Preprint No. M 12/02

Symmetric graphs - spectra and eigenvectors

Peter E. John and Horst Sachs

2nd revised Edition

2012
Symmetric Graphs – Spectra and Eigenvectors

Peter E. John and Horst Sachs

Department of Mathematics, Ilmenau Technical University,
PF 10 05 65, 98684 Ilmenau, Germany
E-mail: Peter.John@tu-ilmenau.de, Horst.Sachs@tu-ilmenau.de

Abstract

Davidson (1981) developed a general procedure, based on group representation theory, for determining the spectra of graphs distinguished by a certain rotational symmetry, with application to molecular graphs. In this paper a more general method, applicable to any arbitrarily arc weighted directed graph that has a non-trivial automorphism, and yielding both eigenvalues and eigenvectors, is developed. The proofs, elementary and straightforward, avoid the use of the theory of group characters altogether.

Key words: arc weighted graph, permutation, automorphism, symmetry group, eigenvectors, eigenvalues, spectrum, applications to chemistry (LCAO-MO theory)

1 Introduction

In 1981 R.A. Davidson [2] published a reduction procedure, based on group representation theory, which allows the spectrum of a finite weighted graph endowed with a certain rotational symmetry to be calculated from spectra of smaller graphs, a method with rich applications in the theory of molecular graphs, in particular, of hydrocarbons and related compounds [3]. Here we shall develop an extended method, applicable to any finite directed (undirected) graph G with arbitrary complex arc (edge) weights that has a non-trivial automorphism, yielding the spectrum via the eigenvectors of G.

*Revised version of Technische Universität Ilmenau, Institut für Mathematik, Preprint M 12/01 (27.01.2012) (Digitale Bibliothek Thüringen, Dokument 19818)
A remarkable feature is the fact that all proofs are quite elementary and straightforward: stressing this aspect we shall avoid any reference to group representation theory (group characters).

2 Definitions, Notation, Terminology

Let \(G = (V, A) \) be a finite directed graph (multiple arcs and loops being admitted) on \(n \) vertices whose arcs are arbitrarily weighted with complex numbers – briefly called a graph.

An arc from vertex \(x \) to vertex \(y \) with weight \(w \) is denoted \(a = a[w] = [x, y; w] \) (Fig. 2.1). Every non-arc is considered a “zero arc”, i.e., an arc \(a \) with weight zero: \(a[0] = [x, y; 0] \).

A multiple \((k\text{-fold})\) arc – i.e., a set of parallel arcs \(a_i = [x, y; w_i], i = 1, 2, \ldots, k \) – may be replaced with a single arc \(a \) whose weight is the sum of the \(w_i \): \(a = [x, y; \sum_{i=1}^{k} w_i] \).

An undirected edge \((x, y; w)\) is equivalent to, and replaced by, the pair of antiparallel arcs \([x, y; w], [y, x; w]\).

It is convenient to assume that, for every ordered pair \([x, y]\) of vertices, there is in \(G \) precisely one arc \(a \) from \(x \) to \(y \): \(a = [x, y; w] \) where \(x = y \) and \(w = 0 \) are allowed. Therefore, whenever a multiple arc \(\{[x, y; w_i] \mid i = 1, 2, \ldots, k\} \) is encountered, it will be considered a single arc \([x, y; \sum_{i=1}^{k} w_i]\).
Thus the ordered pair \([x, y]\) uniquely determines an arc \(a = a(x, y) = [x, y; w]\) with weight \(w = w(a) = w(x, y)\).

Let, for the moment, \(V = \{1, 2, \ldots, n\}\) and define the weight matrix (weighted adjacency matrix) \(W\) of \(G\) by \(W = (w(i, j))_{i,j=1,2,\ldots,n}\).a

The symmetry group of \(G\), consisting of all automorphisms of \(G\), is isomorphic to the group of permutations \(P\) of the vertex set of \(G\) that leave the weight function \(w\) invariant, or, equivalently, of all permutation matrices \(P\) satisfying \(P^{-1}WP = W\); we shall identify an automorphism with the permutation \(P\) that describes it. Graph \(G\) is called symmetric iff\(^b\) its symmetry group is non-trivial.

