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Abstract: The need for broader use of concepts of mod-
elling in the development of a conceptual basis for meas-
urement science is ascertained. A brief review of basic 
concepts of mathematical modelling is provided, and a class 
of models, most frequently used in measurement science, is 
characterised. A meta-model of measuring systems, unifying 
many existing methodologies of mathematical modelling in 
measurement science, is proposed. Its applicability is illus-
trated with a set of diversified examples. 
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1. INTRODUCTION 
 
The history of the International vocabulary of 

basic and general terms in metrology (compare it 
consecutive versions VIM1 [1], VIM2 [2] and VIM3 
[3]), and especially the discussions related to its recent 
version, have demonstrated the growing importance of 
the concepts of modelling – in particular of mathemat-
ical modelling – for the development of a conceptual 
basis of measurement science. 

The need for a general model of measurement – 
called hereinafter "measurement meta-model", to 
emphasise that is should be able to encompass the 
models of specific measurement processes and sys-
tems – is widely recognised. Various attempts, aimed 
at designing such a meta-model, have been undertaken 
since the second half of the XIXth century – for their 
review see [4]. 

The measurement meta-model should be general 
enough to encompass all or at least vast majority of 
measuring systems, met in practice, and specific 
enough to have higher explanatory power with respect 
to those systems than any general methodology of 
abstract modelling of material objects. It should de-
scribe the structure and behaviour of a generic meas-
uring system, together with the procedure necessary 
for its proper operation. It is also reasonable to expect 
the measurement meta-model be compatible with the 
conceptual basis of VIM3. In this paper, an attempt 
has been made to develop a meta-model satisfying all 
those requirements, but only at the application level, 
which means that its transformation to a fundamental-
level meta-model (cf. [4]) has not been undertaken 
here.  

The paper is structured as follows: first, in Section 
2, a general introduction to mathematical modelling 
and model validation is given; next, in Sections 3 and 
4, the proposed meta-model is outlined; finally, in 
Section 5, several examples of measuring systems are 
described in terms of that meta-model. 

  
2. BASIC CONCEPTS OF MATHEMATICAL 

MODELLING 
 
Let's assume that an entity to be modelled – for 

brevity, called "system" hereinafter – is an object, or a 
phenomenon, or an event, or… of physical, or chemi-
cal, or biological, or psychological, or sociological, or 
economical, or…, or mixed nature. Its mathematical 
model is its description – composed of entities such as 
numbers, variables, sets, equations, functions, rela-
tions,… – which enables one to infer about its proper-
ties and/or behaviour under various conditions. The 
identification of the system itself, i.e., the distinction 
between the system and the surrounding environment, 
is not objectively given, but is already part of the 
modelling process. It's possible that even in trivial 
situations, a mathematical model does not carry full 
information on the modelled system. So, a general 
criterion to evaluate the quality of a mathematical 
model is based on the trade-off between simplicity and 
informativeness: a mathematical model should be as 
simple as possible, but sufficiently informative for its 
target application. The process of mathematical mod-
elling typically starts with an informal description of 
the system in terms of its features which are consid-
ered to be important for the given application. Next, 
this description is translated into a more formal lan-
guage of quantities which are idealised features of the 
system, obtained by means of abstraction. Here, the 
proper definition of a mathematical model begins, 
being generally an iterative procedure, composed of 
two fundamental operations: 
− structural identification, i.e., the selection of a 

structure for the model (most frequently, a type of 
function or equation, e.g., a linear algebraic 
equation); 

− parametric identification, i.e., the estimation of the 
model parameters (e.g., the coefficients of the 
linear algebraic equation). 
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The first operation hardly can be algorithmised: 
the choice of the model structure is usually based on 
some intuitive premises, anterior experience, and trial-
and-error actions. On the other hand, the second oper-
ation is subject of advanced algorithmisation. 

Both model structure and parameters are affected 
by the mentioned trade-off between simplicity and 
informativeness. Consequently, a model provides only 
an approximate description of the properties and be-
haviour of the modelled system: 
− structural inadequacies derive from the limitations 

of the available knowledge on the modelled object, 
implied by omission of some factors in the choice 
of the quantities (input, output and influence 
quantities) modelling the system, the inappropriate 
specification of such quantities, the inappropriate 
choice of the equation modelling the relationships 
among those quantities; 

− inaccuracies in the parameter estimates are due to 
accuracy limitations of the parameter identification 
method, errors of its technical implementation, 
errors in the data used for identification. 
The assessment of such inadequacies and inaccu-

racies is highly problematic in practice, since they 
may be estimated only by means of a so-called ex-
tended model of the system, i.e., a model that is struc-
turally richer and/or more exact in its parameter values 
than the model under consideration. The extended 
model differs from the initial model in that it may 
have more input, output, influence quantities, and/or 
parameters, or because its parameter values are 
deemed to be obtained more accurately. Some other 
model validation strategies can also be envisaged (in 
particular based on sameness of results obtained from 
empirically independent models and effectiveness of 
model-based decision processes [5]), but all of them 
emphasise that model quality is not an absolute char-
acteristic, and must be assessed relatively to an exter-
nal and independent reference. 

