Untersuchung von Bienen- und Wespengiftallergikern nach spezifischer Immuntherapie: eine retrospektive Analyse

Dissertation
zur Erlangung des akademischen Grades
doctor medicinae (Dr. med.)

vorgelegt dem Rat der Medizinischen Fakultät
der Friedrich-Schiller-Universität Jena

von Anne Moeser
geboren am 03.04.1981 in Wernigerode
Gutachter

1. PD Dr. med. habil. Margot Henzgen
 Ehemals Klinik für Innere Medizin I
 Abteilung Allergologie/Immunologie
 Universitätsklinikum der Friedrich-Schiller-Universität Jena

2. Prof. Dr. med. Peter Elsner
 Klinik für Hautkrankheiten
 Universitätsklinikum der Friedrich-Schiller-Universität Jena

3. PD Dr. med. habil. Kirsten Jung
 Praxis für Haut- und Geschlechtskrankheiten, Immunologie, Allergologie, Umweltmedizin, Erfurt

Tag der öffentlichen Verteidigung: 09.07.2012
Abkürzungsverzeichnis

DGAKI Deutsche Gesellschaft für Allergologie und klinische Immunologie
CCD cross reactive carbohydrate determinants
IgE Immunglobulin E, Einheit: kU/l, kiloUnits pro Liter
IgG Immunglobulin G
IgM Immunglobulin M
n.s. nicht signifikant
µg Microgramm
OR Odds Ratio, Erkrankungschance
RAST Radio-Allergen-Sorbent-Test
SAW Standardabweichung
SIT spezifische Immuntherapie
spec. Art (Species)
spp. Mehrzahl für spec., mehrere Arten einer Gattung
WHO World Health Organization
ZNS Zentrales Nervensystem
Inhaltsverzeichnis

1 Zusammenfassung ... 7
2 Einleitung .. 9
 2.1 Allergie .. 9
 2.1.1 Anaphylaxie ... 9
 2.2 Insektengiftallergie .. 11
 2.2.1 Charakteristika allergieauslösender Hymenopteren .. 12
 2.2.2 Insektengifte .. 13
 2.2.3 Diagnostik .. 14
 2.2.3.1 Kreuzreakтивität ... 15
 2.2.4 Erhöhtes Anaphylaxierisiko 16
 2.2.5 Therapie .. 17
 2.2.5.1 Akuttherapie ... 17
 2.2.5.2 Langfristige Therapie 17
 2.2.6 Rezidivrisiko nach Beendigung der spezifischen Immuntherapie 20
 2.3 Mastozytose und erhöhte basale Serumtryptase 24
3 Ziele und Fragestellung ... 27
4 Material und Methoden .. 28
 4.1 Grundlagen ... 28
 4.2 Patienten ... 29
 4.3 Statistische Methoden .. 32
 4.4 In-vivo- und In-vitro-Diagnostik im Rahmen der Verlaufsuntersuchung 32
5 Ergebnisse ... 34
 5.1 Rezidivrate .. 34
 5.2 Schweregrade der allergischen Reaktion vor und nach spezifischer Immuntherapie ... 36
5.3 Nachfolgende Stichereignisse ... 36
5.4 Zeitlicher Abstand nach spezifischer Immuntherapie 37
5.5 Dauer der spezifischen Immuntherapie .. 39
5.6 Mastozytose / erhöhte Serumbasistryptase .. 40
5.7 Art der Sensibilisierung ... 43
5.8 Einfluss anderer Risikofaktoren / Begleiterkrankungen 45
5.9 Immunologische Parameter zum Ende der spezifischen Immuntherapie ... 48
 5.9.1 Insektengiftspezifisches IgE ... 48
 5.9.2 Hauttest ... 49
5.10 Klinische Folgen .. 51

6 Diskussion ... 53
 6.1 Die Bedeutung der Insektengiftallergie für das Leben der Patienten 53
 6.2 Langzeitwirkung der insektengiftspezifischen Immuntherapie 54
 6.3 Latenzzeit zwischen Therapieende und Rezidiv 54
 6.4 Bedeutung der Therapiedauer ... 55
 6.5 Allgemeine Risikofaktoren für ein Rezidiv ... 56
 6.6 Bedeutung der klinischen und immunologischen Parameter für das Rezidivrisiko .. 57
 6.7 Die Rolle der Mastozytose bzw. erhöhten basalen Serumtryptase für die Insektengiftallergie ... 58
 6.8 Klinische Konsequenzen dieser Studie .. 60
 6.9 Beziehung der eigenen Erfahrungen im Hinblick auf die gültigen Leitlinien 61
 6.10 Limitationen der Studie ... 61
 6.11 Stärken der Studie .. 62
 6.12 Ausblick ... 63

7 Schlussfolgerungen ... 64
8 Literatur- und Quellenverzeichnis ... 66
Anhang

I. Fragebogen
II. Lebenslauf
III. Danksagung
IV. Ehrenwörtliche Erklärung
Zusammenfassung

Von 146 Patienten, die auf den Fragebogen antworteten und deren Daten vollständig vorlagen, stellten sich 91 zur ambulanten Verlaufskontrolle vor. 2/3 aller Patienten, die auf den Fragebogen reagierten, waren Frauen. 59,18 % der Patienten waren alleinige Wespengiftallergiker, 8,84 % reine Bienengiftallergiker, 4,76 % der Patienten waren von einer Doppelallergie betroffen. Die restlichen Patienten wiesen zusätzliche Sensibilisierungen gegenüber Bienen- bzw. Wespengift auf, z.T. lagen Kreuzreaktionen vor. 42,6 % aller Patienten wurden trotz des langen Untersuchungszeitraums nicht wieder von einem Insekt gestochen. 15 Patienten (10,2 %) reagierten erneut systemisch allergisch, wobei nur ein Patient eine schwergradigere Reaktion verglichen mit der Initialreaktion aufwies. Ein signifikanter Geschlechtsunterschied fand sich nicht. Weder die Art der Allergie (Wespe im Vergleich zu Biene), noch der spezifische IgE-Wert zum Ende der spezifischen Immuntherapie erwiesen sich als signifikante Risikofaktoren für ein Rezidiv. Relevante Unterschiede fanden sich für Patienten mit einem positiven Hauttest bei Beendigung der spezifischen Immuntherapie sowie für Patienten mit einer Mastozytose bzw. erhöhten basalen Serumtryptase. Die Insektenstiche mit erneuter systemisch allergischer Reaktion traten im Mittel ca. 2,5 Jahre später als die Stiche ohne Rezidiv nach SIT-Ende auf (7,6 Jahre im Vergleich zu 5,2 Jahren. Für 11 Patienten wurde als klinische Konsequenz die Indikation zur
erneuten spezifischen Immuntherapie gestellt.

2 Einleitung

2.1 Allergie

Bisher sind 5 Typen der Allergie definiert:

- **Typ-II-Allergien** entstehen durch zytotoxische Antikörper (IgG und IgM) und Komplement, z.B. bei der allergischen hämolytischen Anämie oder der allergischen Thrombozytopenie.

- **Typ-IV-Allergien** werden über zytotoxische Zellen vermittelt (T-Lymphozyten und Makrophagen), z.B. beim allergischen Kontaktekzem.

- Als **Typ-V-Allergien** werden granulomatöse Reaktionen wie z.B. die Berylliose oder Talkose bezeichnet (Matthys und Seeger, 2008).

2.1.1 Anaphylaxie

Innerhalb der Typ-I-Allergien ist zusätzlich die Anaphylaxie zu erwähnen. Der Begriff bezeichnet eine fulminante systemische allergische Sofortreaktion, die den gesamten Organismus erfassen kann, indem sie sich an mehreren Organsystemen manifestiert.

<table>
<thead>
<tr>
<th>Schweregrade</th>
<th>dermal</th>
<th>gastrointestinal</th>
<th>respiratorisch</th>
<th>kardiovaskulär</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad I</td>
<td>Juckreiz</td>
<td>Urtikaria</td>
<td>Flush</td>
<td></td>
</tr>
<tr>
<td>Grad II</td>
<td>Juckreiz</td>
<td>Urtikaria</td>
<td>Flush</td>
<td>Nausea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tachykardie (< 100/min)</td>
</tr>
<tr>
<td>Grad III</td>
<td>Juckreiz</td>
<td>Urtikaria</td>
<td>Erbrechen Defäkation</td>
<td>Bronchospasmus Zyanose</td>
</tr>
</tbody>
</table>
2.2 Insektengiftallergie

<table>
<thead>
<tr>
<th>Schweregrade</th>
<th>dermal</th>
<th>gastrointestinal</th>
<th>respiratorisch</th>
<th>kardiovaskulär</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad IV</td>
<td>Flush</td>
<td>Erbrechen</td>
<td>Atemstillstand</td>
<td>Herzkreislaufstillstand</td>
</tr>
<tr>
<td></td>
<td>Juckreiz</td>
<td>Defäkation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urtikaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flush</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 1 Schweregrade der allergischen Reaktion (Ring, 2004)

2.2.1 Charakteristika allergieauslösender Hymenopteren

Für die Diagnosestellung einer Insektengiftallergie und vor allem für die Identifizierung des allergieauslösenden relevanten Insekts sind Grundkenntnisse über das Verhalten und das Aussehen von Bienen und Wespen notwendig.

übergeordnete Rolle (Spivak et al., 2011).

2.2.2 Insektengifte

Das Hauptallergen der Honigbiene (Api m 1) ist die Phospholipase A2. Hyaluronidase (Api m 2) wirkt zusammen mit weiteren biogenen Aminen (Histamin, Dopamin, Serotonin) als sogenannter „spreading factor“, indem die eine Permeabilitätsbarriere aufbauende Interzellularrubstanz der Haut aufgebrochen wird. Weitere immunologisch bedeutsame Bestandteile sind die saure Phosphatase (Api m 3), Mellitin (Api m 4) und die Dipeptidylpeptidase IV (Api m 5) (Saloga et al., 2011, Kroegel, 1986).
Die Zusammensetzung der Gifte unterschiedlicher Vespidengattungen ist zwar ähnlich, jedoch nicht identisch. Als Majorallergene spielen das Antigen 5 (Ves v 5) sowie die Phospholipase A1 (Ves v 1) die wichtigste Rolle in der Auslösung einer allergischen Reaktion. Das Minorallergen Wespenhyaluronidase (Ves v 2) ist für einen Teil der Kreuzreaktionen zum Bienengift, nämlich Api m 2, verantwortlich (Müller, 2003).

2.2.3 Diagnostik

Grundlage für die Diagnose einer Hymenopterengiftallergie bildet eine exakte Patientenanamnese. Sie umfasst die Identifizierung des auslösenden Insekts, die Bewertung des Schweregrades der Reaktion sowie die Erfassung von relevanten Begleitumständen wie z.B. Medikamenteneinnahme, Comorbidität und das Risiko für Insektenstiche bzw. schwergradige Reaktionen.

