relationship between plant species richness and the mean number of offspring per 

day (r² = 0.30, F 1, 13 = 5.52, p = 0.035, Figure 3b). In a multiple regression with the six selected habitat 

variables, only plant species richness was significant (r² = 0.30, F1, 12 = 5.10, AIC = -61.42, p = 0.043). 

 

Grasshopper reproduction 2007 

There was a significant positive relationship between mean egg pod numbers per female grasshopper 

and overall plant species richness in their original habitats (r² = 0.56, F 1, 7 = 7.624, p = 0.028). In a 

multiple regression with the six habitat variables only plant species richness was retained as a 

significant predictor variable (r² = 0.56, F 1, 6 = 6.535, AIC= 2.876, p = 0.043).  
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Figure 3: Relationship between plant species richness and a) female fecundity (mean pod number per 

day) in 15 study sites. R² = 0.39, F1,13 = 8.39, p = 0.012, and b) mean number of offspring per day. 

R² = 0.30, F1,13 = 5.52, p = 0.035. Data for female fecundity were square root transformed.  

 

 

 

Grasshopper phenology 

10 20 30 40 50

E
g
g
 p

o
d
s
 p

e
r 

d
a
y
 

(s
q
u
a
re

 r
o
o
t 
tr

a
n
s
fo

rm
e
d
)

0.1

0.2

0.3

0.4

Plant species richness

10 20 30 40 50

O
ff
s
p
ri
n
g
 p

e
r 

d
a
y

(s
q
u
a
re

 r
o
o
t 
tr

a
n
s
fo

rm
e
d
)

0.2

0.4

0.6

0.8

1.0
b)

a)



Plant species richness in montane grasslands affects the fitness of a generalist grasshopper 

species 

 

24 

 

The phenology of C. parallelus in the study sites in 2007 was not related to the local plant species 

richness, i.e. there were no systematic differences in developmental speed between the study sites. 

When individual regressions were performed with percent grasshoppers in the respective 

developmental stage versus plant species richness in the study sites, plant species richness did not 

explain the variability in the abundances of any of the nymphal instars (nymphal stage 2: F1, 9 = 0.039, 

p = 0.848, nymphal stage 3: F1, 9 = 1.203, p = 0.301, nymphal stage 4: F1, 9 = 2.156, p = 0.176, adults: F1, 9 

= 0.050, p = 0.828).  

 

Discussion 

The fitness of the grasshopper C. parallelus, measured as the number of egg pods laid by females, and 

by the number of hatching offspring, greatly varied between different grassland sites investigated. The 

variation in grasshopper fitness was best explained by plant species richness in the different study 

sites. This was true for both years (2005 and 2007) in which grasshopper fecundity was investigated. 

Furthermore, grasshopper abundances were positively affected by increasing plant species richness 

and, to a lesser extent, plant species composition in the study sites. Our results show that in addition 

to effects of plant diversity on specialist insect herbivore fitness, there are also measurable effects of 

plant diversity on the abundance of these generalist insect herbivores. We will discuss possible 

mechanisms underlying the observed patterns in female grasshopper fitness, in particular the role of a 

diverse diet for generalist herbivores.  

 

Host specificity of C. parallelus 

There is clear evidence from our feeding experiments the grasshopper C. parallelus is a true generalist 

feeder sensu Schoonhoven et al. (1998) that feeds on grass and legume species, but largely avoids the 

consumption of forbs. Feeding behaviour of acridid grasshoppers including C. parallelus in the field has 

been studied by observations and gut analyses (see ref. in Chapman & Joern, 1990). Differences 

between grasshopper species belonging to different species within one subfamily could be found with 

respect to the relative amount of grasses and forbs in their diet (Joern, 1979). The consumption of 

food plants was not exclusively determined by the abundance of food plant species in the 

grasshoppers’ habitats (e.g. Bernays et al., 1970b), which is an indirect proof that grasshoppers exert 

active food choice.  
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Grasshopper abundance and fitness in relation to habitat variables  

The abundances of C. parallelus in the field and female fitness were higher in sites with higher plant 

species richness and none of the other habitat parameters tested in our study was significantly 

correlated with grasshopper fitness. The abundances of C. parallelus were additionally influenced by 

plant community structure (NMDS) and by solar radiation in the sites. Plant community composition 

has already been shown to explain a large fraction of the variance in insect abundances (e.g. Perner et 

al., 2005). Plant community composition is a surrogate for a number of effects the plant community 

exerts on herbivorous insects that are difficult to identify, because they include effects on grasshopper 

diet (i.e. combinations of particularly suitable or unsuitable food plants), microclimatic effects and 

structural effects such as refuges from natural enemies (Perner et al., 2005). Our study sites are at 

elevations up to 685 m above sea level with high annual precipitation and low average temperatures. 

In grasshoppers, like in most ectothermic animals, both activity and growth are temperature-

dependent. It is thus conceivable that sunshine is a major restriction for C. parallelus activity in the 

study area, which may explain why there are more grasshoppers in sites more exposed to sunshine. 

Data on the relative abundances of C. parallelus nymphal instars in the different study sites in 2007 

show, however, that the phenology of the grasshoppers was not correlated with plant species 

richness. Thus, the positive effect of plant species richness on grasshopper fitness is not confounded 

by systematic differences in phenology, i.e. a systematic difference in female grasshopper age among 

sites at the time of capture.  

The consistent effect of plant species richness on herbivore fitness and the absence of significant 

correlations with other habitat parameters suggest that the plant diversity per se has positively 

affected female nutrition, which resulted in the observed differences in fecundity and the number of 

offspring among sites. There are at least three possibilities for the positive affect of plant species 

richness on grasshopper performance: (1) an increase in the diversity of food plant resulting in a 

better diet, (2) a decrease in top-down control of grasshoppers by natural enemies with increasing 

plant species richness, and (3) a positive effect of plant species richness on other, unmeasured, abiotic 

variables that also positively influence grasshopper fitness. In our view, most evidence points to 

explanation (1), a positive effect of plant species richness on grasshopper fitness via the increased 

possibility of dietary mixing. Dietary mixing has repeatedly been shown to increase fitness in generalist 

grasshoppers including C. parallelus (e.g. Bernays et al., 1997; Bernays et al., 1994; Unsicker et al., 

2008). Plant species richness and hence the number of potential food plants for C. parallelus doubled 

along the plant diversity gradient in this study. Although the results from the feeding experiment with 

C. parallelus show that this species predominantly feeds on grass and legume species, we observed 
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some feeding on other forbs. As we cannot exclude the possibility that feeding on these forbs affects 

grasshopper fitness despite the low amounts consumed, we used overall plant species richness in the 

statistical model presented here rather than species richness based only on grass and legume species. 

Multiple regressions using grass and legume species richness gave the same results for the number of 

grasshopper egg pods and grasshopper abundance, only the number of offspring was not significantly 

affected (data not shown). Experiments that tested feeding strategies in generalist grasshoppers to 

date have mostly tested a restricted number of plant species offered in monocultures or as mixtures 

and to our knowledge, only one study observed beneficial effects of a plant community containing 

more than 20 plant species in the field (Pfisterer et al., 2003). Pfisterer et al. found positive effects of 

plant species richness on weight gain of the generalist grasshopper Parapleurus alliaceus in a setting 

where grasshoppers were caged on experimental mixtures of one, two, four, eight and 32 plant 

species, all of which included at least one grass species. While the difference was mainly due to a 

higher weight gain in 32-species mixtures compared to mixtures of eight or fewer species, this study in 

an artificial grassland system also indicated positive effects of plant diversity on generalist herbivore 

performance. Interestingly, Specht et al. (2008) caged C. parallelus in artificial mixtures of 1-60 plant 

species half of which did not included grasses and found an overwhelming effect of grass presence on 

grasshopper fitness while the effect of plant species richness per se was not significant. While a cage 

experiment may not mimic natural conditions entirely, our correlative study can therefore not rule out 

additional effects of plant species richness on grasshopper fitness that are mediated by other factors 

than diet composition, i.e. possibilities (2) and (3). The risk of predation for grasshoppers, in particular 

by spiders, has been shown to greatly influence grasshopper foraging behaviour (e.g. Schmitz, 2003) 

with possible consequences for nutrition and fitness. Unsicker et al. (2006) found in a study in the 

same study area a general increase in spider abundances with increasing grasshopper abundances, 

suggesting that top-down control does not decrease with increasing plant species richness. While we 

do not have information on other predators such as passerine birds, it appears that the generally 

lower vegetation in the more species-rich meadows (Kahmen et al., 2005, Unsicker et al., 2006) would 

increase rather than decrease foraging success of birds. Similarly, we cannot exclude the possibility 

that other abiotic factors such as the structure of the vegetation favour grasshopper reproduction 

more in the more diverse sites. Overall, however, the results from our correlative study suggest that 

both grasshopper abundance and fitness are controlled bottom-up mediated by food plant availability.  

On the other hand, there are also top-down effects of grasshoppers on the plant community itself. 

Grasshoppers are important components of arthropod assemblages in grassland ecosystems and it has 

already been shown experimentally that they can alter plant populations and community dynamics by 

e.g. suppressing abundant, highly competitive grass species and thus facilitating the evenness in 
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grasslands (e.g. Schmitz, 2003). Although we have no experimental evidence in our study sites, it is 

conceivable, that C. parallelus populations that mainly feed on grasses also affected plant species 

richness and plant community composition in the study sites. Grasshopper abundances are highest in 

species rich meadows and as these grasshoppers mainly feed on grasses and some legumes, it is likely 

that they prevent highly competitive grass species from dominating these sites. This in turn would 

benefit the competitively inferior forb species. Long-term grasshopper exclusions could shed light on 

the question whether bottom up forces shape grasshopper communities or whether grasshopper 

populations sustain high levels of plant diversity through top-down effects.  

The results from our study imply that the fitness of polyphagous herbivores may be diminished in low 

diverse plant communities. Therefore, declines in biodiversity pose a threat to the persistence of 

generalist herbivores by inhibiting optimal feeding patterns.  
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Supplementary material 

 

Table S1: Linear regressions for the grasses and forbs that were investigated in the grasshopper  
feeding experiment with respect to the two non-metric multidimensional scaling axes (NMDS). R² and 
p values are given. Marginally non significant results are also displayed. Arrows indicate the direction  
of the relationship.  
 
 
 
 

    NMDS1 (R², p) NMDS2 (R², p) 

Grasses  Agrostis tenuis n.s.  0.463, 0.005 ↑  

Anthoxanthum odoratum n.s.  0.334, 0.024 ↑ 

Dactylis glomerata n.s.  0.612, 0.001 ↓ 

Festuca rubra n.s.  0.614, 0.001 ↑ 

Holcus lanatus n.s.  n.s.  

Phleum pratense 0.225, 0.074 ↑ n.s.  

Trisetum flavescens 0.372, 0.016 ↓ n.s.  

Forbs  Alchemilla vulgaris n.s.  0.204, 0.091 ↑ 

Hypericum maculatum n.s.  n.s.  

Plantago lanceolata 0.503, 0.003 ↓ n.s.  

Trifolium pratense 0.233, 0.068 ↓ n.s.  

Trifolium repens n.s.  n.s.  

Veronica chamaedrys n.s.  0.216, 0.081 ↑ 
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Abstract  

On the basis of a broad and diverse food plant spectra generalist insect herbivores are able to 

establish populations in meadow habitats characterized by different plant species diversity and 

composition. The positive influence of a broad diet on generalist insect herbivore fitness was revealed 

in several studies and proved in the field most likely due to the mechanism of dietary mixing. In this 

study the performance of different Chorthippus parallelus grasshopper populations was tested with 

respect to food plant species richness and composition available throughout grasshopper 

development. Three to four cages were installed in six meadows differing in plant species number and 

composition. The grasshoppers that were released in these cages were either caught in the same 

meadow (home) or were relocated from another grasshopper meadow (away).  

Our results show that home grasshoppers in the cages did not perform better with respect to 

developmental time, survival and the number of eggpods per female than away grasshoppers. 

However our data show that characteristics in the parental habitats such as plant species richness and 

plant biomass significantly affected the performance of grasshopper offspring. These effects of 

parental experience were stronger than the actual site conditions (e.g. food plant species richness and 

biomass) the grasshoppers were reared under. This result might be a hint of strong maternal effects 

which is also discussed to be overlaid local adaptation in grasshopper populations of Chorthippus 

parallelus. Nevertheless, it is interesting how parent experiences are influencing the fitness of the 

subsequent generation even if this is a generalist insect herbivore and to be known as a very plastic 

feeder. 

 

 

Keywords: Chorthippus parallelus, generalist insect herbivore, dietary mixing, plant species richness, 

local adaptation, maternal effects 
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Introduction 

Abiotic (temperature, solar radiation) as well as biotic factors (plant species richness and composition) 

alone and in combination always characterize the habitats of herbivorous insects and thus directly and 

indirectly affect their abundance and performance.  

Due to their diverse spectrum of food plants generalist insect herbivores, like grasshoppers are able to 

live on meadows featuring differences in meadow attributes like plant species richness and 

composition. An array of accepted food plants for generalist insect herbivores is accompanied by 

differences in food plant spectra, diversity and quality, which might lead to variations in herbivore 

performance among different meadow habitats. In this context, studies concerning performance 

differences in the grasshopper species Chorthippus parallelus and Parapleurus alliaceus among 

different meadows revealed therefore a positive relationship between plant species richness and 

insect herbivore performance (Pfisterer et al., 2003; Unsicker et al., 2010). This phenomenon is often 

based on the dietary mixing hypothesis which states that generalist insect herbivore performance 

profits of the possibility to switch among more or less suitable food plants for balancing nutrients or 

dilute toxins in the food (Bernays et al., 1992; Kaufmann, 1965; MacFarlane & Thorsteinson, 1980; 

Pulliam, 1975). A meadow habitat with higher food plant diversity is in this context assumed to 

contain more adequate food plants. Increased herbivore performance, mostly in grasshoppers, due to 

increased food plant richness was shown in different studies with real food plants which underlined 

the dietary mixing hypothesis (Bernays et al., 1994; Hagele & Rowell-Rahier, 1999; Miura & Ohsaki, 

2004; Unsicker et al., 2008). Although Franzke et al. (2010) showed no performance differences in a 

generalist grasshopper species raised on different food plant compositions the study revealed 

differences in the conversion efficiency to body mass explained by selective dietary mixing which 

supports the active encounter of quality deficiencies in the food. A contradict result concerning the 

relationship between plant species richness and herbivore performance was shown by Specht et al. 

(2008) by caging fourth instar nymphs one experimental grassland communities along a diversity 

gradient, whereas the results indicates that grasshopper performance was more influenced by plant 

functional group identity than by plant species richness. Beside the contradictory results in several 

studies with the grasshopper species Chorthippus parallelus(Franzke et al., 2010; Specht et al., 2008; 

Unsicker et al., 2010; Unsicker et al., 2008) that were inter alia explained by differences in the 

experimental designs (laboratory vs. field studies, field caught vs. laboratory reared grasshoppers) it 

can be stated that varying food plant diversity, composition and quality in different meadow habitats 

can greatly influence the performance of generalist insect herbivores. However, Fox & Morrow (1981) 

points out that even a species of phytophagous insect that appear to be generalized in feeding habits, 

may actually be composed of populations locally specialized on different host species. Under these 

assumptions it might be possible that also generalized herbivore feeders are more or less adapted to 
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certain meadows because of different meadow attributes, which are derived by diverse biotic and 

abiotic factors. In contrast to specialized insect herbivores which are often known to be locally 

adapted due to the limited range of food plants (Ballabeni et al., 2003; Hanks & Denno, 1994; 

Kuussaari et al., 2000; Zovi et al., 2008) the possibility of local adaptation in generalist insect 

herbivores to the complex arrangement of a meadow is rarely been examined (Parsons, 2011). Local 

adaptation to different environments is a central question in evolutionary biology and there has been 

a revival of interests in this question. 

The aim of this study was to examine if the performance of grasshopper populations of C. parallelus 

differ as an expression of local adaptation to different meadows. The study organism has been proved 

to respond positively on plant species richness during a field observation (Unsicker et al., 2010) and is 

furthermore one of the most common grasshopper species throughout Central Europe (Ingrisch & 

Köhler, 1998; Köhler, 1981; Maas et al., 2002)and occurs in a variety of grassland types (Ingrisch & 

Köhler, 1998). To test local adaptation in C. parallelus a classic reciprocal feeding experiment was 

conducted (Kawecki & Ebert, 2004) with local vs. foreign (here home vs. away) grasshopper 

populations caged on six different experimental meadows in the field.  

We asked three questions: 

(1) Do home grasshopper populations exhibit a better performance than away grasshopper 

populations?  

 

(2) How is the grasshopper performance influenced by originating from a meadow characterised with 

‘good’ attributes in terms of e.g. plant species richness and vice versa (gradient between meadow of 

origin and experimental meadow)?  

 

(3) To what extent are the grasshoppers influenced by the attributes of the experimental meadow 

they are caged on? 

 

 

Material and Methods 

Study organism and study area  

Chorthippus parallelus (Zetterstedt) is one of the most abundant grasshopper species throughout 

Europe. This species is known as a generalist insect herbivore that preferentially feeds on grasses, but 

also a number of forbs and legumes (Bernays & Chapman, 1970; Franzke et al., 2010; Gangwere, 1961; 

Ingrisch & Köhler, 1998; Specht et al., 2008; Unsicker et al., 2008). C. parallelus is wingless and, like 
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most European grasshopper species, very territorial, which results in a low dispersal rate (Ingrisch & 

Köhler, 1998). The study area in the Franconian Forest in Central Germany is a low mountain rage at 

the border of Bavaria and Thuringia (50°21’ – 50°34’N, 11°00- 11°37’E). The investigated meadows are 

part of a long-term biodiversity study along a gradient of plant species diversity (Unsicker et al., 2006). 

A main selection parameter for these meadows was extensive management for at least the last 

decade, including no fertilization, no grazing, a moderate mowing schedule of two cuts per year and a 

pH value of above 5.0. 

 

Experimental design 

Choice of the experimental meadows and the connected away populations 

In order to test for local adaptation a classic home vs. away (explanation see below) experiment was 

designed (Kawecki & Ebert, 2004). Therefore six meadows were chosen along a gradient of plant 

species richness, referred as experimental meadows. On these six meadows grasshopper cages (1 per 

1 square meter, covered with aluminum mesh at the sides and on the top) (see supplementary 

material Picture 1) were installed in order to cage the grasshopper population originated from this 

specific experimental meadow (home population) as well as two to three different grasshopper 

populations from other meadows (meadows of origin), which are referred as the aways. The away 

populations have been chosen depending on their largest differences from their meadow of origin in 

comparison to the experimental meadow they had been relocated. The criteria for this choice were (a) 

difference in plant species composition (b) difference in plant species richness and (c) the 

geographically distance between experimental meadow and meadow of origin(for detail see Table 1, 

second column – distinction in plant species richness, third column- distinction in plant species 

composition, fourth column – geographical distance) 

To account for the effects of plant community composition away populations were chosen according a 

non-metric multidimensional scaling (NMDS) which has been produced during the analysis of 

grasshopper fitness experiment in the study area (see Unsicker et al. 2010, Chapter I). The difference 

in plant species richness had been calculated out of plant cover data which have been assessed within 

the BIOLOG project. Geographic distance between experimental meadow and meadow of origin has 

been calculated with Google Earth. As it was possible, due to different hatching success of the 

different grasshopper populations, the experiment was conducted with 4 cages on each of the six 

chosen experimental meadows. According the experimental design the 3 to 4 cages contained (1) the 

home grasshopper population (2) away population with distinction in its species composition 

regarding the meadow of origin (3) away population with distinction in its species richness regarding 
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the meadow of origin and if is it was possible (4) away population with distinction in geography 

between experimental meadow and meadow of origin (Table 1). 

