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1. General Introduction

1. GENERAL INTRODUCTION

1.1 Trees from the family Pinaceae are attacked by bark beetles and their associated blue stain

fungi

The family Pinaceae (order Coniferales) includes many environmentally and economically
important softwood tree genera such as Pinus (pine), Picea (spruce), Larix (larch), Abies (fir) and
Tsuga (hemlock). Pinaceae cover an estimated 1000 million hectare land area consisting of natural
and planted forests (Global Forest Resources Assessment, FAO 2010), and are of great economic
importance for the production of timber and fiber (Fenning and Gershenzon, 2002). The family
Pinaceae also plays essential environmental roles by providing niches for smaller organisms (Dicki
and Moyersoen, 2008), acting as a carbon dioxide buffer (Mitchell et al., 2009), preventing soil
erosion (Huang et al., 2010) as well as reducing air and water pollution (Chiwa et al., 2004; Guerrieri
etal., 2011).

Bark beetles (family Curculionidae, subfamily Scolitinae) are the greatest cause of tree
mortality in natural and plantation softwood forests (Benz et al., 2010; Table 1.1). In order to
overcome host defenses beetles initiating an attack emit aggregation pheromones which attract
thousands of conspecifics to the same tree. Following successful colonization adult beetles mate and
lay eggs under the bark of host trees. After hatching, bark beetle larvae feed on the phloem and dying

cambium in the tree trunk until pupation.

Table 1.1: Economically important bark beetles and their associated blue stain fungi.

Common name European hark heetle Mountain pine hark Southern pine heetle Spruce hark beetle
heetle
Species Ips bhpographus Dendroctonus ponderosae | Dendrocionus frontalis Dendroctonus rufiperis

]

Associated blue Caratocystis polovica Crosmannia clavigera
stain fungus

Leptagraphium abistines

Geographic range Central Eurepe TEA SEUSA MW IS4
Scandinavia Canada Canada
Alaska
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To complete their life cycle, the adults emerge and search for another host. As adult beetles bore into
bark, they transmit very specific phytopathogenic fungi (Table 1.1) to the host tree which cause
occlusion of xylem vessels and blue discoloration of sapwood (Figure 1.1). Although the interaction
of these ‘blue stain fungi’ with their bark beetle vector is largely unknown, the association is believed
to be mutualistic with the fungi assisting in weakening or killing trees (reviewed by Paine et al.,

1997).

Figure 1.1: Cross section of Norway spruce sapwood infected by the blue stain fungus C. polonica. Photo:

E. Christiansen.

Bark beetles usually occur in low densities and colonize trees recently felled by wind damage
or kill stressed and dying trees. However, during certain environmental conditions, bark beetle
populations increase rapidly in size (Raffa and Berryman, 1987). During such eruptive outbreaks,
beetles can attack healthy trees and cause great damage to natural and plantation forests. During the
last 50 years eruptive bark beetle outbreaks have increased in prevalence and severity (Raffa et al.,
2008). The largest bark beetle outbreak recorded in history is presently occurring in Western Canada,
where the mountain pine beetle (Dendroctonus ponderosae) has killed an estimated 500 million m’
lodgepole pine (Pinus contorta) during the last 20 years (Kaervemo and Schroeder, 2010).

The increasing severity of bark beetle attacks on the Pinaceae correlates with warmer
temperatures as well as with lower precipitation (Benz et al., 2010; Williams et al., 2010). Due to
higher temperatures, bark beetles are expanding their range into niches in northern latitudes and
higher elevations which were traditionally too cold for their survival (Cudmore et al., 2010). Higher
temperatures and lower rainfall also contribute to shorter life cycles and increase the reproductive

success of bark beetle populations (reviewed by Choi, 2011). The Pinaceae, on the other hand, are
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poorly adapted to shifts in climate due to predetermined annual growth cycles, winter-chilling
requirements (Aitken et al., 2008; Holliday et al., 2010) and sensitivity to drought stress (Breshears et
al., 2009; Williams et al., 2010).

Boreal and temperate Pinaceae forests contain more than 30% of the earth’s biomass (Global
Forest Resources Assessment, FAO 2010). Therefore the health of these forests has a significant
effect on the atmosphere. High tree mortality in northern forest ecosystems due to bark beetle attack
could cause substantial increases in carbon dioxide levels (Pfeiffer et al., 2011), with consequent far
reaching effects on global climate. Research on tree defense mechanisms against bark beetle attacks is
thus important to produce Pinaceae accessions appropriate for sustainable biomass production during

the 21% century.

1.2 Pinaceae can defend themselves against attack by bark beetles and their associated blue

stain fungi

Bark beetles have co-evolved with their Pinaceae hosts since the late Mesozoic era (65
million years ago; Labandeira et al., 2001). It is therefore not surprising that these trees developed
some structural and chemical strategies to defend against beetles and their fungal associates (reviewed
by Franceschi et al., 2005). Structural defenses mainly include lignified cells with thickened
secondary cell walls (Wainhouse et al., 1997) and cork tissue encrusted with calcium oxalate crystals
(Hudgins et al., 2003), which may serve as a barrier against invasive insects. The Pinaceae also
synthesize high amounts of natural products throughout their lifespan which are stored in specialized
cellular structures in the bark and wood. During biotic or abiotic stress, this chemical defense system
is increased through the de novo synthesis of inducible defense compounds (Franceschi et al., 2005).

The best known defense compound in the Pinaceae is oleoresin (reviewed by Zulak and
Bohlmann, 2010). This viscous mixture of mono-, sesqui-, and diterpenoids is stored in specialized
ducts lined with plastid-enriched epithelial cells. Terpenoid resins are synthesized by these cells and
secreted into an extracellular lumen where their accumulation leads to increased pressure (Rosner and
Hanrup, 2004). The biosynthesis of oleoresin is induced by the application of the defence-related
phytohormone jasmonate and its volatile derivative methyl jasmonate (Franceschi et al., 2002), or by
sub-lethal fungal inoculations. The de novo synthesized terpene mixture, which has been shown to
increase in quantity and change in composition (Byun-McKay et al., 2006; Zhao et al., 2010), can
protect trees against low density bark beetle attacks for at least one year (Christiansen et al., 1999;
Krokene et al., 2003).

An equally important but less well-studied defense mechanism in the Pinaceae is the

production and storage of phenolic compounds in specialized cells in the phloem parenchyma, the so-
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called polyphenolic parenchyma cells or PP-cells (Franceschi et al., 1998). During a defense
response, induced by wounding, methyl jasmonate or inoculation with the European blue stain
fungus, Ceratocystis polonica (Table 1.1), PP-cells can expand and their inclusion bodies and develop
a higher autofluorescent density (Figure 1.2; Hudgins et al., 2004; Nagy et al., 2004). Hence it has
been thought that they contain phenolic compounds. Although it is likely that PP-cells form a
protective barrier against pest species invading the tree’s cambial zone (Christiansen et al., 1999;
Krokene et al., 2003), very little is known about the biosynthesis and accumulation of polyphenols in

these specialized cells.

Polyphenolic parenchyma cells

g

Phloem
,,, = R = Cambium
= v -
1
Ray parenchyma
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4 ! - ";.."“Y.r,{
o , .1 B e

Figure 1.2: Typical cross section of the inner bark and sapwood region of the Pinaceae stained with
Stevenel’s blue. Cells staining dark blue are polyphenolic parenchyma cells (PP cells). Photo: V.

Franceschi.

1.3 Phenylpropanoid function, structure and biosynthesis

Polyphenols or phenylpropanoids are abundant, structurally diverse natural compounds
produced by almost all plant genera in response to environmental stimuli. The function of
polyphenols includes structural support for upright growth on land, provided by polymeric
phenylpropanoids such as lignin (Davin et al., 2008) and suberin (Franke and Schreiber, 2007). They
are also responsible for protecting plants from harmful solar radiation and from reactive oxygen
species produced during environmental stress (Bashandy et al., 2009). Phenylpropanoids also play
important roles in plant interactions with other biota. They function as attractants for symbiotic
microorganisms (Cesco et al., 2010), pollinators (Saito and Harbourne, 1992) and herbivores which

disperse seeds. Compounds derived from the phenylpropanoid pathway (Figure 1.3) have also been
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shown to negatively affect herbivore feeding behavior (Feeny, 1970) or hinder infection by

phytopathogens (Franceschi et al., 2005).
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Figure 1.3: Diversity of phenylproanoids which are derived from phenylalanine. Phenylalanine is one of

the products of the shikimic acid pathway.
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Plant polyphenols are aromatic compounds derived from phenylalanine or tyrosine. These
amino acids are synthesized by the shikimic acid pathway (Vogt, 2010). The committed step in
polyphenol biosynthesis of most plant species is the deamination of phenylalanine by the enzyme
phenylalanine ammonia lyase (PAL) to form cinnamic acid (Figure 1.3). Cinnamic acid is then
hydroxylated by a cytochrome P450 monooxygenase to form p-coumaric acid. Coenzyme A (CoA)
activated p-coumaric acid in turn is the precursor for the two major downstream pathways in the plant
phenylpropanoid pathway leading to monolignols and flavonoids.

Lignin, which is the principle metabolite for structural rigidity in plants, is derived from
monolignol units which are phenylpropanoid alcohols. Monolignols decorated with various
substitutions such as O-methylations or 3,5-hydroxylations are formed in an intersecting metabolic
grid from the universal precursor p-coumaroyl CoA (Figure 1.3). Specific ratios of differently
substituted monolignols are oxidatively coupled by laccase or peroxidase enzymes to form complex
lignin polymers.

The other major downstream pathway in plant polyphenol biosynthesis leads to the
production of polyketide-derived compounds. Chalcone synthase and stilbene synthase enzymes both
catalyze the coupling of three acetate-derived malonyl-CoA molecules with p-coumaroyl CoA to
form linear tetraketides. These enzymes then cyclize the tetraketide using different chemical
mechanisms to form chalcones or stilbenoid phytoalexins (Figure 1.3).

Chalcones are the precursors of structurally diverse flavonoids, such as aurones responsible
for yellow flower colour, isoflavonoids which are important phytoalexins in legumes and
dihydroflavonols which are precursors for thousands of other flavonoid-like compounds (Figure 1.3).
Dihydroflavonols can be converted to flavonols by an a-ketoglutarate dependent dioxygenase or can
be reduced by a NADPH-dependent reductase to flavan-3,4-diols (leucoanthocyanidins). In
subsequent steps, flavan-3,4-diols can be converted to anthocyanidins by o-ketoglutarate dependent
dioxygenases or reduced by NADPH dependent reductases to form flavan-3-ols. These compounds
are the precursors for the production of the anti-microbial and anti-oxidant proanthocyanidin
polymers. Biosynthesis of chalcone-derived natural products occurs in a complex metabolic grid in
which intermediates of the pathway are decorated by glycosylation, methylation, hydroxylation or

acylation at specific control points unique to different plant species (Ferrer et al., 2008; Vogt, 2010).
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1.4 Questions addressed in this thesis

Tree species of the Pinaceae contain autofluorescent rings of cells in the phloem parenchyma
(PP-cells) which show an increase of fluorescent contents after fungal infection. Although it is
believed that PP-cells synthesize polyphenolic compounds which are important in tree defense
(Franceschi et al., 2005), very little is known about the biosynthesis, the structural diversity and
biological roles of these compounds in the Pinaceae.

The objective of this research was to study phenylpropanoid biosynthesis in a representative
species of the Pinaceae (Picea abies-Norway spruce) and to investigate the roles of these compounds
in the interaction with a bark beetle-vectored blue stain fungus (Ceratocystis polonica). The first part
of this thesis (Chapter 2) covers the biosynthesis of stilbene glycosides in Picea species. In this
section it was shown that fungal inoculation increases the production of stilbene synthase-derived
tetrahydroxystilbenes which originate from monohydroxylated p-coumaroyl CoA. The core theme of
the second part of this thesis (Chapter 3) is the defense strategies of different isolates of C. polonica
against stilbenes produced by P. abies. Feeding studies showed that C. polonica could detoxify
tetrahydroxystilbene glycosides using an overlapping array of enzymatic reactions. Furthermore, it
was revealed that virulent C. polonica had greater detoxification capabilities than avirulent C.
polonica. In the last part of this work (Chapter 4) the biosynthesis and structural diversity of flavan-3-
ols and proanthocyanidins was studied in P. abies. It could be shown that these defense compounds
have a deleterious effect on fungal growth and undergo both quantitative as well as qualitative

changes in spruce bark upon fungal infection.
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2. Research Chapter 1

Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds

via resveratrol and is enhanced by fungal infection

2.1 ABSTRACT

Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families
that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well
described in economically important plants, such as grape, peanut and pine. However, very little is
known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important
gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in
spruce, we identified two highly similar stilbene synthase (S7S) genes in Norway spruce, P. abies,
PaSTS1 and PaSTS2, which had orthologues with high sequence identity in Sitka (P. sitchensis) and
white (P. glauca) spruce. Despite the conservation of STS sequences in these three spruce species,
they differed substantially from angiosperm STSs. Inoculating spruce with fungal mycelium
increased STS transcript abundance and tetrahydroxystilbene glycoside production, suggesting that
one of the roles of stilbenes in spruce is anti-fungal defense. Several types of in vitro and in vivo
assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-CoA and three
molecules of malonyl-CoA to yield the trihydroxystilbene resveratrol, but do not directly form the
dominant spruce stilbenes, which are tetrahydoxylated. However, in transgenic Norway spruce over-
expressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and
isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce
is the formation of resveratrol which is further modified by hydroxylation, O-methylation and O-

glucosylation to yield astringin and isorhapontin.
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2.2 INTRODUCTION

Stilbenes are plant secondary metabolites consisting of two phenol moieties linked by a C,
bridge (Figure 2.1). These compounds are produced by species from a number of unrelated
gymnosperm and angiosperm plant families including the Pinaceae, Cyperaceae, Vitaceae,
Polygonaceae, Betulaceae, Fabaceae and Poaceae (Chong et al., 2009). Although the basic stilbene
structure is widespread in plants, diverse species-specific substitution patterns exist. For example,
pine (Pinus) species produce 3,5-dihydroxystilbene (pinosylvin, 5 in Figure 2.1) as a constituent of
heartwood and roots (Chiron et al., 2000). Species from the Vitaceae, Fabaceae and Poaceae form
mainly 3,5,4’-trihydroxystilbene (resveratrol, 6) (Sparvoli et al., 1994; Shomura et al., 2005; Sobolev
et al.,, 2007). Spruce (Picea) species synthesize the more complex 3,5,3'4'-tetrahydroxystilbene 3-
glucopyranoside (astringin  10) and 3,5,4’-trihydroxy-3'-methoxystilbene  3-glucopyranoside
(isorhapontin 11) (Toscano-Underwood and Pearce, 1991; Lieutier et al., 2003).

R,=H R,=H Cinnamoyl CoA (1)

5 4 R R,=0OH R,=H Coumaroyl CoA (2)
i ¢ Rs=OH R,=OH Caffeoyl CoA (3)
CoAS x ! BR R,=0OCH, R,=OH  Feruloyl CoA (4)
2 3

3 Malonyl CoA O
R,=H 4-Hydroxy-6-(4-hydroxystyryl)-2-pyrone (12)

2 Malonyl CoA
R,=OH  6-(3,4-Dihydroxystyryl)-4-hydroxy-2-pyrone (13)

R,=0CH, 6-(3-methoxy, 4-hydroxystyryl)-4-hydroxy-2-pyrone(14)
R3 = R,=H  Pinosylvin (5)
R,=H Resveratrol (6)
R,=CH Piceatannol (7)
R R,=0

s
] CH, Isorhapontigenin (8)
5
.

Figure 2.1: Potential intermediates, products and by-products of stilbene biosynthesis in spruce.

OH R,=H Piceid (9)
R,=0H Astringin (10)

10
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Although much has been learned about stilbene biosynthesis in recent years (Chong et al.,
2009; Jeandet et al., 2010) the formation of tetrahydroxy-substituted stilbenes (such as 7, 8, 10 and 11
in Figure 2.1) is still unresolved. The stilbene skeleton is synthesized via condensation of three
acetate units from malonyl-coenzyme A (malonyl-CoA) to a CoA-activated phenolic acid by an
enzyme known as stilbene synthase (STS), which results in formation of a linear tetraketide
intermediate. Ring closure to form the stilbene product is achieved via an intramolecular aldol
condensation coupled to the loss of CO, (Austin et al., 2004). Stilbene synthases belong to the large
polyketide synthase enzyme family whose best known representative in plants is chalcone synthase,
catalyst of the first step in flavonoid biosynthesis. For the synthesis of simple di (5)- and
trihydroxystilbenes (6) the CoA-activated phenolic acid which is incorporated into the tetraketide
determines the substitution pattern of the stilbene formed (Austin and Noel, 2003). However, it is not
known if complex tetrahydroxystilbenes, such as those produced by spruce, originate from the
incorporation of more highly substituted CoA activated phenolic acids into the initial tetraketide or
from initial formation of the basic stilbene ring system and subsequent oxidation. Greater knowledge
of stilbene biosynthesis is of interest in plant biochemistry, but also in biomedical research. Stilbenes
have been studied for many years for their roles in the prevention and cure of cancer (Athar et al.,
2009) and heart disease (Pace-Asciak et al., 1995), and in extending life span. If the availability of
these substances in human diets or as dietary supplements could be increased by molecular
engineering of plants or microorganisms, there could be substantial medical benefits.

Within the plant, stilbenes appear to function as protectants against various biotic and abiotic
stresses. For example their roles as constitutive or inducible anti-fungal defenses have been
demonstrated in plants such as grape (Melchior and Kindl, 1990; Melchior and Kindl, 1991; Wiese et
al., 1994), sorghum (Yu et al., 2005) and peanut (Sobolev, 2008). Stilbenes have also been shown to
exhibit anti-fungal activity in non-stilbene producing species such as poplar (Seppaenen et al., 2004),
wheat (Serazetdinova et al., 2005) and alfalfa (Hipskind and Paiva, 2000), when they were introduced
by genetic engineering. These compounds inhibit fungal growth by interfering with microtubule
assembly (Woods et al., 1995), disrupting plasma membranes and uncoupling electron transport in
fungal spores and germ tubes (Pezet and Pont, 1990). Stilbenes have also been shown to protect
plants against oxidative stress (He et al., 2008, Adrian et al., 1996, Rosemann et al., 1991), to deter
herbivores (Torres et al., 2003) and to inhibit the growth of competing plants (Fiorentino et al., 2008).
However, their functions in conifers are poorly studied despite their abundance in widespread genera,
such as spruce and pine. In spruce, it has been suggested that phenolic compounds such as stilbenes,
may play a pivotal role in defense against herbivores and pathogens due to the appearance of

fluorescent inclusion bodies in the phloem parenchyma cells of fungal-treated bark (Franceschi et al.,

11
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2005). The objective of this study was to learn more about the pathway of tetrahydroxystilbene
formation in spruce as well as their role in tree defense. We isolated and sequenced two genes
encoding stilbene synthase enzymes (STS1 and STS2) from P. abies, P. glauca and P. sitchensis. In
vitro enzyme assays revealed that these STSs synthesize the trihydroxystilbene resveratrol (6), which
is not commonly observed in high concentrations in spruce tissue. But, by overexpressing PaSTS1 in
P. abies, we could demonstrate that resveratrol is an intermediate in tetrahydroxystilbene glycoside
biosynthesis in spruce. By measuring transcript accumulation and stilbene content after fungal
inoculation of bark tissue, we could also show that STS enzymes in spruce are involved in fungus-

induced defense responses.

2.3 RESULTS

2.3.1 Identification of spruce stilbene synthase genes and their phylogenetic relationships

In order to study the stilbene biosynthetic pathway in spruce (Picea), stilbene synthase (STS)
gene candidates plus putative sequences for the very similar chalcone synthase (CHS) genes were
identified using BLAST searches of spruce transcriptome resources with known sequences of the
polyketide synthase (PKS) family. Search of more than 180,000 expressed sequence tags (ESTs) from
P. sitchensis and 250,000 from P. glauca in the Treenomix database (Ralph et al., 2008) revealed two
distinct contigs from each spruce species with high similarity to STS from Pinus densiflora (Kodan et
al., 2002) (Figure S2.1). Additionally, more than eight distinct contigs were discovered for each
spruce species which had high similarity to CHS from Pinus sylvestris (Fliegmann et al., 1992).

By using EST sequences from Picea glauca and Picea sitchensis as templates for primer
design, two full-length S7S candidates and eight CHS candidates were amplified from Picea abies
cDNA by PCR. All of these sequences showed features similar to those of known plant PKS genes,
including a malonyl-CoA binding site, conserved amino acid residues in the dimer interface and a
conserved product binding site (Tropf et al., 1995; Austin and Noel, 2003). Predictive algorithms
suggested that N-terminal signal sequences were absent.

Comparisons of these STS and CHS sequences among spruce species demonstrated high
conservation within the genus. Deduced amino acid sequences for STS1 and STS2 were 99%
identical within species and 98% identical between species (Figure S2.1). Outside of the genus,
spruce STSs showed between 81-84% sequence identities to previously characterized pine STS

encoding pinosylvin synthases (PSSs) (Raiber et al., 1995; Kodan et al., 2002).

12
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Figure 2.2: Phylogenetic relationships of stilbene synthase (STS) amino acid sequences. Neighbor joining

tree of the PaSTS and representative STS and chalcone synthase (CHS) sequences from angiosperm and

gymnosperm species. Branches supported with >95% confidence are indicated by*. Abbreviations for

some stilbene synthases whose products have been previously characterized: RVS, resveratrol synthase;

PSS, pinosylvin synthase. Genbank accession numbers are in supplementary table S2.2.

Amino acid sequences for CHS were 96-99% identical within and 95-100% identical between

spruce species, with the exception of CHS7, which showed only 81-84% sequence identity to other
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CHS within the genus. Outside the genus, spruce CHS showed 95-97% sequence identity to
biochemically characterized CHS from Pinus sylvestris (Fliegmann et al., 1992).

Phylogenetic analysis revealed a clear evolutionary divergence between PKS from
angiosperms and gymnosperms (Figure 2.2). In addition, the application of neighbor-joining
algorithms resulted in separate clades for CHS and STS in gymnosperms (p = 0.02). Within the
gymnosperm STS clade, enzymes from spruce grouped with high bootstrap support into a separate
sub-clade from Pinus STS enzymes (p < 0.001), but without resolution of orthologs. Angiosperm

PKS separated into clades according to the taxonomic affinities of their species of origin.

2.3.2 In vitro characterization of recombinant spruce stilbene synthases expressed in bacteria

Functional characterization of the two putative STS from P. abies (PaSTS1 and PaSTS2)
was accomplished via heterologous expression in a bacterial system. SDS-PAGE as well as Western
blotting revealed low level expression of these 45 kDa proteins which form homodimeric enzymes
(data not shown). Catalytic activity was determined by incubation with malonyl-CoA and a
phenylpropanoid-CoA ester (Figure 2.3). Reaction of the two PaSTS with p-coumaroyl-CoA (2)
yielded the stilbenes (£)- and (Z)-resveratrol (6), but neither enzyme converted cinnamoyl-CoA (1),
caffeoyl-CoA (3) and feruloyl-CoA (4) to stilbene products (Table 2.1).

Table 2.1: Products formed by PaSTS1 and PaSTS2 from various substrates under in vitro and in vivo
conditions. Structures of numbered compounds are given in Figure 2.1. Products considered to be artifacts

are listed in parentheses.

Products
In vitro assay with In vivo formation from In vitro assay with
Substrate phenylpropanoid-CoA phenylpropanoid acids phenylpropanoid-CoA
esters (protein expressed in  (protein expressed in E. coli  esters (protein expressed in
E. coli) with 4CL) P. abies)

1 none none none

2 6, (12) 6 6,(12)

3 (13) (13) (13)

4 (14) not tested (14)

Instead, caffeoyl-CoA and feruloyl-CoA afforded (£)- and (£)-6-(3, 4-dihydroxystyryl)-4-
hydroxy-2-pyrone (13) or 6-(3 methoxy, 4-hydroxystyryl)-4-hydroxy-2-pyrone (14), respectively
(Table 2.1). Incubation with p-coumaroyl-CoA yielded the corresponding (£)- and (Z)-4-hydroxy-6-
(4-hydroxystyryl)-2-pyrone (12). These ‘derailment products’ arise from two consecutive
condensation reactions with malonyl-CoA and spontaneous cyclization after release from the active

site (Austin and Noel, 2003). To form stilbenes, STS enzymes normally catalyze three consecutive
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condensations of the phenylpropanoid-CoA ester with malonyl-CoA followed by ring closure and
CO, loss. The formation of derailment products in variable amounts prevented the measurement of

relevant kinetic parameters.
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Figure 2.3: In vitro assay of E. coli-expressed STS. Representative liquid chromatography-mass
spectrometry with electrospray ionization (LC-ESI-MS) traces for reaction products of PaSTS supplied
with malonyl-CoA and a phenylpropanoid-CoA as substrates. With the cinnamoyl-CoA (1) no products
were detected (upper panel). The substrate p-coumaroyl-CoA (2) yielded the derailment products (£)- and
(£)-6-(4-hydroxystyryl)-4-hydroxy-2-pyrone (12), as well as (£)- and (Z)-resveratrol (6) (second panel).
Caffeoyl-CoA (3) yielded (E)- and (£)-6-(3,4-Dihydroxystyryl)-4-hydroxy-2-pyrone (13) (third panel).
Feruloyl-CoA (4) yielded (E)- and (Z£)-6-(3 methoxy, 4-hydroxystyryl)-4-hydroxy-2-pyrone (14) (bottom

panel). Compounds were identified by mass spectrometry and comparisons with standards.

