Die Identifikation nicht direkt zugänglicher Prozesse anhand gemessener Daten ist von großer Bedeutung in vielen Bereichen. Im Fokus dieser Arbeit liegen Applikationen in der Magnetostatik, Magnetokardiographie und Magnetinduktionstomographie. Ein Ansatz zur Identifikation besteht in der Lösung eines entsprechenden linear inversen Problems. Unglücklicherweise haben in den Daten enthaltene Fehler und Rauschen einen signifikanten Einfluss auf die inverse Lösung. Ziel dieser Arbeit ist die Reduktion der Einflüsse von Fehlern und Rauschen durch eine Verbesserung der Kondition des Problems, sowie eine Steigerung der Sensitivität der Messanordnungen. Zur Bestimmung der Kondition wird das Verhältnis des größten und mittleren Singulärwerts der Kernmatrix als neues Maß vorgeschlagen. Darüber hinaus werden Ansätze zur Analyse der Sensitivität hinsichtlich der Messung elektromagnetischer Quellen und der Erfassung elektrischer Leitfähigkeitsveränderungen präsentiert.Strategien zur Verbesserung von Kondition und Sensitivität werden in vier Simulationsstudien beschrieben. In der ersten Studie wird ein Tabu-Suche-Ansatz zur Optimierung der Anordnung magnetischer Sensoren vorgestellt. Anordnungen mit optimierte Sensorpositionen resultieren dabei in einer deutlich besseren Kondition als regelmäßige Anordnungen. In einer zweiten Studie werden Parameter adaptiert,welche den Quellenraum für die Bildgebung durch magnetische Nanopartikel definieren. Als eine Schlussfolgerung sollte der Quellenraum etwas größer als das Sensorareal definiert werden. Diese Arbeit zeigt ebenfalls, dass Variationen in den Sensorrichtungen für monoaxiale Sensorarrays zu einer Verbesserung der Kondition führen. Zudem wird die Sensitivität von Spulenanordnungen für die Magnetinduktionstomographie bewertet und verglichen. Durch Nutzung relativ großer Spulen, die das Messgebiet nahezu vollständig abdecken, können Kondition und Sensitivität wesentlich verbessert werden.Die präsentierten Methoden und Strategien ermöglichen eine substantielle Verbesserung der Kondition des linear inversen Problems bei der Analyse magnetischer Messungen. Insbesondere die Anordnung von Sensoren in Bezug auf das Messobjekt ist kritisch für die Kondition, sowie die Qualität inverser Lösungen. Die vorgestellten Methoden sind darüber hinaus für linear inverse Probleme in zahlreichen Bereichen einsetzbar.