Let \(P\) be an arbitrary non-trivial automorphism of \(G\) consisting of disjoint cycles \(C_1, C_2, \ldots, C_r\) (including cycles of length one) where cycle \(C_\varrho\) has length \(s_\varrho\) and contains vertices \(x_{\varrho\sigma}\), \(\sigma = 0, 1, \ldots, s_\varrho - 1\):

\[
P = C_1C_2\cdots C_r, \quad C_\varrho = (x_{\varrho0}, x_{\varrho1}, \ldots, x_{\varrho s_\varrho-1}).
\]

Set \(\tilde{C}_\varrho = \{x_{\varrho\sigma} \mid \sigma = 0, 1, \ldots, s_\varrho - 1\}\).

Let \(M\) denote the least common multiple of the cycle lengths \(s_\varrho\) of \(P\) and arrange the vertices according to the following (cyclic) cartesian scheme \(\mathcal{H} = \mathcal{H}(P)\): the rows are \(R_\varrho\) (\(\varrho = 1, 2, \ldots, r\)), the columns are \(S_\kappa\) (\(\kappa = 0, 1, \ldots, M - 1\)) which may be cyclically repeated by \(S_M = S_0, S_{M+1} = S_1\), etc.\(^\ast\) Row \(R_\varrho\) contains the cycle \(C_\varrho\), the vertices in \(R_\varrho\) are arranged in equidistant positions, i.e., \(x_{\varrho\sigma}\) is placed in row \(R_\varrho\) and in column \(S_{\kappa(\varrho,\sigma)}\) where \(\kappa(\varrho, \sigma) = \frac{M}{s_\varrho} \sigma \ (\varrho = 1, 2, \ldots, r; \ \sigma = 0, 1, \ldots, s_\varrho - 1)\) (Fig. 2.2).

Column \(S_\kappa\) contains the set

\[
U_\kappa = \{x_{\varrho\sigma} \mid \frac{M}{s_\varrho} \sigma = \kappa\}
\]

\(^a\)Note the one-to-one correspondence between the set of graphs (as defined above) with labelled vertices and the set of square matrices with complex entries.

\(^b\)We use iff for if and only if if and only if “if and only if” (briefly,”iff”) is part of a definition.
The parameters of P are: $r = 3$; $s_1 = 15$, $s_2 = 10$, $s_3 = 6$; $M = 30$; $n = 31$.

The shaded areas contain the subsets U_κ of $V(G)$, e.g., $U_4 = \{x_{1,2}\}$, $U_{15} = \{x_{2,5}, x_{3,3}\}$.

Figure 2.2: An example of $\mathcal{H}(P)$

which may be empty. Let $K = \{\kappa \mid U_\kappa \neq \emptyset\}$. Vertex set $V(G)$ decomposes into (disjoint non-empty) sets U_κ:

$$V(G) = \bigcup_{\kappa \in K} U_\kappa \quad \text{(Fig. 2.2).}$$

We shall abbreviate S_0, $x_{\varrho\sigma}$ and $x_{\varrho e_0}$ by S, $\varrho\sigma$ and ϱ ($= \varrho_0$), respectively. Thus

$$S = S_0 = \{1, 2, \ldots, r\}.$$

Let $d(\alpha, \beta)$ and $m(\alpha, \beta)$ denote the greatest common divisor and the least common multiple of s_α, s_β and define

$$g(\alpha, \beta) = s_\beta / d(\alpha, \beta) = m(\alpha, \beta) / s_\alpha. \quad (2.1)$$