2.3.3 In vivo characterization of spruce stilbene synthases by co-expression with 4-coumaroyl-

CoA ligase in E. coli

Enzyme activities of PaSTS1 and PaSTS2 were assayed in vivo in E. coli engineered to
produce potential substrates. This was achieved by addition of phenolic acid starter units to the
medium of E. coli co-expressing PaSTS along with 4-coumaroyl-CoA ligase from Arachis hypogaea
(Watts et al., 2006) which produced CoA-esters in the bacterium. Addition of p-coumaric acid to the
growth medium of such cultures resulted in production of resveratrol (6) which was released back
into the medium without the formation of detectable derailment products. However, addition of

caffeic acid yielded the derailment products (E)- and (£)-6-(3, 4-dihydroxystyryl)-4-hydroxy-2-
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pyrone (13), but no stilbenes (Table 2.1). Ferulic acid could not be tested as substrate in this system

due to the substrate specificity of the 4-coumaroyl-CoA ligase.

2.3.4 In vivo characterization of spruce stilbene synthase function by over-expression of PaSTS1

in P. abies

To determine the enzymatic activity of spruce STS in planta, embryogenic tissue from P.
abies was transformed with PaSTS1 under the control of the inducible promoter ubil using a
disarmed Agrobacterium tumefaciens strain. Two transgenic PaSTS1 callus lines (line 5 and line 11)
and one empty-vector control line were obtained (Figure 2.4 A), from which somatic embryos were

produced by abscisic acid application under low light conditions (Figure 2.4 B).

Figure 2.4: Transgenic P. abies lines were developed to overexpress STS. Depicted are callus (A),

somatic embryos (B), seedlings (C) and young saplings (D).
Shoots and roots were regenerated under moderate light conditions in the absence of plant

growth regulators (Figure 2.4 C). One-year-old transformed saplings grown in potting soil were used

for transcript and metabolite analysis (Figure 2.4 D).
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Relative transcript accumulation of PaSTS (PaSTS1 and PaSTS2 were measured together by
quantitative real-time PCR) was significantly higher in both STS1 over-expression lines than in the
vector control line (p < 0.001). PaSTS transcript abundance in bark tissue was on average 30-fold
higher in line 5 and 6-fold higher in line 11 than in the vector control line (Figure 2.5 A). Relative
PaSTS transcript abundance was also measured in needles, stem and roots of line 5 and the vector
control line. PaSTS transcript abundance was significantly higher in stems (p < 0.01) than in roots in

both lines. Needles contained transcript levels intermediate between stems and roots (Figure 2.6 A).
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Figure 2.5: Transformation with PaSTS increased stilbene biosynthesis: relative transcript accumulation
of PaSTS1 and PaSTS2 (A) and mean accumulation of the two major stilbenes, astringin and isorhapontin
(B), in two lines of P. abies transformed with PaSTS1 and a vector control line. Depicted are means + SE

of at least 4 replicates.

Stilbene glycoside concentrations in both PaSTS1 lines were significantly higher than in the
vector control line (p < 0.01), providing further evidence that the PaSTS1 gene encodes a functional
stilbene synthase (Figure 2.5 B). Concentrations of astringin (10) (3,4,3',5'-tetrahydroxystilbene 3-
glucopyranoside) and isorhapontin (11) (3,4',5-trihydroxy-3'-methoxystilbene 3-glucopyranoside) in
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bark tissue were more than nine-fold higher in line 5 and more than five-fold higher in line 11 than in
the vector control. Stem and root tissue from PaS7S1 line 5 and the vector control contained
significantly higher concentrations of stilbene glycosides (Figure 2.6 B) than the needle tissue (p <
0.0001). Other stilbenes, including resveratrol (6), piceid (resveratrol 3- glucopyranoside 9) as well as
the aglycones of astringin and isorhapontin (piceatannol (7) and isorhapontigenin (8)) could be
detected in bark and root tissue of the PaSTS1 lines and the vector control line using liquid
chromatography-mass spectrometry (LC-MS), but could not be accurately quantified due to their low

concentrations (Table 2.1).

[+}]
Q
c
E .
- 45] A mm PaSTS line 5
= mm Vector control
C
2
S 30,
c
£
5
& 15
5]
2
k=
2 o [
B

= 2400/
=
[=2]
2
> 18004
T
)
g 12004
o
O
£ 600
>
<

sl

Needles Stem Roots

Figure 2.6: Organ-specific effects of PaSTS transformation: relative transcript accumulation of PaSTS1
and PaSTS2 (A) and accumulation of the stilbene astringin (B) in various organs of PaSTS transgenic line

5 relative to the vector control line. Depicted are means + SE of at least 4 replicates.

To detect STS activities in transgenic spruce bark, crude extracts were enriched through
reactive-red affinity chromatography. As in the previously described in vitro assays with E. coli
expressing PaSTS1 and PaSTS2, the partially purified STS fraction from P. abies overexpressing
PaSTS1 produced resveratrol (6) with the substrate p-coumaroyl-CoA (2), but only ‘derailment
products’ with the substrates caffeoyl-CoA (3) and feruloyl-CoA (4).
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2.3.5 Effect of transformation with PaS7S1 on other pathways of phenolic metabolism in spruce

To investigate whether PaSTS1 over-expression influenced the biosynthesis of other P. abies
phenolics, we measured the accumulation of flavan-3-ols, the other major group of phenolics in this
species besides stilbenes, and quantified gene transcripts encoding early and late biosynthetic

enzymes in flavan-3-ol formation.
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Figure 2.7: Effect of PaSTS transformation: relative transcript accumulation of P. abies genes encoding
biochemically uncharacterized phenylalanine ammonia-lyase (PAL) and leucoanthocyanidin reductase
(LAR) genes (A) and mean catechin and proanthocyanidin dimer accumulation (B) in a vector control line

and two lines of P. abies transformed with PaSTS1. Depicted are means + SE of at least 4 replicates.

We measured transcript abundance of a P. abies gene encoding phenylalanine ammonia lyase
(PAL), the first step in the phenylpropanoid pathway (Noel et al., 2005), but transcript levels did not
differ between PaSTS1 over-expressing lines and the vector control line (Figure 2.7 A). However, for
leucoanthocyanidin reductase (LAR), which catalyzes the last step in flavan-3-ol biosynthesis
(Tanner et al., 2003), relative transcript abundance of one of three putative PalAR genes was
significantly higher in the vector control line and in line 5 (p < 0.0001) than in line 11. No significant
differences were observed for transcript levels of the other two PalLAR genes between the two

transgenic PaSTS1 over-expressing lines and the vector control. Quantification of the products of
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LAR enzymes, catechin and proanthocyanidin dimers, revealed that concentrations of these
metabolites were significantly higher in PaSTS1 line 5 (p < 0.001) than in line 11 and the vector
control (Figure 2.7 B).

2.3.6 Effect of fungal inoculation on stilbene synthase transcription and stilbene glycoside

biosynthesis in P. glauca saplings

To determine if fungal inoculation leads to the activation of stilbene biosynthesis in spruce,
two-year-old P. glauca (white spruce) saplings were wounded and inoculated with an avirulent strain
of the bark beetle (Ips typographus)-associated fungus Ceratocystis polonica. Controls included
unwounded saplings and those subjected to wounding without fungal inoculation. Given the ability of
C. polonica to metabolize the stilbenes of its host, P. abies (unpublished data), the non-host P. glauca
was used in this experiment to test if fungal inoculation leads to elevated stilbene levels. P. glauca is
not a natural host of C. polonica due to non-overlapping geographic distribution.

Bark tissue was harvested for analysis 5, 15 or 25 days after treatment. While no lesions or
typical ‘reaction zones’ (Krokene et al., 2001) could be observed in the inner bark of the inoculated
saplings 25 days after the onset of the experiment, the level of ST transcript in inoculated P. glauca
bark increased significantly between days 5 and 15 (p < 0.001). Compared to the non-wounded
control, transcript levels in inoculated saplings were on average 3-fold higher 5 days post-inoculation
and 8-fold higher 15 days post-inoculation. At 25 days post-inoculation, transcript levels were only
1.5-fold higher than in the non-wounded control. Saplings that were wounded without inoculation
exhibited similar, although less pronounced changes in STS transcript accumulation. Compared to the
non-wounded control, relative transcript levels only reached a maximum 3-fold increase 15 days post-
wounding (Figure 2.8 B).

Fungal inoculation resulted in a significant increase in stilbene concentration in bark (p <
0.001) 15 to 25 days post-inoculation. Compared to non-wounded controls, total stilbene levels were
3-fold higher in inoculated bark (Figure 2.8 A). In wounded but not fungal-inoculated saplings, only a
small, statistically insignificant, increase in total stilbene content could be detected. The increase in
stilbenes was principally due to increases in the glycoside astringin, not in isorhapontin, which

remained nearly constant over the time course of the experiment (data not shown).
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Figure 2.8: Fungal induction of stilbene biosynthesis: total stilbene accumulation (A) and PgS7S1 and
PgSTS2 transcript accumulation (B) in non-wounded, wounded and C. polonica-inoculated bark tissue of

P. glauca saplings. Depicted are means + SE of at least 4 replicates.

2.4 DISCUSSION

2.4.1 Coding regions of stilbene synthases in the genus Picea are highly conserved

To learn more about the biosynthesis of stilbenes in the genus Picea, we investigated the
genes encoding stilbene synthases (S7.S) which form the basic stilbene skeleton by condensing three
molecules of malonyl-CoA with one phenylpropanoid-CoA molecule. Two genes were identified,
STS1 and STS2, that had high sequence similarity within the three species studied, P. abies, P. glauca
and P. sitchensis.

Fossil records and phylogenetic analysis reveal that the genus Picea originated in western
North America in the Paleocene era about 62 million years ago (LePage, 2003), with P. sitchensis as

the ancestral species (Ran et al., 2006). Spruce appears to have radiated from North America
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westward to Asia and Europe with P. abies originating from a recent speciation event in the Pliocene
era about 5 million years ago (LePage, 2001; Ran et al., 2006). At the amino acid level, STS
sequences from P. glauca, P. sitchensis and P. abies were highly conserved with 99% similarity
within taxa and 98% sequence similarity between taxa (Fig. S2.1). The high similarity of STS from
the ancestral P. sitchensis to that of the more recently evolved P. abies and P. glauca indicates that
genes for stilbene biosynthesis originated prior to the diversification of Picea and that these genes
most likely fulfill the same function in all three spruce species studied.

The genes most closely related to S7S in plants are the chalcone synthases (CHS), also
members of the polyketide synthase gene family. CHS enzymes employ the same substrates as STS,
but produce the C;s flavonoid skeleton instead of the Cy4 stilbene skeleton. Phylogenetic analysis of
the known gymnosperm STS (from the genera Picea and Pinus) together with CHS revealed that
gymnosperm enzymes form separate clades from angiosperm enzymes with the same function. This
separation implies independent origins of STS after divergence of the angiosperm and gymnosperm
lineages. In accordance with the phylogeny of the plant polyketide synthase family as reconstructed
by Tropf et al. (1994), our analysis shows that polyketide synthases in general separate into clades
that are based less on catalytic function and more on the taxonomic affinities of the species from
which the genes were isolated. Our results provide further evidence that STS likely evolved from
CHS on multiple occasions (Tropf et al., 1995) within stilbene-producing lineages, rather than
originating from a single common ancestor.

The presence of multiple STS genes in individual species of the genera pine and spruce
suggests several levels of control over stilbene formation. For example in Pinus sylvestris four STS
genes which are almost identical have been described which are under the control of distinct
promoters that activate transcription in response to different environmental cues and at different time
intervals after a single stimulus (Preisig-Mueller et al., 1999). This level of complexity is further
enhanced by the existence of multiple copies of the same S7S gene in the genome with multiple 3’-
untranslated regions. For example, Pinus densiflora contains three conserved STS genes with 12
different 3’-untranslated regions (Kodan et al., 2002). Attempts to determine gene copy numbers in P.
abies using quantitative real-time PCR suggested the presence of numerous copies of both S7S1 and
STS2 genes in the spruce genome (Fig. S2.2). It is therefore conceivable that, similar to pine, spruce
may also possess multiple S7S genes that modulate stilbene biosynthesis differently in response to a

range of internal and external factors.
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2.4.2 Stilbene biosynthesis in spruce is a defense mechanism against fungal pathogens

One external factor that is known to influence stilbene biosynthesis is fungal challenge. In
previous work, STS activity was found to increase substantially in the conifer P. sylvestris, when
challenged by the fungal pathogens, Botrytis cinerea (Gehlert et al., 1990), Leptographium wingfieldii
(Chiron et al., 2000) or Lophodermium seditiosum (Lange et al., 1994). Stilbene biosynthesis is also
known to be induced in angiosperms by fungal pathogens (see Jeandet et al., 2010 for review). In the
present study, inoculation of white spruce P. glauca saplings with an avirulent C. polonica isolate led
to elevated transcript levels of STS followed by significant increases in tetrahydroxystilbene glycoside
concentrations in the bark. Curiously induction of stilbene biosynthesis in spruce after fungal
infection could not be clearly demonstrated in earlier studies (Brignolas et al., 1995; Virii et al.,
2001). This may be due to variation in compatibility among the particular combinations of pathogens
and hosts studied, a common occurrence in many plant-pathogen interactions (Vanetten et al., 1989).
Nevertheless, our results provide evidence that stilbenes play a similar defensive role against

pathogens in spruce as in pine and angiosperms.

2.4.3 Picea abies STS form a trihydroxylated product, resveratrol, which is an intermediate in

the biosynthesis of the tetrahydroxy stilbenes, astringin and isorhapontin

The most abundant stilbenes in spruce are the 3,5,3’,4’-tetrahydroxystilbene glycosides,
astringin (10) and isorhapontin (11). STS condense phenylpropanoid-CoA esters with three molecules
of malonyl-CoA to form the stilbene ring system (Austin and Noel, 2003). Several possible
biosynthetic pathways can be envisioned that differ according to the substrate specificity of the STS
reaction and the timing of oxidation (Figure 2.9): (I) The first possibility involves STS catalyzed
formation of the 3,5-dihydroxystilbene, pinosylvin, from cinnamoyl-CoA. This 3,5-dihydroxystilbene
product could then be further modified by 3’- and 4’-hydroxylation and glucosylation to give
astringin (10), while additional 3’-O-methylation is required to yield isorhapontion (11). (II) Another
possibility involves STS formation of a 3,5,4’-trihydroxystilbene, resveratrol (6), from p-coumaroyl-
CoA, which could be further modified by 3’-hydroxylation and glucosylation (and 3’-O-methylation)
to give astringin (and isorhapontin). (III) A third possibility is STS formation of a 3,5,3°,4’-
tetrahydroxystilbene, piceatannol (7), from caffeoyl-CoA (Chong et al., 2009), which could be further
transformed by glucosylation (and 3’-O-methylation). Feruloyl-CoA could also serve as a STS

substrate to give a product that does not require 3’-O-methylation.
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Figure 2.9: Biosynthetic pathway for astringin formation in P. abies depends on the substrate specificity
of STS. Both STS1 and STS2 were found to utilize only p-coumaroyl-CoA as substrate, indicating the
most likely pathway is II.

Of the phenylpropanoid-CoA substrates offered, the recombinant spruce STSs, PaSTS1 and
PaSTS2, accepted only p-coumaroyl-CoA, producing the 3,5,4’-trihydroxy product, resveratrol.
Neither cinnamoyl-CoA, caffeoyl-CoA, nor feruloyl-CoA were converted to stilbene products.
However, both caffeoyl-CoA and feruloyl-CoA, but not cinnamoyl-CoA, were converted to
styrylpyrones. These compounds are considered to arise from the condensation of the
phenylpropanoid-CoA ester with two malonyl-CoA units followed by premature release from the
active site and cyclization before the third condensation can occur. Formation of such ‘derailment
products’ indicates that the STS cannot convert the respective phenylpropanoid-CoA substrate to a
stilbene, probably due to limitations in the size of the active site cavity (Jez et al., 2002).
Styrylpyrones can also arise from STSs due to sub-optimal in vitro conditions that lead to distortions
in the active site cavity (Jez et al., 2002). In our work, styrylpyrone products were also formed in
assays with p-coumaroyl-CoA, along with stilbenes. However, the substrates caffeoyl-CoA and

feruloyl-CoA gave only styrylpyrone products and no stilbenes, and thus are unlikely to be native

24



2. Research Chapter 1

substrates of spruce STSs. Styrylpyrones have never been observed in planta. Moreover, the PaSTS
enzymes in genetically engineered E. coli expressing a 4-coumaroyl-CoA ligase assayed in vivo and
the PaSTS enzymes in the bark of P. abies over-expressing PaSTS1 assayed in vitro both converted
p-coumaroyl-CoA only to the stilbene resveratrol without any styrylpyrone formation, while caffeoyl-
CoA and feruloyl-CoA were only converted to styrylpyrones.

In a previous characterization of spruce STS, it was demonstrated that resveratrol as well as
small amounts of piceatannol (7) and isorhapontigenin (8) were formed by partially purified enzyme
from cell culture extracts of Picea excelsa (Rolfs and Kindl, 1984). Our results confirm that
resveratrol is the major product formed in vitro by STS from spruce. However, we could not detect
piceatannol or isorhapontigenin.

Although P. abies STS1 and STS2 produced the trihydroxystilbene aglycone resveratrol, in
vitro and in vivo, the major stilbenes accumulated in most spruce accessions are the
tetrahydroxystilbene glycosides astringin and isorhapontin (Toscano-Underwood and Pearce, 1991;
Lieutier et al., 2003). To determine if resveratrol is the precursor of the major stilbenes, P. abies was
genetically engineered to overexpress PaSTS1. Overexpression lines had higher PaSTS transcript
levels and produced significantly more astringin and isorhapontin than a control line transformed with
an empty vector. Resveratrol levels, on the other hand, remained consistently low in both
overexpression and vector control lines. Thus, PaSTS1 and PaSTS2 are involved in the biosynthesis
of the major P. abies stilbenes, astringin and isorhapontin. Our in vitro characterization of PaSTS
indicates that the first step of the pathway is the formation of resveratrol. This intermediate is then
modified by 3’-hydroxylation, 3’-O-methylation and 3-O-glycosylation to yield the major stilbene
glycosides accumulated in spruce.

In rhubarb (Rheum rhaponticum), a similar pathway for the production of the major stilbene,
3,5,3’-trihydroxy-3’-methoxystilbene-3-O-glucoside, from resveratrol was proposed after in vivo
substrate feeding experiments (Rupprich et al., 1980). However, in this species resveratrol and
another likely intermediate, resveratrol-3-O-glucoside, appear in high concentrations in the rhizome
(Puessa et al., 2008). In contrast, in both wild-type P. abies as well as transgenic lines overexpressing
the PaSTS1 resveratrol synthase, only minute amounts of resveratrol and its 3-O-glucoside were
detected. This could indicate that metabolite channeling (Winkel-Shirley, 1999) of resveratrol to the
next pathway enzyme, a stilbene 3’-hydroxylase, occurs in P. abies as has been shown for flavonoid
biosynthesis in Arabidopsis thaliana (Burbulis and Winkel-Shirley, 1999).

STS enzymes evolved from CHS by gene duplication and neofunctionalization. It is therefore
not surprising that both enzymes share the same substrate, p-coumaroyl-CoA. Thus, in both stilbene

and flavonoid biosynthesis further oxidation, O-methylation or other modifications at positions on the
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aromatic ring derived from the phenylpropanoid-CoA substrate must occur in later steps of the

pathway.

2.4.4 Genetic transformation of spruce is a useful tool to study metabolic pathways in conifers

The use of stably transformed spruce in this study was critical to demonstrating that the STS
enzymes, although only making resveratrol as their intermediate product, still contribute to the
formation of the major stilbenes in the plant. Previous studies involving expression of genes involved
in terpenoid resin production in P. abies and P. glauca, also showed the value of stable
transformation of conifer genes in studying natural product biosynthesis (Godard et al., 2007
Schmidt et al., 2010). However, genetic transformation of woody plants is not without its difficulties,
including the long time required for regeneration of intact plants.

Genetic transformation also produces unintended pleiotropic effects on occasion (Yabor et
al., 2006; Abdeen and Miki, 2009) that negatively affect plant phenotype. In tobacco, for example,
stilbene overexpression led to male sterility (Fischer et al., 1997; Hoefig et al., 2006) probably due to
shortages of substrates for flavonoid and sporopollenin production. However, in the PaSTS
overexpression lines described here, despite increased stilbene formation, we detected no negative
impact on flavonoid biosynthesis. In fact, in one transgenic line (line 5) the transcript levels of
putative leucoanthocyanidin reductase (LAR) enzymes (Tanner et al., 2003) responsible for the
catalysis of late steps in the flavonoid pathway were elevated as compared to the vector control. The
levels of the flavan-3-ols, catechin and proanthocyanidins, the catalytic products of LAR, were also
higher in the transgenic lines than in the vector control, hinting at a positive interaction between
flavonoid and stilbene biosynthesis in spruce. However, more transgenic lines need to be evaluated to
see if line 5 is representative of a general pleiotropic effect.

Genetic transformation, by altering transcript levels of biosynthetic genes, can also provide
hints on how a metabolic pathway is regulated. In the bark of fungus-inoculated, wild-type P. glauca
saplings, increases in STS transcript levels correlated well with the subsequent stilbene accumulation,
suggesting regulation on the level of steady-state transcript. However, in the PaSTS overexpressing
transgenic lines, ST transcripts were much higher in stems than in needles and higher in needles than
in roots. These patterns did not correlate well with stilbene accumulation, which was highest in roots,
intermediate in stems and lowest in needles. Such discrepancies may be due to differences in
substrate availability or post-transcriptional regulation among organs, or to stilbene transport among
organs. Further research is needed to understand what factors limit stilbene accumulation in both

healthy and fungally-infected spruce. Stilbene formation may be adjusted to different levels
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depending on the species of pathogen, degree of infection and the presence of other biotic and abiotic

stresses.

2.5 EXPERIMENTAL PROCEDURES

2.5.1 Identification of putative S7.S and CHS genes from spruce

Protein sequences from various gymnosperm STS (Pinus strobus: Raiber et al., 1995; Pinus
densiflora: Kodan et al., 2001) and CHS (Pinus sylvestris: Fliegmann et al., 1991; Ginkgo biloba:
Pang et al., 2004) were used to query Picea sitchensis and Picea glauca EST collections (Pavy et al.,
2005; Ralph et al., 2008) by tBLASTn for candidate cDNA sequences. Open reading-frames from
candidate sequences were detected using the software package DNA Star Version 8.02 (DNASTAR
Inc., Madison, USA) and the absence of predicted signal peptides at the N-terminus was confirmed by

SignalP software (http://www.cbs.dtu.dk/services).

2.5.2 Cloning and sequencing PaSTS and PaCHS

For RNA extraction, fresh bark tissue from four-year-old Picea abies saplings which were grown in
an outdoor plot (clone 3369-Schongau, Samenklenge und Pflanzgarten Laufen, Germany) was ground
to a fine powder. Total RNA was extracted using the method developed by Kolosova et al. (2004).
One pg of total RNA was converted to cDNA in a 20 pl reverse transcription reaction using
SuperScript II reverse transcriptase (Invitrogen, Darmstadt, Germany) and 50 pmol PolyT;,.5) primer
(Invitrogen). Gateway'" compatible primers were designed for candidate sequences by using the N-
and C-terminal sequences of putative P. sitchensis and P. glauca STS and CHS genes as templates
(attB primer sequences are provided in table S2.1).

Pseudomature forms of PaSTS and PaCHS cDNA were PCR amplified with attB primers
(Table S2.1) using Platinum Taq™ high fidelity DNA polymerase (Invitrogen) and purified with the
QIAquick™ PCR purification kit (Qiagen, Hilden, Germany). Gateway ' entry clones were made by
using BP clonase II and pDONR207 (Invitrogen) following the manufacturer’s protocols.

pDONR207 constructs containing PaSTS and PaCHS genes were sequenced using 10 pmol
of the vector specific primers pDONR F(5’-TCGCGTTAACGCTAGCATGGATCTC-3), pPDONR R
(5’-GTAACATCAGAGATTTTGAGACAC-3’) and the BigDye Terminator v3.1 Cycle Sequencing
Kit on an ABI Prism R 3100 sequencing system (Applied Biosystems, Darmstadt, Germany).

27



2. Research Chapter 1

Sequences from each construct were assembled and translated into protein sequence using DNA Star

software.

2.5.3 Protein sequence analysis of CHS and STS

STS and CHS protein sequences (Table S2.2) were aligned with the automatic alignment
program MAFFT v 6 (mafft.cbre.jp/alignment/server/) using the BLOSUM 62 scoring matrix with

1.53 gap opening penalty and an offset value of 1.

Phylogenetic analyses were conducted using MEGA v. 4 (Center for Evolutionary Medicine
and Informatics, www.megasoftware.net) employing the neighbor-joining method. Evolutionary
distances were calculated with the Poisson correction. The tree was searched using the close neighbor
interchange algorithm with pair-wise elimination of alignment gaps. Statistical likelihood of tree

branches was tested with 10,000 bootstrap replicates.

