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1. Introduction 

1.1 Plants and their invisible volatile organic compounds (VOCs) 

Plants are sessile for most of their life cycle, but seem to compensate for their 

immobility in plant-organism interactions by emitting a huge variety of volatile organic 

compounds (VOCs) into the environment from both above-ground (leaves and flowers) and 

below-ground (roots) tissues. The amount of plant volatile emission is several orders of 

magnitude higher than that of animals (Dicke and Loreto, 2010). About 1700 organic 

compounds, with enough vapor pressure at normal temperature and pressure to volatilize, 

have been found to be released from plants (Dicke and Loreto, 2010; Loreto and Schnitzler, 

2010). The estimated annual global VOC emission is 1150 tera-gram per year (Guenther et 

al., 1995). Most VOCs can be assigned into following groups (see Table 1.1).  

 

Table 1.1 Plant volatile organic compounds (VOCs) 

Group Name of examples 
Simple gas carbon dioxide (CO2) 
   
C1 and C2 oxygenated compounds methanol (CH3OH, CH4O) 
  formaldehyde (CH2O) 
  ethanol (CH3CH2OH, CH6O) 
  acetaldehyde (C2H4O) 
Terpenes hemiterpene (C5): e.g. isoprene and methylbutenol  
  monoterpene (C10): e.g. limonene, myrcene, (E)-β-ocimene 
  sesquiterpene (C15): e.g. (E)-β-caryophyllene 

Fatty acid derivatives 
e.g. methyl jasmonate, green leaf volatiles (C6 aldehydes, 
alcohols and esters) 

Benzenoids e.g. benzylacetate, methylsalicylate  (Boatright et al., 2004) 

Phenylpropanoids 
e.g. ethyl cinnamate, sinapate derivatives (Dixon et al., 
2002) 

Amino acid derived metabolites e.g. amines, nicotine and other simple alkaloids 
Others methane (CH4) 
  ethylene (C2H4) 
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Volatile terpenes (i.e. isoprenoids, terpenoids) represent more than 50% of the total 

volatiles released from plants with up to 10 times higher emissions than those of other VOCs 

(Pichersky and Gershenzon, 2002; Loreto and Schnitzler, 2010). For instance, isoprene (44%) 

and monoterpenes (11%) are major components of annual global VOC emissions (Guenther 

et al., 1995). Sesquiterpenes are estimated to make up to 28% of overall plant VOCs in 

certain forest sites (Helmig et al., 1999). These substances can comprise a significant fraction 

of fixed photosynthetic carbon (Vickers et al., 2009), which leads to the question why plants 

release volatile terpenes into the environment. To date, we still have a limited understanding 

of the biological role of plant volatile terpene emissions. 

Plants release VOCs in different ways: Some plants constitutively emit terpenes 

either throughout their whole life cycle or at specific developmental stages, such as flowering, 

fruit ripening, leaf and needle maturation and senescence; other plants release terpenes in 

association with various biotic and abiotic stresses. Abiotic factors (high light, high 

temperature, atmospheric pollutant O3, atmospheric CO2 concentration, water, salt and other 

nutrients) significantly affect volatile terpene emissions (Vickers et al., 2009; Loreto and 

Schnitzler, 2010). Among biotic stresses, herbivore feeding and pathogen attack are 

triggering factors for inducing the release of VOCs (Mithofer et al., 2005; Holopainen and 

Gershenzon, 2010). Constitutively emitted volatiles may be stimulated or quenched by 

external stresses (Loreto and Schnitzler, 2010), while induced terpene volatiles can be 

released either from existing storage sites (glandular trichomes or resin ducts) or be 

synthesized de novo at wound sites or systemically in more distant tissues. In response to 

stress, it is sometimes observed that the emission of volatile terpenes is more sustained than 

that of other volatiles even when carbon uptake and photosynthesis are limited (Brilli et al., 

2007; Vickers et al., 2009; Loreto and Schnitzler, 2010) suggesting that such emission has an 
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important purpose. A variety of different functions have been associated with the emission of 

volatile terpenes: Terpenes have been found to protect plants against herbivores either 

directly by repelling oviposition and feeding or indirectly by attracting enemies of herbivores 

(Pichersky and Gershenzon, 2002; Dicke et al., 2003; Koellner et al., 2008). Volatiles 

released upon herbivore attack also previously attacked plants to respond faster or to a 

greater degree to a second round of damage (Unsicker et al., 2009). Terpenes, such as 

isoprene and monoterpenes also appear to mitigate abiotic stresses, such as high temperature 

and oxidative stress (Holopainen and Gershenzon, 2010; Loreto and Schnitzler, 2010; 

Schnitzler et al., 2010). 