3 Consequences of the symmetry

By cyclicity the weight function $w(\varrho_1\sigma_1, \varrho_2\sigma_2)$ can be defined for all integers σ_1, σ_2. So extended, $w(\varrho_1\sigma_1, \varrho_2\sigma_2)$ (ϱ_1, ϱ_2 fixed) is periodic in σ_1 with period s_{ϱ_1} and in σ_2 with period s_{ϱ_2}. Whenever necessary, a σ argument is reduced modulo its respective period. The above implies that whenever for some
integers q_1, q_2 the equation
\[\sigma'_1 - \sigma_1 + q_1 s_{\varrho_1} = \sigma'_2 - \sigma_2 + q_2 s_{\varrho_2} \]
holds then
\[w(q_1 \sigma'_1, q_2 \sigma'_2) = w(q_1 \sigma_1, q_2 \sigma_2). \]

The set of numbers $q_1 s_{\varrho_1} - q_2 s_{\varrho_2}$ being identical with the set of multiples of $d(\varrho_1, \varrho_2)$ we conclude:
\[\sigma'_1 - \sigma'_2 \equiv \sigma_1 - \sigma_2, \mod d(\varrho_1, \varrho_2) \]
(B) implies
\[w(q_1 \sigma'_1, q_2 \sigma'_2) = w(q_1 \sigma_1, q_2 \sigma_2). \]

4 The reduction procedure

For every $\kappa \in K$ we shall construct a graph $G(\kappa) = (V_{\kappa}, A_{\kappa})$ on $|U_{\kappa}|$ vertices. V_{κ}, the vertex set of $G(\kappa)$, is the projection of U_{κ} into S:
\[V_{\kappa} = \{ \varrho | \varrho \sigma \in U_{\kappa} \}. \]

To define the arc set A_{κ} let $\varepsilon = \exp(2\pi i/M)$ and
\[\tilde{U}_{\kappa} = \bigcup_{\varrho \in V_{\kappa}} \tilde{C}_{\varrho} = \{ \varrho \sigma | \varrho \in V_{\kappa}, \ \sigma = 0, 1, \ldots, s_{\varrho} - 1 \}. \]

Every arc $z = [x_1, x_2; w]$ of G with $x_1 = \varrho_1 \in V_{\kappa}$, $x_2 = \varrho_2 \sigma \in \tilde{U}_{\kappa}$ is in $G(\kappa)$ replaced by the arc $z' = [x'_1, x'_2; \tilde{w}_\varrho]$ with $x'_1 = x_1 = \varrho_1 \in V_{\kappa}$, $x'_2 = \varrho_2 \in V_{\kappa}$,
\[\tilde{w}_\varrho = w \cdot \varepsilon^{\kappa \sigma}. \]
Note that all arcs with both their ends in V_{κ} are retained in $G(\kappa)$. The arcs z' with fixed ends $x'_1 = \varrho_1$, $x'_2 = \varrho_2$ ($\varrho_1, \varrho_2 \in V_{\kappa}$) are united to form in $G(\kappa)$ the single arc $z' = [\varrho_1, \varrho_2; w_{\kappa}]$ where
(B) \[w_{\kappa} = w_{\kappa}(\varrho_1, \varrho_2) = \sum \tilde{w}_\varrho = \sum_{\sigma=0}^{s_{\varrho} - 1} w(\varrho_1, \varrho_2 \sigma) \varepsilon^{\kappa \sigma}. \]

The resulting set of arcs is A_{κ}.

