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Preface
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Institute for Mathematics in the Sciences, Leipzig) and Dr. Stefan

J. Kiebel (Max Planck Institute for Human Cognitive and Brain Sci-

ences, Leipzig). The second subject was studied in collaboration with

Dr. Fatihcan M. Atay and Dr. Karin Schwab (Bernstein Group for

Computational Neuroscience Jena, Institute of Medical Statistics, Com-

puter Sciences and Documentation, Jena University Hospital, Friedrich

Schiller University, Jena).
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1 Introduction

Objectivity is a subject’s delusion

that observing can be done without him.

Heinz von Foerster, 1911–2002

Neuroscience aims to understand the enormously complex functioning

of the normal and diseased brain. This in turn is the key to explaining

human behavior and to developing novel diagnostic and therapeutic

procedures. In the present work, models of mean activity in a single

brain area have been developed and used which provide a balance be-

tween tractability and biophysical plausibility.

Single neurons, at the microscopic level, are considered the primary

computational units of the brain’s architecture [1,2]. However, it is also

widely accepted that ensembles of interacting neurons at the mesoscopic

level can carry out the relevant information processing underlying brain

functions such as action, perception, and cognition in both healthy and

diseased states [3–11]. Measurements such as magnetoencephalogra-

phy and electroencephalography (M/EEG) provide a satisfactory spatial

scale for the achievement of insight into the implementation of brain

functions as far as they are reflected by the spatiotemporal evolution

of neural ensembles [12–14]. There are other (noninvasive) measure-

ments such as functional magnetic resonance imaging (functional MRI)

which access this mesoscopic level. Functional MRI records changes
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1 Introduction

in metabolism and blood flow indicating energy consumption. These

changes are indirectly related to changes in the activity of neural ensem-

bles, and provide much better spatial information than does M/EEG,

though rather poor temporal information [15–22].

M/EEG supplies noninvasive electrophysiological measurements usu-

ally acquired under defined conditions (e. g., stimulation patterns and

behavior, sleep stage, general vigilance, pathologies) [23–26]. Gener-

ally, such noninvasive approaches gather from a position on or near to

the scalp the physical quantity of interest: that is, for EEG and MEG

the electrical potential and magnetic field, at a distance from their gen-

erators (e. g., membrane potential and currents of neurons and neural

ensembles).

Consequently, the recording captured by one sensor may have been

caused by several intracranial generators simultaneously. This super-

position effect is complicated even more by the complex geometry and

the electromagnetic properties of the head tissues. The unmixing of

M/EEG data in order to study the implementation of brain functions

(on the basis of the underlying generator configurations) turns out to

be an ill-posed inverse problem. This means that without any a-priori

knowledge or assumptions it is impossible to reconstruct a unique in-

tracranial generator configuration for given (M/EEG) data [25]. The

problem can be split in two: (i) the forward problem that deals with

the prediction of data from known sources based on anatomically and

biophysically plausible assumptions as to their generation (e. g., proper-

ties of generators, head tissues and the measuring instrument), and (ii)

the inverse problem that deals with the reconstruction of the generators

from a given data set [26]. The parameters of the inverse problem, such

as the number of involved neural ensembles (i. e., generators) and their

locations and sizes, can be constrained using a-priori knowledge on mor-

phology and physiology both from invasive methods [27] (e. g., tracer

injection studies [28]), and from noninvasive methods such as MRI,

particularly functional MRI [29] and diffusion-weighted-MRI [30,31] or
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optical methods [32].

In this way, the spatiotemporal evolution of M/EEG can be projected

or mapped, for example, into sets of equivalent current dipoles [33] or

spatial and/or temporal atoms (e. g., [34, 35]) but the spatiotemporal

evolution still requires explanation. Data-driven models, meaning mod-

els with minimal assumptions (e. g., linearity), can help with the expla-

nation of the evolution in time and/or in space of given data or, after

inversion, data in the source space, as also can multivariate autoregres-

sive models (e. g., [36–39]) or general linear models (e. g., [34]). Such

models also provide indications of the network structure in terms of in-

teraction between nodes without the application of any biophysiological

or anatomical knowledge [36, 38, 40–47].

All the same, it is particularly useful if generator models are biologi-

cally plausible, in the sense that the state variables and parameters are

anatomically and physiologically meaningful. Indeed, in order to gain

deeper insight into the mechanisms underlying the origin and dynamics

of electrophysiological measurements like M/EEG and their relevance

to brain function and pathology, such plausibility is essential [4,48,49].

It facilitates mapping of the measurements to physically meaningful

quantities by inverting (i. e., fitting) the computational model and al-

lowing testing of mechanistic hypotheses about the implementation of

brain functions [50]. In order to ensure that this inversion is mathe-

matically tractable and at the same time physically meaningful, the

computational mean-field model must strike a balance between mathe-

matical simplicity and biological plausibility [50, 51].

One class of models designed to meet these criteria is referred to

as neural mass models (NMMs) [52–58]. They describe brain func-

tions on a mesoscopic scale [4, 49], in contrast to single neuron mod-

els such as simple integrate-and-fire models [59] and the more elabo-

rated Hodgkin and Huxley model type [60] and its derivatives [61–63].

NMMs quantify the mean firing rates and mean membrane potentials of

large neural ensembles, so-called neural masses (NMs), using differen-

17



1 Introduction

tial equations [49]. This approach provides an economical yet biophysi-

cally meaningful description of phenomena in such electrophysiological

measurements as M/EEG. NMMs thus describe brain activity on a

mesoscopic scale [49] that is highly relevant for brain function [12–14].

This work deals with a specific but widely used choice of NMM first

described by Zetterberg and colleagues [58], also employed by Jansen

and colleagues [53,54], and based on previous modeling work by Lopes

da Silva and colleagues [55, 56]. The Zetterberg-Jansen model com-

prises an elementary circuit of three interconnected NMs: pyramidal

cells (PCs), excitatory interneurons (EINs) and inhibitory interneu-

rons (IINs), which could be said to describe a localized cortical area

(or column), and it has been used to explain both epilepsy-like brain

activity [64, 65] and various narrow band oscillations ranging from the

delta to the gamma frequency bands [48]. Several such Zetterberg-

Jansen models can be combined to describe networks of coupled corti-

cal areas and account for more complex transient and oscillatory behav-

iors [48,54,64,66–69]. The Bayesian inversion of these dynamic genera-

tive models derived from M/EEG data [50, 68] has been developed for

the analysis of event-related [68,70,71] and steady-state responses [72].

The Zetterberg-Jansen model have been used experimentally to test

novel hypotheses about brain function at a systems level [73–75].

For the present work, the author has modified and analyzed the

Zetterberg-Jansen NMM for a cortical area, which includes the orig-

inal Jansen and Rit configuration [54] as a special case: in the Zetter-

berg-Jansen model as modified, extrinsic input may also target the two

ensembles of interneurons, excitatory and inhibitory [66]. The main

three emphases of the research are (i) which states this type of NMM

of a single cortical area can experience under constant extrinsic input,

(ii) under periodic extrinsic input and (iii) how the NMM can be applied

to a clinically relevant photic driving experiment.

The first focus is on relatively constant and stable states of probands

or patients: for instance, during vigilance, sleep, resting or epileptic
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seizure. In order to investigate such states, the system is allowed to set-

tle in a stable regime (e. g., fixed point or limit cycle). For this purpose,

the dynamic properties of the modified Zetterberg-Jansen model are de-

scribed as a function of its key parameters (i. e., extrinsic input levels

on all NMs and dendritic time constants). There are rich dynamics ex-

pressed by bifurcations (i. e., sudden transitions in dynamic behavior)

and limit cycle (LC) branches. Bifurcation diagrams are used which

are compact and intuitively accessible representations of the modes of

dynamic systems plotted against changing parameters. LC-branches

are systematically classified and there is a detailed discussion of the as-

sociated dynamics, including the conditions for changing as a function

of key parameters. Knowledge of this dynamic behavior is an impor-

tant tool, because it tells the modeler how the system will behave. The

analysis and the classification yield a comprehensive catalogue of all

possible regimes.

The author found that the modified Zetterberg-Jansen model of a

single cortical area is intrinsically capable of producing a variety of

relevant behavior, especially rhythms, and that it may be more useful

for modeling purposes than previously thought. A potential use of

the catalogue is that the modeler can decide whether the single-area

modified Zetterberg-Jansen NMM is sufficient to model any specific

phenomenon (e. g., M/EEG) or whether a more complex model, such

as a network of areas, should be chosen. Moreover, the modeler can use

the catalogue to select a specific parameter set that best reproduces the

electrophysiological data such as Bayesian model inversion schemes [50].

In addition, the bifurcation diagrams provide the modeler with infor-

mation as to which slow-moving trajectories through parameter space

will cross bifurcation points. Apparently complex M/EEG phenom-

ena can thus be explicitly modeled as an ordered sequence of switches

between different oscillatory regimes. In principle, this enables one to

model such phenomena as the progression of pathology, epileptic events

(see, for example, [76–78], for thalamocortical models), pharmacologi-
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1 Introduction

cal intervention, sleep stages [79], or general changes in the oscillatory

regime due to contextual state changes. The approach is here illus-

trated by some synthetic examples. The analysis made enables the

selection of highly constrained parameterization. Bayesian inversion

should, in principle, be able to identify the free parameters of ordered

sequence models: for example, the slowly changing function needed to

induce the switching behavior.

The principal types of system topology within the single-area modi-

fied Zetterberg-Jansen model are classified in this work. In particular,

it is shown that the parameterization chosen by Jansen and Rit [54]

gives rise to quite specific system behavior and that this is an excep-

tion rather than the rule among the different dynamic regimes. More

generally, the predominantly asymptotic behaviors over the entire effec-

tive parameter space are shown to be harmonic oscillations of an LC-

branch, arising from two Andronov-Hopf bifurcations with oscillation

frequencies between 0 and 80 Hz, an observation compatible with the

widespread presence of relatively frequency-stable rhythms in brain sig-

nals. Anharmonic rhythms arising from global bifurcations (such as of

Shil’nikov’s type [80]) are thus special and exceptional, but nonetheless

important for modeling pathological states such as those in epilepsy.

The second subject of inquiry comes about because local neuronal

circuits are embedded in global brain networks and may experience

high amplitude time-varying input from other parts of the brain. Be-

cause neural ensembles tend to oscillate intrinsically (this is shown in

Chapter 5), such cortical input is very often periodic, as evidenced

by the widespread occurrence of rhythmic activity in both extracra-

nial and intracranial recordings [81]. For this purpose, a continuous

periodic function over time is used as model input, approximating a

periodic train of pulses. In this continuous function, each single pulse

is similar (but not equal) to the single event used by Jansen and Rit

for eliciting visual, evoked potentials [53,54], or used in Bayesian inver-

sion studies (e. g., [50, 66]). Both amplitude (intensity) and frequency
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of the stimulation within the effective ranges are used. These ranges

are derived from the work on the first subject, where constant inputs

where considered. The entire parameter space is charted with the aid

of characteristic Lyapunov spectra and the Kaplan-Yorke dimension as

well as time series and power spectra.

As rhythmic and chaotic brain states are found virtually next to

each other, small parameter changes can give rise to switching from

one to the other. The frequency entrainment effect is found to spread

over broader stimulus frequencies for higher stimulus intensities, while

away from the entrainment ranges, complex behavior including periodic,

quasi-periodic, and chaotic dynamics takes place. Chaotic behavior, in

particular, provides continuous spectra of the sort commonly observed

in electrophysiological recordings such as M/EEG data. The results

indicate that a relatively simple model of a periodically forced local

neuronal circuit is capable of producing surprisingly complex and di-

verse phenomena, which are observable in brain data and relevant for

the explanation of brain function.

The third focus is on a deeper understanding of the mechanisms un-

derlying the phenomena observed in a photic driving experiment [82]

and on predicting the effects of stimulus frequency and intensity. Elec-

trophysiological measurements such as M/EEG, local field potentials

(LFP) or single unit recordings contain rich information on brain func-

tion. The phenomena may be related to specific cognitive processes, to

general brain states, or to certain pathological conditions. For example,

it is known that stimulation by repetitive light flashes entrains the al-

pha M/EEG rhythm (i. e., frequency entrainment) [82]. Neurons in the

human visual cortex synchronize their firing to the frequency of flick-

ering light, causing the M/EEG alpha frequency to change toward the

stimulation frequency [83–85]. Clinically, this resonance effect is called

photic driving. The occurrence of such an effect is an indicator for the

functional flexibility of the cortex and thus a sign of its healthiness.

Photic driving is widely used as an activation method in clinical prac-
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1 Introduction

tice: for instance, when diagnosing epilepsy, migraine, schizophrenia,

or depression [86–88].

In order to gain further insight into mechanisms underlying such

brain resonance effects and their relevance to brain function and pathol-

ogy, and to make predictions concerning the stimulation parameters, a

modified Zetterberg-Jansen model is again used. Since in the photic

driving experiment one has to consider rhythmic input, the version is

periodically forced. This is the second subject of the work. The model’s

response to rhythmic input is also of great importance in many other

experimental settings such as those exploring the auditory system by

isochronic tones (e. g., [89]).

The author fitted the output of the periodically forced NMM to data

from a specific photic driving experiment in terms of frequency detun-

ing and of the largest Lyapunov exponent, which measures the expo-

nential separation or convergence of nearby trajectories. In this way, it

was shown that the NMM is suitable for modeling for the dynamics of

brain resonance phenomena and demonstrated that useful predictions

concerning the parameter choice of entrainment experiments can be de-

rived: the NMM can be used to study the mechanisms of, for example,

perception and epileptic seizure generation.

The arrangement of the succeeding chapters is as follows. In the

second chapter, neuronal modeling is introduced and the known neural

models are outlined. The third chapter contains a general mathematical

description of NMMs and the methods used in analyses analyses and

numerical calculations. In the fourth chapter the specific NMM of a

cortical area is described. In the fifth chapter the model analyses and

the results are discussed. Chapter six applies the NMM to the photic

driving experiment.

To go into more detail: the 2nd chapter, the background of this

work, is divided into four sections. The first is a brief overview of

neuronal modeling. The second describes the forward model linking

physiological processes to measurements. The third discusses how to
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describe neuronal states on different scales. The fourth deals with the

mean-field approximation on the mesoscopic scale.

The subject of Chapter 3 is the mathematical development of a gen-

eral mean-field model and the methods for analyzing it. The existing

mean-field models are classified on the general model framework, which

is normalized with respect to characteristic physical constants. From

this formulation the point-like voltage-based NMM for describing a cor-

tical area is derived, its functions are described and its parameters are

discussed in relation to Jansen and Rit [54].

In Chapter 4, the point-like voltage-based NMM is applied to the

elementary circuit of a cortical area. The feedback structure of the

cortical sheet is introduced and discussed. The PCs are identified as the

most important structure for contributing to such electrophysiological

data as M/EEG. The voltage-based model is applied to describe the

neural states of a cortical area by a nonlinear system of differential

equations. Since a single cortical area model is being analyzed, the

observer system is simplified before applying to experimental data.

Chapter 5 is the core of this work. The dynamics of the constantly

and periodically forced modified Zetterberg-Jansen model are system-

atically analyzed. The parameter space is discussed and the parame-

ters selected for analysis are justified on the grounds that they make

the investigations of the model computationally and mathematically

tractable. As it was possible to define effective ranges for the extrin-

sic inputs, the analyses are complete. Stabilities and bifurcations are

investigated as functions of the effective extrinsic input levels and the

intrinsic characteristic time constants. The mechanisms for regimes are

classified and mapped to the parameter space, so that it is possible to

present a scheme for describing complex dynamics in M/EEG data. For

the periodically forced model, the parameter space is extended to the

intensity and frequency of the periodic extrinsic input. The analysis

of the state-space as a function of stimulus intensity and amplitude

yields a description of the complex behavior of the model. Finally,
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1 Introduction

the dynamics of the forced modified Zetterberg-Jansen model (whether

forced constantly or periodically) are discussed.

Chapter 6 presents an important aspect, namely the application of

the analytical work to experimental data. The periodically forced volt-

age-based NMM is applied data from a specific photic driving experi-

ment, the aim being deeper understanding of the neural mechanisms

which underlie such brain resonance phenomena as photic driving or vi-

sual frequency entrainment effects. Using the concept of coupled oscil-

lators it is shown that the modified Zetterberg-Jansen model is suitable

for explaining the effects of deterministic and chaotic behavior in such

an experiment. Indeed, it is demonstrated that the NMM is useful in

analyzing and understanding mechanisms behind brain functions and

can be helpful in improving and designing experiments.

In Chapter 7, the model, its analysis, its application and its potential

pitfalls are discussed.
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2 Neuronal Modeling

You can’t say A is made of B or vice versa.

All mass is interaction.

Richard Feynman, 1918–1988

This chapter gives the background to the work done. The scientific field

of this research is computational neuroscience and there is an explana-

tion of the concepts in Section 2.1. The complexity of neural models is

discussed in terms of their mathematical tractability and the scales of

description. The reasons why the Zetterberg-Jansen NMM is used in

the work are made clear from a classification of models and from the

relation of this particular NMM to neighboring scientific fields. Since

the purpose of using it is to explain extracellular electrophysiological

recordings, particularly noninvasive measurements such as M/EEG, the

forward model that is necessary to fill the gap between neural mass ac-

tion and measurements is described in Section 2.2. A brief overview of

neural models from the microscopic to the macroscopic level is provided

and discussed as the background to the extracellular measurements in

Section 2.3. The approach of mean-field approximation that is used

in this work for modeling the mean neural states is introduced and a

review of mean-field models and its applications is presented.
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2 Neuronal Modeling

2.1 Computational Neuroscience

Computational neuroscience, to which this work is a contribution, aims

to understand the fundamental mechanisms of information processing

in the central nervous system which underlie the brain’s enormously

complex function in health and disease, ranging, as it does, from pri-

mary sensor processing to cognition and motor control [90]. In this

scientific field, great importance is placed on the development and the

analysis of mathematical models of the central nervous system or parts

thereof. Such models are usually based on dynamical system theory,

neuroscience and artificial networks.

The central question of how the neural substrate computes partic-

ular functions is what distinguishes computational neuroscience from

other fields such as biological cybernetics or artificial intelligence [91].

The approach to systems in cybernetics is top-down with black boxes,

that is, without any a-priori knowledge about the inner components.

Cybernetics studies the measurements in order to describe the system

behavior (i. e., system identification) [92, 93]. In the case of artificial

intelligence, there are various solution approaches, mainly developed

to create devices for performing particular tasks of action and recog-

nition (such as speech synthesis and analysis combined with learning

and planning). None of these is necessarily concerned with biological

processes [94, 95].

2.1.1 Extending the Scientific Method

Computational neuroscience extends the neuroscientific method with

the incorporation of mathematical modeling into the cycle of observa-

tion, hypothesis, experimentation and independent verification [91].

Mathematical models are thus complementary to experiments when

it comes to generating novel mechanistic hypotheses. Such models

should principally satisfy three requirements, that they be (i) plausible

and (ii) tractable as models, and (iii) that they be capable of predicting
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2.1 Computational Neuroscience

and/or explaining experimental findings [91].

2.1.2 Complexity of Models

The tractability of a model is determined by its mathematical dimen-

sionality in terms of variables and parameters and the complexity of

the brain or parts thereof that should be plausibly modeled. The spa-

tial scale over which the brain has to date been experimentally inves-

tigated ranges from 10−10 m of molecules to 10−2 m of fiber tracts and

brain structures [90]. The spatial organization can be arranged into

a microscopic level of molecules and synapses, a mesoscopic level of

neurons and neural ensembles and a macroscopic level of large-scale

networks of brain areas [4]. The temporal scale of the measured kinet-

ics is also highly relevant. The dynamics range from 10−5 s for gating

single ionic channels to weeks of biophysical and biochemical changes

(e. g., long-term potentiation) that may underlie memory [91].

2.1.3 Classification of Models

Processes on several spatiotemporal levels have been modeled (see, for

example, [96] for review). Mathematical models can be sorted accord-

ing to these spatiotemporal scales depending on the measurements re-

quiring explanation [90]. Note that a single model may cover several

spatiotemporal scales. Particularly at the mesoscopic and macroscopic

level (where most recordings are extracellular or even noninvasive), for-

ward models are necessary to describe the experimental data (such as

LFP, functional MRI, EEG and MEG). Changes in the state of the

brain (e. g., from diseased to healthy or vice versa) may also change

the spatial range necessary when modeling a specific process. For in-

stance, the modified Zetterberg-Jansen model used in this work was

originally designed to describe a local cortical area but its spatial scale

has been extended to larger structures and even to the whole brain in

cases when the model is capable of reproducing local phenomena such
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as the alpha-rhythm [48] in the somatosensory cortex as well as gener-

alized phenomena of the brain (i. e., of high spatial correlation) such as

generalized epilepsy [64, 65]) and the transition(s) between them (see

Section 5.1.3 and Section 7.2.3).

2.1.4 Classification of the Zetterberg-Jansen Model

In terms of dynamical system theory and cybernetics [92], the modified

Zetterberg-Jansen model (see Chapter 4 for more details) is a closed-

loop system comprising positive and negative feedback loops, where the

output of a NM (i. e., of the PCs) is positively and negatively fed back

to the input through two different NMs (i. e., EINs and IINs). Each

set is biologically informed and comprises four input-output elements:

synapses, a dendrite, a soma and an axon hillock (Sections 3.1 and

3.2). These elements are linear time-invariant systems, where the axon

hillock describes a nonlinear transfer function (i. e., sigmoid function

for neural ensembles, see Section 3.2.1 for more details).

Mathematically, the modified Zetterberg-Jansen model can be de-

scribed as a nonlinear system of ordinary differential equations (see

Eqs. (4.1) to (4.7)). In physical terms, the modified Zetterberg-Jansen

model is a dissipative (see Section 5.2.3) and open system (see Fig. 4.1)

with respect to the interactions with the extrinsic domains (i. e., there

is extrinsic input on each of the three NM ,and the NM of PCs projects

back to the extrinsic domain). The modified Zetterberg-Jansen model

is a self-sustained oscillator and a multi-stable system depending on

the applied parameter set (see Section 5.1.3).

Based on a worst-case analysis of the parameter space (see Sec-

tion 5.1.1), the modified Zetterberg-Jansen model is studied in the

present work using the methods of mathematics and systems theory

(see Section 3.3). There is analysis, for instance, of bifurcations (see

Section 5.1.2), characteristic Lyapunov spectra and Kaplan-Yorke di-

mension (see Section 5.2.2).

Because the modified Zetterberg-Jansen model is an elementary cir-
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cuit that can be interpreted in several respects (as presented above) it

may applied in broader scientific fields such as engineering and automa-

tion of feedback systems or physics of self-organizing systems [97].

Finally, the Zetterberg-Jansen model [53,54,58] that is modified, ana-

lyzed and applied in the present work describes a synchronized cortical

area (i. e., cortical neural ensemble) which is capable of comprising sev-

eral extracellular measurements on different scales depending on the

forward model. Although the aim of this research is to describe phe-

nomena in M/EEG data, a general scheme of the forward model is

presented in Section 2.2. The descriptions of the neuronal states are

introduced in Section 2.3.

2.2 Forward Model

When the most important questions in neuroscience are being tackled,

the underlying information processes (e. g., electrochemical processes)

are usually hidden (e. g., for M/EEG) and, therefore, a forward or gen-

erative model for brain measurement such as M/EEG can be specified

by two separate systems: the state Pφ and the observer system Pχ

φ = Pφ

(

ψ, θφ

)

, (2.1)

and

χ = Pχ

(

φχ, θχ

)

+ ǫ. (2.2)

The state system Pφ explains the usually hidden neuronal states φ

such as the flow of ions through the membrane of nerve cells at the

microscopic level as an explanation of patch-clamp data, or the mean

membrane potentials of neural ensembles at the mesoscopic and macro-

scopic level that potentially generate M/EEG [4]. The observer system

Pχ relates the relevant neuronal states φ to the measurements χ (e. g.,
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membrane potentials of cortical PC ensembles to M/EEG). The states

φ are parameterized by θφ and described by the operator Pφ, usually a

differential operator under the perturbation ψ covering different types

of input: sensory input (e. g., light, odor or pressure), experimental

manipulations (e. g., medication or transcranial magnetic stimulation),

and input from structures; even covering processes that are not explic-

itly considered (e. g., glia cells or vascualar and muscle motion). The

observations χ are, in a uniform manner, parameterized by θχ and de-

scribed by the operator Pχ linking relevant states φχ : φχ ⊆ φ to

the measurements χ linearly superimposed by noise processes ǫ such

as thermal noise of the measuring apparatus. The observer system Pχ

has to take into account a physical model [70] of the sources (e. g., the

equivalent dipole model) [27, 98], the media (i. e., geometry and tis-

sue of the head) [99, 100] and the measuring apparatus (e. g., SQUIDa

magnetometry or electrodes and amplifier) [26, 101].

For the state system Pφ a NMM of a cortical area is what is need

in this work; and for the observer system Pχ a linear output function

(leadfield). In this work, it is not necessary to consider leadfield mod-

eling because only a single area is modeled . The state systems will be

described in more detail in the following paragraphs.

2.3 Neuronal States

Developing biophysical informed models of the brain or parts thereof,

one gains an insight into the formation of operations underlying brain

functions such as stimulus adaption, learning or pattern discrimina-

tion [4]. From this insight, the options are to design very detailed

and thus complex models or to design reduced and therefore simple

models [96]. Due to the vast diversity of biophysical (e. g., cell types),

biochemical (e. g., neurotransmitters) or morphological entities (e. g.,

aSuperconducting QUantum Interference Device, for short SQUID, is used as a
sensitive biomagnetic field detector. See section 2.2.3 in Andrä and Nowak [26] for
more details.
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size of cell bodies) (e. g., [102, 103]) modeling the whole brain in ev-

ery detail would produce working brain copy of enormous complexity.

Such a unified model, covering the whole range from the micro- to

macroscale (bottom-up), would lack tractability and suffer from incom-

prehensibility [91]. In particular, the huge number of variables to be

initialized and parameters to be specified would result in mathematical

intractability for directed predictions and explanations. It must be ad-

mitted that such a brain replica would offer an alternative to the model

organism approach and would obviate invasive experiments. However,

because neurons are embedded in networks for interaction at different

scales, it is to be expected that networks will follow common laws of

operation, given the anatomical and physiological similarity that ex-

ists throughout the brain (or at least in parts) [4, 104]. Hence, the

physical reduction processes (simplification, approximation and ideal-

ization) of the brain inspire qualitative models [49]. To meet particular

challenge of balancing biological plausibility against mathematical and

thus computational tractability, several models have been developed

and analyzed under different aspects at different scales depending on

the measurements it was desired to explain.

2.3.1 Neurons – The Dynamic Computational Units

In the school of thought that sees the brain (or more generally the whole

central nervous system) as automata (i. e., an information processor) it

is a fair assumption that functional specialization emerges from inter-

actions of the dynamical computational units, the neurons [105]. At

a neuron, information converges from 102 neurons and diverges to ap-

proximately 103 other neurons featuring a spatiotemporal pattern [91].

One assumes that the pattern of emitted action potentials (i. e., jitter

of firing rate and timing) evolving in time and space encodes infor-

mation shared by neurons (i. e., an information unit) in a neuronal

circuit [105]. This is one way of describing the microscopic level on

which all representations and computations rest [4]. For instance, at
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this level models have successfully described the ionic fluxes through the

membrane of neurons forming action potentials [60] as measured with

single-cell recordings (e. g., the patch-clamp technique) or the release

of neurotransmitters in the synaptic cleft and its receptors governing

the efficacy of synaptic connections between neurons (e. g., [106]), as

measured biochemically. On the basis of such microscopic descriptions,

complex compartment models can be composed [107–110]. Simplified

neuronal models such as the abstract integrate-and-fire models [111]

or detailed neuronal models such as the Hodgkin-Huxley model and

its derivatives (for a review see [109,112,113]) contribute to the under-

standing of neuronal computations at the microscopic level [109, 110].

2.3.2 Ensembles – The Unit of Brain Functions

Computations underlying brain functions such as action, perception,

learning, language and cognition are, in what has so far been said,

assumed to operate from neural ensembles at the mesoscopic level

(e. g., [3, 4, 114]). There is an alternative school of thought which hy-

pothesises that individual neurons are highly specialized (for a discus-

sion see [115]) which would imply the modeling and study of networks

that comprise up to an order of 1011 neurons at the microscopic level

(e. g., [116]). However, electrophysiological studies [117–119] provide

evidence that the cerebral cortex is, indeed, functionally organized in

vertically oriented columns of 2 × 10−6 m to 5 × 10−8 m in diameter con-

taining 102 to 105 of neurons (for a review see [120]). Neural ensembles

arise through functional integration of neurons due to strong intercon-

nections at the microscopic level (i. e., local connections) to a common

state when a certain number of neurons are coherent stimulated (e. g.,

by synchronization [105, 121]). A further support for this view is an

assumption of fundamental correspondences among anatomical struc-

tures, their functions and the spatiotemporal pattern of activity [122].