2.5.4 Heterologous expression of PaSTS genes in E. coli

Putative PaSTS1 and PaSTS2 pDONR207 constructs were cloned with LR clonase II
(Invitrogen) according to the manufacturer’s instructions into the Gateway” compatible expression
vector pHOGW (Yu and Liu, 2006) coding for an N-terminal His-tag. Arctic Express ™ (DE3)
chemically competent E. coli (Stratagene, La Jolla, CA, USA) were transformed with expression
constructs. Single colonies were inoculated into 5 ml Luria-Bertani (LB) broth with 1 pg ml”
kanamycin and grown for 16 hours at 24°C. The 5 ml starter cultures were used to inoculate 100 ml
Overnight Express Instant TB Medium (Novagen, Madison, WI, USA) supplemented with 1% (v/v)
glycerol and 1 pg ml" kanamycin.

Bacterial cultures were grown for 3 days at 12°C (220 rpm) and harvested by centrifugation.
Bacteria were resuspended in 10 ml buffer containing 50 mM Bis-Tris (pH 7.2), 10% (v/v) glycerol,
0.5 mM phenylmethylsulphonyl fluoride and 1 mM dithiothreitol (DTT) and disrupted by sonification
(power 65%, 3 minutes, 2 cycles) using a Bandelin Sonoplus HD 2070 (Bandelin Electronics, Berlin,
Germany). Insoluble cell debris was removed from the lysate by centrifugation at 4°C. Protein
expression was confirmed by Western blot using an anti-histidine-horseradish peroxidase conjugate
antibody (Novagen).

Expressed proteins were purified with a 1 ml His Trap ™ FF column (GE Healthcare,
Munich, Germany) on an AEKTA 900 chromatography system (GE Healthcare). The column was
washed with 50 mM Bis-Tris (pH 7.2) and 10% (v/v) glycerol and eluted with wash buffer amended
with 220 mM imidazole. The eluted proteins were desalted into an assay buffer (50 mM Bis-Tris pH
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7.2, 10% (v/v) glycerol, 1 mM DTT) on DG-10 desalting columns (Bio-Rad, Munich, Germany). The

protein concentration was determined using the Bradford reagent (Bio-Rad).

2.5.5 Functional characterization of PaSTS

The aromatic coenzyme A esters cinnamoyl-CoA and p-coumaroyl-CoA were synthesized
enzymatically using the methods described by Beuerle and Pichersky (2002). Caffeoyl-CoA and
feruloyl-CoA were chemically synthesized following the methods from Brand et al. (2000).
Identification of these compounds was confirmed by LC-ESI-MS.

Enzyme activities were assayed in 200 pl reaction volumes containing 150 pM malonyl-CoA
(Sigma, Munich, Germany), 50 uM of individual aromatic coenzyme A esters and 26 pg purified
enzyme. Reaction mixtures were incubated for 3 hours at 28°C and stopped by acidification with 50
ul of 0.1 N HCI and extracted with 3 volumes of ethyl acetate. The ethyl acetate extracts were
evaporated under nitrogen gas flow and redissolved in 50 pl methanol for LC-ESI-MS analysis.
Negative control assays were initiated with heat-denatured enzyme preparations.

Enzyme extracts from transgenic P. abies over-expressing PaSTS1 were prepared by
extracting 100 mg bark tissue using the method of Martin et al. (2002). After pelleting plant debris,
the extract was passed over a 1 ml reactive red agarose (Sigma) affinity chromatography column. The
column was washed with 5 column volumes assay buffer and eluted with 2 column volumes assay

buffer amended with 500 mM NaCl. STS activity was determined as above.

2.5.6 Functional characterization of PaSTS by co-expression with 4-coumaroyl-CoA ligase in E.

coli

Arctic Express ™ (DE3) chemically competent E. coli (Stratagene) were co-transformed with
either PaSTS1 or PaSTS2 expression constructs and pAC-4CL1 (Watts et al., 2006) coding for a 4-
coumaroyl-CoA ligase from Arachis hypogaea. Overnight Express Instant TB Medium (Novagen)
supplemented with 1% (v/v) glycerol, 1.5 ug ml" chloramphenicol and 1 pg ml"" kanamycin (40 ml)
was inoculated with transformed E. coli colonies.

Bacterial cultures were grown for 8 hours at 22°C followed by 4 days at 12°C before adding
p-coumaric or caffeic acid in DMSO to the culture medium as substrates to a final concentration of 1
mM. Culture medium (1 ml) was harvested 24, 48 and 72 hours after addition of phenolic acids. After
centrifuging the culture medium, the supernatant was acidified with 0.1 N HCI and extracted with one
volume of ethyl acetate. After evaporation the extract was re-dissolved in 50 pl methanol for LC-ESI-

MS analysis.
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2.5.7 Genetic transformation of P. abies callus with PaSTS1

The PaSTS1 pDONR207 was cloned with LR clonase II (Invitrogen) into the Gateway "
compatible binary vector pPCAMGW. pCAMGW STS1 or pPCAMBIA 2301 (as vector control) were
transformed into the chemically competent disarmed A. tumefaciens strain C58/pMP90 (Schmidt et
al., 2010). An embryonic P. abies cell culture (line 186/3c VIII ) was transformed as described by
Schmidt et al. (2010). From the 6 kanamycin resistant transgenic lines obtained, line 5 and line 11

were selected for regeneration of seedlings and further experiments.

2.5.8 Somatic embryogenesis and plant regeneration

Transgenic embryonic tissue was maintained at 24°C in the dark and sub-cultured every 14
days. For plant regeneration, transgenic embryonic tissue was placed on semi-solid EMM1 medium
(Walter et al., 1999) amended with 6 g 1" gelrite (Duchefa, Amsterdam, Netherlands), 30 g I"' sucrose
and 15 mg 1" abscisic acid for 2 weeks. The culture was then placed on EMM2 medium (4.5 g 1!
gelrite) (Walter et al., 1999) for 5 weeks. Embryos, 3-5 mm in size, were placed on a sterile nylon
mesh in 3 wells of a six-well cell cluster. The other 3 wells were filled with sterile water to maintain
humidity. Embryos were stored at 4°C for 7 days in the dark. For germination, developed embryos
were transferred to MLV medium (Klimaszewska et al., 2005) with 40 g "' sucrose and 6 g I gelrite
(Duchefa). The cultures were placed for 6 weeks under low light conditions (5 pmol m™ s™) for 16 h
day™” at 24°C. Somatic embryos were collected and placed horizontally on MLV medium with 6 g I
gelrite (Duchefa) under moderate light conditions (45 pmol m™ s™). After three weeks plants were
transferred to Magenta GA-7 (Sigma) plant culture boxes and placed under higher light conditions
(100 umol m™ s™) to develop roots, epicotyls and needles. Well developed plantlets were planted in
soil substrate (3:1:1, fibric peat:vermiculite (2-3 mm grain size):perlite) in small plastic containers (4
x 4 cm) (Figure 2.4).

Procedures from Klimaszewska et al. (2001) were used to generate the untransformed P.

glauca line Pg 653.

2.5.9 Quantitative real-time PCR

Total RNA for all quantitative real-time PCR experiments was isolated with the Invitrap®
Spin Plant RNA Mini Kit (Invitek, Berlin, Germany). RNA was quantified spectrophotometrically.
Reverse transcription of 1 pg RNA into ¢cDNA was accomplished using SuperScript II

reverse transcriptase (Invitrogen) and 50 pmol PolyT,.;5) primer (Invitrogen). After cDNA was
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diluted to 10% (v/v) with deionized water, 1 pl diluted cDNA was used as template for quantitative
real-time PCR. PCR was performed with Brilliant SYBR Green QPCR Master Mix ™ (Stratagene)
and 10 pmol of the forward primer 5’-GTGGCGAGCAGAACACAGACTTC-3’ and 10 pmol of the
reverse primer 5’-CAGCGATGGTACCTCCATGAACG-3’, designed to amplify 140 base pairs of
both S7TS1 and S7S2 simultaneously. Primer sequences for PalLAR1, PaLAR2, PalLAR3 and PaPAL
are given in table S2.3. PCR was performed using a Stratagene MX3000P thermocycler: 5 min at
95°C followed by 40 cycles of 30 s at 95°C, 30 s at 55°C and 30 s at 72°C, followed by a melting
curve analysis from 55°C to 95°C. Reaction controls included non-template controls and non-reverse
transcribed RNA. Transcript abundance was normalized to the transcript abundance of the ubiquitin
(Schmidt et al., 2010; GB:EF681766.1) gene (Table S2.3) and was calculated from three technical
replicates each of at least four biological replicates. Relative transcript abundance for the transgenic
PaSTS1 lines was calibrated against the transcript abundance of one biological replicate of the vector
control. Relative transcript abundance of PgSTS in P. glauca was calibrated against a non-wounded

control sample.

2.5.10 Extraction of phenolic compounds from spruce

Spruce tissue was ground to a fine powder in liquid nitrogen and lyophilized using a Alpha 1-
4 LD plus freeze dryer (Martin Christ GmbH, Osterode, Germany). Approximately 5 mg dried tissue
was extracted with 2 ml methanol for 4 hours at 4°C, then centrifuged at 2000 g and the supernatant
recovered. Insoluble material was re-extracted with 1 ml methanol for 12 hours. The supernatants
were combined and evaporated to dryness under a stream of nitrogen and re-dissolved in 1 ml
methanol containing 50 pg/ml chlorogenic acid (Sigma) as internal standard. For LC-ESI-MS

samples were diluted to 20% (v/v) with methanol.

2.5.11 Liquid chromatography-mass spectrometry with electrospray ionization (LC-ESI-MS)

Compounds were separated on a Nucleodur Sphinx RP18ec column (250 x 4.6 mm, particle
size 5 pum) (Macherey-Nagel, Dueren, Germany) using an Agilent 1100 series HPLC (Agilent
Technologies, Santa Clara, CA, USA) with a flow rate of 1.0 ml min™' at 25°C. Compound detection
and quantification was accomplished with an Esquire 6000 ESI ion-trap mass spectrometer (Brucker
Daltronics, Bremen, Germany) after diverting column flow-through in a ratio of 4:1. The mass
spectrometer was operated as follows: skimmer voltage: 60 V; capillary voltage: 4200 V; nebulizer

pressure: 35 psi; drying gas: 11 1 min™'; gas temperature: 330°C.
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Phenolic compounds from spruce and enzyme assay products were separated using 0.2%
(v/v) formic acid and acetonitrile as mobile phases A and B, respectively, with the following elution
profile: 0-1 min, 100% A; 1-15 min, 0-65% B; 15-18 min 100% B; and 18-22min 100% A. ESI-MS
was operated in negative mode scanning m z"' between 50 and 1600 with an optimal target mass of
405 m z”'. Capillary exit potential was kept at -121 V.

Compounds were identified by mass fragmentation spectra and by comparison to standards,
where available. Brucker Daltronics Quant Analysis v.3.4 software was used for data processing and
compound quantification using a standard smoothing width of 3 and Peak Detection Algorithm v. 2.
Linearity in ionization efficiencies was verified by analyzing serial dilutions of randomly selected
samples. External calibration curves for catechin (Sigma) and astringin were created by linear
regression. Flavan-3-ol concentrations were determined relative to a catechin calibration curve and
stilbene glycosides relative to astringin, which was extracted and purified from spruce bark following
a previous protocol (Li et al., 2008). Quantification results were normalized relative to the internal
standard.

Aromatic coenzyme A esters to be used as enzyme substrates were separated using 20 mM
ammonium acetate (pH 4) and acetonitrile as mobile phases A and B respectively with the following
elution profile: 0-20 min, 5-45% B; 20-21 min, 45-90% B; 21-23 min, 90% B; and 23-28 min, 5% B.
ESI-MS was operated in alternating mode scanning between m z"' 50 and 1600 with an optimal target

mass of 250 m z™'. Capillary exit potential was kept at -109.8 V.

2.5.12 Treatment of P. glauca saplings with C. polonica

A C. polonica isolate (CMW 7749) provided by the culture collection of the Forestry and
Agricultural Biotechnology Institute (University of Pretoria, South Africa) was grown on 3% (w/v)
malt extract agar (MEA; Carl Roth GmbH, Karlsruhe, Germany) for 12 days at 25°C.

P. glauca saplings originating from embryonic tissue (Pg 653) were grown in a walk-in
growth chamber for 2 years in 2 | pots under a light/temperature regime alternating between 4 months
exposure to 16 hrs light at 25°C and 4 months exposure to 8 hrs light at 16°C. Inoculations with C.
polonica were performed after saplings were acclimatized for 6 weeks to the higher light/temperature
regime and had completed their ‘spring’ flush.

A bark plug, 4 mm in diameter, was removed from the lower part of the sapling between the second
and third branch-whorl with a cork borer. A 4 mm plug from the C. polonica culture was placed into
the wound with the mycelium oriented toward the wood surface and sealed with parafilm. For the

wounded control treatment, plugs of sterile MEA were inserted.
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Bark tissue from inoculated and wounded saplings was harvested 5 days, 15 days and 25 days
after the onset of the experiment. Four saplings were sacrificed per time point for each treatment.

Bark material was flash-frozen in liquid nitrogen and stored at -80°C.

2.5.13 Statistical analysis

Graphical representations of results are presented as mean + standard error.
Statistical significance of differences in S7S transformed lines was determined using a one-way
analysis of variance (ANOVA) on log-transformed data. Significance of differences in the C.
polonica inoculation trial was determined using a two-way ANOVA. Differences in means were
calculated using Tukey’s post-hoc pair-wise comparisons test at a 95% confidence level. Analyses
were conducted using the open source software R v. 2.81 (www.r-project.org) and the LAERCIO

package for pair-wise comparisons.
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3. Research Chapter I1

Bark beetle vectored fungus detoxifies polyphenolic defenses of its conifer host

3.1 ABSTRACT

Norway spruce (Picea abies) is frequently subject to severe attacks by the scolytid bark
beetle Ips typographus and its microbial associate, the blue stain fungus, Ceratocystis polonica.
Spruce trees have been shown to protect themselves against bark beetle attack by production of
terpenoid resins, but it is less clear how they defend themselves against the fungal associate. Spruce
bark possesses polyphenolic compounds called stilbenes with known antifungal properties, and
stilbene biosynthesis was found to be up-regulated during C. polonica attack on spruce based on
elevated transcript levels of stilbene synthase genes. However, stilbene accumulation itself has been
shown to decline during attack due to conversion of these phenolics to deglycosylated, oxidized and
dimeric products by the fungus. Chromatographic separation of a C. polonica protein extract
confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of two C.
polonica strains that differ in their major pathways of stilbene breakdown showed that more rapid

metabolism of stilbenes is associated with increased virulence in the tree.
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3.2 INTRODUCTION

Norway spruce (Picea abies), a dominant tree species in European boreal, montane and sub-
alpine ecosystems, is frequently subject to severe attacks by the scolytid bark beetle Ips typographus.
During attacks, these gregarious beetles often introduce fungal pathogens into their hosts. One of the
most virulent spruce pathogens associated with I f#ypographus is the blue staining fungus,
Ceratocystis polonica. This beetle-fungus complex is thought to act synergistically (Franceschi et al.,
2005) to kill trees, where the beetles damage the cambium by feeding and the fungus interrupts water
flow in the vascular bundles. However, it is still unclear how bark beetles benefit from association
with this virulent, necrotrophic fungus (Paine et al., 1997) and whether trees possess any defenses
against the fungus.

Norway spruce trees have effective structural and chemical defense strategies against low
density bark beetle attacks. The best known example of chemical defense in P. abies is oleoresin
(Martin et al., 2002). This viscous mixture of terpenoids stored in specialized ducts has been shown to
increase in quantity and change in composition during defense responses. A less well-studied defense
mechanism in spruce is the production and storage of phenolic compounds in specialized cells in the
phloem parenchyma (PP-cells). During a defense response, elicited by wounding, methyl jasmonate
or C. polonica infection, PP-cells expand and the inclusion bodies develop higher autofluorescence
thought to indicate the presence of phenolic compounds (Franceschi et al., 2000). It is, therefore,
likely that PP-cells form a protective barrier against pest species invading the tree’s cambial zone.

Stilbenes are important components of the extensive array of phenolic compounds
synthesized by tree species from the family Pinaceae (Underwood and Pierce, 1992). These
compounds have been reported to have anti-fungal properties and been shown to significantly
contribute to plant disease resistance (Chong et al., 2009). In the genus Picea, the stilbene glucosides
astringin and isorhapontin (Figure 3.1a) occur in high concentrations in bark, roots and foliage. Two
stilbene synthase (STS) enzymes have been recently described in Norway spruce, which contribute to
the formation of these compounds (Figure 3.1a).These enzymes play a role in tree defense, since it
has been shown that fungal elicitation can induce S7S transcription and enzyme accumulation
(Brignolas et al., 1995). However, contradictory reports on stilbene glucoside accumulation in spruce
bark during fungal infection have been published. On the one hand, significant increases in astringin
were observed after elicitation of Picea glauca saplings with an avirulent C. polonica isolate. On the
other hand, stilbene concentrations in mature Norway spruce accessions were stable or decreased

during the course of C. polonica infections (Brignolas et al., 1995; Virii et al., 2001).
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Figure 3.1: Stilbene biosynthesis and accumulation in response to fungal infection. (a) Stilbene
biosynthetic pathway in P. abies. (b) Relative transcript accumulation of P. abies stilbene synthase
(PaSTS) genes in response to infection by two C. polonica isolates or to inoculation with sterile agar
(control). Concentrations of the stilbene glucosides (c¢) astringin and (d) isorhapontin after wounding or
infection by C. polonica. Transcript accumulation of PaSTS was measured by quantitative real-time PCR
using an ubiquitin gene for normalization and non-wounded saplings for calibration. Astringin and
isorhapontin concentrations were measured by LC-ESI-MS. Error bars represent standard errors (n = 5

replicates per treatment per time point).

After host infection, fungi follow different strategies to gain access to host nutrients.
Biotrophic fungi, which acquire nutrients from living cells, penetrate the host causing minimal
damage to infected cells (Voegele and Mendgen, 2003). On the other hand, necrotrophs such as C.
polonica lyse cells in order to release nutrients which are then assimilated by the fungi (Oliver and
Solomon, 2010). However, during lysis of plant cells vaculolar contents, rich in potentially anti-
fungal plant defense compounds, come into direct contact with fungal hyphal tips. To the best of our

knowledge, it is not known what defense compounds Norway spruce deploys against C. polonica and

37



3. Research Chapter 2

whether or not this specialized, bark beetle vectored, necrotrophic pathogen of P. abies is at least
partially resistant to them.

In this work, we demonstrate that C. polonica can circumvent the anti-fungal activity of
stored and de novo synthesized stilbenes in spruce during the infection process. Although high levels
of ST transcripts accumulate in fungal-infected Norway spruce bark, a net loss of stilbene glucosides
was detected at the site of infection. This stilbene deficit was explained by fungal biotransfomation of
host compounds. These enzyme-driven biotransformations include the formation of stilbene dimers,
aglycones and ring-opened lactone oxidation products. We could also show that different C. polonica
isolates followe different stilbene biotransformation strategies with rapid metabolism being associated

with increased fungal virulence.

3.3 RESULTS

3.3.1 Effect of fungal inoculation on S7§ transcription and stilbene accumulation in Norway

spruce phloem

Norway spruce saplings were wounded and inoculated with two different C. polonica isolates
or with sterile agar (control treatment) and bark tissue was harvested for analysis 2, 7, 14 or 28 days
afterwards. Transcript accumulation of PaSTS, measured by quantitative real-time PCR, increased
significantly in fungal-inoculated saplings (p < 0.0005) compared to the sterile-agar inoculated
control saplings at 7 days and again at 28 days post-inoculation (Figure 3.1b). In control saplings the
increase in PaSTS transcript accumulation over the time course of the experiment was non-
significant. Transcript abundances in saplings infected by C. polonica isolate 1 did not differ from
transcript abundances in saplings infected by isolate 2.

Levels of the stilbene glucosides, astringin (Figure 3.1c) and isorhapontin (Figure 3.1d),
increased in the bark of sterile agar-inoculated control saplings over the time-course of the
experiments, while in fungal-inoculated saplings a decrease in stilbenes could be observed.
Significant differences in total stilbenes during the time course could be detected between 14 and 28
days post-inoculation (p = 0.042) in both the inoculated treatments and the control.

In order to determine if C. polonica was the agent responsible for reduced stilbene levels in
infected bark, isolates 1 and 2 were grown in nutrient broth amended with 2 mg/ml astringin. A
significant decrease in astringin was observed in the fungal culture medium compared to the sterile

astringin amended control medium (p < 0.0001) over a time course of 72 hours (Figure 3.2). The rate
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of astringin decrease in the medium was significantly higher for isolate 2 compared to isolate 1 (p <

0.0001).
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Figure 3.2: In vitro biotransformation of astringin by the fungus C. polonica. Depletion of astringin
added to artificial medium by two isolates of C. polonica over a period of 72 hours compared to changes

in astringin concentration in sterile medium (n = 4 replicates per isolate per time point).

3.3.2 Structural elucidation of fungal biotransformation products

Several products of fungal astringin biotransformation were detected in fungal culture
filtrates (Figure 3.3) including ring-opened lactones (1 and 4), the deglucosylated piceatannol (2) as
well as dimeric stilbenes (3, 5 and 6).

Monomeric derivatives. Separation of the major biotransformation metabolites was achieved by
solid phase extraction on RP-18 material followed by HPLC-SPE chromatography and resulted in
the isolation of compounds (1) to (6) (Figure 3.3).

The molecular formula of compound (4) was determined to be C,4H;,04 on the basis of its
positive-mode ESI-HRMS (m z” 277.0709 [M+H]", calcd. for C,4H,304 277.0707). '"H-NMR showed
a typical trans-double bond pattern (both Jy.y 16.5 Hz) characteristic for a stilbene-related structure at
6.99 and 7.05 ppm, respectively. However, both signals were shifted to lower field compared to the
parent structure of astringin, indicating a major change in the substitution of the aromatic rings. A
pattern of a pseudo-triplet at 6.28 ppm (1H equivalent) and a broad singlet at 6.53 ppm (2H
equivalents) revealed the loss of the B-D-glucose moiety, resulting in a symmetrical 3,5-dihydroxy

substituted phenyl ring. HMBC correlation spectroscopy showed the connection to the trans-double
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bond system at a carbon shift of 140.99 ppm (corresponding to a 7.04 ppm proton resonance, see
supplementary table S3.1). HMBC correlations from the second trans-double bond proton at 6.99
ppm to an unsaturated methine at 115.47 ppm (proton resonance at 6.12 ppm) and a saturated methine
at 81.57 ppm (corresponding to a proton at 5.733 ppm), as well as to a quarternary carbon at 168.47
ppm indicated structural changes of the former aromatic ring system. H-H-COSY correlations from
the saturated methine proton at 5.74 ppm (d, Jy.u 8.6 Hz) to a methylene group at 2.44 ppm (dd, Ju.u
9/16 Hz) and 2.99 ppm (dd, Jy.u 3/16 Hz), respectively, together with HMBC correlations at 175.48
and 174.86 ppm led to the conclusion that the structure of the former aromatic ring system contained
a but-2-en-4-olide, an a,B-unsaturated-y-lactone with a CH,COOH substituent (Supplementary Figure
S3.1). Similar structures were described as veratryl alcohol degradation products derived from a
reaction with lignin peroxidase (Schmidt et al., 1989; Shimada et al., 1987; Leisola et al., 1985), as
synthetic products from stilbene oxidation (Beziudenhout et al., 1990), and as metabolites isolated
from peanut kernels (Sobolev et al., 2006). All other spectral data were consistent with this structure.
Compound (1) has a molecular composition of C,,H»,0;; based on negative mode ESI-HRMS (m/z
437.1094 [M-H], calcd. for Cy,)H,O;; 437.1084). Comparison of the proton NMR data with
reference data for astringin showed an intact 3,5-disubstituted phenyl ring with the glucose
substituent, but the absence of aromatic signals for the 3°,4’-dihydroxy substituted phenyl ring. The
signal pattern closely resembled that of compound (4). Thus, the structure of (1) was determined to be
a B-D-glucosylated derivative of (4). The structure of (2) was revealed to be that of the de-
glucosylated derivative of astringin, called £- and Z-piceatannol based on comparison of its MS
spectra and proton NMR data to those in the literature (Li et al., 2007).

Dimeric derivatives. The molecular composition of the isolated dimeric metabolite (6) was
C40H420,5, based on negative mode ESI-HRMS (m z! 809.2297 [M-H], caled. for C4oH4;O15
809.2293). NMR spectroscopy revealed them to be identical with the formerly isolated piceasides A,
B, G and H (Li et al., 2008) (supplementary Figure S3.2 and S3.3). Dimeric derivatives with
molecular mass m z! 648.61 and 486.47 were revealed to be piceasides A, B, G or H lacking one or

both glucose moieties respectively based on 'H-NMR spectra as well as low resolution MS.

3.3.3 Biotransformation of astringin by C. polonica in culture

Although all 6 biotransformation products could be detected in the cultures of both fungal
isolates, the major pathways of stilbene breakdown differed between the two isolates. The lactone (1)
(Figure 3.3, Table 3.1) was produced at significantly higher levels by isolate 2 than isolate 1 (p <
0.0001). Lactone (4), was formed at lower concentrations but was also detected at higher levels in

isolate 2 cultures than in cultures from isolate 1 (p < 0.0001).
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E- and Z-piceatannol (2) were produced at higher levels by isolate 1 than by isolate 2 (p <
0.0001). A linear increase in piceatannol concentration could be observed between 4 and 28 hours
incubation time in cultures colonized by isolate 1, whereas a decrease in piceatannol content was
noted in cultures colonized by isolate 2. Changes in piceatannol content in culture media of both fungi

were statistically significant (p < 0.0001).
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Figure 3.3: Stilbene biotransformation pathways of C. polonica isolate 1 and isolate 2. The length of
the arrows denote the relative velocity of each reaction in the first 4 hours after astringin was added to the

growth media of fungal isolates.