Note that $G(0)$ is a front divisor of G (see [1], Chapter 4 and Section 5.3).
5 Claims

Let, for fixed \(\kappa \in K \), \(u = \{ u(\varrho) \mid \varrho \in V_\kappa \} \) be an eigenvector of \(G(\kappa) \) with corresponding eigenvalue \(\lambda \), i.e., assume that

\[
\text{(C) } u \neq 0 \text{ and } \lambda \text{ satisfy the equation } \sum_{\varrho \in V_\kappa} w_\kappa(\varrho_0, \varrho) u(\varrho) = \lambda u(\varrho_0) \quad (\varrho_0 \in V_\kappa).
\]

Let

\[
\mathbf{v} = \{ v(\varrho \sigma) \mid \varrho \sigma \in V(G) \}
\]

\text{(D) where } v(\varrho \sigma) = \begin{cases}
 u(\varrho) \cdot \varepsilon^{\kappa \sigma} & \text{if } \varrho \sigma \in \hat{U}_\kappa \text{ (i.e., if } \varrho \in V_\kappa) \\
 0 & \text{otherwise (i.e., if } \varrho \in S - V_\kappa).
\end{cases}

Theorem 5.1. \(\mathbf{v} \) and \(\lambda \) are an eigenvector and corresponding eigenvalue of \(G \), i.e., \(\mathbf{v} \) and \(\lambda \) satisfy the equation

\[
\sum_{\varrho \sigma \in V(G)} w(\varrho_0 \sigma_0, \varrho \sigma) v(\varrho \sigma) = \lambda v(\varrho_0 \sigma_0) \quad (\varrho_0 \sigma_0 \in V(G)).
\]

Theorem 5.2. Let \(\kappa_1 \neq \kappa_2 \). Eigenvectors \(\mathbf{v}_1, \mathbf{v}_2 \) of \(G \) obtained from eigenvectors \(u_1 \) of \(G(\kappa_1) \) and \(u_2 \) of \(G(\kappa_2) \) are orthogonal.

Theorem 5.3. Eigenvectors of \(G \) derived from sets of linearly independent eigenvectors of the \(G(\kappa) \) are linearly independent.

6 Proofs

Proof of Theorem 5.1

Let \(\kappa \in K \) (fixed), \(\varrho_0 \sigma_0 \in V(G) \), set \(\varepsilon^{\kappa} = \omega \) and abbreviate

\[
\sum_{\varrho \sigma \in V(G)} w(\varrho_0 \sigma_0, \varrho \sigma) v(\varrho \sigma) = Q. \quad (6.1)
\]

We have to show: \(Q = \lambda v(\varrho_0 \sigma_0) \).

Because of (D) (Section 5) (6.1) reduces to

\[
Q = \sum_{\varrho \in V_\kappa} \sum_{\sigma = 0}^{s_\kappa - 1} w(\varrho_0 \sigma_0, \varrho \sigma) u(\varrho) \omega^\sigma.
\]
Recall: $\kappa = \frac{M}{s_\varphi} \sigma^*$ for some $\sigma^* < s_\varphi$, thus

$$\omega = \exp\left(\frac{2\pi i}{M} \kappa\right) = \exp\left(\frac{2\pi i}{s_\varphi} \sigma^*\right)$$

is an s_φ-th root of unity. Therefore, both $w(\varrho_0 \sigma_0, \varrho \sigma)$ and ω^σ are periodic in σ with period s_φ for every $\varrho \in V_\kappa$. This implies

$$Q = \sum_{\varrho \in V_\kappa} \sum_{\sigma=0}^{s_\varphi-1} w(\varrho_0 \sigma_0, \varrho(\sigma + \sigma_0)) u(\varrho) \omega^{\sigma+\sigma_0}$$

$$= \omega^{\sigma_0} \sum_{\varrho \in V_\kappa} u(\varrho) \sum_{\sigma=0}^{s_\varphi-1} w(\varrho_0 \sigma_0, \varrho(\sigma + \sigma_0)) \omega^\sigma.$$

By (A) (Section 3), $w(\varrho_0 \sigma_0, \varrho(\sigma + \sigma_0)) = w(\varrho_0, \varrho \sigma)$, therefore,

$$Q = \omega^{\sigma_0} \sum_{\varrho \in V_\kappa} u(\varrho) \sum_{\sigma=0}^{s_\varphi-1} w(\varrho_0, \varrho \sigma) \omega^\sigma. \quad (6.2)$$

We distinguish two cases. **Case 1:** $\varrho_0 \in V_\kappa$; **Case 2:** $\varrho_0 \notin V_\kappa$.