Der zweite Schritt umfasst den Nachweis einer IgE-vermittelten Sensibilisierung durch einen Hauttest mit Bestimmung der Reaktionsschwelle (Pricktest mit (0,1) – 1 – 10 – 100 µg/ml, ggf. Intracutantest mit 0,001 – 0,01 – 0,1 – 1 µg/ml des jeweiligen Insektengiftes). Zusätzlich sollte ein In-vitro-Test durchgeführt werden, wobei die Bestimmung bienen- bzw. waspenspezifischer IgE-Antikörper mittels RAST sowie des Gesamt-IgE-Spiegels im Vordergrund steht. Es ist hierbei zu beachten, dass sowohl die Hauttestreaktivität als auch das spezifische IgE in den Wochen nach einem Stich eine Dynamik durchlaufen. So können beide Tests in den ersten Tagen nach der Reaktion ein negatives Ergebnis zeigen und erst im Verlauf positiv werden, um dann nach Wochen bis Monaten wieder an Intensität zu verlieren (Ruëff et al., 2003).

Lassen sich bei entsprechender Anamnese weder im Prick- bzw. Intracutantest noch in der Bestimmung der spezifischen IgE-Antikörper Beweise für eine IgE-vermittelte Allergie finden, so werden weitere In-vitro-Verfahren angewandt. Hierbei spielt vor allem die Bestimmung des spezifischen IgE gegenüber Einzelallergenen der Insektengifte (rekombinante Allergene) eine zunehmende Rolle. Dies umfasst Antikörper gegenüber Api m 1 (Honigbiene) bzw. Ves v 5 (Faltenwespen) (Müller, 2003, Müller et al., 1997).

Weitere diagnostische Möglichkeiten zum Nachweis einer Sensibilisierung aber auch zur Differenzierung des relevanten Insekts sind der Basophilenaktivierungstest, der Histaminfreisetzungstest sowie der Leukotrienfreisetzungstest („cellular antigen stimulation test“, CAST). Hierbei werden periphere Blutzellen des Patienten mit

Bei positiven Testergebnissen ist jedoch zu beachten, dass eine Sensibilisierung gegenüber Insektengift im Sinne eines positiven Hauttests und/oder Nachweis spezifischer IgE-Antikörper bei ca. 25 % der Bevölkerung ohne klinische Relevanz auftritt (Przybilla et al., 2011, Schäfer, 2009). Somit lässt sich die Diagnose nur nach integrierter Bewertung von Anamnese, Klinik und Laborbefunden stellen.

2.2.3.1 Kreuzreaktivität

Bei vielen Patienten finden sich positive diagnostische Testergebnisse sowohl für Bienen- als auch für Wespengift. Dies kann einerseits auf eine tatsächliche Doppelsensibilisierung zurückgeführt werden. Andererseits besteht oft auch eine Kreuzreaktivität. Diese entsteht zum einen durch IgE-Bindung an homologe Insektengiftallergene, z. B. die Hyaluronidase oder die humane Dipeptidylpeptidase (King et al., 1996). Zum anderen kann eine Kreuzreaktivität auf eine IgE-Bindung an sogenannte „cross reactive carbohydrate determinants“ (CCD) zurückgehen. Dies sind Kohlenhydratseitenketten, die sowohl ubiquitär im Pflanzenreich vorkommen aber auch in Insektengiftkomponenten vorhanden sein können (Hemmer et al., 2001). Zur Differenzierung zwischen Kreuzreaktivität und tatsächlicher Doppelsensibilisierung erweist sich der RAST-Inhibitionstest als effektive Methode (Hamilton et al., 1993). Eine neuere diagnostische Option stellt die Bestimmung von spezifischem IgE gegen die rekombinanten Allergene Api m 1 und Ves v 5 dar. Diese enthalten keine CCDs und können so Hinweise auf die tatsächliche Sensibilisierung liefern (Hofmann et al., 2011, Müller et al., 2009).

Die Identifikation einer tatsächlich relevanten Doppelsensibilisierung ist von therapeutischer Konsequenz, da betroffene Patienten mit beiden Insektengiften hyposensibilisiert werden müssen. Im Falle einer Kreuzreaktivität reicht dagegen die Therapie mit einem Insektengift aus.

2.2.4 Erhöhtes Anaphylaxierisiko

Ferner gelten zuvor erlebte schwere anaphylaktische Stichreaktionen als Risikofaktoren für spätere schwere Anaphylaxien (Schweregrad II mit relevanter bronchialer Obstruktion, Grad III und IV). Auch die erhöhte basale Serumtryptasekonzentration (> 95. Perzentile = 11,4 µg/l) bzw. die Mastozytose bildet einen Risikofaktor, der in den letzten Jahrzehnten deutlich an Aufmerksamkeit gewann (Ruëff et al., 2009, Ruëff et al., 2006). Darüber hinaus stellen ein erhöhtes Alter (> 40 Jahre), männliches Geschlecht, kardiovaskuläre Erkrankungen und bestimmte Medikamente (insbesondere β-Blocker, ACE-Hemmer und vermutlich auch nichtsteroidale Antirheumatika) Risikofaktoren dar, wobei diese Faktoren altersbedingt oft kombiniert vorkommen (Lockey et al., 1988, Lantner et al., 1989). Zudem erhöht ein vorbestehendes Asthma bronchiale die Wahrscheinlichkeit schwerer Anaphylaxie, nicht jedoch die Häufigkeit einer Insektengiftallergie (Settipane et al., 1980). Weiterhin gelten körperliche und psychische Belastungssituationen als Risikofaktoren (Ring et al., 2010).
2.2.5 Therapie

2.2.5.1 Akuttherapie

Die Akuttherapie einer Insektenstichreaktion richtet sich nach dem Schweregrad der Reaktion.

Lokale Reaktionen werden mit einem topischen Glucocorticoid als Salbe, Creme oder Gel sowie mit lokal kühlenden Umschlägen behandelt. Zusätzlich können orale H1-Antihistaminika appliziert und bei gesteigerten lokalen Reaktionen kurzfristig orale Glucocorticosteroide verabreicht werden (Przybilla et al., 2011).

2.2.5.2 Langfristige Therapie

In der langfristigen Therapie der potentiell lebensgefährlichen Insekengiftallergie ist die Prophylaxe im Sinne von Karenzmaßnahmen die Basismaßnahme. Außerdem erhalten Insekengiftallergiker eine sogenannte „Notfallmedikation“, bestehend aus einem oralen Glucocorticoid (100 mg Prednisolonäquivalent, Dosisanpassung bei Kindern) und einem
Einleitung
schnell wirksamen H1-Antihistaminikum zur oralen Einnahme (z. B. Dimetinden) sowie ggf. einem β2-Sympathomimetikum zur Inhalation bei bronchialer Obstruktion (z.B. Salbutamol) und einem Adrenalin-Autoinjektor bei schweren systemischen Reaktionen mit Kreislaufbeteiligung (ab Stadium III). Die neueren, nicht-sedierenden H1-Antihistaminika sind anders als in der Schweiz in Deutschland nicht zur Akuttherapie der Anaphylaxie zugelassen (Ring et al., 2007).

Die einzige kausale und in den meisten Fällen zu empfehlende Therapie stellt jedoch die spezifische Immuntherapie mit Insektengift des auslösenden Insekts dar. Mehrere prospektive Studien sowie kleinere Fall-Kontroll-Studien belegen die Wirksamkeit dieser Behandlung, so dass die Therapie mit nur wenigen Ausnahmen empfohlen wird (Bonifazi et al., 2005).

Die Indikation zur Desensibilisierung besteht bei einer anaphylaktischen Reaktion ab Grad II und Grad I bei zusätzlichen Risikofaktoren oder relevanter Einschränkung der Lebensqualität und Nachweis einer Sensibilisierung mittels Hauttest, Nachweis spezifischer IgE-Antikörper oder eines der weiterführenden in-vitro-Testverfahren (Bonifazi et al., 2005).

Da eine vorausgegangene leichtgradige Allgemeinreaktion einen Risikofaktor für spätere schwergradigere anaphylaktische Reaktionen darstellt, wird die Immuntherapie zudem bereits ab Schweregrad I bei Erwachsenen ab dem 16. Lebensjahr empfohlen (Przybilla et al., 2011, Ruöff et al., 2009, Moffitt et al., 2004). Bei Kindern wird dagegen bei ausschließlicher Hautreaktion aufgrund des meist sehr benignen langfristigen Verlaufes keine spezifische Immuntherapie empfohlen (Golden et al., 2004, Schuberth et al., 1983).

Zur Therapiedurchführung stehen zum einen wässrige Insektengiftzubereitungen, zum anderen Depotpräparate zur Verfügung, in denen das Allergen an Aluminiumhydroxid adsorbiert ist. Die Steigerungsphase bis zum Erreichen der Standarderhaltungsdosis von 100 µg des Hymenopterengiftes erfolgt entweder mittels einem der multiplen Rush- oder Ultra-Rush-Protokolle innerhalb weniger Stunden bis Tage im stationären Bereich oder entsprechend eines Cluster-Protokolls konventionell über Wochen bis Monate. Das Insektengift wird subcutan injiziert und nach Erreichen der Erhaltungsdosis in zunehmenden Abständen in 4- wöchigen, nach dem ersten Therapiejahr in 4- bis 6-wöchigen Abständen verabreicht (Przybilla et al., 2011).
Die Wirksamkeit der spezifischen Immuntherapie nach Erreichen der Erhaltungsdosis von 100 µg im Sinne eines Schutzes bei einem erneuten Stich liegt zwischen 90 und 95 % für Wespengiftallergiker, und zwischen 75 und 85 % für Bienengiftallergiker (Ruëff und Przybilla, 2005, Müller, 1992).

Patienten mit rezidivierenden systemischen Reaktionen nach Insektenstichen unter einer spezifischen Immuntherapie mit einer Erhaltungsdosis von 100 µg gelten als „Therapieversager“. Für diese Patienten sowie für Patienten mit einer Bienengiftallergie, Imker und Mastozytosepatienten wird eine Erhaltungsdosis von 200 µg bis 250 µg empfohlen, da die Bienengift-SIT als weniger wirksam gilt. Mit dieser Dosis lässt sich bei nahezu allen Patienten ein wirksamer Schutz erreichen (Przybilla et al., 2011, Ruëff et al., 2001).

Eine Studie belegt zusätzlich zur objektivierbaren Schutzwirkung auch eine erhebliche Besserung der Lebensqualität von Insektengiftallergikern durch eine spezifische Immuntherapie (Oude Elberink et al., 2009).

Die Therapiedauer erstreckt sich über einen Zeitraum von mindestens 3 bis 5 Jahren. Die Therapie kann anschließend beendet werden, wenn alle Injektionen und ein Insektenstich (spontan oder provoziert) ohne systemisch-allergische Reaktion vertragen
Einleitung

wurden. Ein weiteres Kriterium zur Entscheidung für die Beendigung der Immuntherapie ergibt sich durch das Negativ-Werden von Hauttest und Normalisierung der spezifischen IgE-Titer. Einen dauerhaften Schutz kann man jedoch nur durch eine lebenslange Fortführung der Therapie erreichen. Dies wird für verschiedene Gruppen von Risikopatienten empfohlen: Hierzu zählen:

- Patienten mit Herzkreislauf- oder Atemstillstand im Rahmen der Anaphylaxie und

Patienten mit besonders intensiver Insektengiftexposition sollten bis mindestens 6 Monate nach Beendigung des intensiven Insektengiftkontaktes therapiert werden (Przybilla et al., 2011).