Dimeric astringin (3) was observed in culture medium with fungus as well as in non-
inoculated control medium. In sterile control cultures as well as in cultures containing isolate 1, a
gradual increase in astringin dimer concentrations was observed. Levels of dimeric astringin were
significantly higher in the fungal cultures than in the control (p = 0.0006). In cultures containing

isolate 2 the highest concentration of astringin dimer was observed 4 hours after the onset of the
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experiment. At later time points of the experiment a gradual decrease in astringin dimers could be
detected in the isolate 2 culture medium. Biotransformation of astringin to piceatannol dimers (5) and
astringin-piceatannol dimers (6) followed the same kinetics observed for dimeric astringin with

statistically significant differences between fungal isolates (p < 0.0001).

Table 3.1: Astringin biotransformation of C. polonica. The percentage (+ SD) of substrate recovered in
individual biotransformation products 4 and 28 hours after adding astringin to C. polonica isolate 1 and

isolate 2 (n = 4 replicates per isolate per time point).

Isolate 1 Isolate 2
4 Hours 28 Hours 4 Hours 28 Hours
Astringin lactone (1) 0.05+0.02 | 0.13£0.04 6.54+147 | 9.01 £1.28
Piceatannol (2) 10.3+1.14 | 20.7+4.94 393+0.74 | 0.32+0.27
Astringin dimer (3) 3.92+£0.50 13.9+£2.92 22.3+3.21 10.1 £4.36
Piceatannol lactone (4) 0.05+0.01 0.08 £0.01 0.15+0.04 | 0.54+0.20
Piceatannol dimer (5) 0.14 +£0.02 1.12+0.31 0.16 £0.01 0.15+0.43

Astringin-piceatannol dimer (6) 1.34+0.87 15.0+3.95 4.56+0.87 | 3.83+3.77

Total identified stilbene metabolites | 15.8 +2.53 509+12.2 37.6 £6.63 24.0+10.3
Remaining astringin 77.5+4.46 46.6 £ 11.6 53.7+8.67 0.94 +0.27

In isolate 1 cultures, 15 % of the initial astringin substrate was converted to biotransfomation
products within the first 4 hours, whereas 37% of the astringin was transformed by isolate 2. The
amount of recovered biotransformation products increased over the next 24 hours to 50% in cultures
of isolate 1, but decreased to 24% in cultures of isolate 2. After 28 hours of incubation, almost all of
the substrate could be recovered in the form of astringin or identified biotransformation products in
the isolate 1 culture medium. However, in isolate 2 cultures only 25% of the astringin added to the

culture medium initially was recovered, mainly as biotransformation products.
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Figure 3.4: Stilbene biotransformation activity in partially purified protein fractions from C.
polonica. Enzyme activities observed in three separate protein fractions after chromatographic separation
with affinity chromatography and anion exchange. (a) Fraction that oxidized astringin to astringin lactone
(1) was eluted by low salt concentration from the anion exchange column. (b) Fraction that deglycosylated
astringin to form E- and Z- piceatannol (2) eluted in flow-through fraction from affinity chromatography
on concanavalin A. (c¢) Fraction that eluted from the anion exchange column with high salt formed

astringin dimers (3).

3.3.4 Demonstration of C. polonica enzyme activities, involved in stilbene biotransformation

To verify that the metabolism of stilbenes was carried out by C. polonica the relevant enzyme
activities were sought in fungal extracts. By partial 2-step purification of soluble protein extract from

C. polonica, separate enzyme activities could be recovered for the three different types of
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biotransformation reactions observed in the in vivo study. In the first purification step enzymes were
purified by affinity chromatography with concanavalin A sepharose, a matrix to which glycoproteins
selectively bind. Catalytic activities for both stilbene dimerization and formation of ring-opened
stilbene lactones were recovered from enzymes bound to this matrix and eluted with o-D-
methylglucopyranoside. The protein fraction which did not bind to the lectin showed B-glucosidase
activity (Figure 3.4b) forming E- and Z-piceatannol (2) from astringin.

Proteins recovered from affinity chromatography were further purified by anion exchange
chromatography. Protein fractions eluted from the anion exchanger by 200mM NaCl showed catechol
dioxygenase activity (Figure 3.4a) forming the ring-opened lactone (1) from astringin. A fraction
eluted from the anion exchanger by higher salt concentration exhibited laccase activity (Figure 3.4c)

forming astringin dimers (3).

3.3.5 In vitro stilbene biotransformation activity of induced and un-induced C. polonica

Ceratocystis polonica isolates 1 and 2 were grown for 4 days in medium containing crude,
polyphenol rich extract from spruce to induce stilbene biotransformation pathways. Protein extracts
from induced and non-induced mycelium were then used in enzyme assays for stilbene
biotransformation activity in a time course over a period of 8 hours. Enzymes from isolate 2
transformed astringin more efficiently than isolate 1 in the induced and un-induced state (Table 3.2).
Conversion to the lactone (1) (p = 0.001), aglycone piceatannol (2) (p < 0.0001), as well as stilbene

dimers (3) (p = 0.09) was higher in enzyme assays from isolate 2 than from isolate 1.

Table 3.2: Enzymatic stilbene biotransformation. Enzyme reaction rates (ug product g fresh mycelium™
hour"l) + SD of C. polonica isolate 1 and isolate 2 for various metabolic reactions of astringin. Isolates

were induced by incubation with 40 pg spruce extract per ml culture (n = 4 replicates per isolate per time

point).
Isolate 1 Isolate 2
Control Induced Control Induced
Oxidation (1) 0.021 +0.003 0.025 +0.004 0.043 +0.022 0.187 +0.043
Deglycosylation (2) 0.112 +0.024 0.266 +0.027 0.411 +0.068 0.688 +0.035
Dimerization (3) 0.112 +0.093 0.263+0.014 0.223 £ 0.056 0.275+0.033

Induction of fungal mycelium with spruce extract lead to a 4-fold increase in the rate of

lactone formation by the protein extract from isolate 2 (p = 0.003). No change in the rate of lactone
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formation could be observed for enzymes from induced isolate 1. A 2-fold increase in piceatannol-
forming B-glucosidase activity was noted for the enzyme fraction from isolate 1 (p < 0.0001) after
induction. B-Glucosidase activity for isolate 2 was 3-fold higher in the un-induced state than for
isolate 1, but showed only a 1.5-fold increase after induction. Enzymes from induced isolate 1
revealed a 2-fold increase in dimer formation compared to the uninduced state (p = 0.02). No changes
in dimer formation could be observed for isolate 2, but activity was similar to that of induced isolate

1.

3.3.6 Fungal growth in spruce saplings and on artificial medium containing astringin

To determine if stilbene transformation was associated with fungal virulence in spruce, the
growth rate of the two isolates on artificial medium and in spruce bark was compared. On solid
minimal medium the in vitro growth rate of C. polonica isolate 2 was higher than the growth rate of
isolate 1 (p < 0.0001). Growth rates of both isolates were lower in medium amended with 100 pg
astringin per ml medium (p < 0.0001) than in non-amended control medium. The relative growth rate

on astringin-amended medium was lower for isolate 1 than for isolate 2 (Figure 3.5).
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Figure 3.5: Growth rate of C. polonica in the presence of stilbenes. /n vitro growth rate of two C.
polonica isolates on solid minimal medium in the presence of astringin is presented relative to growth

without astringin. Error bars represent standard errors (n = 10 replicates per isolate per treatment).

Growth of C. polonica isolate 1 and isolate 2 in the cambial zone of spruce saplings was
measured 28 days after inoculation to estimate lesion length. There were highly significant
differences between lesion lengths created by isolate 1 and isolate 2 (p < 0.0001) (Figure 3.6). Lesion
lengths created by isolate 2 were more than twice as long as those created by isolate 1 indicating the

greater virulence of this strain in spruce bark.
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Figure 3.6: Measurement of fungal virulence. Lesion lengths of two C. polonica isolates were
measured in the cambium 28 days after inoculation on eight year old spruce saplings (n = 5 replicates

per isolate).

3.4 DISCUSSION

During C. polonica infection of spruce saplings the STS transcript levels showed a two-phase
induction pattern, similar to S7S induction patterns described for numerous other species (Wiese et
al., 1994; Preisig-Mueller et al., 1999). However, levels of the stilbene glucosides astringin and
isorhapontin gradually decreased in bark over the infection period. Similar observations have also
been made by Brignolas et al. (1995), who showed that stilbene levels in spruce decreased during C.
polonica infection in spite of increased STS enzyme activity in infected tissues. These findings
suggest that C. polonica alters the stilbene content of host tissue during infection and colonization.

Stilbenes are considered anti-fungal compounds because they act as inhibitors of fungal
growth by interfering with microtubule assembly (Woods et al., 1995), disrupting plasma membranes
and uncoupling electron transport in fungal spores and germ tubes (Pont and Petzet, 1990). It is
therefore to be expected that C. polonica developed mechanisms to circumvent the deleterious effects
of these anti-fungal compounds produced in a host with whom the fungus has co-evolved over
millions of years. We could confirm this by showing that C. polonica could deplete stilbenes by
various biotransformation processes, which explains the decrease in stilbene levels in spruce bark
after infection, even though their biosynthesis was up-regulated.

Partially purified C. polonica enzyme extracts showed that the stilbene biotransformation
processes were catalyzed by a number of fungal enzymes. Furthermore it was shown that these

enzymes were induced by a crude methanol extract prepared from P. abies. The induction of
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detoxification pathways has also been reported in other phytopathogenic fungi, most notably laccases
responsible for stilbene dimerization in B. cinerea after induction by phenolic compounds and pectin
(Gigi et al., 1980). Similarly, transcription of genes originating from a cluster involved in the f-
ketoadipate pathway were highly expressed in Cochliobolus heterostrophus, the causal agent of
Southern corn leaf blight, in response to caffeic acid (Shanmugam et al., 2010). However, the
induction of detoxification pathways seems to be species-specific. For example, Grosmannia
clavigera, a bark-beetle vectored pine pathogen which is phylogenetically closely related to C.
polonica, revealed no significant induction of genes putatively involved in polyphenol detoxification
(Hesse-Ocre et al., 2010).

The tetrahydroxystilbene glucoside, astringin, which is produced in high amounts by P. abies,
was transformed by C. polonica in culture. The major biotransformation products were identified as
astringin-lactones, piceatannol and dimeric stilbenes using NMR spectroscopy and LC-MS. Similar
reactions of stilbenes have been reported previously. Lactones, for example, can be formed by
oxidative ring cleavage by dioxygenase enzymes (Harwood and Parales, 1996) and aglycones are
formed by p-glucosidases that typically cleave Pl1—4 glucoside bonds (Morant et al., 2008).
Furthermore, dimerization of stilbenes has been demonstrated in cell-free systems with oxidative
enzymes, such as peroxidases and laccases (Breuil et al., 1998).

The structural similarities between the astringin-lactone formed wupon fungal
biotransformation and the lactone formed as an intermediary step in the B-ketoadipate pathway hint at
the possibility of further catabolic degradation of astringin by C. polonica. The B-ketoadipate pathway
plays a central role in the catabolic degradation of aromatic compounds, derived from lignin, as an
energy source used by soil bacteria and fungi (Harwood and Parales, 1996). Spruce tissue is a poor
substrate for fungal nutrition, containing low levels of protein and high levels of hard-to-digest
polymers such as cellulose and lignin. Utilizing astringin, which is produced by spruce for anti-fungal
defense, as an energy source might increase the fitness of C. polonica. Proliferation of fungal isolates
with more rapid pathways for catabolic degradation of soluble phenolic compounds may, therefore,
be greater than for isolates with low catabolic rates. In addition, the metabolic cost of detoxification
of anti-fungal stilbenes might be outweighed if such a process ultimately creates energy for growth
and reproduction.

Ring opening and lactonization is a logical early step of stilbene catabolism in C. polonica,
since it appears to represent a detoxification process. Stilbenes exert their toxicity on fungi by
diffusing through membranes into vegetative and reproductive structures (Adrian et al., 1998). Ring-
opening and lactonization increase the polarity of astringin, which could lead to reduced diffusion

into fungal cells and therefore reduced toxicity. Increasing the polarity of plant defense compounds
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has already been shown to be a successful detoxification mechanism in other plant pathogens (Esaki
et al., 1998; Weltring and Barz, 1980).

The deglycosylation of astringin to form aglucones may be catalyzed by PB-glucosidase
enzymes. This process has been previously reported in C. polonica infected bark (Virii et al., 2001).
Deglucosylation is a seemingly disadvantageous phytoalexin biotransformation strategy as this
process releases a less polar molecule with a higher potential biological activity. In fact, one of the
best studied plant defense strategies is the activation of glucosylated phytoanticipins by [-
glucosidases when cell compartments are disrupted by herbivore or pathogen attack (Morant et al.,
2008). Furthermore, glucosylation of plant defense compounds is a known detoxifying mechanism of
certain plant pathogens (Pedras et al., 2004). However, in a nutrient-poor environment it might be
advantageous for fungal pathogens with high tolerance to stilbenes to carry out deglucosylation
reactions in order to utilize the glucose moieties of astringin as an energy source.

Ceratocystis polonica also transforms astringin and its aglucone into dehydrodimers. Similar
stilbene biotransformations mediated by laccase or peroxidase enzymes have been reported from the
grape pathogen Botritis cinerea (Breuil et al., 1998; Rodrigues-Bonilla et al., 2011). Dimerization of
resveratrol and pterostilbenes has been shown to be an oxidative process involving the 4’hydroxyl-
group of the stilbene skeleton. It has been suggested that dehydrodimers are less toxic than
monomeric stilbenes due to a reduction in solubility of the dimeric compounds, allowing the fungus
to escape from contact with these phytoalexins (Breuil et al., 1999). Deglucosylation of dimeric
compounds could lead to a further reduction in solubility. This supports the argument that, contrary to
expectation, deglucosylation of stilbenes might be beneficial for C. polonica.

Phytoalexin biotransformation has been shown to be an important virulence factor for other
plant pathogens. For example, the virulence of B. cinerea isolates could be correlated directly with
their ability to dimerize stilbenes (Sbaghi et al., 1996). Similarly, the virulence of pathogens on Pisum
sativum depends on fungal ability to detoxify the pea phytoalexin, pisatin (Vanetten et al., 2001). In
this study we could show that C. polonica isolates used more than one pathway to detoxify host
defense compounds and that virulence correlated well with the rate of stilbene biotransformation.
This study also revealed that certain combinations of constitutive and inducible stilbene
biotransformation strategies appear to be more favorable than others.

The avirulent isolate showed high B-glucosidase and laccase activity in culture, forming
mainly piceatannol and dimeric stilbenes as astringin-derived metabolites. These pathways were also
induced in response to metabolites extracted from spruce. The virulent isolate, on the other hand,
produced higher amounts of piceatannol and stilbene dimers, as well as stilbene lactones. However,

induction by application of spruce extract revealed only an increase in stilbene lactone formation.
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Constitutive levels of enzymes for deglycosylation and dimerization were in any case higher in the
virulent isolate than in the avirulent isolate. Virulence in C. polonica is therefore associated with a
high initial activity for stilbene deglucosylation and dimerization (which decreases solubility and thus
toxicity) followed by lactonization, which may be an early step in the P-ketoadipate pathway for
degradation of the stilbene core structure for substrates for growth and respiration.

Furthermore, stilbene biotransformation by C. polonica may also be beneficial to associated
bark beetle larvae. It has been shown that in the semi-alkaline conditions of insect guts (Balogun,
1969), catechol groups such as those present in the astringin core structure are spontaneously or
enzymatically rearranged to form reactive quinones (Lin et al., 2010; Haruta et al., 2001). Amino
acids that contain nucleophilic centers such as sulthydryl and amino groups are susceptible to
alkylation by these quinones (Son et al., 2010; Felton et al., 1992). Protein alkylation may reduce the
quality of ingested food or even directly destabilize the peritrophic membrane (Barbehenn et al.,
2008) in the bark beetle gut. Lactonization of catechol groups by C. polonica should prohibit quinone
formation and thus protect bark beetles from the harmful effects of these stilbenoid defense
compounds.

Although C. polonica and the bark beetle I typographus co-occur, the basis for this
mutualistic behavior is still largely unknown. It has been proposed that the fungus benefits by being
dispersed to new hosts and gaining entry into the tree. The beetle on the other hand, is thought to
benefit if the fungus helps weaken or kill the tree. The findings of this study provide indications that
the beetle-fungus mutualism may also be based on the fungal metabolism of host defenses.

Breakdown of stilbenes to less toxic products may increase the growth of bark beetle larvae.

3.5 MATERIALS AND METHODS

3.5.1 Biotransformation of astringin by C. polonica

Two C. polonica isolates (CMW 7749 = isolate 1 and CMW 7135 = isolate 2) provided by
the culture collection of the Forestry and Agricultural Biotechnology Institute (University of Pretoria,
South Africa) were grown on 2% (w/v) malt extract agar (MEA) for 14 days at 25°C. Agar plugs
(©=4 mm) from stationary cultures were placed in 15 ml test tubes for biotransformation assays. Then
2 ml sterile 2% (v/v) malt extract amended with astringin to a final concentration of 2 mg ml” was
added to the test tubes and incubated at 28°C with shaking at 220 rpm. Negative control treatments
contained astringin-amended medium without fungus and fungus grown in medium without astringin.

Cultures were harvested 4 hours, 8 hours, 24 hours and 72 hours after the onset of the experiment.
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Biotransformation processes were stopped with 50 pul HCI (2 N). The internal standard apigenin-3-O-
glucoside was added to a final concentration of 0.1 mg/ml prior to analysis by LC-ESI-MS. The

concentrations of biotransformation products were calculated relative to the internal standard.

3.5.2 Partial purification of fungal proteins responsible for stilbene biotransformation

Isolates 1 and 2 were cultured in 10% (v/v) carrot juice liquid culture for 6 days, harvested by
centrifugation and lyophilized. Dried material was finely ground using a vibrating ball mill. Powdered
mycelium (0.5 g) was extracted with 10 ml extraction buffer (50 mM Tris, pH 7.5, 5 mM ascorbic
acid, 5 mM dithiothreitol, 10 mM MgCl,, 10 mM CaCl,, 10 mM MnCl,, 0.5 M NacCl, 10% glycerol,
1% polyvinylpyrrolidone (MW 360,000), 4% polyvinylpolypyrrolidone and 0.1% Tween 20) at 4 °C
for 30 minutes shaking. Crude fungal protein extract in extraction buffer was loaded onto an open
column of concanavalin A sepharose (GE Healthcare, Munich, Germany) with a bed volume of 5 ml.
The protein extract was incubated with the concanavalin A matrix for 30 minutes at 4 °C before
washing un-bound proteins off with 5 bed volumes of washing buffer (50 mM Tris, pH 7.5, 0.5 M
NacCl, 10% glycerol). Elution of bound proteins was achieved using 2 column volumes of washing
buffer amended with 500 mM o-D-methylglucopyranoside. Proteins from the column eluate were
desalted at 4°C into 50 mM MOPSO (pH 6.8) containing 10% glycerol using a HiPrepTM 26/10 (GE
Healthcare) desalting column on an AEKTA 900 chromatography system (GE Healthcare). The
desalted protein fraction was loaded onto a 5 ml DEAE sepharose column and washed with 2 column
volumes DEAE washing buffer (50 mM MOPSO, pH 6.8, 10% glycerol) at a flow rate of 5 ml/min.
Proteins were eluted from the column with DEAE wash buffer adjusted with NaCl using a step-wise
gradient (100 mM NaCl, 200 mM NacCl, 300 mM NaCl, 500 mM NaCl and 1 M NaCl). Elution steps
and fraction volumes were 10 ml. Stilbene biotransformation activity was determined for crude
extracts as well as for proteins that were eluted from the concanavalin A and DEAE sepharose
columns. Samples from the flow-through of both columns were also tested for astringin
biotransformation activity. Enzyme activities were assayed in 300 pl reaction volumes containing 200
ul enzyme from the purification steps described above and 100 pg astringin in DEAE washing buffer.
Reaction mixtures were incubated at 30°C for 4 hours before stopping the reaction with 10 pul 0.1 M
HCL. After removing the protein by centrifugation, 20 pl reaction mixture was analyzed by LC-ESI-
MS.
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3.5.3 In vitro astringin biotransformation assay

Mycelium was cultured as above for 3 days. Each culture (10 ml) was sub-cultured in 50 ml
10% (v/v) carrot medium. To induce biosynthesis of enzymes for stilbene biotransformation, the
medium of 4 biological replicates was amended with 2 mg crude spruce extract. As controls, 4 other
replicates were sub-cultured without adding spruce extract. Sub-cultured mycelium was harvested
after 4 days by centrifugation and ground to a fine powder using a mortar and pestle. Then 100 mg of
ground mycelium was extracted with 5 ml extraction buffer as above. Insoluble material was removed
from extracts by centrifugation, and the resulting supernatant filtered with a syringe filter with
exclusion size of 0.2 pm.

Astringin biotransformation activity was assayed at 30°C in 2 ml reaction volumes containing
fungal protein in extraction buffer and 100 ug ml™ astringin. A 200 ul sub-sample was taken from
each assay reaction 45 minutes, 2 hours, 4 hours and 8 hours after the assays were initiated. The

biotransformation reaction was stopped and analyzed as above.

3.5.4 Inoculation of P. abies saplings with C. polonica

Two C. polonica isolates were grown on 2% (w/v) malt extract agar (MEA) for 12 days at
25°C. Eight-year-old P. abies saplings originating from the 3369-Schongau clone (Samenklenge und
Pflanzengarten Laufen, Germany) were grown in an outdoor plot for four years prior to the
experiment. Inoculations of saplings with C. polonica were performed three weeks after their
‘spring’-flush (10 June 2008). A bark plug, 8 mm in diameter, was removed between the second and
third branch-whorl from the upper part of the sapling with a cork borer. An 8§ mm plug from one of
the two C. polonica cultures was placed into the wound with the mycelium oriented toward the wood
surface and sealed with parafilm. For the control treatment, plugs of sterile MEA were inserted into
the wound.

Bark tissue samples from inoculated and wounded saplings were harvested 2, 7, 14 and 28
days after the onset of the experiment. Fungal lesions were measured with a caliper. Five saplings
were sacrificed per time point for each treatment. Bark material was flash-frozen immediately after

harvest in liquid nitrogen and stored at -80°C.

3.5.5 Quantitative real-time PCR of S7S from P. abies

Total RNA from inoculated treatment and wounded control bark was isolated with the
Invitrap ® Spin Plant RNA Mini Kit (Invitek, Berlin, Germany) following the protocols of the

manufacturer except that an additional DNA digestion step was included (RNase Free DNase set,
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Qiagen). RNA was quantified by spectrophotometry. Reverse transcription of 1 pg RNA into cDNA
was achieved by using SuperScript II reverse transcriptase (Invitrogen) and 50 pmol PolyT,.i5
primer (Invitrogen) in a reaction volume of 20 pl. cDNA was diluted to 10% (v/v) with deionized
water. One pl diluted cDNA was used as template for quantitative real-time PCR in a reaction
mixture containing Brilliant SYBR Green QPCR Master Mix ® (Stratagene), 10 pmol forward and 10
pmol reverse primer. PaSTS transcripts were amplified using the forward primer 5’-
GTGGCGAGCAGAACACAGACTTC-3’ and the reverse primer 5’-
CAGCGATGGTACCTCCATGAACG-3’. This primer pair was designed to amplify 140 base pairs
of both STS1 and S7S2 simultaneously. PCR was performed using a Stratagene MX3000P
thermocycler using the following cycling parameters: 5 min at 95°C followed 40 cycles of 30 s at
95°C, 30 s at 55°C and 30 s at 72°C, and a melting curve analysis from 55°C to 95°C. Reaction
controls included non-template controls as well as non-reverse transcribed RNA. STS gene abundance
was normalized to the abundance of the ubiquitin gene (Schmidt et al., 2010) (GenBank accession
number EF681766) amplified with the forward primer 5’-GTTGATTTTTGCTGGCAAGC-3’ and the
reverse primer 5’-CACCTCTCAGACGAAGTAC-3’. Relative transcript abundance was calculated
from three technical replicates of five biological replicates and calibrated against the transcript

abundance of five non-wounded control saplings.

3.5.6 Metabolite extraction from spruce

For extraction of phenolic compounds, spruce tissue was ground to a fine powder under
liquid nitrogen and lyophilized. Approximately 40 mg dried tissue was extracted with 2 ml analytical
grade methanol for 4 hours at 4°C. Insoluble material was pelleted by centrifugation and the
supernatant was recovered. Insoluble material was re-extracted with 1.5 ml methanol for 16 hours.
Extracts were combined and evaporated to dryness under a stream of nitrogen. Dried samples were
re-dissolved in 1 ml methanol containing 100 pg/ml of the internal standard apigenin glucoside. For

LC-ESI-MS samples were diluted to 20% (v/v) with methanol.