Case 1: $\varrho_0 \in V_\kappa$. Because of (B) (Section 4),

$$Q = \omega^{\sigma_0} \sum_{\varrho \in V_\kappa} w_{\kappa}(\varrho_0, \varrho) u(\varrho)$$

which, by (C) and (D) (Section 5), implies

$$Q = \omega^{\sigma_0} \cdot \lambda u(\varrho_0) = \lambda v(\varrho_0 \sigma_0), \quad \text{as claimed.}$$

Case 2: $\varrho_0 \notin V_\kappa$. To show: $Q = 0$.

Abbreviate $d(\varrho_0, \varrho) = d$, $m(\varrho_0, \varrho) = m$, $g(\varrho_0, \varrho) = g$.

First we show

(I) ω^d is a g^{th} root of unity,

(II) $\omega^d \neq 1$.

We have $\kappa = \frac{M}{s_\varphi} \sigma^*$ where $\sigma^* < s_\varphi$; $d = \frac{s_\varphi}{g}$, thus $\kappa d = \frac{M}{g} \sigma^*$ and

$$\omega^d = \exp\left(\frac{2\pi i}{M} \kappa d\right) = \exp\left(\frac{2\pi i}{g} \sigma^*\right).$$
This proves (I).

To prove (II) we shall show that σ^*/g is not an integer.

Assume that $\sigma^*/g = \alpha$ is an integer. Let $\beta = m/s_\rho$, $\tau = \alpha\beta$, both being integers. We have (see (2.1))

$$
\tau = \frac{\sigma^*}{g} \cdot \frac{m}{s_\rho} = \frac{\sigma^*}{s_\rho} \cdot s_\rho_0.
$$

(6.3)

$\sigma^*/s_\rho < 1$ implies $\tau < s_\rho_0$. From (6.3) we conclude

$$
\frac{M}{s_\rho_0} \tau = \frac{M}{s_\rho} \sigma^* = \kappa
$$

which means that $\varrho_0\tau \in U_\kappa$, thus $\varrho_0 \in V_\kappa$; this contradiction proves (II).

As a consequence of (I) and (II),

$$
\sum_{\gamma=0}^{g-1} (\omega^{d})^{\gamma} = 0.
$$

(6.4)

Now we resume (6.2) which we write as

$$
Q = \omega^{\sigma_0} \sum_{\varrho \in V_\sigma} u(\varrho) \cdot Q_\varrho, \quad Q_\varrho = \sum_{\sigma=0}^{s_\sigma-1} w(\varrho_0, \varrho\sigma) \omega^\sigma.
$$

We set $\sigma = \delta + \gamma d$; note that summation over σ ($\sigma = 0, 1, \ldots, s_\rho - 1$) is the same as summation over δ, γ ($\delta = 0, 1, \ldots, d - 1$; $\gamma = 0, 1, \ldots, g - 1$).

We have

$$
Q_\varrho = \sum_{\gamma=0}^{g-1} \sum_{\delta=0}^{d-1} w(\varrho_0, \varrho(\delta + \gamma d)) \omega^\delta \omega^{\gamma d}.
$$

By (A) (Section 3), this reduces to

$$
Q_\varrho = \sum_{\delta=0}^{d-1} \sum_{\gamma=0}^{g-1} w(\varrho_0, \varrho\delta) \omega^\delta \omega^{\gamma d} = \sum_{\delta=0}^{d-1} w(\varrho_0, \varrho\delta) \omega^\delta \sum_{\gamma=0}^{g-1} (\omega^{d})^{\gamma}
$$

which by (6.4) implies $Q_\varrho = 0$, thus $Q = 0$, as claimed.