Once plant volatiles are released into the atmosphere, they take part in many 

processes that influence the levels of ozone and aerosols (Atkinson and Arey, 2003; Loreto 

and Schnitzler, 2010). The resulting chemical and physical changes in the atmosphere may 

have indirect feedback on plants. Under ongoing global climate change, terpene emission 

patterns may be altered leading to dramatic changes in plant-plant, plant-herbivore, plant-

atmosphere interactions that are beyond the current expectations of ecologists and biologists 

(Holopainen and Gershenzon, 2010). The obvious abundance of plant terpenes but a yet 

limited understanding of their biological roles and molecular regulation prompted us to 

investigate these aspects in greater detail by using Arabidopsis thaliana as a model system.  

1.2 Volatile terpene biosyntheses and regulations 

Volatile terpenes belong to the largest and most diverse class of plant secondary 

metabolites, with more than 30,000 structural variants (Degenhardt et al., 2009). The 

majority of hemiterpenes (C5), monoterpenes (C10), and sesquiterpenes (C15) are volatile 

(representative volatile terpene structures in Fig. 1.1). Due to their low molecular weights 



1. Introduction 
 

4 
 

(< 300 Da), these compounds can be released into the atmosphere or the soil at ordinary 

biological temperatures. Terpene volatiles are mostly lipophilic and can cross cell 

membranes easily (Dudareva et al., 2006; Vickers et al., 2009). 

 

 

 

Isoprene            Limonene          (E)-β-Ocimene           (E,E)-α-farnesene           (E)-β-Caryophyllene                  

Figure 1.1. Chemical structures of representative terpene volatiles: isoprene is a hemiterpene; limonene and 

(E)-β-ocimene are monoterpenes; (E,E)-α-farnesene and (E)-β-caryophyllene are sesquiterpenes. 

 

Generally, two alternative pathways are responsible for the formation of the basic 

units of volatile terpenes in plants, the plastid-localized MEP (2-C-methyl-D-erythritol 4-

phosphate) pathway and the cytosol-localized MVA (mevalonic acid) pathway, which is 

involved in ER (endoplasmic reticulum) membrane systems and a partial peroxisomal 

localization according to the newest finding by Sapir-Mir et al. (Sapir-Mir et al., 2008) 

(Fig. 1.2). The two pathways are both responsible for the formation of the basic C5 units IPP 

(isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) (Lange et al., 2000). The 

MEP pathway was discovered in many bacteria and plastids of plants (Rohmer, 2008), while 

the MVA pathway is common in animals, fungi and plants (Lange et al., 2000). Once the C5 

units are formed, isoprenyl diphosphate synthases (part of the prenyltransferase enzyme 

family), catalyse condensations of IPP and DMAPP into GPP (geranyl diphosphate, C10), 

FPP (farnesyl diphosphate, C15) and GGPP (geranylgeranyl diphosphate, C20) (Liang et al., 

2002). Finally, diverse terpene synthases (TPSs) convert DMAPP, GPP and GGPP into 

hemiterpenes (C5), monoterpenes (C10), diterpenes (C20) and tetraterpenes (C40) in plastids; 
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whereas other TPSs convert FPP to sesquiterpenes (C15) and triterpenes (C30) usually in the 

cytosol (Bohlmann et al., 1998; Lange et al., 2000) (Fig. 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Scheme of the subcellular compartmentation of volatile terpene pathways, including the newly 

proposed crosstalk between the pathways and plastidial FPP biosynthesis (Cunillera et al., 1996; Lange et al., 

2000; Phillips et al., 2008; Sapir-Mir et al., 2008; Sallaud et al., 2009).  