2.2.6 Rezidivrisiko nach Beendigung der spezifischen Immuntherapie

Das Risiko, nach Beendigung der SIT erneut eine systemische allergische Reaktion nach einem Insektenstich zu erleiden, liegt bei ca. 15 % (Przybilla et al., 2011).

Demnach besteht ein erhöhtes Risiko für ein Rezidiv:

- bei erwachsenen Patienten im Vergleich zu Kindern,
- wenn eine Bienengiftallergie vorlag im Unterschied zur Wespengiftallergie,
- wenn eine initial (vor SIT) sehr schwere systemische Reaktion auftrat,
- wenn während der SIT systemische Reaktionen nach der Injektion oder nach Spontanstichen auftraten,
- bei Patienten, deren SIT nur 3 Jahre im Vergleich zu 5 Jahren durchgeführt wurde,
- bei Vorliegen einer erhöhten basalen Serumtryptase vorlag bzw.
Einleitung

- Nachweis einer Mastozytose,
- wenn bei Therapiebeendigung eine weiterhin hohe Sensibilisierung im Hauttest nachweisbar war.

Keinen Einfluß hatten Geschlecht, atopische Diathese oder der insektengiftspezifische IgE- oder IgG-Spiegel bei Therapieende. Ein erniedrigtes Risiko lag vor, wenn der intracutane Hauttest sowie die spezifischen IgE-Antikörper bei Therapieende negativ waren.

In der gleichen Arbeit wurde nach Durchsicht mehrerer Langzeitbeobachtungen von Insektengiftallergikern nach Beendigung der SIT eine Rezidivwahrscheinlichkeit von 9 bis 19 % beschrieben, wobei sich der Kontrollzeitraum über maximal 7 Jahre nach Beendigung der SIT erstreckte (Bonifazi et al., 2005).

Die Arbeitsgruppe um Golden zeigte in einer Stichprovokationsstudie mit 74 Patienten sowie einer anschließenden längerfristigen Beobachtung der gleichen Patienten und zusätzlich weiterer 51 Patienten über maximal 7 Jahre nach Therapieende ein Rezidivrisiko um 5-10 %. Assoziiert waren diese Rezidivreaktionen mit einer initial sehr schwergradigen Reaktion, persistierend hoch positivem Hauttest und dem Auftreten einer systemischen allergischen Injektionsreaktion unter Therapie (Golden et al., 1998).

Eine weitere Arbeit untersuchte den Verlauf des insektengiftspezifischen IgE gegenüber Einzelallergenen während und nach erfolgter spezifischer Immuntherapie in Assoziation zum Therapieerfolg. 38 % der untersuchten Patienten erlitten im Beobachtungszeitraum einen erneuten Insektstich. Mit speziellem Blick auf die Patienten mit sehr schwerer initialer Reaktion (Grad IV) vor Therapie zeigte sich, dass 90,9 % dieser Patientengruppe keine oder nur eine geringe lokale Reaktion aufwiesen. Die restlichen 2 Patienten reagierten mit einer verstärkten lokalen Reaktion bzw. einem Schweregrad I
Einleitung

in einer Zeit von 3 Monaten bis 11 Jahren nach Therapieende (Carballada et al., 2010).

Gawlik fasst in einem Review verschiedene Einflussfaktoren zusammen, die gegenwärtig als die wichtigsten Risikofaktoren unabhängig von der Tryptaseerhöhung gelten. Hierzu zählen:

- das Patientenalter
- die Art des Insekts
- der Schweregrad der initialen Reaktion
- die Therapiedauer und
- die Verträglichkeit der Therapie (Gawlik, 2003).

Einen genetischen Zugang zur Erfassung des Langzeiteffektes der spezifischen Immuntherapie fand die Arbeitsgruppe um Niedoszytko. Sie untersuchten verschiedene genetische Merkmale bei Patienten, die nach Beendigung der spezifischen Immuntherapie anhaltend geschützt blieben im Vergleich zu solchen, die ein Rezidiv erlitten. Hierbei fand sich eine signifikant veränderte Genexpression bei den wiederholt systemisch reagierenden Patienten. Diese Beobachtung nährte die Hoffnung, mittels genetischer Untersuchungen eine Risikostratifizierung in dieser Patientengruppe
Einleitung
durchführen zu können (Niedoszytko et al., 2010).

2.3 Mastozytose und erhöhte basale Serumtryptase

Die systemische Mastozytose wird in verschiedene klinische Varianten unterteilt, die Mehrzahl der Fälle stellt die indolente systemische Mastozytose (ISM) dar. Weitere Varianten können bis hin zu seltenen malignen Formen wie der Mastzelleukämie oder dem Mastzellsarkom führen. Eine Sonderform stellt die kutane Mastozytose dar, die ebenfalls in verschiedene Unterformen unterteilt wird. Die Hauptvariante stellt die Urticaria pigmentosa dar (Valent et al., 2001). Bei Erwachsenen sind jedoch Hautläsionen in mehr als 80 % der Fälle mit einer Knochenmarksbeteiligung verbunden (Valent et al., 2007).

Basisdiagnostik ist die Bestimmung der basalen Serumtryptase. Die Tryptase ist ein
Mastzellmediator und kommt in zwei Formen vor, wobei die beta-Tryptase die diagnostisch relevante Form darstellt. Sie wird in Mastzellgranulae gespeichert und im Rahmen der Aktivierung von Mastzellen freigesetzt. Mittels Nachweis im Serum durch einen Fluoreszenz-Enzym-Immunoassay spiegelt die basale Serumtryptase die Menge von Mastzellen im Körper wider. Aufgrund der kurzen Halbwertszeit von 90-120 Minuten lässt sie sich optimal 1-5 Stunden nach der allergischen Reaktion deutlich erhöht nachweisen (Bonadonna et al., 2010). Um den basalen Serumtryptasespiegel zu bestimmen, sollte die Blutentnahme jedoch mindestens 24 Stunden nach einer anaphylaktischen Reaktion gewonnen werden (Przybilla et al., 2011).

Mit einer kumulativen Inzidenz von 49 % zeigen Patienten mit Mastozytose ein deutlich erhöhtes Risiko für anaphylaktische Reaktionen mit vermehrt schweren klinischen Verläufen, wobei Hymenopterenstiche unter anderem als Hauptauslöser gelten (Brockow et al., 2008). Die Epidemiologie der Mastozytose ist bisher gering erforscht, die Prävalenz ist mit 0,9-2,6 % innerhalb der Patientengruppe mit Insektengiftallergie deutlich höher als in der Normalbevölkerung (Niedoszytko et al., 2009).

Weitaus höher wird die Prävalenz einer alleinigen erhöhten Basistryptase unter den Insektengiftallergikern angegeben: je nach Veröffentlichung werden Zahlen zwischen 7,3 % und 11 % genannt (Haeberli et al., 2003, Kucharewicz et al., 2007, Guenova et al., 2010). Bei einem meist eher kleineren Teil dieser Patienten lässt sich als Ursache eine Mastozytose diagnostizieren: Die Arbeitsgruppe um Guenova untersuchte 274 Insektengiftallergiker, unter denen sich bei 10,9 % (30 Patienten) eine basale Serumtryptase von > 11,4 µg/l fand. Von diesen Patienten ließ sich lediglich bei 7,5 % eine kutane oder systemische Mastozytose sichern. Für den größten Anteil der Patienten lässt sich dies jedoch nicht bestätigen. Die basale Serumtryptase als ein Parameter für die Mastzell-„Last“ oder auch Mastzellreagibilität kann zusätzlich im Rahmen von akuten myeloischen Leukämien, myelodysplastischen Syndromen, dem Hypereosinophilie-Syndrom, einem fortgeschrittenen chronischen Nierenversagen und einer Onchocerciasis-Therapie auftreten, oft findet sich jedoch keine spezielle Ursache. Wie auch verschiedene andere Arbeitsgruppen fanden Guenova et al. außerdem einen signifikanten Anstieg des Anaphylaxierisikos bei Insektengiftallergikern mit steigendem Tryptasespiegel und zunehmendem Alter. Hierbei ist zusätzlich relevant, dass auch steigendes Alter und eine erhöhte Basistryptase korrelieren. Dies könnte neben kardiovaskulären Erkrankungen eine (Teil-)Lösung für die Frage darstellen, warum...

Eine andere Arbeitsgruppe wies – anders als Guenova et al. – bei etwa 90 % aller untersuchten Insektengiftallergiker mit erhöhter basaler Serumtryptase mittels Knochenmarksdiagnostik eine indolente systemische Mastozytose oder ein monoklonales Mastzellaktivierungssyndrom nach (Bonadonna et al., 2009).

Mehrere neuere Arbeiten zeigen unabhängig vom Vorhandensein einer Mastozytose bereits einen Anstieg des anaphylaktischen Schweregrades unterhalb des bisherigen Grenzwertes von 11,4 ng/ml (Guenova et al., 2010, Ruëff et al., 2009).

Generelle Einigkeit herrscht bezüglich der Feststellung, dass Patienten mit Mastozytose und/oder erhöhter basaler Serumtryptase unter schwereren anaphylaktischen Reaktionen leiden, häufiger negative Befunde in der in-vitro-Allergiediagnostik aufweisen, häufiger und schwerer Therapienebenwirkungen im Rahmen der insektengiftspezifischen Immuntherapie zeigen und öfter keinen ausreichenden Schutz durch die SIT erreichen (Bonadonna et al., 2010, Ruëff et al., 2006, Ruëff et al., 2010).

Aufgrund dieser Daten und mehrerer Fallberichte über tödliche anaphylaktische Reaktionen nach Beendigung der spezifischen Immuntherapie bei Insektengiftallergikern mit Mastozytose und/oder erhöhter basaler Serumtryptase wird leitliniengerecht eine lebenslange Fortführung der SIT sowie ggf. eine erhöhte Erhaltungs-dosis bis 200 µg Insektengift empfohlen (Ruëff et al., 2009, Bonadonna et al., 2010, Bonifazi et al., 2005, Przybilla et al., 2011).
3 Ziele und Fragestellung

Ziel dieser Arbeit war es, die bisher nicht geklärte Frage der Rezidivwahrscheinlichkeit einer Insektengiftallergie zu beleuchten. Insbesondere ist hierbei der Untersuchungszeitraum über beinahe 20 Jahre zu betrachten, so dass eine sehr langfristige retrospektive Beobachtung möglich war.

Zusätzlich sollten Risikofaktoren für ein Rezidiv identifiziert werden. Im Mittelpunkt standen hierbei vor allem die Dauer der spezifischen Immuntherapie, die Latenz zwischen Therapieende und Rezidiv sowie weitere allgemeine Faktoren wie Alter, Geschlecht, Art des Insekts sowie Begleiterkrankungen.

4 Material und Methoden

4.1 Grundlagen

Zu Beginn erfolgte die Festlegung der Fragestellung anhand einer ausführlichen Literaturrecherche der bisherigen Daten im Hinblick auf Insektengif tallergiker und deren Verlauf nach Beendigung einer spezifischen Immuntherapie.