Theorem 5.1 is now proved. □
Proof of Theorem 5.2

Assume $\kappa_1 \neq \kappa_2$ and let v_1 and v_2 be eigenvectors of graph G derived from eigenvectors u_1 and u_2 of graphs $G(\kappa_1)$ and $G(\kappa_2)$, respectively. We shall show that $v_1 \cdot v_2$ (the scalar product of v_1 and v_2) equals zero. We have

$$v_1 \cdot v_2 = \sum_{\varrho=1}^{r} c_{\varrho} \quad \text{where} \quad c_{\varrho} = \sum_{\sigma=0}^{s_\varrho - 1} v_1(\varrho\sigma) \overline{v_2(\varrho\sigma)}.$$

If $\varrho \not\in V_{\kappa_1} \cap V_{\kappa_2}$ then, by (D), at least one of $v_1(\varrho\sigma)$, $v_2(\varrho\sigma)$ is zero, thus $c_{\varrho} = 0$. Assume $\varrho \in V_{\kappa_1} \cap V_{\kappa_2}$. By (D),

$$c_{\varrho} = \sum_{\sigma=0}^{s_\varrho - 1} u_1(\varrho) \varepsilon^{\varrho_1\sigma} \overline{u_2(\varrho)} \varepsilon^{-\varrho_2\sigma} = u_1(\varrho)u_2(\varrho) \sum_{\sigma=0}^{s_\varrho - 1} \varepsilon^{(\varrho_1 - \varrho_2)\sigma}. \quad (1)$$

Recall: $\varepsilon = \exp(2\pi i/M)$, $\varrho_i = \frac{M}{s_{\varrho}} \sigma_i^*$ where $0 \leq \sigma_i^* < s_{\varrho}$; note that $|\sigma_1^* - \sigma_2^*| < s_{\varrho}$ and, because of $\varrho_1 \neq \varrho_2$, also $\sigma_1^* \neq \sigma_2^*$, thus $0 < |\sigma_1^* - \sigma_2^*| < s_{\varrho}$. Therefore, $\varepsilon^{\varrho_1 - \varrho_2} = \exp(2\pi i(\sigma_1^* - \sigma_2^*)/s_{\varrho})$ is an s_{ϱ}-th root of unity distinct from 1 implying

$$\sum_{\sigma=0}^{s_\varrho - 1} \varepsilon^{(\varrho_1 - \varrho_2)\sigma} = 0. \quad (2)$$

As immediate consequences, $c_{\varrho} = 0$ and $v_1 \cdot v_2 = \sum_{\varrho=1}^{r} c_{\varrho} = 0$. \hfill \Box

Proof of Theorem 5.3

Because of Theorem 5.2 it suffices to prove the following proposition.

For fixed $\varrho \in K$, let u_1, u_2, \ldots, u_q ($0 < q \leq |V_{\varrho}|$) be linearly independent eigenvectors of $G(\varrho)$. Then the eigenvectors v_1, v_2, \ldots, v_q of G derived from the u_i are linearly independent.

Recall: Let a_1, a_2, \ldots, a_q be vectors of equal length and let A be the matrix with rows a_i. Then the Gram determinant of the a_i is defined as

$$\text{Gr}(A) = \det(A\overline{A}) = \det(a_i \cdot a_j)_{i,j=1,2,\ldots,q}.$$
The vectors a_i are linearly dependent if and only if $\text{Gr}(A) = 0$ (see, e.g., [5], [6]).