 

Beyond the outline of the two pathways mentioned above, many complex aspects of 

volatile terpene biosynthesis have been described in recent years. For example, a flow of 

intermediates between the pathways occurs (Hemmerlin et al., 2003; Laule et al., 2003; 

Schuhr et al., 2003; Dudareva et al., 2005) especially from the chloroplasts towards the 
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cytosol (Laule et al., 2003). The intermediate FPP, once thought to be confined to the cytosol, 

is also present in the plastid (Aharoni et al., 2003; Schuhr et al., 2003). Sesquiterpene 

formation occurs not only in the cytosol, but also in plastids, ER systems, and mitochondria 

(Cunillera et al., 1996; Dudareva et al., 2005; Sapir-Mir et al., 2008; Sallaud et al., 2009). At 

the regulatory level, substrate availability, gene regulation, enzyme activity, subcellular 

compartmentation and other factors control the rate of terpene formation. However, it is still 

unclear how these different modes of regulation contribute to the diverse patterns of terpene 

production in nature, especially for volatile terpenes. In Chapter I, we have investigated the 

natural diversity of volatile terpenes from the model plant Arabidopsis thaliana and 

elucidated some of the molecular mechanisms that control it.  

1.3 Caryophyllene: an important sesquiterpene 

Sesquiterpenes are among the most studied volatile terpenes investigated. Compared 

to isoprene and monoterpenes, they have more complex chemical structures, a higher 

molecular weight and lower vapor pressure. Caryophyllene, a widespread volatile terpene, is 

a common constituent of essential oils or resins in plants, and thanks to modern 

quantification measurements (Komenda et al., 2001; Helmig et al., 2003; Helmig et al., 2004; 

Tholl et al., 2006), it is considered to be one of the most abundant sesquiterpenes in nature 

(Arey et al., 1995; Ciccioli et al., 1999). Actually, the earliest study of caryophyllene may 

date back more than 170 years, and the chemical structure of caryophyllene was established 

at the beginning of the 1950s (Tkachev, 1988). The chemical name of caryophyllene is 

(1R,4E,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene (Fig. 1.3). 

Caryophyllene has trans-linked butane and nonane carbon rings and a trans-substituted 

double bond in the nine-membered ring. As an unusual hydrocarbon, it has attracted chemists’ 
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attentions for many years. In nature, the most abundant isomer is (E)-β-caryophyllene (Fig. 

1.3A). The cis isomer (Z)-β-caryophyllene (i.e. isocaryophyllene) (Fig. 1.3B) with the cis-

substituted endocyclic double bond only rarely accompanies (E)-β-caryophyllene and is 

found in an insignificant amount (Tkachev, 1988). The ring-opened isomer, designated as α-

caryophyllene or α-humulene (Fig. 1.3C) is found in low amounts as well. Nearly 40 years 

ago, at the beginning of the 1970s, the biosynthetic pathway of (E)-β-caryophyllene was 

discovered for the first time by using radioactive mevalonate-2-14C in peppermint (Mentha 

piperita L.). Interestingly, the biosynthetic location of (E)-β-caryophyllene appeared to be 

different from that of the monoterpenes in this species, based on different incorporation 

patterns, a fact substantiated many years later when the biosynthetic genes were finally 

cloned (Croteau and Loomis, 1972).  

 

 

 

 

 

 
Figure 1.3. Chemical structures of (E)-β-caryophyllene (A), (Z)-β-caryophyllene (B) and α-humulene (C). 

 

(E)-β-caryophyllene has a typical dry wood smell, although it is aromatically weak 

and not obviously distinctive to most human noses. The presence of (E)-β-caryophyllene in 

herbs and herbal extracts has been noticed for a long time. For instance, it is one of the most 

abundant metabolites in green tea flavors (Nose et al., 1971), and also a main contributor (up 

to 79%) to the spicy taste of the essential oil of pepper (Piper nigrum L.) (Orav et al., 2004). 

Interestingly, in the atmosphere, the reactive life time of (E)-β-caryophyllene is only 1-2 min 



1. Introduction 
 

8 
 

because of its rapid reaction with various oxygen species via its internal and external double 

bonds (Shu and Atkinson, 1994; Shu and Atkinson, 1995; Atkinson and Arey, 2003). The 

major oxidation products, as much as 70%, are main contributors to aerosol formation in 

secondary organic aerosol chamber experiments (Lee et al., 2006; Asa-Awuku et al., 2009). 

The special features of (E)-β-caryophyllene have made it one of the most popular 

sesquiterpenes for study in recent atmospheric, ecological and biochemical research projects.  