In Anlehnung an den Anamnesebogen der Deutschen Gesellschaft für Allergologie und klinische Immunologie erfolgte dann die Erstellung eines Fragebogens (s. Anhang I). In diesem wurden Art und Zeitpunkt von Insektenstichen nach Beendigung der spezifischen Immuntherapie erfasst, außerdem therapeutische Maßnahmen, Begleitmedikation und weitere Risikofaktoren. Darüber hinaus wurden die angeschriebenen Patienten über die geplante Datenerfassung im Rahmen der Arbeit informiert.

ein Informationsblatt über Karenzmaßnahmen sowie Verhalten im Falle einer erneuten allergischen Reaktion. Außerdem wurde für die leitliniengerechte Weiterverordnung der Notfallmedikation (Antihistaminikum, 100 mg Prednisolonäquivalent, ggf. Adrenalininjektor, ggf. inhalatives β2-Mimetikum) gesorgt.

4.2 Patienten

Nachdem 789 Patienten angeschrieben worden waren, meldeten sich 271 Patienten (34,4 %) zurück, 8 Patienten stellten sich spontan im Untersuchungszeitraum in unserer Ambulanz vor, ohne vorher angeschrieben worden zu sein. Insgesamt 8 Patienten waren seit Beendigung ihrer Therapie verstorben, wobei die Ursache des Todes nach Angaben der Angehörigen, die den Fragebogen an uns zurücksandten, nicht auf eine anaphylaktische Reaktion zurückzuführen war. Von den angeschriebenen Patienten waren 190 (24,1 %) unter der uns bekannten Adresse nicht mehr erreichbar, 306 (38,8 %) zeigten keine Rückmeldung. Abbildung 1 stellt die Verteilung der Patientenreaktionen auf das Anschreiben dar.

Abbildung 1 Beantwortung der Fragebögen (Anzahl der Patienten)

Insgesamt konnten letztlich die Daten von 97 Frauen und 49 Männern (Gesamt 146) ausgewertet werden, da aufgrund der Heterogenität des Aktenbestandes nicht für alle
Patienten alle Daten vollständig erhalten bzw. die Angaben der Patienten unzureichend waren.

Ausgeschlossen wurden Patienten, deren Therapie nicht den Mindestzeitraum von 3 Jahren umfasste bzw. deren Therapie aus verschiedenen Gründen vorzeitig abgebrochen wurde. Es muss davon ausgegangen werden, dass diese Patientengruppe per se keinen ausreichenden Schutz durch die Therapie erfahren hat.

Das folgende Organigramm (Abbildung 2) zeigt, wie sich aus den ursprünglich vielen eingeschlossenen Patienten die Patientengruppe ergab, mit deren Daten die weiteren Berechnungen durchgeführt werden konnten.

Abbildung 2 Organigramm Patienten

Es waren Geburtsjahrgänge von 1920 bis 1990 vertreten, deren Therapie zwischen

Die meisten Patienten (87; 59,18 %) waren Wespengiftallergiker, 13 (8,84 %) Bienengiftallergiker. Ferner zeigten 19 (12,93 %) der Patienten neben ihrer Wespengiftallergie auch eine Sensibilisierung gegenüber Bienengift, allerdings ohne klinische Relevanz. Umgekehrt fanden sich zudem 5 (3,4 %) Bienengiftallergiker mit einer klinisch nicht relevanten Wespengiftsensibilisierung.

Unter den untersuchten Patienten waren 7 (4,76 %) von einer „Doppelallergie“ mit klinischer Relevanz der Wespen- wie auch Bienengiftsensibilisierung betroffen und wurden demzufolge mit beiden Insektengiften therapiert. Dagegen erfolgte die Therapie der 2 (1,36 %) Bienengiftallergiker mit Kreuzreaktion der wespengiftspezifischen IgE-Antikörper zum Bienengift entsprechend mit Bienengift und die SIT der 11 (7,48 %) Wespengiftallergiker mit Kreuzreaktion mit Wespengift. Nur 3 Patienten (2,04 %) waren von einer primären Hornissengiftallergie betroffen, wobei sich die hornissengiftspezifischen IgE-Antikörper kreuzreakierend zum Wespengift zeigten und die Therapie somit mit Wespengift erfolgte. Abbildung 3 verdeutlicht die Verteilung der Patienten auf die unterschiedlichen Insektentypen, wobei das signifikante Vorherrschen der Wespengiftallergie klar zu erkennen ist.
4.3 Statistische Methoden

Zeitintervalle wurden zur optimalen Analyse in Tagen angegeben, wobei bei sicherer Datenangabe dieses Datum (z. B. Datum des Stichereignisses) und bei fehlendem Datum jeweils der 1. Tag des angegebenen Monats verwendet wurde.

Zur Errechnung der statistischen Zusammenhänge wurde aufgrund der insgesamt geringen Fallzahlen der exakte χ^2-Test nach Pearson (Vier-Felder-Tafel) unter Verwendung des Programms Statistical Package for Social Science Software (SPSS für Windows 11.5; SPSS, Chicago, Il, USA) für nominale Parameter angewandt.

Gruppenstatistiken für metrische Parameter (Dauer der spezifischen Immuntherapie) erfolgten mittels des T-Tests für unabhängige Stichproben.

Die Datenverarbeitung erfolgte mit Hilfe der Tabellenkalkulationsprogramme von OpenOffice3.1.org und Microsoft Excel 2007, ebenso die deskriptive Statistik.

4.4 In-vivo- und In-vitro-Diagnostik im Rahmen der Verlaufsuntersuchung

Im Rahmen der ambulanten Verlaufskontrolle wurde eine Diagnostik mittels Hauttestung durchgeführt. Entsprechend den europäischen Empfehlungen wurde der
Test an der volaren Seite des Unterarmes entweder mittels Pricktestung mit Konzentrationen von 1, 10 und 100 µg/ml bzw. bei negativem Pricktest mittels intracutaner Testung mit 0,1 oder 1 µg/ml mit Bienen- und Wespengift (ALK-Abelló Arzneimittel, Wedel, Deutschland) unter Herstellung einer entsprechenden Verdünnung von Reless® Insektengiften (Lyophilisat, ALK-Abelló Arzneimittel, Wedel, Deutschland) appliziert. Die Negativkontrolle bestand aus 0,9-%iger Natriumchloridlösung, die Positivkontrolle aus Histaminlösung 10 mg/ml (ALLERGOPHARMA Joachim Ganzer KG, Reinbek, Deutschland). Die Resultate wurden 15 Minuten nach Testung abgelesen. Der Test wurde als positiv gewertet, wenn ein Quaddeldurchmesser von ≥ 3 mm im Pricktest bzw. ≥ 5 mm im Intracutantest messbar war (Ruëff et al., 2010).

Das insektengiftspezifische IgE wurde mittels der CAP Methode (Phadia, Uppsala, Schweden) in kU/l bestimmt.

Die laborchemische Bestimmung der Basisserumtryptase erfolge mit Hilfe des ImmunoCAP Tryptase der Firma Phadia (Phadia, Uppsala, Schweden) in µg/l (95. Perzentile 11,4 µg/l).
5 Ergebnisse

5.1 Rezidivrate

Zunächst wurde mittels der Fragebögen bzw. im Rahmen der ambulanten Verlaufskontrolle erfasst, inwiefern die Patienten nach Abschluss der spezifischen Immuntherapie erneut systemische allergische Reaktionen gegenüber Insektenstichen zeigten. Hierbei fiel auf, dass trotz des langen Untersuchungszeitraumes 121 Patienten (42,6 %) nicht wieder von einem Insekt gestochen wurden.

163 Patienten (57,4 %) wurden im Zeitraum von bis zu 20 Jahren erneut von einem Insekt gestochen. Von diesen lagen bei 146 Patienten alle zur weiteren Analyse erforderlichen Angaben vor.

Insgesamt reagierten 15 (10,2 %) dieser 146 Patienten erneut systemisch (Grad I-IV n. Ring und Meßmer). Unter diesen zeigte ein Patient (6,8 % der Patienten mit Rezidiv) eine Reaktion vom Schweregrad I, 10 (68,5 %) wiesen Symptome des Schweregrades II auf und 4 (27,4 %) reagierten mit einer anaphylaktischen Reaktion Grad III. Kein Patient wies die schwerste Form Grad IV auf. Dagegen erfüllten 14 (9,6 %) Patienten nach einem erneuten Insektenstich Symptome wie Schweißausbrüche, Panik, Hitzegefühl, Herzrasen, welche jedoch letztendlich als vegetative Angstreaktion gewertet wurden. Nachfolgend konnte bei diesen Patienten keine IgE-vermittelte Sensibilisierung mehr nachgewiesen werden.

Ausschließlich während der Durchführung der spezifischen Immuntherapie wurden 20 Patienten von einem Insekt gestochen, wobei diese Ereignisse komplikationslos abliefen.

Insgesamt 118 Patienten (80,8 %) bemerkten keine systemische allergische Reaktion nach Insektenstich.

Innerhalb der Gruppe von 15 Patienten, die erneut allergisch reagierten, sind 9 Patienten weiblichen Geschlechts, 6 sind Männer. Somit lässt sich eine Rezidivrate der Frauen von 9,3 % (9 von 97) bzw. der Männer von 12,2 % (6 von 49, Odds Ratio OR=1,36) errechnen, wobei sich diesbezüglich keine statistische Signifikanz nachweisen läßt (p=0,616).

In der nachfolgenden Tabelle (Tabelle 2) sowie Abbildung (Abbildung 3) werden diese Ergebnisse übersichtlich dargestellt.
Ergebnisse

<table>
<thead>
<tr>
<th>Reaktionen</th>
<th>Fragebogenpatienten vor SIT</th>
<th>Verlaufskontrollpatienten vor SIT</th>
<th>Gesamt vor SIT (%)</th>
<th>Fragebogenpatienten nach SIT</th>
<th>Verlaufskontrollpatienten nach SIT</th>
<th>Gesamt nach SIT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad I</td>
<td>6</td>
<td>6</td>
<td>12 (8,2)</td>
<td>1</td>
<td>0</td>
<td>1 (0,7)</td>
</tr>
<tr>
<td>Grad II</td>
<td>28</td>
<td>45</td>
<td>73 (50,0)</td>
<td>1</td>
<td>9</td>
<td>10 (6,8)</td>
</tr>
<tr>
<td>Grad III</td>
<td>20</td>
<td>39</td>
<td>59 (40,4)</td>
<td>1</td>
<td>3</td>
<td>4 (2,5)</td>
</tr>
<tr>
<td>Grad IV</td>
<td>1</td>
<td>1</td>
<td>2 (1,3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Keine Reaktion/Lokale Reaktion</td>
<td></td>
<td></td>
<td>51</td>
<td>66</td>
<td>118 (80,8)</td>
<td></td>
</tr>
<tr>
<td>Angstreaktion</td>
<td></td>
<td></td>
<td>1</td>
<td>13</td>
<td>14 (9,6)</td>
<td></td>
</tr>
</tbody>
</table>

Summe | 55 | 91 | 146 (100) | 55 | 91 | 146 (100)

Tabelle 2 Reaktionen vor und nach spezifischer Immuntherapie

Abbildung 4 Reaktionen vor und nach spezifischer Immuntherapie (Anzahl der Patienten)
5.2 Schweregrade der allergischen Reaktion vor und nach spezifischer Immuntherapie

Insgesamt reagierten 15 von insgesamt 146 Patienten erneut systemisch allergisch nach einem Insektenstich. Im Vergleich zum Schweregrad der Reaktion vor Beginn der SIT wiesen 8 Patienten (53,3 %) eine vergleichbare Symptomatik auf und 6 Patienten (40,0 %) reagierten milder im Vergleich zur initialen Reaktion. Lediglich ein Patient (6,7 %) wies eine stärkere Reaktion auf, bei keinem der Patienten kam es zur schwersten Reaktion Grad IV. Somit ist eine Verschiebung hin zu milderen Symptomen erkennbar (Abbildung 5).