At the mesoscopic level, models usually approximate the complex micro-

scopic level and describe the density or the mean of the spatiotemporal
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dynamics of neural ensembles, such as the mean postsynaptic potentials

(PSP) or mean of action potentials (or firing rates) as extracellularly

measured, for instance, with LFP [4]. On the basis of such mesoscopic

models, networks of local brain areas (e. g., [54,55,123]) or whole brain

networks can be composed. At this macroscopic level, there are path-

ways like large axons running through the cortex (gray matter) and

fiber bundles running through the white matter interconnecting the

hemispheres (i. e., long-range connections [124]). They selectively bind

emerged specific neural ensembles at the macroscopic level [105] form-

ing metastable patterns [115, 125]. Models at the mesoscopic level are

able to explain the dynamics at the macroscopic level [69, 126] which

are found with appropriate temporal resolution when noninvasive mea-

surements like M/EEG take place [12, 13].

2.4 Mean-Field Approximation

It is thought that the emergence of specific neural ensembles is what

supplies the functional elements of brain activity which carry out the

basic operations of informational processing [3–11,115,125]. From this

point of view, the states of an emerged neural ensemble rather than

those of single neurons are of interest. In the tackling of the problem of

diversity of a neural ensemble at the mesoscopic level, mean-field theory

is of assistance, approximating the states of an ensemble. Mean-field

theory primarily arose in statistical physics when dealing with complex

systems and is extensively used there [127]. A famous example, (men-

tioned in [4]) is the description first by Maxwell and then by Boltzmann

of the motion of gas molecules, which was found by the approximation

method using temperature and pressure.

2.4.1 Ensemble Density Models

If one applies the mean-field approximation to neurons at the meso-

scopic level one can describe the density dynamics of neural ensembles
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– the so-called population or ensemble density models [4, 109,128–138].

Such models explicitly deal with the effects of stochastic influences (e. g.,

action potential timing), so that probability densities over trajectories

in the state space provide a probabilistic description of the variability

(or randomness) of a neural ensemble. Smooth effects of stochastic influ-

ences such as diffusion processes can be described by stochastic or par-

tial differential equations, in particular by use of the Fokker-Planck for-

malism [4]. For example, in physics, the Fokker-Planck equation is used

to describe Brownian velocity in fluids and gases or laser noise [139].

Further constraints are required: for instance, that the ensemble has a

Gaussian distribution due to a present stimulation and that the non-

linearity does not dominate the interacting elements [4,128]. Deco and

colleagues [4] describe the approximation of ensemble dynamics by their

probabilistic evolution (e.g., Fokker-Planck equation) based on a single

spiking neuronal model (i. e., integrate-and-fire model). The ensemble

density approach can be related to measurements like EEG, for exam-

ple, by the expectation value (or mean) of firing rates or membrane

potentials of an average neuron within an ensemble [130]. However,

numerically calculation of the probabilistic evolution for given initial

conditions of neural ensemble dynamics (i. e., integrating the Fokker-

Planck equation) would usually requires binning of the continuous den-

sity (i. e., state space). Attention to multiple states of a neural ensem-

ble would results in a vast number of differential equations and thus

parameters. The density approach is thus not feasible for systematic

parameter studies [4] or even system inversions (e. g., Bayesian tech-

niques). The options necessitated are to reduce the number of states

and/or approximate the ensemble densities can be approximated (e. g.,

linearly).

NMMs are a special case of the ensemble density approach which

are in line with both state reduction and approximation. Here, the

ensemble dynamics with all their diversities are reduced to an averaged

neural state of a neural ensemble such as mean firing rate or mean mem-
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brane potential (i. e., expectation values of densities). Thus, NMMs are

parsimonious in terms of parameters and suitable for parameter study

and for system inversions of given data like that of M/EEG [50]. The

main impact of this reduction is that it enables the states to be cou-

pled simply by the expectation (i. e., first moment) of a state, while

the Fokker-Planck formalism permits coupling of each statistical mo-

ment of a probability density within and between neural ensembles.

Finally, the Fokker-Planck formalism explicitly shows the variability

of a state, whereas the reduced NMMs only features variability im-

plicitly (i. e., slope of the sigmoidal transfer function [140–142]). The

interested reader will find more on this general subject in the excellent

papers about density models [4,130] and the citations therein. What is

dealt with in the present work is NMMs, and the following subsection

introduces the concept and the related mathematics.

2.4.2 Neural Mass Models

NMMs provide an explanation of averaged dynamics of neural ensem-

bles at a mesoscopic and macroscopic level and were designed to strike

a balance between mathematical simplicity and biological plausibility.

They are a type of model widely used for explaining electrophysiology

measurements (e. g., [50, 64, 69]). In line with the mean-field theory,

NMMs summarize the states of neurons within an ensemble (i. e., mean

firing rate and mean membrane potential) assuming a point ensemble

or point mass (i. e., delta-density distribution). Hence, NMMs are a spe-

cial case of the ensemble density approach. The distinguishing feature

is that, in contrast to ensemble density models, after approximation

only first-order moments are available for coupling the average states

within or between NMs. NMMs usually describe two states, namely

mean firing rates and the mean PSPs using the familiar dynamic firing

rate model [109, 141]. The term NMM goes back to the fundamental

work of Freeman [49], who used the name neual mass action model.

These he introduced as an alternative to ensemble density models [4].
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To meet the spatial extension of neuronal dynamics, NMMs can be de-

fined as mean-field models assuming a homogeneous continuum of the

neuronal substrate. Such neural mean-field models are thus a general-

ized formulation of NMMs.

The following subsections deal with the concept behind NM modeling.

Neural-field models and NMMs are briefly reviewed and discussed.

Concept of Describing Neural Mass Action

The motivation for NMMs is the desire to describe of the basic elec-

trophysiological features of neurons with as few parameters as possible.

Since the information processing underlying brain functions such as

action, perception, and cognitive functions in health and disease is car-

ried out by ensembles of interacting neurons [3–11], it is not necessary

to take each single neuron into account. Thus, neural ensembles are

assumed to be the basic units for brain function. This assumption

is confirmed from observation with electrophysiological measurements

such as M/EEG and LFP [12–14]. M/EEG reflect the synchronous ac-

tivity of 105 to 109 of neurons (i. e., mean postsynaptic activity) rather

than single neural activity (e. g., action potentials) [143].

To summarize, the idea is to develop models which are biophysio-

logically inspired (i. e., mechanisms) which are plausible (i. e., parame-

ters), and which are, at the same time, parsimonious: to describe the

mesoscopic and macroscopic level of neural ensembles as observed elec-

trophysiological approaches like M/EEG. The parsimony should leave

scope for model inversions to allow data to be fitted in corroboration

of experimental hypotheses (e. g., using Bayesian techniques) and for

parameter studies to underpin new hypotheses (e. g., the designing of

new experiments and/or models).

According to Freeman’s approach, similar neurons can be lumped

together as so called neural mass (NM) described with only one set of

parameters using mean-field approximations.

It follows that an ensemble state is the synchronous activity of simi-
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lar neurons within a NM. Underlying this is a classification of neurons

because the neuronal substrate features homogeneity of certain features

(e. g., cell densities) as well as heterogeneity of others (e. g., cell shapes).

A classification could be made in terms of morphology (e. g., layer or

position, shape and cytoarchitecture) such as Brodmann’s parcellation

of the human cerebral cortex [144] and/or in terms of physiology (e. g.,

excitability and activation patterns) [102,145,146]. In this view the neu-

ronal substrate under consideration is homogenized and decomposed by

a set of NMs, where each set or class is determined by a set of a few

(equivalent) parameters. Following Freeman’s terminology classifica-

tions are subject to the following assumptions [49]:

(a 1) neurons must share the same input with adjacent neurons – uni-

form excitation;

(a 2) the state of a neuron depends on the input – uniform state.

Given (a 1) and (a 2) there will be two basic types of NMs: KO-sets

and KI-sets (K for Katchalsky) for designing networks based on the

following assumptions of embeddedness:

(a 3) neurons of a neuronal set do not interact with each other;

(a 4) within a neuronal set each neuron is uniformly connected with

vicinal neurons.

In accordance with considerations (a 2) to (a 3), a KO-set is character-

ized by a pool of similar neurons with a common input (a 1), driving

the neurons in a common state (a 2) so that the neurons produce a com-

mon output (i. e., excitatory or inhibitory) without having interactions

(a 3). A KI-set is then a collection of similar and homogeneously inter-

connected (a 4) neurons with a common input (a 1) and output (a 2).

On the basis of these two fundamental types of NMs, networks can

be developed in a way, such that a KII-set consists of interacting KI-

sets, and so forth. Again, the two sets differ in their interconnectivity.
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Since neurons in a KO-set do not interact with each other, the average

state of such an ensemble can be deduced from a single neuron, or, in

other words, the ensemble behaves just like a single neuron. As a conse-

quence, a KO-set can physiologically be compared to exemplary single

neurons and thus described, for instance, using a Hodgkin and Huxley

model [60] or a integrate-and-fire model [111]. Because throughout the

brain neurons are embedded in networks [124,147] a set of isolated neu-

rons is a purely academic concept. For practice, KO-sets convert to

scaled single-cell models at the microscopic level, and KI-sets are more

relevant for modeling both the microscopic and the macroscopic level.

In contrast to KO-sets, because KI-sets take interconnections among

neurons into account, the emerging states depend strongly on the in-

teractions and cannot be reduced to states of a generic single neuron.

As a consequence, for specifying KI-sets analogous models or equiva-

lent parameters for single neural models have to be found. Equivalent

parameters can be determined using in-vivo single-cell recordings or

intracranial measurements like LFP.

Spatially Distributed Dynamics – Neural Field Models

The first neural field models were published in the 1950s and 1960s

[148–150]. Wilson and Cowan [141,142] formulated a neural field model

for membrane potentials and Nunez [57] derived an equivalent descrip-

tion of a neural field which took into account firing rates rather than

membrane potentials. The neural fields in both these sources consider

two coupled ensembles of excitatory and inhibitory neurons. These

equivalent descriptions were analyzed by [57, 151, 152] and generalized

by [153, 154]. Due to the spatial extension and the finite propagation

via axonal time delays [153,154], distributed time delays [155,156] were

introduced and analyzed (e. g., [155–160]). Neural field models were

applied as generative forward models for electrophysiological data such

as M/EEG or LFP incorporating physiological details for a number of

purposes, the generation of rhythms [13, 126, 161] during sensorimotor
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coordination [153,154], for producing event-related potentials [162,163]

or for indicating anesthesia [164–166], epilepsy [167–169] and stages of

sleep [79]. Interested readers can refer to excellent reviews by Jirsa [6]

and Ermentrout [170] on neural field models and the citations therein.

The connections between neural ensembles take a major aspect in

neural field models, because such models especially focus on the func-

tional role of spatial patterns of neuronal states. It is thus assumed

that the structural connectivity shapes functional dynamics in terms of

brain function [171] and also during brain development [172]. From the

architecture of the brain, neural connections, or more precisely axonal

projections has to be classified, for instance, by means of their spatial

range (e. g., distance between the locations of the projecting neuron or

neural ensemble and its targets) or pathway (e. g., running within or

by leaving and/or entering the cortical sheet) [124], diameters or den-

sities (i. e., number of axon fibers per cross sectional area) [173, 174]

and/or myelination (e. g., number of oligodendrocytes) [175]. For ex-

ample, the time of an action potential for propagating along axons

depends particularly on two factors: (i) the geometry (length of the

pathway and the axonal diameter, e. g., [176, 177]), and (ii) the degree

of myelination (e. g., [178]). Considering the whole human brain, a

so-called connectome [171, 179], that is, a complete description of the

structural connectivity, can be assessed by considering multiple record-

ing techniques such as in vivo diffusion-weighted MRI (e. g., [30,31]) or

post-mortem: dissection techniques [180,181], tract tracing (e. g., [182])

or optical methods [32].

In order to study neural field models at the macroscopic scale such a

connectome can be approximated locally to be homogeneous, meaning

translationally invariant (i. e., short-range connections) and globally to

be heterogeneous, meaning sparse and translationally variant (i. e., long-

range connections) [6]. Homogeneity could be defined, for example, by

a cytoarchitectonic parcellation of the cortex, according to Brodmann

[144], into regions of approximately 2 × 10−2 m2. In case of spatially
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homogeneous connections, the spatiotemporal dynamics of neural field

models are well studied (e. g., [126, 142, 154, 157]), where, for instance,

the connectivity probability decays exponentially over the distance (see

Section 3.1.3). Its worth to note that the impact of heterogeneous (long-

range) connections were analyzed [183,184].

Mean-field models are computational expensive and parsimonious

only under such restrictive conditions as homogeneity. Consequently,

a model inversion, for example, using a Bayesian inference scheme, is

limited. The integration of the mean-field equations (e. g., integro-dif-

ferential equations) requires binning of the space, which leads to a

spatial arrangement of point masses.

Describing such electrophysiologically measurements as M/EEG at

the macroscopic scale requires a coarse sampling of the spatial domain

(e. g., dividing the cortex in areas of 1 × 10−2 m2), because of the rela-

tive low spatial resolution of the techniques (e. g., relative to functional

MRI or two-photon excitation microscopy). Thus, a point mass com-

prises the local homogeneity (i. e., a NM) and the connections between

such NMs comprises the heterogeneity of a connectome. Furthermore,

from the point of view of analyzing M/EEG one tries to explain the

data with a minimum of generators (e. g., a set of equivalent current

dipoles). Consequently, for model inversion, NMMs that comprise spa-

tially sparse networks of NM (e. g., number of NMs is less or equal to

the number of sensors) are more appropriated.

Point-Like Dynamics – Neural Mass Models

NMM has been used for explaining rhythms in health [48, 51, 54–56,

58,64,69,123,163,168,185–189,189–196] and disease [51,58,64,65,162,

168, 169, 192], event-related [53, 54, 67, 68, 70, 71, 73, 74, 163] as well as

steady-state responses [72, 197] and interactions in network [48, 54, 64,

66–69, 73–75, 169, 190, 192–196, 198]. It has been possible to design

such models exploiting diffusion-weighted- [69,195] as well as functional

MRI [69, 190, 193, 195, 196] and to combine them with hemodynamic
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models in order to explain functional MRI-data [195].

The first point-like NMM was published by Lopes da Silva in 1974 [55]

about two decades after the first mean-field model [148], and before

Freeman wrote his fundamental work in 1975 [49]. Lopes da Silva and

coworkers [55] presented a linear two-ensemble model of the thalamus

(i. e., interacting excitatory relay cells and IINs) capable of generating

and examining the alpha-rhythm (frequency band around 10 Hz) which

is widely observable in M/EEG-data. Later, this model was extended

to the spatial domain explaining phase velocities [185]. Another exten-

sion by Zetterberg and co-workers describes a three-ensemble model of

the cortex referring the ensembles to local cortical excitatory PCs and

EINs as well as IINs [58]. This takes into account the nonlinear prop-

erties (e. g., time-invariant sigmoid shape of activation) of interacting

neurons and ensembles. Nearly ten years later, Freeman [123] studied

the olfactory system using a nonlinear NMM of twelve ensembles form-

ing a KIII-set (i. e., of three KII-sets, each consisting of excitatory and

inhibitory KI-sets formed with two KO-sets), which shows determinis-

tic chaos similar to M/EEG patterns. In 1993 Jansen and colleagues

picked up the local cortical model of Zetterberg and colleagues [58] and

modified it (i. e., by neglecting self-projections of PCs) to study visual

event-related potentials [53], and, later, the alpha-rhythm in EEG [54].

Cortical Models

The single cortical area model has been used to explain both epilepsy-

like brain activity [64,65] and various narrow band oscillations ranging

from the delta to the gamma frequency band [48, 51, 187]. The under-

lying mechanisms of rhythms, in terms of bifurcations, were identified

by [189] for the Jansen and Rit configuration [54], and, more gener-

ally, by [51] for Zetterberg’s model structure regarding the effective

input ranges on all three neural ensembles or masses. A natural exten-

sion of this local approach is to model a spatially distributed network

of cortical areas as a collection of coupled single-area models, thereby
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accounting for more complex transient [54, 64, 66–68,70, 73–75] and os-

cillatory behavior [48,54,64,69] for the purpose of studying interactions,

for example, [190, 193, 194, 196, 198]. The inversion of these dynamic

generative models from given M/EEG data (e. g., [187, 190, 193, 196],

or Bayesian inversion, ’dynamic causal modeling’ [50, 68], available

in the free academic software ’Statistical Parametric Mapping’ [199])

has been developed for the analysis of event-related [68,70,71], steady-

state responses [72, 197] and rhythms [187, 190, 193, 196]. These tech-

niques, using a cortical area model [53, 54, 58], have been used exper-

imentally to test novel hypotheses about brain function at a systems

level [73–75,190,193,196].

Thalamus and Thalamocortical Models

However, the cortex cannot be considered in isolation. One of the most

important input and relay stations for the cortex is the thalamus. Sev-

eral studies have drawn on Lopes da Silva’s thalamus model [55, 56]

and studied nonlinearities involved in generating the alpha-rhythm in

EEG-data [186]. Furthermore, thalamocortical models (i. e., coupling

thalamus and cortical areas) have been designed for explaining focal at-

tention through event-related desynchronization and synchronization

in the M/EEG alpha- [188], beta- and gamma-band [191] such mod-

els have also addressed rhythms [69, 163, 195], as well as event-related

potentials [163], and epileptic seizures [168, 169, 192]. The contribu-

tion of the thalamus to cortical rhythms in thalamocortical models was

structurally analyzed by [200].
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3 Mathematics and Methods

In mathematics you don’t understand things.

You just get used to them.

John von Neumann, 1903–1957

The mathematical backbone and the analysis methods are the subject

of this chapter. Section 3.1 develops the general mathematical frame-

work for modeling the mean activity of a NM. In Section 3.2 the basic

ordinary differential equations for describing the NMs in the modified

Zetterberg-Jansen model [54,58] are derived and discussed. The meth-

ods and algorithms that are used to study the dynamics of the NMM

and the experimental data are listed and described in Section 3.3. The

experimental paradigm is shown in Section 3.4.

3.1 Mean-Field Framework

The NMs that constituted the Zetterberg-Jansen model which this piece

of work has used in modified form can be directly derived from a general

framework of the mean-field of the neural substrate. The modification

was necessary because the existing generalized mean-field approach of

Jirsa and Haken [153, 154] took no account of (i) the integration of

temporal kinetics of axons and dendrites and (ii) the incorporation of

velocity distributions of propagation delays. Extending the Jirsa and
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Haken [153, 154] formulae to incorporate the first factor, in particular,

meant that the kinetics of the point-like NMs in the Zetterberg-Jansen

model could be described. This provides a sufficient framework for most

of the neural point-like and spatial distributed mean-field models.

Having extended the general mean-field framework a second-order

ordinary differential equation is derived, describing the point-like NM.

The elementary functions and operators are discussed and the parame-

ters are related to the parameters used by Jansen and Rit [54] that can

be traced back to the works of Lopes da Silva [55] and Freeman [49].

3.1.1 Definition

The neural state φ (t) = (u m)T of a neural ensemble (this term de-

scribes synchronous activity in a NM) at time t comprises the mean

PSP u (t) and the mean firing rate m (t). The PSP describes the ac-

tivities of the dendrites and the cell bodies, which are assumed to be

chemically passive, while the mean firing rate describes the actions

of the axons with their passive and active processes. Two conversion

operators are used: (i) a rate-to-potential operator that captures the

PSPs due to presynaptic firing, (ii) and an potential-to-rate operator,

accounting for the firing patterns as a function of the PSP.

According to the definition of Jirsa and Haken [153,154] the neuronal

mass Ω is considered as a continuous field of mean potentials and mean

firing rates. Additionally, in the present framework, Ermentrout’s views

of activity- and voltage-based models are included (see Fig. 3.1). The

rate-to-potential conversion Qj (r1, r2, t) computes the PSP, relative

to the resting membrane potential, uj (r2, t) at the synapto-dendritic

complex for a (target) class of neural ensemble j : j ∈ J located at r2

from the mean firing rate mj (r1, t) of all neural ensembles located at
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A

B

C

uq (ru, t) mj (rm, t)

uj (r2, t)

mj (r2, t)

∑

q∈J

∑

q∈J

∑

q∈J

Sj

Sj

Sj

fq (ru, rm) gj (ru, rm)

oq

oq

oq

u1

uq

pj

pj

.

.

.

.

.

.

gj (r1, r2)

fq (r1, r2)

mq (r1, t) f1 (r1, r2)

uq (r1, t)

oj

oj

Fig. 3.1. Synaptic terminals interconnect structures of neural ensembles A assuming
arborized axons B or dendrites C. In the principal scheme A axonal projections
terminate on a neural ensemble of type j through synapses distributed over the
dendritic tree with fq (ru, rm) depending on projecting ensemble q. The effect
of the mean action potentials mj (rm, t) (i. e., firing rate) recorded at rm hitting
terminals on the mean PSPs uq (ru, t) recorded at ru is linear and scaled by oq .
PSPs uq (ru, t) passively superimpose along the dendritic tree towards the soma
over types

∑

q∈J
uq and convert back to a mean firing rate at the axon hillock

by the transfer function Sj . Axonal projections of the ensemble type j transmit
the caused mean firing rate in space with gj (ru, rm). Voltage-based models B

describe the summed PSPs uj (r2, t) of single dendrites for intrinsic uq and extrinsic
projections pj of ensembles of type j located at r2 due to distributed terminating
axons gj (r1, r2) from ensembles at r1. Activity-based models C describe the mean
firing rates mj (r2, t) of single axons, each for an target class of ensemble j at r2

due to PSPs of distributed dendrites fq (r1, r2) caused by ensembles located at r1.
For a detailed description see Chapter 3.1.1.
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r1 in the considered spatial domain Ω of neural mass, so that

uj (r2, t) =

∫

Ω

dr1 fj (r1, r2) Qj (r1, r2, t) , (3.1)

with the corresponding spatial distribution function fj (r1, r2) of den-

drites describing the contribution or connectivity of the rate-to-poten-

tial conversions Qj at location r1 to the PSP uj at a target location

r2. Note that the set J could denotes types of neural ensembles j ∈ J

or specific types of connections (e. g., projections of IINs on PCs). The

potential-to-rate operator Oj (r1, r2, t) computes the mean firing rate

mj (r2, t) at the axon hillock for a target class of a neural ensemble

located at r2 caused by the PSPs uj (r1, t) of ensembles located at r1

in Ω

mj (r2, t) =

∫

Ω

dr1 gj (r1, r2) Oj (r1, r2, t) , (3.2)

with the spatial distribution function gj (r1, r2) of axons depending on

the spatial connectivity. The following considerations assist with the

combination of Eqs. (3.1) and (3.2):

(a 1) In ensembles of neurons the rate-to-potential conversions at chem-

ical synapses are linear [49, 108,201,202], and

(a 2) the potential-to-rate conversion of the axon hillock is nonlinear

[49, 203–205].

(a 3) PSPs as well as action potentials and thus mean firing rates are

temporally low-pass filtered when propagating through dendrites

[108,201,202,206–209] and axons [206,208,210].

(a 4) Extrinsic inputs are established such that afferent axons termi-

nate on dendrites at chemical synapses.

Taking (a 1) to (a 4) into account, it is possible to define both con-

versions as temporal convolutions of the input response functions hj (t)
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and kj (t) with the mean firing rate mj (r1, t) and the PSP uj (r1, t):

Qj (r1, r2, t) = oj

∫

t

ds hj (t− s) (3.3)

×
∫

Γ

dv lmj
(v)mj

(

r1, s− ∆mj
(r1, r2) /v

)

,

Oj (r1, r2, t) =

∫

t

ds kj (t− s)

∫

Γ

dv luj
(v) (3.4)

× Sj

(

pj

(

r1, s− ∆uj
(r1, r2) /v

)

+
∑

q∈J

uq

(

r1, s− ∆uq
(r1, r2) /v

)

)

,

where ∆uj
(r1, r2) /v and ∆mj

(r1, r2) /v denotes time delays due to

finite propagation speed Γ : v ∈ R+ along dendritic and axonal dis-

tances ∆uj
(r1, r2) and ∆mj

(r1, r2) with the specific velocity distribu-

tion functions luj
(v) : R+ → R+ and lmj

(v) : R+ → R+ of ensemble

j ∈ J between r1 and r2 [57,141,154], oj is simply a factor to scale the

linear effect, pj (r1, t) is extrinsic input, and Sj (u) is a differentiable

and steadily increasing transfer function Sj : R → R+. Both impulse-

response functions hj , kj : R → R are continuous and integrable for

all t ∈ R. For a scheme of the neural ensemble see Fig. 3.1. The im-

pulse-response functions can be recast as Green’s functions and thus

satisfy the preconditions Dj kj (t) = δ (t) and Cj hj (t) = δ (t), where

Cj (∂/∂t) and Dj (∂/∂t) are the temporal differential operators with

the polynomials Cj and Dj of constant coefficients Cj (λu) =
∑nu

i=0 aiλ
i

and Dj (λm) =
∑nm

i=0 biλ
i of the orders nu ≥ 0 and nm ≥ 0, and δ is

the Dirac delta function

δ (t) =







∞ t = 0

0 t 6= 0
, (3.5)

with
∫

∞

−∞
δ (t) dt = 1. Hence, the conversions (3.3) and (3.4) can be
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read as follows

Cj

(

∂

∂t

)

Qj (r1, r2, t) = oj

∫

Γ

dv lmj
(v) (3.6)

×mj

(

r1, t− ∆mj
(r1, r2) /v

)

,

Dj

(

∂

∂t

)

Oj (r1, r2, t) =

∫

Γ

dv luj
(v) (3.7)

× Sj

(

pj

(

r1, t− ∆uj
(r1, r2) /v

)

+
∑

q∈J

uq

(

r1, t− ∆uq
(r1, r2) /v

)

)

.

Inserting the differential equations for the conversions (3.6) and (3.7)

into the state Eqs. (3.1) and (3.2) yields the main integro-differential

equations for the two spatiotemporal states in relation to each other

Cj

(

∂

∂t

)

uj (r2, t) = oj

∫

Ω

dr1 fj (r1, r2)

∫

Γ

dv lmj
(v) (3.8)

×mj

(

r1, t− ∆mj
(r1, r2) /v

)

Dj

(

∂

∂t

)

mj (r2, t) =

∫

Ω

dr1 gj (r1, r2)

∫

Γ

dv luj
(v) (3.9)

× Sj

(

pj

(

r1, t− ∆uj
(r1, r2) /v

)

+
∑

q∈J

uq

(

r1, t− ∆uq
(r1, r2) /v

)

)

.

3.1.2 Activity-Based and Voltage-Based Models

This developed general model is an nth-order system of integro-differen-

tial equations, where n = nu +nm. However, the two state conversions

(3.8) and (3.9) are at this stage spatially not yet connected so as to

yield a closed form. For this purpose at least one of the two spatial

distribution functions fj (r1, r2) and gj (r1, r2) must be δ-like. Neglect-
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ing the aborizations of dendrites limr1→r2
fj (r1, r2) = δ (r2 − r1) (see

Eq. (3.5)) and the corresponding time delay limr1→r2
∆mj

(r1, r2) /v =

0 reduces the rate-to-potential conversion (3.8) to

Cj

(

∂

∂t

)

uj (r2, t) = ojmj (r2, t) . (3.10)

This simplification allows insertion of the potential-to-rate conversion

(3.9) into the ratio-to-potential operator (3.10), thus canceling out the

mean firing rate mj (r2, t)

Lj

(

∂

∂t

)

uj (r2, t) = oj

∫

Ω

dr1 gj (r1, r2)

∫

Γ

dv luj
(v) (3.11)

× Sj

(

pj

(

r1, t− ∆uj
(r1, r2) /v

)

+
∑

q∈J

uq

(

r1, t− ∆uq
(r1, r2) /v

)

)

,

with the differential operator Lj = Cj Dj of order n = (nu + nm) ≥ 0.

This approach to developing the system equations (3.8) and (3.9)

with respect to the PSPs uj (r2, t) is also called a "voltage-based model"

(see Fig. 3.1), in acknowledgement of the fact that, irrespective of the

incoming PSPs uq

(

r1, t− ∆ (r1, r2) /v
)

and pj

(

r1, t− ∆ (r1, r2) /v
)

, the

averaged PSP uj (r2, t) of an ensemble j always has the same shape

and only differ in sign and amplitude depending on type of projection

(i. e., inhibitory or excitatory) and projection strength (i. e., average

number of synapses) [170]. However, neglecting the axonal arborization

limr1→r2
gj (r1, r2) = δ (r2 − r1) (see Eq. (3.5)) and the corresponding

time delay limr1→r2
∆uj

(r1, r2) /v = 0 reduces the potential-to-rate

conversion (3.9) to

Dj

(

∂

∂t

)

mj (r2, t) = Sj

(

pj (r2, t) +
∑

q∈J

uq (r2, t)

)

. (3.12)
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Another version of the system of (3.8) and (3.9) in combination with

respect to the mean firing rate mj (r2, t) comprising the rate-to-po-

tential conversion (3.8) together with the potential-to-rate conversion

(3.12) is "activity-based model", meaning (see Fig. 3.1) that the input

mj

(

r1, t−∆mj
(r1, r2) /v

)

governs the shapes of the PSPs uj (r2, t) [170].