3.5.7 LC-ESI-MS

Compounds from analytical samples and enzyme assays were separated on a Nucleodur
Sphinx RP18ec column with dimensions of 250 X 4.6 mm and a particle size of 5 um (Macherey
Nagel, Dueren, Germany) using an Agilent 1100 series HPLC (Agilent Technologies, Santa Clara,
CA, USA). The total mobile phase flow rate for chromatographic separation was 1.0 ml min". The

column temperature was maintained at 25°C. Phenolic compounds from spruce and fungal
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biotransformations were separated using 0.2% (v/v) formic acid and acetonitrile as mobile phases A
and B respectively with the following elution profile: 0-1 min, 100% A; 1-25 min, 0-65% B in A; 25-
28 min 100% B; and 28.1-32 min 100% A. Products from enzyme assays were separated with the
elution profile: 0-1 min, 100% A; 1-18 min, 0-100% B in A; 18-19 min 100% B; and 19.1-22 min
100% A.

Compound detection and quantification was accomplished with an Esquire 6000 ESI ion-trap
mass spectrometer (Brucker Daltronics, Bremen, Germany). Flow coming from the column was
diverted in a ratio of 4:1 before entering the mass spectrometer electrospray chamber. ESI-MS was
operated in negative mode scanning m z' between 50 and 1600 with an optimal target mass of 405 m
z'. The mass spectrometer was operated using the following specifications: skimmer voltage: 60 V;
capillary voltage: 4200 V; nebulizer pressure: 35 psi; drying gas: 11 1 min™'; gas temperature: 330 °C.
Capillary exit potential was kept at -121 V.

Brucker Daltronics Quant Analysis v.3.4 software was used for data processing and
compound quantification using a standard smoothing width of 3 and Peak Detection Algorithm v. 2.
Linearity in ionization efficiencies was verified by analyzing serial dilutions of randomly selected
samples. lon suppression was controlled for by calculating analyte:internal standard ratios in serial
diluted samples in which the internal standard was maintained at the same concentration. An external
calibration curve for astringin was created by linear regression. Process variability in different

analyses was calculated relative to the internal standard.

3.5.8 Sample preparation for NMR

Culture medium samples from biotransformation experiments were subjected to solid phase
extraction on RP-18 material. After loading, the columns were washed with water, dried with nitrogen
gas and finally eluted with methanol. The methanol extracts were separated by means of HPLC-SPE
chromatography and peaks of interest were collected by on-line trapping. The HPLC-SPE system
consisted of an Agilent 1100 chromatography system and a J&M photodiode array detector (DAD,
detection 200-650 nm) connected to a Spark Prospekt 2 solid-phase extraction (SPE) device (Spark
Holland, Emmen, The Netherlands), equipped with HySphere resin GP cartridges (10 x 2 mm, 10
um). Separations were performed with linear gradient elution (water (A) and methanol (B), both
solvents containing 0.1% formic acid, starting with 100% A at 0 min, kept isocratic for 1 min, within
20 min to 100% B, kept isocratic for 5 min, back to 100% A in two min and finally 7 min at 100% A
for re-equilibration) on A Macherey-Nagel Isis RP-18¢ column (MN Germany, 250x4 mm). The
make-up flow for SPE trapping was set to 2.5 ml min" using Millipore-grade water. The SPE

cartridges were subsequently dried using pressurized nitrogen. Gradient grade MeCN was used to
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extract the trapped analytes from the GP cartridges into HPLC glass vials. After evaporation to
dryness using nitrogen gas, the samples were reconstituted with 80 ul deuterated methanol and
transferred into 2 mm i.d. capillary NMR tubes and subjected to NMR measurements. Hystar 3.2
software was used to coordinate the LC-SPE experiments and Topspin'™ 2.1 software was used to

control the NMR spectrometer and to perform data processing.

3.5.9 NMR and HRESIMS analysis

'H NMR, "C NMR, 'H-'H COSY, TOCSY, HMBC, and HSQC spectra were measured on a
Bruker Avance 500 NMR spectrometer (Bruker Biospin, Karlsruhe, Germany), operating at 500.13
MHz for 'H and 125.75 MHz for *C. A TCI cryoprobe (5 mm) was used to measure spectra at a
probe temperature of 300 K. Spectra are referenced to the residual signal of MeOD-d, at 6 3.31.
Capillary tubes (2 mm i.d.) were used for all NMR measurements.

HRESIMS was recorded on a UPLC-MS/MS system consisting of an Ultimate 3000 series
RSLC (Dionex, Idstein, Germany) system, and an Orbitrap mass spectrometer (Thermo Fisher
Scientific, Bremen, Germany). UPLC was performed using a Dionex Acclaim C18 Column (150 x
2.1 mm, 2.2 um) at a constant flow rate of 300 pl min"'. A binary solvent system of H,O (solvent A)
and MeCN (solvent B), both containing 0.1% formic acid, was used as follows. 0 min: 20% B, 6 min:
95% B, 10 min: 95% B, then brought back to the initial conditions and held for 4 more min in order
to re-equilibrate the column for the next injection. Full-scan mass spectra were generated using

30,000 resolving power, the mass accuracy was better than 3 ppm.

3.5.10 Fungal growth in the presence of astringin

Petri-dishes with synthetic nutrient agar (Nirenberg and O’Donnell, 1998) amended with
astringin were prepared by cooling the autoclaved medium to 55°C and adding astringin in ethanol to
a final concentration of 100 pg ml"' medium. Medium for negative control treatments was amended
with ethanol only. Medium (25 ml) was dispensed in Petri-dishes (=10 cm). After the medium set,
agar plugs (@=4 mm) from 14-day-old C. polonica stationary cultures (CMW 7749 or CMW 7135)
were placed in the middle of each Petri-dish. Cultures were sealed with Parafilm and incubated at
26°C. Diameters of the expanding fungal cultures were measured every 24 hours for 5 days. Growth
rates were calculated using the slope of linear growth curves and relative growth on astringin was

calibrated against the mean growth rate of each isolate on control medium.
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3.5.11 Statistical analysis

Graphical representations of results are presented as mean =+ standard error. Tabulated results
are presented as mean = standard deviation. Normality of data was tested for with the Shapiro-Wilk
test.

Statistical significance of differences in PaSTS transcript accumulation and stilbene
concentrations in living trees was determined using a two-way analysis of variance (ANOVA) on log-
transformed data. Differences between fungal biotransformations of astringin as well as differences of
fungal growth on astringin amended medium were analyzed with the non-parametric Kruskal-Wallis
test, as data could not be normalized.

Differences in fungal growth in spruce were analyzed using a one-way ANOVA on square
root-transformed data. Differences in reaction rates of fungal biotransformation of astringin on
enzyme level were analyzed using two-way ANOVAs of untransformed or reciprocally transformed
data. Following ANOVA, differences in means were calculated using Tukey’s post-hoc pair-wise
comparisons test at a 95% confidence level. Analyses were conducted using the open source software

R (v. 2.81) and the LAERCIO package for Tukey’s pair-wise comparisons.

55



56



4. Research Chapter 3

4. Research Chapter 111

Flavan-3-ol biosynthesis in spruce in response to attack by the bark beetle associated fungus

Ceratocystis polonica

4.1 ABSTRACT

Proanthocyanidins (PAs) which are produced by plants in foliage, fruit, bark and seed coats
are ubiquitous polymeric compounds consisting of flavan-3-ol units, such as 2,3-trans-(+)-catechin
and 2,3-cis-(-)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms
such as grapevine and alfalfa, very little is known about their ecological roles and biosynthesis in
conifer species. To investigate the biosynthesis of these compounds in the economically and
environmentally important conifer species, Picea abies (Norway spruce), genes encoding enzymes
called leucoanthocyanidin reductases (LAR), which are responsible for the biosynthesis of 2,3-trans-
(+)-flavan-3-ols, were identified and functionally characterized both in vitro and in vivo by
overexpression in transgenic spruce. This was accompanied by analysis of the flavan-3-ol and PA
content of spruce saplings which were wounded or artificially inoculated with the bark beetle
associated fungus Ceratocystis polonica, the causal agent of an economically important forestry
disease in Europe. Reverse-phase high pressure liquid chromatography (HPLC) was employed for the
analysis of monomeric and dimeric flavan-3-ols in combination with a novel acid hydrolysis method
and normal phase size exclusion chromatography for the analysis of polymers. Whereas spruce bark
was found to contain flavan-3-ol units with only 2,3-trans-stereospecificity, dimeric and polymeric
PAs contained flavan-3-ols with both 2,3-frans-(+)- and 2,3-cis-(-)-stereospecificity. Levels of
monomers as well as PAs with a higher degree of polymerization increased dramatically in spruce
bark after infection by C. polonica. In accordance with their role in the biosynthesis of 2,3-trans-(+)-
flavan-3-ols, transcript abundance of PalLAR genes also increased significantly during fungal
infection. Bioassays with C. polonica revealed that 2,3-trans-(+)-catechin and PAs act as agents

inhibiting fungal growth and thus can be considered chemical defense compounds in P. abies.
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4.2 INTRODUCTION

Proanthocyanidins (PAs), also known as condensed tannins, are oligomeric or polymeric
natural products produced in the vegetative structures of most woody plant species as well as in the
seed coats of many herbaceous plants (Dixon et al., 2005). The basic structural units of these
compounds are flavan-3-ols, based on a Cy¢-C;5-Cg flavonoid skeleton. Flavan-3-ol units in PA chains
can differ structurally according to the stereochemistry of the asymmetric carbons on the C-ring,
which are commonly either 2,3-frans giving (+)-catechin or 2,3-cis giving (-)-epicatechin (Figure
4.1). The structural diversity of PAs is further enhanced by changes in the structure of the B-ring,
which can be monohydroxylated (2,3-cis-(-)-epiafzelechin or 2,3-trans-(+)-afzelechin),
dihydroxylated (2,3-cis-(-)-epicatechin or 2,3-trans-(+)-catechin) or trihydroxylated (2,3-cis-(-)-
epigallocatechin or 2,3-trans-(+)-gallocatechin). In the formation of PAs, flavan-3-ol units are
commonly linked from the C4 position of the extender units to the C8 position of the terminal unit
(referred to as a 4 — 8 linkage) (Figure 4.1), or less common is a C4 — C6 linkage. The greatest
source of structural variability in these compounds, however, is the length of the polymer (degree of
polymerization), as PAs can vary in length from dimers to hundreds of monomer units per chain (for
complete overview, see Ferreira and Slade, 2002).

Within angiosperms, flavan-3-ols and PAs appear to function as protectants against various
biotic and abiotic stresses. Their role in providing tolerance to UV irradiation (Jaakola et al., 2004)
and ozone fumigation (Karonen et al., 2006) by decreasing oxidative stress has been demonstrated in
numerous plant species. These compounds are also reported to be constitutive defenses against
mammalian (Theodoridou et al., 2010) and insect herbivory (Feeny, 1970; Donaldson and Lindroth,
2004). Moreover, PAs and flavan-3-ols have been shown to negatively affect bacterial growth
(Scalbert, 1991) as well as transcription of quorum-sensing-regulated genes which are necessary for
bacterial biofilm formation (Vandeputte et al., 2010). These compounds can also inhibit fungal spore
germination (Andebrhan et al., 1995) and suppress melanin biosynthesis (Chen et al., 2006) which is
an important virulence factor in many plant pathogenic fungal species (Ebole, 2007). PAs and flavan-
3-ols have also been studied for many years for their biomedical applications in the prevention of
oxidative stress (Nichols and Katiyar, 2010) and inhibition of cholesterol accumulation (Blade et al.,
2010) in mammals. However, in conifers the functions of flavan-3-ols and PAs during insect or
pathogen attack are poorly studied, despite their abundance in economically important and
widespread genera such as spruce and pine. In spruce, it has been suggested that phenolic compounds
may play a pivotal role in defense against herbivores and pathogens due to the appearance of

fluorescent inclusion bodies in the phloem parenchyma cells of pathogen challenged bark (Franceschi
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et al., 2005). Since PAs are abundant constituents of spruce bark, it is likely that these compounds

might be involved in this apparent defensive response.
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Figure 4.1: Biosynthesis of proanthocyanidins, 2,3-trans-(+)- and 2,3-cis-(-)-flavan-3-ols.
Dihydroflavonol reductase (DFR) reduces dihydroflavonol to leucoanthocyanidin which serves as
substrate for leucoanthocyanidin reductase (LAR) to form 2,3-trans-(+)-flavan-3-ols or for anthocyanidin
synthase (ANS) to form anthocyanidin. Anthocyanidin is reduced by anthocyanidin reductase (ANR) to
form 2,3-cis-(-)-flavan-3-ols. Flavan-3-ols appear to form terminal as well as extender units of
proanthocyanidins and leucoanthocyanidins have been proposed to form extender units of growing

proanthocyanidin chains.
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The biosynthesis of flavan-3-ols and the accumulation of PAs have been studied in
angiosperm species of the Vitaceae (Bogs et al., 2005), Rosaceae (Pfeiffer et al., 2006; Almeida et al.,
2007) and Fabaceae (Xie et al., 2004; Pang et al., 2009) as well as in the model plant Arabidopsis
thaliana (Xie et al., 2004; Kitamura et al., 2010). Monomers of PAs are produced in the last steps of
the flavonoid pathway. Depending on the stereochemistry of the asymmetric carbons on the C-ring,
there are two biosynthetic routes for the formation of flavan-3-ols from the common substrate,
leucoanthocyanidin (Figure 4.1). For the biosynthesis of the 2,3-cis-(-)-flavan-3-ol (e. g. 2,3-cis-(-)-
epicatechin), leucoanthocyanidin is converted to anthocyanidin by anthocyanidin synthase (ANS). In
the second phase of this 2-step process, anthocyanidin is reduced by anthocyanidin reductase (ANR)
to form the flavan-3-ol (Xie et al., 2004). For the biosynthesis of 2,3-trans-(+)-flavan-3-ol (e. g. 2,3-
trans-(+)-catechin), leucoanthocyanidin is reduced to the corresponding flavan-3-ol (Tanner et al.,
2003) by leucoanthocyanidin reductase (LAR) (Figure 4.1). ANR and LAR are both NADPH/NADH-
dependent isoflavone-like reductases belonging to the reductase-epimerase-dehydrogenase
superfamily. Genes coding for these enzymes can occur as single copies or as gene families in
different PA producing plant species (Bogs et al., 2005; Paolocci et al., 2007). Although the
biosynthesis of flavan-3-ols has only been documented for a few plant species, it has become clear
that not all plant species utilize both pathways for the production of PA units (Xie et al., 2004).

Despite considerable efforts, the mechanism by which PA polymers are formed is presently
not well understood. The most commonly accepted hypothesis is that leucoanthocyanidins form
extender units, which are oxidatively coupled, via quinone methides, to a flavan-3-ol terminal unit
(Creasy and Swain, 1965). Alternatively, formation of PAs by non-enzymatic oxidative coupling of
flavan-3-ols or anthocyanidins has been proposed (Haslam, 1980). However, because PA composition
is very specific for individual plant species, an enzyme-mediated mechanism for PA polymerization
has also been envisioned (Stafford, 1983).

To date very little is known about the biosynthesis and structure of monomeric and polymeric
flavan-3-ols in conifers. Studying the biosynthesis and accumulation of these compounds in conifer
tree species, whose biosynthetic routes could be ancestral to angiosperm pathways, might lead to
greater understanding and knowledge in this field, which is of interest to both plant biochemistry and
biomedical research. In consequence we identified LAR genes involved in 2,3-trans-(+)-flavan-3-ol
biosynthesis in the conifer species Picea abies (Norway spruce) and studied their function, both in
vitro and in vivo by overexpression in transgenic spruce. To gain insights into the biological relevance
of flavan-3-ols and PAs in P. abies, we determined the constitutive flavan-3-ol and PA profiles in

spruce bark using novel analytical approaches and monitored the quantitative and qualitative changes
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in these compounds after infection by the bark beetle-associated blue stain fungus (Ceratocystis

polonica).

4.3 RESULTS

4.31 Flavan-3-ol content in Norway spruce (P. abies) bark infected with C. polonica

In order to determine if P. abies modulates its monomeric, dimeric and polymeric flavan-3-ol
content in response to infection by the bark beetle associated fungus Ceratocystis polonica, four-year
old spruce saplings were wounded and inoculated with two strains of this fungus (isolate 1 and isolate
2) differing in virulence. Controls included unwounded saplings and those subjected to wounding
without fungal inoculation. Bark tissue was harvested for analysis 2, 7, 14 and 28 days after
treatment.

Monomeric flavan-3-ols in spruce bark consisted of mixtures of 2,3-trans-(+)-catechin and
2,3-trans-(+)-gallocatechin with no detectable levels of 2,3-cis-(-)-epicatechin. Levels of catechin and
gallocatechin (Figure 4.2A) increased significantly over the experimental time-course of 28 days in
inoculated as well as in wounded control bark (p < 0.001), but higher levels of both flavan-3-ols were
observed in inoculated bark when compared to wounded control bark (p < 0.001). There were no
differences in the responses of spruce bark to infection by the virulent and avirulent fungal isolates.
The ratio of catechin:gallocatechin changed from 11:1 at 2 days after infection to 20:1 at 28 days after
infection (Figure 4.2A).

Dimeric PAs that could be detected in spruce bark were mainly the procyanidins
(dihydroxylated B-ring) PA B1 (2,3-cis-(-)-epicatechin-(4p—8)- 2,3-trans-(+)-catechin) and PA B3
(2,3-trans-(+)-catechin-(4—8)- 2,3-trans-(+)-catechin). Low levels of dimeric prodelphinidins
(trihydroxylated B-ring) could also be detected, but were not quantified. Concentrations of the
dimeric PAs, B1 and B3 increased significantly over the 28 day period (Figure 4.2B) in inoculated
and in wounded control bark of spruce saplings (p < 0.001). Major changes in dimer concentrations in
treatments were due mainly to significantly higher PA Bl content in infected bark compared to
concentrations in wounded controls (p < 0.001). Increases in PA B3 were similar in inoculated and
wounded bark over the time course of the experiment (p = 0.055). Between 2 days and 28 days post-
inoculation the ratio of PA B1:PA B3 changed in inoculated bark more than 10-fold from 0.11:1 to
1.28:1.
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Figure 4.2: Concentration of soluble monomeric and polymeric flavan-3-ols in spruce bark which was
infected with C. polonica or wounded over a time course of 28 days. Total monomers consisting of
catechin and gallocatechin (A) and total dimers consisting of proanthocyanidin B1 and B3 (B) are
presented. Total polymers are expressed as the total of monomeric units detected after hydrolysis;
monomers detected were gallocatechin, catechin, epigallocatechin and epicatechin (C). The pie charts
represent the ratio of the different soluble monomeric flavan-3-ols (A), dimeric proathocyanidins (B) and
the monomeric flavan-3-ols detected after hydrolysis (C) as determined 28 days after inoculation for

isolate 2 infected spruce bark. The degree of polymerization (D) of flavan-3-ols at 28 days after the onset
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A method was developed to measure the amount of polymeric PAs as total monomeric units
after complete hydrolysis. Monomers detected in spruce bark tissue after hydrolysis were 2,3-trans-
(+)-catechin and 2,3-trans-(+)-gallocatechin and high concentrations 2,3-cis-(-)-epicatechin and 2,3-
cis-(-)-epigallocatechin. Total monomers after hydrolysis (Figure 4.2C) increased significantly over
the 28 day infection period in wounded control as well as in infected bark (p < 0.001). However,
hydrolysis yielded significantly more units with 2,3-frans stereochemistry in infected tissue than in
wounded control bark (p < 0.001). No statistically different levels of the 2,3-cis stereoisomers
(epicatechin and epigallocatechin) could be observed between infected and wounded control bark. At
28 days after infection the ratio of hydrolyzed monomers epicatechin:catechin:gallocatechin:
epigallocatechin was 8:5:0.2:1 in infected spruce bark, which differs significantly from the 7:2:0.1:1
ratio observed 2 days post-inoculation.

In order to determine the degree of polymerization in non-wounded, wounded and infected
bark tissue, size exclusion chromatography coupled to fluorescence detection (FLD) (Kelm et al.,

2006) was conducted (Figure 4.3).

v

(1) Fluorescence detector, Ex=276, Em=316

1400

1200

1000

800

600

400

200

0 5 10 15 20 25 30 35 40 45 min
_(1) 289.0 _(2) 5771 _(3) 865.2 (4) 1153.2
290 580 870 1150
(5) 14413 6) 17293 EEE (8) 23053
L s

1440

1730

2020

2310

Figure 4.3: LC-FLD chromatogram of proanthocyanidin polymers with mass spectra of each polymeric

compound detected.
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By using this method polymers up to 9-mers could be quantified (Figure 4.2D). The
abundance of polymers in all analyzed treatments decreased with degree of polymerization
(p<0.0001). There were for example significantly more monomer units allocated to trimers than to
tetramers. At 28 days after infection flavan-3-ols with degree of polymerization up to a 9-mer were
significantly higher in infected tissue than in the wounded control (p < 0.0001), whereas the wounded
control treatment contained significantly higher levels than the non-wounded controls (p < 0.0001).
There were, however, no significant differences in the degree of polymerization between trees

infected by the different fungal isolates.

4.3.2 Identification of spruce leucoanthocyanidin reductase genes and their phylogenetic

relationships

In order to study the biosynthesis of flavan-3-ols in Norway spruce, LAR gene candidates
were identified by BLAST sequence comparisons with known genes from angiosperms (Tanner et al.,
2003; Pfeiffer et al., 2006). Searching more than 180,000 expressed sequence tags from Picea
sitchensis and 250,000 from Picea glauca in the Treenomix database (Ralph et al., 2008) revealed
numerous distinct contigs from both spruce species with similarity to LAR coding regions from
angiosperm species. By using sequences from P. glauca and P. sitchensis as templates for primer
design, three full-length LAR candidates could be amplified from P. abies cDNA by PCR. Predictive
algorithms suggested that N-terminal signal sequences were absent in candidate LAR sequences.

Phylogenetic analysis revealed a clear evolutionary divergence between ANR and LAR
amino acid sequences (which shared about 10% sequence similarity) (Figure 4.4). There was also a
clear distinction between angiosperm and gymnosperm sequences for both enzyme classes. Conifer
LAR protein sequences shared only between 51% and 57% sequence identity with LAR sequences
from angiosperms whereas deduced amino acid sequences for PaLAR were between 79% and 87%
identical and had 62% to 64% similarity to an uncharacterized LAR sequence from Pinus taeda (Bogs
et al., 2005). Phylogenetic analysis also revealed separate sub-clades for LAR protein sequences from
the Rosaceae (Pfeiffer et al., 2006; Almeida et al., 2007) and the Fabaceae (Tanner et al., 2003),
which showed between 63% and 65% similarity.

Two PaANR-like candidate sequences were 66% similar and shared 62% and 70% sequence
identity with an uncharacterized ANR from Ginkgo biloba (Shen et al., 2006). ANR-like protein

sequences from P. abies and selected angiosperm ANR had 50% to 57% sequence similarity.
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Figure 4.4: Neighbor-joining tree of the deduced amino acid sequences of PaLAR and sequences of
characterized LAR enzymes from angiosperms. Evolutionary distances were calculated using the JTT
matrix. The tree was constructed using the minimum evolution method with pair-wise elimination of

alignment gaps. Bootstrap values are based on 10,000 replicate trees.

4.3.3 In vitro functional characterization of recombinant PalLAR

Functional characterization of the three putative LAR enzymes from P. abies was
accomplished via heterologous expression in a bacterial system. SDS-PAGE as well as Western
blotting revealed that the 41 kDa subunit of these homodimeric enzymes was present in low
concentrations. Catalytic activity of recombinant PalLAR was determined by incubating expressed

enzymes with NADPH and leucocyanidin or leucodelphinidin. All three PalLAR accepted the
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substrate leucocyanidin and yielded 2,3-trans-(+)-catechin (Figure S4.1). None of the PalLAR
enzymes accepted the trihydroxylated substrate leucodelphinidin under the assay conditions
employed, which could form 2,3-trans-(+)-gallocatechin. Optimal LAR activity with leucocyanidin
was attained at 25°C at a pH of 7.5 (Figure S4.1). Low levels of catechin detected in control reactions

were due to contamination in the substrate, which could easily be corrected for by simple subtraction.

4.3.4 In vivo characterization of PaLAR enzyme function by over-expression of PaLAR3 in

transgenic P. abies

To confirm the in vivo activity of our LAR genes, embryonic spruce tissue (line 186/3¢ VIII)
was transformed with PaLAR3 under the control of the inducible promoter ubil using a disarmed
Agrobacterium tumefaciens strain (Schmidt et al., 2010). Two transgenic PaLAR3 seeding lines (line
1 and line 2) were obtained. One-year-old transformed saplings grown in potting soil were used for

transcript and metabolite analysis.
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Figure 4.5: PaLAR3 transcript accumulation (A) and metabolite accumulation (B) in wild type and two
transgenic LAR3 over-expressing lines. Transcript abundance was measured by quantitative real-time PCR
using CYBR green for detection, normalized against PaUBI and calibrated against one wild-type replicate.

Metabolites were measured by LC-FLD. Error bars represent standard errors.
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Relative transcript accumulation of PaLAR3 in transgenic seedling stems was determined by
quantitative real-time PCR. PalLAR3 transcript abundances were approximately 1.56-fold higher in
PalAR3 linel than in PaLAR3 line 2 and wild-type seedlings (p = 0.03) (Figure 4.5 A). Monomeric
flavan-3-ols as well as PA concentrations (polymers not shown) in both PalLAR3 lines were
significantly higher than in the wild-type (p < 0.009), providing evidence that the PalLAR3 gene
encodes a functional LAR enzyme (Figure 4.5 B).