 
3. CLASS OF MODELS TO BE USED 

IN THE PROPOSED APPROACH 
 
The proposed application-oriented approach is 

based on a particular class of mathematical models 
which may be called input-output models since they 
refer to the classification of the quantities, describing a 
modelled object or phenomenon into input and output 
quantities. The input quantities are further subdivided 
into desirable and undesirable input quantities; among 
the latter ones controllable input quantities (called 
influence quantities) and uncontrollable input quanti-
ties (called disturbances) are distinguished. It should 
be stressed that the input-output models cover the bulk 
majority of needs related to mathematical modelling 
in engineering and empirical sciences. They are ade-
quate tools for describing both causal and correlation-
type relationships. Depending on the origin and quan-
tity of information used for modelling they may be of 
black-box type, white-box type or grey-box type. Let's 

illustrate their usefulness in measurement science and 
technology with some examples of modelling from 
metrological literature. They will be presented in 
groups referring to the same mathematical structure 
used for modelling (after [6]).  

 
Example 1. Algebraic equations have been used 

for modelling sensors in the following cases: 
− a magnetostrictive sensor of strain [7] (the 

relationship between the spiky component of its 
voltage response and the measured stress is 
modelled by means of a single algebraic equation 
whose parameters are related to the selected 
working conditions of the sensor); 

− a tin-oxide sensor of gas concentration [8] (the 
relationship between its static resistance y  and the 
concentrations 1x , 2x , and 3x  of components of a 
gaseous analyte is modelled by means of the 
following algebraic equation: 
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where 1p , ..., 8p  are the parameters of the model); 
− a capacitive senor of acceleration, based on a 

micromachined disc levitating between two 
electrodes [9] (the dependence of its capacitance 
on the 3D-space coordinates is modelled by means 
of a rational function).  ♣ 
 
Example 2. Ordinary differential equations 

(ODEs) have been used for modelling sensors in the 
following cases: 
− a capacitor-based sensor of soil moisture [10] (the 

relationship between its voltage response, depend-
ing on the measurand, and a current excitation is 
modelled by means of a linear first-order ODE, 
represented by an impedance block); 

− a fibre-optic sensor of temperature [11] (the rela-
tionship between its voltage response and a square-
wave excitation signal is modelled by means of a 
linear first-order ODE represented by an apparatus 
function whose time constant depends on the tem-
perature);  

− a ceramic sensor of gas concentration [12] (its 
impedance is modelled by means of a linear sixth-
order ODE represented by an equivalent RC cir-
cuit);  

− sensors for measuring the relative mass loss of fuel 
for applications in fire detectors [13] (the relation-
ship between their response and the relative mass 
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loss is modelled by means of a linear ODE and, al-
ternatively, corresponding discrete convolution-
type equations);  

− a thermal-flow sensor of sound particle velocity 
[14] (its voltage response to the velocity is mod-
elled by means of a linear ODE represented by the 
following transfer function: 

( ) ( )
( ) ωω
ω

ω
ω

′
′Δ+

′Δ
= ∫ d

jUC
jU

jG
0 1

2  (2) 

where ( )ω ′Δ jU1  and ( )ω′Δ jU 2  are the ampli-
tude spectra of two voltages measured during 
characterisation of the sensor, and C  is a con-
stant).  ♣ 
 
Example 3. Some other mathematical structures 

have been used for modelling sensors in the following 
cases: 
− The response of a quenched-luminescence sensor 

of oxygen concentration (a complex luminescence 
signal) is modelled by means of an integral of a 
function whose parameters depend not only on the 
measurand by also on two influence quantities, viz. 
distributions of dye and excitation in the sensor 
[15].  

− The response of a resistive sensor of oxygen 
concentration is modelled by means of a linear 
first-order partial differential equation, nonlinear 
with respect to a variable modelling particle 
positions [16].  

− The relationship between the absorbance response 
and the concentration, in a spectrophotometric 
sensor for measuring the concentration of HCl 
vapours, is modelled by means of four linear 
second-order partial differential equations which 
describe the dynamic behaviour of the measurand 
and of three other concentrations of ions involved 
in the sensing process [17].  ♣ 

4. PROPOSED META-MODEL 
OF MEASUREMENT 

The presentation of the most general meta-model 
of measurement will be accomplished here in three 
steps:  
− First, a meta-model, aggregating functions which 

must appear in any so-called canonical measuring 
system, will be introduced. 

− Then, its generalisation on functionally-richer 
canonical measuring systems will be carried out. 