In contrast to the voltage-based model (3.11), the nonlinear transfer

function Sj (a 2) separates both conversions (3.8) and (3.12). The rate-

to-potential conversion (3.8) can only be inserted into the potential-

to-rate conversion (3.12) if the transfer function Sj is assumed to be

linear and the temporal dendritic differential operator Cj uniform for

all classes of ensembles or connection j ∈ J . At all events, the system

of (3.8) and (3.12) represents a closed form, although without such

assumptions as the linearization of the transfer function.

The formulation for modeling PSP and mean firing rate dynamics

(i. e., voltage-based (3.11) and activity-based model (3.8) and (3.12))

comprises an unspecified number of neural ensemble classes j and the

temporal low-pass filter effects of the membrane when potentials prop-

agate through axonal or dendritic tree (see Consideration (a 3)) by in-

troducing the temporal differentiation operators Cj and Dj into the

conversion operators (3.6) and (3.7). The formulation here developed

also takes into account positive finite velocity distribution functions luj

and lmj
, which determine the propagation delays over distances ∆uj

and ∆mj
. It can thus be applied to the majority of neural field models

as well as to point-like-models.
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3.1.3 Model Equivalence

The two Tables 3.1 and 3.2 below are a list of voltage-based and activity

based models, aspects of their equivalence to the Eqs. (3.8),(3.11) and

(3.12). They are presented at this stage to make the explanation which

now follows easier to absorb.

The Eqs. (3.8),(3.11) and (3.12) presented in Section 3.1.2 corre-

spond to the Jirsa and Haken model [153, 154], if fixed propagation

velocities v0 : luj
(v) = lmj

(v) = δ (v − v0) (i. e., fixed delays) are con-

sidered and only the spatial dynamics of excitatory and inhibitory en-

sembles (j : j ∈ J with J = {e, i}) are focussed on. In that model, the

time constants of the axonal and dendritic membranes are therefore

assumed to be much smaller than the effects originating from thala-

mocortical or corticocortical pathways such as the temporal low-pass

filter effects of axons and dendrites (– this is addressed by Considera-

tion (a 3)). Both temporal differential operators Cj and Dj (see Eqs.

(3.6) and (3.7)) can thus be neglected Cj = Dj = 1 which means

that the impulse-response functions hj and kj are Dirac delta func-

tions (i. e., hj (t) = kj (t) = δ(t)) so that the conversions (3.3) and

(3.4) become
∫

ds δ (t− s) Υ
(

r1, s− ∆ (r1, r2)
)

= Υ
(

r1, t− ∆ (r1, r2)
)

with Υ ( r1, t) =
{

mj ( r1, t) , Sj

(

pj ( r1, t) +
∑

q∈J uq ( r1, t)
)}

. Wilson

and Cowan model [141] and the extension thereof [142] are compat-

ible with the activity-based model (Eqs. (3.8) and (3.12)) for con-

sidering excitatory and inhibitory ensembles with first-order dendritic

kinetics and propagation delays but without axonal kinetics Dj = 1.

The extended Wilson and Cowan model [142] additionally considers

an exponential spatial distribution function fj (r1, r2) = fj (r2 − r1)

indicating a homogeneous field which depends only on the distance

∆ (r1, r2) = |r2 − r1| with r = r2 − r1 (i. e., translationally symmetri-

cal with respect to the spatial domain Ω). The Eqs. (3.8) and (3.9)

also correspond to the homogeneous Robinson model [20, 167, 216] for

the consideration of excitatory and inhibitory ensembles with second-

order kinetics of axons as well as dendrites, and spatial distribution
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functions which are exponential for the axons gj (r) with fixed prop-

agation velocities v0 : luj
(v) = δ (v − v0) and which are neglected

for the dendrites. Robinson and colleagues combined the axonal spa-

tial and temporal kinetics to a second-order partial differential equa-

tion Dj that is compatible with the activity-based model ((3.8) and

(3.12)). The Robinson model was extended, building thalamocortical

models [162,163,168,169,215] and a cortical model using first-order ki-

netics for the scaling factor oj describing the synaptic kinetics [211–214].

Similarly, Liley [126, 217] developed a voltage-based cortical model by

using second-order synaptic kinetics oj , but first-order dendritic ki-

netics Cj . The voltage-based model (3.11) corresponds to the Nunez

model [57] in respect of excitatory and inhibitory ensembles with propa-

gation delays and an exponential spatial translationally symmetric dis-

tribution function ge (r) for the excitatory neural ensemble, neglectable

spatial distribution gi (r) and delays for the inhibitory ensemble, and

without dendritic and axonal kinetics Cj = Dj = 1. Lopes da Silva

and colleagues [55] built a model of the thalamus that corresponds to

the voltage-based Eq. (3.11) in respect of two ensembles (i. e., excita-

tory and inhibitory ensemble) with second-order dendritic kinetics and

without spatial distributions and delays. Zetterberg and colleagues ex-

tended the Lopes da Silva thalamic model by considering three ensem-

bles (i. e., two excitatory and one inhibitory ensemble) in the descrip-

tion of a cortical area [58], which was picked up later by Jansen and

colleagues for describing event-related potentials [53,54]. Furthermore,

the Lopes da Silva model was also extended by van Rotterdam and col-

leagues [185] by using exponential spatial distribution functions ge (r)

and gi (r). The Amari mean-field model [152] is compatible with the

voltage-based model (3.11) for the consideration of excitatory and in-

hibitory ensembles with exponential spatial distribution functions ge (r)

and gi (r) of identical first-order dendritic kinetics Ce = Ci and without

delays and axonal kinetics Dj = 1. Atay and Hutt [157, 160] took the

Nunez model with second-order dendritic kinetics and extended it by
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a gamma velocity distribution function luj
[158, 159]. However, in the

literature these models have been treated with different choices of op-

erators, for instance, Cj and Dj . An overview of the voltage-based and

activity-based models that are listed in this section and their equiva-

lence to the Eqs. (3.8),(3.11) and (3.12) presented in Section 3.1.2 is

given in Tables 3.1 and 3.2.
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3.1.4 Normalization

In order to treat a system analytically or numerically it is often con-

venient to normalize time, space and velocity and this can be done for

the Eqs. (3.1) to (3.4). For example, if τ , rc, uc, mc and vc are the

characteristic time, length, mean membrane potential, mean firing rate

and propagation velocity of the system, then one can define κ = t/τ ,

r̄ = r/rc, xj (r̄, κ) = uj (r̄cr̄/, τκ) /uc, xjT (r̄, κ) = pj (rcr̄, τκ) /uc,

zj (r̄, κ) = mj (rcr̄, τκ) /mc, giving C̄j (∂/∂κ) = τnu Cj

(

τ−1∂/∂κ
)

,

D̄j (∂/∂κ) = τnm Dj

(

τ−1∂/∂κ
)

, as well as, f̄j (r̄1, r̄2) = fj (rcr̄1, rcr̄2),

ḡj (r̄1, r̄2) = gj (rcr̄1, rcr̄2), v̄ = τv/rc, l̄xj
(v̄) = luj

(vcv̄) and l̄zj
(v̄) =

lmj
(vcv̄) so that Eqs. (3.8) and (3.9) become

C̄j

(

∂

∂κ

)

xj (r̄2, κ) = oj
mcrcvc τ

nu

uc

∫

Ω

dr̄1 f̄j (r̄1, r̄2)

×
∫

Γ

dv̄ l̄zj
(v̄) zj

(

r̄1, κ− ∆zj
(r̄1, r̄2) /v̄

)

, (3.13)

D̄j

(

∂

∂κ

)

zj (r̄2, κ) =
mcrcvc τ

nu

uc

∫

Ω

dr̄1 ḡj (r̄1, r̄2)

∫

Γ

dv̄ l̄xj
(v̄)

× Sj

(

xjT

(

r̄1, κ− ∆xj
(r̄1, r̄2) /v̄

)

+
∑

q∈J

xq

(

r̄1, κ− ∆xq
(r̄1, r̄2) /v̄

)

)

, (3.14)

which has the same form as Eqs. (3.8) and (3.9).

3.2 Point-Like Voltage-Based Model

Using a point-like voltage-based NMM (3.11) to describe a cortical area

according to Zetterberg et al. [58] and Jansen et al. [53,54], and follow-

ing the normalized formula (i. e., Eqs. (3.13) and (3.14)) of the voltage-

based model, the spatial scale r̄1 = r̄2 can be neglected and the distri-

bution function ḡj (r̄1, r̄2) can be set to δ-like ḡj (r̄1, r̄2) = δ (r̄2 − r̄1).
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3.2 Point-Like Voltage-Based Model

Because of the short distances between the neural ensembles j ∈ J in

a cortical area and fast propagations due to myelinated axons all prop-

agation delays are assumed to be zero limr̄1→r̄2
∆zj

(r̄1, r̄2) /v̄ = 0 and

thus the velocity distribution function l̄xj
can also be neglected l̄xj

= 1.

In the spatially distributed model (3.13) to (3.14) the projection of a

neural ensemble j onto another is coded on the basis of different lo-

cations r̄1 and r̄2. Due to the loss of the spatial scale a projecting

neural ensemble is indexed by a : a ∈ J and the target ensemble is now

indexed by b : b ∈ J so that j = ba in Eq. (3.11)

L̄ba

(

d

dκ

)

xba (κ) =
obamc τ

n

uc
Sa

(

xaT (κ) +
∑

q∈J

xaq (κ)

)

, (3.15)

The linear scaling factor oba is proportional to the average number of

synaptic contacts established between neural ensembles a and b.

3.2.1 Potential-to-Rate Transfer Function

For the transfer function Sa (xa) that converts the normalized mean

PSP xa = xaT +
∑

q∈J xaq to the normalized mean firing rate (i. e.,

at the axon hillock),with a ∈ J , is taken to have a differentiable and

steadily increasing sigmoidal shape

Sa (xa) =
1

1 + γa exp (−xa)
, (3.16)

where γa represents the distribution of firing thresholds or the vari-

ation of the dendritic tree of neurons within a NM. The maximum

slope of the sigmoid function is 1/4 at the point of inflection (xI, zI) =
(

log (γa) , 1/2
)

. The shape of the sigmoid function is thus constant but

the conversion is weighted by the characteristic mean firing rate mc and

the characteristic PSP uc. Consequently, a change in these character-

istic constants can be interpreted as a change of the sigmoid function

in terms of the slope (∂ma/∂ua = ∂za/∂xa × mc/uc). For detailed

57



3 Mathematics and Methods

properties of the sigmoid function (3.16) see Appendix A.1.

Interpretation

The sigmoid function 3.16 can be interpreted as an approximation of

the superposition of many Heaviside (step) functions with Gaussian-dis-

tributed threshold values [140,141] (or see [126,160] for a more detailed

treatment). A number of experimenal studies have shown that the

transfer of mean potentials into mean firing rates in neural ensembles

is a sigmoid function [203–205].

Symmetry

The most important dynamic aspect of the biological sigmoid curve

used here is the fact that for each PSP xa the output is positive Sa :

R → R+. This takes into account that neurons in an ensemble can

fire spontaneous even if the PSP (relative to the resting potential) is

zero [104], with the result that the mean firing rate of an ensemble

za (κ) is always positive. Other studies shift the sigmoid curve along

the axes (xa, za) so that the function satisfies Sa (0) = 0 by adding

the term −1/(1 − γa) to Eq. (3.16), where the function is not centrally

symmetric γa 6= 1 [71,141,142] or centrally symmetric γa = 1 [66,68,70]

relatively to the point of origin (0, 0). Such a shift leads to a stable

model for the case that the extrinsic inputs xaT (κ) are zero no matter

how complex the model structure (i. e., network) or the kinetics (i. e.,

order of differential operators) are. Another effect is that the mean

firing rates za can be negative, which can be interpreted as mean rate

below a basis firing rate. It is also worth noting that the transfer

function Sa (xa) has been approximated as linear (e. g., [55,57,154]) or

described by a Heaviside (step) function (e. g., [152]). Here, however,

the biological sigmoid function (i. e., Sa (0) 6= 0) is used that maps

mean PSP to positive firing rates. This transfer function represents

the nonlinear element in the model of a cortical area that is mainly

responsible for the diversity of dynamics and phenomena.
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3.2 Point-Like Voltage-Based Model

Effective Range of the Sigmoid Function

By definition, the PSP of any NM xa (κ) can reach arbitrary values

due to the unconstrained extrinsic input firing rates. However, the

saturation property of the potential-to-rate transfer function, that is,

the sigmoid function (3.16) limits the impact of such PSP changes on

the mean firing rate of the NM za (κ). Due to its sigmoidal shape, the

potential-to-rate operator Sa (xa) has a limited effective dynamic range

[xI−xS/2, xI+xS/2], with the point of inflection (xI, zI) =
(

log (γa) , 1/2
)

(see Appendix A.1), where the sigmoid function is centrally symmetric

(i. e., Sa (xI − xa) = −Sa (xI + xa)). The following definition is used for

the half-width of the effective spectrum xS/2. According to Eq. (3.16),

the normalized maximum slope s̄max of the sigmoid function, and hence

the maximum influence of the PSP-changes on the output mean firing

rate occurs symmetrically around the point of inflection xI

s̄max =
∂

∂xa
S (xa)

∣

∣

∣

∣

xa=xI

(3.17)

= 1/4.

The effective range (around the inflection point (xI, zI)) is taken to

be the PSP-value for which the slope of the function has dropped to

µ s̄max. The properties of the sigmoid function mean that xS/2 (µ) =

2 tanh−1
(√

1 − µ
)

(see Appendix A.1 for details). Choosing a 1 %-cri-

terion for the maximum slope smax with µ = 1 × 10−2 gives xS/2 = 5.986

for standard parameters of the sigmoid function [54]. If the PSP tem-

porarily falls or rises beyond these limits, there is no further significant

change in the firing rate with respect to the µ-criterion.

3.2.2 Temporal Differential Operator

For the dendritic differential operator in Eq. (3.15) second-order kinet-

ics are considered, that is, n = 2. The corresponding second-order

normalized kernel h̄ba (κ) in the rate-to-potential conversion (3.3), that
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is, the alpha function first proposed by Rall [108,141,142,202,208], can

be interpreted as the characteristic PSP elicited by a single incoming

spike that is assumed to be a Dirac’s delta function (i. e., h̄ba (κ) is an

impulse response function). This alpha function has been found to ad-

equately describe the synaptic response of a neural ensemble [49, 208]

(see also [53], and the references therein)

h̄ba (κ) =







β2
baκ exp (−βbaκ) if κ ≥ 0

0 if κ = 0
(3.18)

where the factor βba is the intrinsic temporal ratio of a characteris-

tic time constant τ to the specific dendritic time constant τba with

βba = τ/τba. The dendritic time constant τba constitutes combined

representation of passive dendritic cable delays and neurotransmitter

kinetics, predominantly corresponding to fast synaptic activity (gluta-

mate AMPA receptorsf and GABAA receptorsg) [126]. This approach

relies on some simplifying assumptions [170]. The first assumption is

that the width of the spikes is negligible (e. g., it can be modeled as

a Dirac delta function). The second assumption is that the effects

of different spikes add up linearly (summator in Fig. 4.1), which ig-

nores any reciprocal influences between synapses and active dendritic

behavior. In the history of neuronal modeling a biexponential function

has been used for fitting the impulse-response function in experimental

data [49,219]. The biexponential kernel is, effectively, to the well-stud-

ied alpha function (3.18) if the area under both functions is normalized

to unity and the dendritic rise time and fall time are equal (see Ap-

pendix A.2). Here, the area under the alpha function (3.18) is normal-

ized to unity
∫

κ
dκ h̄ba (κ) = 1. However, the kernel function (3.18) can

fAlpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid receptor, or in
abbreviated form AMPA receptor are receipting the neurotransmitter glutamate
and cause excitatory PSP [218].

gGABAA receptor is sensitive to gamma-aminobutyric-acid of type A, in ab-
breviated form GABAA and is described in more details with the footnote about
GABA in Chapter 4.
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3.2 Point-Like Voltage-Based Model

be recast as a Green’s function and thus stipulates L̄abh̄ba (κ) = δ (κ)

introducing a second-order differential operator

L̄ba (λ) = λ2 + 2βbaλ+ β2
ba. (3.19)

3.2.3 Linear System of a Lumped Neural Mass

The point-like voltage-based NMM (3.15) considering the second-order

differential operator (3.19) can be expressed as two first-order linear

inhomogeneous differential equations

ẋba (κ) = yba (κ) (3.20)

ẏba (κ) = −2βbayba (κ) − β2
baxba, (3.21)

+ αbaβ
2
ba Sa

(

xaT (κ) +
∑

q∈J

xaq (κ)

)

where αba = obamc/uc contains the linear scaling factor oba, the char-

acteristic constants of firing rates mc and PSPs uc. The derivatives of

xba (κ) and yba (κ) with respect to κ are denoted by ẋba (κ) and ẏba (κ).

The first derivative of the normalized mean PSP yba (κ) can be inter-

preted as the mean current flow through the membrane. The coupling

factor αba describes the type of impact. A mean firing rate (i. e., input)

exhibits, inhibits or does not affect the neural ensemble (i. e., J = {e, i})

if the coupling factor is positive (αe : αba > 0), negative (αi : αba < 0),

or zero (α = 0) respectively.

In Chapter 4 the voltage-based model of a cortical area will be de-

veloped based on the mathematics presented in this section. Finally,

the linear system of a lumped NM describes the normalized mean PSP

xba (κ) perturbed by the extrinsic caused PSP xaT (κ) and by the intrin-

sic caused PSP
∑

q∈J xaq (κ) under the coupling factor αba, the sigmoid

parameter γa and the dendritic time constant τba.
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Table 3.3. Jansen and Rit parameters in physical units [54] and normalized.

Transfer Couplings Characteristics

Time Potential Rate

Jansen and Rit

u0 = 6 mV He = 3.25 mV τe = 10 ms r = 0.56 /mV 2e0 = 5 /s
Hi = −22 mV τi = 20 ms
c13 = 135
c23 = c13/4
c31 = 4 c13/5
c32 = c13/4

Normalized

γ = 28.79 α13 = 12.285 β = 1/2 — —
α23 = α13/4 (τ = τe)
α31 = 4α13/5
α32 = −11α13/13

3.2.4 Equivalence – Jansen’s Configuration

In the previous Section, 3.2, the point-like voltage-based NMM was

introduced in a normalized form, that is, all variables and parameters

are normalized with respect to a set of characteristic constants (see

Section 3.1.4 and Table 3.3). The basic Eqs. (3.16), (3.20) and (3.21)

of the model yield a set of compact parameters comprising several ex-

perimentally quantifiable parameters described, for example, in Free-

man’s studies [49,52,220]. An analysis of the mathematical description

of NMMs that incorporate such experimentally quantities (e. g., [54])

shows clearly that several parameters such as the synaptic gains and

the mean numbers of synaptic contacts affect the system in the same

way. They are, therefore, lumped together here. That the system vari-

ables and parameters match these which are obtained experimentally

is demonstrated using the example of Jansen’s definitions [54] (see Ta-

ble 3.3). The normalized system variables, that is, the normalized mean

membrane potential xba (κ) and normalized mean firing rate za (κ) cor-
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respond to the variables in the Jansen and Rit model as follows

xba(κ) = r uba(κτ) (3.22)

za(κ) = ma(κτ)/(2e0). (3.23)

The system parameters, which are the coupling factor αba, the intrin-

sic temporal ratio βba and the sigmoid parameter γa, correspond to

Jansen’s parameters as follows

αba = 2e0r cbaρe,i (3.24)

γa = exp (r u0) (3.25)

βba = τ/τe,i, (3.26)

where u0 is the PSP for which a 50 % mean firing rate e0 is achieved.

In the original Jansen model a dendritic alpha kernel is used according

to van Rotterdam and colleagues [185]. In this case, the area ρ under

the alpha function (3.18) is normalized to the product of maximum

amplitude He,i of the excitatory and inhibitory PSP and the dendritic

time constant τe,i, that is, ρe,i = He,i τe,i in (3.24).

Thus, the linear scaling factor oba is equal to a connectivity constant

cba multiplied by the area ρe,i under van Rotterdam’s alpha kernel, used

in Jansen’s model oba = cba ρe,i. The characteristic mean membrane

potential uc is equal to the slope of the sigmoid function in Jansen’s

parametrization with uc = 1/r and the characteristic mean firing rate

mc is equal to the maximum mean firing rate of a neural ensemble in

in Jansen’s model with mc = 2e0.

3.3 Methods

Several analytical and numerical methods were applied to the analy-

sis of the modified Zetterberg-Jansen model and the experimental data.

The major part of the analyses, in particular, the bifurcation analysis of
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the system, was done with the MATLAB™ numerical computing envi-

ronment [221] employing the standard algorithms implemented therin.

The remaining algorithms were written in Fortran-77 and Fortran-90

programming language. This section lists and briefly describes the se-

tups of the methods used for this research. In the case of non-standard

MATLAB™ functions, the specific algorithms are explained.

3.3.1 Bifurcation Diagrams

Bifurcations indicate qualitative changes in the dynamics of a system

as a function of a set of varying parameters θ. Hence, a bifurcation

diagram of a system delivers a compact representation of its dynamics

in the parameter space, which is divided into domains, each charac-

terized by a specific dynamic regime (e. g., a single stable LC and/ or

an unstable focus). Each qualitative regime can be represented by a

phase portrait. It consists of fixed points and their stabilities, the local

and/or global bifurcations, the branches of LCs, and the phase por-

traits corresponding to each qualitative regime (see, for example [222]).

The bifurcation method applied here is discussed in more detail in Sec-

tion 5.1.2. In Appendix A.4 the analysis is demonstrated using two

examples of single NMs.

In the case of the constantly forced modified Zetterberg-Jansen model

used here, the fixed points can be algebraically determined in the state

space against the varying parameters. The kind of stability is then char-

acterized by linearizing the system and evaluating the eigenvalues of the

Jacobian matrix at the fixed points. For this purpose the Jacobian is set

up analytically. Due to the complexity of the system (14-dimensional

nonlinear system; see Section 4.1) the eigenvalues of the Jacobian are

calculated numerically. For this purpose, the extrinsic input on PCs is

linearly sampled with 104 discrete points. The critical points were iden-

tified using the Nelder-Mead simplex method [223] implementation in

MATLAB™ (fminsearch function as part of the MATLAB™ optimiza-

tion toolbox [221]) with a tolerance of 10−32 (on function and output),
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maximum iterations of 103 and function evaluations 103 per iteration.

The branches of LCs are numerically computed using the continua-

tion package CL_MATCONT for MATLAB™ by Govaerts, Kuznetsov

and colleagues [224–226] as function of the extrinsic input level on

PCs (i. e., u3T (t) or respectively x3T (κ))with an initial, minimum and

maximum step size of 1.82 × 10−4 (3.25 × 10−7 V for the characteristic

mean membrane potential uc = 1.79 × 10−3 V according to Jansen and

Rit [54]), 1.82 × 10−5 (3.25 × 10−8 V) and 7.3 × 10−3 (1.3 × 10−3 V) for

a maximum of 4 × 103 continuation points.

3.3.2 Time Series

For some analyses (i. e., state space analyses) or for verifying the analy-

ses (i. e., bifurcation diagrams and their classification) time series of the

system states are calculated by numerically integrating the differential

equations over time using the fourth-fifth order Runge-Kutta method.

The constantly forced modified Zetterberg-Jansen model was numer-

ically integrated using the ode45 in MATLAB™ for verifying the com-

piled bifurcation diagrams (see, for example, Fig. 5.1) in terms of time

series (see, for example, Fig. 5.12). For the former case, the system was

integrated over κ = 104 in time (which equals 100 s for a characteristic

time constant τ = τe with τe = 10 × 10−3 s, as suggested by Jansen and

Rit [54]; see Table 3.3) with a relative tolerance of 10−3. Due to the

step-size control of the integration method the computed time series

were non-equidistantly sampled over time. Time series were sampled

linearly (∆κ = 25/128) for analyzing the last 2560 samples (κ = 500,

that is, 5 s for the characteristic time τ = τe, Table 3.3).

For the example of the ordered sequences (see Fig. 5.12) the equa-

tions are integrated over κ = 2 × 103 in time (which equals 20 s for the

characteristic time constant τ = τe in Table 3.3) with a relative toler-

ance of 10−12. The first period of κ = 800 (8 s for the characteristic

time constant τ = τe in Table 3.3) is discarded because of transient be-

havior at the beginning due to the noise process used here and possible
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displacements from a stable state (e. g., fixed point).

In the case of the periodically modified Zetterberg-Jansen model a

widely used subroutine DVERK is applied based on the fourth-fifth

order Runge-Kutta formulas written in Fortran [227]. The differential

equations over κ = 30 × 103 in time (which equals 5 min are computed

for a characteristic time constant τ = τe = 10 × 10−3 s, according to

Jansen and Rit [54]; see Table 3.3) with a relative tolerance of 10−11,

and then linearly sampled (∆κ = 10−2) for further analysis.

A general problem with differential equations is the so-called initial

value problem. This is solved with the compiled bifurcation diagrams

that indicates the conditions for the existing states. In most cases the

evolution is initialized at a stable fixed point unless otherwise specified.

3.3.3 Characteristic Lyapunov Spectra

The characteristic Lyapunov spectrum gives a quantitative measure of

the sensitivity of the states of the system towards the initial conditions,

or, more precisely, the average rate of divergence or convergence of two

neighboring trajectories in the state space (see, for example [228]). It

quantifies the exponential rates of divergence λ of initially infinitesi-

mally displaced trajectories V0 in the i-dimensional state space

|V (κ)| = |V0| exp (κλ) (3.27)

with V (κ) being the displacement at time κ. The characteristic Lya-

punov spectrum can be estimated using the formula

λ = lim
κ→∞

1

κ
ln

|V (κ)|
|V0| . (3.28)

The spectrum λ consists of a set of Lyapunov characteristic exponents,

the number of which is equal to the dimension of the state space i

(number of states) λ1 > λ2 . . . > λi. The growth rate of the i-dimen-

sional manifold (ellipsoid) in state space is the sum of the Lyapunov
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exponents
∑i

1 λi. The mean prediction time is 1/
(

∑i
1 λi

)

.

The Lyapunov spectrum of which the formulae have not been ex-

pounded characterizes the behavior of a system. A system is dissi-

pative or conservative, if and only if the sum of all Lyapunov char-

acteristic exponents
∑

i λi is negative or zero. Conservative means

that the momentum (derivative of states) is conserved, that is, not

dissipated (reduced) during evolution, and a particular set (domain)

of states and its derivatives remains. Dissipative means that the mo-

mentum (derivative of states) is continually decreasing with displace-

ment during evolution (energy is lost with continued evolution) until

the magnitude of the momentum reaches zero (kinetic energy reaches

zero). For instance, a Hamiltonian system is indicated as a conser-

vative system where pairs of Lyapunov characteristic exponents exist

λi = −λj . A positive Lyapunov characteristic exponent λi > 0 reflects

unstable direction of stretching and folding and indicates chaos in the

system. A zero Lyapunov chacateristic exponent λi = 0 reflects a con-

served neutrally stable direction (i. e., Lyapunov stable). A negative

Lyapunov chacateristic exponent λi < 0 reflects a dissipative direction

of attraction, for instance, to a stable fixed point or a stable LC (i. e.,

asymptotically Lyapunov stable).

Turning to the periodically forced modified Zetterberg-Jansen model,

the characteristic Lyapunov spectra are directly computed from the

differential equations, using the Fortran algorithm by Chen and col-

leagues [229], integrated for κ = 1 073 742.00 (≈ 3 h for a characteristic

time constant τ = τe with τe = 10 × 10−3 s, as in Jansen and Rit [54];

see Table 3.3) using a constant sample interval ∆κ = 10−3. In the

Chen algorithm, a constant time-step fourth-order Adams-Bashforth

integration method and a QR-reorthogonalization is used in order to

preserve the orthogonality, especially for higher-dimensional systems.

The actual computing of the whole characteristic Lyapunov spectra

took place at Ilmenau University of Technology, Ilmenau, on a parallel

cluster in the advanced computing unit at the Computer Center there.
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The largest characteristic Lyapunov exponents of the photic driving

experiment (see Section 3.4) are estimated from the time series using

the approach of Wolf and colleagues [230] written in Fortran-77 pro-

gramming language. An embedding dimension of 16, a time delay of

nine (≈ 50 × 10−3 s for the characteristic time τ = τe, Table 3.3) and an

evolving time of five (≈ 25 × 10−3 s for the characteristic time τ = τe,

Table 3.3) is used for the investigation of flicker stimulations.