Abbildung 5 Schweregrade der allergischen Reaktion vor und nach SIT (Anzahl der Patienten)

5.3 Nachfolgende Stichereignisse

Wie bereits zuvor aufgeführt, wurde nur ein relativ geringer Anteil der Patienten erneut von einem Insektt gestochen, wovon ebenfalls nur ein Bruchteil wieder eine allergische Reaktion aufwies. Die meisten Patienten wurden nach erfolgter Desensibilisierung nur noch ein weiteres Mal (61) gestochen, 17 Patienten wurden 2malig, 7 3malig, 3 4malig gestochen. Drei Patienten erlitten nach spezifischer Immuntherapie mehr als 4 weitere Insektenstiche.
5.4 Zeitlicher Abstand nach spezifischer Immuntherapie

Durchschnittlich trat der Insektenstich verbunden mit einem Rezidiv der allergischen Reaktion 6,85 Jahre (Standardabweichung 3,56 Jahre) nach Beendigung der spezifischen Immuntherapie auf.

In dieser Graphik (Abbildung 6) wie auch in den folgenden Kapiteln wurden die Berechnungen lediglich mit den 91 Patienten durchgeführt, die sich zur Verlaufskontrolle in der allergologischen Ambulanz der Klinik für Innere Medizin I des Uniklinikums Jena vorstellten und deren Daten für eine Analyse ausreichend vollständig vorlagen.

Der größte Unterschied zeigte sich wie erwartet zwischen Patienten ohne Rezidiv (zeitlicher Abstand des Insektenstiches nach Beendigung der spezifischen Immuntherapie Mittelwert MW = 1969,79 Tage = 5,4 Jahre, Standardabweichung SAW = 1286,9 Tage, 63 Patienten) im Vergleich zu Patienten mit Schweregrad III n. Ring und Meßmer nach Therapieende (MW 3138,7 Tage = 8,6 Jahre, SAW = 963,2 d, 3 Patienten) (p = 0,162, nicht signifikant, T-Test für unabhängige Stichproben). Abbildung 6 stellt das zeitliche Intervall zwischen Therapieende der SIT und erneutem Insektenstich im Verhältnis zum Schweregrad der Reaktion dar.
Abbildung 6 Zeitlicher Abstand des Insektenstiches zur Therapiebeendigung der spezifischen Immuntherapie in Korrelation zum Schweregrad (nach Ring und Meßmer) der Reaktion [(0) keine Reaktion, (1) bzw. (4) Schweregrad I bzw. IV hier 0 Patienten, (2) Schweregrad II, (3) Schweregrad III, (5) Angstreaktion]

Unabhängig vom Schweregrad ergibt sich ein signifikanter Unterschied (p = 0,091, Standardfehler 459,8 Tage) des mittleren Abstandes des Insektenstiches nach Therapieende mit einem Mittelwert MW = 1934,4 Tage (= 5,3 Jahre, SAW = 1235,7 Tage, n = 76) der Patienten ohne Rezidiv im Vergleich zu einem MW = 2787,3 d (= 7,6 Jahre, SAW = 1383,3 Tage, n = 10) der Patienten mit Rezidiv (siehe Abbildung 7). Der maximale zeitliche Abstand betrug 5823 Tage (= 15,9 Jahre) bei einem Patienten mit einer leichtgradigen systemischen Reaktion nach spezifischer Immuntherapie.
5.5 Dauer der spezifischen Immuntherapie

Durchschnittlich wurden die untersuchten 91 Patienten 1156,8 Tage mittels spezifischer Immuntherapie behandelt (Standardabweichung SAW = 350 Tage).

Abbildung 7 Zeitlicher Abstand des Insektenstiches vom Therapieende der spezifischen Immuntherapie in Korrelation mit dem Auftreten einer systemisch allergischen Reaktion, schweregradunabhängig (p = 0,091 signifikant)
Abbildung 8 Dauer der spezifischen Immuntherapie in bezug auf ein Rezidiv der Insektengiftallergie (nicht signifikant)

5.6 Mastozytose / erhöhte Serumbasistryptase

Bei 26 Patienten, die sich zur Verlaufskontrolle in unserer Ambulanz vorstellten und die initial oder aktuell mit einer schwergradigen Reaktion (Grad III-IV nach Ring und Meßmer, anaphylaktischer Schock) reagierten, erfolgte die Bestimmung der Serumbasistryptase als ein unabhängiger Risikofaktor für eine Insektengiftallergie mit besonders schweren Reaktionen.

Von den 26 Patienten wiesen 7 (26,9 %) mindestens einen erhöhten Basistryptasewert auf (95.-Perzentile 11,4 µg/l). Folgende Graphik (Abbildung 9) verdeutlicht den Zusammenhang zwischen schwergradiger Reaktion und einer relevanten Erhöhung der Basistryptase.
Ergebnisse

Abbildung 9 Rezidivverhältnis in bezug auf eine erhöhte Tryptase bzw. bestehende Mastozytose

Es zeigt sich in der Gruppe der Patienten mit einer schweren Initialreaktion und normalem Tryptasewert eine Rezidivhäufigkeit von 15,7 % (3 von 19 Patienten). Die Patienten mit einer erhöhten Basistryptase und/oder gesicherten Mastozytose weisen eine Rezidivhäufigkeit von 42,8 % auf (3 von 7 Patienten) (s. Abbildung 10), es ergibt sich eine Odds Ratio von 4. Eine Signifikanz der Ergebnisse besteht bei einem p=0.293 nicht.
Abbildung 10 Zusammenhang zwischen erhöhter Basistryptase und Rezidivwahrscheinlichkeit

Unter den Patienten mit einem normalen Tryptasewert bestand bei 11 (57,9 %) eine dominierende Wespengiftallergie, bei 7 (36,8 %) eine Bienengiftallergie, lediglich ein Patient (5,3 %) wies eine Doppelallergie auf.

Demgegenüber zeigt sich eine relevante Verschiebung in Richtung einer Doppelallergie bei 2 Patienten (28,6 %) der Patientengruppe mit erhöhter Tryptase bzw. Mastozytose, 4 Patienten (57,1 %) waren vorherrschende Wespengiftallergiker, ein Patient (14,3 %) reiner Bienengiftallergiker. Eine Signifikanz lässt sich aufgrund der geringen Fallzahl nicht beweisen (p = 0,696).
Abbildung 11 Dominierende Allergie in bezug auf eine erhöhte Serumtryptase bzw. bestehende Mastozytose (Anzahl der Patienten)

5.7 Art der Sensibilisierung

werden die Patienten aus den zuvor angeführten Gründen mit Wespengift therapiert.

Im Folgenden werden o. g. Unterkategorien, d. h. zusätzliche Sensibilisierungen bzw. Kreuzreaktionen, in die Hauptsensibilisierungen zusammengefasst, um eine übersichtlichere Darstellung zu gewährleisten.

Von den 74 Wespengiftallergikern reagierten nur 10 (13,5 %) erneut nach einem Wespenstich. Ein ganz ähnliches Verhältnis findet sich mit 2 (14,3 %) erneut reagierenden Patienten innerhalb der 14 Bienengiftallergiker (OR = 1,1). Die drei gleichermaßen auf Bienen- wie Wespengift reagierenden Patienten wiesen allesamt

Abbildung 13 Verteilung der vorwiegenden Allergie in bezug auf die Rezidivhäufigkeit (Anzahl der Patienten)

5.8 Einfluss anderer Risikofaktoren / Begleiterkrankungen

In der Literatur werden verschiedene Umstände bzw. Erkrankungen als Risikofaktoren für schwerere allergische Reaktionen betrachtet. Erfasst wurden daher kardiovaskuläre Erkrankungen, Asthma bronchiale, die Einnahme bestimmter, als riskant erachteter Medikamente (ß-Blocker, nichsteroidale Antirheumatika, ACE-Inhibitoren), die bereits gesondert beschriebene erhöhte Basistryptase bzw. Mastozytose, sonstige schwere Begleiterkrankungen, erhöhte Insektengiftexposition oder eine Kombination der
genannten Faktoren.

Unter unseren 54 Patienten mit mindestens einem der o.g. Risikofaktoren fand sich ein mit 9 (9,9 %) relevant erhöhter Anteil an Patienten mit Rezidiv im Gegensatz zu den 3 (3,3 %) 37 Patienten mit Rezidiv aber ohne vorhandene Risiken. Abbildung 14 verdeutlicht diese Verteilung.

Abbildung 14 Vorhandensein von Risikofaktoren in bezug auf die Rezidivrate

Die Odds Ratio ist deutlich erhöht auf OR = 2,3 für Patienten mit vorhandenem Risikofaktor, ein Rezidiv zu erleiden. Mit einem p = 0,347 sind die Unterschiede jedoch aufgrund der geringen Fallzahlen nicht als signifikant zu betrachten.

Als hauptsächliche Begleiterkrankungen fanden sich Erkrankungen des allergischen Formenkreises (19), hierunter das Asthma bronchiale (5) und die allergische Rhinitis (3), Schilddrüsenerkrankungen (15), Diabetes mellitus (3), andere metabolische
Ergebnisse

Störungen (12) und Tumorerkrankungen (2) sowie Histaminintoleranz (1) zu nennen.
Unter den kardiovaskulären Erkrankungen sind v.a. die arterielle Hypertonie sowie die hypertensive Herzerkrankung (17) sowie andere Herzerkrankungen (2) aufzuführen. Dagegen wiesen 29 (32 %) der Patienten keinerlei Risikofaktoren auf.

Abbildung 15 zeigt die Verteilung verschiedener Begleiterkrankungen, wobei jeweils 11 Patienten kardiovaskulär erkrankt waren bzw. mehr als eine Begleiterkrankung aufwiesen. Unter den schweren Comorbiditäten sind die oben genannten sonstigen Erkrankungen zusammengefasst, also z.B. Asthma bronchiale, Diabetes mellitus, Tumorerkrankungen etc..