− Finally, the generalisation on non-canonical 
measuring systems will be proposed. 
The class of canonical measuring systems, intro-

duced above, encompasses the systems for measuring 
physical quantities by converting them into electrical 
digital signals and processing the latter by means of 
digital processors. The current importance of this class 
is implied by the possibility to solve a very broad class 
of measurement problems by means of commercially 
available elements such as sensors, analogue-to-digital 
converters, standard interfaces and computers.  

 
4.1. Step 1 
The minimum meta-model of measurement, per-

formed by means of a canonical measuring system, is 
shown in Fig. 1. In this figure: the blue-grey shadow 
represents the sphere of physical reality and the white 
block diagram – the sphere of mathematical abstracts. 
The input interface is a plurality of technical means 
enabling the interaction between MS and SuM, neces-
sary for measurement. The output interface is for 
providing communication with an external receiver of 

the result of measurement, i.e. with a person or a tech-
nical system MS is "working" for. The meta-model of 
measurement is composed of three interdependent 
parts: 
− a mathematical model of SuM, including the 

measurand X ; 
− a mathematical model of conversion, mapping the 

X  into the raw result of measurement Y ; 
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− a mathematical model of reconstruction, mapping 

the raw result of measurement Y  into the final 
result of measurement X̂ , i.e. an estimate of the 
measurand X . 
A measurand X  is defined by a mathematical 

model of SuM as a parameter or a function explicitly 
appearing in this SuM, or a function of such parame-
ters or functions, or a functional of such parameters or 
functions.  

The mathematical model of conversion is describ-
ing the transfer of information carried by the measur-
and to the signals which are easy to process (today: 
electrical and digital signals). Thus, it represents all 
the conversions of the physical nature of the signals 
(e.g. optical to electrical) and of the type of signals 
(e.g. analogue to digital). The blocks representative of 
the model of conversion and of the model of SuM are 
overlapping in Fig. 1 because the "conversion" of the 
measurand into the raw result of measurement may 
partially take place in SuM and partially in MS. To 
illustrate this idea, let's consider an example, viz. MS 
for measuring frequency of the signal provided by a 
generator of sinusoidal voltage.  

 
Example 4: In this case, the model of SuM may 

have the form:  

( ) ( ) ( )tuftUtu ⊥++= ϕπ2sin  for [ ]Tt ,0∈  (3) 

where f  denotes the measurand ( X ), i.e. the fre-
quency to be measured; t  denotes time; ( )tu  stands 
for the voltage signal accessible for MS; U  and ϕ  
are known or unknown model parameters (depending 
on the formulation of the measurement task); and 

( )tu⊥  is a component of ( )tu  satisfying the orthogo-
nality condition: 

( ) ( ) 02sin
0

=+∫ ⊥

T

dttuft ϕπ  for [ ]Tt ,0∈  (4) 

and the inequality: 

( ) Utu <<⊥  (5) 

The corresponding model of conversion may have the 
form: 

( ) ( ) nnn tuftUu ηϕπ +++= ⊥2sin~   
              for [ ]Ttn ,0∈  and Nn ...,,1=  (6) 

where the sequence { }Nnun ...,,1~ = , containing the 
results of sampling the voltage ( )tu  at the time in-
stants nt , is the raw result of measurement (Y ); nη  is 
a random component of nu~ , representative of all the 
uncontrollable factors influencing SuM and MS (it 
may also absorb ( )tu⊥  if no a priori information on 
this signal is available).  ♣ 
 

A mathematical model of reconstruction is de-
scribing all the operations aimed at determination of 
the final result of measurement, i.e. an estimate X̂  of 
X , on the basis of the raw result of measurement Y , 

the mathematical model of conversion, and a priori 
information on the measurand (if it is not included in 
the model of conversion). The parameters of the for-
ward or (pseudo)inverse model of conversion, neces-
sary for measurand reconstruction, are obtained during 
calibration on the basis of the known (assumed) struc-
ture of the model and raw results of measurements, 
corresponding to some reference values of the meas-
urand. In a canonical measuring system, the estimate 
X̂  is determined by a digital processor; so, the differ-

ence "between the model and reality" may be limited 
to the errors caused by the finite representation of 
numbers in that processor.  

The final result of measurement, X̂ , is subject to 
uncertainty whose sources may be classified into two 
groups: 
− the discrepancy between the mathematical models 

(white blocks in Fig. 1) and physical reality (blue-
grey blocks in Fig. 1); 

− the discrepancy between X̂  and X  resulting from 
the properties of the mathematical models.  
The evaluation of the first-group uncertainties is 

based on the assessment of the discrepancy between 
two mathematical models of the measurement chan-
nel: the principal model and the corresponding ex-
tended model. 