From animal studies, (E)-β-caryophyllene in foods has been identified as a functional 

nonpsychoactive CB2 (cannabinoid receptor type 2) receptor ligand and a macrocyclic anti-

inflammatory cannabinoid in Cannabis sativa L. (Gertsch et al., 2008). But, no 

corresponding receptor has been found in plants. From many reports, we know that (E)-β-

caryophyllene is emitted with different emission rates from various plant species (Duhl et al., 

2008); it can either be emitted constitutively or be induced by abiotic or biotic environmental 

factors as other volatile terpenes. An overview of (E)-β-caryophyllene emissions from 

different plant species under various environmental stresses is given in Tables 1.2 and 1.3.  

 

Table 1.2. Emission of (E)-β-caryophyllene from selected plant species* 

Plant species 
% of total 
VOC emission 

% of total 
sesquiterpene 
emission 

Estimated emission 
rate References 

Rosa hybrida L. cv. Honesty (flowers) 0.4% 22% 100 ng h-1 (Helsper et al., 1998) 

Corn (Zea mays cv. Delprim) 3%   0.1125 ng gDW h-1 
(Ruther and Kleier, 
2005) 

Marsh Elder (Iva frutescens) 1-4% 5-39% 
1000 
-11000 ng m-2 h-1 

(Degenhardt and 
Lincoln, 2006) 

Silver Birch (Betula pendula Roth) 1-4% 10-74% 4-1184 ng gDW h-1 
(Vuorinen et al., 
2005) 

Rock Rose (Cistus albidus L.) 6.8% 14% 150 ng gDW h-1 (Ormeno et al., 2007) 
Tomato  
(Lycopersicon esculentum) 7%   (Buttery et al., 1987) 

Hornbeam (Carpinus betulus) 12.6% 100% 20.3 ng gDW h-1 (Koenig et al., 1995) 

Corn (Zea mays) 0.7-15% 1-17% wide variation 

(Gouinguene and 
Turlings, 2002; 
Ruther and Kleier, 
2005) 

Cinnamon (Cinnamomum spp.) 22%     
(Jayaprakasha et al., 
2003) 
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Carnation (Dianthus caryophyllus) 
(flowers) 23%   (Lavy et al., 2002) 

Scots Pine (Pinus sylvestris L.)  0-26% (1), (2) 9-36% (3) 0-533 ng gDW h-1 (1) 

(1) (Tarvainen et al., 
2005), (2) (Hakola et 
al., 2006), (3) 
(Holzke et al., 2006) 

Sunflower (Helianthus annuus L. cv. 
giganteus) 26% ~91% 93-303 ng gDW h-1 (Schuh et al., 1997) 

Sage (Salvia spp.)  12-32%     (Liang et al., 2009) 

Nicotiana sylvestris(flowers) 35%   
(Loughrin et al., 
1990) 

Ginger (Zingiber spp.)  42%     (Sabulal et al., 2006) 
Arabidopsis thaliana, Col-0 ecotype 
(Thale Cress ) (flowers) 44% ~75% 11.5 ng h-1 (Chen et al., 2003) 

Orange (Citrus sinensis L.) OSBECK 40-45%   20-410 ng gDW h-1 
(Hansen and Seufert, 
1999) 

Potato (Solanum tuberosum L. cv. 
Desireé) 38-46% 38-46% 609-1276 ng h-1  

(Agelopoulos et al., 
2000) 

Tobacco (Nicotiana tabacum) 24-47%   1227-3741 ng h-1 
(De Moraes et al., 
2001) 

Orange (Citrus sinensis and Citrus 
clement, sampled during July) 50-70% >98% 

180000 
-360000 ng m-2 h-1 (Ciccioli et al., 1999) 

Downy Birch (Betula pubescens)  46-61%  (Zhang et al., 1999) 

Pepper (Piper nigrum L.) 79%   (Orav et al., 2004) 

Black Elder (Sambucus nigra) 0-5%   (Zhang et al., 1999) 

Beach Pine (Pinus contorta) 6%  (Helmig et al., 2007) 

White Pine (Pinus strobes) 7%   (Helmig et al., 2007) 

Trembling Aspen (Populus tremula) 0-15%  (Zhang et al., 1999) 

Ponderosa Pine (Pinus ponderosa) 22%   (Helmig et al., 2007) 

Loblolly Pine (Pinus taeda L.) 26-67% 297 ng gDW h-1 (Helmig et al., 2006) 

Norway spruce [Picea abies L. (Karst)] 49%  (Martin et al., 2003) 

* Accurate quantifications of (E)-β-caryophyllene are listed here; studies reporting approximate amounts are not 

included. 