3.3.4 Kaplan-Yorke Dimension

The Kaplan-Yorke dimension gives an estimate of the upper bound for

the information dimension of the system, which quantifies the complex-

ity of the geometry of the attractor [231]. It is given by

DKY = k +

∑k
i=1 λi

|λk+1| , (3.29)

based on the characteristic Lyapunov spectra, consisting of all Lya-

punov exponents λ1 > λ2 . . . > λi with respect to an i-dimensional

system in which k is chosen such that
∑k

i=1 λi ≥ 0, and
∑k+1

i=1 λi < 0.

The Kaplan-Yorke dimension is algebraically calculated in MATLAB™.

3.3.5 Poincaré Map

A Poincaré map P considers the intersections of an evolving trajectory

in the d-dimensional state space with a hyperplane of dimension d− 1,

where only those intersections count that traverse the hyperplane from

the same side [228]. Such a map (also called a recurrent map) turns a

continuous dynamical system into a discrete one. With a adequately

chosen hyperplane, the qualitative behavior of the system can be pre-

served and the resulting discrete series of intersection points allows a

characterization of near periodic solutions in dynamic systems. The

dynamics can be analyzed on the basis of the structure of the Poincaré

map P (e. g., its Jacobian and the eigenvalues thereof). For instance,
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if a periodic orbit traverses a hyperplane perpendicular to its surface

in the d-dimensional state space the two-dimensional manifold of the

orbit reduces to a periodic intersecting point in the hyperplane.

However, the determination of the hyperplane is a delicate problem

for which no general approach is to be found [228]. In the study of

the periodically forced modified Zetterberg-Jansen model a suitable

hyperplane was chosen, traversing the LC of the unperturbed system

and its unstable fixed point.

…

…

…

15 individual flicker frequencies

20 trains per frequency

40 flashes per train

α F1 F2 F15

T1 T2 T20

LEDs

L1 L2 L40

60 s60 s60 s60 s

4 s4 s4 s

on

off

Fig. 3.2. Experimental design of the flicker stimulation study. The light-emitting
diodes (LEDs) were powered for half of each period. The raise and decay time for
the LEDs was measured to be 100 µs.

3.4 Experimental Data

The experimental data on which the periodic forced model was tested

are those in [82]. Ten healthy probands (22 to 40 years of age, five male
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and five female) were stimulated by an intermittent flickering light,

while the EEG (32 channels, enhanced 10-20 system with a 10-10 sys-

tem over the occipital region, Compumedics Neuroscan, El Paso, USA)

was recorded. The sampling for the EEG was 1000 Hz and hardware-fil-

tered between 0.1 Hz and 300 Hz. An initial resting condition of 60 s was

recorded to define the individual alpha rhythm of each proband. After

this period, flicker stimulations were conducted for 15 fixed frequencies

with an alpha ratio (flicker frequency/individual alpha) ranging from

0.4 to 1.6 in each proband (randomized order of presentation). The

flicker stimuli were generated by two LEDs outside the measurement

chamber and were delivered via optical fibers to about 9 × 10−2 m in

front of the closed eyes of the subjects in order to ensure relatively sta-

ble luminance over subjects. Each stimulation frequency was presented

in a sequence of 20 trains. A single train contained 40 flashes and was

followed by a resting period (4 s). The complete experimental design

is given in Fig. 3.2. Data were filtered and down-sampled to 200 Hz.

For each proband, periods of 62.5 s (n = 12500 data points) were an-

alyzed for the 15 flicker frequencies presented (the shortest available

data length of the individual flicker blocks F1 to F15 is 62.5 s over all

probands investigated).
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If you try and take a cat apart to see how it works,

the first thing you have on your hands is a non-working cat.

Douglas Adams, 1952–2001

Although local neuronal circuits are complex (see, for example, [145]),

there is a strong tendency for local axonal collaterals of PCs in cortical

layers III to VI to make synaptic contacts to GABAergica interneu-

rons (i. e., IINs), which themselves have only short axonal processes

and therefore make contact with local cells, such as PCs. This forms

intralaminar (PCs in layers III to VI) as well as interlaminar (PCs in

layers III and IV) inhibitory feedback loops. Such feedback loops may

also be excitatory (i. e., principally glutamatergic), mediated either by

(smaller) PCs or by EINs, mostly so-called spiny stellate cells in layer

IV [102, 145]. Therefore, the membrane potential of the PCs can be

modeled as a weighted sum of the effects of extrinsic inputs to the

cortical area and feedback influences from interneurons.

aGABAergic neurons release gamma-aminobutyric-acid, or in abbreviated form
GABA: the principal inhibitory neurotransmitter in the cerebral cortex that plays
a potential role in regulating neuronal excitability [232,233] where a imbalance may
result in pathological states such as epilepsy [234] or schizophrenia [235]. The cor-
responding receptors can be structurally classified between GABAA and GABAB

receptors (e. g., [236, 237]). The fast and slow kinetics of GABAA receptors are
believed to underlie gamma and delta rhythms, for instance, in hippocampal pyra-
midal cells (e. g., [238]).
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When the local neuronal circuit is reduced to a parsimonious model,

the following points are to be regarded as important: (i) there are PCs

sending axons to other brain areas which, due to their long apical den-

drites arranged in parallel, give rise to measurable EEG and MEG [27],

(ii) collaterals from these PCs contact excitatory and inhibitory cells

with local axonal arbors (interneurons), and (iii) it is highly probable

that these interneurons will, in turn, make synaptic contacts with the

PCs, thus forming feedback loops. In line with this, Zetterberg and

colleagues [58] and later Jansen and colleagues [53, 54]b described the

cortical area as a basic element composed of three NMs: PCs, EINs

and IINs, interacting through positive and negative feedback loops. In

their model, extrinsic input (i.e., from other brain areas) only targets

the PCs. However, since there is strong evidence that this input also

targets interneurons, the model was extended accordingly by David

and colleagues [66]. Its structure is illustrated in Fig. 4.1. Applying

Freeman’s terminology (see Section 2.4.2) the model represents a KII

structure composed of three interacting KI-sets (PCs, EINs and IINs).

Note that the feedback loops may be modeled dynamically (see,

for example, [57, 153, 168, 239], see also, e. g., [76, 77] in order to con-

sider propagation delays). However, in the modified Zetterberg-Jansen

model, the connections are assumed to be local (within a single cortical

area). That means only small spatial extension and transmission times

are considered, describing the feedback connection by a gain constant.

The mean membrane potential of the PCs is caused by three different

inputs: excitatory input from local EINs, excitatory input from other

areas (referred to as extrinsic inputs), and inhibitory input from local

bJansen and Rit [54] identified this network with a cortical column according to
the findings of Mountcastle and colleagues [117]. However, because the universality
of the concept of columnar organization of the cortex is controversial [120], the term
cortical area is used instead. The key mechanisms of the model are unaffected by
this re-interpretation.
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Excitatory interneurons

Inhibitory interneurons

Pyramidal cells

To
other
areas

→ M/EEG

∫

κ
h̄1T

∫

κ
h̄13

∫

κ
h̄31

∫

κ
h̄3T

∫

κ
h̄32

∫

κ
h̄23

∫

κ
h̄2T

S1

S3

S2

α1T

α13

α23

α2T

α31

α3T

α32

z1T

z2T

z3T

z1 (κ) x1 (κ)

x1T (κ)

x13 (κ)

x31 (κ)

x3T (κ)

x32 (κ)

x3 (κ) z3 (κ)

z2 (κ) x2 (κ)

x23 (κ)

x2T (κ)

Fig. 4.1. Modified structure of the Zetterberg-Jansen model. The model consists of
three NMs (J = {1, 2, 3}, where a : a ∈ J and b : b ∈ J), representing PCs receiving
positive and negative feedback via EINs and IINs. Operators (boxes) are
S — the potential-to-rate operator transforming the mean PSP xa to the average
firing rate za at the axon hillock,
∫

dκ h̄ba — the rate-to-potential conversion computing the mean PSP xba at the
soma for a NM b by convolution of the synaptic kernel hba (κ) (including the den-
dritic time constants) with the incoming mean firing rate za of neuron a, weighted
according to the mean number of synaptic contacts αba, and
⊕ — the summation operator gathering the PSPs

∑

a
xba rising in the dendritic

tree at the soma. Parameters (circles) are
αba — the coupling factor of synaptic contacts established between NM a to b and
zaT — the extrinsic input firing rate of the NM a, with J assuming 1 (EINs), 2
(IINs), 3 (PCs) and T (extrinsic input). Variables (describing the flows) are
zb — the mean firing rate of the NM b, and
xba — the PSP of NM b due to input a.
Mean PSPs of PCs x3 (κ) mainly contribute to M/EEG. Modifications to the classi-
cal structure to the Zetterberg-Jansen model [53, 54, 58] are shown by dotted lines.
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IINs, x3(κ) = x31(κ) + x32(κ) + x3T (κ). The present NMM takes into

account extrinsic input from other cortical and/or subcortical areas

(e. g., from cortical areas of the other hemisphere or from thalamic

nuclei) not only to the PCs (z3T), but also to both types of interneurons

(excitatory z1T and inhibitory z2T). This approach, first used by David

and colleagues [66], is based on findings that interneurons also receive

input from other cortical areas. For example, the spiny stellate cells

(EINs) as well as GABAergic basket cells (IINs) in layer IV of primary

sensory cortices receive input from the thalamus (e. g., [240–242]. This

is also in line with inter-area connection schemes as postulated, for

example, by Felleman and Van Essen [243]c.

The neuronal currents underlying M/EEG generation are believed

to be produced mainly by the membrane potentials of the PCs [27] as

a result of the asymmetric shape of these cells (with apical dendrites)

and their parallel alignment perpendicular to the cortical surface [147].

The linear output function (leadfield; see Eq. (2.1)), mapping the mean

membrane potentials of the PCs to the measurements outside the brain,

has to take into account a physical model of the head [70]. In this work,

it is not necessary to consider leadfield modeling (Eq. (2.1)) because

only a single area is studied.

4.1 System

The modified Zetterberg-Jansen model of a cortical area (see Fig. 4.1)

can be described by a system of 14 nonlinear first-order differential

equations using the point-like voltage based Eqs. (3.20) and (3.21)

with the ensemble set J = {1, 2, 3}, where a : a ∈ J and b : b ∈ J .

cThe modified Zetterberg-Jansen model as analyzed here can be related to the
original configuration of Jansen and Rit [54] without extrinsic inputs to the in-
terneurons as follows. Variation in the extrinsic input levels in the extended model
is equivalent to variation in the firing thresholds of the corresponding target NMs
in the original model if, and only if, the extrinsic inputs are constant in time (or
change slowly as compared to the time constants of the system).
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PCs (3) to EINs (1)

ẋ13 (κ) = y13 (κ)

ẏ13 (κ) = −2β13 y13 (κ) − β2
13 x13 (κ)

+ α13β
2
13 S3

(

x31 (κ) + x32 (κ) + x3T (κ)
)

(4.1)

PCs (3) to IINs (2)

ẋ23 (κ) = y23 (κ)

ẏ23 (κ) = −2β23 y23 (κ) − β2
23 x23 (κ)

+ α23β
2
23 S3

(

x31 (κ) + x32 (κ) + x3T (κ)
)

(4.2)

EINs (1) to PCs (3)

ẋ31 (κ) = y31 (κ)

ẏ31 (κ) = −2β31 y31 (κ) − β2
31 x31 (κ)

+ α31β
2
31 S1

(

x13 (κ) + x1T (κ)
)

(4.3)

IINs (2) to PCs (3)

ẋ32 (κ) = y32 (κ)

ẏ32 (κ) = −2β32 y32 (κ) − β2
32 x32 (κ)

+ α32β
2
32 S2

(

x23 (κ) + x2T (κ)
)

(4.4)

Extrinsic input (T) to EINs (1)

ẋ1T (κ) = y1T (κ)

ẏ1T (κ) = −2β1T y1T (κ) − β2
1T x1T (κ) + α1Tβ

2
1T z1T (κ)

(4.5)
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Extrinsic input (T) to IINs (2)

ẋ2T (κ) = y2T (κ)

ẏ2T (κ) = −2β2T y2T (κ) − β2
2T x2T (κ) + α2Tβ

2
2T z2T (κ)

(4.6)

Extrinsic input (T) to PCs (3)

ẋ3T (κ) = y3T (κ)

ẏ3T (κ) = −2β3T y3T (κ) − β2
3T x3T (κ) + α3Tβ

2
3T z3T (κ)

(4.7)

The intrinsic and extrinsic coupling factors αba and αbT are defined

as αba = oba mc/uc and αbT = obT mc/uc with the subscripts ba =

{13, 23, 31, 32} (where j = ba) and b = {1, 2, 3}. The extrinsic inputs

from other cortical and subcortical areas can be seen as determinis-

tic and/or stochastic processes, here denoted by x1T (κ), x2T (κ) and

x3T (κ) for extrinsic afferents on EINs (1), IINs (2) and PCs (3).

4.2 Extrinsic Input

The PSP of a NM b caused by NM a can be decomposed into in-

trinsically and extrinsically caused components (i. e., input from the

same NM or different NMs in the same structure, such as a cortical

area, and input from other structures, such as the thalamus or other

cortical areas). While the latter is principally unrestricted in range,

the former is restricted by the potential-to-rate transfer function of

the presynaptic NM. Its range [xba, min, xba, max] is [0, αba] for excitatory

and [αba, 0] for inhibitory inputs according to Eqs. (3.13), (3.16) and

(3.18). Hence, extrinsically caused PSPs xbT (κ) range effectively be-

tween
(

xI − xS/2 − xba, max

)

and
(

xI + xS/2 − xba, min

)

. This is explained

more fully in Appendix A.3. Extrinsic inputs beyond this range do not

affect the dynamics, thus effective ranges for all inputs can be identified
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and translated into ranges of firing rates (see Table 4.1)d.

Table 4.1. Effective ranges of the normalized extrinsic input of the modified Zetter-
berg-Jansen model. Positive and negative (normalized) PSPs are due to excitatory
and inhibitory inputs. By multiplying the normalized PSPs and rates by chosen
characteristic potential and rate constants uc and mc (see, for example, Table 3.3)
one obtains the physical values.

Extrinsic input on Postsynaptic potential Maximum firing rate

Excitation Inhibition

EINs −14.91 to 9.35 102.71 12.10
IINs −5.7 to 9.35 102.71 4.62
PCs 12.45 to 50.93 559.63 10.11

dNote that only positive firing rates are biologically possible. In contrast, PSPs
can be negative as well as positive, and induced by inhibitory as well as excitatory
extrinsic projections. Therefore, PSPs are used rather than mean firing rates to
characterize extrinsic inputs.
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To know a thing well, know its limits.

Frank Herbert, 1920–1986

In this chapter there is an analysis of how the modified Zetterberg-

Jansen model responds to changes in the extrinsic inputs and the den-

dritic time constants. For the extrinsic input signal both constant and

periodic time courses are considered (the constant in Section 5.1 and

the periodic in Section 5.2). The parameters and the (effective) ranges

selected for the analysis are described and justified. The selection al-

lows the dimensionality of the general system to be reduced (Eqs. 4.1

to 4.7). Finally, the results are classified, exemplarily described and

interpreted with respect to phenomena observed in M/EEG data.

5.1 Constantly Forced Model

The subject of this chapter is the modified Zetterberg-Jansen model,

which is the NMM used in Bayesian inversion schemes, where the origi-

nal Jansen and Rit model configuration is included as a special case: In

this NMM, extrinsic input may target the two populations of interneu-

rons [66]. Here, in Section 5.1, the focus is on the single-area version

of this modified Zetterberg-Jansen model, with the question of which

dynamic regimes this single-area model can experience. Included in
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the investigation is the entire effective parameter space of the model,

rather than just the specific parameter set proposed by Jansen and

Rit [54]. The analysis produces a catalogue of dynamic regimes, which

can be directly used for modeling M/EEG data and shows that the

dynamics of the single-area model are richer and probably more useful

for modeling purposes than previously thought. If it is the case that

one can model a large class of phenomena with the single-area modi-

fied Zetterberg-Jansen model as here shown, comprehensive knowledge

about single-area dynamics, as provided by the results, may therefore

be valuable for the network analysis of M/EEG and electrophysiology

data using such Bayesian model inversion schemes as dynamic causal

modeling [50]. A systematic description of the dynamic properties of

the modified Zetterberg-Jansen model as a function of its key param-

eters is given. One way of approaching these rich dynamics is to look

at the bifurcations indicating sudden transitions in dynamic behavior

and at the LC branches which have not been described before [189]. Bi-

furcation diagrams are used due to the compact and intuitively accessi-

ble representations of the system dynamics against varying parameters.

Knowledge of this dynamic behavior is an important tool, because it

tells the modeler how the system will behave qualitatively when sys-

tem parameters change slowly. LC-branches are systematically clas-

sified and the associated dynamics are discussed in detail, including

their conditions of changing as a function of key parameters, namely

the extrinsic inputs from other cortical and subcortical areas to the

three NMs, and the dendritic time constants. This bifurcation analysis

yields a comprehensive catalogue of potential oscillatory regimes. A

potential use of this catalogue is that the modeler can decide whether

the single-area modified Zetterberg-Jansen model is sufficient to model

any specific phenomenon (e. g., in M/EEG) or whether a more complex

model, such as a network of brain areas, should be chosen. Moreover,

the modeler can use the catalogue to select a specific parameter set

that best reproduces the observed signals. In addition, the bifurcation
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Table 5.1. Range of the varied system parameters: dendritic time constants for
inhibitory and excitatory synaptic terminals τe,i and PSPs due to extrinsic afferent
projections on EINs u1T, IINs u2T and PCs u3T. The normalized ranges can be
obtained by dividing the parameters with the characteristic constants in Table 3.3.

Param. Range Step size Unit

τe,i 2 to 60 2 ms
u1T −27, −22, −17, −12, −8, −4, −2, 0, 2, 4, 8, 12, 17 Discrete mV
u2T −11, −8, −4, −2, 0, 2, 4, 8, 12, 17 Discrete mV
u3T 12.45 to 50.93 Continuous mV

diagrams inform the modeler which slow-moving trajectories through

parameter space will cross bifurcation points. This means that appar-

ently complex M/EEG phenomena can be explicitly modeled as an

ordered sequence of switches between different oscillatory regimes. In

principle, this enables one to model phenomena like the progression of

pathology, epileptic events (see, for example, [76–78], for thalamocorti-

cal models), pharmacological interventions, sleep stages [79], or general

changes in the oscillatory regime due to contextual state changes. This

approach is illustrated using some synthetic examples. The analysis in

this work enables the selection of a highly constrained parameterization.

Bayesian inversion (as used in dynamic causal modeling, e. g., [50, 66])

should, in principle, be able to identify the free parameters of ordered

sequence models, for example, the slowly changing function needed to

induce the switching behavior.

5.1.1 Parameter Space

This section explores the dynamics of the single cortical area model as

a function of the five system parameters which are most relevant for the

richness of the dynamics: the excitatory and inhibitory dendritic time

constants (or respectively intrinsic temporal ratios) and the extrinsic
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input (i. e., from other cortical and subcortical areas) to the three NMs.

The choice made is justified below.

Dimension Reduction

In the form described in Eqs. (4.1) to (4.7), the system has 20 param-

etersa, which is prohibitive to analysis. Jansen and Rit [54] suggest

distinguishing the rate-to-potential conversion only for excitatory and

inhibitory synaptic contacts, described by the kernels h̄e (κ) and h̄i (κ),

the afferent connections originating from the PCs and EINs are exclu-

sively excitatory (i. e., h̄13 (κ) = h̄23 (κ) = h̄31 (κ) = h̄e (κ)). Afferents

from IINs are inhibitory i. e., h̄23 (κ) = h̄i (κ)). Extrinsic afferents

(i. e., from other cortical or subcortical areas) could be excitatory or

inhibitory (i. e., h̄bT (κ) = {h̄e (κ) , h̄i (κ)}, b = {1, 2, 3}). In contrast to

van Rotterdam [185], moreover, it seemed reasonable to assume that

the cortical areas under the dendritic kernels (3.18) are the constant

products of Jansen’s maximum amplitude of PSPs He,i and dendritic

time constants τe,i, that is, ρe,i = He,i τe,i in Eq. (3.24). This is sup-

ported by computational modeling [206, 244]. The respective constant

products for both cases ρe = 32.5 × 10−6 V s and ρi = −440 × 10−6 V s

are derived from the original Jansen and Rit parameter set, similar to

the definition used by David and Friston [48]. As shown later, these

constraints on the area under h̄e,i (κ) fix the equilibrium states of the

system under the condition of constant extrinsic inputs to interneurons.

It should be noted that the intrinsic and extrinsic coupling factors

αba and αbT incorporate ρe,i (see Section 3.2.3 or Section 4.1). The

coupling factors for the extrinsic inputs αbT simply scale linearly the

extrinsic inputs zbT (κ) for b = {1, 2, 3} and can therefore be fixed to

αe, T and αi, T for excitatory and inhibitory input when considering a

aThese are: the coupling factors αba, the intrinsic temporal ratios βba, with
ab = {13, 23, 31, 32}; the parameters γb of the sigmoid function Sb (3.16); the
extrinsic input levels to the three neural ensembles zbT (κ); the extrinsic temporal
ratios βbT and the coupling factors αbT with b = {1, 2, 3}.
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single cortical area with αe, T = ρe mc/uc and αi, T = ρi mc/uc (see

Table 3.3). Following Jansen and Rit [54], the parameters of the sigmoid

functions γb are assumed to be the same for all NMs γb = γ and thus

Sb (xb) = S (xb) with b = {1, 2, 3} (see Section 3.2.4 in Chapter 3).

Furthermore, the characteristic time τ is chosen to be equal to the

excitatory dendritic time constant τ = τe, so that β13, β31 and β32

become unity β13 = β31 = β32 = 1, β23 = β is the ratio of excitatory

to inhibitory dendritic time constant β = τ/τi and βbT are either unity

or β with b = {1, 2, 3}.

Of the remaining nine free parameters, five are selected for further

analysis: the intrinsic temporal ratio β = τ/τi (i. e., excitatory and in-

hibitory dendritic time constants τe = τ and τi) and the extrinsic inputs

levels m1T (κ), m2T (κ), and m3T (κ). The time constants (i. e., intrinsic

temporal ratio β) are chosen because they are expected to exercise a

major influence on the system’s ability to oscillate and the frequency

of these oscillations. The constant (or slowly changing, relative to the

time constants of the system) extrinsic input levels to the three NMs

are of major importance if the system is part of a larger network of cor-

tical areas. They depend upon connections between brain areas, which

have been used in Bayesian inversion schemes [66].

Here, the parameter γ of the sigmoid function (3.16) and the intrin-

sic linear scaling factors are neglected. Variations in the extrinsic input

levels, which are analyzed in Section 5.1.2, are equivalent to variations

in γ of the sigmoid functions, and to variations in intrinsic linear scal-

ing factors α13, α23, α31 and α32. This holds if the system has a stable

fixed point, and the extrinsic inputs change slowly relative to the char-

acteristic time τe of the system. Therefore, these parameters are not

varied, but chosen according to the suggestions of Jansen and Rit [54].

To summarize, the dynamics of the system are captured by vary-

ing five parameters: the extrinsic input levels to the three NMs (i. e.,

x1T (κ), x2T (κ) and x3T (κ)), and the excitatory and inhibitory den-

dritic time constants (i. e., τe and τi) resulting in different ratios β. All
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other parameters are chosen according to the suggestions of Jansen and

Rit [54]. The reduction to five effective control parameters implies sta-

ble manifolds in the original 14-dimensional state space, thus allowing

its reduction to twelve dimensionsb.

It should be pointed out that this type of analysis can be modified or

extended in several ways, for example, by using other parameters for

the bifurcation analysis, by using higher co-domains, or by applying the

analysis to other models such as networks of several single area NMMs.

Parameter Ranges

Extrinsic input on all three NMs are specified to cover the effective

ranges of extrinsic inputs as discussed in Sections 3.2.1 and 4.2. Simu-

lations of single neurons have shown that the dendritic time constants

of the somatic response due to synaptic input for single neurons seem

to vary between 4 × 10−3 s and about 30 × 10−3 s, depending on the dis-

tance between soma and synapse [206, 207]. For the sake of inclusive

treatment, the range of 2 × 10−3 s to 60 × 10−3 s is used; as did David

and Friston [48]. The ranges of the five varied parameters (i. e., exci-

tatory and inhibitory dendritic time constant and the three extrinsic

inputs) are listed in Table 5.1.

5.1.2 System Analysis Using Bifurcation Theory

Bifurcation diagrams show the asymptotically invariant behavior of a

system by displaying the steady-state phase portrait, or a projection

thereof, as a function of one or more system parameters. With smooth

changes in these parameters, the dynamic behavior of the system may

undergo sudden and drastic changes called bifurcations. Throughout

this work, the diagrams are of codimension one bifurcation, and plot

bBecause afferents from PCs on EINs and IINs are excitatory, under the as-
sumption that h13 (κ) = h23 (κ) = he (κ), Eqs. (4.5) and (4.6) can be merged
as follows: x13 (κ) = o13 x03 (κ) and x23 (κ) = o23 x03 (κ) with x03 (κ) =

mc/uc

∫

κ
ds h̄13 (κ − s) z3 (s) = mc/uc

∫

κ
ds h̄23 (κ− s) z3 (s).
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the asymptotic states of PSPs of the PCs (e. g., fixed points, LCs or

chaotic behavior evolving in time) against the extrinsic input on the

PCs (see Fig. 5.1 and Figs. 5.9 to 5.12). To give an impression of

the whole parameter space, planes of the dendritic time constants (see

Figs. 5.4, 5.6 and 5.8) and of the extrinsic inputs on EINs as well as

IINs (see Fig. 5.5 and Fig. 5.7) are spanned using a classification of

codimension one branches (see Fig. 5.3). An excellent treatment of the

essentials of bifurcation diagrams with special emphasis on their use

for neuronal dynamics can be found in Breakspear and Jirsa [239]. A

system analysis of a single NM can be found in the Appendix A.4.

Bifurcation diagrams are created to analyze the impact of extrinsic

inputs and dendritic time constants on the system output, that is, the

PSPs of the PCs, which are believed to be the main contributors to

M/EEG (see Section 4). In the first step, the fixed point or equilibrium

curve is defined. The state system Pφ (see Eq. (2.1) in Section 2.2)

can be expressed in vector form dφ/ dκ = Pφ (φ, θ), with the state

vector φ (κ) = (x y)T, where x (κ) is the seven-dimensional vector

of the PSPs (see Eqs. (4.1) to (4.7)), and y (κ) is the vector of the

derivatives of x (κ) (i. e., currents) and the five-dimensional parameter

vector θ = (z1T (κ) z2T (κ) z3T (κ) τe τi )
T
. The derivative state

vector dφ/ dκ is a smooth function Pφ of the system state vector φ (κ)

and the system parameter vector θ.

Fixed Points

Fixed points of the system φ0 are obtained by setting the derivatives

to zero, that is, dφ/ dκ = 014×1, where 014×1 is the 14-dimensional

zero vector. The coordinates of the fixed points cannot be expressed

explicitly as a function of the extrinsic inputs. There is, however, a way

to express the relationship between the system output (PSP of PCs)

and the extrinsic input on PCs. To calculate the equilibria 014×1 =

Pφ (φ0, θ0) is mapped to the PSP of the PCs x3, 0 = x31, 0+x32, 0+x3T, 0.

From Eqs. (4.1) to (4.7) it follows that the fixed points x3, 0 of the PSP
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of PCs can be defined in the
(

x3, 0, x1T, 0, x2T, 0, x3T, 0

)T
space

x3, 0 = α31 S1

(

α13 S3

(

x3, 0 + x1T, 0

) )

(5.1)

+ α32 S2

(

α23 S3

(

x3, 0 + x2T, 0

) )

+ x3T, 0,

where the constant extrinsic PSPs xbT, 0 simply represent just linear

weighted constant mean firing rates of projections from outside xbT, 0 =

αbT zbT, 0 with b = {1, 2, 3}. This equation can be solved for the

extrinsic input on PCs x3T, 0 as a fixed point curve function of the

extrinsic inputs on interneurons and the PSP of the PCs, yielding

unique mapping that can be used for the analytical computations. Note

that, as described above (see Section 5.1.1), the area under the kernels

and thus the coupling factor αba is fixed. Hence, the shape of the

fixed point curve only depends on the extrinsic inputs to the EINs

and IINs, but not on the intrinsic temporal ratios βba (i. e., τe and

τi). Every fixed point is completely determined algebraically in the

state space by the fixed point term x3, 0 of the PSPs of the PCs,

φ0 = P0, φ

(

x3, 0, z1T, 0, z2T, 0, z3T, 0

)

with

φ0 =





























α13 S3

(

x3, 0

)

α23 S3

(

x3, 0

)

α31 S1

(

α13 S3

(

x3, 0

)

+ α1T z1T, 0

)

α32 S2

(

α23 S3

(

x3, 0

)

+ α2T z2T, 0

)

α1T z1T, 0

α2T z2T, 0

α3T z3T, 0

07×1





























, (5.2)

where 07×1 is the seven-dimensional zero vector. In the second step,

the behavior near the fixed points φ0 can be studied by linearizing the

14-dimensional system and evaluating its Jacobian matrix at the fixed

points (5.2). The eigenvalues of the Jacobian are analyzed in order to

specify the local stability properties such as stable or unstable nodes,
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foci or saddles. Since there is no explicit form for the eigenvalues of

the Jacobian as function of the extrinsic input on the PCs, the eigen-

values are computed for 10 × 104 equally spaced points. Note that the

Jacobian depends on the extrinsic inputs as well as on the intrinsic

temporal ratios. This means that, for any particular extrinsic input

configuration, although the fixed point curve is constant in the 14-di-

mensional state space, the behavior in the vicinity of the fixed points

varies with the dendritic time constants (or the intrinsic temporal ratio).