Let's have a closer look at the mathematical de-
scription of the scheme from Fig. 1. All the symbols 
used there may denote scalars, vectors, matrices, func-
tions or more complex operators. In particular, a sym-
bol denoting the measurand ( X ) can represent: 
− a scalar quantity x ; e.g. temperature, voltage or 

concentration of an analyte; 
− a vector quantity [ ]Txx ...21=x ; e.g. a vector of 

temperatures in an interior or a vector of mixed 
quantities (temperature, pressure and 
concentrations of analytes); 

− a scalar or vector function of a scalar variable t  or 
of a vector variable t  – ( )tx , ( )tx , ( )tx  or ( )tx ; 
e.g. an optical spectrum being a function 
modelling the dependence of light intensity on 
wavelength or a vector of functions modelling the 
dependence of the voltages (in an electronic 
circuit) on time. 
Further description of the model in Fig. 1 will be 

restricted to the most typical measurement situations 
when ( )tx≡X  and { }nY y≡ , but it will take into 
account disturbances which may influence both SuM 
and MS. The disturbed versions of the quantities will 
be indicated with tildes over corresponding symbols, 
and their exact versions with dots; in particular: ( )tx&  
will be the exact version of ( )tx  and { }ny~  – a se-
quence of disturbed values of vectors ny . 
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According to the scheme presented in Fig. 1, the 
final result of measurement is determined on the basis 
of the raw result of measurement { }ny~ : 

( ) { }[ ]RR pytx  ;~ˆ n=  (7) 

where R  is an operator, called operator of measur-
and reconstruction, and Rp  is the vector of its pa-
rameters. The operator R  is an inverse, approximate 
inverse or pseudoinverse of the forward model of 
conversion: 

{ } ( )[ ]CC ptxy  ;&& =n  (8) 

where { }ny&  denotes the "exact" raw result of meas-
urement, as it might be recorded in the absence of 
disturbing factors, and Cp  is the vector of parameters. 
On the whole CR pp ≠ , but if the operator R  is 
derived from the operator C , the equality CR pp =  is 
not excluded. 

One of the operators, C  or R , must be deter-
mined in advance, during calibration, on the basis of a 
set or sets of reference data: 

( ) ( ) { }
⎭⎬
⎫

⎩⎨
⎧ ∈= cal

n
calcal ytx ~,~~

TXD  (9) 

that cover the spaces of variation of ( )tx , denoted 

with the symbol ( )TX . The elements of the set calD
~ , 

although considered to be reference data, are subject 
to errors whose presence, unavoidably, makes uncer-
tain the result of calibration. 

 
4.2. Step 2 
Let's move to the second step of the meta-model 

presentation, i.e. to its generalisation on measurement 
situations where neither influence quantities nor sig-
nals controlling the responses of SuM may be neglect-
ed. First, a generalised influence quantity V , which 
may have an impact on the behaviour of both SuM 
and MS, should be added. It is influencing the raw 
result of measurement, but – in contrast to disturb-
ances – its value may be estimated and taken into 
account in the process of measurand reconstruction 
because it is measured or controlled. To produce an 
estimate X̂  of the measurand X , MS is acquiring 
two signals: a signal which is carrying information on 
the measurand X  and a signal which is carrying in-
formation on the generalised influence quantity V . It 
is, moreover, generating two signals: a signal xU , 
which is exciting SuM to provoke a desirable manifes-
tation of the measurand X , and a signal vU , which is 
controlling it to create a desirable state of the general-
ised influence quantity V .  

The generalised formulation of the meta-model 
will be restricted to the most typical measurement 
situations when: v≡V , { }nxU u≡ , and vU  is absent. 
The diacritical signs, hats, tildes and dots over the 

corresponding signals – will be used in the same way 
as for )(tx  and ny . Under such assumptions, the 
generalised model of reconstruction takes on the form: 

( ) { } { }[ ]RR puvytx  ;,ˆ,~ˆ nn &=   (10) 

where v̂  is the estimated (measured) value of the 
vector of influence quantities, and { }nu&  is the exact 
value of the control signal. The operator of measurand 
reconstruction R  is now an inverse, approximate 
inverse or pseudoinverse of the forward model of 
conversion: 

{ } ( ) { }[ ]CC puvtxy  ;,, nn &&&& =  (11) 

One of the operators, C  or R , must be deter-
mined in advance, during calibration, on the basis of 
an enhanced set of reference data: 

( ) ( ){ }UVTXD ∈∈∈= cal
n

cal
n

calcal , uvtx ~~,~~  (12) 

covering the spaces of variation – ( )TX , V  and U  
– of the quantities involved in the process of meas-
urement – ( )tx , v  and u  – respectively. Again, the 

reference data calD
~ are subject to errors whose pres-

ence makes uncertain the result of calibration.  
There are two fundamentally different approaches 

of the calibration problem: the forward-model-based 
approach (FMA), and the inverse-model-based ap-
proach (IMA). The first, more traditional, approach, is 
based on the use of the forward model of conversion: 
the estimates of the parameters of the operator C , 
obtained during calibration, are used in the reconstruc-
tion procedure, together with a priori information on 
the structure of this operator. This approach is found-
ed on the following premises: 
− The final result of measurement ( )tx̂ , generated 

by R , should belong to the space ( )TX . 
− Its image ( )[ ]CC ptx ˆ;...ˆ , where Cp̂  is an estimate 

of Cp  resulting from calibration, should be close 
to the vector of raw measurement data { }ny~  but 
not necessarily identical with it. 