Let U, V and W be the matrices with rows u_i, v_i and w_i, respectively, where

$$w_i(\varphi) = \sqrt{s_\varphi} u_i(\varphi) \quad (\varphi \in V_\kappa).$$

We have

$$v_i \cdot v_j = \sum_{\varphi \sigma} v_i(\varphi \sigma) \overline{v_j(\varphi \sigma)} = \sum_{\varphi \in V_\kappa} \sum_{\sigma = 0}^{s_\varphi - 1} u_i(\varphi) e^{\kappa \sigma} \overline{u_j(\varphi)} e^{-\kappa \sigma} = \sum_{\varphi \in V_\kappa} s_\varphi u_i(\varphi) \overline{u_j(\varphi)} = w_i \cdot w_j.$$

Thus $\text{Gr}(V) = \text{Gr}(W)$. Note that

$$W = U \cdot D \text{ where } D = \text{diag}(\sqrt{s_\varphi}_{\varphi \in V_\kappa}).$$

The u_i being linearly independent, so are the w_i. Therefore,

$$\text{Gr}(V) = \text{Gr}(W) \neq 0$$

which implies that the v_i are linearly independent. \qed

7 Appendix: An Example

We consider the graph G of prismane C_8, a metastable carbon cluster analyzed in [4]; Figs. 7.1 both show this graph. From Fig. 7.1(b) we take that $P = (1 \ 2 \ 3 \ 4 \ 5 \ 6)(7 \ 8)$ is an automorphism of G. In Fig. 7.2 graph G is rearranged according to this permutation. Fig. 7.3 shows the resulting graphs $G(\kappa)$ whose eigenvalues and eigenvectors determine those of G (Theorems 5.1, 5.3), see Fig. 7.4. From the complex eigenvectors we obtain real ones by taking the real and the imaginary parts. Note that the eigenvectors are pairwise orthogonal (Theorem 5.2).
Figure 7.1: Graph G of prismane C_8.

Figure 7.2: Graph G of prismane rearranged

Figure 7.3: The graphs resulting from the reduction procedure as applied to the prismane graph G.

11
Table of Eigenvalues and Eigenvectors

<table>
<thead>
<tr>
<th>Graph</th>
<th>Eigenvalues</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(0)$</td>
<td>α, $-\beta$</td>
<td>β, $-\alpha$</td>
</tr>
<tr>
<td>$G(1)$</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>$G(2)$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$G(3)$</td>
<td>γ, $-\delta$</td>
<td>δ, $-\gamma$</td>
</tr>
<tr>
<td>$G(4)$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$G(5)$</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph</th>
<th>α</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>$-\beta$</th>
<th>$-\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>1</td>
<td>η</td>
<td>η^2</td>
<td>η^3</td>
<td>η^4</td>
<td>η^5</td>
<td>0</td>
<td>0</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>η^2</td>
<td>η^3</td>
<td>1</td>
<td>η^4</td>
<td>η^5</td>
<td>0</td>
<td>0</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>η^4</td>
<td>η^5</td>
<td>1</td>
<td>η^2</td>
<td>η^3</td>
<td>0</td>
<td>0</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$-\delta$</td>
<td>δ</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>δ</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$-\gamma$</td>
<td>γ</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>η^4</td>
<td>η^5</td>
<td>1</td>
<td>η^2</td>
<td>η^3</td>
<td>0</td>
<td>0</td>
<td>$-\alpha$</td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>η^6</td>
<td>η^7</td>
<td>1</td>
<td>η^2</td>
<td>η^3</td>
<td>η^4</td>
<td>η^5</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\alpha = \frac{1}{2} (3 + \sqrt{21}) = 3, 79 \ldots \quad \gamma = \frac{1}{2} (1 + \sqrt{13}) = 2, 30 \ldots \]
\[\beta = \frac{1}{2} (3 - \sqrt{21}) = -0, 79 \ldots \quad \delta = \frac{1}{2} (1 - \sqrt{13}) = -1, 30 \ldots \]
\[\eta = \exp \left(\frac{2 \pi i}{6} \right) = \frac{1}{2} + \frac{i}{2} \sqrt{3} \]

Figure 7.4: Eigenvalues and eigenvectors of the prismatic graph G.

12
References