 

Table 1.3. Changes of (E)-β-caryophyllene emission under various environmental influences 

  Environmental factors Plant species Emission changes References 

 High temperature Corn (Zea mays) Increase  
(Gouinguene and 
Turlings, 2002) 

 High temperature 
Orange (Citrus sinensis L., 
Citrus clementi) Increase  

(Hansen and Seufert, 
1999) 

 High temperature 
Sunflower (Helianthus annuus 
L. cv. giganteus) Increase  (Schuh et al., 1997) 

 High light 
Sunflower (Helianthus annuus 
L. cv. giganteus) Increase  (Schuh et al., 1997) 

 High light Corn (Zea mays) Increase  
(Gouinguene and 
Turlings, 2002) 

 High light Scots Pine (Pinus sylvestris L.) No effect (Tarvainen et al., 2005) 

 Diurnal circadian rhythms Black sage (Salvia mellifera) 
High emission  in earlier day,  
decrease  later  (Arey et al., 1995) 

 Diurnal circadian rhythms 
Rosa hybrida L. cv. Honesty 
(flowers) 

Peak  at 6-9h in photoperiod, 
never dropped off completely in 
dark period (Helsper et al., 1998) 
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 Diurnal circadian rhythms 
Orange (Citrus sinensis L., 
Citrus clementi) 

Increase  in the morning, peak in 
early afternoon, decrease  in the 
evening (Ciccioli et al., 1999) 

 Diurnal circadian rhythms Loblolly pine (Pinus taeda L.) 

Increase  in the morning, peak in 
early afternoon, decrease  in 
evening (Helmig et al., 2006) 

 Diurnal circadian rhythms Corn (Zea mays) No effect 
(Gouinguene and 
Turlings, 2002) 

 Diurnal circadian rhythms 
Potato (Solanum tuberosum L. 
cv. Desireé) 

Increase  in the morning,  
peak in the afternoon 

(Agelopoulos et al., 
2000) 

 Diurnal circadian rhythms Tobacco (Nicotiana tabacum) 

Higher  emission at day time, 
during a 2 h interval after 48 h of 
feeding by Heliothis. virescens 

(De Moraes et al., 
2001) 

 Diurnal circadian rhythms 
Norway spruce [Picea abies L. 
(Karst)] Peak  in light period (Martin et al., 2003) 

 Drought Corn (Zea mays) No effect 
(Gouinguene and 
Turlings, 2002) 

 Drought Orange (Citrus sinensis L.) 
Decrease  after severe drought,  
no effect after mild drought 

(Hansen and Seufert, 
1999) 

 Nutrient deficiency Corn (Zea mays) Decrease  
(Gouinguene and 
Turlings, 2002) 

 
Nutrient types in soil 
(siliceous and calcareous) Rock Rose (Cistus albidus L.) No effect (Ormeno et al., 2007) 

 Nitrogen deficiency Corn (Zea mays) Increase  (Schmelz et al., 2003) 

 Nitrogen deficiency 
Cotton (Gossypium hirsutum 
L.) Increase  (Chen et al., 2008) 

 Elevated CO2 
Silver Birch (Betula pendula 
Roth) No effect (Vuorinen et al., 2005) 

 Elevated O3 
Tobacco (Nicotiana tabacum 
L.) Induction  (Heiden et al., 1999) 

  Elevated O3 
Silver Birch (Betula pendula 
Roth) No effect (Vuorinen et al., 2005) 

 MeJA  
Norway spruce [Picea abies L. 
(Karst)] Increase  (Martin et al., 2003) 

 Wounding Birch (Betula pubescens) Increase  (Hakola et al., 2001) 

 Wounding 
Plantain (Plantago lanceolata 
L.) Induction  (Fontana et al., 2009) 

 Wounding 
Blue berry (Vaccinium 
corymbosum) Increase  

(Rodriguez-Saona et 
al., 2009) 

 
Gypsy moth  
(Lymantria dispar)  

Blue berry (Vaccinium 
corymbosum) Increase  

(Rodriguez-Saona et 
al., 2009) 

 Spodoptera littoralis  

Tomato (Lycopersicon 
esculentum Mill. 
‘Moneymaker’) Increase  

(Maes and Debergh, 
2003) 