− Optionally, it should meet some additional re-
quirements reflecting available a priori infor-
mation about the properties of the measurand (such 
as non-negativity, bounded support or band-
limited spectrum) known, e.g., from the analysis of 
physical phenomena underlying the functioning of 
SuM. 
The second, more modern, approach (IMA) con-

sists in direct identification of the reconstruction oper-
ator R  – satisfying the above requirements – during 
calibration; the method of calibration is in this case at 
least partially determined by the chosen method of 
reconstruction. As a rule, this approach leads to more 
complicated procedures of calibration than the FMA; 
that is why it may be widely implemented only recent-
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ly, due to the increase in performance of computing 
means. The main idea of this approach is to estimate 
the parameters Rp  in such a way as to control the 
error of reconstruction: 

{ } { }[ ] ( )txpuvy calcal
n

calcal
n

~;,ˆ,~ −RR &  (13) 

rather than the error of simulation: 

( ) { }[ ] { }cal
n

cal
n

calcal ypuvtx ~;,ˆ,~ −CC &  (14) 

A justification for using the criteria of calibration 
defined in the domain of the measurand is given in 
numerous papers, e.g. [18], [19], [20], [21]. According 
to IMA, the operator of reconstruction may be global-
ly optimised using the criteria of the quality of meas-
urand reconstruction, defined in the space of vectors 
of measurand values. The attainable accuracy of 
measurand reconstruction is higher for IMA than for 
FMA since the latter is based on the optimisation of 
the forward model using the criteria of the quality of 
conversion simulation, defined in the space of vectors 
of data. 

 
4.3. Step 3 
The last step of the meta-model presentation is 

aimed at its generalisation on non-canonical measur-
ing systems, in particular – on so-called analogue 
measuring systems (as opposed to digital measuring 
systems, being up to now considered in this section), 
and on systems for measuring non-physical (econom-
ic, social, psychological, etc.) quantities. Let's start 
with two simple examples: measurement of current by 
means of a d'Arsonval-Weston galvanometer and 
measurement of the intelligence quotient (IQ). 

 
Example 5. The electromechanical core of a galva-

nometer is composed of a small pivoting coil of wire 
in the field of a permanent magnet. The coil is at-
tached to a thin pointer that traverses a calibrated 
scale. A little torsion spring pulls the coil and pointer 
to the zero position. When a direct current ( X ) flows 
through the coil, then the coil generates a magnetic 
field which acts against the permanent magnet. The 
coil twists, pushing against the spring, and moves the 
pointer: the angular deflection (Y ) of the pointer is 
approximately proportional to the current. By visual 
comparison of the position of the pointer with the 
calibrated scale, the user of the galvanometer is able to 
read the final result of measurement i.e. an approxi-
mate value ( X̂ ) of the measured current ( X ). This 
process may be viewed as a sequence of two transfor-
mations:  
− the conversion of an electrical signal (current) 

whose value is to be measured into an optical 
signal (an image of the deflected pointer), 
performed by an electromagnetic core of the 
galvanometer; 

− the reconstruction of the measurand on the basis of 
visual comparison of the image of the pointer with 

the image of the scale, performed by the operator 
of the galvanometer. 
Such a decomposition of the measurement process 

enables one to apply the developed meta-model to the 
analysis and design of a galvanometer.  ♣ 

 
Example 6. IQ is an indicator of intellectual poten-

tial of a person, used in psychometrics. Due to the lack 
of a satisfactory definition of intelligence, it cannot be 
considered as its measure, but rather as a relatively 
independent quantity defined by the method for de-
termining its values, i.e. by standardised tests devel-
oped for this purpose. IQ is used as a predictor of 
educational achievements of a person or of his/her job 
performance, due to its empirically confirmed correla-
tion with some intellectual capacities. A standardised 
test, used for IQ measurements, is usually composed 
of multiple-choice or true-false questions; a point 
weight is attributed to each question. The test has a 
mean score of 100 points and a standard deviation of 
15 points. It means that 68 % of the population score 
an IQ within the interval 85–115, and 95 % – within 
the interval 70–130. The IQ score of an individual is 
correlated with such factors as the social status of 
his/her parents; thus, those factors play the role of 
influence quantities. This process of IQ measurement 
may be viewed as a sequence of two transformations: 
the "conversion" of the intellectual abilities of an 
individual into a set of test scores, and the "reconstruc-
tion" of IQ value by numerical aggregation of those 
scores. Again, such a decomposition of the measure-
ment process enables one to apply the presented meta-
model to its analysis in terms mathematical tools used 
in measurements of physical quantities.  ♣ 

 
Both above-outlined examples show the potential 

behind the presented meta-model (logical framework) 
to cover much broader class of measurements than 
those performed by canonical measuring systems. A 
key decision enabling the adaptation of the model 
developed for canonical measuring systems consists in 
the proper choice of the quantity considered to be the 
raw result of measurement. This quantity should be-
long to the domain of "easily interpretable phenome-
na" such as visual signals in the time of analogue 
measuring instruments or digital electrical signals 
today. Both examples show the importance of a 
"common denominator" of all measurements, viz. 
comparison with the standards, whose effectiveness 
depends on calibration. 

 
5. SELECTED APPLICATIONS 

 
5.1. Measurement of coin surface 
Let's assume that the surface ( x ) of a golden coin 

(SuM) is to be measured by means of MS composed 
of a CCD line detector, followed by an analogue-to-
digital converter, a digital interface, and a computer. 
Let's assume, moreover, that the coin is illuminated by 
a light source, and it is positioned by a coin holder, 
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both controlled by the computer. The measurement 
procedure comprises the following steps: 
M1: The coin is fixed in the coin holder at its initial 

position (the surface of the coin parallel to the sur-
face of the CCD detector, its centre on the projec-
tion of the CCD detector centre) and illuminated; 
the counter ( n ) in the computer is set to 1. 

M2: The result of the analogue-to-digital conversion 
( ny~ ) of the output signal of the CCD line detec-
tor, assumed to be monotonically related to the 
coin diameter, is recorded in the computer 
memory. 

M3: If Nn < , then the coin is turned around by the 
angle Nπ2 , the counter is incremented by 1, and 
the procedure returns to the step M2. 

M4: An estimate x̂  of the coin surface x  is calculated 
in the computer on the basis of the raw results of 
measurement { }ny~  using an artificial neural net-
work (ANN), appropriately trained during calibra-
tion (IMA). 

Let's assume that calibration is based on the use of 
K  reference coins whose surfaces ( Kkxcal

k ...,,1, =& ) 
are known with the uncertainty at least 10 times lower 
than the target measurement uncertainty. Then, the 
calibration procedure comprises two steps: 
C1: First, the raw results of measurement { }nky ,

~ , cor-

responding to all reference surfaces cal
kx&  

( Kk ...,,1= ), are recorded. 
C2: Next, the parameters of ANN are adjusted in such 

a way as to minimise the criterion 

( )∑
=

−
K

k

cal
k

cal
k xx

1

2ˆ & , where cal
kx̂  is the ANN output 

corresponding to the input sequence { }nky ,
~ . 

The above calibration procedure is consistent with 
the chosen method of measurand reconstruction 
(step M4), and must be modified if the latter is 
changed. Let's assume, for example, that instead of 
ANN the following formula of estimation is used: 

( )∑
=

+=
N

n
n pypx

1

2
01

~ˆ  (15) 

Then, during calibration, the parameters 0p  and 1p  
should be determined via minimisation of the criterion 

( )∑
=

−
K

k

cal
k

cal
k xx

1

2ˆ & , where:  

( )∑
=

+=
N

n

cal
nk

cal
k pypx

1

2
0,1

~ˆ  (16) 

If the step M2 of the measurement procedure were 
repeated N  times without turning the coin around, 
then the reconstruction method based on the formula: 

2

0
1

1
~ˆ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=

pypx
N

n
n  (17) 

would be more appropriate. If the nonlinearity of the 
conversion were non-negligible, the reconstruction 
method: 

( )∑
=

++=
N

n
nn pypypx

1

2
01

2
2

~~ˆ  (18) 

could prove to be more accurate. 
 
5.2. Measurement of optical spectrum [22] 
The intensity spectrum, ( )λx , of an optical signal 

(light) is a scalar real-valued function representative of 
the distribution of optical power [ ]maxmin , xxx∈  in a 
given interval [ ]maxmin , λλ  of wavelength λ . Thus, in 
the considered case SuM is a source of light, and MS 
is a spectrophotometer schematically depicted in 
Fig. 2. This spectrophotometer is composed of two 
principal blocks, viz.: a spectrophotometric transducer 
(ST) and a digital signal processor (DSP).  

ST is converting an optical signal into a vector of 
data, [ ]TNyy ~...~~

1≡y , representative of the spectrum 
( )λx  of that signal. On the basis of that vector, con-

taining integer numbers called counts, DSP is compu-
ting a vector x̂  whose elements are estimates of the 
spectrum values ( )mx λ , Mm ...,,1= . The corre-
sponding numerical procedure is referring to the in-
formation on the ST, acquired by means of reference 
measuring instruments, and preprocessed during the 
calibration, comprising acquisition of the reference 
data by means of reference instrumentation and their 
processing by means of an external computer (not by 
DSP of the spectrophotometer). The measurement 
procedure comprises the following steps: 
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M1: The source of the optical signal, whose intensity 

spectrum is to be measured, is switched on and 
stabilised during one hour. 

M2: The vector of raw measurement data y~  is record-
ed in the DSP memory and used for computing 
the function ( )λŷ , interpolating the sequence of 

pairs n
cal
n y~,λ , where cal

nλ  are elements of a 

vector of wavelength values calλ , obtained during 
calibration. 

M3: The final result of measurement is determined 
according to the formula: 

( ) ( ) 012 ˆˆˆ pypypx mmm ++= λλ  for Mm ...,,1=  (19) 

where 0p , 1p  and 2p  are parameters determined 
during calibration. 
A procedure of calibration, consistent with the 

above measurement procedure, is based on the use of 
a high-resolution tuneable source of monochromatic 
optical signal, calibrated with respect to wavelength 
and magnitude.  
C1: First, this source is set to an average magnitude 

calxavg  and tuned from minλ to maxλ ; in this way, 

the wavelength values cal
nλ , corresponding to the 

maxima of the consecutive elements of the vector 
y~ , are identified.  

C2: Next, the responses of ST to the monochromatic 
signal – whose wavelength value is set to cal

nλ  

and magnitude to minmin xxcal ≅  and maxmax xxcal ≅  – 
are recorded. 

C3: Finally, the maximum values of those responses – 
cal

nymin,  and cal
nymax,  ( Nn ...,,1= ) – are used for es-

timation of the parameters 0p , 1p  and 2p  by 
minimising the following criterion: 

( )∑
=

⎥⎦
⎤

⎢⎣
⎡ −−−

N

n

cal
n

cal
n

cal pxpxpx
1

2

0min,1
2

min,2min   

     ( )∑
=

⎥⎦
⎤

⎢⎣
⎡ −−−+

N

n

cal
n

cal
n

cal pypypx
1

2

0max,1
2

max,2max  (20) 

It may turn out that the optical resolution of spec-
trum measurements, performed according to the 
above-described procedures of reconstruction and 
calibration, is insufficient. Then the following im-
provements can be introduced to the step M2 of the 
measurement procedure: 
M2': The vector of raw measurement data y~  is rec-

orded in the DSP memory and used for compu-
ting the function ( )λŷ , approximately satisfy-
ing the following set of equations: 

     
( ) ( ) nyyg cal

n

~ˆ =∗
=λλλλ    for Nn ...,,1=  (21) 

where ∗  is the operator of convolution; cal
nλ  are ele-

ments of the vector calλ , obtained during calibration, 
and ( )λg  is a so-called apparatus function determined 
during calibration.  

The corresponding procedure of calibration must 
include a step of ( )λg  determination, e.g. by record-
ing and centring the ST response gy~  to a signal gen-
erated by the monochromator tuned to the wavelength 
value ( ) 2maxmin λλλ +=g . 

 
5.3. Spectrophotometric analysis of liquids [23] 
A spectrophotometric analyser is an instrument for 

measuring physical and/or chemical parameters – such 
as concentrations Jcc ...,,1  – of selected compounds 
of a liquid sample, representative of a pre-defined 
class of chemical or biochemical substances. The 
spectrophotometer, described in the previous example, 

is the heart of such an analyser (Fig. 3). 
The measurement procedure comprises the follow-

ing steps: 
M1: The source optical signal is converted into the 

data 0
~y  representative of its intensity spectrum 

( )λ0x . 
M2: The same source optical signal is passed through a 

cuvette, containing a sample of the substance to 
be analysed, and converted into the data 1

~y  repre-
sentative of its intensity spectrum, modified by a 
sample, ( )λ1x . 
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M3: The intensity data 0

~y  and 1
~y  are processed by a 

digital signal processor in order to obtain esti-
mates of the concentrations Jcc ...,,1 . 

The latter step is based on the transformation of the 
intensity spectra ( )λ0x  and ( )λ1x  into the transmit-
tance spectrum defined as: 

( ) ( )
( )λ
λλ

0

1

x
xxTr =   (22) 

and the corresponding transformation of the data 0
~y  

and 1
~y  into the transmittance data, representative of 

( )λTrx , according to the formula: 

nn

nnTr
n by

by
y

−

−
=

,0

,1
~
~

~  for Nn ...,,1=  (23) 

where [ ]TNbb ...1=b  is the ST response to the zero-
intensity optical signal. The transmittance data are 
further transformed into the corresponding absorbance 
data: 

( )Tr
n

Ab
n yy ~log~

10−=  for Nn ...,,1=  (24) 

representative of the absorbance spectrum: 

( ) ( )( )λλ TrAb xx 10log−=  (25) 

An example of transmittance and absorbance data 
is shown in Fig. 4. The absorbance data emphasise the 
most informative parts of the spectrum, viz. absorption 
peaks whose parameters, positions and magnitudes, 
are determined by the qualitative and quantitative 
composition of the sample under study. The graphical 
image of those data is a finger-print enabling the iden-
tification of the sample. Thus, the coordinates of the 
maxima of absorption peaks: 

...,~,,~,
21 21

Ab
n

Ab
n ynyn  (26) 

may be used for estimation of Jcc ...,,1 , for example, 
by means of an artificial neural network. 

A procedure of calibration, consistent with the 
above-described measurement procedure, is based on 

the use of a set of reference samples of the analysed 
liquid (e.g. red wine) whose composition (the values 
of Jcc ...,,1 ) is known with an uncertainty significant-
ly smaller than expected uncertainty of the analyser 
under development: 
C1: For each reference sample, the peak parameters – 

...,~,,~,
21 21

Ab
n

Ab
n ynyn  – are determined in the 

same way as during measurement. 
C2: They are used, together with the reference values 

of concentrations, for training the neural network. 
 
5.4. Expanded-model-based evaluation of meas-

urement uncertainty 
Let's return to a methodology for measuring the 

surface of a golden coin, described in the sub-section 
5.1.; let's assume that: 
− The mathematical model of the coin, defined in the 

radial system of coordinates, has the form: 

 2
0d

r =  for [ ]πϕ 2,0∈  (27) 

where r  is radius, ϕ  is angle and 0d  is the aver-
age diameter of the coin. 

− The measurement reconstruction is based on the 
mathematical model defined by (15). 
The first of the above assumptions means that the 

coin is perfectly round and perfectly positioned; the 
second – that the nonlinearity of conversion is ne-
glected. The evaluation of measurement uncertainty 
could be based in this case on the extended model of 
the coin and extended model of measurand reconstruc-
tion. The first of them might have the form:  

( ) ( )ϕρϕ
π

ϕ Δ+⎟
⎠
⎞

⎜
⎝
⎛+=

2
100sin

22
10 ddr   

                                                 for [ ]πϕ 2,0∈  (28) 
where 1d  is the depth of 100 engravings on the edge 
of the coin, and ( )ϕρΔ  is a realisation of a stochastic 
process modelling imperfections of the coin position-
ing, i.e. a non-random function of a random three-
dimensional vector characterising the undesirable 
deviation of the actual coin position from its nominal 
position. The formula (18) could be used as an ex-
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tended model of measurand reconstruction. The com-
ponents of measurement error, assessed by means of 
those two extended models, have the form: 

( ) ϕϕρϕ
π

ϕ
ππ

dddddx ∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
Δ+⎟

⎠
⎞

⎜
⎝
⎛+−=Δ

2

0

10
2

0

0
1 2

100sin
222

ˆ

                                                      ( ) ϕϕρ
π

d∫ Δ=
2

0

 (29) 

( ) ( )∑∑
==

++−′+′=Δ
N

n
nn

N

n
n pypyppypx

1

2
01

2
2

1

2
012

~~~ˆ  (30) 

where 0p′  and 1p′  are parameters obtained during 
calibration referring to the model defined by (15), 
while 0p , 1p  and 2p  are parameters obtained during 
calibration referring to the model defined by (18). 
Under an assumption that the error components 1x̂Δ  
and 2x̂Δ  are small enough, the following formula: 

21 ˆsupˆsupˆ xxx Δ+Δ=Δ  (31) 

might be used for evaluation of the worst-case meas-
urement uncertainty. In the above formula, the opera-
tion "sup" is performed over: 
− the range of the possible variation of 0d ; 
− the range of variation of all neglected influence 

quantities, 
− the set of admissible realisations ( )ϕρΔ ,  
− the set of possible realisations of calibration data. 

 
6. CONCLUSION 

 
The presented application-oriented approach to 

mathematical modelling of measurement processes is 
the product of the author's attempts – undertaken dur-
ing last 20 years [24], [25], [26], [6] – to integrate and 
unify practical methodologies applied by theoreticians 
and practitioners in various domains of measurement 
science. Although it is far from being fully accom-
plished, it seems to provide useful and consistent 
answers to the questions about the role of mathemati-
cal modelling in defining measurands, in calibration of 
measuring systems and in evaluation of measurement 
uncertainty. It seems also to be at least consistent with 
the ways of thinking, developed in metrology of non-
physical quantities. It is relatively "insensitive" to 
various ontic and epistemic assumptions used by vari-
ous versions of the philosophy of measurement. It is 
quite friendly or affirmative with respect to various 
theoretical frameworks of measurement, such as prob-
abilistic, fuzzy or morphological approaches.  
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