 

Table 1: Presentation of the experimental design with a list of all experimental meadows (first column) 
and the corresponding away populations (rows to each experimental meadow). In total 6 home 
populations and 15 away populations have been used in this experiment. The names of grasshopper 
populations are derived from the names which were given to the meadows in the BIOLOG DIVA 
project. Additionally, the table contains information about the number of caged individuals of home 
and away grasshopper populations per cage. 

 

Experimental 
meadow 

#      
grass-
hoppers/ 
home 
pop. 

Away pop. 
with 
distinction in 
species com-
position   

#      
grass-
hoppers/ 
away 
pop. 

Away pop. 
with 
distinction in 
species 
richness 

#      
grass-
hoppers/ 
away 
pop. 

Away pop. 
with 
distinction in 
geography 

#      
grass-
hoppers/ 
away 
pop. 

Schlegel -2 63 Tschirn -20 60 Tschirn - 23 60   
 Oßla 50 Tschirn -22 50 Steinbach a.W. 54   
 Tschirn -22 50 Teuschnitz -24 70 Steinbach a.W. 55   
 Tschirn -23 57 Schlegel – 2 61 Tettau 35 Saaleaue Jena 64 

Steinbach a.W. 59 Schlegel -1 54 Tschirn -20 62 Teuschnitz - 11 54 

Saaleaue Jena 64 Teuschnitz – 13 43 Teuschnitz - 11 50 Schlegel - 2 61 

 

 

To cover the greatest differences between the home and away populations with respect to the three 

just mentioned criteria (species composition, species diversity and geographically distance) the away 

populations have been placed on experimental meadows after a ranking. The experiment started 

between the 14th and 16th of July in 2006 and lasted over 3 month till the last females died in the 

laboratory at the 30th of October 2006. The grasshoppers of each population were hatched from eggs 

in the laboratory whereas the parental generation was caught in the field for reproduction in the 

laboratory one year before the experiment was conducted. The experiment started by caging the 

laboratory reared grasshoppers in the second larvae stage. 

 

Grasshopper fitness parameters 

Survival 

After the start of the experiment the survival was assessed every second day and with the first 

individual became adult every day by counting the remaining grasshoppers in the cages. As it is known 

that grasshoppers preferentially are sitting in sunny places the cage was half-covered with a blanket to 
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lead all the grasshoppers to one side of the cage. To insure an exact counting the vegetation inside the 

cage was slightly touched with a bamboo stick, so that the grasshoppers jumped out of the vegetation 

onto the aluminum mesh of the cage. For every counting event the survival data were corrected in the 

following way: if at a given date the number of grasshoppers was higher than in a previous count, we 

assumed that individuals were overlooked in the previous count and adjusted the numbers of 

grasshoppers accordingly. After one week of maturity female grasshoppers had been transferred to 

the laboratory (see fecundity section) and survival was controlled every day, this fitness measurement 

is referred to as female survival lab.  

 

Developmental time 

As the first grasshopper (either male or female) in each cage became adult, counting took place every 

day to assure that the 3 first adult female and also the 3 first adult male for developmental time 

measurement purposes had been recorded. Regarding the fact that the hatching time was not the 

same for all individuals of the different grasshopper populations a personal developmental time was 

calculated for each of the 3 first adults (3 females, 3 males). This was done by taking the mean date of 

the hatching period of mostly 3 to 6 days into account.  

 

Fecundity 

Once the grasshopper female became adult, they were marked with a colour code which differed 

every day. Due to the colour coding it was possible to find the grasshoppers exactly one week after 

adult moulting in the cage to transfer them into the laboratory. In the meantime they had the 

possibility to freely mate in the cage in the field. In the laboratory, every female was held in a single 

fauna box (SAVIC, 27 x 18 x 18 cm) and were fed with the food plants from the experimental meadows 

they had been relocated on since the experiment started. In the box a pot with a sand soil mixture was 

offered to give them chance to lay eggs. After three weeks the pots were renewed in case the female 

were still alive. After the death of the females the pots were removed and the egg pods were counted. 

 

Body mass 

After the grasshoppers moulted into the third instar after releasing them into the cages six individuals 

of each cage were removed and frozen for body mass assessment. After drying for 24 hours with 70°C 
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they have been dry weighted. For the adult weight, the first three females and the first three males 

were captured right after moulting to dry weight them after the same procedure like described above.  

 

Tibia and Femur length 

The length of the tibia was measured for six nymphs and three males / three females which have been 

caught for body mass assessment. Before the grasshoppers were dried the tibia and femur length of 

each individual was measured with the help of a binocular using an object slide with a 0.1 mm scale. 

 

Measurement of meadow attributes 

In order to understand grasshopper response due to the relocation onto the experimental meadows 

so called meadow attributes have been measured on the meadows of origin and the experimental 

meadows. Therefore, meadow attributes are: plant species richness, plant species richness of grass, 

plant species richness of legumes, plant species richness of grass and legumes together, biomass, and 

also the fitness of the parental generation on each meadow. The difference between original meadow 

and experimental meadow in certain meadow attributes is called Delta attribute (see below, Statistical 

Analysis). 

Aboveground biomass was sampled in four 0.1m 2 rectangles on each meadow (experimental 

meadows and meadows of origin) in 2005. This was done by cutting the vegetation 3cm aboveground, 

drying them at 70°C for 48h and weighed them. In visual cover estimation all plant species were 

identified in four 1x1 m quadrats on each of the experimental meadows and meadows of origin in 

2005. Due to a fitness measurement on all meadows (all meadows of origin and all experimental 

meadows unless the Saaleaue Jena, see Table S2) in 2005 were females were caught and oviposition 

rates were measured it was possible to gain a parental fitness measurement with reference to the 

grasshopper populations used in this experiment (Unsicker et. al 2010). This meadow attribute is 

referred to as fitness parental generation.  

 

 

Statistical Analyses 

The data were analysed using IBM SPSS Statistics 19 for Windows and R-2.8.1. (R Development Core 

2005). Analyses of variance (ANOVA) and linear mixed effect models (lme) were performed. Median 

survival time of grasshoppers was calculated from a Kaplan-Meier survivorship curve that was fitted 

separately for each cage in the experiment. Individuals still alive at the end of the experiment entered 
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the analysis as censored data. Individuals which died in the first four days after the experiment was 

started have been neglected within the survivorship curve, as the mortality directly after the start of 

the experiment was very high and is known to be often derived from handling. Grasshoppers which 

were caught for body mass measurement have also been ignored in the survivorship curve. The 

percentage of grasshopper individuals that reached maturity (referred to as percent adults) was 

calculated for each cage in the experiment. This was done using following formula: 

total amount of adults per cage /100 * total amount of grasshopper individuals per cage at the 

beginning of the experiment. 

Due to a continuous grasshopper counting in all cages over the whole time period of grasshopper 

development we were able to assess the percentage of individuals which reached the adult stage for 

every single cage. This is referred to as the percentage of adults. As not every cage contained the same 

number of females we calculated the number of egg pods per female as our measure of fecundity. 

Body mass gain (weight gain) was calculated out of the difference of body mass adult minus body 

mass in the third larvae stage. The start body mass (body mass in the third larvae stage) could not be 

separated after gender.  

To describe the offspring fitness response of away grasshopper populations which were relocated on 

the experimental meadows that differed in certain attributes (plant species richness, fitness of 

parental generation etc.) as compared to the meadow of origin (meadow on which the parents have 

been caught)new variables were calculated. These independent variables are referred to as Delta 

attributes and were calculated in the following way: Delta attribute= attributemeadow of origin– 

attributeexperimental meadow, whereas following attributes have been calculated: plant species richness, 

plant species richness grass, plant species richness legumes, plant species richness grass + legumes, 

biomass and fitness of parental generation (for details see Table S1). These calculations have been 

done for every away population and home population where in the latter case (home populations) the 

Delta attribute is zero as experimental meadow equals meadow of origin.  

Analyses of variance (ANOVA) were performed to test for the effect of home vs. away and for the 

effect of meadow identity on grasshopper fitness. The full model used in this test was: Fitness 

measure ~ experimental meadow + treatment, where treatment defines either home or away 

population and experimental meadow defines the six different experimental meadows in the 

experiment. As the experiments contained more away than home populations for every experimental 

meadow a mean of away populations was calculated. It sometimes occurs that the full model 

indicated a relationship between the fitness measurement (e.g. survival, fecundity, development time) 

and one of the independent variable (either treatment or experimental meadow) which was expressed 
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as a marginal non significant result. After a model simplification the marginal non significance turned 

out to be a significant relationship. If the simplified model was shown to be non significantly different 

to the full model the simplification was accepted. Linear mixed effect models (LME) were performed 

to test grasshopper performance due to differences in meadow attributes between meadow of origin 

and experimental meadows (Deltas). The null model used in this test was: lmer (fitness measure ~ 1 +  

(1|experimental meadow) and the full model was: lmer (fitness measure ~ 1 + Delta + (1|experimental 

meadow). The statistical significant difference in the grasshopper fitness measurement derived by a 

Delta attribute was tested by the R command: anova (null model, full model).  

 

Results 

Meadow identity effects on grasshopper fitness 

The grasshoppers laid significant different amounts of eggpods per female after feeding on the six 

different experimental meadows (eggpods per female: full model including treatment: F5,4= 4.27, p = 

0.09, simplified model: F5,5 = 5.3, p = 0.045)(Figure1). Also the developmental time of female 

grasshoppers showed a marginal non significant trend to differ according to the six experimental 

meadows in the experiment (developmental time female: F5,5 = 4.6, p = 0.06)(Figure 1). The number of 

eggpods per females and the developmental time of female grasshopper were therefore negatively 

correlated with each other (Regression: r2= 0.32, F1,19 = 8.3, p = 0.01)(see Table 3). 
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Number of eggpods per female (a) and female developmental time in days (b) in dependence of 
experimental meadow identity. A mean value over all cages regardless of grasshopper origin (home 
population and away populations) was therefore calculated for every experimental meadow. The 
names of the experimental meadows have been derived from the names which were given to the 
meadows in the BIOLOG DIVA project. 
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Grasshopper fitness differences between home and away populations 

Away grasshopper populations showed a significant higher survival than home grasshopper 

populations which originated from these meadows (survival: F1,5= 6.9, p = 0.046)(Figure2). Also the 

percentage of grasshopper individuals that reached the adult stage was significantly higher in away 

populations in comparison to home populations (percent adult: F1,5= 8.5, p = 0.03) (Figure 2).  
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Figure 2: Grasshopper survival in days (a)  and for the percentage of grasshoppers that reached the 

adult stage (b) presented for home and away populations for each of the six experimental meadows 

(circles = home populations, triangle = away populations).The names of the experimental meadows 

have been derived from the names which were given to the meadows in the BIOLOG DIVA project. 

 

Grasshopper performance in response to meadow specific attributes 

Delta plant species richness 

The developmental time of female grasshoppers was significantly prolonged in populations that 

originated from meadows (meadow of origin) with a lower plant species richness (mean 

developmental time female with lower plant species richness on meadow of origin: 25.8 ± 1.2 days, 

mean developmental female with higher plant species richness on meadow of origin: 23.7 ± 0.81 days) 

than the experimental meadow were they have been relocated to. The same trend, but marginal not 

significant, was revealed in male developmental time (Table 2, Figure 2).There was a marginal non 
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significant trend resulting in a lower number of eggpods per female in grasshopper populations from 

meadow of origins with a lower plant species richness than the experimental meadow (Table 2, Figure 

2). An increasing delta of plant species richness between meadow of origin and experimental meadow 

was not influencing grasshopper survival (Table 2, Figure2). 

 

Delta species richness grass 

Female developmental time was significantly prolonged in populations which originated from 

meadows (meadow of origin) with a lower grass species richness (mean developmental time female 

with lower grass species richness on meadow of origin: 27.3 ± 1.2 days, mean developmental time 

female with higher grass species richness on meadow of origin: 23.0 ±0.62 days) than the experimental 

meadow were they have been relocated on. The same trend but marginal not significant was true for 

the developmental time of male grasshopper populations (Table 2).  

 

Delta species richness legumes 

A difference in legume presence between original and experimental meadow was not influencing  

grasshopper performance except the weight gain of male grasshoppers. However, if the meadow of 

origin had a lower legume species richness than the experimental meadow the relocated grasshopper 

populations showed a non significant trend to lay fewer eggpods and also female survival decreased. 

On the contrary, male grasshoppers gained more weight if the meadows of origin showed a lower 

plant species richness of legumes than the experimental meadow. 

 

Delta species richness legumes and grass 

Female developmental time was significantly prolonged in populations which originated from 

meadows (meadow of origin) with a lower species richness of grasses and legumes (mean 

developmental time female with lower grass and legume species richness on meadow of origin: 26.7 ± 

1.5 days, mean developmental time female with higher grass and legumes species richness on 

meadow of origin: 23.3 ± 0.7 days) than the experimental meadow were they have been relocated to. 

(Table2). 
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Delta biomass 

Developmental time of each female and male grasshopper was prolonged if the meadow of origin 

features a higher biomass than the experimental meadow (Mean developmental time females higher 

biomass on meadow of origin: 27.2 ± 3.01 days, mean developmental time of females lower biomass 

on meadow of origin: 25.2 ±0.61 days). Along this finding grasshopper survival, the percentage of 

grasshoppers that reached the adult stage, number of eggpods per females and the survival of females 

in the lab was negatively influenced by a higher biomass of the meadow of origin (Table 2, Figure 2).  

 

Delta fitness parental generation:  

A low parental fitness, expressed through the number of eggpods per females in the parental 

generation (data derived from the study by Unsicker et al. 2010, see Chapter I) caused a significant 

prolonged female and male developmental time (mean developmental time females with lower 

parental fitness on meadow of origin: 28.5 ± 1.5 days, mean developmental time females with higher 

parental fitness on meadow of origin: 24.3 ± 0.5 days). These findings are underpinned by the 

decrease of grasshopper survival and survival of females as well as a lower percentage of 

grasshoppers that reached the adult stage and a lower number of eggpods per female in grasshopper 

populations originated from original meadows with a lower fitness of the parental generation (Table 

2, Figure 2).  

 

Grasshopper weight gain and tibia length for male and females were shown to be not influenced by 

any difference in meadow attributes (plant species richness, biomass) between their meadow of origin 

and the experimental meadow (see Table 2). 
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Table 2: Results from the linear mixed effect model (lme) testing the influence of Delta attributes of experimental meadows in comparison to meadow of origin on 
grasshopper fitness measurements. Therefore the Delta attributes were calculated as the difference between original meadow and experimental meadow in 
certain meadow attributes (Delta attribute= attributemeadow of origin– attributeexperimental meadow).The null model was performed for every fitness measure and compared 
due to the Akaike Information Criterion (AIC) and P value with the full model testing a difference in the grasshopper fitness measurement derived by a Delta 
attribute. Significant results are presented in bold P values.  

 

    

develop-
mental time 
f 

develop-
mental time 
m  

survival grasshoppers 
that reached 
adult stage 
(%) 

eggpods per 
female 

survival 
female lab 

 tibia female tibia male  weight gain 
male  

weight gain 
female 

  DF AIC P AIC P AIC P AIC P AIC P AIC P AIC P AIC P AIC P AIC P 

Null 
Model 

3 
93.9   90.0   174.2   188.8   70.4   155.8    -77.4    -71.3    -185.6    -170.8   

Δ species 
richness  

4 

89.7 0.012 89.1 0.09 174.1 0.15 190.2 0.48 69.1 0.07 156.9 0.36  -77.1 0.18  -69.5 0.62  -185.6 0.16  -168.8 0.87 

Δ species 
richness 
grass 

4 

87.1 0.003 89.1 0.09 175.9 0.6 189.6 0.28 71.1 0.26 157.2 0.44  -78.6 0.07  -69.8 0.5  -183.9 0.59  -170.4 0.19 

Δ species 
richness 
legumes 

4 

93.3 0.1 91.9 0.99 173.8 0.12 190.8 0.99 69.6 0.09 154.6 0.07  -75.4 0.92  -69.4 0.73  -188.4 0.03  -171.4 0.10 

Δ species 
richness 
legumes + 
grass 

4 

83.5 <0.001 89.2 0.09 174.5 0.19 189.6 0.28 70.3 0.15 157.8 0.86  -78.4 0.08  -69.6 0.59  -183.9 0.60  -168.8 0.76 

Δ Bio-       
mass 

4 
72.8 <0.001 75.5 <0.001 147.4 <0.001 159.1 <0.001 61.0 <0.001 136.5 <0.001  -64.9 1  -57.6 1  -160.2 1  -161.5 1 

Δ fitness 
parental 
generation 

4 

49.8 <0.001 69.9 <0.001 130.4 <0.001 147.3 <0.001 55.1 <0.001 121.1  <0.001  -60.8 1  -48.4 1  -144.4 1  -122.2 1 
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 (a) Female Developmental time (b)Grasshopper survival (c) Number of eggpods per female 

ΔFitness 

parental 
generation 

   

Figure 3: Female developmental time (a), grasshopper survival (b) and the number of eggpods per female (c) in dependence of Delta plant species richness, 

Delta Biomass and Delta fitness parental generation. Whereas, Delta attribute= attributemeadow of origin– attributeexperimentalmeadow. According to this 

calculation a positive value on the x-axis indicates higher plant species richness (first row), higher biomass (second row) and a higher number of eggpods in the 
parental generation (third row) on the meadow of origin in comparison to the experimental meadow where away grasshopper populations have been 
relocated on. 
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Relationships between fitness measurements 

With increasing grasshopper survival the percentage of grasshoppers reaching the adult stage 

increased (Table 3). Furthermore, the relationship between female survival and the numbers of 

eggpods per female was shown to be significant positive correlated with each other. With a prolonged 

developmental time of both female and male grasshoppers the number of eggpods per female was 

significantly decreased.  

 

Table 3: List of correlations between fitness measurements (grasshopper survival, number of 

eggpods per female, percentage of grasshopper that reached the adult stage, female survival in the 

laboratory, male and female developmental time female of Chorthippus parallelus) whereas 

significant results are presented in bold letters (p<0.05).  

 

 

  total  grass- 
hopper 
survival  

number of 
eggpods  

grasshoppers 
that reached 
adult stage 
(%) 

survival 
female lab 

develop-
mental 
time 
female 

develop-
mental 
time male 

total  
grasshopper 
survival  

  
r

2
 = 0.06, p = 

0.302 
r

2 
= 0.67, p< 
0.001 

r
2 

= 0.026, p 
= 0.49 

r
2
 = 0.027, p 

= 0.49 
r

2
 = 0.018, p 
= 0.557 

number of 
eggpods   

r
2
 = 0.03, p = 

0.43 
r

2
 = 0.35, p = 

0.006 
r

2
 = 0.240, p 
= 0.028  

r
2
 = 0.235, p 
= 0.033 

grasshoppers 
that reached 
adult stage 
(%) 

   
r

2
 = 0.03, p = 

0.45 
r

2
 = 0.05, p = 

0.34 
r

2
 = 0.03, p = 

0.47 

survival 
female lab     

r
2
 = 0.03, p = 

0.45  
 

 

 

Discussion 

In contrast to our hypothesis the results of the present study showed no local adaptation in 

grasshopper (meta-) populations of C. parallelus as home populations did not reveal a better 

performance than relocated away populations. It was furthermore discovered that grasshopper 

performance was increased by originating from meadows (meadow of origin) higher in plant species 

richness and lower in biomass. Additionally, a higher fitness in the parental generation leads to a 
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better performance in the observed grasshopper populations.  In this case it was not of relevance if 

the parents lived on the meadow the grasshoppers were caged on (home populations) or the parents 

were living on another meadow (away populations) with different meadow attributes.  

Undoubtedly, certain experimental meadows need to have attributes that caused higher grasshopper 

fitness than other experimental meadows. This was shown due to differences in mean grasshopper 

fitness per experimental meadow by taking the mean grasshopper fitness of both home and away 

populations together.  

 

Grasshopper fitness and local adaptation 

This study, however, revealed no local adaptation in grasshopper (meta-) populations of C. parallelus 

by living and feeding on their meadows of origin. Hence, this classical home versus away relocation 

experiment did not show a better fitness in home populations of C. parallelus compared to away 

grasshopper populations. This assumption was originally derived by the results of a study which 

pointed out a significant fitness difference between grasshopper populations due to a gradient of 

plant species richness on different meadows of the study area (Unsicker et al., 2010, see Chapter I). 

Nevertheless, local adaptation was yet mostly examined and detected mostly in monophagous insects 

on a broad geographically scale (Ballabeni et al., 2003; Hanks & Denno, 1994; Kuussaari et al., 2000; 

Zovi et al., 2008) and /or due to varying allelochemicals in the host plant as specialist insect herbivores 

often display adaptations to chemical defences such as tannins or glycosides (Reudler et al.; Zovi et al., 

2008; Zvereva et al., 2010). However, one study that examined the effect of local food plant quality on 

the performance of the generalist grasshopper Melanopus femurrubrum found not always significant 

responses to diet but was otherwise again conducted along a broad geographically scale (Parsons, 

2011). The lack of the broad geographic scale in the study area and the possibility of potential 

phenotypic plasticity due to feeding on different diets in C. parallelus proofed in the study by Franzke 

et al. (2010) might be responsible for not detecting local adaptation due to food plant species 

richness, composition and quality. In this relation it has to be discussed that local adaptation might be 

blurred by an unintentionally biased experimental design, as in certain meadow attributes away 

populations had an advantage due to good parental experiences. In these cases away grasshopper 

populations originated from meadows with better meadow attribute(s) (see Table S2). This was the 

case for meadow attributes like plant species richness grass, plant species richness legumes, plant 

species richness legumes and grass, biomass and the fitness of the parental generation (no data 

available for 4 populations (for detail see Table S2). In this context the away grasshopper populations 
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managed to maintain this fitness advantage in comparison to the home populations. This fact really 

supports the theory of maternal effects in this grasshopper species which is discussed in detail below. 

 

Grasshopper fitness in response to specific meadow attributes 

Anyway, grasshopper fitness in this study was positively responding on certain meadow attributes 

their parents experienced. This was proofed by the decreased developmental time of grasshoppers 

which parents originated from meadows richer in plant species of all plants and of grasses, as well as a 

decreased developmental time of grasshoppers in response to a higher species richness of legumes 

and grasses in the meadows of origin. As in this study developmental time was positively correlated 

with fecundity rate in female grasshoppers of Chorthippus parallelus it is not of a surprise that the 

fecundity was shown to be enhanced in females which originated from meadows with a higher plant 

species richness, although this trend was marginal not significant. Even though no general theory of 

how plant species richness might affect the abundance and fitness of generalist insect herbivores 

exists, in contrast to theories concerning specialists, the effect of dietary mixing in relation to 

increasing plant species diversity is often discussed in the literature (Unsicker et al., 2010, Chapter I). 

However, the dietary mixing hypothesis describes the theory that generalist insect herbivores broaden 

their diet by switching between complementary foods to balance nutrients and /or dilute toxins in the 

food (Bernays et al., 1992; Kaufmann, 1965; MacFarlane & Thorsteinson, 1980; Pulliam, 1975). An 

increase of plant species richness is therefore assumed to increase the repertory of food plant species 

(Unsicker et al., 2010, Chapter I). Studies with real food plants have been confirming the advantage of 

feeding on a diverse diet to increase herbivore fitness along the dietary mixing hypothesis (Bernays et 

al., 1994; Hagele & Rowell-Rahier, 1999; Miura & Ohsaki, 2004). Experimental observations with the 

study organism C. parallelus revealed a positive relationship between plant species diversity and 

grasshopper fecundity in the field (Unsicker et al., 2010, Chapter I) which was also discussed using the 

dietary mixing hypothesis. Anyhow, at the same time it was affirmed by Unsicker et al. (2010) that also 

possible additional abiotic effects which are mediated by increased plant species richness positively 

influences fitness of C. parallelus in the study area. This is underlined by the finding that a lower 

biomass on the meadow of origin leads to a decreased developmental time in female and male 

grasshoppers. Hence, less biomass on the meadow of origin positively influenced grasshopper survival 

and the total number of eggpods per females in the next generation. These findings are supporting the 

fitness response of grasshoppers on plant species richness, described above, as plant species richness 

is negatively correlated with vegetation height and therefore biomass in this study site (Kahmen et al., 

2005; Unsicker et al., 2006; Unsicker et al., 2010). Vegetation structure which is derived by plant 

biomass is creating optimal microclimate conditions and is therefore a main driver for grasshopper 
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occurrence in central European grasslands (Ingrisch & Köhler, 1998). Branson et al. (2006) is arguing 

that many grasshopper species occur in microhabitats with bare soil and little shade, altogether less 

biomass, due to the enhanced capacity for thermoregulation in this microhabitat. The same could be 

applied for the ectothermic grasshopper species C. parallelus which occurs in our study site 

characterized by high annual precipitation and low average temperatures and might therefore be 

temperature dependent. Nevertheless, adequate temperatures for activity and growth of C. parallelus 

might be better reached in habitats with less biomass and hence higher solar radiation (Unsicker et al., 

2010, Chapter I).  

 

Grasshopper fitness in response to fitness of parental generation – maternal effects? 

High fitness of parents, expressed through a better rate of eggpods per females in the parental 

generation (parents from meadows of origin) promises also a good performance in the next 

generation which was shown in a decreased developmental time of female and male grasshoppers, 

higher rate of grasshopper survival and grasshoppers which reached the adult stages as well as a 

greater number of eggpods produced per female. The study of Unsicker et al. (2010) described the 

circumstance under which grasshoppers of C. parallelus in the study area reached a high fitness which 

is among other things mainly depending upon a high plant species richness of the meadows. However, 

a good parental fitness derived by positive environmental aspects like food plant quality or in this case 

diversity could be an advantage for offspring per se and might be a consequence of so called maternal 

effects. In this context, maternal effects are described as the influence of parental environment which 

leads to the transfer of information from maternal generation to the phenotype of the offspring, 

whereas the maternal effects do not result in a genetic change of the offspring (Hunter, 2002; 

Mousseau & Fox, 1998). Thus, various attributes can serve as parental environment whereas climate, 

food quality, food diversity and predation pressure may only serve as some examples in this relation 

(Hunter, 2002). Indeed, food plant quality like the allelochemistry of the parental diet in larvae of the 

tobacco budworm Heliothis virescens or the lack of essential nutrients in the parental diet of the 

Lepidoptera Plutella xylostella are shown to be influencing the offspring performance and 

development (Behmer & Grebenok, 1998; Gould, 1988; Hunter, 2002). However, given this 

background maternal effects could be an adequate explanation for the better fitness of grasshoppers 

which have been originated from meadows with a better parental fitness, although this experimental 

design do not allow a straight statement about maternal effects.  
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To conclude:  

It was mostly revealed that offspring gained a fitness advantage by parents who experienced more 

plant species and less biomass in the meadows of origin. In this context grasshopper fitness was 

increased if parents originated from a meadow which had better meadow attributes than the 

experimental meadow. It was also of advantage if the parents had a better fitness per se, which is 

proved to be (in-) directly influenced by plant species diversity in the study area (Unsicker et al., 2010, 

Chapter I).Anyway, the most interesting discover were the probability of maternal effects in this 

species which might also overlaid a local adaptation. However, even as C. parallelus populations in this 

study area are proved to be not genetically different between the meadow habitats (Wiesner et al., 

2011) the present examination nevertheless gives a hint of active maternal effects which has to be 

approved in further experiments.  
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Supplementary material 

Table S1: List of Delta attributes measured in 2005 one year before the experiment was started on all meadows where grasshopper populations were sampled 
for this experiment. The names of the meadows are according to the meadow names are given in the BIOLOG DIVA project.  

 

  
Populations 

Delta attribute Schlegel-1 Schlegel-2 Oßla 
Teuschnitz

-11 
Teuschnitz

-13 
Steinbach 

a.W. Tettau Tschirn-20 
Tschirn-

22 Tschirn-23 
Teuschnitz

-24 
Saaleaue 

Jena 

plant species 
richness X x x x x x X x x x x x 

plant species 
richness grass X x x x x x X x x x x x 

plant species 
richness legumes X x x x x x X x x x x x 

plant species 
richness legumes + 
grass X x x x x x X x x x x x 

Biomass X x x x x x X x  - x x x 

fitness parental 
generation X x x x x x X x x  x x  - 
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Table S2: Presentation of the distribution of away populations according to the differences in meadow attributes between experimental meadow and meadow 
of origin in the experiment. Unless biomass grasshopper fitness was always increased if they have been relocated from a higher to a lower meadow attribute. 
The meadow attributes are in detail: plant species richness, plant species richness grass, plant species richness legumes, plant species richness legumes and 
grass, biomass, fitness of parental generation. 

 

Meadow attribute 
Number of away populations 

relocated from lower to higher 
meadow attribute 

Number of away populations 
relocated from higher to lower 

meadow attribute 

Number of away populations with 
the same meadow attribute 

between original and experimental 
meadow 

Number of away 
populations with no 

information 

plant species richness 7 7 1  - 

plant species richness 
grass 

5 9 1  - 

plant species richness 
legumes 

6 7 2  - 

plant species richness 
legumes + grass 

5 8 2  - 

Biomass 9 3   3 

LAI 9 5 1   

fitness parental generation 4 7   4 
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Picture 1: Grasshopper cages on one of the six experimental meadows, whereas a single cage had a 

size of 1 per 1 square meter and was covered with aluminium mesh at the sides and on the top. 
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Abstract 

Generalist insect herbivores inhabit environments differing in host plant species richness and 

composition and thus they need to cope with varying host plant composition and quality. Dietary 

mixing has been suggested as a mechanism to overcome unbalanced diets. For the grasshopper 

Chorthippus parallelus it was in a laboratory experiment previously shown that individuals reared on a 

broader diet was beneficial yet this effect disappeared when grasshoppers were given access to the 

full range of host plants from their original habitat. It was also suggested that early feeding experience 

in the field apparently affected the effects of diet on performance later in grasshopper development. 

We reared C. parallelus individuals from different meadow populations, either caught as late instars in 

the field, or reared in the lab, with a standard diet consisting of two food plants or on a diverse 

meadow diet consisting of the food plants harvested in the grasshoppers` original habitats. 

 

Survival and fecundity was higher in laboratory-reared than in field-caught grasshoppers but the effect 

of diet on performance depended on grasshopper origin. While laboratory-reared grasshoppers had 

higher survival and fecundity when fed on the meadow diet, diet had no effect on fitness in field-

caught grasshopper. C/N-ratios were lower in the standard diet than in the meadow diet, but a high N-

content of host plants did not result in higher overall fitness.  

Our results emphasize the importance of dietary mixing for the performance of generalist herbivores 

but also stress that early larval experience including feeding experience is an important determinant 

of diet effects on later grasshopper developmental stages.  

 

 

 

 

Keywords: Chorthippus parallelus, generalist insect herbivore, dietary mixing, feeding ontogeny, 

nitrogen limitation hypothesis  
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Introduction 

Due to their broad feeding spectrum generalist insect herbivores can occur in habitats differing greatly 

in host plant species richness and composition. Although many studies underline the effect of 

differences in host plant availability and quality for herbivore performance (Hanski & Singer, 2001; 

Singer & Thomas, 1996) research in this field of ecology has so far mainly focused on specialist 

herbivores (Mody et al., 2007; Warbrick-Smith et al., 2009). Studies on the performance of generalists 

occurring in different habitats are scarce (Tscharntke et al., 2002, Franzke et al, 2010). Nevertheless, 

generalist grasshoppers have been shown to cope with highly variable host plant quality (e.g. Bernays 

et al., 1994; Bernays & Chapman, 1970a, b; Berner et al., 2005; Miura & Ohsaki, 2004; Raubenheimer 

& Jones, 2006; Raubenheimer & Simpson, 2003; Simpson & Raubenheimer, 2000; Simpson et al., 

2004; Unsicker et al., 2008). For example, the grasshoppers Locusta migratoria and Schistocerca 

gregaria are able to balance their intake of the two macronutrients nitrogen and carbon from 

nutritionally complementary synthetic food (Raubenheimer & Jones, 2006). A number of studies have 

shown that generalist insect herbivores also perform better on a mixed diet consisting of several plant 

species than on single host plants (Bernays & Bright, 1993; Bernays et al., 1994; Bernays & 

Minkenberg, 1997; Miura & Ohsaki, 2004; Unsicker et al., 2008). Dietary mixing may allow generalist 

herbivores to compensate for differences in plant species richness and composition among habitats 

especially if nutrients are unevenly distributed among plants, both in space and time (Behmer et al., 

2002; Gusewell & Koerselman, 2002; Joern & Behmer, 1998; Oleksyn et al., 2002; Osier & Lindroth, 

2001; Raubenheimer & Simpson, 2003; von Fircks et al., 2001; Westoby, 1978). Feeding on a broader 

spectrum of food plants should generally increase the probability of obtaining well- balanced intake of 

macronutrients.  

The grasshopper Chorthippus parallelus, one of the most abundant grasshopper species in Central 

European grasslands (Ingrisch & Köhler, 1998), showed higher abundance and better performance 

(fecundity) in sites with high plant species richness as compared to habitats poor in food plants 

(Unsicker et al. 2010, Chapter I). A laboratory feeding experiment with C. parallelus individuals showed 

that grasshopper survival and fecundity was highest in the most diverse host plant mixture consisting 

of eight plant species offered and lowest in treatments with only single host plants (Unsicker et al. 

2008). This study clearly emphasizes the positive effects of dietary mixing for this generalist herbivore 

and also revealed a strong dependency of food plant choice on grasshopper developmental stage. Yet 

in another experiment by Franzke et al. (2010) where C. parallelus individuals from one population 

were offered different food plant mixtures containing 11 to 15 plant species, no effects of diet 

composition and species richness in the diet on grasshopper performance were detected (Franzke et 

al., 2010). By transferring fourth instar nymphs of field caught individuals of C. parallelus into cages on 
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81 experimental grassland communities in plots containing one to 60 plant species neither plant 

species richness nor was plant functional group richness affecting grasshopper performance (Specht et 

al., 2008). The study by Specht et al. (2008) indicates that, at least in the field, grasshopper 

performance is more influenced by plant functional group identity, i.e. the presence of grasses, than 

by plant species richness per se. 

These examples from studies on C. parallelus performance seem rather contradictory as in two of 

them food plant species richness had positive effects on grasshopper fitness (Unsicker et al., 2008; 

Unsicker et al., 2010, see Chapter I), whereas in the study by Franzke et al. (2010) there were no 

measurable effects of food plant number and composition on grasshopper performance. Because in 

Unsicker et al. (2008) only mixtures of maximum eight food plants were offered throughout 

grasshopper lifetime it is conceivable that beneficial effects through dietary mixing in grasshoppers 

are only evident below a certain threshold number of available food plants throughout grasshopper 

ontogeny. There are, however, a number of further differences between the studies. One major 

difference is that in Specht et al. (2008) grasshoppers were caught in the field before subjected to the 

experimental treatments whereas in Unsicker et al. (2008) effects of plant species richness were found 

in individuals reared from eggs in the laboratory. The early experience of nymphs in the field may 

therefore have influenced subsequent results.  

The aim of this study was to investigate how diet composition (broad vs. narrow diet), and early 

experience (laboratory-reared vs. field-caught) affect fitness of the generalist grasshopper C. 

parallelus. We addressed the following questions:  

 

 

(1) Do field-caught grasshoppers differ from laboratory-reared grasshoppers in the effect of diet 

on performance? 

 

(2) Does a broad diet always result in higher fitness? 

 

(3) Can C. parallelus nitrogen utilization explain the variation in grasshopper performance?  
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Material and Methods 

Study organism and study area 

Chorthippus parallelus (Zetterstedt) is an abundant grasshopper species occurring in different types of 

habitats throughout Europe. Together with other generalist grasshopper species, C. parallelus 

consumes approximately 0.2 to 4 % of plant biomass in European grassland ecosystems and thus plays 

an important role as a primary consumer (Ingrisch & Köhler, 1998). Although C. paralellus 

preferentially feeds on grasses, a number of forbs and legumes have also been reported as food plants 

in the literature (Bernays & Chapman, 1970b; Franzke et al., 2010; Gangwere, 1961; Ingrisch & Köhler, 

1998; Specht et al., 2008; Unsicker et al., 2008). The study area in the Franconian Forest in Central 

Germany is a low mountain rage at the border of Bavaria and Thuringia (50°21’ – 50°34’N, 11°00- 

11°37’E). The investigated meadows are part of a long-term biodiversity study along a gradient of 

plant species diversity (Unsicker et al., 2006). A main selection parameter for these meadows was 

extensive management for at least the last decade, including no fertilization, no grazing, a moderate 

mowing schedule of two cuts per year and a pH value of above 5.0.   

 

Laboratory-reared grasshopper experiment 

We used grasshopper individuals hatched from eggs laid by females caught in 10 different meadows 

(10 grasshopper populations) in the study area (Table 1, Table S1supplementary material). To obtain 

eggs, 15- 20 adult female and 5- 10 adult male grasshoppers from the populations were caught with 

sweep-nets, between August and September of 2006. The grasshoppers were kept in cages (30 x 30 x 

30 cm, MegaView Science Co., Ltd., Taiwan) for mating and oviposition in the lab for about four weeks. 

Throughout this time, all grasshoppers were fed ad libitum with the grass Dactylis glomerata. To allow 

oviposition, females were provided with pots filled with most sand-soil-mixture (1:3). The egg pods 

laid were kept in a fridge at 5°C over winter to simulate diapause. The pots with egg pods were 

watered periodically to prevent desiccation. In June 2007 all egg pods were removed from the fridge 

to allow grasshopper hatching. The progeny of each grasshopper population was kept separately. 

Freshly hatched nymphs were fed with Dactylis glomerata.  
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Table 1: Design of the experiment with laboratory-reared grasshoppers and field caught 
grasshoppers from different populations. The population numbers are according to the meadow 
numbers given in the Biolog DIVA project (see supplementary material Table S1). The table shows 
the numbers of grasshoppers within each cage per diet (standard diet vs. meadow diet). For 
population two no grasshoppers in the field could be caught and populations 11 and 21 did not exist 
as laboratory-reared grasshoppers. 

 

Laboratory-reared grasshoppers Field-caught grasshoppers 

  
  

   

population  

grasshoppers 
on meadow 
diet                       
cage 1 / cage 2 

grasshoppers 
on standard 
diet                      
cage 1/ cage 2 

population  

grasshoppers 
on meadow 
diet                      
cage 1 / cage 2 

grasshoppers 
on standard 
diet                   
cage 1 / cage 2 

1 6 /10 9 /10 1 
  2 17 /22 17 /21 2 16 28 

3  
  3 11 /13 9 /9  

4 17 /20 15 /16 4 22 23 

5 11 /11 13 /14 5 17 19 

6 6 5 6 14 10 

7 15 /15 12/15 7 11 10 

8  
  8 7 /14 3 /14 

9 13 10 9 10 14 

10 9 /10 11/11 10 18 20 

11 14 /16 12 /12 11 15 19 

12 9/12 7 /10 12 14 10 
 

 

The experiment was carried out in identical cages. The offspring of each population was divided into 

groups of 10 to 20 individuals per cage (Table 1). Hatchlings from one egg pod were distributed 

randomly across the two different feeding treatments (standard diet and meadow diet) (see Table 1). 

One or two cages were set up for each population and feeding treatment, depending on the 

availability of grasshoppers. The experiment with the laboratory-reared grasshoppers started when 

the grasshoppers reached the second instar by July 3rd 2007 and lasted over a three month period 

until the 16th of October 2007.  

 

Field-caught grasshopper experiment 

In early July, third and fourth instar grasshoppers were caught in eleven of the field sites in the study 

area(supplementary material, Table S1) (field-caught grasshoppers) by sweep netting. These 

grasshoppers were transported into the lab and directly placed in cages for the experiment (see Table 

1). Depending on the available number of grasshoppers, one or two cages were set up for each 
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population and feeding treatment (standard diet and meadow diet). In the lab the field-caught 

grasshoppers were reared from the 18th of July 2007 over a 3 month period until the 16th of October.  

 

Host plant selection and feeding experiment 

Individuals in a particular cage were fed with either (a) a meadow diet that consisted of the most 

abundant host plant species in the grasshoppers original habitat or (b) a standard diet which 

comprised the grass species D. glomerata and the legume Trifolium pratense. In previous feeding 

experiments with C. parallelus both of these plant species were favoured by C. parallelus and 

positively influenced performance (Unsicker et al. 2008). Host plant selection concerning the meadow 

diet was based on vegetation surveys performed in 2005 and 2007 on the meadows in the study area. 

Mean plant cover abundances were calculated for all grass and legume species and all species that 

reached >1% in abundance in the respective meadow were selected as host plants (Table 2). 

Grasshopper host plants were collected weekly in the study sites and stored in plastic bags in a fridge 

at 5 °C. In the same manner the two food plants for the standard diet were sampled weekly on a 

meadow in the area of Jena city. The host plant species were offered separately in tubes of 3 cm x 2 

cm x 2 cm filled with water in the same manner for both feeding treatments. The grasshoppers were 

fed twice a week. Food was provided ad libitum. All cages were set up in a laboratory at ambient 

temperature. To control for abiotic gradients in the laboratory setting (mainly light and temperature), 

differentially affecting the grasshoppers, cages with grasshoppers from the same origin (laboratory-

reared or field- caught) but fed on different diets (standard diet vs. meadow diet) were arranged 

together in blocks. 

 

Fitness measures 

Survival 

All grasshoppers in the experiment were counted every 3 – 5 days. Dead grasshoppers were 

individually transferred to vials and frozen. For every counting event the survival data were corrected 

in the following way: if at a given date the number of grasshoppers was higher than in a previous 

count, we assumed that individuals were overlooked in the previous count and adjusted the numbers 

of grasshoppers accordingly. As laboratory-reared and field –caught grasshoppers spent a different 

time until maturity in the lab we calculated adult survival which only comprises individuals that 

survived until adulthood.  
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Fecundity 

For oviposition each cage was equipped with a plastic pot filled with an autoclaved moist sand/garden 

soil mixture (1:3). After the experiment was terminated, these pots were removed and the sand was 

sieved to count the number of egg pods. 

 

Carbon and nitrogen contents in food plants, grasshoppers, and faeces  

To determine nitrogen availability in the different diets and the consequences for grasshopper 

nutrient utilization, C/N analysis of plants, grasshopper bodies and grasshopper faeces were 

conducted. Five to seven individuals from each host plant species of each meadow diet and both host 

plant species of the standard diet, at least three up to 25 adult grasshoppers of each cage and the 

grasshopper faeces out of each cage were lyophilized. Male and female grasshoppers were analyzed 

separately. Both food plants and faeces were sampled at the same time to prevent variations due to 

the change of C/N ratio in plants during the season. Freeze-dried material was ground with a ball mill 

and dried in the oven for 24 hours at 70°C shortly before the C and N contents were analysed. C and N 

contents were analyzed for total carbon and nitrogen by dry combustion with a C/N analyser “Vario 

max” (Elementar Analysensysteme GmbH, Hanau, Germany). Total carbon and nitrogen in host plants, 

grasshopper bodies and grasshopper faeces are expressed as C/N ratios. Grasshopper body C/N was 

analyzed by taking the mean of all adult individuals over the cages belonging to the same population, 

diet (standard vs. meadow diet) and origin (laboratory-reared or field caught). As for the most field- 

caught grasshopper population only one cage per population and diet treatment existed (Table 1) the 

C/N analysis of grasshopper bodies and grasshopper faeces  consists only out of one measurement 

point per diet treatment. The mean C/N ratio value was calculated for every population which was 

presented twice in the experiment per diet (Table 1). Males and females were analyzed separately.  

C and N contents of grasshopper faeces were analysed for every single cage. The C/N ratio which 

remains in the grasshopper bodies (C/N turnover) was calculated for each cage in the following way:  

C/N ratiodiet - C/N ratiofaeces 

out of the difference between the C/N ratio of diet minus the C/N ratio of grasshopper faeces. 
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Table 2: List of grasshopper food plants offered to the different grasshopper populations in the lab (g= grass, l = legume). All grasses and legumes which had an 
abundance of >1 % on the specific meadows in the study area have been used for the feeding experiment. The plant abundances have been calculated out of 
vegetation estimations between 2005-2007 within the BIOLOG Diva project.  
 

food plant 
grass / 
legume 

Meadow 

1 2 3 4 5 6 7 8 9 10 11 12 

Agrostis capillaris g 
  

x X x x x X x x x x 

Anthoxanthum odoratum g 
  

x X x 
 

x X 
 

x x 
 Arrhenaterum elatius g 

    
x 

  
X x x x x 

Bromus hordeaceus g 
           

x 

Cynosorus cristatus g 
  

x 
     

x 
   Dactylis glomerata g x x x X x 

  
X x x x x 

Elytrigia repens g 
 

x 
         

x 

Festuca rubra g 
  

x X x x x X 
 

x x x 

Holcus lanatus g 
   

X 
        Holcus mollis g 

  
x 

  
x x 

   
x 

 Lolium multiflorum g x 
           Lolium perenne g x 
      

X x 
   Luzula campestris g 

  
x 

  
x x 

     Phleum pratense g x x 
  

x 
  

X x x x x 

Poa pratense g x x 
  

x 
    

x 
  Trisetum flavescens g 

  
x X x 

  
X x x x 

 Lathyrus linifolius l 
      

x 
     Trifolium pratense l x 

 
x X 

     
x 

  Trifolium repens l x x x 
   

x 
  

x 
 

x 

Vicia sepium l                     x   

plants total   7 5 9 7 8 4 7 8 7 10 9 8 

grasses total    5 4 8 6 8 4 5 8 7 8 8 7 

legumes total   2 1 1 1 0 0 2 0 0 2 1 1 
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Statistical analysis 

The data were analysed using SPSS 15.0 for Windows and R-2.8.1. (R Development Core 2005). 

Regression analyses, analyses of variance (ANOVA) and correlations were performed. Assumptions of 

normality and heteroscedasticity were tested. 

The meadow diets represented the field condition very well, as food plant richness in the experiment 

was positive correlated with the field site plant species richness (F1,29 = 11.56, p = 0.002, r2 = 0.28). 

Median survival time of grasshoppers was calculated from a Kaplan Meier survivorship curve that 

was fitted separately for each cage in the experiment. Individuals still alive at the end of the 

experiment entered the analysis as censored data. As not every cage contained the same number of 

females we calculated the number of egg pods per female as our measure of fecundity.  

Analyses of variance (ANOVA) were performed to test for significant differences in grasshopper 

fitness (survival and fecundity) and the C/N ratios of plant, grasshopper and faeces. The standard 

model used in the tests was fitness measure ~ population*diet.  Therefore it was tested if the 

variables of grasshopper fitness (survival and fecundity) and C/N ratios depended significantly upon 

diet effects (standard diet vs. meadow diet) or on population (different grasshopper populations in 

the experiment) effects. Tests were performed separately for laboratory and field treatment, as the 

effect of origin was very strong. Hence overall, 62  cages were used in the analysis and for analysis of 

treatment effects (diet) an average was taken whenever there were two cages for a particular 

treatment. The overall number of replicates was 36 cages of 10 populations for the test of diet on 

laboratory-reared grasshopper and replicates of 26 cages of 11 populations in field- caught 

grasshoppers ( see Table 1).   

An overall test including both of laboratory-reared and field-caught grasshopper populations 

revealed a dominant effect of grasshopper origin (laboratory-reared /field- caught). Only populations 

which are represented in both origins were used for this test (Table 1, 9 populations, 50 cages)
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Results 

Grasshopper performance 

Laboratory- reared grasshoppers 

Grasshoppers that were reared on meadow diet showed enhanced adult survival, male and female 

survival as well as female fecundity compared to the grasshoppers reared on standard diet consisting 

only of two food plant species (all grasshoppers: F1,9 = 7.6, p = 0.02;  females: F1,8 = 5.0, p= 0.05; males: 

F1,9 = 6.0, p = 0.04;  fecundity: F1,8 = 6.5, p = 0.03, Table 3, Figure 1 a-b). The ten grasshopper 

populations of laboratory reared grasshoppers showed no significant differences in  adult, female, and 

male survival as well as in fecundity (all grasshoppers: F9,9 = 1.2, p = 0.4; female survival: F9,9 = 0.9, p = 

0.5;  male survival: F9,9 = 0.8, p = 0.6;  fecundity: F9,8 = 1.8, p = 0.2). There was no significant interaction 

between diet and population (all grasshoppers: F9,16 = 1.0, p = 0.45; female survival: F8,16 = 1.3, p = 0.3; 

male survival: F9,15 = 0.4, p = 0.9; fecundity: F8,15 = 1.3, p = 0.3) and females and males did not  differ in 

survival when feeding on the same diet (standard diet: df =1, F1,33 = 1.57, p = 0.22; meadow diet: df = 1, 

F1,33 = 1.4, p = 0.24; Table 3).  

 

Field-caught grasshoppers 

In contrast to the laboratory-reared grasshoppers, field-caught grasshoppers did not exhibit significant 

differences in survival when they were fed on meadow or standard diet (all grasshoppers: F1,10 = 0.2, 

p= 0.3, females: F1,9 = 0.005, p= 0.9; males: F1,10 = 0.6, p= 0.4; Table3, Figure 1a). In field–caught female 

grasshoppers, no effect of diet on fecundity was measurable (F1,7 = 0.2, p = 0.7, Table 3, Figure 1b). 

There were no significant fitness differences between the eleven populations of field-caught 

grasshoppers (all grasshoppers: F10,10 = 1.8, p = 0.2; female survival: F10,9 = 1.2, p = 0.4;  male survival: 

F10,10 = 1.6, p = 0.2; fecundity: F9,7 = 0.5, p = 0.8). Females and males did not differ in survival by feeding 

on the same diet (standard diet df =1, F1,23 = 0.003, p = 0.96; meadow diet df = 1, F1,22 = 0.99, p = 0.33, 

Table 3). 
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Table 3: Performance of grasshoppers feeding on standard diet vs. feeding on meadow diet with 
respect to grasshopper origin (laboratory-reared grasshoppers/ field-caught grasshoppers). Mean ± 
SE. 

 

  
Laboratory-reared 

grasshoppers  

Field-caught                          
grasshoppers 

  standard diet meadow diet standard diet meadow diet 

adult survival (days) 45.4  ± 3.7 58.4  ± 3.2 34.8 ± 5.4 28.4 ± 4.4 

      
  

female survival 
(days) 

46.4 ± 4.5 59.7 ± 3.4 31.3 ± 4.6 30.3 ± 5.8 

      
  

male survival (days) 38.9 ± 3.9 53.2 ± 4.3 31.6 ± 5.7 22.5 ± 5.1 

      
  

fecundity (number 
of egg pods per 
female) 

1.1 ± 0.2 2.5 ± 0.4 1.2 ± 0.4 1.6 ± 0.5 

      
  

body C/N male 3.57 ± 0.03 3.75 ± 0.02 3.59 ± 0.04 3.7 ± 0.02 

      
  

body C/N female 3.73 ±  0.03 3.94 ±  0.03 3.72 ±  0.08 3.97 ±  0.03 

      
  

C/N grasshopper 
faeces 

13.5 ± 0.2 17.6 ± 0.6  13.4 ± 0.3 18.2 ± 0.7 

      
  

C/N plants - C/N 
faeces 

 -4.01  -1.35  -3.7  -1.79 
 

 

 

Laboratory-reared vs. field-caught grasshoppers  

Grasshopper origin was, however, important for survival (all grasshoppers: F1,9 = 25, p < 0.001; 

females: F1,7 = 21.3, p = 0.002; males F1,9 = 15.4, p = 0.003, Table 3, Figure 1a). Laboratory-reared 

grasshoppers had higher survival rates than field-caught grasshoppers but the origin of the 

grasshoppers did not differ with respect to fecundity (F1,6 = 1.2, p = 0.32, Table3, Figure 1 b). 
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Figure 1 a-b: Performance of (a) laboratory – reared grasshoppers (left) and field – caught 
grasshoppers (right) in different diet treatments (meadow diet vs. standard diet) (white bar = adult 
survival, left striped bar = female survival, squared bar = male survival).  Fecundity of (b) laboratory 
– reared grasshoppers (left) and field – caught grasshoppers (right) in different diet treatments (left 
striped bar = standard diet, white bar = meadow diet). Bars represent means ± S.E.  
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Carbon-nitrogen ratios in diets, grasshoppers and faeces  

The standard diet showed a significantly lower C/N ratio than the average meadow diet (t-test: N = 12, 

df = 11, p < 0.001, Figure 2). Laboratory-reared grasshoppers fed on the standard diet had overall 

lower C/N ratios than grasshoppers fed on meadow diet (female: F1,8 = 28.3, p < 0.001; male: F1,8 = 

28.3, p < 0.001; Table 3). C/N ratios in field-caught grasshoppers did marginally not differ with respect 

to the two different diet types (females: F1,5 = 4.8, p = 0.07; males: F1,6 = 4.52, p = 0.07; Table 3). 

Furthermore, there were no significant differences in body C/N ratio among the different populations 

(laboratory-reared: females: F8,8 = 1.4, p = 0.3; males: F8,8 = 0.79, p = 0.62, field-caught: females: F8,5 = 

1.6, p = 0.3; males: F8,6 = 0.99, p = 0.51).  
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Figure 2: Diet C/N ratio in dependence of standard diet and the different meadow diets (left striped 
bar = standard diet, white bar = meadow diet). Meadow diets numbered accordingly the original 
meadows in the BIOLOG DIVA project (see supplementary material Table S1). Diet C/N ratio per 
meadow diet is calculated as mean ± S.E.  out of single plant C/N ratios belonging to the specific 
meadow diet (for details see Table 2). Standard diet C/N ratio is calculated as mean ± S.E. out of 
single plant C/N ratios of Dactlyis glomerata and Trifolium pratense which served as food plants for 
the standard diet. 

 

Grasshoppers that fed on a standard diet excreted more nitrogen than grasshoppers feeding on a 

meadow diet (field- caught: F1,9 = 28.7, p < 0.001;  laboratory- reared: F1,9 = 26.6, p < 0.001, Table 3, 

Figure 3). The C/N contents in the faeces of laboratory-reared and field-caught grasshopper did not 

significantly differ between populations (laboratory – reared: F9,9 = 0.8, p = 0.6; field – caught: F10,9 = 

1.8, p = 0.2). The measured C/N ratio which remained in the grasshopper bodies C/N turnover, 
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calculated out of the difference between C/N ratio diet minus the C/N ratio of grasshopper faeces, 

was much more negative in grasshoppers fed on standard diet than from grasshoppers fed on a 

meadow diet in both origins, but in field- caught grasshoppers marginal not significant (laboratory-

reared grasshoppers: F1,9 = 11.1, p = 0.009, field-caught grasshoppers: F1,9 = 3.9, p = 0.07;  Table 3). 

This implies that standard fed grasshoppers accumulated more nitrogen than those fed on the 

meadow diets (see Figure 4). Grasshopper origin did not significantly influence the C/N turnover (= 

difference between C/N plants and C/N faeces, ingested minus egested C/N) (F1,8 = 0.18, p = 0.7,  

Figure 4).  
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Figure 3: C/N ratio of faeces in laboratory - reared grasshoppers (left) and field - caught grasshoppers 
(right) in dependence of fed diet (left striped bars = standard diet, white bars = meadow diet). Bars 
represent means ± S.E.  
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Figure 4:  C/N ratio plants (potentially ingested) and C/N ratio faeces (egested) in laboratory-
reared and field-caught grasshoppers in dependence of fed diet (dashed line = field - caught 
grasshoppers fed on standard diet, solid line = laboratory - reared grasshoppers fed on standard 
diet, dashed dotted line = field-caught grasshoppers fed on meadow diet, dotted line = laboratory-
reared grasshoppers fed on meadow diet).  

 

 

Discussion 

The results from our study clearly showed that laboratory-reared and field-caught grasshoppers 

differed in how diet affects survival and fecundity. While field-caught grasshoppers were not affected 

by the two different diet types offered, laboratory-reared grasshoppers showed enhanced fitness 

when they were fed with species-rich meadow diet as compared to standard diet containing only 

Dactylis glomerata and Trifolium pratense throughout their lifetime. The prominent effect of species 

rich meadow diet on the fitness of laboratory-reared grasshoppers is another example for the 

beneficial effect of dietary mixing on generalist phytophagous insects (Bernays et al., 1997; Bernays & 

Bright, 1993; Bernays et al., 1994). The composition of host plants in the diet of C. parallelus 

individuals also changed throughout the ontogeny and with respect to grasshopper sex (Unsicker et 

al., 2008). In the present study, where only two food plant species were offered in the standard diet, 

the nutritional requirements of C. parallelus nymphs may not have been met to sustain optimal 

development. Mainly two hypotheses have been brought forward to explain the beneficial effects of 

dietary mixing on generalist insect herbivores, namely the “nutrient complementation hypothesis” 

and the “toxin dilution hypothesis“. To reach an optimal nutrient intake and therefore a good 

performance the nutrient complementation hypothesis states that insect herbivores expand their diet 
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as it is assumed that a single food plant does not contain all the necessary nutrients (Pulliam 1975; 

Rapport 1980). Along this theory, compensatory feeding has been found in generalist insect 

herbivores (Berner et al., 2005; Lee et al., 2002; Takeuchi et al., 2005, Unsicker et al., 2008). The toxin 

dilution hypothesis assumes that plant toxins are diluted by mixing up single food plants whereas the 

negative effect caused by the toxin is decreased (Behmer et al., 2002; Freeland & Janzen, 1974; Marsh 

et al., 2006; Singer et al., 2002). The laboratory-reared grasshoppers in this study fed with meadow 

diet containing at least four plant species very likely performed better just because they had a higher 

chance of getting the optimal diet throughout their development. Whether these beneficial effects by 

dietary mixing are due to nutrient complementation or toxin dilution cannot be disentangled with our 

dataset.  

In contrast to laboratory-reared grasshoppers, field-caught grasshopper performance was not affected 

by the type of diet offered in the last nymphal instar and as adults. Mortality in field-caught 

grasshoppers was higher than in laboratory- reared C. parallelus individuals. A simple explanation to 

these differences in survival may be that grasshoppers caught in the field with sweep nets were 

stressed and even harmed, which resulted in high levels of mortality in the lab. These effects on 

mortality had then to be considered independent of the diet offered to these grasshoppers. 

Furthermore, pathogen or parasite infestations that frequently occur in grasshopper populations 

under natural conditions (Ingrisch & Köhler, 1998) may have caused higher mortality in field-caught 

grasshoppers than in laboratory-reared individuals. The standard diet that was suboptimal for the 

fitness of laboratory-reared grasshoppers in our experiment had no detrimental effect on the field- 

caught individuals. Especially early instar feeding has repeatedly been shown to be important for later 

development and fitness (Barrett et al., 2009; Colasurdo et al., 2009; Metcalfe & Monaghan, 2001; 

Unsicker et al., 2008). With full access to all potential host plants in their habitat, field-caught 

grasshoppers were certainly able to feed on a broad diet throughout their early development before 

they came to the lab in their third and forth instar. A negative effect of the inferior standard diet on 

these grasshoppers may have not been visible because as late instar grasshoppers, they were no 

longer sensitive to suboptimal food. Franzke et al. (2010) could show in their study that especially 

during early ontogeny, the diet breadth of C. parallelus grasshoppers is broader (Franzke et al., 2010) 

than later on in the development. For caterpillars it was shown that the early stage of larval 

development is an extremely critical phase as early larvae are more restricted in feeding than later 

instars due to smaller heads and mouthparts (Reavey, 1993). Hochuli (2001) has shown, that early 

instar larvae also feed more frequently on high quality food than later instars. A well-balanced diet of 

early instar grasshoppers under natural field conditions might also explain why field-caught 
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grasshoppers showed the same levels of female fecundity as laboratory-reared individuals, no matter 

on which diet type they were kept in the lab.  

It has to be noted, that the eleven different grasshopper populations observed in this study did not 

differ with respect to the measured fitness parameters, neither in field-caught nor in laboratory-

reared individuals. This result is in accordance with the results from the study by Franzke et al (2010), 

in which the fitness response of one single C. parallelus population to different diets varying in plant 

species richness and composition was investigated. In this study the fitness response did not differ 

between grasshoppers fed with different diets but from data on food intake it was calculated that C. 

parallelus mixed food plants in different ways depending on the food plant identity and composition 

(Franzke et al., 2010). Irrespective of host plant identity, grasshoppers as plastic feeders may forage 

for plants that have chemical attributes which allow these generalist insects to reach their target 

intake and thus benefit their overall fitness.  

The standard diet in our experiment was highly different from the meadow diets in terms of its C/N 

ratio. Against the well known “nitrogen limitation hypothesis” which states that presence and 

concentration of nitrogen in food plants is considered to be the most important factor affecting 

herbivore performance (Davison, 1995; Mattson, 1980; White, 1993) our study showed contrary 

results. In laboratory-reared grasshoppers the performance on the nitrogen-rich standard diet was 

significantly lower than on the meadow diet even though the C/N turnover data showed that more N 

was accumulated in grasshoppers that fed on the standard diet. These results emphasizes that 

nitrogen content alone is only a weak predictor of food quality and other plant nutrients, plant 

secondary metabolites and physical properties are at least as important for herbivore host plant 

quality (Awmack & Leather, 2002; Schoonhoven et al., 1998).  

To conclude, experiences in early larval development of the generalist insect herbivore C. parallelus in 

this study revealed to be an important factor influencing performance responses when offered 

different diets later in life. For grasshoppers reared in the laboratory throughout their lifetime, a diet 

rich in host plant species was more important for the fitness than a nitrogen-rich but species-poor 

diet. In contrast, when grasshoppers spent their early instars in the field, there was no effect of diet on 

late instar and adult performance any more. The advantage of a broad and diverse diet for the 

grasshopper C. parallelus is also underlined by the positive correlation between fitness and plant 

species richness in the study area (Unsicker et al., 2010, Chapter I) and stresses the importance of 

diversity even for widespread and generalist herbivorous insects such as grasshopper C. parallelus. 
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Table S1: List of all grasshopper populations and corresponding population names according the names which were given to the meadows of origin in the 
BIOLOG DIVA project and the geographical coordinates of the meadows which are given in north/east. Information about the catching date of females for egg-
laying of the laboratory-reared grasshopper treatment and dates when nymphs for field -caught treatment have been collected. 

 

Population Name  Coordinates 
Dates of females caught for egg-

laying of laboratory - reared 
grasshoppers 

Date nymph collection for 
field -caught treatment 

1 Schlegel 50°24'33.29"N, 11°37'36.57"E between August - September 2006 - 

2 Oßla 50°28'3.03"N, 11°29'42.87"E between August - September 2006 beginning of July 2007 

3 Tschirn - 11 50°23'5.07"N, 11°26'43.42"E - beginning of July 2007 

4 Teuschnitz Aue -13 50°24'43.64"N, 11°23'15.41"E between August - September 2006 beginning of July 2007 

5 Steinbach 50°26'54.56"N, 11°24'23.85"E between August - September 2006 beginning of July 2007 

6 Tettauch 50°28'43.57"N, 11°15'45.06"E  between August - September 2006 beginning of July 2007 

7 Tschirn - 20 50°24'31.43"N, 11°27'28.17"E  between August - September 2006 beginning of July 2007 

8 Tschirn - 21 50°22'58.21"N, 11°26'34.27"E - beginning of July 2007 

9 Tschirn - 22 50°22'53.95"N, 11°27'12.47"E between August - September 2006 beginning of July 2007 

10 Tschirn - 23 50°23'44.88"N, 11°27'24.49"E  between August - September 2006 beginning of July 2007 

11 Teuschnitz Aue - 24 50°24'49.79"N, 11°22'48.80"E  between August - September 2006 beginning of July 2007 

12 Saaleaue Jena 50°57'1.80"N, 11°37'14.03"E between August - September 2006 beginning of July 2007 
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Table S2: List of C/N ratio of every food plant per diet, offered to the different grasshopper populations in the lab (g= grass, l = legume). Approximately five to 
seven individuals from each food plant species of each diet were dried in the oven for 48 hours on 70°C and ball milled. Shortly before they were C/N analyzed 
they have been dried in the oven for 24 hours on 70°C again to prevent water in the samples.  

food plant 
grass / 
legume 

C/N ratio of plants in meadow diet 

C/N ratio of  
plants in 
standard 

diet 

1 2 3 4 5 6 7 8 9 10 11 12   

Agrostis capillaris g   
 

16.98 16.99 16.11 12.76 19.9 11.2  - 20.5 18.73 17.18 
 

Anthoxanthum 
odoratum 

g   
 

24.67 18.31 16.81 
 

20.39 15.54 
 

17.52 19.93   
 

Arrhenaterum elatius g   
   

14.27 
  

15.86 20.05 12.35 17.8 17.91 
 

Bromus hordeaceus g   
          

21.73 
 

Cynosorus cristatus g   
 

19.9 
     

17.3 
  

  
 

Dactylis glomerata g 21.12 16.04 13.18 13.25 17.7 
  

23.36  - 18.05 13.06 14.12 9.77 

Elytrigia repens g   14.84 
         

16.18 
 

Festuca rubra g   
 

11.61 13.52 15.5 31.93 22.02 22.59 
 

15.53 22.6 28.11 
 

Holcus lanatus g   
  

18.85 
       

  
 

Holcus mollis g   
 

17.82 
  

12.49 15.31 
   

15.9   
 

Lolium multiflorum g 20.51 
          

  
 

Lolium perenne g 17.93 
      

15.86 17.79 
  

  
 

Luzula campestris g   
 

22.07 
  

22.18 20.47 
    

  
 

Phleum pratense g 13.83 13.64 
  

15.07 
  

15.48 12.69 15.54 16.51 16.00 
 

Poa pratense g 18.82 22.45 
  

19.39 
    

16.74 
 

  
 

Trisetum flavescens g   
 

15.19 13.77 15.28 
  

13.72 13.91 12.08 15.68   
 

Lathyrus linifolius l   
     

11.24 
    

  
 

Trifolium pratense l 10.33 
 

8.09 10.48 
     

9.49 
 

  9.75 

Trifolium repens l 8.17 9.36 7.75 
   

10.91 
  

7.69 
 

9.31 
 

Vicia sepium l   
         

11.44   
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Abstract 

Generalist insect herbivores are able to enhance their fitness due to nutrient regulation. Under natural 

conditions nutrient regulation is a tool to respond to changing food plant qualities under an influence 

of specific abiotic effects. Both aspects seem to be close research fields in ecology. So far, the 

nutritional ecology mostly conducted experiments under artificial conditions that do not reflect 

natural scenarios, on the other side field ecology did not uncover mechanisms reflecting the relation 

between food plant quality and herbivore performance under field conditions, yet.  The major goal of 

this review is to emphasize that the interplay between these topics would gain better knowledge 

about the fitness and performance of generalist insect herbivores under natural conditions. This is 

done by carving out the special position of food plant quality that causes under variation between 

food plant species the need of nutritional regulation.  Also, the indirect influence of abiotic factors on 

herbivore performance is often documented due to a change in food plant quality. For that reason 

current knowledge on nutrient regulation in insect herbivores is shortly summarized and the 

experimental progress dealing with generalist insect herbivore performance by feeding on real food 

plants underlined by a biodiversity aspect is examined. Furthermore herbivore insect response due to 

the influence of abiotic factors mediated by changed food plant quality is described. Knowledge gaps 

were shown on all levels of research dealing with performance of insect herbivores due to either 

nutrient regulation or influencing abiotic factors. These gaps might be closed by a knowledge transfer 

between the different fields of research, which is underlined by our suggestions for experiments to 

combine these research areas at the end of this manuscript.  The application of knowledge of nutrient 

regulation on natural based studies is the main appeal of this review. 

 

 

Keywords: generalist insect herbivore, nutritional ecology, nutrients, dietary mixing, plant species 

richness 
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Introduction 

With a remark on the historical debate on what regulates communities in ecology (e.g. Andrewartha & 

Birch, 1960; Hairstone et al., 1960; Menge & Sutherland, 1987; Paine, 1966) plant resources, predators 

and abiotic conditions were specified as the three major factors influencing insect herbivore 

performance and abundance in the field (Chase, 1996; Kingsolver, 1989; Richards & Coley, 2008; 

Ritchie, 2000; Stamp & Bowers, 1990; 1994). The influence of abiotic conditions like temperature, 

solar radiation, moisture and CO2 elevation on the abundance and performance of insect herbivores is 

due to the current climate change debate widely discussed in the literature (e.g. Cannon, 1998; Köhler 

et al., 1999; Laws & Belovsky, 2010; Stiling & Cornelissen, 2007; Unsicker et al., 2010). The limiting 

factor of predation and parasitism for insect population abundance and performance has also been 

pointed out (Branson, 2005; Lawton & Strong, 1981; Schmitz et al., 1997). Plants as food sources play 

an important role as supplier for water and nutrients but insect herbivores are often restricted by e.g. 

secondary metabolites and variable levels of nutrients in their food (e.g. Behmer, 2009; Bernays, 1998; 

Bernays et al., 1994; Mattson, 1980; Schoonhoven et al., 1998; Scriber & Slansky, 1981; White, 1984). 

Beyond that, the obtaining of protein is more limiting in herbivorous insects than in other major insect 

guilds because of the low levels of protein in plants (Mattson, 1980; Schroeder, 1986; Scriber & 

Slansky, 1981; White, 1978) which goes along with the nitrogen limitation hypothesis (White, 1984). 

To maintain performance insect herbivores developed certain strategies to overcome the 

disadvantage of unbalanced food in terms of nutrients like compensatory feeding and dietary mixing 

mixing (e.g. Bernays et al., 1992; Bernays et al., 1994; Hagele & Rowell-Rahier, 1999; Miura & Ohsaki, 

2004; Unsicker et al., 2008; Behmer, 2009; Chambers et al., 1995; Howard et al., 1994; Raubenheimer 

& Simpson, 2003; Waldbauer et al., 1984). In this context, nutritional ecology research, dealing with 

the constraints of food in relation to insect herbivore feeding behavior and performance, experienced 

a rising interest in the past decades. A variety of work was published about the influence of food, 

nutrients and nutrient regulation on the behavior and performance on mostly generalist insect 

herbivores (Raubenheimer & Boggs, 2009), nevertheless relation to real and natural scenarios 

comprising for example abiotic influences were mostly neglected. However, to determine generalist 

insect herbivore performance in the field both factors, like plants as food and nutrient source and the 

effect of abiotic factors are important. Beside direct influences of abiotic effects the change of food 

plant diversity, composition and quality mediated by abiotic influences affects herbivore performance 

also indirectly in the field. Literature dealing with generalist insect herbivore performance under 

(semi-) natural conditions proved the positive effect of enhanced food plant diversity and quality 

(Unsicker et al., 2008; Unsicker et al., 2010)  but pointed also out that insect herbivore performance in 

the field is not only determined by food plant resources alone (Franzke et al., 2010). 
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In this review we focus on generalist chewing insect herbivores which are known to switch food plants 

to be able to balance nutrients in their diet (dietary mixing) whereas this circumstance enables them 

to live in habitats differ in the composition and diversity of food plant resources. The latter aspect is 

very important due to a rising interest of plant species diversity effects on insect performance in field 

ecology. Therefore we define all poly- or oligophagous insect herbivores, feeding on more than one 

food plant species as generalists. The aim of this review is to combine the knowledge of nutritional 

and field ecology to understand how generalist insect herbivore performance is determined by food 

plant quality but furthermore also by composition and diversity which are all in turn influenced and 

affected by abiotic factors in the field. Therefore in this review, we do not cover the literature on the 

basics of nutritional ecology like the mechanisms of compensatory feeding and dietary mixing which is 

already nicely reviewed by others (Behmer, 2009). Abiotic effects play a significant role in this review 

but not as direct effects on herbivore performance but as mediators responsible for changed food 

plant quality and therefore changed nutrient regulation and performance in generalist insect 

herbivores under natural conditions. In this context, an important achievement of this review is to give 

an impulse to a new discussion how to merge the knowledge of field and nutritional ecology for a 

better understanding of how field studies can be supported by knowledge about herbivore 

performance in relation to nutrition regulation (see Figure 1). 

 

1st section: Insights from the field of nutritional ecology 

The question of the needs and constraints that insect herbivores face when they feed on plants stands 

in the center of the field of research dealing with insect herbivore nutrient requirements (Bernays, 

1998) especially as the nutrient allocation in plants are not the ideal due to shortage of protein as only 

one example (Schoonhoven et al., 1998). The most important nutrients rather called macronutrients 

are nitrogen, carbohydrate and lipids for insect herbivore diet. Nitrogen (N) as an essential 

macronutrient is the main component of amino acids and proteins (and they are necessary for e.g. 

structural purposes, enzymes, storage & transport and for physiological functions). Although nitrogen 

is essential to herbivores the total nitrogen content in a plant is a poor index for its nutritional value 

(Schoonhoven et al., 1998). Carbohydrate (C) as provider for energy can also be synthesized from fats 

or amino acids, nevertheless they provide energy and their needed ratios can vary among herbivore 

species. Lipids which serve as storage for energy are fatty acids, phospholipids and sterols, whereas 

sterols are again essential for insects. 
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Figure 1: The timeline pictures the 3 chapters of this review. Firstly the achievements of the nutritional 
ecology are presented by pointing out that most studies have been done under laboratory conditions. 
In the field mostly correlative studies have been conducted yet, the figure highlights therefore the 
importance to go into the field by pointing out the influence of other factors which influences food 
plant quality directly and generalist insect herbivore response thereby indirectly. At the end the figure 
tries to picture what can and should be done in the future by combining the knowledge gained in the 
laboratory as well as in the field. (Source of grasshopper picture: www.jetztmalen.de) 

 

 

To regulate nutrient intake insect herbivores evolved several mechanisms like pre- and postingestive 

mechanisms and learning (Behmer, 2009). Most realistic but also challenging is that food in terms of 

nutrients are often unbalanced therefore insect herbivores developed mechanism like compensatory 

feeding or dietary mixing to overcome this (reviewed in Behmer, 2009). Dietary mixing as one of the 

most prominent mechanism in nutritional ecology has been observed in several studies where 

herbivorous insects have either been fed with real food plants (e.g. Bernays et al., 1994; Hagele & 

Rowell-Rahier, 1999; Miura & Ohsaki, 2004; Unsicker et al., 2008) or artificial diets (e.g. Bernays et al., 

1994; Chambers et al., 1995; Raubenheimer & Simpson, 2003; Waldbauer et al., 1984, reviewed in 

Behmer, 2009). As nature is not as simple insect herbivores are often faced with the complex situation 

of ingesting multiple food components at the same time, therefore Raubenheimer and Simpson (1993) 

developed the geometrical framework (GF) which addresses the ability of insects to ingest multiple 

nutrients in a changing and imbalanced nutritional environment (Behmer, 2009). However, food plants 

also contain nonnutritive secondary plant metabolites (allochemicals) which makes the situation 

worse for insect herbivores as to decide whether to regulate nutrient intake or ingest potentially toxic 
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components (Behmer, 2009; Bernays et al., 1994; Hagele & Rowell-Rahier, 1999; Singer et al., 2002)  

which goes along with the theories of nutrient balancing or toxin dilution (Freeland & Janzen, 1974). 

By applying the geometrical framework, experiments adding allochemicals to artificial food showed 

negative effects on insect performance in increased imbalanced diets in terms of the C/N ratio 

(Simpson &Raubenheimer, 2001). 

 

The advantages of artificial food for nutritional ecologists are clear but also are the limitations, as 

feeding on natural plants is associated with several features of the food, physically like color, size, 

shape, toughness texture and chemically like odor and taste which is certainly missing in artificial food 

(Slansky & Rodrigues, 1987). However, green plants are far more than only carbohydrates and 

nitrogen and a high nitrogen level can be correlated to high concentrations of nitrogen containing 

secondary plant metabolites such as alkaloids that might reduce the digestive efficiency (Behmer, 

2009; Simpson & Raubenheimer, 2001; Slansky & Rodrigues, 1987). Indeed, plants do have everything 

what herbivorous insect needs, like nitrogen, carbohydrates, lipids and water but they also come 

along with an unbalance of these macronutrients as well as secondary compounds like allelochemicals 

and toxins which are mostly anti-feeding stimulants for herbivorous insects. Furthermore, in 

laboratory studies proteins and carbohydrates are often seen as elements whereas this might work 

well for protein in the most cases. However, protein is seen as nitrogen (N) which is indeed a good 

predictor of protein (Behmer & Joern, 2012). In contrast, carbon alone is a bad predictor of total 

digestible carbohydrates  in a plant (Behmer & Joern, 2012). 

Although first attempts were made to test herbivore feeding behavior on real food plants with 

different biochemical pathways by mostly working on specialist insect herbivores (Behmer, 2009; 

Warbrick-Smith et al., 2009; Wright et al., 1999; Wright et al., 2003) applications on a real scenario 

between insect herbivores and several of their possible food plants are rare. In this regard most of the 

studies observed only insect growth, as only one fitness measurement over a short time period as 

reaction on nutritionally unbalanced food, although feeding ontogeny is known to change over several 

larvae stages and time periods (e.g. Dopman et al., 2002; Franzke et al., 2010; Sword & Dopman, 1999; 

Unsicker et al., 2008; Werner & Gilliam, 1984).  

 

 

2nd section: The importance of going into the field 

The next step after getting to know all the mechanisms of insect herbivore performance due to 

unbalanced artificial diets in the laboratory is to apply the knowledge into realistic scenarios. By 

adding factors like biotic and abiotic elements the disentangling of insect herbivore behavior and 
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performance response mediated by changed food plant quality are even more complicated but makes 

the situation more realistic in laboratory studies as well as field experiments. Environmental factors 

like predation, drought stress, elevated carbon dioxide and plant diversity therefore often indirectly 

influence foraging behavior and the performance of generalist insect herbivores. Furthermore, 

chemical and biomechanical properties of food plants often affect insect herbivore response in the 

field.  