Abbildung 15 Verteilung der Begleiterkrankungen unter allen Patienten (Anzahl der Patienten)
5.9 Immunologische Parameter zum Ende der spezifischen Immuntherapie

5.9.1 Insektengiftspezifisches IgE

Laut aktuellen Leitlinien gibt es mehrere Parameter, die zur Entscheidung, ob und wann die spezifische Immuntherapie beendet wird, herangezogen wird. Der insektengiftspezifische IgE-Wert, welcher im Laufe der Therapie üblicherweise deutlich sinkt und z.T. negativ wird, ist einer dieser Parameter. Die Bestimmung erfolgte kurz vor Abschluss der spezifischen Immuntherapie.

Von 9 Patienten lagen hierfür keine ausreichenden Daten mehr vor, so dass eine Analyse nicht möglich war.

In der Analyse wurde der spezifische IgE-Wert in folgende 3 Kategorien eingeteilt:

1 – negativ (RAST- bzw. CAP-Klasse 0)
2 – positiv (RAST-Klasse I, CAP-Klasse I und II)
3 – deutlich positiv (RAST-Klasse ≥ II, CAP-Klasse ≥ III)

Abbildung 16 stellt das Verhältnis der Rezidiv- bzw. Nicht-Rezidivpatienten zum insektengiftspezifischen IgE-Wert zum Abschluss der spezifischen Immuntherapie dar.
Abbildung 16 Rezidivhäufigkeit in Abhängigkeit vom spezifischen IgE zum Ende der SIT (Anzahl der Patienten)

Von den 59 Patienten mit negativem spezifischem IgE-Wert zu SIT-Ende erlitten 6 (10,2 %) versus 53 (89,8 %) eine erneute allergische Reaktion.

Vergleichbare Zahlen finden sich für die 11 Patienten mit positivem spezifischem IgE mit einem (9,1 %) Patienten mit Rezidiv im Gegensatz zu 10 (90,9 %) ohne Rezidiv.

Ein minimaler Unterschied zeigt sich für die 12 Patienten mit deutlich erhöhtem hymenopterengiftspezifischem IgE: Hier erlitten 2 (16,7 %) Patienten ein Rezidiv im Gegensatz zu 10 Patienten (83,3 %) ohne erneute allergische Reaktion. Mit einem $p = 0,846$ ergibt sich keine statistische Signifikanz.

5.9.2 Hauttest

Auch die Hauttestung – ob in Form des Pricktests oder als Intracutan testung – wird als
Entscheidungshilfe zur Beendigung der spezifischen Immuntherapie herangezogen. Üblicherweise sinkt die Hauttestreaktivität über die Jahre der Therapie und wird oft sogar negativ, einigen Patienten bleibt jedoch ein positiver Hauttest erhalten. In solchen Fällen wird die Entscheidung zum Therapiestopp anhand anderer Parameter bzw. aufgrund eines vertragenen Feld- oder Provokationsstiches gestellt.

Von den 49 Patienten mit negativem Hauttest kurz vor Beendigung der spezifischen Immuntherapie reagierten 2 (4,1 %) erneut nach einem Insektenstich. Demgegenüber reagierten 7 Patienten (35,0 %) von 20, die einen noch positiven Hauttest aufwiesen. Dies bedeutet eine Odds Ratio (Erkrankungschance) für Patienten mit anhaltend positivem Hauttest zu Ende der SIT von OR = 12,6 (p = 0,008 signifikant).

Achtzehn Patienten wiesen eine fragliche, d.h. grenzwertige Hautreaktion auf. Von diesen reagierten 3 (16,7 %) erneut. Ein sehr geringer Patientenanteil hatte eine Doppelallergie, wurde also auch mit beiden Insektengiften therapiert, von diesen wiesen 3 zu Ende der SIT noch eine positive Reaktion für eines der beiden Insektengifte auf, keiner dieser Patienten erlitt ein Rezidiv. Für einen Patienten waren keine Hauttestdaten mehr verfügbar.

Abbildung 17 stellt das Auftreten eines Rezidivs in Assoziation mit dem Ergebnis des Hauttests zum Ende der spezifischen Immuntherapie dar.
Ergebnisse

Abbildung 17 Abhängigkeit der Rezidivwahrscheinlichkeit vom Hauttestergebnis zu Ende der SIT (Prick/Intracutan) (Anzahl der Patienten) [1 von beiden positiv – bezieht sich auf Patienten mit Doppelallergie, deren Hauttest noch für eines der beiden Insektengifte positiv ist]

5.10 Klinische Folgen

Bei 5 Patienten wurde trotz Rezidiv ein zunächst abwartendes therapeutisches Verhalten verfolgt, wobei vor allem bei drei Patienten der fehlende sichere

Eine ältere Patientin lehnte die erneute Therapie aus Altersgründen ab und begründete die Entscheidung zudem mit dem für sie sehr seltenen Auftreten von Insektenstichen.
6 Diskussion

6.1 Die Bedeutung der Insektengiftallergie für das Leben der Patienten

oft zu den prophylaktischen Maßnahmen bei.

Unter den Patienten mit erneuten Insektenstichen nach Therapieende berichteten 14 von ausschließlich subjektiv wahrgenommenen Symptomen wie Schwindel, Schwächegefühl und Palpitationen, die angesichts einer fehlenden IgE-vermittelten Insektengiftsensibilisierung und in Zusammenschau der Symptome am ehesten als Angst-vermittelte Beschwerden gewertet wurden. Diesbezüglich konnte im Rahmen der durchgeführten Verlaufskontrolle zumindest einem Teil dieser Patienten vermittelt werden, dass aktuell kein erhöhtes Risiko einer erneuten Reaktion besteht und somit ein Teil der Angst genommen werden.

Zusammenfassend hat die Insektengiftallergie auch ohne erneutes Auftreten von Insektenstichen oder gar anaphylaktischen Reaktionen einen anhaltenden Effekt auf das Leben und das Verhalten der betroffenen Patienten und ihrer Umgebung.

6.2 Langzeitwirkung der insektengiftspezifischen Immuntherapie

Mit einer Rezidivinzidenz von 10,2 % (15 von 146 Patienten) ergab sich ein Ergebnis im unteren Bereich der in der Literatur angegebenen Häufigkeit von 10-20 %. Dies spricht für die auch über das Ende der spezifischen Immuntherapie hinaus anhaltende Effektivität der spezifischen Immuntherapie mit Insektengift.

6.3 Latenzzzeit zwischen Therapieende und Rezidiv

Zunächst wurde die Latenz zwischen Therapieende und einem erneuten Insektenstich untersucht. Grundsätzlich lässt sich annehmen, dass mit zunehmendem zeitlichem Abstand zur Desensibilisierung die Wahrscheinlichkeit einer erneuten allergischen Reaktion zunimmt. Hinweise für einen solchen Zusammenhang zwischen der therapiefreien Zeitspanne und der wiederholten Reaktion auf einen Stich zeigten sich in der durchgeführten Untersuchung: So wurden Patienten, die nicht reagierten ca.
5,3 Jahre nach Therapieende von einer Biene oder Wespe gestochen. Dagegen traten
die Stiche der Patienten mit einem Rezidiv im Mittel 7,6 Jahre nach Beendigung der SIT
auf, was einem signifikanten Unterschied entsprach.

Zu dieser Fragestellung existieren wenig publizierte Daten, da der zeitliche Abstand der
Untersuchungen üblicherweise weniger ausgedehnt war als in der vorliegenden
Untersuchung. Eine vergleichbare Studie führten Lerch et al. 1998 durch; der maximale
Abstand der spezifischen Immuntherapie zur Befragung der Patienten betrug jedoch 7
Jahre und es bestand eine hohe Reexpositionsrate bereits in den ersten Monaten bis
Jahren nach Beendigung der Therapie (Lerch und Müller, 1998). Eine weitere
Arbeitsgruppe führte zeitlich definierte Provokationsstiche alle 1-2 Jahre nach SIT-Ende
bis maximal 5 Jahre nach Therapieende durch (Golden et al., 1996). Eine aktuelle
Übersicht bestätigt ein geringes Ansteigen der kumulativen Rezidivinzidenz 7 Jahre
nach Ende der Therapie im Vergleich zu 10 Jahren (Golden, 2010).
Zusammengenommen bestätigt sich eine Assoziation zwischen der Latenz seit dem
Therapieende und der Wahrscheinlichkeit einer erneuten Reaktion.

Die immunologische Toleranzinduktion während der spezifischen Immuntherapie lässt
sich klinisch durch die abnehmende IgE-vermittelte Sensibilisierung im Hauttest und
IgE-Antikörper-Nachweis nachvollziehen. Zellbiologischer Hintergrund ist eine
veränderte insektengiftspezifische Immunantwort mit Verschiebung der
vorherrschenden Th2-Antwort hin zugunsten einer dominierenden Th1-Reaktivität durch
eine Induktion der Interleukin-10 Produktion (Bellinghausen et al., 1997). Weiterhin lässt
sich in der Frühphase der Therapie ein Anstieg der T-regulatorischen Zellen (Pereira-
Santos et al., 2007) sowie des insektengiftspezifischen IgG, insbesondere IgG4,
nachweisen, dieser Effekt verschwindet nach 4 Jahren der Therapiefortführung wieder.

Die protektive Wirkung hält jedoch in den meisten Fällen an (Golden et al., 1992).
Weiterführende Untersuchungen müssen sich mit der Frage beschäftigen, warum es bei
manchen Patienten wieder zu einem Verlust der Toleranz kommt.

6.4 Bedeutung der Therapiedauer

Über die erforderliche Dauer einer Desensibilisierung der Insektengiftallergie wird seit
langem kontrovers diskutiert. In den Leitlinien der Deutschen Gesellschaft für
Allergologie und Klinische Immunologie für Insektengiftallergiker wird derzeit eine

Auffallend ist zudem die vergleichsweise kurze Dauer der spezifischen Immuntherapie dieser analysierten Patienten. Dies steht unter anderem in Zusammenhang mit den zum Zeitpunkt der Therapie vorliegenden Therapieleitlinien. Beobachtet man die Entwicklung der internationalen Leitlinien zur Therapie der Insektengiftallergie, so geht die Tendenz hin zu einer individualisierten Therapie mit entsprechend längerer Fortsetzung der Hyposensibilisierung (Przybilla et al., 2011).

6.5 Allgemeine Risikofaktoren für ein Rezidiv

In der vorliegenden Arbeit wurden verschiedene Parameter untersucht, die einen möglichen Effekt auf den Langzeitschutz der Therapie besitzen und die eine Hilfestellung in der Identifizierung von Risikopatienten leisten könnten.
Mehrere Arbeiten legen einen Zusammenhang zwischen hoher Stichfrequenz und Rezidivrate nahe (Golden, 2010). Dies ließ sich für die untersuchten Patienten nicht nachvollziehen. Vielmehr fand sich eine allgemein sehr niedrige Insektenstichrate, lediglich 3 Patienten erlitten mehr als 4 Insektenstiche nach Therapieende, nur einer dieser Patienten reagierte erneut systemisch auf den ersten der aufgetretenen Stiche.

Ein signifikanter Geschlechtsunterschied ließ sich in Bezug auf die Rezidivrate nicht nachweisen. Dies entspricht den Ergebnissen anderer Untersuchungen, in denen ebenfalls keine signifikante Assoziation mit dem Geschlecht der Patienten gefunden wurde (Bonifazi et al., 2005).