 Spodoptera littoralis  
Plantain (Plantago lanceolata 
L.) Induction   (Fontana et al., 2009) 

 Heliothis Virescens  Tobacco (Nicotiana tabacum) Increase  
(De Moraes et al., 
2001) 

 Spodoptera littoralis  Corn (Zea mays) Induction  (leaves) (Koellner et al., 2008) 

 

Western corn rootworm 
(Diabrotica virgifera 
virgife) Corn (Zea mays) Induction  (roots) 

(Rasmann et al., 2005; 
Koellner et al., 2008) 

  Aphid Silver Birch (Betula pendula) Increase  (Blande et al., 2010) 
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The emission of (E)-β-caryophyllene may be controlled by the expression of (E)-β-

caryophyllene synthase genes, which have been characterized from the model plant 

Arabidopsis thaliana and various economically and/or ecologically important species 

(summarized in Table 1.4). 

Table 1.4. Characterized caryophyllene synthases 

Plant species Caryophyllene synthases References 

Sweet wormwood (Artemisia annua) (AAL79181) (Cai et al., 2002) 

Arabidopsis thaliana  (NP_197784; TPS21/At5g23960) (Chen et al., 2003) 

Cucumber (Cucumis sativus) (AAU05952) (Mercke et al., 2004) 

Rice (Oryza sativa L.) (ABJ16553, OsTPS3; Os08g04500) 
(Cheng et al., 2007; Yuan 
et al., 2008) 

Medicago truncatula (AAV36464, MtTPS1) (Arimura et al., 2008) 

Corn (Zea mays) (ABY79206, ABY79209~79214) (Koellner et al., 2008) 

Mikania micrantha (ACN67535) (Wang et al., 2009) 

 

In the model plant Arabidopsis thaliana, there are 32 putative terpene synthase (TPS) 

genes in a large multigene family (Aubourg et al., 2002). In this species, the (E)-β-

caryophyllene synthase enzyme (TPS21, At5g23960) converts farnesyl diphosphate (FPP) to 

(E)-β-caryophyllene and small amounts of α-humulene (Fig. 1.4) (Chen et al., 2003; Tholl et 

al., 2005).  

 

 

 

 

 

 

 

Figure 1.4. Proposed reaction mechanism for the formation of (E)-β-caryophyllene by TPS21 (At5g23960) in A. 

thaliana (Tholl et al., 2005).  
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While advanced volatile collection and detection techniques have improved 

knowledge of the distribution of (E)-β-caryophyllene volatiles, and molecular 

characterization has helped us to understand the molecular and biochemical mechanisms of 

(E)-β-caryophyllene biosynthesis, still little is known about the biological significance of this 

compound. (E)-β-Caryophyllene has been reported to defend plants directly against 

herbivores (Langenheim, 1994) or indirectly by attracting herbivore enemies (Rasmann et al., 

2005; Koellner et al., 2008), but whether this terpene is involved in resistance to pathogens or 

oxidative stresses is still unknown. To study the function of (E)-β-caryophyllene as a natural 

volatile, it seems important to investigate its emission from whole plants and to study plants 

with enhanced or abolished emission of (E)-β-caryophyllene. In this thesis, transgenic 

Arabidopsis over-expression and loss-of-function lines were employed to study the role of 

(E)-β-caryophyllene in response to biotic and abiotic stresses (described in Chapters II and 

III).  

1.4 Objectives of this thesis 

The objective of this work is 1) to explore the molecular mechanisms controlling 

induced volatile terpene emissions in Arabidopsis thaliana plants; 2) to understand how (E)-

β-caryophyllene influences plant defense capabilities during pathogen (Pseudomonas 

syringae pv. tomato DC3000) infection and oxidative stress; and 3) to demonstrate the 

complexity of (E)-β-caryophyllene-induced transcriptome profile changes in Arabidopsis 

thaliana transgenic plants under various conditions. 

Chapter I describes the qualitative and quantitative variation of herbivore-induced 

volatile terpenes occurring among different Arabidopsis thaliana ecotypes. We demonstrate 

that allelic variation of terpene synthase genes and subcellular segregation of homologous 
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bifunctional terpene synthase are controlling factors for some of these intraspecific 

differences. 

Chapter II demonstrates how the sesquiterpene (E)-β-caryophyllene protects floral 

organs in Arabidopsis thaliana Col-0. Using transgenic plants with ectopic expression of (E)-

β-caryophyllene synthase and loss-of-function mutants, the ecological significance of this 

sesquiterpene as an anti-microbial defense compound, specifically in flowers was revealed. 

Chapter III shows the influence of (E)-β-caryophyllene on gene transcript profiles in 

transgenic (E)-β-caryophyllene synthase expressing Arabidopsis plants and how this 

compound affects the cellular redox network by adjusting concentrations of reactive oxygen 

species and expressions of antioxidative enzymes.  
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2. Chapter I. Variation of herbivore-induced volatile terpenes among 

Arabidopsis ecotypes depends on allelic differences and subcellular 

targeting of two terpene synthases, TPS02 and TPS03 
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Chapter overview and authors’ contributions 

This manuscript describes the molecular mechanisms controlling the variation of herbivore-

induced volatile terpenes, (E)-β-ocimene and (E,E)-α-farnesene, by using different 

Arabidopsis ecotypes. I was responsible for quantifying differential volatile variation 

between ecotypes Col-0 and Ws; sequencing analyses of Col-TPS02, Col-TPS03, Ws-TPS03; 

analyzing transcript differences of TPS02 and TPS03 in flowers and leaves under the 

induction of coronalon, wounding and Plutella xylostella feeding damage; characterizing 

induced volatiles and transcripts of RNAi and knock-out lines of TPS02 and TPS03; cloning 

Col-TPS03 and heterologously expressing TPS02 and TPS03 in the E. coli system; purifying 

recombinant proteins and performing enzymatic assays with differential substrates; 

quantifying the effects of inhibitors on induced volatile terpenes; characterizing induced 

GUS activity of Ws ProTPS02:GUS. Christian Abel was responsible for quantifying induced 

volatiles from 27 A. thaliana ecotypes; cloning Ws-TPS02 and making GFP constructs; 

analyzing confocal microscopy images. Reza Sohrabi made Ws-TPS02 RNAi lines. Jana 

Petri and Ina Haupt made GUS constructs of Col-0 ProTPS03:GUS and Ws ProTPS02:GUS. 

Jana Petri characterized induced GUS activity of Col-0 ProTPS03:GUS. Dorothea Tholl 

determined kinetic parameters of TPS02 and TPS03. John Cosimano participated in 

sesquencing analysis of Ws-TPS02 and RT-PCR analyses of Ws-TPS03. Under the 

supervision of Jonathan Gershenzon, Dorothea Tholl and I planned and designed all 

experiments with help from Christian Abel in some experiments. Dorothea Tholl and I wrote 

the manuscript with help from Jonathan Gershenzon. 
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2.1 Abstract 

When attacked by insects and microbes, plants release mixtures of volatile 

compounds that are beneficial for direct or indirect defense. Natural variation of volatile 

emissions frequently occurs between and within plant species but knowledge of the 

underlying molecular mechanisms is limited. We investigated intraspecific differences of 

volatile emissions induced from rosette leaves of 27 accessions (ecotypes) of Arabidopsis 

thaliana upon treatment with the jasmonate-mimic coronalon, which elicits a response 

similar to that caused by insect feeding. Quantitative variation was found for the emission of 

the monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the irregular 

homoterpene, 4,8,12-trimethyltridecatetra-1,3,7,11-ene (TMTT), and the benzenoid 

compound methyl salicylate (MeSA). Differences in the relative emissions of (E)-β-ocimene 

and (E,E)-α-farnesene from accession Ws, a high-(E)-β-ocimene emitter, and accession Col-0, 

a trace-(E)-β-ocimene emitter, were attributed to allelic variation of two closely related, 

tandem-duplicated terpene synthase genes, TPS02 and TPS03. The Ws genome contains a 

functional allele of TPS02 but not of TPS03, while the opposite is the case for Col-0. 

Recombinant proteins of the functional Ws TPS02 and Col-0 TPS03 genes both showed (E)-

β-ocimene and (E,E)-α-farnesene synthase activities. However, differential subcellular 

compartmentalization of the two enzymes in plastids and the cytosol was found to be 

responsible for the ecotype-specific differences in (E)-β-ocimene/(E,E)-α-farnesene emission. 