 

2.1 Chemical and biomechanical properties of food plants 

The chemical nature of host plants as factor influencing feeding behavior of herbivorous insects has 

been in the focus of several studies with generalist insect herbivores in the past (Giertych et al., 2007; 

Harvey et al., 2005; Jansen & Stamp, 1997; Reudler et al., 2011; Stamp & Osier, 1997; Wright et al., 

2003). It was shown that insect herbivores avoided feeding on leaves containing allelochemicals which 

underlines the theory of avoided adaptation to food plants due to containing allelochemicals (Wright 

et al., 2003). Beyond that, an increased developmental time due to feeding on allelochemical 

containing food plants was shown (Giertych et al., 2007; Harvey et al., 2005; Reudler et al., 2011). In 

addition it was shown that varying light and temperature regimes under natural conditions in the field 

interact with plant allelochemicals (either adverse additive or synergistic effective) leading to changed 

food plant quality and therefore influences herbivore performance (Jansen & Stamp, 1997; Stamp & 

Osier, 1997). The importance of biomechanical properties of food plant on insect herbivore 

performance is argued in several studies. The consequence of a reduced rate of nutrient supply due to 

increasing leaf toughness was shown by a poorer performance in a study using the locust Chortiocetes 

terminifera (Clissold et al., 2009). It was argued that rather access and not nutrient concentration per 

se may be the limiting factor (Clissold et al., 2009.) 

 

2.2 Biotic and abiotic factors can change food plant quality and usage 

2.2.1 Predation  

Besides an increased mortality due to predation, the presence of predators can cause risk effects 

which are attended with changes in prey behavior under the presence of a predator. These nonlethal 

indirect effects (Dodson & Havel, 1988; Huang & Sih, 1990; Ludwig & Rowe, 1990; Skelly & Werner, 

1990; Werner, 1991; cited in: Schmitz et al., 1997) are revealed due to an altered life – history 

schedule or habitat selection of the prey (Schmitz et al., 1997). Literature shows mostly a negative 

effect of predation pressure on herbivore behavior (e.g. foraging activities) (for more detail see Table 
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1). Danner and Joern (2003) pointed out that response on predation risk strongly depends on the 

developmental stage of the prey as the grasshopper nymphs of Ageneotettix deorum showed a 

reduced feeding activity and increased time spending in anti –predation behavior in the 3rd and 4th 

larvae stage but not significantly anymore in the 5th instar to adult stage on predation risk by a lycosid 

spider(Danner & Joern, 2003). Another study by this author underlined the perceived risk of spider 

predation on survival, growth and development rates of an insect herbivore in nymphs of A. deorum 

and additionally revealed the importance of high quality food and its potential to act in a 

compensatory manner for lost foraging time under predation risk (Danner & Joern, 2004). 

 

2.2.2 Changing food plant quality due to drought stress 

According to the plant stress hypothesis, foliar nitrogen is increased in physiologically stressed (e.g. by 

drought) plants (e.g. White, 1969; 1974; 1984) which makes the stressed plant due to the nitrogen 

limitation hypothesis to a favorable food plant. In contrast, the plant vigor hypothesis by Price (1991) 

states that many herbivore species feed preferentially on vigorous plants, opposite to the plant stress 

hypothesis (Price, 1991). The pulsed stress hypothesis (Huberty & Denno, 2004) was constructed on 

the discrepancy by observations in nature and controlled experiments regarding the plant stress 

hypothesis as it proposed a benefit for sap feeding insects through attacks of stress and the recovery 

of turgor which leads to a stress induced increase in plant nitrogen. Insect herbivore response on 

drought stressed food plant as an effect of increased temperatures showed very heterogeneous 

results, while plants reacted mostly as proposed with increased foliage nitrogen (see Table 1). 

However, Mopper et al. (1992) discussed heterogeneous findings of herbivore performance due to 

drought stress in the way that only long term sustained moderate plant stress affects the fitness as 

simultaneous plant stress while herbivores are feeding or oviposit can harm insect performance when 

examined on a small time scale (Mopper & Whitham, 1992).  

 

2.2.3 Host plant phenology shift due to warming  

Another influencing abiotic aspect on herbivore performance mediated by food plants is a shifted 

phenology of insect herbivores and its associated host plant species due to warming. This is mostly 

negative for the insect herbivore as it is shown in the prominent example of the generalist lepidoptera 

the winter moth Operophtera brumata (for details see Table 1). 
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2.2.4 Changing food plant quality due to elevated CO2 concentrations 

A rising interest within the climate change debate is the anthropogenic elevated carbon dioxide 

concentration which also impacts plant –herbivore interactions by its indirect effects on plant 

characteristics. Therefore elevated CO2 concentration changes - beside plant physiology and 

morphology- also important host plant characteristics like plant chemistry and on that account food 

plant quality due to reduced or diluted nitrogen and increased phenolics (Buse et al., 1998; Hilbert et 

al., 1991; Lambers, 1993). The effect of e.g. increased tannin concentration in foliage reduces the 

abundance of many insect herbivores especially generalist feeders (Bernays & Chapmann, 1994; 

Bernays et al., 1989; Stiling & Cornelissen, 2007) but different herbivores may respond differently to 

changes due to elevated CO2 (for details see Table 1).  

 

2.3 Plant diversity effects on insect herbivore performance 

As generalist insect herbivores occur in habitats differing in food plant species richness and 

composition they need to cope with different food plant species as well as with a varying number of 

them. Insect herbivore performance associating with plant species richness and diversity was often 

neglected in ecological research as well as in contribution to explain feeding ecology of insects in the 

field (Pfisterer et al., 2003). A few studies with the grasshopper species Chorthippus parallelus have 

been conducted on this field and they are drawing a confounding picture at the first sight. Beside the 

fact that dietary mixing also enhances performance in this grasshopper species (Unsicker et al., 2008) 

a significant positive influence of plant species richness in the field on grasshopper performance 

measured as fecundity was detected (Unsicker et al., 2010). In contrast, a cage experiment with C. 

parallelus found no relation between grasshopper performance and plant diversity (Specht et al., 

2008), but an insurance effect of dietary mixing if the preferred food plant was not available was 

shown. Anyhow, the contrasting results suggested that plant species richness alone is not sufficient to 

explain the differences in grasshopper performance based on the possibility of mixing the best food  
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Table 1: The influence of biotic and abiotic factors on food plants and generalist insect herbivore 
performance. This table is presented as exemplary and represents only a choice of studies which have 
been conducted.  

 

Biotic/ 
Abiotic 
Effect 

Effect on food 
plant 

Herbivore 
species 

Direction 
of effect  

Generalist insect herbivore 
response 

Citation 

Predation 

no effect  

several i.e. : 
Melanoplus 
femurrubrum, 
Eritettix 
simplex 
(grasshopper) 

negative change of foraging 
activities(lowering food intake, 
acceptance of lower food quality) in 
presence of predator 

Lima 
1990, 
Rothely 
1997, 
Schmitz 
1997, 
Danner 
2003 a,b 

Melanoplus 
femurrubrum 
(grasshopper) 

negative shift in diet selection and shifted 
daily activity time under predation 
pressure 

Schmitz 
1997 

Anti-
predation 
behavior 

Schistocerca 
americana 
(grasshopper) 

negative dietary mixing influenced by food 
plant distance due to anti-predation 
behavior 

Bernays 
1997 

Grammia 
geneura, 
Estigmene 
acrea 
(Lepidoptera) 

negative divided attention with less foraging 
efficiency of generalist insect 
herbivores due to anti-predation 
behavior  

Bernays 
2004 

Drought 
stress 

nitrogen 
accumulation due 
to drought stress, 
decreased vigor in 
drought stressed 

food plants  

Spodoptera 
litteralis 
(Lepidoptera) 

positive higher leaf consumption and better 
growth on high drought stressed 
food plants 

Mody 
2009 

Chromatomyia 
milii (grass 
miner) 

negative feeding and oviposition preference 
positively related to  water supply  

Scheirs 
2005 

Phoetaliotes 
nebrascencsi, 
Ageneotettix 
deorum 
(grasshopper) 

neutral no great effect in performance by 
plant stress due to drought 

Joern 
2005 

Warming 
host plant 

phenology shift 
due to warming 

Operophtera 
brumata 
(winter moth) 

negative starving by hatching before oak bud 
burst, forced to feed on older leaves 
containing tannins by hatching after 
oak bud burst 

Buse 
1998, 
Feeny 
1970, 
van 
Dongen 
1997, 
Visser 
2005 

Melanoplus 
sanguinipes 
(grasshopper) 

positive growth increase because of 
enhanced efficiency of using high 
plant quality resources because of 
asynchronous pulses of plant growth 
due to spatial variation in 
temperature 

Searle 
2010 
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Biotic/ 
Abiotic 
Effect 

Effect on food 
plant 

Herbivore 
species 

Directio
n of 
effect  

Generalist insect herbivore 
response 

Citation 

Elevated 
CO2 

changing plant 
physiology, 

morphology, 
chemistry due to 

reduced or diluted 
nitrogen and 

increased 
phenolics  

Operophtera 
brumata 
(winter moth) 

neutral no affection by reduced leaf 
nitrogen in elevated CO2 leaves 

Buse 
1998 

Antheraea 
polyphemus 
(Lepidoptera) 

negative slower developmental rate by 
feeding on oaks species grown 
under elevated CO2 

Knepp 
2007 

Miramella 
alpina(grassho
pper) 

negative changes in leaf water, nitrogen and 
starch concentration due to elevated 
CO2 affected growth rates and egg 
mass in dependence of plant species 
and nymph developmental stage 

Asshoff 
2004 

Melanoplus 
femurrubrum 
(grasshopper) 

positive, 
but 
mitigate
d due to 
plant 
species 
richness 

higher growth rate under elevated 
CO2, but this was less pronounced 
for polyculture-than for 
monoculture grown food plants 

Strengb
om 
2008 

 

plant diet out of a potpourri of food plant species. Rather other conditions in the field like predation, 

abiotic influences and/ or the structure of the vegetation must lead to this result. 

This explanation is supported by the study of Franzke et al. (2010) that showed homogeneity in 

performance by feeding on diets differing in plant species richness and composition, which was 

achieved through differences in the conversion efficiency of food to body mass. This study emphasized 

that, when given the choice, the grasshopper species C. parallels mixed the different diets in a way 

that results in a similar fitness so that it is not the plant quality per se which brings the differences in 

grasshopper performance among different habitats assumingly a quorum of good quality food is 

available.  

It was shown, that feeding behavior and insect herbivore performance is changing due to chemical 

and biomechanical properties in the food plants, by predation and fluctuating abiotic factors (e.g. 

increased temperature, elevated CO2) and that this is mediated by changed food plant chemistry and 

quality. However, the described experiments and observations, which have mostly been correlative 

studies, revealed a heterogeneous response of insect herbivores on changing food plant quality. The 

truth however, lies possibly among several factors for example in the single insect life history (insect 

ontogeny) or in the observed insect species (insect guilds react differently) or even in the specific 

ability of each insect herbivore species to compensate for a changed food plant quality. To underline 

the latter point it might be very useful to extent the observation of insect performance on abiotic 

factors by including knowledge gained from studies in the field of nutritional ecology.  
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While trying to figure out how the performance of herbivorous insects is determined in the field based 

on the assumption that food has one of the most important influence we cannot avoid to become 

more complex by testing hypothesis of the nutritional ecology under field conditions or at least with 

real food plants. The results have been documented in detail above but the knowledge of how insects 

regulate nutrients under field conditions or by foraging on real food plants is still lacking.  

 

 

3rd section: The missing link between nutritional ecology and field ecology– 

where do we want to go? 

In the previous chapters, we showed that there is a need to combine the knowledge of field and 

nutritional ecology to gain a better understanding of insect herbivore performance by feeding on real 

food plants or under more natural scenarios.  

Studies on the mechanisms of nutrient regulation proved with real food plants have been done in the 

past but the ontogeny of feeding as well as the extremely importance of insect development was 

mostly neglected. The missing links between laboratory nutritional ecology and the correlative studies 

done in the field will be subjected in the following section.  

 

 

3.1 Mechanisms of nutrient regulation proved with real food plants 

Studies related to nutritional ecology dealing with herbivorous insects foraging on real food plants 

confirmed theories of dietary mixing although their currency were, in contrast to studies conducted 

within the field of nutritional ecology, mostly not the observation of nutrients per se but furthermore 

the behavior and performance response by feeding on real food plants (Bernays et al., 1992; Bernays 

et al., 1994; Hagele & Rowell-Rahier, 1999; Miura & Ohsaki, 2004; Unsicker et al., 2008) (for more 

detail see Table 2).  

 

3.2 The influence of insect development &feeding ontogeny 

Most studies considering the influence of food plants and nutrients on feeding behavior and herbivore 

performance are mainly concentrating on adults and contain therefore a very restricted picture in the 

insect life. In fact, food plant quality has an overwhelming effect on the development of insect 

herbivores and it is therefore of extreme importance to observe also the ontogeny of feeding by 

studying the influence of food on herbivore performance in different stages of life. 



Taking Nutritional Ecology to the field: case studies with herbivorous insects 

 

86 

 

Table 2: Insect herbivore response due to the mechanism of dietary mixing. This table is presented as 
exemplary and represents only a choice of studies which have been conducted 
 
 
Tested mechanism Herbivore species Insect herbivore response Citation 

Dietary mixing 
(nutrient 
complementation 
and toxin dilution) 

Schistocerca americana 
(grasshopper) 

enhanced growth rate on mixed 
food plants than on single food 
plants  

Bernays 
1994 

Miramella 
alpina(grasshopper), 
Callimorpha dominula 
(lepidotpera), Cylindrotoma 
distinctissima(diptera) 

enhanced growth rate on mixed 
food plants than on single food 
plants, mechanisms of either 
nutritional balancing or toxin 
dilution remained unclear 

Hagele 
1999 

Parapodisma subastris 
(grasshopper) 

greatly improved survival rates by 
feeding on mixtures of food plants 
even of individually worse food 
plants 

Miura 
&Ohsaki 
2004 

Chorthippus parallelus 
(grasshopper)  

showed a higher fitness (survival, 
fecundity) by feeding on a mixed 
rather than a single diet  

Unsicker 
2008 

Orygial eucostigma S. 
(lepidoptera) 

foligae mix of different age classes 
leads to enhanced fitness 

Johns 2009 

Lymantria monacha L. 
(lepidopera) 

no effect in a mixed forest type 
(spruce and beech) in comparison 
to single forest type (either spruce 
or beech), abundance decrease 
with rising beech ratio 

Heiermann 
2008 

Parapodisma subastris 
(grasshopper) 

mass gain of nymphs fed on a 
mixture of two inferior plants was 
greater than feeding them singly, 
also mass gain did not differ by 
feeding on one single superior 
plant 

Miura 
&Ohsaki 
2006 

Grammia geneura(Strecker) 
(lepidopera)  

first experimental evidence for 
toxin dilution process and for 
combined influence of nutrients 
and secondary metabolites of 
caterpillars foraging pattern in 
nature 

Singer 2002 

 

In this respect, the grasshopper species Chorthippus parallelus showed a change in food preference 

depending on the developmental stage and sex (Franzke et al., 2010; Unsicker et al., 2008). A 

significant different response on a broad vs. a narrow diet was the result of a study with the same 

grasshopper species (see Chapter III) whereas one grasshopper treatment were fed with suboptimal 

food over the whole life and grasshoppers from another treatment were in turn fed with this 

suboptimal diet starting in a later point of life. Hence, late instar grasshoppers were not very sensitive 

to suboptimal food due to an optimal supply of resources during early instars which might act as an 

insurance for bad times in later life. However, feeding experiences in early larval development 
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revealed to be an important factor influencing performance responses when offered suboptimal diet 

later in life (Chapter III). This assumption is underlined by the study where poor quality diet in a 

juvenile stage leads to a prolonged juvenile development and therefore a shorter lifespan in the 

cockroach Nauphoeta cinerea (Barret et al., 2009). Other studies confirmed that a poor start in life due 

to e.g. a shortage of nutrients during early development can lead to enormous consequences on the 

adult performance even if the supply of resources improves during the development (Metcalfe & 

Monaghan, 2001). Changing climatic factors like periods of drought, prolonged rainfall influencing 

food plant quality or even a derived asynchronism of host plant and insect development are therefore 

potential factors accelerates a poor start in life under natural conditions.  

 

3.3 Finally – combining knowledge from nutritional and field ecology 

The knowledge about nutritional balancing gained in the laboratory regarding unbalanced nutrients, 

multiple food components and the combination with secondary compounds is still not applied in field 

ecology. In the field mostly correlative studies proved mechanisms like dietary mixing and highlights 

the importance of plant characteristics, predation and other factors influencing and changing food 

plant response and quality. Field ecology is often explaining results using background knowledge 

gained in the laboratory although this remains often speculative because methods of nutritional 

ecology have rarely been applied in field ecology so far. 

At this point we would like to make some suggestions how to develop experiments combining field - 

and nutritional ecology. Therefore the following section in the form of a cooking recipe is addressed 

towards young scientists and can be seen as a suggestion to disentangle the questions of what should 

be known to gain knowledge about how generalist insect herbivores are foraging under field 

conditions.  At first we think it is of great importance to gain basic nutritional knowledge of the single 

players like the herbivore and its associated food plants (see: Getting to know the ‘players’). In a 

second step we propose to combine the gained knowledge within certain experimental approaches 

(see: What can be done to fill the knowledge gaps).  At the end of this process the way is paved for 

studies and applications on different topics and questions dealing with the insect – food plant model 

system (see: ‘To infinity and beyond’- The application on different topics and questions). 

 (1) Getting to know the ‘players’ 

 

The first step might be for most generalist insect herbivore species that used as model organisms a 

step back into the laboratory. The aim is to create realistic conditions in the laboratory to be able to 

observe the exact amount of food ingested by the herbivores. Thus, it is of great importance to 
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characterize the food plants in terms of nutrient amount and the amount of secondary metabolites to 

be aware of what the herbivore is foraging on. To disentangle the complex relationship of nutrient 

balancing which is in nature combined with e.g. plant chemistry, effect of other factors and predation 

it is of urgent importance to be really sure about how the study organisms both insects as well as 

plants are working. In this context, a useful workflow might be:  

(a) Learning to know the intake target of the insect species. 

(b) How is insect body composition changing over time? 

(c) Do sexual dimorphism and size phenomenon plays an important role? 

(d) Are early feeding experiences and feeding ontogeny influencing insect fitness over time? 

(e) Do we argue on the population, community or another specific level? 

(f) How is the degree of specialization /generalization in the herbivore? 

(g) Characterize the nutritional environment and the nutritional value of the food. 

(h) Quantifying the amount of digestible carbohydrates in a plant. 

 

(2) What can be done to fill the knowledge gaps 

Starting to work with real plants either in the field or under semi-natural conditions for example in the 

greenhouse and as well as in the laboratory is a clear must be by capturing nutritional ecology in the 

real world as this is not possible with artificial diets. As methods and mechanisms of nutritional 

ecology often bases on definite amounts of ingested food it is still extremely difficult to conduct field 

studies as a 24 hour observation of feeding over whole developmental periods is not really possible. A 

list of first steps by starting to combine nutritional and field ecology within an experimental approach 

could look like this:  

(a) Repeat studies and observations which have been conducted with artificial food. 

(b) Look beyond the nutritional requirements of protein and digestible carbohydrates by also 

embedding micronutrients like P (Behmer & Joern, 2012).  

(c) Combine the knowledge of point 1 (Getting to know the players): Conduct correlative studies 

between plant nutrient content and herbivore performance in the laboratory as well as in the 

field, adding other factors (biotic & abiotic), compare studies in the laboratory and the field.  

(d) To disentangle the ingested amount of food plant tissue, apply technologies based on 

molecular analysis of e.g. plant tissues in the insect gut. 
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(3) ‘To infinity and beyond’- The application on different topics and questions 

After gaining basic nutritional knowledge of the single players (see point 1) and the combination of 

both (see point 2) under certain laboratory or field environments the way is paved for ecological 

studies which (i) goes further and becoming more complex or (ii) where the nutritional behavior and 

response need not necessarily playing the first role but rather provides extremely explanatory power 

disentangling ecological relations concerning insect – plant relationships in a broader sense. In this 

context nutritional ecology could become more ecological as well as serve as a good tool dealing with 

following ecological questions: 

(1) Which role is playing belowground ecology by observing insect-plant relationships?  

(2) How is climate change influencing herbivore response by changing food plant quality?  

(3) How respond insect communities in comparison to insect populations on changing food plant 

diversity and quality? 

(4) How is the influence of functional diversity on insect performance? 

(5) Which role is playing nutritional ecology in mass outbreaks of insects? 

(6) …to infinity and beyond! 

 

Conclusion 

Expanding the knowledge of what determine generalist insect herbivore fitness mediated by food 

plant quality, diversity and composition was the intention of this review. Plant resources, predators 

and abiotic conditions are known to be influencing insect herbivores, however, in this review we 

proclaim that only the combination (interaction) of these extrinsic factors gives a holistic picture and 

leads to a better answer of the question what influences insect herbivore performance. Hence, by 

carving out the special position of food plant quality which is in turn mediated by habitat diversity, 

food plant composition and certain abiotic influences we emphasize the importance to combine these 

factors rather than to look at them singly while trying to understand herbivore performance. As 

novelty we additionally considered the self-regulatory aspect of insect herbivores that is expressed 

through the ability of outbalancing unfavorable nutrient concentrations in the food. 

A combination of all of these factors influencing insect herbivore performance is not trivial at all, as 

this means to merge the knowledge and methodology of different ecological research fields which in 

turn might lead to complex studies and a more complicated general view.  

Nutritional ecology as a major field of research in itself gained a great progress in the last decade and 

made therefore great contributions explaining intrinsic mechanisms of nutrition balancing under 

unfavorable conditions. However, the greatest point of criticism might here be the lack of application 
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under natural conditions. Most of the studies determining individual insect herbivore response to the 

challenge of feeding per se took place under ideal situations with artificial food, in laboratory studies 

and therefore strictly controlled conditions. To describe the fundamental mechanisms of ingesting 

multiple nutrients and allelochemicals on herbivore performance controlled studies are very 

important. However, it is of great importance to apply the derived knowledge to understand how 

insect herbivores are influenced in their fitness by feeding and living as normal as possible. Starting 

with real food plants is the first step and was already realized in very few studies (Warbrick-Smith et 

al., 2009), as feeding on real plants comprises more than only balancing nutrients and allelochemicals. 

As mainly generalist insect herbivores live in habitats varying in food plant species richness and 

composition it was several times proved that dietary mixing and compensatory feeding is here also the 

strategy to sustain and enhance herbivore fitness (Bernays et al., 1992; Bernays et al., 1994; Hagele & 

Rowell-Rahier, 1999; Miura & Ohsaki, 2004; Unsicker et al., 2008). Nevertheless complex studies with 

real food plants in the laboratory or field studies are often confounding and blurred due to different 

uncontrolled factors (Franzke et al., 2010; Specht et al., 2008; Unsicker et al., 2010, Chapter II & III). 

However, it would be of great advantage to test the ability of generalist insects to maintain fitness due 

to dietary mixing and complementary feeding with well-directed applications of how insects regulate 

nutrients under field conditions. Insect herbivore fitness is often indirectly influenced by factors of 

climatic or anthropogenic nature and this in turn is mediated by changed food plant quality but 

studies describing beside herbivore fitness also nutrient regulation are still lacking on this field of 

research. Hence, important information about the potency and ability of herbivores responding to 

changed food plant quality is missing and beyond that the forecast what might happen with 

herbivores under the influence of increasing climate change is not possible, yet.  

Beside this, also the development of insects and therefore changed nutrient requirements during 

insect ontogeny should not be observed apart from each other rather than treated as a unit. Derived 

knowledge of herbivore response to either nutrient regulation on artificial food or herbivore fitness 

due to changed food plant quality mediated by biotic (food plant diversity, composition, chemical and 

biochemical properties of food plants, predation) or abiotic (temperature, elevated CO2) factors 

should always be the mean response of a whole insect life rather than a snap-shot of a single life 

period.  

Determining factors influencing herbivore performance is getting harder by becoming more complex 

and therefore real, the combination of factors like plant resources and abiotic conditions is only one 

step. To consider also the self-regulatory abilities of insect herbivores would give a really new insight 

into what determines insect herbivore performance in the field and bring a bit more ecology into the 

field of Nutritional Ecology.  
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General Discussion 

The overarching question of this thesis was to understand the effect of diet, food plant species 

richness, composition and quality on the performance of the generalist insect herbivore C. parallelus. 

Hereby, single experiments, ranging from laboratory to natural field conditions, deliberately 

concentrated on different aspects of the focal question like the effect of plant species richness of 

different meadows, or the importance of early feeding experiences , or the possibility of local 

adaptation, or the influence of maternal effects.  

Grasshopper fecundity was shown to be positively affected by plant species richness in a field survey. 

Furthermore the abundance of C. parallelus was positively correlated with plant species richness, 

plant community composition and solar radiation of the different meadows in the study area (Chapter 

I). 

The hypothesis of C. parallelus being locally adapted due to differences in plant diversity between the 

meadows in the study area was not confirmed. However, a strong fitness advantage in grasshopper 

populations who´s parents had been reared on meadows of good conditions in terms of high plant 

species richness and a low biomass was revealed and is therefore a strong hint for active maternal 

effects, beside the fact that C. parallelus is known to be a plastic feeder(Franzke et al., 2010)(Chapter 

II). 

In this study it could be shown (Chapter III) that grasshopper origin strongly effected susceptibility to 

diet effects in C. parallelus, as populations reared in the laboratory showed a higher performance on 

the broad meadow diet, while in field-caught grasshoppers broad or narrow diet did not influence 

performance.  

 

The influence of early larval (feeding) experiences on grasshopper 

performance 

The influence of early larval (feeding) experiences acting on grasshopper performance is an important 

finding in this thesis. The experimental study presented in Chapter III showed different fitness 

response of laboratory- reared in comparison to field-caught grasshopper populations, whereas these 

results has been discussed within the framework of early larval (feeding) experiences. Although 

studies about the influence of feeding ontogeny are relatively rare, there is some evidence that 

emphasizes the importance of early instar feeding for later development and fitness in insect 

herbivores (Barrett et al., 2009; Colasurdo et al., 2009; Metcalfe & Monaghan, 2001; Unsicker et al., 
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2008).A study with the cockroach Nauphoeta cinerea for example shows that good juvenile conditions 

in terms of a high-quality diet resulted in faster juvenile growth and longer reproductive lifespan 

(Barrett et al., 2009). A laboratory feeding experiment where one population of the study organism C. 

parallelus were fed with five different meadow diets, showed that especially during early ontogeny, 

the diet breadth of the grasshoppers is broader than later on in the development (Franzke et al., 

2010). It was furthermore shown that early caterpillar instars comprise an extremely critical phase as 

early larvae are more restricted in feeding than late instars due to smaller heads and mouthparts 

(Reavey, 1993). Hochuli (2001) has shown that early instar larvae also feed more frequently on high 

quality food than later instars. Thus, good juvenile conditions in terms of a well-balanced diet 

promises a better adult performance but might also serve as an insurance for later life. Therefore the 

non-reaction on the two different diets (meadow vs. standard) of field- caught grasshoppers (Chapter 

III) could be due to the fact that they were able to feed on a broad diet through their early 

development in the meadow habitat before they had been transferred into the laboratory. 

Also differences between studies on the performance of C. parallelus in response to plant species 

richness might be due to early larval (feeding) experiences and are discussed at this point. Within this 

context, the positive relationship of plant species diversity on grasshopper performance presented in 

Chapter I (Unsicker et al., 2010) and shown by measuring fecundity of females which had been caught 

on different meadows was not revealed in grasshopper performance and fecundity along a gradient of 

plant species richness in a field biodiversity experiment (Specht et al., 2008). However, these results 

are based on studies with substantially different approaches: In the correlative study of Chapter I 

grasshoppers grown on real meadows differing in plant species richness and composition had been 

caught in the adult stage to measure fecundity. In contrast, the cage experiment by Specht et al. 

(2008) caged field-caught grasshoppers of C. parallelus in their 4th nymphal stage on plots along a 

gradient of plant species richness within a biodiversity experiment. It is therefore assumed, that 

possible early feeding experiences during grasshopper development over the first four nymphal stages 

might have blurred the effect of plant species richness on grasshopper performance in the second 

approach.  

 

The influence of maternal effects on grasshopper performance 

The impact of maternal effects influencing relocated grasshopper population performance has been 

discussed due to the results shown in Chapter II. In this context a high parental fitness as well as good 

conditions in the parents habitat (e.g. high plant species richness, low biomass) leads to a fitness 

advantage in relocated offspring which were particular evident in cases where the experimental 
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meadow showed a difference in the meadow attributes (plant species richness, biomass) in 

comparison to the meadow of origin. In this context, it is of no surprise that C. parallelus populations 

has been proven to be not genetically different between the meadow habitats in the study area 

(Wiesner et al., 2011) as maternal effects do not results in a genetic change of the offspring. However, 

maternal effects are rather described as the influence of parental environment which leads to the 

transfer of information from maternal generation to the phenotype of the offspring (Hunter, 2002; 

Mousseau& Fox, 1998). Nevertheless, literature states that various attributes can serve as parental 

environment like climate, food quality, food diversity and predation pressure (Hunter 2002) and in fact 

studies dealing with the influence of food plant quality (e.g. allelochemistry of parental diet, lack of 

essential nutrients in parental diet) shown to be influence offspring performance (Behmer & 

Grebenok, 1998; Gould, 1988; Hunter, 2002) and these effects were referred to the influence of 

maternal effects. By examining population dynamics of gypsy moth in the field that are discussed to 

be driven by maternal effects it was pointed out that a clear evidence in the field is still missing 

(Hunter, 2002). The great problem in this context is to disentangle the influence of maternal effects 

from other effects operating in the field (Hunter, 2002). The possibility of maternal effects influencing 

grasshopper performance of C. parallelus are evident and expressed in the study (Chapter II) but more 

detailed investigations are needed to exclude other effects effective in the field.  

Nevertheless, it is of importance to underline that from the measured environmental factors 

influencing parental fitness and therefore offspring fitness due to maternal effects, plant species 

richness was shown to be of outstanding relevance. These findings (Chapter II) underlines the positive 

effect of increasing plant species richness on grasshopper performance already shown in the 

observational study presented in Chapter I. The mechanism which is working by discovering a positive 

relationship between increasing plant diversity and insect herbivore performance is discussed in detail 

below.  

 

Dietary mixing hypothesis – a predictor for generalist insect herbivore 

performance in habitats diverse in food plant species!  

Apart from the exclamation mark at the end of this subheading, the dietary mixing hypothesis is 

introduced under the same heading in the general introduction and was furthermore discussed in 

every chapter of this thesis, which is underlining the outstanding importance of this hypothesis in the 

present thesis. Under the assumption that macronutrients are unevenly distributed among food plants 

it is beneficial for generalist insect herbivores to mix a diet consisting of different food plant species to 

complement their nutritional status (nutrient complementation hypothesis)(Pulliam, 1975; Rapport, 
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1980).Grasses, being the main food plants of the model organism C. parallelus, have been shown to 

have relatively few intrinsic toxins (Cheeke, 1995). Therefore it might be assumed that the toxin 

dilution hypothesis is irrelevant for this herbivorous grasshopper species. On the contrary, there are 

also studies showing that grasses might contain fungal metabolites, so called mycotoxins, which 

contribute to the grass defense against herbivory (Cheeke, 1995) and might call for the toxin dilution 

hypothesis(Behmer et al., 2002; Freeland & Janzen, 1974; Marsh et al., 2006; Singer et al., 

2002).However, the experiments of this thesis never examined the fungal infestation status of the 

food plants nor other secondary metabolites. In these as in most other studies it is therefore hard to 

distinguish between the mechanism of ‘nutritional complementation’ or ‘toxin dilution’ within the 

dietary mixing hypothesis. The relative importance of both possibilities was suggested by Pennings 

(1993) and Bernays et al. (1994). The notice that mixtures of food items mostly improve the 

performance in comparison to single food was studied over the whole animal kingdom from sea hares 

(Pennings et al., 1993) over birds (Leeson & L.J., 1991), land slugs (Speiser & Rowell -Rahier, 1991), 

lizards (Dearing & Schall, 1992) mammals (Belovsky, 1984; Chung & Baker, 1991) to herbivorous 

insects like butterflies (Merz, 1959) and grasshoppers (Bernays et al., 1994; Hagele & Rowell-Rahier, 

1999). Also the study organism C. parallelus showed a higher fitness by feeding on a mixed rather than 

a single diet (Unsicker et al., 2008) and therefore underlines the hypothesis of dietary mixing. In this 

context it is most likely to assume that enhanced grasshopper performance with increasing plant 

species richness is due to the possibility of dietary mixing, as with increased plant species diversity the 

amount of food plants also increases (Chapter I). Although three possibilities for the observed positive 

aspect of plant species richness have been described in Chapter I the ability for a better diet mix was 

proposed to be the most evident one. The fitness advantage of grasshopper offspring from parents 

originating from meadows with a high plant diversity might also be caused by the mechanism of 

dietary mixing in the parental generation. The fitness advantage of these parents was then transferred 

by maternal effects to the offspring generation (see Chapter II). The positive response in laboratory – 

reared grasshoppers feeding their whole life on the broad meadow diet gives a real evidence for 

dietary mixing in this generalist insect herbivore, although the two- plant species standard diet offered 

a higher proportion of nitrogen (see Chapter III). In this context it has to be emphasized that nitrogen 

alone is a weak predictor for food plant quality. This is arguing against the ‘nitrogen limitation 

hypothesis’ which describes nitrogen as the most important macronutrient of food plants and is 

affecting insect herbivore performance (Davison, 1995; Mattson, 1980; White, 1993). This hypothesis 

was discussed contradictory in the literature with studies underlining the hypothesis (Davison, 1995; 

Heidorn & Joern, 1987; Joern & Behmer, 1997; Ritchie, 2000) and others not supporting it (Cease et 

al., 2012; Fischer & Fiedler, 2000; Joern & Behmer, 1998; Ritchie, 2000, Chapter III). 
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Altogether, this thesis could clearly show that the dietary mixing hypothesis is indeed a good predictor 

for generalist insect herbivore responses on plant diversity. Nevertheless, within the discussions of the 

single Chapters belonging to this thesis it was stated that plant species diversity per seas a predictor 

for a positive grasshopper performance might not be the only factor influencing herbivore 

performance along a gradient of plant species richness and composition. 

 

Insect herbivore performance in the field – the influence of biotic and abiotic 

factors 

Living and foraging in the field challenges insect herbivores to a great amount as maintaining a good 

performance is in this circumstance depending on more factors than simply dietary mixing and 

nutrient regulation by foraging in grassland habitats (see Figure 2).  

As one additionally factor in this context I would like to highlight the importance of plant community 

composition and plant community structure as surrogates for diverse effects on generalist insect 

herbivores. Plant community structure is shaped by the effects of plant species richness, functional 

richness and composition (see Figure 2) where plant community composition was shown to be 

positively affecting grasshopper abundance of C. parallelus in the field (results Chapter I). To 

disentangle the separate effects of plant composition and plant community structure (vegetation 

structure) is not easy as it combines several effects like good and bad food plants, microclimatic and 

structural effects such as refuges for anti-predation behavior (Perner et al., 2005). Especially for C. 

parallelus as a temperature depended grasshopper species microclimate is playing an important role 

for occurrence (Ingrisch & Köhler, 1998).  

Chapter IV reviewed the influences of biotic and abiotic factors as direct and more specifically as 

indirect effects mediated by changed food plant quality on generalist insect herbivore performance in 

the field (see Figure 2). Hence, changed foraging activities of insect herbivores due to anti-predation 

behavior (e.g. Bernays et al., 1997; Bernays & Bright, 1993; Danner & Joern, 2003; Lima & Dill, 1990; 

Schmitz et al., 1997) as well as the influence of changed food plant quality on herbivore behavior and 

performance due to drought stress (e.g. Buse et al., 1998; Joern & Mole, 2005; Mody et al., 2007; 

Scheirs & De Bruyn, 2005) and elevated CO2 (Asshoff & Hattenschwiler, 2005; Buse et al., 1998; Knepp 

et al., 2007; Strengbom et al., 2008) have been discussed. Furthermore the effects of plant species 

diversity in relation to the dietary mixing hypothesis (Bernays et al., 1992; Kaufmann, 1965; 

MacFarlane & Thorsteinson, 1980; Pulliam, 1975) on the foraging behavior and performance of C. 

parallelus (Unsicker et al., 2008; Franzke et al., 2010, Chapter I, Chapter II, Chapter III) and the often 
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neglected influence of insect development and feeding ontogeny (e.g. Barrett et al., 2009; Colasurdo 

et al., 2009; Metcalfe & Monaghan, 2001; Unsicker et al., 2008; Chapter III)were highlighted. As a 

result, different responses in herbivore performance to food plant diversity, quality and composition 

from studies conducted in the field or the laboratory should be interpreted with caution. 

 

 

 
 
Figure 2: The relationship between plant resources (dark grey box) and abiotic 
factors & predation (light grey box) on generalist herbivore performance. The 
indirect influence of abiotic factors on herbivore performance which is mediated 
through changed food plant quality is expressed through the light grey arrow. 
The direct effects are displayed by black arrows.(Source of grasshopper picture: 

www.jetztmalen.de) 
 

 

Grasshopper performance response on diet – are these studies contradictory? 

By examining the mechanism influencing fitness response of C. parallelus on food plant quality, 

diversity and food plant composition under laboratory and field conditions several studies, including 

the studies of this thesis encounter a variety of results. The questions of contradictory studies in this 

context easily arisen.  
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The influence of early feeding experiences has already been discussed as one mechanism deriving 

different results by studying grasshopper response of C. parallelus on plant species richness (see 

above the comparison between Chapter I and the study by Specht et al. 2008).  

By disentangling questions concerning insect herbivore performance responses on food selection and 

diet both, laboratory experiments as well as field studies are important components of research. 