Mehrere Publikationen stellen einen Zusammenhang zwischen dem auslösenden Insekt und der Rezidivrate fest. So zeigen Bienengiftallergiker im Vergleich zu Wespengiftallergikern nicht nur eine höhergradigere Hautreaktivität und höhere spezifische IgE-Werte, sondern auch eine erhöhte Inzidenz von unerwünschten Therapienebenwirkungen, Therapieversagen und Rezidiven (15,8 % vs. 7,5 %) (Lerch und Müller, 1998, Müller et al., 1991). Die hier vorgelegte Untersuchung konnte diesen Trend nicht eindeutig bestätigen: Mit einer Rezidivrate von 14,3 % (2/14) der Bienengiftallergiker im Vergleich zu 13,5 % (10/74) der Wespengiftallergiker fand sich kein signifikanter Unterschied.

6.6 Bedeutung der klinischen und immunologischen Parameter für das Rezidivrisiko

Als Entscheidungshilfe zur Therapiebeendigung werden immunologische Parameter genutzt, die den Grad der Sensibilisierung quantifizieren, und die sich im Laufe der
Diskussion

Eindeutige immunologische Parameter für die Vorhersage eines Rezidivs ließen sich mit dieser Arbeit zwar nicht definieren. Es zeichneten sich jedoch Trends ab, die ein weiteres Puzzleteil in der Therapie von Insektengiftallergikern darstellen. Wie bereits dargelegt, konnten auch vergleichbare, z.T. prospektiv, aber stets monozentrisch angelegte Arbeiten nur Hinweise für Rezidivrisikofaktoren bieten.

6.7 Die Rolle der Mastozytose bzw. erhöhten basalen Serumtryptase für die Insektengiftallergie

In den letzten Jahren ist im Hinblick auf das Anaphylaxierisiko im allgemeinen und sehr
schwere anaphylaktische Insektengiftreaktionen im besonderen die Mastozytose bzw. ein erhöhter Serumbasistryptasespiegel (> 11,4 µg/l) bzw. die erhöhte Basophilensensitivität in das Blickfeld des wissenschaftlichen Interesses gerückt. Da Mastzellen zu den wichtigsten Effektorzellen der allergischen Reaktion zählen, führt eine Vermehrung der Zellen zu besonders schweren Reaktionen bis hin zum schweren, lebensbedrohlichen anaphylaktischen Schock.

Bei Insektengiftallergikern mit Mastozytose oder einer erhöhten Mastzellreagibilität ist mit schwergradigen allergischen Reaktionen, vermehrten unerwünschten Therapienebenwirkungen, einem erhöhten Risiko eines Therapieversagens und einem sehr hohen Rezidivrisiko nach Therapiebeendigung zu rechnen (Golden, 2010, Bonadonna et al., 2010).

Im Rahmen der vorliegenden Untersuchung ließ sich dieser Zusammenhang bestätigen. Die Patienten mit einer initial oder aktuell schwergradigen anaphylaktischen Reaktion wiesen in 26,9 % (n = 7) eine erhöhte Tryptasekonzentration im Serum auf. Bei einigen dieser Patienten ließ sich eine Mastozytose, z. T. mit der Ausprägung einer Urticaria pigmentosa nachweisen. Ein kleiner Teil wies aber keine nachweisbaren Organmanifestationen auf. Vereinbar mit anderen Studien zeigte sich für die 7 Patienten mit Mastozytose bzw. erhöhter Tryptase eine Rezidivhäufigkeit von 42,8 % im Gegensatz zu 15,7 % der Patienten mit zwar schwergradiger Initialreaktion aber normalem Tryptasewert. Es konnte zwar aufgrund der niedrigen Fallzahl kein signifikanter Unterschied berechnet werden. Mit einer Odds Ratio von 4 bestätigt sich jedoch der zu erwartende Trend in Richtung eines deutlich erhöhten Rezidivrisikos für die betroffenen Patienten mit erhöhter Serumtryptase.

Bisherige Literaturdaten beschreiben zudem eine Häufung der vorherrschenden Wespengiftsensibilisierung bei Patienten mit erhöhter Tryptase bzw. Mastozytose.

Die hier beobachtete Dominanz der Wespengiftallergie für Patienten mit erhöhter Tryptase (n = 4, 57,1 %) ist mit Beobachtungen anderer Studien vergleichbar (Niedoszytko et al., 2009). Auffallend war jedoch zusätzlich eine Häufung mit einer klinisch relevanten Doppelallergie: 2 (28,6 %) Patienten wiesen sowohl eine Wespen- als auch Bienengiftallergie auf und wurden deshalb mit beiden Insektengiften desensibilisiert. Ein Rezidiv trat bei diesen Patienten nicht auf.
6.8 Klinische Konsequenzen dieser Studie

Für 11 Patienten wurde die Indikation zur erneuten spezifischen Immuntherapie mit Insektengift gestellt, da ein therapiebedürftiges Rezidiv ihrer Insektengiftallergie diagnostiziert wurde.

Die Resonanz der Untersuchung war für die Patienten, die sich zur Verlaufskontrolle vorstellten, überwiegend positiv. Viele Patienten waren für die Möglichkeit der allergologischen Vorstellung dankbar. Insbesondere weibliche Insektengiftallergiker berichteten über eine große Angst, wieder gestochen zu werden und allergisch zu reagieren. Die Untersuchung vermittelte diesen Patienten Sicherheit und trug zum gelasseneren Umgang mit Insekten bei.

darauf aufmerksam gemacht, auf Haltbarkeit und regelmäßige Rezeptierung zu achten.

6.9 Beziehung der eigenen Erfahrungen im Hinblick auf die gültigen Leitlinien

Berücksichtigt man die aktuellen Therapieleitlinien, so ergaben sich für einige der untersuchten Patienten Konflikte bezüglich der Therapiedauer (Przybilla et al., 2011). Ein Beispiel ist eine ältere Patientin, die durch die Untersuchung mit einer Urticaria pigmentosa diagnostiziert wurde. Sie hatte jedoch bisherige Insektenstiche nach Ende der spezifischen Immuntherapie gut vertragen. Die Indikation zur lebenslangen Therapie wurde mit ihr ausführlich diskutiert, sie entschied sich letztlich mit der Begründung ihres fortgeschrittenen Alters und angesichts fehlender allergischer Reaktionen gegen eine erneute spezifische Immuntherapie mit Insektenisth.

Diese Erfahrung bestätigt, dass die Therapieentscheidungen gelegentlich, insbesondere bei Risikopatienten, individuell und in enger Kommunikation mit dem Patienten getroffen werden müssen (Przybilla et al., 2011).

6.10 Limitationen der Studie

Insgesamt ist die Aussage dieser retrospektiven Untersuchung vor allem durch die letztlich geringen Fallzahlen begrenzt. Obwohl primär eine sehr hohe Anzahl von Patienten (n = 789) angeschrieben wurde, war die Bereitschaft zur Antwort oder Verlaufsuntersuchung relativ gering (n = 271, 34,4 %), auch war ein nicht unbeträchtlicher Anteil der ehemaligen Patienten nicht mehr unter der bekannten Adresse erreichbar (n = 190, 24,1 %). Schließlich beschränkte sich die Analyse auf die
vollständig erhaltenen Datensätze von betroffenen Patienten, was z. T. aufgrund des langen Untersuchungszeitraumes und der z. T. fehlenden Patientenangaben in den Fragebögen nicht für alle in Frage kommenden Patienten zutraf (n = 91 von n = 271). Darüber hinaus erschienen nicht alle Patienten zu den empfohlenen jährlichen ambulanten Verlaufskontrollen.

Eine weitere Einschränkung ist der retrospektive Charakter der Untersuchung, der eine randomisierte Analyse vergleichbarer Gruppen ausschließt und somit die Aussagekraft der Daten einschränkt. Andererseits ist eine prospektive Untersuchung über einen vergleichbar langen Zeitraum aufgrund der hohen drop-out-Rate nur sehr schwer realisierbar.

Einschränkend für die Ergebnisse der vorliegenden Arbeit ist zudem die Datenerfassung mittels eines Fragebogens, was einen systematischen Fehler vor allem im Hinblick auf die Rezidivinzidenz beinhalten kann. Es besteht die Möglichkeit, dass sich vor allem Patienten, die wieder allergisch reagierten, durch den Fragebogen angesprochen fühlten und sich demzufolge einer ambulanten Diagnostik bei uns unterzogen.

Im Vergleich zu anderen vergleichbaren Studien traten nur wenig spontane Insektenstiche im Untersuchungszeitraum auf, dies könnte zusätzlich für die niedrige Rezidivrate verantwortlich sein.

Weiterhin ist auch die Inzidenz der Bienengiftallergie im Vergleich zur Wespengiftallergie in den letzten Jahrzehnten relevant im Rückgang begriffen, was eine Analyse dieser abnehmenden Patientenpopulation erschwert. Ursache ist ein allgemeiner Rückgang von Bienenvölkern weltweit sowie die Abnahme der Imker-Tätigkeit (Mauss, 2003, Spivak et al., 2011).

6.11 Stärken der Studie

Aussagen über den Langzeiteffekt der Insektengifthyposensibilisierung.

6.12 Ausblick

Langfristig ist die Erstellung eines deutschlandweiten Registers von Insektengiftpatienten überdenkenswert mit dem Hintergrund einer multizentrischen, groß angelegten langfristigen Datensammlung und Analyse weiterer Faktoren, die Hinweise für ein Rezidiv darstellen können.

Vorbild könnte das im deutschen Sprachraum von Fr. Prof. Dr. Margitta Worm (Anaphylaxie-Team der Klinik für Dermatologie, Venerologie und Allergologie, Charité – Universitätsmedizin Berlin) eingerichtete Anaphylaxieregister sein (www.anaphylaxienet.de).

Zudem besteht weiterer Forschungsbedarf im Hinblick auf die Frage, warum ein Teil der Patienten nach Therapieende die Toleranz gegenüber Insektengift wieder verliert.
7 Schlussfolgerungen

Diese monozentrische, retrospektive Langzeitbeobachtung von Insektengiftrailergikern über einen Zeitraum bis zu 20 Jahren nach Beendigung der spezifischen Immuntherapie in der Ambulanz für Allergologie des Universitätsklinikums der Friedrich-Schiller-Universität Jena ergab mit 10,2 % eine relativ niedrige Rezidivrate in Verbindung mit einer hohen Zahl von Patienten (42,6 %), die nach ihrer Therapie nie wieder von einem Insekt gestochen wurden. Der gute Therapieeffekt spiegelte sich nicht nur in der niedrigen Rezidivrate sondern auch in der Tatsache wieder, dass die meisten Patienten bei einem weiteren Stich nur leichte oder mittelschwere allergische Reaktionen zeigten. Nur in einem Fall war die Reaktion schwergradig als die Initialreaktion. Dies bestätigt die Sinnhaftigkeit der Therapie, die jedoch nur bei lebenslanger Therapiefortführung einen dauerhaften Schutz erreicht.