System stability changes if at least one eigenvalue of the system crosses

the imaginary axis. Points with zero real part(s) are called critical or

nonhyperbolic fixed points, indicating possible local bifurcations.

Bifurcations

To identify bifurcations, the critical points are first located using a nu-

merical nonlinear optimization technique (for more details about the

method and its setup see Section 3.3.1 in the Mathematics and Methods

Chapter 3). Second, the bifurcations are classified using the mathemati-

cal theory of codimension one bifurcations [222,245]. Here, the analysis

distinguishes between the Andronov-Hopf (AH) bifurcation family and

the saddle type. AH-bifurcations occur if a change in the investigated

system parameter (in the present case the extrinsic input to the PCs)

causes two complex conjugate eigenvalues to cross the imaginary axis

(i. e., the real part changes from positive to negative or vice versa). In

this case, LCs can arise. Depending on the first-order Lyapunov ex-

ponent, supercritical and subcritical AH-bifurcations are differentiated;

in the first case, the LCs are stable; otherwise they are unstable. The

saddle bifurcation family occurs if at least one (but not all) eigenvalue

crosses the imaginary axis so that the eigenvalues in at least one of the

two states have both negative and positive real parts. Depending on

the leading eigenvalue (which plays an important role, especially for

Shil’nikov’s homoclinic bifurcations present in the dynamics), there are
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Fig. 5.1. Bifurcation diagram of Jansen’s configuration (u1T = u2T = 0, β = 1/2,
τ = 10 ms and uc = 1.786 mV). The diagram shows two telescoped branches of type
I-B and II-AA (see Fig. 5.3). Solid and dashed curves represent stable and unstable
states respectively. LC-branches correspond to gray regions with solid or dashed
edges for stable or unstable LCs. For all AH-bifurcations, the eigenfrequencies are
indicated. Bifurcations stratify the parameter axis (i. e., extrinsic input on PCs) into
domains with characteristic phase portraits (presented in Fig. 5.2). The gray vertical
lines indicate global bifurcations, here a saddle-node bifurcation in a Poincaré map
occurring at the transition V-III and a Shil’nikov bifurcation (saddle-node) at the
transition VI-V. Different input levels (bold black and dashed vertical lines) result
in different behavior depending on the initialization (arrows). For inputs of portrait
V, the system produces sinusoidal oscillations (dotted line) starting from the dotted
arrow and spiking activity (solid line) starting from the solid arrow. For inputs
beyond portrait V, the system is independent of the past, and produces sinusoidal
oscillations (dashed line) within portrait III, for example.

88



5.1 Constantly Forced Model

three possible types of counterpart state, and this leads to the defini-

tion of three types of saddle bifurcations. For saddle-node bifurcations,

all real parts of the hyperbolic eigenvalues have the same sign and the

crossing eigenvalues (non-hyperbolic) are real-valued. If all real parts

of the hyperbolic eigenvalues have the same sign and the crossing eigen-

values are complex conjugate, one speaks of a saddle-focus bifurcation.

Finally, if the hyperbolic eigenvalues still have both negative and pos-

itive real parts, the bifurcation is of the saddle-saddle type, meaning

that the topology of the saddle and not its stability changes. In gen-

eral, a saddle-saddle bifurcation refers to the situation where two sad-

dles of different types collide and vanish. All bifurcations are checked

for their genericityc. Saddle bifurcations which have homoclinic orbits,

are called Shil’nikov bifurcations [80,222,246], and a check is made for

further global bifurcations by using a numerical continuation algorithm

(there are more details of the method and its setup in Section 3.3.1 of

the Mathematics and Methods Chapter 3). The term global refers to

the fact that the trajectory depends on more than the local properties

in the vicinity of the fixed point.

In the last step, the bifurcation analysis is completed by the iden-

tification of the branches of LCs arising from local and global bifur-

cations. The bifurcating LCs are followed away from the bifurcation

points. The initial periodic solutions for initializing the continuations

of LC are taken from the bifurcation points, using a numerical con-

tinuation algorithm (again, see Section 3.3.1 in the Mathematics and

Methods Chapter 3 for details).

cEigenvalues reveal critical fixed points at which bifurcations could exist. How-
ever, the generation of a bifurcation at such a critical fixed point depends on non-
degeneracy and transversality conditions, the so-called genericity conditions [222].
These conditions are inequalities involving partial derivatives of Pφ with respect to
φ, z1T, z2T and z3T, evaluated at the nonhyperbolic fixed point.
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I(1) II(2) III(5) IV(2) V(5)

VI(1, 3, 5) VII(1, 3, 8) VIII(1, 3, 5)
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Fig. 5.2. Schematic phase portraits representing the qualitative system states of the
domains in the bifurcation diagrams. Note that these phase portraits display the
principal features in a plane according to the leading eigenvalues, while the actual
phase portraits live in 14-dimensional space. There is a reference to the regimes here
portrayed in the bifurcation diagrams (e. g., Portrait III) in Fig. 5.1 and Figs. 5.9
to 5.11. Portraits I and II show stable fixed points, portraits III-V are due to AH-
bifurcations and portraits VI-VIII are possible combinations of these, and lead to
heteroclinic cycles. Portrait I is a stable node and II is a stable focus. Phase portrait
III consists of one stable LC. Phase portraits IV and V are similar to III, but with
more than one LC: one stable and one unstable LC in IV and two stable and one
unstable LC in V. Phase portraits VI-VIII comprise heteroclinic cycles due to the
coexistence of a saddle and a node. The LCs in VI and VII as well as the unstable
focus in VIII force the system to connect unstable and stable manifolds of the saddle
and node stabilities, that is, to produce heteroclinic cycles. The fixed points in the
phase portraits are characterized with respect to the leading eigenvalues, which play
an important role, especially for the Shil’nikov bifurcations. The eigenvalues with
positive (or negative) real parts that are closest to the imaginary axis are called the
unstable l+ (or stable l−) leading eigenvalues.
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Type II

Fig. 5.3. Classification of the globally stable branches of LCs. Principal types I or
II were classified according to the number of involved AH-bifurcations. The number
of global bifurcations (red circles) that change the stability of the LCs is indicated
by capital letters (A to C). Each global bifurcation is assigned to a AH-bifurcation
by the shortest distance on the equilibrium curve. Fundamental frequencies of
LCs of branch type II-AA are relatively stable because the orbit is generated by
AH bifurcations only. On the other hand, the oscillation frequencies vary across a
broad range for all LC-branches of type I due to the involved Shil’nikov bifurcation.
Sinusoidal or harmonic oscillations are exclusively produced in the LC-branch type
II-AA and anharmonic (spiky) oscillations are exclusively produced by branch type
I-B and II-BB. All other branch types produce both types of oscillations.
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Out of all these procedures come bifurcation diagrams comprising

fixed points, stabilities, local as well as global bifurcations, branches

of LCs and schematic phase portraits representing each state. As an

example, Fig. 5.1 shows the bifurcation diagram of the standard pa-

rameter configuration proposed by Jansen and Rit [54]. The dynamic

behavior for a specific parameter value can be illustrated by schematic

phase portraits (see Fig. 5.2). These phase portraits show transient

and steady-state trajectories in a two-dimensional subspace of the state

space in a qualitative way. One can recognize oscillatory and non-os-

cillatory dynamics in the vicinity of fixed points and LCs, as well as

heteroclinic orbits (see Fig. 5.2 for further details).

A Systematic Classification of LC-Branches

The analysis revealed various topological arrangements of branches of

LCs for varying input and they were classified by their degree of nesting,

as alternately stable and unstable LCs, separated by stability-chang-

ing global bifurcations. A comprehensive chart of all (globally) stable

branches in the projection plane (x3T, x3) is shown in Fig. 5.3. First,

branches are classified as principal types according to the number of AH-

bifurcations involved, indicated by Roman numerals. Here, branches

involving either one or two AH-bifurcations (principal types I and II)

are found. Furthermore, each branch is classified more precisely accord-

ing to its number of LC-stability-changing global bifurcations. Starting

from a particular AH-bifurcation, the number of such global bifurca-

tions is counted, indicated by capital letters. For example, branches

are classified as A, B or C with no, one or two stability-changing global

bifurcations, respectively. For branches of type II , each global bifur-

cation is assigned to either of the two AH-bifurcations (e. g., label AC

for a type II branch means that one AH-bifurcation is not associated

with any LC-stability-changing global bifurcation, while the other AH-

bifurcation is associated with two global bifurcations). The association

of AH to global bifurcations is based on the shortest distance to the
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fixed point curve. Branches with a maximum of two stability-changing

global bifurcations (labeled C) are found. Several LCs coexist for the

same parameter set if (i) the corresponding branches are of type B or

higher (see Fig. 5.3), (ii) branches are encapsulated in one another (see,

for example, Fig. 5.9 for a II-AA branch encapsulated into an II-AB

branch), or (iii) branches are telescoped into each other (see, for ex-

ample, Fig. 5.10 for a II-AA branch telescoped into a II-AB branch).

In the latter case, at least one global bifurcation (which changes the

LC-stability) of a branch is in the range of another branch.

5.1.3 Results

As a first step, the standard configuration proposed by Jansen and

Rit [54] is analyzed in which extrinsic inputs from other cortical and

subcortical areas on interneurons (i. e., x1T = x2T = 0, τ = 1 × 10−2 s

and β = 1/2 with τ = τe) are not considered. This can be considered

as an extension to the work of Grimbert and Faugeras [189] where an

additional bifurcation is found. Then, the five-dimensional parameter

space, spanned by the extrinsic input levels (at the PCs, EINs and IINs)

and the inhibitory/excitatory dendritic time constants (see Table 5.1

for values used), is scanned systematically, computing a bifurcation di-

agram of the fifth parameter (i. e., extrinsic input level to the PCs)

for each point in that space. In terms of steady-state dynamic behav-

ior, two different basic oscillatory regimes were observed, which would

be reflected in M/EEG: low amplitude sinusoidal oscillations caused

by AH-bifurcations (referred to as harmonic oscillations throughout

this work), and high-amplitude anharmonic oscillations (e. g., spike-

like) caused by global bifurcations such as of Shil’nikov type. These

phenomena were further characterized, in particular by determining

the frequencies and amplitudes of the oscillations generated as well as

their stability with respect to varying system parameters, and by con-

sidering the transitions between different oscillatory regimes through

bifurcations. The classification scheme of the stable LC-branches intro-
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duced in Section 5.1.2 is used in order to map the incidence of these

topologies as well as the associated oscillatory regimes to the parameter

space. Finally, some representative configurations are shown revealing

new behavior, which is of potential biological interest.

The Jansen and Rit Configuration

The standard configuration of the NMM according to Jansen and Rit

[54] was analyzed, reproducing and extending the results obtained by

Grimbert and Faugeras [189]. See Fig. 5.1 for the bifurcation dia-

gram. Fig. 5.2 shows the associated phase portraits, schematically il-

lustrating the trajectories for the different regions of the bifurcation

diagram. In accordance with Grimbert and Faugeras [189], One sub-

critical and two supercritical AH-bifurcations, a homoclinic saddle-node

(Shil’nikov) and a global bifurcation were found. The two supercritical

AH-bifurcations cause a branch of type II-AA (see Fig. 5.3), produc-

ing sinusoidal oscillations around ηintr = 10.8 × 10−2 (i. e., 10.8 Hz for

τ = τe; see Table 3.3), which might serve as a theoretical basis for alpha

rhythm generation, as suggested by Jansen and Rit [54]. The subcrit-

ical AH-bifurcation produces a branch of type I-B (see Fig. 5.3) fea-

turing unstable LCs, and the saddle-node bifurcation causes stable ho-

moclinic LCs with a fundamental frequency ranging between 1 × 10−3

and 4.6 × 10−2, which could be used for modeling epilepsy-like spiking

activity (see, for example, [64, 65, 76, 78]). Both stable homoclinic and

unstable LCs collide and vanish through a global bifurcation (saddle-

node bifurcation in Poincaré maps).

In addition to these results, a local saddle-saddle bifurcation was

found that was not reported in the work of Grimbert and Faugeras [189].

This type of bifurcation does not represent a change in stability (i. e.,

lying within an unstable section of the fixed point curve) but a topo-

logical change of the saddle, in this case caused by complex conjugate
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Fig. 5.4. Occurrence of branch types projected in the plane of the dendritic time
constants. The most frequent type is II-AA, with 76.7 %, followed by type II-AB
(7.7 %), II-BB (6.8 %), II-B (4.2 %), I-A (1.9 %), II-BC (1.1 %), I-C (1 %), II-AC
(0.6 %) and II-CC (0.1 %). Branches of type II-AA exist for configurations with
dendritic time constant ratios β < 5, most frequently around ratios of β = 1. For
increasing ratios, other types appear in the order: II-AB (β < 0.77, most frequently
β ≈ 0.42), II-AC (β = 0.2 to 0.73 scattered), I-A (β = 0.24 to 0.7), I-B as well as
II-BB (β < 0.65, most frequently β < 1/6), I-C (β = 0.17 to 0.6 scattered, most
frequently β ≈ 0.4), II-CC (β ≈ 2/5) and II-BC (β = 0.17 to 0.4). Combinations
of types (1.7 % of all of all configurations where stable LCs occur) and type II-CC
occur rarely (singular phenomena). The configuration according to Jansen and Rit
(u1T = u2T = 0, β = 1/2) is such a special case since it consists of branches of type
I-B and II-AA. For the classification of branch types see Fig. 5.3.
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eigenvalues. In particular, this bifurcation indicates that the system

produces unstable oscillations for low amplitude inhibitory extrinsic in-

put on PCs (i. e., lying on the section of the fixed-point curve between

this local saddle-saddle bifurcation and the subcritical AH-bifurcation,

see Fig. 5.1), due to the unstable focus in the corresponding phase

portrait VIII in Fig. 5.2. Just like the saddle family of bifurcations in

general, saddle-saddle bifurcations are, in principle, able to cause homo-

clinic LCs (Shil’nikov saddle-saddle bifurcation). However, in this case,

no homoclinic LCs could be found using the Cl_MatCont package.

Mechanisms for Oscillations

Next, the modified model of a cortical area was analyzed by considering

non-zero constant extrinsic input levels, z1T (κ), z2T (κ) and z3T (κ), on

all three NMs, and by systematically varying these inputs as well as

the dendritic time constants τe and τi. Therefore, a five-dimensional

parameter space (see Table 5.1 for discretizations) was captured by

computing a bifurcation diagram of the PSPs of the PCs against the

extrinsic input z3T (κ) on the PCs for each combination of the remaining

four parameters. The configuration of Jansen and Rit, as described

above, represents only one particular case in this analysis.

Generally, two mechanisms for generating oscillations were found:

AH-bifurcations and Shil’nikov bifurcations. For AH-bifurcations, one

can compute eigenfrequencies. Although, in a strict sense, these fre-

quencies apply only to the bifurcation point, they nevertheless give a

good approximation for the oscillation frequencies of LCs at some dis-

tance in adjacent branches. In contrast, Shil’nikov, or more generally

speaking, global bifurcations, usually do not offer such indications of

oscillation frequencies because of the global dependencies, which are

not reflected by the local eigenvalues. Upon passing Shil’nikov bifurca-

tions, the homoclinic LCs suddenly appear with high amplitudes. The

oscillation frequency is zero at the bifurcation point and greatly in-

creases with increasing distance. Thus, in response to variations of the
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extrinsic input level to the PCs, the fundamental oscillation frequency

is relatively constant for AH-LCs (harmonic oscillations) and quite

variable for Shil’nikov’s homoclinic cycles (anharmonic oscillations).

Upon passing the AH-bifurcation, the harmonic oscillations emerge

gradually. Variations in the extrinsic input to the PCs (e. g., noise)

result in some variations in amplitude and only small variations in fre-

quency. This gives rise to waxing and waning oscillations of relatively

stable frequency, as, for example, observed in EEG alpha waves. In con-

trast, upon passing a Shil’nikov bifurcation, highly anharmonic (i. e.,

spike-like) oscillations appear suddenly with high amplitude and low

frequency (initially zero). The outcome of temporal variations in the

extrinsic input to the PCs is moderate changes in amplitude and dras-

tic changes in frequency. As a result, for noisy input, anharmonic os-

cillations that resemble M/EEG phenomena during epileptic seizuresd

appear (see, for example, [64, 65, 76, 78]). Overall, the fundamental

frequency ranged between 1 × 10−3 and 79.6 × 10−2 (i. e., 0.1 Hz and

79.6 Hz for τ = τe; see Table 3.3), covering the bulk of relevant fre-

quency bands in M/EEG.

Conditions for Harmonic and Anharmonic Oscillations

In Figs. 5.4 and 5.5, how frequently the various branch types occur

(see Fig. 5.3) is plotted against the system parameters. The dynamics

of the AA-branches caused by two supercritical AH-bifurcations are by

far the most common phenomena (comprising about 77 % of all inves-

tigated loci in parameter space where stable LCs occur). In particular,

this type of behavior occurs in configurations with approximately equal

inhibitory and excitatory dendritic time constants, that is, β ≈ 1 in

combination with extrinsic excitatory input on the IINs of less than

dIt should be pointed out that, in general, all types of LCs can degenerate due
to the nonlinearity and surjection (global shape) of the fixed point curve.
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(a) Type I-A to C and type II-AA to BC

Fig. 5.5. Occurrence of branch types projected to the plane of the extrinsic input
on INs (applying the characteristic mean PSP uc = 1.786 mV). LC-branches of
type II-AA are most frequent for configurations with extrinsic excitatory input on
the IINs of less than 8 mV and with extrinsic input on the EINs of either less than
about −17 mV (i. e., inhibitory) or more than about 8 mV (i. e., excitatory). Between
−17 mV and 8 mV, most branches of type II-AA pass over to branches of type II-
AA-AB, II-AA-BB and/or I-AA-B. Most LC-branches occur for input on IINs.
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(b) Type II-CC and combinations of type II branches

Fig. 5.5. Branches of type II-AA-AA arise independently of the extrinsic input on
EINs, but all other types and combinations of branches arise focally for a certain
range. This means that extrinsic input on EINs causes most II-AA-AA branches
to turn into more complex branches and combinations. The projection also reveals
that combinations of branch types and branches of type II-CC are quite rare and
local. The dominant combination of branches is II-AA, with 83.2 %, followed by AA-
B (12.5 %), AA-AB (2.1 %), AA-AA-BB (0.9 %), AA-AA-AA (0.6 %), AB-A (0.4 %)
and AB-AB (0.2 %). See Fig. 5.3, for the classification of branch types.
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x2T ≤ 4.48 (u2T ≤ 8 × 10−3 V) or z
(e)
2T ≤ 49.23 (m

(e)
2T ≤ 246.15 spikes/s)e

and with extrinsic input on the EINs of either less than about x1T ≤
−9.52 (u1T ≤ −17 × 10−3 V) or z

(i)
1T ≥ 7.727 (m

(i)
1T ≥ 38.64 spikes/s) due

to inhibition or more than about x1T ≥ 4.48 (u1T ≥ 8 × 10−3 V) or

z
(e)
1T ≥ 49.23 (m

(e)
1T ≥ 246.15 spikes/s) due to excitation. In this list, the

physical values that correspond to the Jansen and Rit parameters [54]

have been put in parentheses, a convention which will be repeated in

the rest of the chapter.
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Fig. 5.6. LC-mechanisms of the parameter space projected onto the plane of the
dendritic time constants. No LCs occur for dendritic time constant ratio β ≥ 5
(β = τ/τi with τ = τe). LCs occur for 24 % of all parameter configurations. For
ratios β ≤ 5, configurations with AH-cycles exist, and further, for ratios β ≤ 0.77,
configurations containing both harmonic and anharmonic oscillations exist.

eThe transformation from normalized PSP to normalized mean spike rate is
done by division by the excitatory or inhibitory coupling factor αe, T or αi, T.
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Spontaneous average spike rates found in actual experiments do not

usually exceed 10 Hz (in rats; e. g., [247,248]), but activity related rates

can be as high as 80 Hz (see, for example, [249], for activity of pre-mo-

tor neurons in monkeys). This suggests that, in the model, the AA-

branch behavior depends on a rather strong inhibition of the EINs. If

the inhibitory dendritic time constant is larger than 1.3 times the ex-

citatory one, that is, β ≈ 3/4 and any of three conditions apply: the

extrinsic input to the EINs lies between about −9.52 ≤ x1T ≤ 4.48

(−17 × 10−3 V ≤ u1T ≤ 8 × 10−3 V) or inhibitory input of less than

z
(i)
1T < 7.727 (m

(i)
1T < 38.64 spikes/s) or excitatory input of less than

z
(e)
1T < 49.23 (m

(e)
1T < 246.15 spikes/s), than branches of type II-AB

occur, allowing both harmonic and highly anharmonic (often spike-

like) oscillations. This scenario is more compatible with the typical

moderate spike rates observed experimentally. If the inhibitory den-

dritic time constant is approximately three times larger than the ex-

citatory one, that is, β = 1/3 BB- (only anharmonic oscillations) or

B-branches appear with predominantly spiking activities. In the model,

other branch types, in particular combinations of the basic types, cover

only small portions of the parameter space. For example, the spe-

cific branch combination corresponding to the standard configuration

of Jansen and Rit (i. e., AA-B) is restricted to input to IINs between

0 ≤ x2T ≤ 1.12 (0 ≤ u2T ≤ 2 × 10−3 V) or excitatory input of less

than z
(e)
2T < 12.32 (m

(e)
2T < 61.54 spikes/s) and to input to EINs between

−2.24 ≤ x1T ≤ 2.24 (−4 × 10−3 V ≤ u1T ≤ 4 × 10−3 V) or inhibitory in-

put of less than z
(i)
1T < 1.82 (m

(i)
1T < 9.09 spikes/s) or excitatory input less

than z
(e)
1T < 24.62 (m

(e)
1T < 123.08 spikes/s) and also limited to inhibitory

time constants about twice that of the excitatory ones, that is, β ≈ 1/2.

Note that the translation from PSP to mean spike rate depends on the

assumed products of dendritic time constant and synaptic gain, which

was set to the values proposed by Jansen and Rit [54]. Moreover, the re-

sulting mean spike rates represent the mean input rates of the respective

NMs, which relate to the mean firing rates of the presynaptic neurons,
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5 Modes of a Cortical Area

given connectivity constants (zbT = cbT zT, b = {1, 2, 3}). These were

set to 1 in this analysis, with the assumption that, on average, each

presynaptic neuron contacts one postsynaptic one. Other values for the

connectivity constants would result in scaling of the firing rates.

LC-branches of type II-AA provide harmonic oscillations with rela-

tively stable fundamental frequencies because the orbit is only gener-

ated by AH-bifurcations. In contrast, due to the Shil’nikov bifurcation

involved in all branches of type I, the oscillation frequencies vary across

a broad range of values. The frequency ranges of all other branch types

are dependent on the global bifurcations involved which change the sta-

bility of the LCs and generate anharmonic oscillations.
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Fig. 5.7. LC-mechanisms of the parameter space projected onto the plane of the
extrinsic inputs (uc = 1.786 mV). Inhibited IINs induce no LCs (with some excep-
tions). LC-branches, especially with harmonic oscillations, mainly occur for excited
IINs (up to roughly 8 mV) for all inputs on EINs. Input on EINs is relevant for
generating anharmonic oscillations (approximately between −17 mV to 8 mV).

Fig. 5.6 and Fig. 5.7 provide an overview of the circumstances under

which the system produces harmonic and anharmonic (spiky) oscilla-
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5.1 Constantly Forced Model

tions. In general, either type of oscillation is only possible if the den-

dritic time constant of the inhibitory synapses between interneurons

and PCs is not too short compared to one of the excitatory synapses:

β ≤ 5 (see Fig. 5.6). Since the effective dendritic time constant in-

creases with the average distance between synapses and soma (e. g.,

[207]), this means that, especially with excitatory input to more remote

dendritic branches, there must be inhibitory synapses with rather large

time constants in order to render the system capable of oscillating. The

dendritic time constants also have a profound influence on the type and

frequency of the oscillations that can be produced. If β ≤ 3/4, the sys-

tem may (depending on the extrinsic inputs and the initial conditions)

produce high-amplitude anharmonic oscillations. Otherwise, only har-

monic oscillations are generated, the frequency of which depends on the

dendritic time constants in a systematic way; see Fig. 5.8 for examples.

In general, the period of stable LCs increased with the dendritic time

constants. In extension of the simulation-based frequency analysis of

David and Friston [48], the generating mechanisms for the oscillations

were captured.

For the standard configuration of Jansen and Rit [54], the parameter

range where David and Friston [48] identified harmonic oscillations can

be divided into two regions. For relatively short inhibitory dendritic

time constants, that is, β > 5, stable foci were found instead of stable

LCs, and therefore the system could only oscillate in the presence of

constant perturbing extrinsic input, for example, noise. In contrast, if

the inhibitory dendritic time constant is larger β ≤ 5, stable LCs occur

and the system oscillates autonomously, even with constant input. In

particular, the anharmonic oscillations referred to as hypersignals by

David and Friston are revealed to due to LCs caused by global bifur-

cations. Bifurcation analysis thus offers a general means of have been

distinguishing between intrinsic oscillations (stable LCs) and extrinsi-

cally driven oscillations (e. g., noise-driven stable foci).
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5 Modes of a Cortical Area

With respect to the extrinsic inputs on EINs and IINs, Fig. 5.7 gives

an overview of the conditions of occurrence for oscillations. Clearly, the

system only oscillates if the IINs are not inhibited and are not excited

above about 4.48 (8 × 10−3 V; with few exceptions). Moreover, anhar-

monic oscillations are limited to extrinsic inputs on the EINs between

approximately −9.52 (−17 × 10−3 V, i. e., inhibition of the EINs and

IINs) and 4.48 (8 × 10−3 V, i. e., excitation of the EINs and IINs).
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Fig. 5.8. Frequency charts of LC-branches. For two configurations of extrinsic
inputs on INs (rows), it can be seen that the charts of branch types II-AA, I-B and
I-C (columns) depending on the excitatory and inhibitory dendritic time constants
(τe and τi). The configuration according to Jansen and Rit can be found in the first
row (u1T = u2T = 0, τe = 10 ms, τi = 2 τe). The oscillation frequency values of LCs
in branches of type II-AA represent mean values over Hopf-cycle ranges and single
values for type I branches (constant distance in relation to Shil’nikov bifurcations).
For the classification of branch types see Fig. 5.3.

Example Configurations Illustrating Potential Applications

This section describes four exemplary configurations using the bifurca-

tion diagrams. They have been selected to illustrate interesting tran-

sitional behavior between regimes, which may be potentially relevant
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5.1 Constantly Forced Model

for modeling the brain processes underlying real M/EEG phenomena,

such as ordered sequences of dynamic regimes (for modeling sequences

in epilepsy by using thalamocortical models see, for example, [76–78]).
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Fig. 5.9. Encapsulated LC (unstable II-AA) within another LC (II-AB next to a
II-AA) of opposite stability (configuration: u1T = −4 mV, u2T = −u1T, β = 0.77
with τ = 26 ms and uc = 1.786 mV). Anharmonic oscillations arises (e. g., black
line) if the system is initialized outside of the unstable LC (dotted arrow and line).
Otherwise, the output is constant (solid arrow and line), and may suddenly switch
to oscillatory activities if moved over the separatrix by a perturbation. See Fig. 5.1
for further explanations.

The first example is presented in Fig. 5.9. It shows the system be-

havior for extrinsically inhibited EINs and excited IINs (x1T = −2.24

and x2T = −x1T or, alternatively, u1T = −4 × 10−3 V and u2T = −u1T)
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5 Modes of a Cortical Area

and a intrinsic temporal ratio of β = 13/17 (e. g., dendritic time con-

stants τe = 26 × 10−3 s and τi = 34 × 10−3 s), which correspond approx-

imately to the upper limit of the physiologically plausible range (see

Section 4.2 for ranges of the system parameters). This example demon-

strates the simultaneous existence of more than one LC-branch for the

same parameter range; that is, for an unstable branch of type II-AA

which is encapsulated in a branch of the same type but of opposite

stability. Such stable II-AA-AB branches make up about 2 % of all

observed multi-branch configurations (see Figs. 5.4 and 5.5). The un-

stable AH-LCs act as the separatrixf separating two system modes of

behavior (here unstable from stable LCs). If the system is initialized

inside the unstable AH-LCs, it will produce constant output, or, in

the presence of low amplitude perturbations, damped oscillations (idle

mode). If the system is then perturbed beyond the separatrix, it sud-

denly enters an excitation mode and produces anharmonic oscillations.