Whereas laboratory studies are conducted under an ideal but artificial environment which can 

standardize abiotic conditions (e.g. temperature and solar radiation) or exclude predation and 

competition, field studies assess the effect on the organisms in their natural environment making 

conclusions more relevant to natural conditions (Slansky & Rodrigues, 1987). In this relation, different 

fitness responses of C. parallelus populations due to varying plant species richness in the field (Chapter 

I) or plant species number offered in the diet (Chapter III) might be directly derived by differences of 

field and laboratory experimental designs. Although Chapter I showed a performance difference 

between grasshopper populations from different meadows in the study area due to plant species 

richness this was not verified by feeding laboratory- reared grasshoppers either on their meadow diets 

or even on a standard diet in the laboratory experiment (Chapter III). At least a pattern of the 

relationship discovered in Chapter I was shown in a correlation between grasshopper fecundity and 

plant species richness in field-caught grasshoppers fed on standard diet in the laboratory experiment 

(Chapter III) (published in Unsicker et al., 2010, using only grasshopper populations which had also 

been used in the correlative study in Chapter I). These differences between the studies in Chapter I 

and III might be due to the difference between field and laboratory studies. However, living and 

foraging in the field requires more than only nutrient balancing to reach an optimal diet as 

grasshoppers have to invest in anti-predation behavior, thermoregulation and much more. The 

constraints of living in the field influencing generalist insect herbivore performance, is at this point 

important to mention but was already discussed above. However, laboratory-reared grasshoppers 

living under optimal conditions in the lab have to work on maintaining performance even if this is not 

expressed in significant performance differences between the populations. Evidence for this 

statement is given in Franzke et al. (2010) in which the fitness response of one single C. parallelus 

population to different diets varying in plant species richness and composition was investigated. In this 

study the fitness response did not differ between grasshoppers fed with different diets but from data 

on food intake it was calculated that C. parallelus mixed food plants in different ways depending on 

the food plant identity and composition (Franzke et al., 2010). Gaining similar performance between 

laboratory –reared grasshoppers populations by feeding on different meadow diets (Chapter III) is 

assumed by active food plant selection, in this case this is only feasible under optimal conditions in the 

laboratory. 
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Anyway, the discovering of the impact of maternal effects in the field study where grasshopper 

populations have been relocated on different meadows (Chapter II) and the absence of these effects 

in the laboratory study by feeding nearly the same populations on meadow or standard diet (Chapter 

III) might also be caused by varying conditions in the lab versus the field, beside the point that the 

studies in Chapter II and III underlie really different experimental designs. The appearance of maternal 

effects described in the study of Chapter II could of course be aroused by relocating the grasshopper 

populations along a delta in certain meadow attributes (e.g. from parental meadows rich in plant 

diversity to experimental meadows low in plant diversity and vice versa).However, due to optimal 

living conditions in the laboratory it is assumed that also weak individuals match to reach a certain 

survival and fecundity whereas this would not happen in the field, even in cages were predation was 

excluded. These circumstances might also have accounted for masking maternal effects in the 

laboratory approach (Chapter III).  

Interestingly, the book by Slansky & Rodriguez (1987) reviewed that: ‘laboratory-reared insects are not 

necessarily of the same “quality” as field individuals (Chambers, 1977; King & Leppla, 1984)and thus it 

may not be appropriate to extrapolate the behavior of laboratory-reared individuals (as well as field-

caught individuals studied in the laboratory) to field situations’ (Slansky & Rodrigues, 1987). This 

statement must be kept in mind when discussing the chapters of the present thesis, as the results of 

the studies on C. parallelus do differ in the laboratory and in the field. 

Coming back to the opening statement dealing with grasshopper performance responses to diet and 

the question if these studies are contradictory? After discussing the effect of early feeding experiences 

(see above) and differences in the study design in general as well as differences due to setting up 

laboratory and field studies in specific, I would clearly affirm that the results of the studies presented 

in this thesis are not contradictory because they have been derived under several different 

circumstances.  

 

Perspective and Outlook - What do we know and what is still missing 

The present thesis is underlining the importance of plant species richness, food plant quality and food 

plant composition on the performance of a generalist insect herbivore. At this point it is important to 

note that the findings concerning a generalist whereof not much studies and theories about the 

relationship of insect performance and plant diversity exists (Tscharntke et al., 2002, Franzke et al., 

2010). The mechanism at work here was dietary mixing, which proposes a more complemented 

nutrient diet and /or a dilution of toxins by mixing differing food sources (Bernays et al., 1992; 
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Kaufmann, 1965; MacFarlane & Thorsteinson, 1980; Pulliam, 1975; Rapport, 1980). Nevertheless, by 

working on insect-plant relationships with real food plants under laboratory or field conditions it is 

important to keep in mind that even on short distances in the field striking differences in host 

preferences between insect populations exists (Schoonhoven et al., 1998)as well as large individual 

differences in host responses (Schoonhoven et al., 1998). This and the additional impact of ‘other 

factors’ like biotic and abiotic effects influencing herbivore performance in the field should be taken 

into account when valuing generalist insect herbivore responses on nutritional quality in the field. 

Furthermore this thesis is carving out the special position of food plant quality on generalist insect 

herbivore performance by stating the importance to combine food plant diversity, quality and 

composition with factors influencing insect herbivore performance indirectly due to changing food 

plant quality like abiotic factors. 

The ability of mixing diets to maintain performance is also part of a whole research field in nutritional 

ecology working on macronutrients and artificial diets (Behmer, 2009; Bernays et al., 1992; Bernays et 

al., 1994; Chambers et al., 1995; Raubenheimer & Simpson, 2003; Waldbauer et al., 1984). 

Transferring the knowledge of nutritional ecology derived by discovering the self-regulatory abilities of 

insect herbivores into studies like presented in this thesis would help to gain further knowledge in 

both research areas, nutritional ecology as well as population ecology. This assumption, by the way, 

was just proposed by nutritional ecologists who suggested to design new synthesis by developing 

more comprehensive definitions of plant quality and how it varies with environmental conditions and 

furthermore develop collaborations across disciplines (e.g. physiological ecology, behavior and 

ecosystem sciences)(Behmer & Joern, 2012). Nevertheless, future studies in this context involving the 

study organism C. parallelus must take one step back, back into the laboratory. First of all it is of 

crucial importance to get to know the nutritional basics of this grasshopper species. Discovering the 

‘intake target’ (the amount of macronutrients, mostly tested with carbohydrate and nitrogen, which 

has to be taken in to reach best performance) (Behmer, 2009; Raubenheimer & Simpson, 1993; 

Simpson & Raubenheimer, 1993) and learning more about the nutritional environments of the study 

area, where the different food plants along the gradient of plant species richness must be analyzed, is 

crucial for gaining new knowledge under field conditions. With this knowledge in the background it 

would be possible to open new doors regarding insect-plant relationships where for example not the 

relationship is of first interest rather the model system itself is used as basis to answer current 

ecological questions. To give but one recent example: The effect of changing climate could therefore 

be tested not only on a single plant- insect system but rather along a gradient of plant species diversity 

and composition on insect individuals or even on a community level, which would be a completely 

new approach.  
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Valuable new insights have been gained by finding maternal effects and early larval (feeding) 

experiences as well as the influence of biodiversity expressed through plant species richness on the 

performance of a generalist insect herbivore in field and laboratory conditions but it was furthermore 

accentuated that this picture could be shaped by including knowledge of nutritional ecology.  
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Summary 

Satisfying their specific dietary needs, which are characterized by changing nutritional needs over a 

lifetime, is one of the biggest challenges for any animal. This includes insect herbivores that show a 

great variety in their responses to different aspects of food plant quality and therefore combine many 

interesting fields of ecological research, namely for example evolutionary, population, field and 

nutritional ecology. Generalist insect herbivores have a broad spectrum of potential food plants and 

are able to live in very different ecosystems including for example grasslands that largely differ in plant 

species richness and composition. Based on studies of dietary mixing it is assumed that generalist 

insect herbivores maintain or increase their performance by feeding on meadows with a high number 

of food plant species. Thus meadows with increasing plant species diversity and varying plant species 

composition promotes performance. The aim of my thesis was to disentangle the effect of plant 

species richness, composition and food plant quality on generalist insect herbivore performance in a 

combination of laboratory and field studies. Moreover, the effects of parental and early feeding 

experiences were analyzed. Finally, theoretical considerations about indirect effects of biotic and 

abiotic conditions on insect herbivore performance and the importance to combine knowledge of field 

and nutritional ecology integrate the current and other work into a review. 

The meadow grasshopper Chorthippus parallelus served as study organism for the presented thesis 

because this species has a broad spectrum of food plants and its diet includes both, grasses and 

legumes.  

Furthermore, it is one of the most abundant grasshopper species in diverse meadow habitats 

throughout Europe and plays as important herbivore a considerable role in grasslands. The studies 

have been conducted on or with food plants of meadows along a plant species diversity gradient 

within the biodiversity experiment BIOLOG (BIOLOgical diversity and Global change; funded by the 

BMBF 2000 -2010), located at the border between Thuringia and Bavaria in Central Germany.  

Females of C. parallelus were collected in 15 meadows along a plant species richness gradient to 

analyze the oviposition rate and number of offspring. This observational study showed that 

grasshopper fecundity was positively affected by plant species richness. Moreover, the abundance of 

C. parallelus was positively correlated with plant species richness, plant community composition and 

solar radiation between different meadows in the study area. It is assumed that the positive 

relationship between performance and increased plant diversity is due to the possibility of dietary 

mixing, as with higher plant diversity per se also the number of possible food plants increases. 

Furthermore this study reveals the threat of biodiversity loss even on generalist insect herbivores. 

A relocation experiment where grasshopper populations from different meadows were transferred 

and caged on meadows along a gradient of plant species richness and composition revealed a strong 
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influence of parental experiences on offspring performance, measured as survival and fecundity. The 

offspring of parents who lived on meadows high in plant species richness and low in biomass showed a 

better performance even if the relocated offspring has been reared in less favorable environments. 

Here again dietary mixing might serve as explanatory mechanism for the positive relationship between 

parental performance and higher plant species richness. However, this study gave a hint for strong 

maternal effects. 

By feeding different grasshopper populations on a diverse meadow diet versus a two-species standard 

diet, strong effects of grasshopper origin reared either in the laboratory or caught in the 3rd to 4thinstar 

in the field were revealed. Laboratory-reared grasshopper populations showed strong performance 

advantages when feeding on the diverse meadow diet compared to the standard diet and again 

dietary mixing theory might serve as explaining mechanism. Also the importance of early larval 

(feeding) experiences was discussed as determinant of diet effects on later grasshopper 

developmental stages.  

Overall, the results of these studies underline the importance of plant species richness, plant 

composition and food plant quality on the performance of the generalist insect herbivore C. parallelus 

and support dietary mixing as a prominent possible mechanism to explain the experimental results. 

Nevertheless, these three factors alone were discussed to be no sufficient description of what 

influences generalist insect herbivore performance in the field. However, to reach a more mechanistic 

understanding of this plant- insect relationship or more specific the relation between insect 

performance and food plant quality the implication of ‘Nutritional Ecology’ would be extremely 

valuable. More specific information on the nutritional requirements of the herbivore (intake target 

point, amounts and proportion of macronutrients ingested) as well as information about the 

herbivores nutritional environment could help to disentangle the performance-relevant parameters 

for generalist insect herbivores foraging under field conditions. In a first step, it is necessary to gain 

information about the herbivores’ nutritional requirements by feeding them on artificial diets and real 

food plants in the laboratory. In a second step, this information could be applied in the field where the 

nutritional value of the natural environment should also be studied. Finally, it is important to monitor 

additional factors like biotic (e.g. food plant chemical and biomechanical properties, predation) and 

abiotic (e.g. temperature, irradiation) conditions indirectly influencing the feeding behavior and insect 

performance by changing food plant quality. There is still much to discover about insect-plant 

relationships when the knowledge of field and nutritional ecology is combined in innovative studies 

using new technical approaches. 
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Zusammenfassung 

Die Befriedigung der Nahrungsbedürfnisse, welche durch zeitlebens veränderliche 

Nährstoffbedürfnisse charakterisiert sind, stellt eine der alltäglichsten aber auch größten 

Herausforderungen für jedes Lebewesen dar. Dies betrifft auch herbivore Insekten, welche 

unterschiedlichste Reaktionen auf Futterpflanzenqualität zeigen und damit verschiedene, interessante 

Forschungsfelder der Ökologie miteinander kombinieren. Herbivoren Insekten, die an mehreren Arten 

einer oder mehrerer Pflanzenfamilien fressen(generalistische Lebensweise), ist es aufgrund des 

erweiterten Futterpflanzenspektrums möglich in verschiedenen Wiesenhabitaten mit sowohl 

unterschiedlichem Pflanzenartenreichtum, als auch unterschiedlicher Pflanzenartenkomposition zu 

existieren. Basierend auf Studien, die der „dietary mixing“ Hypothese (beschreibt das Mischen von 

Futterpflanzen) unterliegen, ist anzunehmen, dass herbivore Insekten generalistischer Lebensweise 

ihre Fitness erhalten oder gar verbessern können, wenn sie auf Wiesen mit einer erhöhten Anzahl an 

Pflanzenartenfressen. Eine hohe Pflanzenartenzahl bzw. eine damit einhergehende veränderliche 

Pflanzenartenkomposition bedingt daher eine  größere Anzahl von Futterpflanzenarten in einem 

Habitat.  

Das Ziel der vorliegenden Arbeit war es, die Auswirkung von Pflanzenartenreichtum, 

Pflanzenartenkomposition, und Futterpflanzenqualität auf die Fitness von herbivoren Insekten mit 

generalistischer Lebensweise, sowohl in Labor, als auch in Feldstudien zu untersuchen.  

Ein Hauptaugenmerk im experimentellen Teil der Arbeit lag dabei auf den Fraßerfahrungen früher 

Larvenstadien und den Erfahrungen der Elterngeneration, in Bezug auf Nahrung und Habitat, sowie 

deren Einflüsse auf die Fitness herbivorer Insekten. Ein  Übersichtsartikel am  Ende der vorliegenden 

Dissertation beleuchtet den durch veränderte Futterpflanzenqualität einhergehenden indirekten 

Einfluss von biotischen und abiotischen Faktoren auf die Fitness herbivorer Insekten. Darüber hinaus 

wird diskutiert, wie wichtig das Wissen von Nährstoff- und Feldökologie sowohl unter Einbezug der 

vorliegenden Arbeiten als auch der anderer Studien ist, und vor allem welche Bedeutung der 

Kombination beider Forschungsgebiete für zukünftige Studien hat. Als Studienobjekt diente die 

gemeine Feldheuschrecke Chorthippus parallelus, deren Speiseplan hauptsächlich Gräser aber auch 

Leguminosen beinhaltet. Zudem ist die Feldheuschrecke C. parallelus eine der abundantesten Arten in 

diversen Wiesenhabitaten Mitteleuropas, und darüber hinaus auch ein bedeutendes herbivores Insekt 

in Grünländern. Die experimentellen Studien wurden in Grasländern oder mit Pflanzen von 

Grasländern entlang eines pflanzlichen Diversitätsgradienten im Thüringer 

Schiefergebirge/Frankenwald im Rahmen des Biodiversitätsprojekts BIOLOG (BIOLOgical diversity and 

Global change, von 2000-2010 gefördert durch das Bundesministerium für Bildung und Forschung)  

durchgeführt.  
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Auf 15 Wiesen entlang eines Gradienten pflanzlichen Artenreichtums wurden Heuschreckenweibchen 

gefangen und im Labor zur Eiablage gebracht, wobei sowohl die Anzahl der Eipakete als auch die 

Anzahl der Nachkommen pro Weibchen als Fekunditätsmaße dienten. Es wurde gezeigt, dass 

Heuschreckenfitness aber auch die Abundanz von C. parallelus positiv mit einer erhöhten 

Pflanzenartenzahl auf den Heimatwiesen korreliert ist. Aber auch unterschiedliche 

Pflanzenartenkomposition und Sonneneinstrahlung zwischen den verschiedenen Wiesen beeinflussen 

die Heuschreckenabundanz.  Eine Erklärung zwischen steigender Heuschreckenfitness und erhöhter 

Pflanzenartenzahl liegt der dietary mixing Hypothese zu Grunde, unter der Annahme, dass mit 

steigender Pflanzenartenzahl in einem Habitat auch die Zahl der potentiellen Futterpflanzenarten 

steigt. Des Weiteren offenbart die Studie eine Bedrohung durch Pflanzenartenverlust auch für 

generalistisch lebende Insektenherbivore.  

Ein Umsiedlungssexperiment, bei dem verschiedene Heuschreckenpopulationen auf unterschiedlichen 

Wiesen entlang eines Gradienten pflanzlichen Artenreichtums mit variierender Pflanzenkomposition 

in Käfige versetzt wurden, zeigte starke elterliche Einflüsse auf die Fitness der 

Heuschreckenpopulationen. In diesem Zusammenhang konnte man beobachten, dass Eltern von 

besonders pflanzenartenreichen Wiesen bzw. Wiesen mit geringer Biomasse besonders fitte 

Nachkommen hervorbrachten, unabhängig davon, ob die Nachkommenschaft ebenso günstige 

Umweltbedingungen erfuhren, oder nicht . Auch in diesem Fall kann die dietary mixing Hypothese als 

erklärender Mechanismus für die positive Fitnessreaktion der Elterngeneration, und somit auch der 

nachkommenden Generation, aufgrund erhöhter Pflanzen- und Futterpflanzenartenzahl  

herangezogen werden. Die Studie zeigt, dass auch im Fraßverhalten sehr anpassungsfähige Herbivore 

wie C. parallelus stark durch maternale Effekte beeinflusst werden können.  

In einem Laborexperiment mit verschiedenen Heuschreckenpopulationen, die entweder im Labor 

gezüchtet oder im dritten bis vierten Larvenstadium im Freiland gefangen wurden, traten starke 

Fitnessunterschiede als Reaktion auf unterschiedliche Diäten zwischen den verschiedenen Herkünften 

(Laborheuschrecken versus Freilandheuschrecken) auf. In diesem Zusammenhang zeigten 

Laborheuschrecken eine größere Fitness, wenn sie ein Leben lang auf einer artenreichen Wiesendiät, 

statt auf einer 2-Arten-Standarddiät fraßen, wobei hier die positive Fitnessreaktion erneut auf die 

Vorteile des Mischens von Futterpflanzen (dietary mixing) basiert. Die Auswirkungen der 

Fraßerfahrung früherer Larvenstadien auf die Fitness in der späteren Heuschreckenentwicklung 

wurden in den Ergebnissen der Studie besonders diskutiert.  

Die experimentellen Studien der Arbeit betonen die Bedeutung von Pflanzenartenreichtum,–

komposition, sowie von Futterpflanzenqualität für die Fitness des Insektenherbivoren C. parallelus, 

wobei der positiven Reaktion durch das Mischen von Futterpflanzen (dietary mixing) eine besondere 

Rolle zugeschrieben wird. Dennoch wurde dargelegt, dass diese drei Faktoren als alleinige Erklärung 
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für die Fitness generalistischer Insektenherbivore im Feld nicht ausreichend sind. Es wurde diskutiert, 

dass die Ergebnisse der Studien möglicherweise noch transparenter wären, wenn darüber hinaus 

spezifische Informationen bezüglich des Nährstoffhaushaltes bzw. der Nährstoffanforderungen des 

Studienobjekts (z.B. intake targe point, aufgenommene Mengen und Verhältnisse an 

Makronährstoffen) und der Nährstoffverfügbarkeit in seiner Umwelt vorlägen. Die Expertise des 

Forschungsfeldes der Nährstoffökologie könnte an diesem Punkt helfen weitere wichtige 

Informationen über die Fitness herbivorer Insekten unter Freilandbedingungen zu sammeln. Eine 

Voraussetzung dafür wären genaue Kenntnisse über die Nährstoffanforderungen des Herbivoren, 

welche man im Labor mit Hilfe von künstlichen Diäten aber auch beim Fressen an Futterpflanzen 

ermitteln kann. Die so gewonnen Informationen könnten später im Freiland angewandt werden. 

Natürlich nur unter der Voraussetzung, dass die Nährstoffverfügbarkeit der Umgebung des Herbivoren 

bekannt ist. In diesem Zusammenhang wurde die Bedeutung von biotischen (z.B. chemische und 

biomechanische Eigenschaften der Futterpflanzen, Prädation) und abiotischen (z.B. Temperatur, 

erhöhte CO2-Werte) Faktoren auf Futterpflanzenqualität, und somit indirekt auch auf die Fitness von 

Insektenherbivoren im Detail erläutert und diskutiert.  

Abschließend bleibt festzustellen, dass eine Kombination aus Nährstoff– und klassischer Feldökologie, 

unter Einbezug von innovativen Studien und neuen Technologien, ein Garant für neue zukünftige 

Entdeckungen in der Beziehung zwischen Pflanzen und Insekten ist.  
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