Als Risikofaktoren für ein Rezidiv fand sich weder ein geschlechtsspezifischer Zusammenhang, noch konnte eine zu erwartende höhere Rezidivrate für Bienengiftrailergiker im Vergleich zu Wespengiftrailergikern nachgewiesen werden.

Leitliniengerechte regelmäßige Verlaufskontrollen auch nach Ende der spezifischen Immuntherapie mit Insektenpfiff sind sinnvoll, insbesondere, um das allgemein unterschätzte Rezidivrisiko frühzeitig zu erfassen und das Vorhandensein sowie die Qualität des Notfallsets überprüfen zu können. Diesbezüglich ist weitere
Aufklärungsarbeit sowohl von Hausärzten als auch Patienten notwendig, um auf das Risiko einer erneuten Reaktion aufmerksam zu machen.

Weiterer Forschungsbedarf besteht in der Frage der Therapiedauer, welche bisher nicht abschließend geklärt ist. Zudem ist es notwendig herauszufinden, warum ein großer Teil der Patienten auch nach Therapieende geschützt bleibt, ein Teil jedoch die erworbene Toleranz gegenüber Insektengift wieder verliert.
8 Literatur- und Quellenverzeichnis

(10) Engel T, Heinig JH, Weeke ER. 1988. Prognosis of patients reacting with
urticaria to insect sting. Results of an in-hospital sting challenge. Allergy, 43:289-293.

Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m 1 and Ves v 5. Allergy. 64:543-548.

(80) Schäfer T, Przybilla B. 1996. IgE antibodies to Hymenoptera venoms in the serum are common in the general population and are related to indications of atopy. Allergy. 51:372-377.

(90) Wessel F. 1996. Portable emergency kits prescribed for patients allergic to
Fragebogen

□ Ich nehme gerne an einer Kontrolle teil. Wunschtermine: ………………..

□ Ich kann nicht an einer Kontrolle teilnehmen. (Auch wenn Sie nicht an einer Kontrolluntersuchung teilnehmen möchten, bitten wir Sie, den Fragebogen auszufüllen und an uns zurück zu senden.)

Sind Sie seit der letzten Hyposensibilisierung erneut von einer Biene oder Wespe gestochen worden?

□ Nein Wenn □ ja,

|---|----------|---------|

Datum des Stiches

<table>
<thead>
<tr>
<th>Stechendes Insekt</th>
<th>1. Stich</th>
<th>2. Stich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biene</td>
<td>□ Fraglich</td>
<td>□ Fraglich</td>
</tr>
<tr>
<td></td>
<td>□ Sicher</td>
<td>□ Sicher</td>
</tr>
<tr>
<td>Wespe</td>
<td>□ Fraglich</td>
<td>□ Fraglich</td>
</tr>
<tr>
<td></td>
<td>□ Sicher</td>
<td>□ Sicher</td>
</tr>
<tr>
<td>Sonstige(s)</td>
<td>………………..</td>
<td>………………..</td>
</tr>
<tr>
<td></td>
<td>□ Fraglich</td>
<td>□ Fraglich</td>
</tr>
<tr>
<td></td>
<td>□ Sicher</td>
<td>□ Sicher</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ort des Stiches:</th>
<th>1. Stich</th>
<th>2. Stich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesicht</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anhang I</td>
<td>Fragebogen</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Kopfhaut</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Hals</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Mundschleimhaut/Zunge</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Körper</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Arme</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Beine</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sonstiges (Bitte nennen)</td>
<td>□ …………………………….</td>
<td>□ …………………………….</td>
</tr>
</tbody>
</table>

Blieb der Stachel in der Haut stecken?
- □ Nein
- □ Ja
- □ Weiß nicht

In welcher Umgebung wurden Sie gestochen?
In der Nähe waren
- Abfall/Abfallkörbe □
- Nahrungsmittel/Getränke □
- Blumen/Blüten □
- Sonstiges (Bitte nennen) □ ……………………………. □ ……………………………. |

Wie kam es zum Stich?
(genau Umstände des Stichereignisses)
- ……………………………. …………………………….
- ……………………………. …………………………….
- ……………………………. ……………………………. |

Medikamentenanwendung vor dem Stich (auch Augentropfen berücksichtigen):
<table>
<thead>
<tr>
<th>Anhang I</th>
<th>Fragebogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein, keine Medikamente</td>
<td>□</td>
</tr>
<tr>
<td>Weiß nicht</td>
<td>□</td>
</tr>
<tr>
<td>Ja</td>
<td>□</td>
</tr>
<tr>
<td>Name des Präparates (bitte nennen)</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Örtliche Reaktion auf den Stich:</td>
<td></td>
</tr>
<tr>
<td>Nach wievielen Minuten/Stunden? (Bitte nennen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe der Schwellung etwa:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Falls unbekannt:</td>
<td></td>
</tr>
<tr>
<td>Kleiner als 10 cm im Durchmesser:</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Größer als 10 cm im Durchmesser:</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Allgemeine Beschwerden nach dem Stich:</td>
<td></td>
</tr>
<tr>
<td>Nach wievielen Minuten/Stunden? (Bitte nennen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Juckreiz am ganzen Körper</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Hitzgefühl</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Hautausschlag am ganzen Körper</td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Symptom</td>
<td>Ja</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Gesichtsschwellung</td>
<td>□</td>
</tr>
<tr>
<td>Schnupfen, Naselaufen</td>
<td>□</td>
</tr>
<tr>
<td>Rötung der Augenbindegewebe</td>
<td>□</td>
</tr>
<tr>
<td>Kloß-/Engegefühl im Hals</td>
<td>□</td>
</tr>
<tr>
<td>Hustenreiz</td>
<td>□</td>
</tr>
<tr>
<td>Atemnot</td>
<td>□</td>
</tr>
<tr>
<td>Druck auf der Brust</td>
<td>□</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>□</td>
</tr>
<tr>
<td>Erbrechen</td>
<td>□</td>
</tr>
<tr>
<td>Harndrang/-abgang</td>
<td>□</td>
</tr>
<tr>
<td>Stuhldrang/-abgang</td>
<td>□</td>
</tr>
<tr>
<td>Schwindel</td>
<td>□</td>
</tr>
<tr>
<td>Schwächegefühl</td>
<td>□</td>
</tr>
<tr>
<td>Herzrasen</td>
<td>□</td>
</tr>
<tr>
<td>Schüttelfrost</td>
<td>□</td>
</tr>
<tr>
<td>Todesangst</td>
<td>□</td>
</tr>
<tr>
<td>Bewusstlosigkeit (Dauer in Minuten)</td>
<td>□</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>□</td>
</tr>
</tbody>
</table>

2. **Haben Sie Notfallmedikamente angewandt?**

 Nein □ □
Fragebogen

3. Erfolgte eine ärztliche Behandlung?

<table>
<thead>
<tr>
<th>Option</th>
<th>Ja</th>
<th>Nein</th>
<th>Notarzt</th>
<th>Hausarzt</th>
<th>Krankenhaus</th>
<th>Weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Medikamente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bitte nennen

<table>
<thead>
<tr>
<th>Medikamente 1</th>
<th>Medikamente 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Welche Behandlung? (Bitte nennen)

<table>
<thead>
<tr>
<th>Behandlung 1</th>
<th>Behandlung 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name und Anschrift des behandelnden Arztes oder der Klinik:

<table>
<thead>
<tr>
<th>Anschrift 1</th>
<th>Anschrift 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Welchen Beruf üben Sie aus und seit wann?

<table>
<thead>
<tr>
<th>Tätigkeit 1</th>
<th>Tätigkeit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ggf. frühere Tätigkeiten:

<table>
<thead>
<tr>
<th>Tätigkeit 1</th>
<th>Tätigkeit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Befinden Sich Bienestöcke in Ihrer Umgebung?

<table>
<thead>
<tr>
<th>Option</th>
<th>Ja</th>
<th>Nein</th>
<th>Weiß nicht</th>
</tr>
</thead>
</table>

6. Bestehen oder bestanden bei Ihnen folgende Krankheiten?

<table>
<thead>
<tr>
<th>Krankheit 1</th>
<th>Krankheit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heuschnupfen</td>
<td>Asthma bronchiale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nein</th>
<th>Weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragebogen</td>
<td>Anhang I</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Neurodermitis (atopisches Ekzem)</td>
<td>□ Ja</td>
<td>□ Nein</td>
</tr>
<tr>
<td>□ Ja</td>
<td>□ Nein</td>
<td>□ Weiß nicht</td>
</tr>
</tbody>
</table>

7. Bestehen oder bestanden bei Ihnen andere Erkrankungen (z.B. Herz-Kreislauf-Erkrankungen, Tumorerkrankungen, Schilddrüsenerkrankungen u.a.)	□ Nein	□ Ja
Welche und seit wann?		

8. Liegt derzeit eine Schwangerschaft vor?	□ Nein	□ Weiß nicht	□ Ja, in der Woche
	□ Ja		

9. Nehmen Sie derzeit Medikamente ein?	□ Nein	□ Ja
	Präparat: ..	
	Dosis: ...	

| 10. Erfolgten außer den oben beschriebenen noch weitere Insektenstiche? Wenn ja, schildern Sie | □ Nein | □ Ja |
| Datum: ..|
| Reaktion: ...

Seite 6
bitte kurz noch einmal die Umstände und die Reaktionen.

Umstände:	…………………………………………………..
Umstände:	…………………………………………………..
Umstände:	…………………………………………………..
Angaben zur Person

Name: Anne Moeser
Geburtsdatum: 03.04.1981
Geburtsort: Wernigerode
Staatsangehörigkeit: Deutsch
Familienstand: ledig

Schulbildung

1987-1991 Grundschule
07/1999 Abitur

Studium

10/1999-06/2006 Studium der Humanmedizin an der Friedrich-Schiller-Universität Jena
10/2001 Ärztliche Vorprüfung
09/2002 Erster Abschnitt der Ärztlichen Prüfung
04/2005 Zweiter Abschnitt der Ärztlichen Prüfung
05/2006 Dritter Abschnitt der Ärztlichen Prüfung

Beruf

Seit 07/2006 Assistenzärztin, Universitätsklinikum der Friedrich-Schiller-Universität Jena, Klinik für Innere Medizin I, Abteilung Pneumologie / Allergologie

Jena,
Mein größter Dank gilt Frau PD Dr. med. M. Henzgen für die Überlassung des Themas, die wissenschaftliche Betreuung sowie ihre Geduld und Motivation bei der Anfertigung der Dissertation.

Weiterhin danke ich Herrn Prof. Dr. rer. nat. Dr. med. C. Kroegel für die wissenschaftliche Unterstützung.

Mein Dank gebührt zudem Herrn Dr. rer. nat. Rüdiger Vollandt (Institut für Medizinische Statistik, Informatik und Dokumentation) für die statistische Beratung.

Nicht zuletzt danke ich meiner Familie und meinem Lebensgefährten für die Unterstützung, das Vertrauen und die Geduld.
Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist, ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind, mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben:

Fr. PD Dr. med. Margot Henzgen und

Herr Prof. Dr. Dr. Claus Kroegel,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen, dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena,