Faculty of Mechanical Engineering

PROSPECTS IN MECHANICAL ENGINEERING

8 - 12 September 2008

www.tu-ilmenau.de

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=17534
Published by

Impressum

Publisher
Herausgeber
Editor
Redaktion

Der Rektor der Technischen Universität Ilmenau
Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff
Referat Marketing und Studentische Angelegenheiten
Andrea Schneider

Herausgeber
Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Editor
Referat Marketing und Studentische Angelegenheiten
Andrea Schneider

Fakultät für Maschinenbau
Univ.-Prof. Dr.-Ing. habil. Peter Kurz,
Univ.-Prof. Dr.-Ing. habil. Rainer Grünwald,
Univ.-Prof. Dr.-Ing. habil. Prof. h. c. Dr. h. c. mult. Gerd Jäger,
Dr.-Ing Beate Schlütter,
Dipl.-Ing. Silke Stauche

Editorial Deadline
17. August 2008

Redaktionsschluss

Publishing House
Verlag ISLE, Betriebsstätte des ISLE e.V.
Verlag
Werner-von-Siemens-Str. 16, 98693 Ilmenau

CD-ROM-Version:

Implementation
Technische Universität Ilmenau
Realisierung
Christian Weigel, Helge Drumm

Production
CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts
Herstellung

ISBN: 978-3-938843-40-6 (CD-ROM-Version)

Online-Version:

Implementation
Universitätsbibliothek Ilmenau
Realisierung

ilmédia
Postfach 10 05 65
98684 Ilmenau

© Technische Universität Ilmenau (Thür.) 2008

The content of the CD-ROM and online-documents are copyright protected by law.
Der Inhalt der CD-ROM und die Online-Dokumente sind urheberrechtlich geschützt.

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=17534
T. Djamiykov/ M. Milushev/ S. Hecht/ M. Marinov

A Sensor Component of a Walking Machine’s Joint

INTELLIGENT MECHANICS IN ROBOTICS

The sensor for measurement of the robot joint angles proposed in this paper, is an alternative of the well known potentiometric angle encoders, which are frequently used for these purposes. The sensor is realized on the base of magnetic sensitive converter and thoroidal type permanent magnet with variable field with respect to the angular displacement (Fig.1). The precision of the measurements are required to be of 0.25 degrees maximum in the range of 0 to 62 degrees. In the same time, the sensor possesses light construction and easy embedment in the all system.

Experiments were carried out, in order to determine the optimal operational range (zone) of the sensor (Fig. 2). The supply (feeding, voltage) was chosen to be 5, 7 and 9 volts. Variation of the distance between the magnet and the hall effect element was chosen to be 0.5 mm, 1.0mm, 1.5mm and 2.0mm in the range of the angle variation between 0 and 180 degrees. Some experimental results are depicted in Fig. 3 with step 5 degrees. The linear character of the steady-state characteristic is not influenced by the supply variation. The longest linear sector of the transfer (transmission) characteristic and the least change of the sensitivity are observed when the distance is 1mm. Detailed investigation of the characteristics is performed for operating range of 70 degrees in the
interval between 60 and 135 degrees for the all operating interval with step of one degree.

The results shown in Fig. 4, depict strong linearity in the chosen range and constant sensitivity. Little vacillations in sensitivity can be attributed to random errors which do not change the character of the characteristics. The measured mean square value of the noise voltage σ_u is 2 mV. The experimental results show that the sensitivity of the sensor, in the case of operational conditions described above, is 30 mV/°. When $3\sigma_u = 6$ mV, the minimal angular discrimination is $\psi = \frac{3\sigma_u}{\Delta} = \frac{6\text{mV}}{30\text{mV}} = 0.2 \text{ grad}$. In the range of 62 degrees for normal joint operation, a 8 bits (62/0.25 =248) A/D converter is needed.

Acknowledgement

This work was supported by BY–TH–201/2006 Contract entitled “Research of a Modular Architecture for the Control of Mechatronic Elastic Multi-Link Devices”.

References:

Authors:

Assoc. Prof. Mladen Milushev
Dr. Eng. Siegmar Hecht
Assoc. Prof. Marin Marinov
Assoc. Prof. Todor Djamiykov
TU-Sofia, Department of electronics, Kl. Ohridsky blv. 8
1756 - Sofia, Bulgaria,
(+3592)9652142,
e-mail: tsd@tu-sofia.bg