4.3.5 Effect of fungal inoculation on LAR transcription

To determine if fungal inoculation leads to the activation of LAR transcription in spruce,
RNA from bark tissue of wounded and inoculated spruce saplings was extracted and transcribed to
cDNA. Transcript accumulation of PaLAR, measured by quantitative real-time PCR, increased in
inoculated saplings compared to the wounded control saplings (Figure 4.6). PaLAR1 and PalAR3
transcript levels increased significantly in inoculated saplings between 2 and 7 days post-inoculation
(p < 0.01) while transcript accumulation of PalLAR2 increased at 28 days after wounding or infection
(p=0.04).

Increases in transcript accumulation of PaLAR1 and PalLAR?2 in response to wounding were
amplified by fungal inoculation. Levels of PaLAR1 mRNA in inoculated saplings were 8 to 12 fold
higher than in the wounded control and between 2000 and 6000-fold higher than in non-wounded
saplings. Transcript accumulation of PaLAR2 was 2-fold higher in inoculated saplings than in the
wounded saplings and between 180 to 200-fold higher than in bark of non-wounded saplings. There
were no differences in PalLAR3 transcript accumulation in the bark of wounded control and non-
wounded saplings, but there was a 3 to 4-fold increase in transcript accumulation in the bark of

inoculated saplings.

4.3.6 Growth of C. polonica in the presence of catechin and proanthocyanidins

Growth of C. polonica isolate 2 (Figure 4.7) plated on medium containing 100 ug 2,3-trans-
(+)-catechin or PAs was significantly lower than on medium without flavan-3-ols (p < 0.001). Fungal
growth on medium containing catechin was also significantly lower than growth on medium
containing PAs (p < 0.001). There were no significant differences in relative growth between isolates

1 and 2 on control, catechin or PA medium.
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Figure 4.6: Relative transcript accumulation of PaLAR1 (A), PaLAR2 (B) and PaLAR3 (C) in bark from

clonal spruce saplings over a time course of 28 days after wounding or inoculation with two C. polonica

isolates. Transcript abundance was measured by quantitative real-time PCR using CYBR green for

detection, normalized against PaUBI and calibrated against a non-wounded bark sample from the same
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Figure 4.7: Growth of C. polonica isolate 2 on solid medium containing100 pg/ml of a complex mixture

of grape proanthocyanidins or 100 pg/ml catechin. Error bars represent standard errors.
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4.4 DISCUSSION

4.4.1 Analysis of proanthocyanidins (PA) and flavan-3-ols

To learn more about the polyphenolic composition of Picea abies and the regulation of phenolic
biosynthesis during infection by the bark beetle associated fungus Ceratocystis polonica, we sought
to analyze constitutive and fungus-induced profiles of flavan-3-ols and PAs in treated trees at various
time points after infection. Methods were established for elucidating the chemical structure and
abundance of monomeric and dimeric flavan-3-ols, while for the polymeric PAs the monomeric
composition and degree of polymerization was determined (up to 9-mers). The current work used a 3-
step procedure analysis of PAs in P. abies: (1) Monomeric and dimeric flavan-3-ols in plant extracts
were analyzed and quantified by reverse-phase HPLC. (2) Polymeric flavan-3-ols were completely
hydrolyzed under acidic conditions in the presence of a strong reducing agent, thereby preventing
oxidation and minimizing epimerization. Hydrolysis products were then analyzed by reverse-phase
HPLC to yield quantitative and qualitative information on the composition of the individual flavan-3-
ol units in PAs. (3) PAs were separated by normal-phase chromatography to accurately determine the
size distribution of oligomers using a method developed by Kelm et al. (2006). Although high
resolution mass spectrometry was employed to establish and verify analytical methodologies, the
routine analysis of PAs can be accomplished using these methods with only a single high pressure
liquid chromatography (HPLC) instrument equipped with a fluorescence detector and 2 different
analytical grade HPLC columns.

Previous studies had quantified PAs by making use of colorimetric methods, such as the acid-
butanol test (Porter et al., 1986; Mellway et al., 2009) and the dimethylaminocinnamaldehyde test (de
Pascual-Teresa et al., 2000; Almeida et al., 2007). Although these methods can deliver accurate
quantitative measurements when the correct controls and standards are included in the analysis, they
do not yield information on PA structure, composition and degree of polymerization. Methods have
also been developed to combine the quantitative colorimetric assays with HPLC-UV to determine PA
composition (Pang et al., 2008). However, these methods as well as the commonly used thiolysis
method (Guyot et al., 1998), only yield indirect, non-quantitative information on the degree of

polymerization of PAs due to incomplete hydrolysis or quantification of highly unstable molecules.

4.4.2 Biosynthesis of flavan-3-ols in spruce

The flavan-3-ols, 2,3-trans-(+)-catechin (90-95%) and 2,3-trans-(+)-gallocatechin (5-10%),

are the predominant monomers extracted from spruce bark. The enzymes responsible for the synthesis
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of these compounds are leucoanthocyanidin reductases (LAR), which accept the substrates
leucocyanidin or leucodelphinidin to form catechin or gallocatechin, respectively (Tanner et al.,
2003). Three LAR transcript sequences were identified in Norway spruce. In vitro, LAR enzymes
accepted the substrate leucocyanidin to produce 2,3-trams-(+)-catechin. To confirm the in vitro
characterization, two lines of transgenic spruce overexpressing PalLAR3 were developed. Transgenic
lines synthesized significantly more gallocatechin, catechin and PAs than the wild type, providing
further evidence that the candidate genes from spruce encode active LAR enzymes.

Although significantly higher flavan-3-ol concentrations were recorded in both transgenic
LAR3 overexpressing lines than in the wild type, transcript accumulation of the LAR3 gene in line 2
was similar to that of the wild type. A possible explanation for this discrepancy is that sampling did
non coincide with the major period of biosynthesis. In bilberry, for example, gene expression in the
flavonoid pathway was significantly higher in spring and early summer than at later time points,
although flavan-3-ol and PA accumulation remained high during the later part of the season (Martz et
al., 2010). In this study seedlings were harvested for analysis four months after their spring growth
flush. This may have been too late to detect major differences in gene expression of flavan-3-ol
biosynthetic enzymes, although differences in accumulation were still evident.

After hydrolysis of spruce bark PAs, high levels of 2,3-cis-(-)-epicatechin and 2,3-cis-(-)-
epigallocatechin were released. However, the free flavan-3-ol monomers from spruce are 2,3-trans-
(+)-isomers. The 2.,3-cis-(-)-isomers detected after hydrolysis of PAs may therefore represent
extender units of PA chains. Although PAs with 2,3-cis-(-)-epicatechin are significantly more
abundant in nature than PAs with 2,3-trans-(+)-catechin extender units, it is not known how the
epicatechin extender units in the PA polymers arise.

Plants producing 2,3-cis-(-)-epicatechin as monomers, dimers and polymers, contain a
pathway for the biosynthesis of the 2,3-cis-(-)-flavan-3-ol isomers separate from the 2,3-trans-flavan-
3-ols. In this pathway leucoanthocyanidin is first converted to anthocyanidin by anthocyanidin
synthase, and the anthocyanidin is reduced by anthocyanidin reductase (ANR) to form the 2,3-cis-(-)-
flavan-3-ol. The absence of free monomeric epicatechin in spruce extracts, however, argues against
the presence of epicatechin producing enzymes in this tree species. The origin of epicatechin in the
PA polymers in spruce is therefore still an open question.

Several reaction mechanisms have been proposed for the oxidative coupling of PAs. The
most widely accepted hypothesis is that 2,3-trans-(+)-leucoanthocyanidins are converted to
carbocations via quinone methide intermediates which can be coupled to a terminal flavan-3-ol unit to
form a growing PA chain (Creasy and Swain, 1965). However, this reaction mechanism can not

account for the 2,3-cis stereochemistry of extender units of PAs in spruce. Similarly, a reaction
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mechanism employing monomeric flavan-3-ols as extender units as proposed by Oszmianski and Lee
(1990) would not explain the altered stereochemistry of the 2,3-cis-(-)-epicatechin. Reaction
mechanisms where anthocyanidins, which can occur in both stereoisomeric forms, are proposed as
possible precursors for extender units in PA chains offer a more probable model for PA biosynthesis
in spruce. Haslam et al. (1980) suggested that anthocyanidins, that are present in acidic conditions as
flavylium ions can be oxidized to quinone methides, which can form carbocations for PA chain
elongation. An enzyme-mediated alternative to this hypothesis is that anthocyanidins are reduced to
flav-3-en-3-ols by ANR (Xie et al., 2004; Dixon et al., 2005), which can be oxidized to carbocations

to form extender units of a PA chain (Haslam, 1977).

4.4.3 Regulation of PA biosynthesis in spruce in response to fungal infection

One of the main objectives of this study was to examine the regulation of flavan-3-ol
biosynthesis in spruce during biotic stress such as wounding or fungal infection. Earlier histological
studies revealed that polyphenolic-like substances accumulated in phloem parenchyma cells in
defense-induced spruce bark (Nagy et al., 2004; Franceschi et al., 2005). Since flavan-3-ol and PA
accumulation were never directly measured in these phloem parenchyma cells, it was still an open
question whether these compounds were involved in the defense response. This study, however,
clearly demonstrated that PAs and flavan-3-ols are inducible defense compounds in spruce which
accumulate more than 4-fold in bark tissue over time and may be responsible for the anatomical
changes previously observed in the phloem parenchyma during wounding or fungal infection. It could
also be shown that increased accumulation of these metabolites correlated with increased transcript
levels of genes involved in the biosynthesis of 2,3-trans-(+)-catechin.

Simple wounding induced significantly lower LAR transcript accumulation as well as lower
levels of monomeric and polymeric flavan-3-ols than infection by the bark beetle transmitted fungus,
C. polonica. This suggests that biosynthesis of PAs may have evolved in spruce as a defense
mechanism against fungal infection. In support of this hypothesis, growth of C. polonica was reduced
when the fungus was cultured on medium containing catechin or PAs. Flavan-3-ols have been
reported to inhibit melanin (black pigmentation) biosynthesis (Yamakoshi et al., 2003; Chen et al.,
2006), which is an important virulence factor for many pathogenic fungi (Liu and Nizet, 2009). Since
C. polonica is a black melanin containing fungus (Wang et al., 2010) flavan-3-ols could be highly
effective defense compounds inhibiting an essential pathway in this economically important tree

pathogen.
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4.5 EXPERIMENTAL PROCEDURES

4.5.1 Identification of putative LAR genes from Picea

Protein LAR sequences from Malus domestica, Pyrus comunis (Pfeiffer et al., 2006) as well as an
anthocyanidin reductase sequence from Ginkgo biloba (Shen et al., 2006) were used to screen P.
sitchensis and P. glauca EST collections in the TREENOMICS database (Ralph et al., 2008) for
candidate cDNA sequences using tBLASTn. Open reading-frames from candidate sequences were
detected manually using the software package DNA Star Version 8.02 (DNASTAR Inc., Madison,
USA) and the absence of predicted signal peptides at the N-terminus was confirmed by SignalP

software (http://www.cbs.dtu.dk/services).

4.5.2 Cloning and sequencing PaLAR

RNA was extracted from fresh bark tissue from four-year-old P. abies saplings according to the
method developed by Kolosova et al. (2004). One pg of total RNA was converted to cDNA in a 20 ul
reverse transcription reaction using SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA,
USA) and 50 pmol PolyT;,.is) primer (Invitrogen).

Primers were designed for P. abies candidate sequences by using the N-and C-terminal sequences of
three putative LAR genes (Gateway ™ compatible) and two ANR genes (pYES™ vector compatible)
from P. sitchensis and P. glauca as templates (primer sequences are provided in supplementary table
S4.1). Pseudomature forms of PaLAR cDNA were PCR amplified with primers (Table S4.1) using
Platinum Taq™ high fidelity DNA polymerase (Invitrogen) and purified with the QIAquick™ PCR
purification kit (Qiagen, Hilden, Germany). Gateway' " entry clones were made by using BP clonase
IT and pPDONR207 (Invitrogen) following the manufacturer’s protocols.

pDONR207 constructs containing PaLAR genes were sequenced using 10 pmol of gene specific
primers and the BigDye Terminator v 3.1 Cycle Sequencing Kit on an ABI Prism R 3100 sequencing
system (Applied Biosystems, Darmstadt, Germany). Sequences from each construct were assembled

and translated into protein sequence using DNA Star software.

4.5.3 Protein sequence analysis of PaLAR

LAR protein sequences from P.abies as well as protein sequences of LAR and ANR genes with
confirmed enzyme function (Table S4.2) were aligned with the automatic alignment program MAFFT

v 6 (http://mafft.cbrc.jp/alignment/server/) using the BLOSUM 62 scoring matrix with 1.53 gap

opening penalty and an offset value of 1.
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Phylogenetic analyses were conducted using MEGA v. 4 (Center for Evolutionary Medicine and
Informatics, Tempe, AZ, USA) employing the Minimum Evolution method. Evolutionary distances
were calculated with the Jones, Taylor and Thornton matrix. The tree was searched with pair-wise
elimination of alignment gaps. Statistical likelihood of tree branches was tested with 10,000 bootstrap

replicates.

4.5.4 Heterologous expression of PaLAR genes in E. coli

Three putative PaLAR pDONR207 constructs were cloned with LR clonase II (Invitrogen) according
to the manufacturer’s instructions into the Gateway '™ compatible expression vector pHOGW (Yu and
Liu, 2006) which contains 9 histidine residues 5’ of the N-terminus of the expressed protein. All
constructs were verified by sequencing. Arctic Express™ (DE3) chemically competent E. coli cells
(Stratagene, La Jolla, CA, USA), which co-express cold adapted chaperonins to overcome protein
misfolding and insolubility, were transformed with the expression constructs. For protein expression,
single colonies were inoculated into 5 ml Luria-Bertani (LB) broth with 1 pg ml" kanamycin and
grown for 16 hours at 24 °C. The 5 ml starter cultures were used to inoculate 100 ml Overnight
Express Instant TB Medium (Novagen, Madison, WI, USA) supplemented with 1% (v/v) glycerol
and 1 pg ml"' kanamycin.

Bacterial cultures were grown for 3 days at 12°C (220 rpm) and harvested by centrifugation. Bacteria
were resuspended in 10 ml buffer containing 50 mM Bis-Tris (pH 7.5), 10% (v/v) glycerol, 0.5 mM
phenylmethylsulphonyl fluoride and 1 mM dithiothreitol (DTT) and disrupted by sonification for 3
minutes using 2 cyles at 65% power using a Bandelin Sonoplus HD 2070 sonifier (Bandelin
Electronics, Berlin, Germany). Insoluble cell debris was removed from the lysate by centrifugation at
16,000 rpm for 30 minutes at 4°C. The presence of the expressed protein in the E. coli lysate was
confirmed by Western blot using an anti-histidine-horseradish peroxidase conjugated antibody
(Novagen, Nottingham, UK) and chemo-illuminescence for visualization.

Expressed proteins were purified from the crude lysate by affinity chromatography with a 1 ml His
Trap ™ FF column (GE Healthcare Life Sciences, Munich, Germany) on an AEKTA 900
chromatography system (GE Healthcare) using a wash buffer containing 50 mM Bis-Tris (pH 7.5)
and 10% (v/v) glycerol. Histidine-tagged proteins were eluted from the column with wash buffer
amended with 250 mM imidazole. Fractions containing the expressed proteins were desalted into an
assay buffer (50 mM Bis-Tris pH 7.5, 10% (v/v) glycerol, 1 mM DTT) on DG-10 desalting columns
(Bio-Rad, Munich, Germany) and stored at -20°C. The protein concentration was determined using

the Bradford reagent (Bio-Rad).
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4.5.5 In vitro functional characterization of PaLLAR expressed in E. coli

The unlabelled substrates leucoanthocyanidin and leucodelphinidin were purchased from TransMit
Flavonoid Forschung (Marburg, Germany). Recombinant LAR1, LAR2 and LAR3 enzyme activities
were assayed in 200 pl reaction volumes containing 19 pg purified enzyme, 500 nmol NADPH (Carl
Roth GmbH, Karlsruhe, Germany) and 200 nmol leucoanthocyanidin or leucodelphinidin in assay
buffer. Reaction mixtures were incubated for 3 hours at 28°C before the enzyme assay was stopped
by acidification with 10 ul of 0.1 N HCl and extracted with 3 volumes of ethyl acetate after addition
of 10 pg ml™" apigenin-7-O-glucoside (Carl Roth) as an internal standard. The ethyl acetate extracts
were evaporated under a stream of nitrogen gas and re-dissolved in 50 pl methanol for LC-ESI-MS
analysis. Negative control assays were initiated without substrate or with heat-denatured enzyme
preparations. The temperature optimum for LAR activity was determined at 25, 30 and 35°C. pH
optima were determined by using 50 mM Bis-Tris at pH 6 to pH 8.5.

4.5.6 Genetic transformation of P. abies callus with PaLAR3

The PaLAR3 pDONR207 was cloned with LR clonase II (Invitrogen) into the Gateway ™ compatible
binary vector pPCAMGW (Schmidt ez al., 2010). pPCAMGW LAR3 or pCAMBIA 2301 (as a vector
control) were transformed into the chemically competent disarmed Agrobacterium tumefaciens strain
C58/pMP90 (Schmidt et al., 2010) and then used to transform an embryonic P. abies cell culture (line
186/3¢ VIII ) as described by Schmidt et al. (2010). From the 6 kanamycin resistant transgenic lines

obtained, line 1 and line 2 were selected for further experiments.

4.5.7 Somatic embryogenesis of P. abies and plant regeneration

Transgenic embryonic tissue was maintained at 24°C in the dark and sub-cultured every 14 days. For

plant regeneration, transgenic embryonic tissue was placed on semi-solid EMM1 medium (Walter et

al., 1999) amended with 6 g L' gelrite (Duchefa, www.duchefa.com), 30 g L™ sucrose and 15 mg L™
abscisic acid for 2 weeks. The culture was then placed on EMM2 medium (4.5 g L™ gelrite) (Walter
et al., 1999) for 5 weeks. Embryos, 3-5 mm in size, were placed on a sterile nylon mesh in 3 wells of
a six-well cell cluster. The other 3 wells were filled with sterile water to maintain humidity. Embryos
were stored at 4°C for 7 days in the dark. For germination, developed embryos were transferred to
MLV medium (Klimaszewska et al., 2005) with 40 g L™ sucrose and 6 g L' gelrite (Duchefa). The
cultures were placed for 6 weeks under low light conditions (5 pmol m™ s™) for 16 h day™ at 24°C.
Somatic embryos were collected and placed horizontally on MLV medium with 6 g L gelrite

(Duchefa) under moderate light conditions (45 pumol m™ s™). After three weeks, plants were
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transferred to Magenta GA-7 (Sigma) plant culture boxes and placed under higher light conditions
(100 pmol m™ s™) to develop roots, epicotyls and needles. Well developed plantlets were planted in
soil substrate (3:1:1, fibric peat:vermiculite- 2-3 mm grain size:perlite) in small plastic containers (4 x

4 cm).

4.5.8 Inoculation of P. abies saplings with C. polonica

Two C. polonica isolates (CMW 7749 = isolate 1 and CMW 7135 = isolate 2) provided by the culture
collection of the Forestry and Agricultural Biotechnology Institute (University of Pretoria, South
Africa) were grown on 2% (w/v) malt extract agar (MEA; Karl Roth GmbH) for 12 days at 25°C in
the dark.

Eight-year-old P. abies saplings originating from the 3369-Schongau clone (Samenklenge und
Pflanzengarten Laufen, Germany) were grown in an outdoor plot for four years prior to the
experiment. Inoculations of saplings with C. polonica were performed three weeks after their
‘spring’-flush (10 June 2008). A bark plug, 8 mm in diameter, was removed between the second and
third branch-whorl from the upper part of the sapling with a cork borer. An 8 mm plug from one of
the two C. polonica cultures was placed into the wound with the mycelium oriented toward the wood
surface and sealed with parafilm. For the wounded control treatment, plugs of sterile MEA were
inserted into the wound.

Bark tissue samples from inoculated and wounded saplings were harvested 2 days, 7 days, 14 days
and 28 days after the onset of the experiment. Five saplings were sacrificed per time point for each
treatment (Control, CMW 7749 and CMW 7135) to follow a multivariate repeated measures model
experimental design. Bark material was flash-frozen immediately after harvest in liquid nitrogen and

stored at -80°C. Five replicate trees were used for each treatment per time point.

4.5.9 Quantitative real-time PCR

Total RNA from inoculated treatment and wounded control bark as well as transgenic PalL.AR3 over-
expresser lines and wild-type controls was isolated with the Invitrap™™ Spin Plant RNA Mini Kit
(Invitek, Berlin, Germany) following the protocols of the manufacturer except that an additional DNA
digestion step was included (RNase Free DNase set, Qiagen). RNA was quantified by
spectrophotometry. Reverse transcription of 1 pg RNA into ¢cDNA was achieved by using
SuperScript II reverse transcriptase (Invitrogen) and 50 pmol PolyT,.i5) primer (Invitrogen) in a
reaction volume of 20 pl. After cDNA was diluted to 10% (v/v) with deionized water, 1 ul diluted

cDNA was used as template for quantitative real-time PCR in a reaction mixture containing Brilliant
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SYBR Green QPCR Master Mix™ (Stratagene), 10 pmol forward and 10 pmol reverse primer.
Primer sequences for PaLAR1, PaLAR2 and PalAR3 are given in supplementary table S4.3. PCR was
performed using a Stratagene MX3000P thermocycler using the following cycling parameters: 5 min
at 95°C followed by 40 cycles of 30 s at 95°C, 30 s at 55°C and 30 s at 72°C, followed by a melting
curve analysis from 55°C to 95°C. Reaction controls included non-template controls as well as non-
reverse transcribed RNA. Transcript abundance was normalized to the transcript abundance of the
ubiquitin gene (Schmidt et al., 2010) (Table S4.3) and was calculated from three technical replicates
each of five biological replicates. Relative transcript abundance was calibrated against the transcript

abundance of five non-wounded control saplings.

4.5.10 Extraction of phenolic compounds from spruce

For extraction of phenolic compounds, spruce tissue was ground to a fine powder in liquid nitrogen
and lyophilized at 0.34 mbar pressure using an Alpha 1-4 LD plus freeze dryer (Martin Christ Gmbh,
Osterode, Germany). Approximately 80 mg dried tissue was extracted with 2 ml analytical grade
methanol for 4 hours at 4°C, then the extract was centrifuged at 3200 g and the supernatant was
recovered. Insoluble material was re-extracted with 1.5 ml methanol for 16 hours. Supernatants were
combined and evaporated to dryness under a stream of nitrogen. Dried samples were re-dissolved in 1
ml methanol containing 100 pg ml™ apigenin glucoside (Sigma) as internal standard. For LC-ESI-MS
or hydrolysis of condensed tannins, samples were diluted five-fold (v/v) with methanol. For LC-FLD

samples were diluted 20-fold (v/v) in acetonitrile.

4.5.11 Liquid chromatography-fluorescence detection (LC-FLD)

Condensed tannins were separated on a LiChrosphere diol column with dimensions of 250 X 4 mm
and a particle size of 5 um (Merck, Darmstadt, Germany) using an Agilent 1100 series HPLC
(Agilent Technologies, Santa Clara, CA, USA) employing a modified method previously described
by Kelm et al. (2006). Briefly, the total mobile phase flow rate for chromatographic separation was
1.2 ml min"'. The column temperature was maintained at 30°C. Tannins were separated using
acetonitrile:acetic acid (98:2) and methanol:water:acetic acid (95:3:2) as mobile phases A and B,
respectively, with the following elution profile: 0-35 min, 0-40% B in A; 35-40 min 40% B, 40-45
min 40-0% B and 45.1-50 min 0% B. Eluent was monitored by fluorescence detection with excitation

at 276 nm and emission at 316 nm.
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4.5.12 Liquid chromatography-mass spectrometry with electrospray ionization (LC-ESI-MS)

Compounds to be analyzed were separated on a Nucleodur Sphinx RP18ec column with dimensions
of 250 X 4.6 mm and a particle size of 5 um (Macherey Nagel, Dueren, Germany) using an Agilent
1100 series HPLC (Agilent Technologies, Santa Clara, CA, USA) with a flow rate of 1.0 ml min™".
The column temperature was maintained at 25°C. Phenolic compounds were separated using 0.2%
(v/v) formic acid and acetonitrile as mobile phases A and B, respectively, with the following elution
profile: 0-1 min, 100% A; 1-25 min, 0-65% B in A; 25-28 min 100% B; and 28-32 min 100% A.
Compound detection and quantification was accomplished with an Esquire 6000 ESI ion-trap mass
spectrometer (Brucker Daltronics, Bremen, Germany). Flow coming from the column was diverted in
a ratio of 4:1 before entering the mass spectrometer electrospray chamber. ESI-MS was operated in
negative mode scanning m z ' between 50 and 1600 with an optimal target mass of 405 m z . The
mass spectrometer was operated using the following specifications: skimmer voltage, 60 V; capillary
voltage, 4200 V; nebulizer pressure, 35 psi; drying gas, 11 1 min™'; gas temperature, 330°C. Capillary
exit potential was kept at -121 V.

For mass determination of PAs, the same chromatographic separation method was used as for LC-
FLD, using a flow rate of Iml min". To enhance ionization, 10 mmol 1" ammonium acetate in
methanol was added to the column eluent at a flow rate of 0.1 ml min™' using an infusion pump. The
mass spectrometer was operated using the same specifications as for the analysis of small molecules,
except scanning between 200 and 2500 m z ' varying the optimal target mass according to the degree
of polymerization of the PA that needed to be detected.