This mechanism also works in the opposite way, from excitation to idle

mode. However, the interesting feature is that this transition behavior

is generally irreversible; that is, the system will not revert to its original

mode even after the perturbing stimulus is gone. Such switching behav-

ior in response to a brief stimulus is characteristic of many normal and

pathological processes in the brain, such as, redirection of attention by

a relevant sound or touch, waking up by salient stimulation, or epileptic

seizures elicited by sudden, unexpected stimuli (startle epilepsy).

The second example in Fig. 5.10 shows a case with still stronger in-

hibition of the EINs (x1T = −9.52 and x2T = 2.24 or, alternatively

u1T = −17 × 10−3 V and u2T = 4 × 10−3 V) and short dendritic time

constants for the excitatory synapses, meaning an intrinsic temporal

ratio of β = 2/11 (e. g., dendritic time constants τe = 4 × 10−3 s and

τi = 5.5 τe). The bifurcation diagram reveals overlapping but separate

fA separatrix marks a boundary between trajectories with different properties.
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Fig. 5.10. Overlapping branches (II-AA and II-AB) provide two coexisting stable
LCs (configuration: u1T = −17 mV, u2T = 4 mV, β = 2/11 with τ = 4 ms and uc =
1.786 mV; see also Fig. 5.1). The coexistence is sensitive to the initialization (arrows).
The state changes from low- (solid arrow) to high-amplitude LCs by passing the
subcritical AH-bifurcation (e. g., exciting the PCs by 8 mV), and remains unless the
system passes the saddle-node bifurcation (e. g., inhibiting PCs by −3 mV).

branches, which provide three LCs for the same parameter setting: a

branch of type II-AA which is shifted into a branch of type II-AB (with

about 2 % occurrence, where 20 % of these are telescoped). This con-

figuration reveals that it is possible to enter into an LC both suddenly

and continuously, also to switch suddenly between LCs. The system

traverses regimes (branches) in qualitatively different ways for increas-

ing and decreasing extrinsic input on PCs. For instance, the system

suddenly switches from idle mode (stable focus in phase portrait IV

with initialization indicated by the blue arrow and an input level of
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about x3T = 31.36 or u3T = 56 × 10−3 V) to excitation mode (high am-

plitude anharmonic oscillations) for increasing input (exceeding about

x3T = 35.84 or u3T = 64 × 10−3 V) by passing the subcritical AH-bifur-

cation (here the phase portrait switches from type IV to III). It remains

in the excitation mode even after cessation of the input perturbation

(potential back to x3T = 31.36 or u3T = 56 × 10−3 V), thus provid-

ing a mechanism for irreversible change caused by a transient input

perturbation (see previous example). Additionally, the system may

change suddenly from one excitation mode (anharmonic oscillations)

to another (harmonic oscillations) for decreasing inputs (below about

x3T = 30.24 or u3T = 54 × 10−3 V) by passing through a global bifurca-

tion (changing the phase portrait from V to III). If the input to the PCs

then returns to the original level, the system returns to its original idle

mode by passing a supercritical AH-bifurcation (to phase portrait IV).

Hence, in contrast to the configuration shown in Fig. 5.9, the effects of

strong perturbations are reversible by traversing several different states

(represented by the respective phase portraits, see Fig. 5.2).

The third example in Fig. 5.11 describes the system behavior for

extrinsically inhibited EINs and excited IINs (x1T = −2.24 and x2T =

−x1T or, alternatively, u1T = −4 × 10−3 V and u2T = −u1T) and an

intrinsic temporal ratio of β = 7/9 (e. g., dendritic time constants τe =

14 × 10−3 s and τi = 18 × 10−3 s). This configuration shows that several

branches might coexist separately along the fixed point curve, lined

up like beads on a string. This configuration (type II-AA-AA-AA,

which makes up about 0.6 % of all multi-branch configurations) does

not result in any sudden changes, but, depending on varying extrinsic

input on PCs, the system will alternate between idle or excitation mode,

producing harmonic oscillations of different frequencies. If the input to

the PCs is noise of sufficiently high amplitude, the output will be a

mixture of unfiltered noise and various frequencies generated by the

different LCs. This may be the basis for a model of M/EEG spectra
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Fig. 5.11. Existence of several stable LC-branches (II-AA) across the extrinsic input
on PCs (configuration: u1T = −4 mV, u2T = −u1T, β = 7/9 with τ = 14 ms and
uc = 1.786 mV; see also Fig. 5.1). The time series belong to different input levels.

featuring several distinct frequency peaks, for example, in the theta

and alpha ranges as in this case.

Finally, as a fourth example, the configuration of Jansen and Rit it-

self (see Fig. 5.1) demonstrates the coexistence of two branches of LCs

of type I-B and II-AA, giving rise to spike-like and sinusoidal activity

respectively. This configuration allows, by virtue of the changed input

to the PCs, an abrupt transition from the I-B-cycle (anharmonic oscil-

lations) to the II-AA-cycle (harmonic oscillations), but not the reverse

transition. Fig. 5.12 shows how the gradual increase of extrinsic in-

put to the IIN changes the bifurcation diagram and causes the system
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Fig. 5.12. Extrinsic inputs on IINs change the system behavior (configuration: β =
1/2 with τ = 10 ms and uc = 1.786 mV). By exciting IINs the system switches from
producing waxing and waning alpha activity in the first state to epileptic spike-like
activity in the second state, and to noise-driven activity in the last state of excitation.
The first extrinsic input state on IINs corresponds to Jansen’s configuration (i. e.,
only extrinsic input on PCs). For the second input state the input on IINs is
constantly 1 mV and doubles for the third input state. The extrinsic input on
the PCs is Gaussian (with an expectation value of E[u3T] = 6.5 mV and a standard
deviation of D[u3T] = 1.3 mV) and zero for the EINs during all states. For each state,
the bifurcation diagram (of the PSP against the extrinsic input on PCs) is shown
in the top row. The input on IINs and the PSPs of the PCs is shown in the middle
and bottom row. Regarding the bifurcation diagrams, circles are subcritical (black)
and supercritical (white) AH-bifurcations, diamonds are saddle-saddle and triangles
are saddle-node bifurcations. The gray vertical lines represent global bifurcations.
The black bordered gray areas are the branches of LCs. Using the classification of
LC-branches (see Fig. 5.3), the first input state was identified as a combination of
type I-B and II-AA, the second and third input state of type I-A. The black vertical
lines indicate the expectation value of the Gaussian input on the PCs. Thus, the
alpha activity is caused by harmonic cycles due to AH-bifurcations in the first state
and the epileptic spiking-like activity of the second state is caused by homoclinic
cycles due to a saddle-node Sil’nikov bifurcation. In the last state, the system is
out of reach of any LC and attracted to the equilibrium disturbed by the extrinsic
Gaussian input on PCs.

110



5.2 Periodically Forced Model

to go through different distinct oscillatory regimes. The system is ex-

posed to Gaussian input to the PCs (expectation value E [x3T] = 3.64

or E [u3T] = 6.5 × 10−3 V and standard deviation D [x3T] = 0.728 or

D [u3T] = 1.3 × 10−3 V) and there is no extrinsic input to the EINs in

this example. With no input to the IINs, this configuration is identical

to that of Jansen and Rit and produces waxing and waning harmonic

oscillations in the alpha range. If the input to the IIN is increased,

the system’s behavior, and thus the bifurcation diagram, changes and

the system starts to produce large amplitude spike-like anharmonic os-

cillations of varying frequency. A further increase in the IIN’s input

moves the system into a state where it generates constant output with

overlaid noise (see Fig. 5.12). This demonstrates that changes in the

system behavior reflect not only bifurcations due to the extrinsic inputs

on PCs but also along with the bifurcations due to the other codimen-

sions (i. e., extrinsic inputs on both types of interneurons, EINs and

IINs). Although codimension five bifurcations were not analyzed, the

diagrams in Figs. 5.4 to Fig. 5.7 give an insight into the system’s behav-

ior for the whole parameter space (based on the classification scheme).

5.2 Periodically Forced Model

As demonstrated in the previous Section, 5.1, even in the absence of

any time-variant input, the NMM is intrinsically capable of reproduc-

ing a variety of biologically relevant behavior, especially rhythms. The

system was investigated under the assumption of constant extrinsic in-

put levels, thereby allowing the system to settle into a stable state

(e.g., fixed point or LC). In the brain, however, such local neuronal cir-

cuits are embedded in larger networks and are likely to experience high

amplitude time-varying input from other parts of the brain. Because

neuronal ensembles tend to oscillate intrinsically, such input is very of-

ten periodic, as evidenced by the widespread occurrence of rhythms in

both extracranial and intracranial recordings [81] and the conclusion of
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the previous Section 5.1. These intrinsic rhythms can be experimentally

influenced by stimulations such as visual flicker (e.g., [82]).

Consequently, in this section, the case of periodic stimulation is con-

sidered. For this purpose, the parameter set proposed in the work of

Jansen and Rit [54] is used, where the system performs harmonic os-

cillations in the alpha frequency band [51, 189]. Instead of a constant

inputl at the PCs a periodic input on INs is applied, consisting of brief

pulses akin to that used by Jansen and Rit for eliciting visual evoked

potentials [53, 54], or used in dynamic causal modeling (e. g., [50, 67]).

The results indicate that a relatively simple generative model of a

local neuronal circuit is capable of producing surprisingly complex and

diverse phenomena, which are observable in brain data and relevant for

the explanation of brain function.

5.2.1 Parameter Space

In this section of the chapter, the dynamics of a periodically forced

modified Zetterberg-Jansen model of a single cortical area is explored

as a function of amplitude and frequency of the stimulus. What imme-

diately follows is a justification of the model and the constraints.

Dimension Reduction

In the modified form of the Zetterberg-Jansen model described by the

differential Eqs. (4.1) to (4.7), the system has 20 parametersg. In

line with the dimension reduction for analyzing the constantly forced

Zetterberg-Jansen model in Section 5.1.1 only excitatory and inhibitory

kernels h̄e (κ) and h̄i (κ) are distinguished with the dendritic time con-

stant τe and τi, so that β13 = β23 = β31 = 1 and β32 = β with β = τe/τi.

Furthermore, the sigmoid parameter γb are the same for all NMs γb = γ,

gThese are: the coupling factors αba, the intrinsic temporal ratios βba, with
ab = {13, 23, 31, 32}; the parameters γb of the sigmoid function Sb (3.16); the
extrinsic input levels to the three neural ensembles zbT (κ); the extrinsic temporal
ratios βbT and the coupling factors αbT with b = {1, 2, 3}.
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5.2 Periodically Forced Model

so that Sb (xb) = S (xb) with b = {1, 2, 3} (see Section 3.2.4 in Chap-

ter 3). In this way, Eqs. (4.1) and (4.2) only differ by the coupling

factors α13 and α23, both equations can be merged to one excitatory

projection x03 of the PCs to both types of interneurons. The other two

intrinsic projections EINs to PCs (4.3) and IINs to PCs (4.4) incor-

porate x03 weighted by the coupling factors α13 and α23. Hence, the

dimension of the states is reduced by two. Here, the extrinsically caused

PSPs xbT (κ) are directly considered instead of the incoming firing rates

zbT (κ) neglecting the specific projections and thus Eqs. (4.5) to (4.7).

In general, a constant input is unaffected, that is, linearly scaled by

dendritic kinetics and a time-variant input is linearly low-pass filtered

by dendrites depending on the dendritic time constant τbT.

PCs (3) to EINs (1) and IINs (2), combined to (0)

ẋ03 (κ) = y03 (κ) (5.3)

ẏ03 (κ) = −2y03 (κ) − x03 (κ) + S
(

x31 (κ) + x32 (κ) + x3T (κ)
)

EINs (1) to PCs (3)

ẋ31 (κ) = y31 (κ) (5.4)

ẏ31 (κ) = −2y31 (κ) − x31 (κ) + α31 S
(

α13 x03 (κ) + x1T (κ)
)

IINs (2) to PCs (3)

ẋ32 (κ) = y32 (κ) (5.5)

ẏ32 (κ) = −2β y32 (κ) − β2 x32 (κ) + α32β
2 S
(

α23 x03 (κ) + x2T (κ)
)

where the state vector φ = (x03, x31, x32, y03, y31, y32)T contains the

normalized mean PSPs xba and currents yba at NM b caused by NM a.

The extrinsic afferents T projected to NM b are denoted by xbT.
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5 Modes of a Cortical Area

Parameter Ranges

The parameter space to be investigated is here specified. The system

described by Eqs. (5.3) to (5.5) has nine parameters, namely coupling

factors αba with ba = {13, 23, 31, 32}, intrinsic temporal ratio β, sig-

moid parameter γ, and extrinsic inputs xbT with b = {1, 2, 3}.

Following Jansen and Rit [54], the coupling factors α13 = 12.285,

α23 = α13/4, α31 = 4α23/5, and α32 = −11α23/13, the kinetic ratio

β = 1/2 and the sigmoid parameter γ = 28.7892 are used. The extrinsic

inputs on the three NMs are taken to be constant for EINs x1T = 0 and

PCs x3T = 3.36 (6 × 10−3 V), and time-variant for IINs in the form of

periodic pulses x2T (κ) = ζ exp
(

− 2σ cos2 (ω)
)

, with the angle ω

ω̇ = π η, (5.6)

is specified by stimulus amplitude ζ and stimulus frequency η (σ con-

trols the shape and is set to σ = 110). Interestingly, a very similar

waveform can be generated using a NMM of the thalamus, as proposed

by Robinson et al. [168]. In this model, a strong inhibitory influence of

the reticular nucleus to the thalamic relay cells during the relaying of

external sensory stimulation, such as an on/off waveform of flickering

lights, sharpens the cortical input to render it pulse-like. Such time-

variant input onto the IINs may represent thalamic feed-forward input.

This type of disynaptic feed-forward inhibition has been described as

crucial for bottom-up processing in the somatosensory (e. g., [250,251]),

auditory (e. g., [252]), and visual (e. g., [253]) systems of rodents. Also,

model analysis of the Jansen and Rit circuit suggests the importance

of input on IINs for controlling cortical behaviors [51].

In the absence of stimulation (i. e., x2T = 0), the system intrinsi-

cally performs LC-oscillations arising from AH-bifurcations, appearing

as harmonic oscillations with a frequency of ηintr. = 10.8 × 10−2 (see

bifurcation diagram and phase portraits, Fig. 5.1 and Fig. 5.2).
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Normalized stimulus frequency η

N
or

m
al

iz
ed

fr
eq

u
en

cy
d

iff
er

en
ce

.02 .06 .1 .14 .18

0

4

8

−4

−8

Fig. 5.13. Frequency entrainment effects in a periodically forced modified
Zetterberg-Jansen model. A frequency-detuning curve refers to the difference be-
tween response and stimulus frequency plotted against the stimulus frequency for
constant amplitude of 1.5 (which equals 2.679 mV for uc = 1.79 mV). The largest
peak in the power spectrum for each stimulus frequency defines the response fre-
quency. A large entrainment range, meaning zero detuning, occurs around the
intrinsic frequency ηintr. = 0.108 (which equals 10.8 Hz for the characteristic time
constant τ = 10 × 10−3 s) and around half that value.

Applying the characteristic dendritic time constant τe = 10 × 10−3 s

as specified by Jansen and Rit [54], this corresponds to an actual os-

cillation frequency of f = 10.8 Hz and can be used to describe alpha

rhythms in brain signals. Note that varying the characteristic time con-

stant τ (that is chosen to be the excitatory time constant τ = τe, see

Section 5.2.1) only scales the neuronal states φ (κ) = (x, y)
T

in time

t = τκ, and thus the frequency f = η/τ , while the states φ (κ), the

underlying mechanisms, such as bifurcations, and the form of time sig-

nals remain unaffected. Hence, the frequency depends on the choice of

the characteristic time constant τ and thus the normalization embraces

all cases of τ . In order to study the system with periodic stimulation

around the intrinsic frequency (ηintr. = 10.8 × 10−2), the stimulus fre-

quency η is taken to range from 0 to 0.19. The stimulus frequency is
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Fig. 5.14. Complex behavior occurring in the periodically forced modified Zetter-
berg-Jansen model. Orbits, time series, and power spectra (columns) are shown for
three configurations (rows) displaying (from top to bottom) periodic (normalized
input amplitude; normalized input frequency: 3.6301; 9.33 × 10−2), quasi-periodic
(1.5; 7.59 × 10−2) and chaotic behavior (3.6301; 7.05 × 10−2). The orbits are in the
state space of normalized PSPs (of PCs) attributable to the EINs and IINs (x30)
as well as those at the two INs, caused by PCs (x31 and x32). The black circles
represent the stable LCs arising from AH-bifurcations in the unperturbed system.
The time series and the power spectra are shown for the PSPs of PCs (which are
related to M/EEG). Periodic behavior is characterized by a closed orbit (LC) and
discrete power spectra with peaks at commensurable frequencies. Quasi-periodic
behavior is characterized by trajectories forming an invariant n-dimensional torus
and discrete power spectra with peaks at incommensurable frequencies. Chaotic
behavior is indicated by a strange attractor, that is, a bounded attracting set in
which all trajectories are unstable and nearby trajectories locally diverge from each
other exponentially, and broadband power spectrum. Note that one obtains the
physical values by applying characteristic constants (see, for example, Table 3.3).

116



5.2 Periodically Forced Model

nonlinearly sampled ensuring 1/ (η∆κ) ∈ N with the interval ∆κ, so

that the pulses are well sampled. The stimulus amplitude ζ is linearly

sampled from 0 to 4.1 to cover the effective range of excitatory inputs

on IINs within the LC exists for constant extrinsic input (see Fig. 5.7).

In summary, for analysis, a system of seven first-order ordinary dif-

ferential equations (Eqs. (5.3) to (5.5)) is considered, describing the

neuronal states φ (κ) = (x03, x31, x32, y03, y31, y32, ω)
T

specified by

two parameters θ = (ζ, η )T.

5.2.2 Stimulus Dependent State Space Analysis

The dynamical system (Eqs. (5.3) to (5.5)) whos studies numerically

using the fourth-fifth order Runge-Kutta method over κ = 30 × 103 in

time (which equals 5 min for τe = 10 × 10−3 s, according to Jansen and

Rit [54]) with a relative tolerance of 10−11, and then for further analysis

linearly sampled with an interval ∆κ = 10−2. From the last 6 × 103

samples (i. e., from the final minute if τe = 10 × 10−3 s), the histograms

of each state were computed using the optimal number of bins [254].

Using the state equations, the characteristic mean frequency of each

attractor was also computed [255]. The characteristic mean frequency

is the time average of a trajectory over the angle velocity at points

along an n-dimensional curvature forming an attractor in state space

(see Appendix A.5 for more details). To study the complex behavior,

the power density spectra of the time series (last 6 × 103 samples) was

computed using the fast Fourier transform, especially for the time series

of the mean PSPs of the PCs x3 (κ) = x31 (κ)+x32 (κ)+x3T (κ), which

are reflected in M/EEG.

The characteristic Lyapunov spectra, that is, all six Lyapunov ex-

ponents λ1 > λ2 . . . > λ6 were also computed directly from the

differential Eqs. (5.3) to (5.5) (see Section 3.3.3). The time interval is

sufficiently long to stably estimate the characteristic Lyapunov spectra
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Fig. 5.15. Largest Lyapunov exponent in the parameter space of stimulus amplitude
and frequency. Positive exponents (magenta to black) reflect diverging trajectories
irrespective of how close they are, and thus chaos in the system. Zero exponents
(white) indicate neutral stability, and negative exponents (cyan to yellow) reflect
frequency locking. The red arrow indicates the amplitude for which the experimental
data fits best (see Fig. 6.1 and Section 6.3 in the Chapter 6). Several parameter
regions are zoomed at a finer resolution of stimulus amplitude and frequency. By
applying characteristic constants (see Table 3.3) one obtains the physical values.

(error < 10−6). The Lyapunov spectrum gives a quantitative measure

of the sensitivity of the states of the system to the initial conditions;

more precisely, it gives the average rate of divergence or convergence

of two neighboring trajectories in the state space. Furthermore, the

whole Lyapunov spectrum enables a statement on the presence of hy-

perchaos, which applies if there are more than one positive Lyapunov

exponents and if the Kaplan-Yorke dimension is larger than two. Due

to the computational effort required, only the largest exponent or a

few of the largest ones have been calculated in most of the existing

literature. Knowing of the whole spectrum enables to derive the Ka-
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5.2 Periodically Forced Model

plan-Yorke dimension (see Section 3.3.4). This gives an estimate of

the upper bound for the information dimension of the system, which

quantifies the complexity of the geometry of the attractor.The state

space is divided by classifying the behavior of the system qualitatively.

To that end, a Poincaré map P is specified (see Section 3.3.5). The

resulting discrete series of intersection points allows for the possibil-

ity that the dynamics may br near-periodic. The last investigation

here was that of the relationship between system perturbation and sys-

tem response in terms of synchronization and frequency entrainment,

for which the frequency-detuning curves [256] were computed, that is,

the difference between the response frequency (characteristic frequency

or largest peak in the spectrum) and the stimulus frequency, plotted

against the stimulus frequency.
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Fig. 5.16. Occurrence of quasi-periodic-behavior forming a two-torus surface in
state space. Two-dimensional tori are indicated by two zero Lyapunov exponents
(shown in black dots) in the parameter space of stimulus amplitude and frequency.
Several parameter regions are shown at a finer resolution of stimulus amplitude
and frequency. Note that one obtains the physical values by applying characteristic
constants (see, for example, Table 3.3).
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5 Modes of a Cortical Area

5.2.3 Results

For constant input a self-sustained oscillation was found due to a stable

LC with a certain intrinsic frequency. Forcing such a LC with periodic

input to the NMM accelerates or decelerates the oscillation (dependent

on timing) and entrainment effects occur if the sum of impacts is non-

zero. Indeed, frequency entrainment is observed, that is, the cortical

area responds with the stimulus frequency instead of the intrinsic fre-

quency, thus forming a plateau in the frequency-detuning curves (see

Fig. 5.13). The frequency entrainment effect spreads over broader stim-

ulus frequencies for higher stimulus intensities, while away from the

entrainment ranges complex behavior, including periodic, quasi-peri-

odic, and chaotic dynamics arise (see Fig. 5.14). The latter behavior,

in particular, provides continuous spectra that are commonly observed

in M/EEG or LFP data.
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Fig. 5.17. Kaplan-Yorke dimension of the periodically forced Zetterberg-Jansen
model in the parameter space. The Kaplan-Yorke dimension given by Eq. (3.29)
never goes above 1.7, thus hyperchaos does not exist. Hyperchaos means than the
system has more than one positive Lyapunov exponent. Several parameter regions
are shown at a finer parameter resolution. Physical units for the parameters can be
obtained by applying the characteristic constants (e. g., Table 3.3).
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5.2 Periodically Forced Model

Table 5.2. Dynamic regimes occurring for stimulus amplitude ζ = 3.6301 (which
equals 6.48 mV for the characteristic potential according to Jansen and Rit [54]; see
Table 3.3). A LC appearing as periodic oscillations is a closed orbit in state space.
An invariant torus indicates quasi-periodic oscillations that manifest themselves in
the power spectra with peaks at incommensurate frequencies. A strange attractor
is a bounded attracting set in which all trajectories are unstable and nearby tra-
jectories locally diverge from each other exponentially, as evidenced by a positive
Lyapunov exponent, as well as a broadband power spectrum.

Orbit Range of normalized stimulus frequency ×10−2

Limit cycle 0 to 18.72
Two-torus 17.72 to 18.72
Strange attractor 5.34 to 6.23; 7 to 7.18; 7.52 to 8.04;

8.92 to 9.29; 10.33 to 11; 11.96 to 17.21

In the cases of periodic and quasi-periodic behavior, power spectra

are discrete, where frequencies ηi are commensurableh in the former

and incommensurablei in the latter case.

Chaotic behavior is indicated by non-closed bounded trajectories in

state space, broadband continuous spectra and positive Lyapunov ex-

ponents (see Fig. 5.15). Here, chaotic regimes arise by traversing a

homoclinic Shil’nikov bifurcation (see Fig. 5.12) for non-rational ratios

between the frequencies of the stimulation and the intrinsic model kinet-

ics. This route to chaos [80] has also been identified in more theoretical

neural models (e. g., [257,258]). The Lyapunov spectra reveals configu-

rations where the system has two zero Lyapunov exponents and evolves

on a two-dimensional invariant torus, indicating quasi- and bi-period-

icity (see Fig. 5.16). In general, the model is dissipative (i. e., the sum

of Lyapunov exponents is negative) and does not exhibit hyperchaos,

as seen from the observation that the second largest Lyapunov expo-

nent is non-positive and the Kaplan-Yorke dimension never goes above

hi. e.,
∑

i
ki ηi = 0 for some non-zero integers ki.

ii. e.,
∑

i
ki ηi 6= 0 for any set of non-zero integers ki.
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1.7 (see Fig. 5.17). The periodic forcing seems to work mostly in the

direction of entrainment, and although there are occasional islands of

chaotic regimes, the regular forcing does not let the dynamics become

exceedingly chaotic.
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Fig. 5.18. Bifurcation diagram for stimulus amplitude ζ = 3.6301. The vertical axis
is the effect of inhibitory interneurons on pyramidal cells x32 that is the coordinate
of the intersection points (black dots) of trajectories with the Poincaré hyperplane
after discarding initial transients. The horizontal axis is the stimulus frequency.
Periodic regimes exist, for instance, for frequencies ranging from 0 to 5.34 × 10−2.
Chaotic and quasi-periodic regimes occur, for example for frequencies ranging from
5.3 × 10−2 to 6.23 × 10−2 (scattered dots) and between 17.21 and 18.72. The classi-
fication can be taken from Table 5.2. Note that one obtains the physical values by
applying characteristic constants (see, for example, Table 3.3).
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6 Resonance Phenomena

Think of the wonderful circles in which our whole being moves

and from which we cannot escape no matter how we try.

The circler circles in these circles.

E.T.A. Hoffmann, 1776–1822

Electrophysiological measurements such as M/EEG, LFP or single unit

recordings contain rich information, which may be related to specific

cognitive processes, to general brain states, or to certain pathological

conditions. For example, it is known that stimulation by repetitive light

flashes entrains the alpha EEG rhythm (i. e., frequency entrainment).

Neurons in the human visual cortex synchronize their firing to the fre-

quency of flickering light, causing the EEG alpha frequency to change

toward the stimulation frequency [83–85]. Clinically, this resonance

effect is called photic driving. The occurrence of such an effect is an

indicator of functional flexibility of the cortex and thus a sign of health-

iness. Photic driving is widely used as an activation method in clinical

practice, for instance, for diagnosis of epilepsy, migraine, schizophrenia,

or depression [86–88].

In order to gain further insight into mechanisms underlying such

brain resonance effects and their relevance to brain function and pathol-

ogy, as well as to make predictions concerning the stimulation parame-

ters, generative models can be used. In this chapter, the model used is a
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6 Resonance Phenomena

modified Zetterberg-Jansen version, and the part of the brain modeled

is a cortical area. The aim is to describe the frequency entrainment

effect of a photic driving experiment very similar to the standard ex-

periment in clinical practice.

In the photic driving experiment one has to consider rhythmic input.

The model’s response to such input is also of great importance in many

other contexts, since, in the brain, such local neuronal circuits are em-

bedded in global brain networks and may experience high amplitude

time-varying input from other parts of the brain. Because neuronal en-

sembles tend to oscillate intrinsically, such input is very often periodic,

as evidenced by the widespread occurrence of rhythmic activity in both

extracranial and intracranial recordings [81].

In the present instance, the output of the periodically forced NMM

(see Section 5.2) was fitted to data from a photic driving experiment, in

each case in terms of the largest Lyapunov exponent, which measures

the exponential separation or convergence of nearby trajectories, and

in terms of frequency detuning. In this way, the NMM proved to be

a suitable model for the dynamics of brain resonance phenomena and

it was demonstrated that useful predictions concerning the parameter

choice of entrainment experiments can be derived from the model.

6.1 Experimental Data

The experimental data used has been obtained by performing a photic

driving experiment that was adapted to the individual alpha frequencies

of the ten subjects (mean age 28.8 ± 5.81 years, five men; five women).

The data has been published by Schwab and colleagues [82], whose

aim was the quantification of the frequency entrainment in the alpha

rhythm that was most effective at frequencies around individual alpha

and half alpha. The measured individual alpha frequency ranged from

9.5 Hz to 11.8 Hz. For each proband, one EEG channel located in the

occipital region (electrode O1 in the 10-20 system) was examined.
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6.1 Experimental Data

From the time series, the calculated 15 largest Lyapunov exponents

initially turned out to be all positive due to the noise characteristics

of the experimental data, unlike those that were calculated from the

model. This problem was obviated by a suitable transformation of the

exponents, as described in the section below.
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Fig. 6.1. Comparison of model and data from the photic driving experiment.
Jansen’s characteristic mean membrane potential uc is applied for the model (see
Table 3.3). The largest Lyapunov exponents calculated from the model show very
good agreement with those obtained from experimental time series. A Lyapunov
exponents of the model (nearest neighbors), normalized between zero and one, and
the data (average over subjects) plotted against the frequency ratio (i. e., flicker fre-
quency/intrinsic frequency), for the stimulus amplitude ζ that fits best (ζ = 3.6301).
The comparison based on the mean differences between (normalized) largest Lya-
punov exponents of model and data, averaged over frequencies as function of stim-
ulus amplitude of the model as shown in B, where the amplitude that fits best is
indicated by the arrow (see also Fig. 5.15). For more details, see Section 6.3. The
best fitting amplitude is consistent over subjects as shown in Table 6.1.
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6.2 Periodically Forced Model

To model the frequency entrainment phenomenon in photic driving

experiments the system used was the periodically forced NMM (of a

cortical area) presented in Section 5.2. The periodic input is a contin-

uous time function approximating a periodic train of pulses. In this

continuous function each single pulse is similar (but not equal) to the

single event used by Jansen and Rit for eliciting visual evoked poten-

tials [53, 54], or used in dynamic causal modeling (e. g., [50, 66]). Both

amplitude and frequency of the stimulation were systematically varied

within the effective ranges (see Section 4.2).

6.3 Comparison

To establish the level of agreement between model and experimental

data, the largest Lyapunov exponents λ1 was compared, normalized

between zero and one by the transformation a + b λ1. The scaling of

the Lyapunov exponents λ1 by b entails a temporal scaling and hence

a scaling of the stimulus frequency, since λ1 is a rate. The offset of

the Lyaponov exponents a can be regarded as a multiplicative process

P of divergence V1(κ), because |V1 (κ)| ≈ P1 exp (bκ λ1) with P1 =

exp (a). Background activities and more general unspecified processes

may be included in P . Since the sampling ratio (on the frequency

axis) is 4.6 between the model (69 samples) and the experimental data

(15 samples), an experimental data point was compared with the four

nearest neighbors in the model. The minimum of the four Euclidean

distances divided by the maximum possible distance was computed,

the result was averaged over stimulus frequency (mean error), and the

minimum of the mean distances across the stimulus amplitudes was

determined. In contrast to the experimental design, the model uses the

stimulus amplitude as a parameter in addition to the stimulus frequency.

The amplitude for which the model best fits the data was identified.

126



6.4 Results

Table 6.1. Single subject comparisons fit the model at stimulus amplitude around
of approximately 3.6 with errors around 0.2. For the median and mean of largest
Lyapunov exponents across subjects, the model fits at stimulus amplitude of 3.63
with an error of 0.13. The calculation is described in Section 6.3.

Subject Normalized amplitude Mean error in %

1 3.67 19
2 3.67 22
3 2.89 30
4 3.67 17
5 3.67 16
6 3.47 22
7 2.34 26
8 3.67 23
9 3.67 20
10 3.67 22

6.4 Results

The model is indeed able to explain frequency entrainment that is ob-

servable during the photic driving (see also [82–84]). Comparing the

model outcome with the experimental data (see Section 6.2 and Fig. 3.2

for experimental paradigm), a particular amplitude of the stimulus

for the model (uncontrolled by the experimental design) was found,

where, for all subjects, the Lyapunov exponents were consistently in

close agreement between the experiment and the model (Fig. 6.1 and

Table 6.1). A flat region occurs in Fig. 6.1 (B) due to the relatively con-

stant pattern of the model’s largest Lyapunov exponents for amplitudes

between 1.5 and 3 (see Fig. 5.15). However, there is a clear minimum

for stimulus amplitudes around 3.6, also consistent over subjects (see

Fig. 6.1 and Table 6.1). For the corresponding model configuration, a

compact representation in Fig. 5.18 is shown where the system states

is described qualitatively in Table 5.2.
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7 Discussion and Conclusion

A point of view can be a dangerous luxury

when substituted for insight and understanding.

Marshall Mcluhan, 1911–1980

The approximations inherent in the Zetterberg-Jansen model are briefly

discussed in Section 7.1. The regimes of the modified Zetterberg-Jansen

model (see Chapter 4) in response to constant extrinsic input levels on

all neural masses (NMs) and intrinsic temporal ratios are discussed

in Section 7.2. The identified underlying mechanisms of the system

states, the classification of limit cycle branches (LC-branches) thereof

and the description of ordered sequences are discussed with respect

to phenomena observable with magnetoencephalography and electroen-

cephalography (MEG and EEG) in normal and diseased brain. The

complex dynamics like chaotic behavior of the periodically forced mod-

ified Zetterberg-Jansen model as function of stimulus amplitude and

frequency are discussed in Section 7.3. The occurrence of complex be-

havior is discussed, and particularly the chaotic behavior is interpreted

with respect to the characteristics of electrophysiological measurements.

Finally, the successful application of the periodically forced modified

Zetterberg-Jansen model to EEG data from a clinically relevant photic

driving experiment is discussed in Section 7.4.1 in terms of the compar-

ison and the resulting predictions.
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7.1 Zetterberg-Jansen Model

In this piece of work the Zetterberg-Jansen model was modified and

analyzed that is widely used for explaining such electrophysiological

measurements as EEG and MEG. This neural mass model (NMM) rep-

resents a mean field model describing the mean activity of a neural

ensemble (e. g., a cortical area). Particularly, it describes the mean

firing rates and the mean postsynaptic potentials (PSPs) instead of

membrane potentials or such single events as action potentials that

can be described by single neuron models such as the Hodgkin-Huxley

model [60] or the Izhikevich’s simple spiking neuron model [259]. In con-

trast to ensemble density models where neuronal states are generally

expressed by probability densities [129,130,134], in a mean-field model,

simply the potential-to-rate conversion (e. g., sigmoid function) incorpo-

rates variability within a neural ensemble [140,141]. Furthermore, the

Zetterberg-Jansen model used here consists of point-like NMs, mean-

ing without any spatial information as used, for instance, in neural

field models (e. g., [57, 126, 142, 154, 157]). Thus, in this work, a single

source was described by an elementary circuit of three interacting NMs

of pyramidal cells (PCs), excitatory and inhibitory interneurons (EINs

and IINs) according to Zetterberg and colleagues [58] and Jansen and

colleagues [53, 54]. More complex structures are conceivable, for exam-

ple, as used in the Haeusler-Maass model [260] or based on the work

of Thomson and Bannister [145], which could be reduced to the simple

structure of a positive and a negative feedback loop as used here. How-

ever, the major advantage of the Zetterberg-Jansen NMM is that the

model is parsimonious by means of parameters, thus mathematically

tractable and still plausible for the description of such electrophysiolog-

ical measurements as M/EEG. For this reason, the modified Zetterberg-

Jansen model and networks thereof are suitable for parameter studies

and for system inversions (e. g., such Bayesian techniques as ’dynamic

causal modeling’) of given data like that of M/EEG [50,67, 74].
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7.2 Constantly Forced Model

The bifurcation study is a detailed analysis of the dynamic properties of

a NMM for a single cortical area. The model is based on the well-known

proposal of Zetterberg and colleagues [58] and Jansen and colleagues

[53, 54] and has been extended by incorporating extrinsic inputs from

other cortical and subcortical areas on the INs. By means of bifurcation

diagrams, the system’s behavior was investigated as a function of its

key parameters, which are the extrinsic input levels to all three NMs

and the dendritic time constants for excitatory as well as inhibitory

synaptic contacts. Finite effective ranges were determined for these

parameters (Table 4.1). It can be argued that variations of the extrinsic

input levels are equivalent to variations of the firing thresholds and,

under certain conditions (see Section 5.1.1), to variations of the intrinsic

connection strengths between the NMs, and that therefore the analysis

also accounts for the influence of these parameters. Consequently, the

analysis can be considered complete.

7.2.1 States and the Underlying Mechanisms

One aim of the model analysis was to describe the rich dynamics ob-

served in a systematic way. At the lowest level, three principal types

of steady state behavior were identified with respect to the PC’s PSPs.

First, stable foci and nodes produce constant output, which, under

small perturbation (e. g., noisy input to the PCs), changes into filtered

noise with oscillatory components in the case of foci, or without such

components. Second, supercritical Andronov-Hopf bifurcations (AH-bi-

furcations) give rise to stable limit cycles (LCs). They appear gradually

upon passage of the bifurcation. For the standard Jansen and Rit pa-

rameters [54] (also see Table 3.3) their frequency is relatively insensitive

with respect to the level of extrinsic input, and ranges between 0 Hz and

80 Hz, depending on the applied intrinsic temporal ratio (as justified in

Section 5.1.1), or the dendritic time constants (see Fig. 5.8). For noisy
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input, this results in waxing and waning harmonic oscillations of rela-

tively stable frequency. This pattern is compatible with typical brain

rhythms, such as the alpha rhythm or sleep spindles. Third, global bi-

furcations, for example of Shil’nikov type, give rise to homoclinic LCs

appearing suddenly at high amplitude and low frequency. They are

generally not harmonic, but have a spike-like appearance (anharmonic

oscillation). Their frequency depends a great deal on the input lev-

els. Hence, if the PCs receive fluctuating input, the intervals between

the wave peaks (or spikes) are variable. These phenomena are compat-

ible with the hallmark of epileptic seizures (i. e., suddenly occurring,

irregular spiking patterns (see, for example, [64, 65, 76–78]). It should

be noted that Shil’nikov’s bifurcations were also related to "spike-wave"

behavior in more theoretical models on MEG and EEG (e. g., [258]). In-

deed, this relationship has been also identified in others experimental

analysis of using embedding methods (e. g., [261]).

7.2.2 Classification of LC-Branches

The topology of the bifurcation diagrams is used to characterize the

occurrence of the various neuronal states and the transitions between

them as a function of extrinsic inputs. This means that one can read

these transitions directly from the bifurcation diagrams. Numerous

branches of LCs were found, which are potentially of biological interest

and which admit a sudden entry into orbit or smooth transition between

different LC-regimes by virtue of small variations in extrinsic inputs

(Fig. 5.1 and Figs. 5.9 to 5.12). These effects were either reversible

or irreversible, depending on the parameters and the initial state of

the system. As the parameters moved through the effective parameter

space, two quantitative changes were observed, that is, in the precise

location of the bifurcations and LCs as well as qualitative changes of the

entire topology of the bifurcation diagram (e. g., bifurcations appearing

or disappearing).

Consequently, at another level of description, a classification was
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introduced, observing principal types of system topology made up of

globally stable LC-branches (see Fig. 5.3). By using this classification

scheme, the complexity of the dynamic behavior was reduced to a few

basic phenomena existing in isolation or in combination. This allowed

to map these topologies to the parameter space and draw a number of

global conclusions about the frequency of occurrence and conditions for

the existence of these topologies (see Fig. 5.4 and Fig. 5.5) and of the

associated oscillatory regimes (see Fig. 5.6 and Fig. 5.7).

The systematic analysis revealed that the dynamic behavior (I-B

and II-AA topology) of the specific parameter configuration proposed

by Jansen and Rit [54], as reported by the analysis of Grimbert and

Faugeras [189], is an exception rather than the rule with respect to

the effective parameter space of the extended model (see Fig. 5.4 and

Fig. 5.5). Hence, the general validity of any analysis based on that con-

figuration would depend on the assumption that the parameter set put

forward by Jansen and Rit [54] is adequate within quite narrow bounds

(see Fig. 5.4 and Fig. 5.5, branch type AA-B). Furthermore, a bifurca-

tion was found which was not reported by Grimbert and Faugeras [189].

There were several general findings concerning the dynamics of the

system. First, harmonic oscillations arising from two AH-bifurcations

(II-AA type) are by far the most common oscillatory behavior over the

entire parameter space (Figs. 5.4 and 5.5 and 5.8). This finding is

compatible with the widespread presence of relatively frequency-stable

rhythms in brain signals (delta, alpha, beta, and gamma frequency

band). Anharmonic oscillatory regimes (e. g., in branch type I-B and

II-BB, see Fig. 5.2 for classification, or the examples in Fig. 5.1 and

Figs. 5.9 to 5.11) are thus special and exceptional, but nonetheless

very interesting cases for modeling, for example, pathological states

(e. g., epilepsy, Figs. 5.4 to 5.7).

Second, the analysis revealed that the intrinsic temporal ratio β be-

tween the inhibitory and excitatory dendritic time constants τi and τe

(not their absolute values) determines whether no oscillations, only one
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type of oscillation (harmonic or anharmonic) or both types are possible

(Fig. 5.4; this confirms the findings of David and Friston [48]). Regard-

ing the system Eqs. (4.1) to (4.7), it is obvious that the dendritic time

constants are related to each other by their scaling or respectively the

intrinsic temporal ratio β = τe/τi. Hence, the system behavior qual-

itatively depends only on the intrinsic temporal ratio β and on the

extrinsic inputs on both types of interneurons (i. e., EINs and IINs).

More specifically, this analysis revealed that for maintaining an oscilla-

tory regime, it is essential to keep the ratio β ≤ 5 (see Fig. 5.6).

Third, the analysis showed that the system is more sensitive to ex-

trinsic inputs to IINs than to extrinsic inputs to EINs. Since oscilla-

tions in local neuronal circuits depend fundamentally on effective in-

hibitory feedback loops, extrinsically inhibited IINs prevent the system

from oscillating, while moderate extrinsic excitation of IINs causes local

neuronal circuits to oscillate. Extrinsic inputs to EINs predominantly

influence the spiking behavior of the system (see Fig. 5.7).

7.2.3 Ordered Sequences

Besides the two aspects already discussed, another aim of this study

was to demonstrate that it is possible, using bifurcation diagrams, to

describe ordered sequences of qualitatively different regimes by NMMs.

Generally, such sequences arise when the parameter space is slowly tra-

versed, as compared to the time constants of the oscillations involved.

Such slow parameter changes could be associated with numerous neu-

robiological phenomena, such as changes in attention and vigilance,

progression of disease, effects of medication or changes in sleep stage.

For example, the rapid transition between non-REM and REM sleepa

accompanied by both drastic changes in rhythmic EEG patterns and

numerous functional phenomena has been modeled as phase transition

of a NMM very similar to ours, caused by slow parametric changes due

aREM sleep is a sleep phase of rapid eye movements (REM).
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to biochemical processes (i. e., changing acetylcholine and adenosine lev-

els) [79]. Another prominent example, where modelers have exploited

slow transitions across a bifurcation, is an epileptic seizure. Such a

seizure is characterized by the transition from normal EEG dominated

by harmonic alpha or beta oscillations to high amplitude irregular spike

or spike-wave oscillations [65,76–78]. A further example is the EEG ob-

served over the motor cortex during brisk finger movements, where

the brain dynamics change from dominant alpha to increased gamma

oscillations during the preparation phase and then to increased beta os-

cillations shortly after the movement itself. Finally, after a few seconds,

the system relapses into its normal state [262].

The topologies of LC-branches in bifurcation diagrams may be used

to describe the formation of such sequences. For instance, Fig. 5.12 (see

Section 5.1.3 for a detailed description) shows how a gradual increase

in extrinsic inhibition by means of excitatory input to the IINs can

suddenly move the system from normal M/EEG featuring alpha waves

to high amplitude irregular spiking.

A number of topologies were found where the system is constrained

to undergo a specific ordered sequence of dynamic states in order to re-

cover its initial state after having been perturbed by a transient change

of a system parameter. For instance, in Fig. 5.10, the system first jumps

to a state where it produces anharmonic oscillations after a transient in-

crease in the extrinsic input to the PCs. Interestingly, the system will

remain in this state even after the input has returned to its original

level. The system will only return to its initial state when a transient

decrease of sufficient amplitude occurs in the extrinsic input to the

PCs. This could be a model, for example, for the elicitation of epilep-

tic seizures by sudden, unexpected stimuli (startle epilepsy). In other

configurations, a return to the initial state is impossible (irreversible

processes). For instance, Fig. 5.9 shows the topology of encapsulated II-

AA branches. When the normal state (inside the unstable AH-LCs) is

perturbed slightly (i. e., below threshold), the system produces damped
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oscillations, but after passing the threshold (i. e., the unstable AH-LCs)

the system is unable to return to its initial state.

These examples (see Section 5.1.3 for further details) demonstrate

that a multitude of biologically interesting dynamic phenomena in brain

signals can be modeled by a rather simple NMM of a single cortical

area in conjunction with appropriate input trajectories. The systematic

analysis details the parameter configurations and input trajectories that

can be used to model specific changes between different dynamic states.

7.2.4 Transitions Between Regimes

As argued here, bifurcation theory is a powerful tool for modeling

M/EEG data. However, they can also be a nuisance when the aim is

the modelling of a single dynamic regime. For example, if one wants to

model stable oscillations, the parameterization should be placed distant

from a bifurcation to avoid a transition under slightly varied parame-

ters. The identification of safe placements in parameter space is another

use of the bifurcation analysis. As shown, some dynamic regimes ex-

ist which seem to be quite narrow islands in parameter space (see, for

example, Fig. 5.4 for branch type combinations: e. g., AA-AB which is

restricted to narrow bands of intrinsic temporal ratios β of either about

0.76 to 0.78, corresponding to the example in Fig. 5.9, or about 0.16

to 0.18, corresponding to the example in Fig. 5.10). Such configura-

tions in the parameter space may be exploited for transitions between

dynamic regimes but should, in contrast, be avoided for modeling dy-

namics which are meant to be robust against slight perturbations.

7.2.5 Modeling

The analysis dealt solely with a local model for a single cortical area.

The question arises, whether and under what conditions the results can

be generalized to the case of several interacting local neuronal circuits.

The results directly predict the behavior of networks consisting of local
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units under the assumption of weak and/or slowly varying extrinsic

inputs (relative to the dendritic time constants of the local neuronal

circuit). If this is not the case, for example, if several cortical areas

have relatively strong bidirectional coupling, more complex state spaces

would have to be explored. However, given the effective ranges of the

inputs to a single cortical area, one can also determine the ranges for the

connection strengths between cortical areas. This means that the local

neuronal circuits greatly limit the behavior of the entire network. In

order to keep a large network in an operating state, connections between

interacting brain areas must not exceed these effective ranges. This

implies the presence of regulatory mechanisms such as neurotransmitter

receptor adaption [197, 214], synaptic plasticity [48, 197, 214] or back-

propagating action potentials into the dendritic tree [214].

The results enable the efficient definition of prior distributions of

parameters in Bayesian model inversion, as used in dynamic causal

modeling [50, 67]. To model specific phenomena using dynamic causal

modeling, the researcher would first select specific regimes of parame-

ters, informed by the present bifurcation analysis. By using appropri-

ate prior distribution centered on the selected parameter configuration,

the researcher can then constrain the effective ranges for the extrin-

sic input levels and inter-area connection strengths. Additionally, the

initial value problem of the gradient-ascent estimation scheme used by

dynamic causal modeling can be addressed by providing the inversion

scheme with information on qualitatively different dynamic regimes.

In principle, this would enable users of the dynamic causal modeling

approach to identify more effectively global maxima of the objective

function by starting the inversion process repeatedly in qualitatively

different dynamic regimes.

7.2.6 Links to Neuroscience

NMM dynamics account for coherent activity of large numbers of neu-

rons, which is exactly the kind of phenomenon that gives is susceptible
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of EEG and MEG. The signals recorded by these methods are known

to reflect important aspects of brain function. In particular, it has been

shown that oscillatory activity observed using M/EEG bears a strong

relationship to brain function in both health and disease. Widespread

brain oscillations reflect the cortical arousal state, as they seem to be

associated with the alpha-rhythm (8 Hz to 12 Hz) in the visual cortex

(see, for example, [263], the mu-rhythm (≈ 10 Hz and ≈ 20 Hz) in the

somatomotor cortex [264–266], and the tau-rhythm (8 Hz to 12 Hz) in

the auditory cortex [267]. Such rhythms are selectively suppressed by

primary sensory or motor activity [262]. Other brain rhythms are di-

rectly related to active processes. For example, frontal beta-rhythms

(≈ 20 Hz) are associated with motor activity [262,267,268], hippocam-

pal theta-rhythms (4 Hz to 8 Hz) in various parts of the brain play

an important role for memory functions as do gamma-rhythms (30 Hz

to 80 Hz) [263, 269–273, 273–276], and gamma-rhythms appear to re-

flect processes of perceptual binding in the visual [277–280] and audi-

tory domains [281–283]. Pathological brain function is strongly cor-

related with typical brain oscillations, for example in epilepsy during

seizures [284] and in Parkinson’s disease [285–287]. This relevance of os-

cillatory M/EEG phenomena for brain function corroborates the view

that modeling neural mass action is important for the understanding

of brain function and the organization of behavior [4, 49, 114]. It is

worth mentioning that with realistic choices of the system parameters,

the present modified Zetteberg-Jansen model of a single cortical area

(Eqs. (4.1) to (4.7)) generates a range of frequencies covering most of

the reported functionally relevant M/EEG rhythms.

Moreover, as discussed above, many functional processes in the brain

can be described as a succession of distinct functional states, mirrored

by specific oscillatory regimes observed in experimental M/EEG data.

Often, this succession of states seems to be caused by a gradual evolu-

tion of certain system parameters. For example, during sleep, slowly de-

creasing levels of adenosine and other somnogens cause a steady down-
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ward shift in resting potential (equivalent to shift in extrinsic input level,

see Section 5.1.1), while acetylcholine levels, raising the excitability of

excitatory neurons and decreasing the gain of excitatory synapses, per-

form slow (≈ 90 min) cycles. These slow biochemical trajectories are be-

lieved to be responsible for the repetitive transition between slow wave

and REM sleep phases [79, 288]. It was shown that bifurcation anal-

ysis provides a generative model for exactly this type of phenomenon:

gradually changing parameters lead to a sequence of distinct dynamic

regimes with relatively rapid transitions between them.

7.3 Periodically Forced Model

In Section 5.2 the behavior of the periodically forced modified Zetter-

berg-Jansen model [53, 54, 58] are analyzed as a function of amplitude

and frequency of a periodic stimulus within biologically plausible ranges.

The investigated system exhibits interesting and complex dynamics, in-

cluding chaos.

7.3.1 Complex Behavior

In simulations, the dynamics of the periodically forced modified Zetter-

berg-Jansen model feature a rich mosaic of complex behaviors (see

Fig. 5.14). From the parameter space analysis presented in Fig. 5.15,

it can be seen that both flicker intensity and frequency are critical pa-

rameters. As expected on theoretical grounds [256,289], the state space

analysis reveals that the system is entrained by the stimulus frequency

(see Fig. 5.13), where the entrainment regions (i. e., plateaus in the fre-

quency-detuning curve) around the intrinsic frequency become wider

with increasing stimulus intensity (results not shown). In regions of

the parameter space without entrainment, complicated interaction be-

tween stimulus and intrinsic kinetics leads to periodic, quasi-periodic,

and chaotic behavior, as, for example, indicated by largest Lyaponov
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exponents and the Kaplan-Yorke dimension. Areas with different dy-

namic behavior form fractal structures in parameter space (Figs. 5.15

to 5.17), so that rhythmic and chaotic brain states are found virtually

next to each other and even small parameter changes can give rise to

a switch from one to another.

7.3.2 Chaos in the Brain?

The Zetterberg-Jansen model investigated here describes complex, par-

tially chaotic, dynamics at the mesoscopic spatial scale, which captures

mass action of neural ensembles [4]. Chaotic dynamical regimes have

been shown before in mesoscopic models of the cortex [290, 291] and

of the olfactory bulb (e. g., [123]). Concerning the brain, there is evi-

dence for chaotic behavior at different hierarchical levels, from single

neurons to entire neural ensembles [104]. A suitable means to access

neural activity experimentally at the mesoscopic level is provided by

M/EEG, which records the summed activity of 105 to 109, mainly cor-

tical, neurons [12, 13]. M/EEG data describe high-dimensional, noisy,

nonlinear, and non-autonomous processes [292], which render it difficult

to distinguish between stochastic and complex deterministic processes

like deterministic chaos. Accordingly, although there is some evidence

for chaos in such data (e. g., in epilepsy), the issue remains controver-

sial (for a discussion see [293] and the references cited therein). How-

ever, irrespective of whether the complexity of M/EEG fulfils the exact

mathematical criteria of deterministic chaos, the parsimonious NMM,

as shown here, helps to better describe the dynamics of such data and

the underlying brain processes.

Apart from brain rhythms in characteristic frequency bands (e. g., the

alpha rhythm), complex behavior with noise-like characteristics causes

the continuous spectral components in these data. This can be inter-

preted as filtered noise (e. g., stochastic sensory input) or described by

nonlinear deterministic processes. It was shown that periodically driven

NMMs may explain the continuous spectral components of M/EEG
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without having to consider noisy input processes. Other NMM studies

often apply a stochastic input process with the effect that the spectra

are more realistically widened around an intrinsic frequency of interest

(e. g., alpha band) (e. g., [48,54,65,69]). It is, however, an advantage if

these continuous spectral components can be modeled and controlled

as intrinsic phenomena of neuronal circuits, because there is evidence

that broad spectral components, also, are modulated by cognitive pro-

cesses and that their generative processes thus play a role in information

processing (e. g., [294–296]). This is corroborated by the postulated

prominent role of chaos in information processing (e. g., [104, 123]).

7.3.3 Ordered Sequences

The complex behavior could be used to explain multi-stability and or-

dered sequences in M/EEG data, which can be observed, for exam-

ple, in perception (e.g., mono- and binocular rivalry [297], Necker-cube

illusion), stages of sleep [298, 299], changes in attention or vigilance,

learning and training such as odor recognition [300, 301], progression

of disease such as epilepsy [302–305], and effects of medication. State

transitions or multi-stabilities appear since the brain is subjected to

multiple high-dimensional stimuli from both exogenous (e. g., visual or

haptic) and endogenous processes (e. g., endocrine or circulatory sys-

tem), and is sensitively dependent on the current individual state (that

of vigilance, for instance – sleep or attention). For example, one can in-

terpret the quasi-periodic behavior in Fig. 5.14 as multi-stability. How-

ever, the orbits are sensitive to noise, in terms of fine structure and

the associated sequences, rather than the overall structure. One way

to achieve ordered sequences of dynamic regimes that are sufficiently

robust against noise is to adequately change the state space through

parameter changes that are slower than the state dynamics, so as to

produce a temporal hierarchy [51]. Parameter dynamics could be de-

scribed, for instance, by metabolic processes (which are usually slow)

and/or more artificially by stable heteroclinic channels (e. g., [306,307]).
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Complex behavior like entrainment, chaos, periodic and quasi-peri-

odic motion were found in a periodically forced modified Zetterberg-

Jansen model of a single cortical area, for plausible parameter ranges

without regard to noise processes. Such dynamics are observable in

brain data and are relevant for the explanation of brain function.

7.4 Brain Resonance Phenomena

It is an important result of this piece of work that, the periodically

forced modified Zetterberg-Jansen model of a cortical area (see Sec-

tion 5.2) is able to account for the dynamics of a photic driving exper-

iment (see Section 6). Photic driving probes the resonance behavior of

the brain and is of great importance for the assessment of epilepsy, mi-

graine, schizophrenia or depression in clinical practice [86–88]. In this

paradigm, the dominant brain rhythm during rest (alpha: ≈ 10 Hz), is

entrained by the periodic stimulus (see Sections 3.4 and 6).

7.4.1 Periodically Forced Oscillator

The concept of a periodically forced oscillator to the modeling of brain

resonance effects was applied. In the brain, such periodic input might

be that for rhythmic stimulation of the brain, such as in the photic

driving paradigm, or of the output from other oscillating brain areas.

Such coupling between (oscillating) processes inside and outside the

brain has been discussed as important for the processing of informa-

tion (e. g., [105, 286, 308–310]). The dominant intrinsic brain rhythm

was described by performing a self-sustained oscillation with the NMM,

generated by an AH-bifurcation (see Section 5.1 or [51]). Applying pe-

riodic input to an oscillating system will generally accelerate or decel-

erate its intrinsic rhythm, provided the sum of impacts (acceleration

and deceleration) is non-zero over time [289]. The more intense the pe-

riodic stimulus is, the more it takes over the states of the system (i. e.,

the states follow the stimulus with a constant phase shift) and, finally,
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the largest Lyapunov exponent approaches zero, meaning the intrinsic

oscillation has been eliminated. In this limiting and potentially patho-

logical case, the neuronal circuit is regarded as passive filter, that is,

a conservative system. At the other extreme, that is, where stimulus

intensity approaches zero, what is found is an autonomous system with

respect to the outside world. These two cases are not treated here be-

cause they are not physiologically relevant. In the model, both cases

are avoided due to the nonlinearity (i. e., sigmoidal potential-to-rate

conversion) that saturates the impact of extrinsic inputs for stimulus

intensities at the edge and outside of the specific effective ranges (see

Table 4.1). Resonance phenomena like frequency entrainment in photic

driving experiments are explicable in these terms. It is reasonable to

expect that the dynamics of the system depend on timing (the ratio

between stimulus and intrinsic frequencies) and intensity of stimulation.

