Faculty of Mechanical Engineering

PROSPECTS IN MECHANICAL ENGINEERING

8 - 12 September 2008

www.tu-ilmenau.de

Home / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=17534
V. Zerbe/ M. Milushev

MODULAR CONTROL FOR A JOINT BASED ON ANTAGONISTIC PNEUMATIC MOTIONING

INTELLIGENT MECHANICS IN ROBOTICS

Pneumatic Muscles as Actuators

Unlike electric drivers causing rotation movements when actuating a joint, fluidic muscles generate instead linear translations through extending and contraction. Hence, the realization of the one-joint-actuator (Fig. 1) proceeds by way of a pair of antagonistically connected muscles called protagonist and antagonist. The fluidic muscles MAS-20 produced by the company FESTO are selected as actuators for the walking robot. They provide for a contraction up to 73% and extension up to 103% of their initial length. As valves two 5/3 high speed switching valves of the company FESTO are used. The activating of one valve fills the first muscle from the regulated supply of clean air while the other muscle is being exhausted. The second valve acts vice versa. Thus in regard of the air stream each muscle is secured three conditions – in-close-out. The realization of a leg in accordance with this principle is shown in Fig. 2.
Control Architecture

The hierarchical modular control architecture is described in [6] and is similar to that of other walking machines [2, 3]. A PC system at the top level of the hierarchy performs the main robotic tasks e.g. path planning, calculation of foot trajectories and communication with the environment. At the second level the EVBR8C/23 produced by RENASAS microcontrollers execute the basic functions like data acquisition and processing through timely synchronization of the necessary joint angle positions and providing service activities to the upper level thus allowing to regard the leg as an autonomous unit. Here belongs the communication link between the body and leg controllers. At the base level each sensor and actuator is connected directly to the closed-loop joint control. The task is to control the actuator in a way allowing the realization of the prearranged joint rotation angle.

Closed-Loop Control of the Joint and Electronic Components

The task of controlling a muscle-joint integrates the subtasks of controlling the joint angle through the air flowing in and out of the muscle. The control architecture’s structure is shown in Fig. 3. The sensor input provides the instant joint angle, which is compared with the given one. In case of occurring differences one of valve coils for rotation is activated in order to equal the values of current with the given angles. A PWM channel of the controllers is used to generate a 23 Hz signal for controlling the respective

Fig. 3. Block diagram for implementing a joint control

Fig. 4. FPGA modul
valve. The structure encompasses additional logic aimed at servicing the other control signals and synchronization with ADC.

For a hardware realization of the structure as well as in order to put module architectures into use the evaluation model using FPGA by Xilinx- XC95144XL (Fig.4.) has been set up. The module’s capacity allows implementation of the three described structures, correspondingly for all three leg joints. Through coupling or through valves divided into two sections on each circuit board the peripheral will be connected: one section has six semiconductor switches for the coil valves and the second one has the sensors and ADC.

Experiments and Further Work

Since the only manipulative variable of the control loop are the airflow into and out of the muscle, the first step would be to generate the basic control scheme for the leg’s joint. At the moment new control algorithms, which include a dynamic muscle model are tested. Further, the whole conception will be improved in order to define the types of elementary behavior of each joint and the manner in which to combine those types for setting up the complex control architecture for the leg and the two walking phases (return and power phase).

Acknowledgement
This work was supported by BY–TH–201/2006 Contract entitled “Research of a Modular Architecture for the Control of Mechatronic Elastic Multi-Link Devices”.

References:
[5] Philip T. Vuong, Asad M. Madni and Jim B. Vuong: “VHDL Implementation For a Fuzzy Logic Controller”

Authors:
Dr. Eng. Volker Zerbe
Assoc. Prof. Mladen Milushev
TU-Sofia, Department of ADP, Kl. Ohridsky blv. 8
1756 - Sofia, Bulgaria,
(+3592)9653433,
e-mail: mcm@tu-sofia.bg