Compounds were identified by mass spectrometry and by comparison with commercial standards,
where available. Brucker Daltronics Quant Analysis v.3.4 software was used for data processing and
compound quantification using a standard smoothing width of 3 and Peak Detection Algorithm v. 2.
Linearity in ionization efficiencies was verified by analyzing serial dilutions of randomly selected
samples. An external calibration curve created by linear regression was used for quantification of PA
B1, catechin and gallocatechin (Sigma). Process variability in different analyses was calculated

relative to the internal standard.

4.5.13 Hydrolysis of condensed tannins

Condensed tannins in bark extracts and enzyme assays were hydrolyzed in 800 ul reaction volumes
containing 2.5% (v/v) trifluroacetic acid (TFA) and 8% (v/v) 0.5 g ml"" sodium cyanoborohydrate in
methanol. Reaction mixtures were heated to 65°C for 15 minutes before adding another 2.5% (v/v)

TFA. Vials were sealed tightly and incubated at 65°C overnight. Samples were dried under a stream
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of nitrogen and re-dissolved in 800 ul methanol and analyzed using the chromatographic separation
method described for LC-ESI-MS and detected at 280 nm using a UV-DAD detector.

Verification of the hydrolysis method for quantification of condensed tannins was achieved using
dilutions from 1 mg ml' to 0.0125 mg ml' of pure proanthocyanidin Bl (Sigma) and
proanthocyanidin B2 (Sigma) (Figure S4.2 and Figure S4.3) as well as partially purified grape
proanthocyanidins (Laffort, Bordeaux, France). Recovery studies were conducted by adding pure
catechin to hydrolysis mixtures. Hydrolysis method development was performed in 200 pl reaction

volumes as described above and measured by LC-ESI-MS-MS for more accurate quantification.

4.5.14 Liquid chromatography-tandem mass spectrometry (LC-ESI-MS-MS)

Chromatography was performed on an Agilent 1200 HPLC system (Agilent). Separation was
achieved on a 100 X 4.6 mm Kinetex C18 column with particle size of 2.6 um (Penomenex,
Aschaffenburg, Germany). Formic acid (0.05%) in water and acetonitrile were employed as mobile
phases A and B, respectively. The elution profile was: 0-1 min, 100% A; 1-7 min, 0-65% B in A; 7-8
min 65-100% B in A; 8-9 min 100% B and 9-10 min 100% A. The total mobile phase flow rate was
1.5 ml min™. The column temperature was maintained at 25°C.

An API 3200 tandem mass spectrometer (Applied Biosystems) equipped with a Turbospray ion
source was operated in negative ionization mode. The instrument parameters were optimized by
infusion experiments with pure standards of catechin and proanthocyanidin B1l. For dimeric
proanthocyanidins containing gallocatechin, partially purified plant extracts were used for
optimization. The ion spray voltage was maintained at -4500 V. The turbo gas temperature was set at
700 °C. Nebulizing gas was set at 70 psi, curtain gas at 25 psi, heating gas at 60 psi and collision gas
at 10 psi. Multiple reaction monitoring (MRM) was used to monitor analyte parent ion — product ion
formation as follows: m z ™ 299.9 —109.1 (collision energy, CE -34 V; declustering potential, DP -30
V) for catechin; m z ' 304.8 —179 (CE -28 V; DP -390 V) for gallocatechin; m z ' 576.9 —289.1
(CE -30 V; DP -50 V) for proanthocyanidin B1; m z ™' 592.9 —125.1 (CE -52 V; DP -400 V) for the
catechin:gallocatechin dimer; m z ' 609 —125.1 (CE -50 V; DP -45 V) for the gallocatechin dimer.
Both Q1 and Q3 quadrupoles were maintained at unit resolution. Analyst 1.5 software (Applied
Biosystems) was used for data acquisition and processing. Linearity of compound detection for
quantification was verified by external calibration curves for catechin and proanthocyanidin Bl.

Flavan-3-ol concentrations were determined relative to the catechin calibration curve (Figure S4.3).
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4.5.15 Fungal growth in the presence of flavan-3-ol derivatives

Petri-dishes with carrot agar amended with flavan-3-ol derivatives were prepared by autoclaving 10%
carrot juice (v/v) and 3% (wt/v) agar per liter of water. After cooling the medium to 55°C, catechin or
grape proanthocyanidin in ethanol (10mg ml") was added to a final concentration of 100 pug ml™.
Medium for negative control treatments was amended with ethanol only. Each Petri dish (0=10 cm)
contained 25 ml medium. After the medium solidified, an agar plug (=4 mm) from 14-day-old C.
polonica stationary cultures (CMW 7749 or CMW 7135) was placed in the middle of each Petri dish,
sealed with Parafilm and incubated at 26°C in the dark. Fungal growth was measured every 24 hours

for 4 days.

4.5.16 Statistical analysis

The multivariate repeated measures model experimental design allows for the correlation between
values of the same variable measured at successive time points. The multivariate form is required
when several dependent variables are measured for the same entity, i.e. clonal trees (Sokal & Rohlf
1995), and allows the examination of relationships between different variables.

Preliminary investigation showed that the data was not normal and contained numerous outliers.
Such data cannot be analyzed appropriately without transformation and so rank transformation was
carried out (Iman, 1974), which is particularly robust to non-normal errors, outliers, and several kinds
of non-normal distributions. Because there is only one interaction in our model, and this is rarely
significant, we were not troubled by the increased Type 1 error caused by applying rank
transformation to models with many interactions (Sawilowsky, 1990). The data for gene expression,
small molecules and hydrolysis products were analyzed separately because there is no direct
conversion possible among them.

Transcript and metabolite accumulation in transgenic trees were analyzed using a one-way ANOVA

on log transformed data.
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5. CONCLUDING DISCUSSION

Norway spruce (Picea abies), an economically and environmentally important tree species in
Europe, is often attacked by the bark beetle species Ips typographus and the beetle-vectored blue stain
fungus Ceratocystis polonica. Apart from terpenoid resin-based defense strategies, Norway spruce
contains autofluorescent rings of cells in the phloem parenchyma. These cells have been identified as
important components of systemic acquired resistance against fungal infection (Franceschi et al.,
2005). Due to the autofluorescent nature of the inclusion bodies of these phloem parenchyma cells, it
has been suggested that their contents could be aromatic polyphenolic compounds such as stilbene
glucosides and proanthocyanidins, which have been described in spruce bark in earlier studies.
However, very little is known about the biosynthesis, the structural diversity and biological roles of
polyphenolic compounds in Norway spruce. In this thesis the biosynthetic pathway for the formation
of tetrahydroxystilbene glucosides as well as the last steps of the proanthocyanidin pathway in
Norway spruce were elucidated. Furthermore, this research showed that these compounds are
involved in anti-fungal defense against the bark beetle vectored blue stain fungus C. polonica. It was
also shown that C. polonica detoxifies defense-related host stilbenes using biotransformation stategies

which were predetermined by the fungus’ virulence during host infection.

5.1 Picea abies stilbene synthases form a trihydroxylated product, resveratrol, which is an
intermediate in the biosynthesis of the tetrahydroxystilbene glucosides, astringin and

isorhapontin

Tetrahydroxystilbene glucosides are abundant polyphenols in Norway spruce bark. In order
to learn more about their involvement in the spruce defense response against fungal infection, the
pathway leading up to their biosynthesis was elucidated. Stilbenes are synthesized via condensation
of three acetate units from malonyl-coenzyme A (CoA) to a CoA-activated phenolic acid by stilbene
synthase (STS), which results in formation of a linear tetraketide. Ring closure, to form the stilbene
skeleton is achieved via an intramolecular aldol condensation coupled to the loss of CO, (Austin et
al., 2004). For the formation of dihydroxylated or trihydroxylated stilbenes the STS enzymes from
pine or grape accept the non-hydroxylated substrate cinnamoyl CoA (Fliegmann et al., 1992) or the
monohydroxylated substrate p-coumaroyl CoA (Lanz et al., 1991), respectively. It has been suggested
that for the biosynthesis of the tetrahydroxystilbenes which are predominantly present in Norway

spruce, dihydroxylated substrates should be necessary (Chong et al., 2009; Rolfs and Kindl, 1984).
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Catalysis by Ceratocystis
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Figure 5.1: Graphical abstract of all the pathways elucidated in this thesis. Enzymes highlighted in blue

have been characterized in vivo.

Spruce STS enzyme function was studied by using numerous approaches such as in vitro

characterization of heterologously and natively expressed STS, in vivo characterization of stilbenes
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produced by Escherichia coli which were genetically engineered to produce spruce-specific stilbenes
and by using transgenic spruce overexpressing native STS enzymes. The different methodologies led
to accumulation of evidence that 3,5,3°,4’-tetrahydroxystilbenes are only produced after the STS-
mediated formation of a 3,5,4’-trihydroxystilbene, resveratrol, from the substrate p-coumaroyl-CoA.
The STS product, resveratol which is present only in very low quantities in spruce tissue, must be
further modified by 3’-hydroxylation and 3-O-glucosylation to yield astringin, the major stilbene
produced in spruce. Our proposed pathway for tetrahydroxystilbene formation could in future studies
be further validated by the identification and characterization of spruce stilbene 3’ hydroxylases, an as

yet undescribed group of P450 monooxygenase enzymes.

5.2 Although proanthocyanidin polymers in spruce contain high levels of flavan-3-ols with 2,3-

cis-(-)-stereospecificity, monomers have exclusively 2,3-trans-(+)-stereospecificity

Even though polymeric flavan-3-ols known as proanthocyanidins, are of great ecological
importance in Norway spruce, their biosynthesis and metabolite profiles in this tree species were not
well studied. In order to learn more about the involvement of these compounds in the spruce defense
response against fungal infection their biosynthesis was studied and metabolite profiles of monomeric
as well as polymeric flavan-3-ols were analyzed in spruce bark. As traditional methodology for
proanthocyanidin analysis yields inadequate information on metabolite quantity, structure and degree
of polymerization, a suite of tools were developed for the analysis and quantification of these
compounds. A new and integrative approach was chosen, combining reverse-phase high pressure
liquid chromatography (HPLC) for the analysis of monomeric and dimeric flavan-3-ols with a novel
reductive acid hydrolysis method as well as size exclusion chromatography for the analysis of
polymers.

Analysis of monomeric flavan-3-ols revealed that Norway spruce exclusively produces monomers
with 2,3-trans-stereospecificity, such as 2,3-trams-catechin. Consequently, leucoanthocyanidin
reductase (LAR) enzymes from spruce, which catalyze the last step in the pathway synthesizing 2,3-
trans-(+)-catechin were characterized in this study. This was done in vitro using heterologously
expressed enzymes as well as in vivo by analysis of flavan-3-ol profiles in transgenic spruce
overexpressing a native LAR gene. Further proof of the function of PalLAR lies in the correlation
between Pal.AR gene expression and proanthocyanidin accumulation in spruce bark.

Unexpectedly, the analysis of spruce proanthocyanidins revealed that they contain flavan-3-ols with
both 2,3-trans- as well as 2,3-cis-stereospecificity. To synthesize flavan-3-ols with 2,3-cis-
stereospecificity, such as 2,3-cis-epicatechin, enzymes known as anthocyanidin reductases (ANR) are

necessary (Xie et al., 2004). Angiosperms studied thus far contain either only 2,3-cis-epicatechin and
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produce 2,3-cis-epicatechin polymers, (Xie et al., 2004; Pang et al., 2007), or contain both 2,3-cis-
epicatechin and 2,3-trans-catechin and produce polymers consisting of mixtures of 2,3-trans-catechin
and 2,3-cis-epicatechin (Bogs et al., 2005; Paolocci et al., 2007). Consequently, angiosperms
synthesizing 2,3-cis-epicatechin contain only ANR enzymes, whereas angiosperms producing both
2,3-trans-catechin and 2,3-cis-epicatechin contain both ANR and LAR enzymes. Due to the fact, that
we did not characterize any ANR enzymes in this study, it is unclear, if flavan-3-ols with 2,3-cis-
stereospecificity are made in Norway spruce and channeled directly to proanthocyanidin biosynthesis,
or if there is another mechanism by which units with 2,3-cis-stereospecificity arise in
proanthocyanidin chains. Although much progress was made in the analysis of proanthocyanidins and
the elucidation of biosynthetic routes leading to the formation of monomeric flavan-3-ols in this
work, future studies are needed to determine how the 2,3-cis-(-)-units are formed in proanthocyanidin
chains in spruce. None the less, Norway spruce is the first plant described with only 2,3-trans-

stereospecific monomers but both 2,3-trans- and 2,3-cis-stereospecific flavan-3-ols in the polymers.

5.3 Genetic transformation of spruce is a useful tool for the characterization of conifer enzymes

involved in the biosynthesis of polyphenolic compounds

In this study the heterologous expression of Norway spruce enzymes involved in polyphenol
biosynthesis and their in vitro characterization was not always easy to accomplish. Active enzymes
could only be obtained from heterologous systems when expressed at very low temperatures by
specialized E. coli strains co-expressing cold resistant chaperonins to aid in folding, and even there
the activity was usually low. On the other hand, transformed spruce overexpressing biosynthetic
genes readily synthesized the expected metabolites at higher levels than the wild type or vector
control lines with no detectable pleiotropic effects. An added advantage of using transgenic spruce
overexpressing native genes for enzyme characterization is that the contribution of the gene to the
tree’s phenotype can be evaluated. For example, the use of stably transformed spruce in the functional
characterization of stilbene synthases was critical to demonstrate that the STS enzymes, although only
making resveratrol as an intermediate product, still contribute to the formation of the major stilbenes
in the plant.

Overexpressing native genes in spruce requires regulation of gene expression by a weak
promoter, as transformations with genes involved in natural product biosynthesis using the strong 35S
promoter lead to non-viable explants (unpublished data-Trevor Fenning). However, the use of a weak
promoter leads to secondary control of transcript levels of the introduced gene or of the encoded
protein which is often unpredictable (unpublished data-Axel Schmidt). For example, this phenomenon

could be observed in the analysis of PalLAR3 overexpressing spruce lines used for the in vivo
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characterization of this gene. While significantly higher levels of flavan-3-ols and proanthocyanidins
were detected in PaLAR3 overexpressing lines than in the wild type, transcript abundance of PaLAR3
in the transgenic seedlings was similar to the wild type. This discrepancy between gene expression
and metabolite accumulation is an indication that the regulation of the expression of the introduced
gene is superseded by the tree’s own regulatory mechanisms for flavan-3-ol biosynthesis. Higher
levels of flavan-3-ols in the LAR3 overexpressing spruce seedling lines, probably originated due to
expression of the introduced LAR3 gene and might have accumulated at a developmental stage prior

to tissue analysis.

5.4 Stilbene glucosides and flavan-3-ols are produced by spruce as chemical defense compounds

against infection by the bark-beetle-associated blue stain fungus Ceratocystis polonica

One of the main objectives of this research was to elucidate if polyphenols are inducible
chemical defense compounds in Norway spruce. Earlier histological studies revealed that substances
with polyphenol-like fluorescence accumulated in phloem parenchyma cells in defense-induced
spruce bark (Nagy et al., 2004; Franceschi et al., 2005). Since stilbene glucoside, flavan-3-ol and
proanthocyanidin accumulation was never directly measured in these anatomical studies, it was still
an open question whether these compounds were involved in these histological changes. Other studies
in which spruce phenolic compounds were quantified after trees were challenged by wounding or
fungal inoculation, often rendered unclear or contradictory data on the involvement of these
compounds in the tree’s defense response (Brignolas et al., 1995; Virii et al., 2001). Research
conducted in this thesis, however, convincingly shows that Norway spruce, in addition to the broad
array of resin-based chemical defenses, also produces polyphenolic compounds as a defense strategy
against infection by the fungal bark beetle associate, C. polonica.

The biosynthesis of stilbene glucosides as well as the biosynthesis of flavan-3-ols leading to
proanthocyanidin formation was studied at the transcriptional level in spruce bark at different time
points after C. polonica infection. Stilbene synthase (S7S) and leucoanthocyanidin reductase (LAR)
transcript abundance significantly increased after fungal bark infection compared to transcript
abundance in wounded bark. Interestingly, both STS and LAR genes were induced both early in the
infection process (2-7 days post-inoculation) and at a late phase at 28 days post-inoculation. These
data, as well as the fact that levels of flavan-3-ols were higher in transgenic spruce over-expressing
STS, provides circumstantial evidence that stilbene and flavan-3-ol biosynthesis might be co-
regulated in Norway spruce. Similar transcriptional co-regulation of genes involved in flavonoid and
stilbene biosynthesis was reported by Ralph et al. (2006) in Sitka spruce challenged by spruce

budworm. In order to fully elucidate the regulation of genes of defense-compounds in spruce, studies
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on regulatory elements encoded by genomic DNA as well as characterization of relevant transcription
factors have to be conducted.

In accordance with increased transcript accumulation of genes encoding enzymes responsible
for stilbene glucoside, flavan-3-ol and proanthocyanidin biosynthesis, these metabolites increased
initially in C. polonica infected spruce bark. However, while flavan-3-ol and proanthocyanidin levels
increased steadily over 28 days post-inoculation, levels of stilbene glucosides decreased during the
later stages of C. polonica infection. Similar observations have also been made by Brignolas et al.
(1995), who showed that stilbene levels in spruce decreased during C. polonica infection in spite of
increased STS enzyme activity in infected tissues, while levels of flavan-3-ols increased.
Accordingly, possible tree-defense-response-related mechanisms by which levels of soluble stilbenes
could decrease in bark tissue were investigated. However, no evidence was found that oxidative
polymerization of stilbenes by plant-derived enzymes (Li et al., 2007) or oxidative coupling of these
compounds to cell wall polymers (Lange et al., 1994) occurred in Norway spruce during fungal
infection (data not shown).

Another possible process resulting in reduced stilbene levels in infected spruce bark is the
fungal biotransformation of these compounds. Specialized strains of fungi and bacteria have been
shown to detoxify a wide array of aromatic xenobiotcis. It has also been shown that specialist
pathogenic fungi evolved strategies to detoxify phytoalexins produced by their hosts (Vanetten et al.,
1989). It is therefore conceivable that C. polonica, a specialist fungal phytopathogen, might have

evolved strategies to circumvent the toxic effects of these phytoalexins produced by its host tree.

5.5 Host derived stilbene biotransformation by C. polonica may be an important fungal

virulence factor

The tetrahydroxystilbene glucoside, astringin, which is the major stilbene produced by P.
abies, was transformed by C. polonica in culture to astringin-lactones, piceatannol and dimeric
stilbenes. This provides an explanation for the reduced levels of astringin in infected host tissue.
Furthermore, virulence of C. polonica towards spruce correlated with the rate of astringin
biotransformation. By comparing biotransformation strategies of a virulent and an avirulent strain,
this study also revealed that certain combinations of constitutive and inducible stilbene
biotransformation strategies appear to be more favorable for the fungus than others. For example, the
virulent fungal isolate showed high enzyme activity for stilbene dimerization in culture. Upon
exposure to host phenolic compounds, however, this fungal isolate also showed significant increases

in stilbene lactonization activity.
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The structural similarities between the astringin-lactone formed upon fungal
biotransformation by the virulent C. polonica isolate and the lactone formed as an intermediary step
in the B-ketoadipate pathway (Harwood and Parales, 1996) hint at the possibility of further catabolic
degradation of astringin by this fungus. The pB-ketoadipate pathway, which plays a central role in the
catabolic degradation of aromatic compounds derived from lignin, might be used by C. polonica as an
energy source during its saprophytic growth stages in dead wood, which is poor in nutrients. Stilbenes
are anti-fungal compounds with multiple modes of action, such as interference with microtubule
assembly (Woods et al., 1995), disruption of plasma membranes and uncoupling of electron transport
in fungal spores and germ tubes (Pont and Pezet, 1990). For this reason, fungi may not be able to
acquire resistance to these compounds by single mutations, as has been shown for many other anti-
fungal compounds (Hollomon and Brent, 2009). Using biotransformation strategies to lower the
concentration of stilbenes during infection and colonization might, therefore, be a more effective form
of resistance.

The avirulent C. polonica isolate formed extremely low concentrations of the astringin
lactone. This result indicates that the B-ketoadipate pathway could be involved in catabolic processes
for energy production to a lesser degree in the avirulent isolate than in the virulent fungal isolate. The
avirulent isolate would, therefore, need to exploit a different nutrient source. In consequence, we
could show that the highest stilbene biotransformation activity detected in this isolate was the [-
deglucosylation of astringin to form piceatannol and glucose which can be employed for the
production of energy for growth and reproduction. Deglucosylation of astringin to form piceatannol
may, however, be a disadvantageous biotransformation strategy as this process releases a less polar
molecule that may have higher biological activity. Possession of such a suspect biotransformation
strategy might form part of the explanation why the avirulent isolate grows less than the virulent
isolate within living spruce bark. However, to compensate for higher production of piceatannol, the
avirulent isolate revealed elevated stilbene dimerization activity. It has been suggested that dimers are
less toxic than monomeric stilbenes due to a reduction in solubility of the dimeric compounds (Breuil
et al., 1999), allowing the fungus to escape from contact with these phytoalexins. Deglucosylated
dimeric compounds are even less soluble and low solubility could partially compensate for increased
reactivity.

Although much has been learned about spruce stilbene biotransformation by C. polonica and
its correlation with fungal virulence, certain important questions still need to be addressed, for
example: (I) Although circumstantial evidence hint at the involvement of the B-ketoadipate pathway
in stilbene detoxification, this has not been shown by direct experimentation. To show the

involvement of this pathway in stilbene detoxification *C-labled stilbenes should be offered to fungi
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as a sole nutrient source, followed by quantification of fungal respiration by measuring *CO,
evolution. (II) It is possible that spruce stilbenes are only pro-toxins, which are activated by fungal
biotransformation to become more toxic to C. polonica. Bioassays are therefore necessary to
determine how the different biotransformation products identified in this study affect C. polonica
growth. (II) Evidence has accumulated in this study that stilbene biotransformation is an important
virulence factor of C. polonica during host infection and colonization. However, in order to attain
greater understanding of the mechanisms by which stilbene biotransformation contributes to
pathogenicity, molecular tools have to be developed to identify and characterize fungal genes
involved in stilbene biotransformation and to silence or overexpress these genes in C. polonica to
determine their in vivo role during spruce infection and colonization. (IV) Spruce also produces other
phenolic compounds, such as isorhapontin, catechin and taxifolin, with structural similarities to
astringin. It would be of interest to determine if these compounds are also transformed by C. polonica

using similar reaction mechanisms.

5.6 Stilbene biotransformation could be beneficial to C. polonica as well as to its bark beetle

associate, Ips typographus

Although stilbenes are studied for their health-promoting properties in mammalian systems,
they may have negative effects on bark beetles and their fungal associates throughout all
developmental stages. The anti-proliferative, pro-apoptotic (Torres et al., 2003; Athar et al., 2009)
and hypolipidemic (Paceasciak et al., 1995) functions of stilbenes in mammalian systems could
contribute to retarded development of the larval stages of 1. fypographus as well as the vegetative and
reproductive stages of C. polonica. Furthermore, potential stilbene-driven inhibition of melanogenesis
(Gillbro and Olsson, 2010) could affect bark beetle and fungal survival since melanin in the insect
exoskeleton or in the cell walls of C. polonica is necessary for protection against UV radiation and
desiccation. Stilbenes may also affect the nutritional quality of food ingested by bark beetles and
fungi due to protein alkylation by reactive quinones which can originate from catechol groups such as
those present in the astringin core structure (Barbehenn et al., 2008). Reactive quinones originating
from astringin may even directly destabilize the peritrophic membrane in the bark beetle gut or fungal
cell membranes.

Although C. polonica and the bark beetle I typographus co-occur, the basis for this
mutualistic behavior is still largely unknown. It has been suggested that the fungus depletes the trees
defensive capacities during an attack to allow the next generation of bark beetles to develop
unimpeded by induced tree defenses (Paine et al., 1997). However, the findings in this thesis, with

reference to the potential detrimental effects of stilbenes on both bark beetles and C. polonica,
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provide indications that the beetle-fungus mutualism may be partially based on the stilbene

detoxifying abilities of the fungus.

5.7 Polyphenols in the context of the whole array of spruce defense compounds

Conifers of the family Pinaceae produce a great number of natural products that have been
shown to be involved in tree defense against biotic stress. Positive correlations could be drawn
between concentrations of diverse natural compounds in conifers and tree resistance to insects and
fungi in numerous studies on phenolic and terpenoid based defense mechanisms (Franceschi et al.,
2002; Byun-McKay et al., 2006). The most well studied group of compounds involved in conifer
defense against insect herbivory and fungal attack are the mono-, sesqui- and diterpenoids, which
together form oleoresin (reviewed by Zulak and Bohlmann, 2010). However, there are also many
studies showing that single natural products had no effect on herbivores or pathogens attacking
conifers (reviewed by Paine et al., 1997) or even showed negative correlations between tree resistance
and compound concentration (Clark et al., 2010). It is therefore difficult to draw conclusions on the
importance of individual natural products in conifer defense, since the efficacy of a compound
depends on numerous aspects, including the genotype and physiological state of the tree, the attacking
organism and its population dynamics, and the abiotic conditions prevailing during an attack.
However, in evolutionary terms a high diversity of defense compounds allows greater plasticity in
defense responses and can confer horizontal resistance or tolerance to attack by a great number of
herbivores and pathogens (Raffa and Berryman, 1987).