7.4.2 Comparison

Strikingly, the characteristic patterns of unpredictability generated by

the modified Zetterberg-Jansen model here presented (see Section 7.3.1

for a discussion) were also to be found in the experimental data at a

reasonable level of accuracy (see Fig. 6.1). A particular stimulus am-

plitude was identified, where, for all subjects, the Lyapunov exponents

are in close agreement between experiment and model (Fig. 6.1 and Ta-

ble 6.1). The intensity that best fits the experimental data is located

in the upper portion of the effective range for exciting IINs.

7.4.3 Predictions

Consequently, it is envisaged that a decrease of stimulus intensity in

photic driving experiments would shrink the ranges of frequency en-

trainment (i. e., the plateaus in the frequency-detuning curve) and an

increase would broaden them. The model also predicts that saturation

effects start to become important at approximately 1.3 times the cur-
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rently applied stimulus intensity and for intensities close to zero. A

stimulus increase between 1 and 1.3 times the current intensity could

be expected to lead to an improved entrainment effect (i. e., broad-

ened range). As a consequence, photic driving experiments focusing on

brain resonances should be extended by varying the stimulus intensities

in general, in order to assess brain flexibility more precisely. Thus, chal-

lenges for future experimenters will involve estimation and systematic

manipulation of the stimulus intensity.

7.5 Future Directions

The mean-field model, namely the Zetterberg-Jansen model that is

modified and studied in this work, could be applied to other experi-

mental data using periodic stimuli such as auditory stimuli (e. g., [89]).

One could also use it to describe and distinguish the effects of stimulus

habituation (e. g., [311, 312]) and synchronization (for instance, apply-

ing it to such experimental data as that in [286]). The concept of

coupled oscillators leads to the conclusion that the process of habitu-

ation is independent of stimulus timing and that the synchronization

process is sensitive to stimulus timing. For the purpose of distinguish-

ing between these two effects, the transients after stimulus onset should

be considered rather than the long-term (stable) states reached after

several periods of stimulation.

In order to accommodate to the single-trials of such experiments one

could modify the Bayesian inference scheme of dynamic causal modeling

that is widely used in association with NMMs. For this purpose it

would be possible to use the results of this research, especially the

bifurcation diagrams (e. g., Fig. 5.1 and Figs. 5.9 to 5.11) and the

state classifications (Figs. 5.5 to 5.7) to specify a-priori parameter

distributions, for a single cortical area model, at least.

One could specify a network to study by using such measurements as

those in functional magnetic resonance imaging (functional MRI). In
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addition to its applicability to EEG and MEG, the Zetterberg-Jansen

model is capable of explaining functional MRI data by applying a more

complex observer model system (see Section 2.2) than those currently

need for M/EEG such as the familiar balloon model [313].

From a hierarchical perspective of information processing in terms

of bottom-up, top-down and lateral processes (e. g., [308,314,315]) the

modified Zetterberg-Jansen model describes sensory processing at a

higher level. In order to deal directly with the external stimulus in-

stead of cortical input the active bottom-up processing (e. g., filter-

ing or relaying) of sensory stimuli (e. g., periodic auditory or visual

stimulus) should be considered. One way is to incorporate subcorti-

cal instances of primary sensory processing like the thalamus into the

modeling framework in addition to the Zetterberg-Jansen circuit.

To restrict the complexity of such a system, one could incorporate a

mean-field model, for example, of the thalamus as developed by Lopes

da Silva [55] or Robinson [162], achieving parsimonious forced network

of two reciprocally connected oscillators representing a KIII set using

Freeman’s terminology (see Section 2.4.2). Thalamus and cortex are

able to auto-oscillate and the thalamocortical circuit is itself also able

to oscillate through the thalamocortical projections, forming a loop.

However, this work with its model of a single area model reveals that

a network composed of modified Zetterberg-Jansen models may con-

tain redundancy, particularly when a single Zetterberg-Jansen node is

forced (by stimuli or notes from the same or from other networks) at

the edge of or beyond the effective extrinsic input ranges (see Table 4.1).

Here, redundancy means that saturated nodes do not participate in pro-

cessing information within the network. The Zetterberg-Jansen model

is self-sustained in terms of the intrinsic dynamics (e. g., rhythms) but

relatively stiff as a means of processing information within a network.

This problem of redundancy through saturation can be tackled by

incorporating plasticity mechanisms into the NMM (e. g., [214]). These

mechanisms could be, for example, variation of synaptic scaling factors
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or a changing transfer function depending on the previous action of the

NM (e. g., by applying Hebb’s rule [316]).

The basic assumption behind such an approach is that a neural en-

semble tends to operate in a mode of information processing. Satura-

tions or the related redundancies are balanced over time to some extent

by reconnecting and disconnecting or degeneration of nodes. Such plas-

ticity effects have been well studied at the microscopic level of molecules:

synapses up to neurons (e. g., [109, 317]). However, they still present

an open question for ensembles at the mesoscopic level or large-scale

networks at the macroscopic level. There are certain mean-field models

which address this issue (e. g., [126, 211,214]). One of the cruces is the

inverse problem at these levels of observation, because the measured

processes are usually hidden and diverse [4, 27].

7.6 Conclusion

In this work, it has been shown that the Zetterberg-Jansen model is

capable of producing biologically relevant kinetics, especially rhythms,

under constant as well as periodic extrinsic input forces. The present

work presents a complete account of the dynamics of the constantly

forced NMM, of which, so far, only one special parameter set had been

investigated [189]. It is shown as a consequence in a clinically relevant

photic driving experiment that a periodically forced modified Zetter-

berg-Jansen model can explain complex phenomena.

The model is systematically analyzed as a function of constant extrin-

sic input and intrinsic temporal ratio and as a function of amplitude

and frequency of periodic extrinsic input. The mechanisms underly-

ing certain dynamics (rhythms for instance) are identified. The author

goes on to describe the dynamic richness of the system using a relatively

small set of prototypical system topologies and from this draws general

conclusions about the phenomena of particular interest and their con-

ditions of existence. Moreover, biologically relevant configurations are
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identified that demonstrate how reversible and irreversible transitions

between different oscillatory regimes, which can be observed in M/EEG,

can be explained by smooth changes in the extrinsic inputs. Genera-

tive models for ordered sequences of dynamic phenomena are obtained

which may be used as models of transitions between qualitatively dif-

ferent brain states, caused by slow changes in parameters.

It was possible with a modified Zetterberg-Jansen model to reproduce

the phenomena or, more precisely, the frequency entrainment effect in

a photic driving experiment, and to match the largest Lyapunov char-

acteristic exponents. Predictions are made using the model as to the

outcome in situations with patients and probands if they are subjected

to periodic stimulation in similar resonance experiments.
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A Appendix

Le savant n’étudie pas la nature parce que cela est utile;

il l’étudie parce qu’il y prend plaisir,

et il y prend plaisir parce qu’elle est belle.

Henri Poincaré, 1854–1912

A.1 Characteristics of the Sigmoid

The sigmoid function (3.16) is steadily differentiable, increasing asymp-

totically towards unity (i. e., limxj→+∞ Sj

(

xj

)

= 1) and decreasing

asymptotically towards zero (i. e., limxj→−∞ Sj

(

xj

)

= 0). Hence, the

function has at least one point of inflection. The slope at the inflection

point can be derived from the properties of the function. The first three

derivatives of the sigmoid function Sj

(

xj

)

=
(

1+γj exp
(

−xj

) )−1
with

respect to the PSP xj are given here:

∂

∂xj
Sj

(

xj

)

= Sj

(

xj

)

(

1 − Sj

(

xj

)

)

(A.1)

∂2

∂x2
j

Sj

(

xj

)

= Sj

(

xj

)

(

1 − Sj

(

xj

)

) (

1 − 2Sj

(

xj

)

)

(A.2)
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∂3

∂x3
j

Sj

(

xj

)

= Sj

(

xj

)

(

1 − Sj

(

xj

)

)

(A.3)

×
(

1 − 6Sj

(

xj

)

(

1 − Sj

(

xj

)

)

)

.

Please note that the derivatives are also valid for a case in which the

sigmoid function is shifted, for instance, by −1/(1 − γj) as used in

several studies to obtain Sj (0) = 0 (as discussed in Section 3.2). The

xj value of the inflection point (xI, zI) is found by setting the second

derivative (A.2) to zero and solving this equation for xj . In doing so

a single solution xI

(

γj

)

= log
(

γj

)

is found that is an inflection point

because the third derivative satisfies a non-zero number with respect

to xI (i. e., −1/8). This means that only one inflection point exists

where the slope is at the maximum. The corresponding zj-value of the

inflection point can be found by plugging xI in the sigmoid function

Sj

(

xj = xI

)

, which gives zI = 1/2. The first derivative (A.1) describes

the slope of the function. By plugging xI in the first derivative one

obtains the maximum slope s̄max = 1/4, that is at the inflection point

(xI, zI), normalized with respect to the characteristic mean firing rate

mc and mean membrane potential uc. Since the normalized slope of

the sigmoid function do not depend on the sigmoid parameter γj the

shape of the sigmoid function is constant. However, for physical values,

a change of the ratio between the characteristic mean firing rate and

the mean membrane potential mc/uc scales the corresponding axes and

can be interpreted as a slope change of the transfer function (3.16)

∂

∂xj
Sj

(

xj

)

=
mc

uc

∂

∂uj
Sj

(

uj/uc

)

. (A.4)

The physical value of the maximum slope (i. e., at the inflection point),

for example, is 700 s−1 V−1 by applying the characteristic constants pro-

posed by Jansen and Rit [54] presented in Table 3.3.

Because the sigmoid function (3.16) increases and decreases asymp-

totically with increasing and decreasing PSP towards a mean firing rate
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of zero and unity, an effective range xj, eff can be determined for the

incoming PSPs. Because the sigmoid function is rotationally symmet-

rical at its inflection the effective range is symmetrical at this point. In

order to specify the range the slope of the function (A.1) is used that

drops to µ-times the maximum slope µ s̄max, with µ : 0 < µ ≤ 1 and

the maximum slope s̄max = 1/4. Typically values for µ are 5 × 10−2

and 1 × 10−2 corresponding to 5% and 1% of the maximum slope s̄max.

Now, by setting the first derivative of the sigmoid function (A.1) to

µ s̄max. Solving the equation µ
(

1 + γj exp
(

−xj

) )2
= 4γj exp

(

−xj

)

with respect to xj = xj, eff (µ) yields

xj, eff

(

µ, γj

)

= log
(

γj

)

± 2 tanh−1
(

√

1 − µ
)

(A.5)

where the first term is the PSP of the inflection point xI = log
(

γj

)

and

the second term is the half-width of the effective spectrum xj, S/2 (µ) =

2 tanh−1
(√

1 − µ
)

so that xj, eff

(

µ, γj

)

= xI ±xj, S/2 (µ). Thus, the full-

width effective spectrum of the sigmoid (3.16) is xj, S (µ) = 2 xj, S/2 (µ).

A.2 Temporal Differential Operator

This part of the appendix describes the derivation of the differential

operator using the rate-to-potential conversion. The literature also

has examples of the use of a biexponential function to fit the dendritic

impulse-response function from experimental data (e. g., [49,219]). This

function can be approximated by the alpha function (3.18) for the case

that the area under both kernels is normalized to unity

h̄j =



























ξjβj

ξj − 1

(

exp
(

−βjκ
)

− exp
(

−ξjβjκ
) )

if κ ≥ 0, ξj 6= 1

β2
jκ exp

(

−βjκ
)

if κ ≥ 0, ξj = 1

0 if κ = 0

(A.6)
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with the normalized time κ = t/τ (where τ is some characteristic time

scale), the ratio βj = τ/τj of a characteristic time τ to the dendritic

time constant τj of a neural ensemble j, and the ratio ξj of characteristic

decay to rise time. Letting ξj → 1 in the biexponential function which

is the first case in (A.6) yields the well-studied alpha function (3.18)

which is the second case in (A.6)

lim
ξj→1

ξjβj

ξj − 1

(

exp
(

−βjκ
)

− exp
(

−ξjβjκ
) )

= β2
j κ exp

(

−βjκ
)

. (A.7)

The fact that the first and second cases are identical under these condi-

tions can also be proved by using Lambert’s W function (also referred

to as Omega function or product logarithm) and inverting the expo-

nential form f (λ) = x exp (λ) by µ = W (µ) exp
(

W (µ)
)

, where z is a

complex number z ∈ C (see appendix A of [126] for a similar problem).

Neglecting the spatial distribution with r1 = r2 in Eqs. (3.1) and (3.3)

and insert (3.3) in (3.1), one obtains the rate-to-potential conversion of

the form

xj (κ) = oj
mc

uc

∫

κ

ds h̄j (κ− s) zj (s) . (A.8)

Which describes a temporal convolution (i. e., with respect to the nor-

malized time κ) of the normalized dendritic kernel h̄j (κ) and the in-

coming normalized mean firing rate zj (κ) with xj (κ) = uj (τκ) /uc,

zj (κ) = mj (τκ) /mc and αj = oj mc/uc. The same applies to the

potential-to-rate conversion with regard to Eqs. (3.2) and (3.4). The

kernels (A.6) and (3.18) can be recast as Green’s function and from the

convolution (A.8) comes a second-order ordinary differential equation

if, for instance, one carries out Laplace transformL into the ’s’ domain

with respect to κ

Xj (s) = oj
mc

uc
H̄j (s)Zj (s) , (A.9)
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whereXj (s) = L {xj}κ, H̄j (s) = L {h̄j}κ and Zj (s) = L {zj}κ. From

the recast kernel, the area under the functions is normalized to unity

(A.6) and the following transform arises

H̄
(n)
j (s) =























βj

(

ξj − 1
)

(

s+ βj

) (

s+ ξjβj

) if ξj 6= 1

β2
j

(

s+ βj

)2 if ξj = 1.

(A.10)

The second-order ordinary differential equation is obtained by insert-

ing the kernels (A.10) into the Laplace transformed conversion (A.9),

multiplying the denominators with the result that

(

s+ βj

) (

s+ ξjβj

)

Xj (s) = αjZj (s) , (A.11)

and transforming (A.11) back L−1 to the ’κ’ domain

(

d2

dκ2
+
(

1 + ξj

)

βj
d

dκ
+ ξjβ

2
j

)

xj (κ) = αjψj zj (κ) , (A.12)

with the factor αj = oj mc/uc and

ψj =







βj

(

ξj − 1
)

if ξj 6= 1

β−2
j if ξj = 1.

(A.13)

The left side of (A.13), and thus the corresponding second-order differ-

ential operator L̄ (λ) = λ2 +
(

1 + ξj

)

βjλ + ξjβ
2
j with time scale βj is

the same for all kernels (i. e., depending on ξj), namely the normalized

biexponential and alpha function h̄
(n)
j (κ) (A.6). What differs is the

coupling factor ξj on the right side of the Eq. (A.12) incorporating the

normalization (A.13).
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A.3 Effective Extrinsic Input on all Masses

In order to constrain the extrinsic inputs, the saturation effects of the

sigmoidal transfer function can be evaluated. On the basis of the

effective range for transferring PSPs to mean firing rates as defined

in Appendix A.1, an optimal operating point on the sigmoid curve

(Eq. (3.16)) can be specified. For this purpose, the incoming PSP xb

is differentiated in an offset xb, D with ∂xb, D/∂κ = 0 and a time-vari-

ant component xb, A (κ) so that xb (κ) = xb, D + xb, A (κ). Then, of the

basis of the effective range that is symmetrical on the sigmoid func-

tion at its inflection point (xI, zI) =
(

log (γb) , 1/2
)

(see Section 3.2.1

and Appendix A.1) the optimal operating point of a NM can be spec-

ified by the incoming PSP x̂b,D ≡ zI and xb,A (κ) ≡ [−xb, S/2, xb, S/2],

where xb, S/2 denotes the half-width of the effective spectrum of a NM

of type b (see Eq. (A.5) in Appendix A.1). The PSP xb (κ) can be

caused extrinsically (i. e., xbT) and intrinsically (i. e., xba). In line with

the decomposition of xb (κ), the extrinsic and intrinsic input can be

defined as xbT = xbT, D + xbT, A (κ) and xba = xba, D + xba, A (κ), so that

xb =
(

xbT, D + xba, D

)

+
(

xbT, A + xba, A

)

(κ). While the latter xbT (κ) is,

in principle, unrestricted in range, the former xba (κ) is restricted by

the saturation effects of the sigmoidal potential-to-rate transfer func-

tion Sb (xb). The intrinsic mean firing rates are normalized between

zero and one zba = [0, 1] (see Appendix A.1), scaled by αba and low-

pass filtered through the dendrites (see Eq. (A.8) in Appendix A.2).

Since the area under the dendritic kernel hba (κ) is normalized to unity

(see Section 3.2.2 and Eq. (A.6) in Appendix A.2) the intrinsic mean fir-

ing rates cause PSPs xba = [xba, min, xba, max] ranging between zero and

αba (excitatory: [0, αba] or inhibitory: [αba, 0]). For the definition of

the effective range of an extrinsic input with respect to the maintenance

the optimal operating point, two limiting cases have to be considered:

(i) information exclusively transferred through intrinsic input and (ii)

information exclusively transferred through extrinsic input.

In the first case, the extrinsic input is simply an offset component
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x̂bT = x̂bT, D and the intrinsic input range x̂ba is

x̂ba (κ) = [xb, S, xba, max], (A.14)

where the minimum input value xb, S = 2xb, S/2 ensures information

transfer over the full-width of the effective spectrum of the sigmoid

function xb, S (see Appendix A.1). Thus, the offset x̂ba, D and the time-

variant component x̂ba, A (κ) of the intrinsic input is given by x̂ba, D =

x̂ba (κ) − xb, S/2 and x̂ba, A (κ) = [−xb, S/2, xb, S/2]. Since the optimal

operating point is at the inflection of the sigmoid zI the extrinsic input

is x̂bT = zI−x̂ba, D, so that x̂bT = zI+xb, S/2−x̂ba (κ). By considering the

range of the intrinsic input x̂ba (κ) (A.14) the effective extrinsic input

range is obtained where only the intrinsic information is transferred

x̂bT = [zI + xb, S/2 − xba, max, zI − xb, S/2]. (A.15)

In the second case, the intrinsic input x̂ba = x̂ba,D is just a offset com-

ponent with the range xba (κ) = [xba, min, xba, max]. In this case, only

information through extrinsic input is transferred, where the offset and

the time-varying component of the extrinsic input x̂bT is specified by

x̂bT, D = xI − x̂ba and x̂bT, A (κ) = [−xb, S/2, xb, S/2]. The range of the

intrinsic input xba (κ) is considered in order to obtain the effective ex-

trinsic input range

x̂bT = [zI − xb, S/2 − xba, max, zI + xb, S/2 − xba, min]. (A.16)

The maximum range is given by the second case, where the information

is exclusively transferred from extrinsic input. Finally, the extrinsic

PSP xbT (κ) has an effective range between zI −xb, S/2 −xba, max and zI +

xb, S/2 − xba, min with xba (κ) = [xba, min, xba, max] depending on the type

of input, that is, excitatory: xba (κ) = [0, αba] or inhibitory: xba (κ) =

[αba, 0].
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A.4 Modes of a Single Neural Mass

The stability analysis is demonstrated exemplarily for a single NM as

described with the two linear differential equations in Section 3.2.3 (Eqs.

(3.20) and (3.21)), (disregarding the indices),

ẋ (κ) = y (κ) (A.17)

ẏ (κ) = αβ2 S
(

xT (κ)
)

− 2βy (κ) − β2x, (A.18)

where only extrinsic inputs have the NM as their target. Stabilities of

the system involve studying it at its equilibria, by which is meant states

where the variables do not change. For this purpose all derivatives in

Eqs. (A.17) and (A.18) are constrained to be zero, which, by inserting

Eq. (A.17) in Eq. (A.18), leads to a function of the equilibria

x0 = αS (xT) . (A.19)

The fixed-point function is a continuously differentiable one-dimen-

sional manifold in the two-dimensional system and has the same shape

as the transfer function S, simply scaled with α. In the next step, one

has to identify the stability of the fixed points x0, which can be done

by studying the linearized system (Eqs. (A.17) and (A.18)) at the fixed

points. For this purpose, the Jacobian matrix J is set up containing

all partial derivatives of the temporal kinetics ẋ and ẏ with respect to

the variables x and y

J =

(

0 1

−β2 −2β

)

(A.20)

which is, effectively, the structure

J =

(

∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y

)

. (A.21)
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For the stability of the system to be characterized, the Jacobian matrix

is evaluated at the fixed points by calculating the two eigenvalues λ. In

this case, however, the Jacobian matrix depends only on the intrinsic

temporal ratio and not on the extrinsic input xT. Consequently, the

Jacobian matrix characterizes all fixed points without special evaluation

(i. e., inserting the fixed-point curve (A.19)). This also means that no

bifurcations occur in the system with respect to the extrinsic input xT.

The calculation of the eigenvalues (i. e., the determinant 0 = det(J −
λI2), where I2 is a two-dimensional identity matrix) of the Jacobian

matrix (A.20) yields

λ1, 2 = −β. (A.22)

Generally, if an eigenvalue is negative λ < 0, if it is positive λ > 0 or id

it is zero λ = 0, the system is stable, unstable or critical respectively.

If there is a critical eigenvalue, λ = 0, the bifurcations of the system

must be studied. However, since the intrinsic temporal ratio β is always

positive β : β ∈ R+ both eigenvalues λ1,2 are always negative and thus

the system (Eqs. (A.17) and (A.18)) is stable.

Another exemplary case would be the system (Eqs. (A.17) and

(A.18)) if the NM fed the PSP x (κ) back (auto-feedback)

ẋ (κ) = y (κ) (A.23)

ẏ (κ) = β2 S
(

αx (κ) + xT (κ)
)

− 2βy (κ) − β2x (κ) . (A.24)

For this auto-feedback system the function of the fixed points xT,0 is

more complicated

xT, 0 = log

(

γx0

1 − x0

)

− αx0, (A.25)

where γ denotes the sigmoid parameter. Eq. (A.25) will clearly not

solve for the variable x0. Furthermore, the Jacobian matrix J of this
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auto-feedback system is given as follows

J =

(

0 1

β2
(

S′ (αx+ xT) − 1
)

−2β

)

, (A.26)

where S′ (x) denotes the partial derivative with respect to the PSP

x with S′ (x) = ∂S (x)/∂x. The Jacobian matrix (A.26) of the auto-

feedback system is a function of the intrinsic time ration β, the coupling

factor α for the auto-feedback, the sigmoid parameter γ, the PSP x and

the extrinsic input xT. To investigate stabilities of the auto-feedback

system one evaluates the Jacobian matrixJ0 at the fixed point function

xT, 0 (A.25)

J0 =

(

0 1

β2
(

α (1 − x0)x0 − 1
)

−2β

)

, (A.27)

and computes its eigenvalues λ

λ1,2

β
= −1 ±

√

α (1 − x0) x0. (A.28)

Since the intrinsic temporal ratio β is always positive β : β ∈ R+,

the eigenvalues of the linearized system at the fixed points λ1,2 are

simply scaled with β. The auto-feedback system is critical xcrit. in

a state if at least one eigenvalue is zero. This means that the real

part of the second term in Eq. (A.28) is either plus or minus unity

xcrit. : Re
(√

α (1 − xcrit.)xcrit.

)

= ±1 with the critical states

xcrit. =
1

2
±

√
α− 4

√
α

2α
. (A.29)

The critical states xcrit. can be translated into an extrinsic input by us-

ing Eq. (A.25) with x0 = xcrit.. The corresponding eigenvalues λ1,2/β =

−1 ± 1 characterize the critical values as a saddle-node bifurcation.

Within the stable regimes the system qualitatively changes from a node
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(i. e., λ1,2 ∈ R−) to a focus (i. e., λ1,2 = −1 ± iµ) with µ ∈ R) when

the second term in Eq. (A.28) changes from real to complex value or

vice versa for α = 0, x0 = 0 and x0 = 1. For the complete bifurcation

diagram see Fig. A.1.
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Fig. A.1. Bifurcation diagram of a single NM with auto-feedback. The diagram
shows the equilibria of the normalized PSP x0 against the coupling factor α of the
auto-feedback. The three solid curves are the critical points xcrit. (see Eq. (A.29)).
The phase portrait in each regime characterizes the state φ. The equilibria can be
translated into an extrinsic input xT, 0 (see Eq. (A.25)).

A.5 Characteristic Mean Frequency

An estimation of the frequency of a LC that has its existence on a folded

manifold with complex folding in the state space, for example by means

of the Fourier transform of a state variable, could lead to imprecise or

false values. For the sake of greater precision one can compute the

so-called characteristic mean frequency [255] of an orbit by using the

system state equations (e. g., Eqs. (5.3) to (5.5)). Generally, for any
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n-dimensional curve φ the angular velocity v at each normalized time

point κ is

v (κ) =
dφ

dκ
ρ (κ) , (A.30)

where dφ/dκ =
∥

∥

∥
φ̇
∥

∥

∥
is the speed along the curve and

ρ (κ) =

∥

∥

∥φ̇× φ̈
∥

∥

∥

∥

∥

∥φ̇
∥

∥

∥

3 (A.31)

is the radius of curvature. The characteristic mean frequency η̃ is de-

fines as η̃ = limT →∞ ω (T ) − ω (0)/T or as the time averaging of the

angular velocity

η̃ = 〈v〉 , (A.32)

where 〈·〉 denotes the averaging over the normalized time κ, T is the

normalized observation time and ω the phase with

ω =

∫

T

dκ v. (A.33)

For instance, for the six-dimensional system (see Eqs. (5.3) to (5.5) in

Section 5.2.1) the angular velocity is defined by

v (κ) =
1

v2
03 + v2

31 + v2
32

(

(v̇31 v03 − v̇03 v31)2 (A.34)

+ (v̇03 v32 − v̇32 v03)
2

+ (v̇32 v31 − v̇31 v32)
2 )1/2

,

with the derivative of states φ̇ (κ) = (y03 y31 y32 ˙y03 ˙y31 ˙y32)
T
.

Finally, by applying Eq. (A.30) the characteristic mean frequency η̃ of

the six-dimensional system is obtained.
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A.6 Symbols and Abbreviations

In this work, in addition to standard abbreviations of English spelling,

the International System of Units and the common mathematical sym-

bols (ISO 31-11), special abbreviations and symbols are used. These

specific abbreviations, mathematical variables, parameters, operators

and subscripts are listed here.

Table A.1. Abbreviations

Abbreviation Meaning

AH Andronov-Hopf
AMPA Type of Glutamate Receptors
EIN Excitatory Interneuron
EEG Electroencephalography
GABA Gamma-Aminobutyric-Acid
IIN Inhibitory Interneuron
LC Limit Cycle
LFP Local Field Potential
MEG Magnetoencephalography
MRI Magnetic Resonance Imaging
NM Neural Mass
NMM Neural Mass Model
PC Pyramidal Cell
PSP Postsynaptic Potential

161



A Appendix

Table A.2. Variables

Variable Meaning Unit

m Mean Firing Rate s−1

p Extrinsic Input V
r Location m
t Time s
u Mean Postsynaptic Potential V
v Propagation Velocity m s−1

x Normalized Mean Postsynaptic Potential 1
y Normalized Mean Current 1
z Normalized Mean Firing Rate 1
ǫ Noise Process V, s−1

κ Normalized Time 1
φ Neural State V, s−1

χ Measurement (e. g., EEG and MEG) V, T
ψ Perturbation V, s−1

ω Angle rad

Table A.3. Parameters

Parameter Meaning Unit

o Linear Scaling Factor 1
α Coupling Factor 1
β Intrinsic Temporal Ratio, β = τ/τba 1
γ Normalized Sigmoid Parameter 1
ζ Normalized Stimulus Amplitude 1
η Normalized Stimulus Frequency 1
θ Parameter Vector
τ Characteristic Time Constant s
J Set of Neural Masses or Connections 1
Γ Velocity Domain m s−1

Ω Spatial Domain m
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Table A.4. Operators

Operator Meaning

f Dendritic Spatial Distribution
g Axonal Spatial Distribution
h Dendritic Impulse Response Function
k Axonal Impulse Response Function
l Velocity Distribution
C Dendritic Differential Operator
D Axonal Differential Operator
L General Differential Operator
S Potential-to-Rate Transfer Function
O Potential-to-Rate Operator
Pφ State System
Pχ Observer System
Q Rate-to-Potential Operator
δ Dirac Delta Function
∆ Distance

Table A.5. Subscripts

Subscript Meaning

a Starting Neural Mass a : a ∈ J
b Targeting Neural Mass b : b ∈ J
c Characteristic Constant
e Excitatory Projection
i Inhibitory Projection
j Type of Neural Mass j : j ∈ J

or of Connection j : j = ba
I Point of Inflection
T Extrinsic Input
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