In this thesis it was shown that the less well studied but highly abundant flavan-3-ols,
proanthocyanidins and stilbenes also play an important role in the conifer defense response to
wounding and fungal infection. However, besides the compounds studied in this thesis, spruce
produces many more polyphenolic compounds such as flavonols, dihydroflavonols, phenolic acids,
lignans and neolignans, the ecological functions of which have not yet been studied during biotic

stress.
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6. GENERAL SUMMARY

The family Pinaceae (order Coniferales) includes many environmentally and economically
important softwood tree genera. The most important Pinaceae species endemic to Europe and
Northern Asia is the Norway spruce tree (Picea abies). This tree species is frequently subject to
severe attacks by the scolytid bark beetle Ips typographus and its microbial associate, the blue stain
fungus, Ceratocystis polonica. Spruce trees appear to have structural and chemical defense strategies
against invasion by the beetle-fungus complex, including cells with autofluorescent inclusion bodies
arranged in rings within the phloem parenchyma, that may form a chemical barrier against invasion
by I typographus and C. polonica. It has been suggested that these cells could contain polyphenolic
compounds, such as stilbene glucosides and proanthocyanidins (polymeric flavan-3-ols), which have
been isolated from spruce bark in earlier studies. However, the biosynthesis of these compounds and
the regulation of their formation during invasion by bark beetles and their fungal associates is largely
unknown. The objective of this research, therefore, was the elucidation of the pathways leading to the
formation of stilbene glucosides, flavan-3-ols and proanthocyanidins in spruce and their role in the
defense of this tree against infection by the bark beetle associate C. polonica.

To investigate the biosynthesis of stilbene glucosides in Norway spruce, two highly similar
stilbene synthase (S7) genes, PaSTS1 and PaSTS2, were identified, which differed from angiosperm
STSs. Several types of in vitro and in vivo assays revealed that P. abies STSs catalyze the
condensation of p-coumaroyl-CoA and three molecules of malonyl-CoA to yield the
trihydroxystilbene resveratrol, but do not directly form the dominant spruce stilbenes, which are
tetrahydoxylated. However, in transgenic Norway spruce over-expressing PaSTS1, significantly
higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced.
This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol
which is further modified by hydroxylation, O-methylation and O-glucosylation.

To investigate the biosynthesis of proanthocyanidins in Norway spruce, three genes encoding
enzymes responsible for the biosynthesis of flavan-3-ols were identified and functionally
characterized as 2,3-trans-catechin producing leucoanthocyanidin reductase enzymes (LAR) both by
in vitro enzyme characterization as well as by overexpression in transgenic spruce. Analysis of
chemical profiles of monomeric, dimeric as well as polymeric proanthocyanidins in spruce bark by
using novel methodologies revealed that proanthocyanidin monomers in spruce have exclusively 2,3-
trans-(+)-stereospecificity, while polymers contain high levels of flavan-3-ols with 2,3-cis-(-)-

stereospecificity.
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The regulation of stilbene glucoside and proanthocyanidin biosynthesis during fungal attack
was investigated by inoculating spruce saplings with C. polonica and analyzing bark with different
degrees of infection. Transcript abundance of PaSTS as well as PaLAR genes increased significantly
during fungal infection. Levels of monomeric as well as polymeric proanthocyanidins also increased
dramatically during the infection process. However, levels of stilbene glucosides increased only
transiently during the first few days of infection and then decreased in infected spruce bark tissue.
This stilbene deficit was explained by fungal biotransformation of these compounds.

Transformation of host stilbenes by C. polonica lead to the formation of stilbene dimers,
stilbene-lactones and piceatannol. Upon exposure to host phenylpropanoids enzyme activities for
stilbene biotransformation was up-regulated in C. polonica. When two strains of C. polonica were
tested, the rate of stilbene biotransformation was significantly higher in the more virulent fungal stain.
In addition, the two strains of C. polonica showed different biotransformation strategies, producing
different stilbene biotransformation product profiles at different rates. In vitro studies also showed a
decrease of fungal growth in the presence of stilbenes and proanthocyanidins. While the growth-
inhibition of both virulent and avirulent C. polonica strains was similar in the presence of
proanthocyanidins, the relative growth of the avirulent strain decreased significantly in the presence
of stilbenes. This demonstrates that biotransformation of host-derived defense compounds has a
significant effect on fungal pathogenicity during host infection and colonization, and should be

regarded as a form of host compound detoxification.
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7. Zusammenfassung

Zur Familie der Pinaceae (Ordnung Coniferales) gehoren mehrere 6kologisch als auch
o6konomisch bedeutsame Baumarten. Die am weitersten verbreitete Art der Pinaceae ist die Gemeine
Fichte (Picea abies). Dieser Baum ist sehr hdufig vom Borkenkafer (Ips typographus) und einem mit
ihm assoziierten Pilz, dem Blaufaulepilz (Ceratocystis polonica), befallen. Die Kolonisation eines
Baumes hat in der Regel dessen Absterben zur Folge. Um sich vor der Bedrohung zu schiitzen, haben
Fichten chemische Abwehrmechanismen entwickelt. Einer dieser Mechanismen ist die Bildung
spezieller autofluoreszenter Zellen im phloematischen Parenchym. Diese Zellen enthalten
phenolische Verbindungen wie Stilbenglucoside oder Proanthocyanidine die ein Vordringen des
Borkenkédfers bzw. des Pilzes erschweren. Die Biosynthese dieser Verbindungen sowie die
Regulation der Biosynthese wéhrend eines 1. typographus/C. polonica-Befalls ist bisher noch
weitgehend unerforscht. Die vorliegende Dissertation beinhaltet die Aufkldrung der Biosynthese der
Stilbenglucoside, Flavan-3-ole und Proanthocyanidine in der Gemeinen Fichte und beschreibt die
Funktion der Verbindungen bei der chemischen Verteidigung

Um die Biosynthese der Stilbenglucoside ndher zu untersuchen, wurden zwei sehr dhnliche
STS-Gene, PaSTS1 und PaSTS2, identifiziert, die &duBerst unterschiedlich gegeniiber den STS aus
Angiospermen sind. Eine Anzahl von in vitro und in vivo Enzymtests ergab, dass diese STS nur die
Kondensationreaktion von p-Cumaryl-CoA und drei Molekiilen Malonyl-CoA katalysieren, was zur
Bildung des Tetrahydroxystilbens Resveratrol fiihrt. Demgegeniiber wurden aber in PaSTS1-
iiberexprimierender transgener Fichte signifikant hohere Mengen an den
Tetrahydroxystilbenglykosiden, Astringin und Isorhapontin, gefunden. Dies lasst den Schluss zu, dass
der erste Schritt der Stilbenbiosynthese in Fichte, die Bildung von Resveratrol ist, welches spéter
dann durch Hydroxylierung, O-Methylierung oder O-Glucosilierung zu den in der Fichtenborke am
meisten vorkommenden Stilbeneglucosiden Astringin und Isorhapontin umgewandelt wird.

Die Biosynthese der Proanthocyanidine (Flavan-3-ole) in der Fichte wurde néher
charakterisiert, indem 3 Leucoanthozyanidin Reduktasen (LAR) isoliert wurden, die fiir die
Biosynthese der Proanthocyanidin-Monomere verantwortlich waren. Die Funktionalitit konnte dabei
durch in vitro Charakterisierung als auch durch Uberexpression in transgener Fichte gezeigt werden.
Neu etablierte chemische Analysen zur Stereochemie der monomeren, dimeren und als auch
polymeren Proanthocyanidine zeigten dabei, dass Monomere aus der Fichtenborke ausschlieBlich in
der 2,3-trans-(+) Form, Polymere aber dagegen hauptsichlich in der 2,3-cis-(-) Form vorkommen.

Die Regulation der Stilbenglucoside und Proanthocyanidine (Flavan-3-ole) wéhrend des

Pilzbefalles wurde mittels Pilzinokulation von C. polonica in die Fichtenborke und anschlieBender
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Analyse der Borke in den unterschiedlichen Befallsgraden ndher untersucht. Dabei wurde festgestellt,
dass die Transkriptanzahl der PaSTS als auch die der PalLAR, ebenso wie der Gehalt an mono- und
polymeren Proanthocyanidin wéhrend der Pilzinfektion signifikant erhoht war. Allerdings erhohten
sich die Mengen der Stilbenglucoside im infizierten Borkengewebe nur wéhrend der ersten
Infektionstage und nahmen danach wieder ab. Dieser Abfall konnte weiterfiihrend durch Versuche
erklart werden, die zeigten, dass C. polonica in der Lage ist, die abgelagerten als auch de novo
gebildeten Stilbenglucoside im Phloemparenchym enzymatisch umzuwandeln. Stilbenglucoside der
Fichte kénnen durch C. polonica in Stilben-Dimere, Stilben-Lactone oder Piceatannol enzymatisch
konvertiert werden, was sich auch in einer hoheren Aktivitét der jeweils daran beteiligten Enzyme
duBerte. Als zwei C. polonica Stimme getestet wurden, zeigte der virulente Stamm eine hdhere
Aktivitit ebenso wie qualitative und quantitative Unterschiede in den Abbauprodukten gegeniiber
dem nicht-virulenten Stamm. Weitere in vitro Studien belegten ein geringeres Wachstums von C.
polonica in Gegenwart von Stilbenenglucosiden und Proanthocyanidinen (Flavan-3-olen). Wéhrend
die Wachstums-Inhibierung von virulentem und avirulentem Stamm in Gegenwart von
Proanthocyanidin vergleichbar war, verringerte sich das Wachstum des avirulenten Stammes in
Gegenwart von Stilbenen signifikant. Die in der vorliegenden Arbeit vorgestellten Ergebnisse zeigen,
dass der Abbau bzw. die Umwandlung von pflanzlichen Abwehrsubstanzen durch den Pilz einen
entscheidenden Einfluss auf den Ablauf einer Infektion bzw. einer weiteren Besiedelung haben kann,
und demzufolge wahrscheinlich als eine Form der Entgiftung von pflanzlichen Sekundarmetaboliten

einzuschétzen ist.
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9. Supplementary Material

9.1 Supplementary materials: Research Chapter 1

Supplementary methods: Quantitative genomic PCR

Needle tissue of PaSTS1 Line 5, PaSTS1 Line 11 and the vector control was ground to a fine powder
under liquid nitrogen. Genomic DNA was isolated from the tissue powder using the method
developed by Wright et al. (2010) and diluted to a concentration of 100 ng ul"'. PCR was performed
with Brilliant SYBR Green QPCR Master Mix ® (Stratagene), 100 ng genomic DNA and 10 pmol
forward and 10 pmol reverse primer. PaSTS was amplified using the forward primer 5°-
CTCGAGATGTCTTCCTCATCTCGTCC-3’ and the reverse primer 5’-
CCTTCCGTCAGTTCAAAATCTCCGAC -3°, designed to amplify 190 base pairs from both S7S1
and STS2 simultaneously. PCR thermocycles were run as follows: 15 min at 95°C followed by 40
cycles of 45 s at 95°C, 30 s at 60°C and 30 s at 72°C using a Stratagene MX3000P thermocycler. STS
gene abundance was normalized to the abundance of the ubiquitin gene (Schmidt et al., 2010)
(GenBank accession number EF681766) amplified with the forward primer 5’-
CCCTCGAGGTAGAGTCATCG-3’ and the reverse primer 5’-CCAGAGTTCTCCCTTTACTTG-3".
Primer efficiencies were calculated according to Pfaffl (2001). Primer specificity was confirmed by
melting curve analysis from 55°C to 95°C and by cloning and sequencing 20 amplicons for each
primer pair. Relative STS gene copy number in transgenic PaST7TS1 over-expressing lines was
calibrated against the vector control. Each gene abundance represents the rounded average of four

biological replicates, each of which is represented by three technical replicates.
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Table S2.1. Forward and reverse attB primers for amplifying and cloning PaSTS and PaCHS into
pDONR207. attB forward and reverse sequences are attached to the 5’end of the sequence specific
primer regions

Forward Primer Reverse primer

attB sequence | 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-

5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-

STS 1 attBF-CAATGTCTGCAGGAATGACTGTTG-3' attBR-ATTATGGAAGGAGAACGCTCTTAAGAAC-3'
STS 2 attBF-GAATGACTGTTGATTTGGAAAC-3' attBR-ATTATGGAAGGAGAACGCTCTTAAGAAC-3'
CHS 1 attBF-GCATGTCTCAGAATTTGGGTTTG-3' attBR-ATCACTGCAGGGGAACGCTCTTGAG-3'
CHS 2 attBF-GCATGTCTCAGAATTTGGGTTTG-3' attBR-TTCAATCAGTGCAGGGAACGCTCCTG-3'
CHS 3 attBF-TTATGGCTGGAGGACTGATGGCG-3' attBR-ATCACTGCAGGGGAACACTCTTCAG-3'

CHS 4 attBF-TTATGGCTGGAGGACTGATGGCG-3' attBR-ATCACTGCATGGGAACGCTTTTCAG-3'

CHS 5 attBF-TTATGGCTGGAGGACTGATGGCG-3' attBR-ATTATTGCAGGGGAACGCTCTTGAG-3'

CHS 6 attBF-TTATGGCTGGAGGAATCATGGAG-3' attBR-ATTATTGCAGGGGAACGCTCTTGAG-3'

CHS 7 attBF-ATATGCCTGCTGGAATGAAGGTGG-3' attBR-CCTATTGCAGAGGGACGCTCTTGAGAAC-3'
CHS 8 attBF-GCATGCCTGGGACTTTGGGTTTGG-3' attBR-GTTATTGCGGGCAGGGGACGCTCTTG-3'
CHS 9 attBF-GAATGATGAAGGATCTGGAGG-3' attBR-ATCACTGCAGGGGAACACTCTTC-3'
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Table S2.2. NCBI accession numbers of CHS and STS sequences used for phylogenetic analysis.

Organism Gene NCBI accession number Reference

Vitis vinifera CHS CAAS53583.1 Sparvoli et al., 1994
Vitis vinifera RVS 1 P28343.2 Melchior and Kindl, 1990
Vitis vinifera RVS 2 P51071.1 Melchior and Kindl, 1991
Arachis hypogaea CHS AAU43217.1 Condori et al., 2009
Arachis hypogaea RVS 1 1Z1EA Shomura et al., 2005
Arachis hypogaea RVS 2 1Z1FA Shomura et al., 2005
Arachis hypogaea RVS 3 P51069.1 Lanz et al., 1991
Medicago sativa CHS AAA02824.1 Junghans et al., 1993
Pisum sativum CHS CAA44935.1 Ichinose et al., 1992
Trifolium subterraneum  CHS AAA1876.1 Arioli et al., 1994
Glycine max CHS AAB01004.1 Akada and Dube, 1995
Pyrus communis CHS AAX16494.1 Fischer et al., 2007
Malus X domestica CHS AAX16492.1 Fischer et al., 2007
Ginkgo biloba CHS AAS21057 Pang et al., 2004
Pinus densiflora STS BAA94593.1 Kodan et al., 2002
Pinus densiflora STS BAA89667.1 Kodan et al., 2002
Pinus strobus STS CAA87013.1 Raiber et al., 1995
Pinus strobus STS CAAS87012.1 Raiber et al., 1995
Picea sitchensis STS 1 ABR17893.1

Picea sitchensis STS 2 XXXXXXXX

Picea glauca STS 1 XXXXXXXX

Picea glauca STS 2 XXXXXXXX

Picea abies STS 1 XXXXXXXX

Picea abies STS 2 XXXXXXXX

Picea sitchensis CHS 1 ABK23800.1

Picea sitchensis CHS 2 ABK24675.1

Picea sitchensis CHS 3 ABK25228.1

Picea sitchensis CHS 4 ABK25266.1

Picea sitchensis CHS 5 ABK23777.1

Picea sitchensis CHS 6 ABK25340.1

Picea sitchensis CHS 7 ABK24577.1

Picea sitchensis CHS 8 ABK25158.1

Pinus sylvestris CHS CAA43166.1 Fliegmann et al., 1992
Picea glauca CHS 1 XXXXXXXX
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Picea glauca
Picea glauca
Picea glauca
Picea glauca
Picea glauca
Picea glauca
Picea glauca
Picea abies
Picea abies
Picea abies
Picea abies
Picea abies
Picea abies
Picea abies

Picea abies

CHS 2
CHS 3
CHS 4
CHS 5
CHS 6
CHS 7
CHS 8
CHS 1
CHS 2
CHS 3
CHS 4
CHS 5
CHS 6
CHS 7
CHS 8

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

Table S2.3: Forward and reverse primers for quantitative real-time PCR

Forward Primer

Reverse primer

PaUBI 5’-GTTGATTTTTGCTGGCAAGC-3’
PalLAR1 5'-GAACTGGCAGCCATATGGGAGACC-3'
PalAR2 5'-ACAAGAACTTTTGCATTTAGCCG-3'
PaLAR3 5'-GGGCATCACGATCTAGAGGTCTG-3'
PaPAL 5'-GTACTTCAGTAGGAGCAGCACTGG-3'
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5’-CACCTCTCAGACGAAGTAC-3’
5'-CTGTAATAAAGTTCAGAGGCCTCG-3'
5'-GAAATCTCTGGATATAGTTGTGAC-3'
5'-GGATGGTAAATAGAGGAAGACGAGTC-3'
5'-GACATACTCCATGATCGCTGCGG-3'
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Figure S2.1. Amino acid sequence alignment of STS from P. abies (P.a.), P. sitchensis (P.s.),
P. glauca (P.g.) and pinosylvin synthase (PSS) enzymes from P. densiflora (P.d.). Dots

represent amino acids which are conserved in all presented sequences.
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Figure S2.2. Relative PaSTS gene copy number in transgenic PaS7S1 lines and vector

control.
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9.2 Supplementary materials: Research Chapter 2

Table S3.1. Chemical shifts of the new compounds (1) and (4)

Position ou(1)>c Sc(1)bc  On(4)>d Oc (4)bd
1 172.48 175.48
2 6.271 (s) 114.61  6.122(s) 115.47
3 165.29 168.07
4 5.584 (d, 8.9) 78.26 5.733 (d, 8.6) 81.57
5 7.037 (d, 16.0) 118.23  6.986 (d, 16.5) 118.82
6 7.128 (d, 16.0) 138.51 7.049 (d, 16.5) 140.99
7 137.96 138.70
8 6.830 (d, 2.0) 105.74  6.530(d, 2.1) 107.15
9 159.00 160.12
10 6.458 (t, 2.0, 2.0) 105.42  6.283(t, 2.1, 2.1) 105.45
11 158.60 160.12
12 6.646 (s) 108.92  6.530(d, 2.1) 107.15
13a 2.545 (ddd, 16.6, 8.9, 2.6) 38.06 2.992 (dd, 16.2, 2.9) 41.87
13b 3.10 (m) 38.06 2.442 (dd, 16.1, 9.0) 41.87
14 170.90 174.86
1' 4.805 (dd, 7.5, 3.1) 100.41

2 3.20 (overlap) 73.06

3 3.24 (overlap) 76.50

4' 3.14 (overlap) 69.53

5' 3.30 (overlap) 76.99

6'a  3.45(m) 60.42

6'b 3.70 (m) 60.42

“ proton resonances: shift value [ppm] (multiplicity, coupling constants [Hz])
® carbon resonances: shift value [ppm]

9 in CD;0D

¥ in de-DMSO
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Figure S3.1. Monomeric astringin transformation products isolated from in-vitro-biotransformation

experiments

HO

HO OH

OH
OH

Figure S3.2. Dimeric astringin transformation products isolated from in-vitro-biotransformation

experiments (Piceasides A and B)
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Figure S3.3. Dimeric astringin transformation products isolated from in-vitro-biotransformation

experiments (Piceasides G and H)
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9.3 Supplementary materials: Research Chapter 3

Table S4.1. Forward and reverse primers for amplifying and cloning LAR and ANR into pDONR207

or pYES. attB forward and reverse sequences are attached to the 5’end of the sequence specific

primer regions

Forward Primer Reverse primer
attB 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-  5-GGGGACCACTTTGTACAAGAAAGCTGGGT-
LAR 1 attBF-CCATGGCGGCCTGTGGAACTG-3' attBR-GGTGGGAAATGCCAACGTTTAGTG-3'
LAR 2 attBF-CCATGGCCAGCAGTAGAATACTAG-3' attBR-GGAAATTCGAAGATGTACAAGCAAC-3'
LAR 3 attBF-CAATGGCGGTCTGTGGAACTGAAG-3' attBR-GCAGATATTCGTCGAAAAATTCATC-3'
ANR 1 | 5-GAAAAATGGCAGCAACGATCAGCAATGGC-3' 5-GTAAGCAAGCAAGCCCTTGGCCTTGG-3'
ANR 2 5'-GAACCATGGCGGTCTGTGGAAC-3' 5'-CACAGATATTCGTCGAAAAATTCATCTAC-3'

Table S4.2. NCBI accession numbers of LAR and ANR sequences used for phylogenetic analysis.

NCBI accession

Organism Gene number Reference

Malus domestica LAR 1 DQ139836 Pfeiffer et al., 2006
Malus domestica LAR 2 DQ139837 Pfeiffer et al., 2006
Malus domestica ANR AAZ79363 Pfeiffer et al., 2006
Pyrus comunis LARA1 DQ251190 Fischer et al., 2007
Pyrus comunis LAR 2 DQ251191 Fischer et al., 2007
Pyrus comunis ANR ABB77695 Pfeiffer et al., 2006
Fragaria X ananassa LAR 1 DQ834906 Almeida et al., 2007
Fragaria X ananassa ANR ABG76842 Almeida et al., 2007
Vitis vinifera LAR 1 BNO000698 Bogs et al., 2005
Vitis vinifera LAR 2 3I6IA Mauge et al., 2010
Desmodium unicatum  LAR 1 Q84Vv83 Tanner et al., 2003
Lotus corniculatus LAR1 DQ49103 Paolocci et al., 2007
Lotus corniculatus LAR 2 DQ49105 Paolocci et al., 2007
Lotus corniculatus ANR ABC71337 Paolocci et al., 2007
Phaeseolus vulgaris LAR 1 BN000698 Bogs et al., 2005
Pinus taeda LAR-like BNO00697 Bogs et al., 2005
Ginkgo biloba ANR AAU95082 Shen et al., 2006
Picea abies LAR 1

Picea abies LAR 2

Picea abies LAR 3

Picea abies ANR-like

Picea abies ANR-like

120



9. Supplementary Material

Table S4.3: Forward and reverse primers for quantitative real-time PCR

Forward Primer

Reverse primer

4
2]

s Wrese g b at Al ko s

PaUBI 5-GTTGATTTTTGCTGGCAAGC-3’ 5-CACCTCTCAGACGAAGTAC-3
5'-
PaLAR1 GAACTGGCAGCCATATGGGAGACC-3' 5-CTGTAATAAAGTTCAGAGGCCTCG-3'
PaLAR2 5'-ACAAGAACTTTTGCATTTAGCCG-3' 5'-GAAATCTCTGGATATAGTTGTGAC-3'
5'-GGGCATCACGATCTAGAGGTCTG- 5'-
PaLAR3 3' GGATGGTAAATAGAGGAAGACGAGTC-3'
Intens. § 3
K‘Iﬂs ] J PalLAR1: EIC 289; 305 -All MS, Smoothed (0.61,1,GA)
4
2] ﬂ
] Lok . N A, WU T ooV .V |
21052: : ﬁ PalLAR2: EIC 289; 305 -All MS, Smoothed (0.61,1,GA)
2] N\
1050- R "l L ) R & . b o Al A A
X ] ﬁ PalLAR3: EIC 289, 305 -All MS, Smoothed (0.61,1,GA)
\[1
\

o VT

4]

Enzyme-no substrate: EIC 289; 305 -All MS, Smoothed (0.60,1,GA)

2]
050:, =z s - ST
x1 f Substrate-no enzyme: EIC 289; 305 -All MS, Smoothed (0.62,1,GA)
4
, . ' }L ; ORGP SN0y W ....AJ...{MiJMLLJ &L&g‘_
50 75 10.0 125 15.0 17.5 200
Time [min]

Figure S4.1: Characterization of LAR enzymes from P. abies expressed in E. coli. Recombinant

LAR enzymes accepted leucoanthocyanidins as substrates and released catechin as products.

Extracted ion chromatograms (EIC) from enzyme-no substrate controls as well as from substrate-no

enzyme controls are included.
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x10°1  Proanthocyanidin B1

Intensity

;
X101 Proanthocyanidin B2

0.5

0 : : ; L : ; ‘ ;
5 10 15 20
Time (min)

Figure S4.2: Reductive hydrolysis of dimeric proanthocyanidin B1 yielded equal amounts of catechin
(retention time: 10.9) and epicatechin (retention time: 11.2). Hydrolysis of proanthocyanidin B2

yielded mostly epicatechin, but also small amounts of catechin.
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® Catechin standard curve

1.6e+6 1 o  catechin from hydrolysis of grape PA's
v  Epicatechin from hydrolysis of grape PA's
1.2e+6
3]
g
S 8.0e+5 -
3
o =
4.0e+5 -
0.0 ) ) ) ) ) 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Concentration (mg/ml)

Figure S4.3: Linear response curve after reductive hydrolysis of increasing concentrations of partially
purified proanthocyanidins from grape skins. Quantification of hydrolysis products was accomplished

by LC-ESI-MS-MS.
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