Expression of the functional TPS02 and TPS03 alleles is induced in leaves by elicitor and 

insect treatment and occurs constitutively in floral tissues suggesting multiple functions of 

(E)-β-ocimene and (E,E)-α-farnesene in the plant. Our studies show that both 

pseudogenization in the TPS family and subcellular segregation of functional TPS enzymes 

control the variation and plasticity of induced volatile emissions in wild plant species. 
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2.2 Introduction 

Plants emit a large variety of volatile organic compounds from their foliage and 

flowers. These volatiles serve a variety of functions ranging from the attraction of pollinating 

insects and fruit dispersers to direct and indirect defense against herbivores and microbial 

pathogens (Pichersky and Gershenzon, 2002; Dicke et al., 2003; Dudareva et al., 2006; 

Unsicker et al., 2009). Usually, plant volatiles are released as mixtures, which may be 

important in targeting a variety of different organisms. In this context, differences in the 

composition of volatile blends within and among species may be the result of adaptation to 

specific communities of organisms.  

Terpenoids represent the largest and most diverse class of plant volatile metabolites.  

Low molecular weight terpenes with a 10-carbon (monoterpenes) or 15-carbon 

(sesquiterpenes) skeleton are common constituents of floral and herbivore-induced leaf 

volatile blends (Dudareva et al., 2006). Monoterpenes and sesquiterpenes are produced from 

the central terpene precursors, geranyl diphosphate (GPP) and farnesyl diphosphate (FPP), 

respectively, by the enzymatic activity of terpene synthases (TPSs) (Tholl, 2006; Degenhardt 

et al., 2009). In the plant cell, terpene metabolism is compartmentalized with GPP and 

monoterpene formation occurring primarily in plastids and FPP and sesquiterpenes being 

synthesized predominantly in the cytosol (Aharoni et al., 2005).  

Studies of cultivated plants have given the first insight into the cellular, molecular 

genetic and biochemical mechanisms controlling the variability of terpene volatile mixtures. 

For example, variation of monoterpene and sesquiterpene blends produced in the glandular 

trichomes of different basil cultivars was attributed to the differential expression of TPS 

genes in these cultivars (Iijima et al., 2004). In maize, allelic variation of two terpene 

synthases was found to be responsible for the quantitative compositional differences of 

sesquiterpene volatile blends released from mature leaves and husks of different varieties 

(Koellner et al., 2004). Furthermore, a characterization of linalool/nerolidol synthases in 

snapdragon flowers indicated that subcellular segregation of bifunctional terpene synthases in 

plastids and the cytosol can lead to a compartment-specific formation of monoterpenes and 

sesquiterpenes, respectively, thereby increasing the diversity of terpene volatile mixtures 

(Nagegowda et al., 2008).  
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While the variation of herbivore-induced volatiles has been studied in some wild 

species (Halitschke et al., 2000; Gouinguene et al., 2001; Delphia et al., 2009), knowledge of 

the molecular mechanisms governing natural diversity of volatile compounds is rather 

limited. We have been investigating the intra- and interspecific variation of volatile profiles 

in Arabidopsis species (Tholl et al., 2005; Abel et al., 2009) to explore the natural evolution 

of volatile mixtures in more detail. A previous survey of 37 accessions (ecotypes) revealed 

quantitative differences in floral sesquiterpene volatile compositions, which are controlled by 

differences in TPS gene transcription and putative posttranslational modifications (Tholl et 

al., 2005). Here we turn our attention to vegetative volatiles. Leaves of the A. thaliana 

accession Columbia-0 release a simple three-compound blend consisting of the benzenoid 

compound methyl salicylate (MeSA), the C16-homoterpene, 4,8,12-trimethyltridecatetra-

1,3,7,11-ene (TMTT), and the sesquiterpene (E,E)-α-farnesene in response to treatment with 

the fungal peptide elicitor alamethicin and feeding by the crucifer specialist insects, Pieris 

rapae and Plutella xylostella (Van Poecke et al., 2001; Herde et al., 2008). The induced 

volatile mixture is assumed to serve as an indirect defense signal by attracting parasitoids of 

P. rapae larvae. With the exception of No-0 (Faeldt et al., 2003), no other A. thaliana 

accession has been investigated for elicitor- or insect-induced volatiles and there is no 

information on the genetic and molecular mechanisms responsible for these differences.  

Here we report the analysis of induced volatile terpene emissions from rosette leaves 

of 27 A. thaliana accessions. We show that several accessions such as Ws emit the 

monoterpene (E)-β-ocimene and the sesquiterpene (E,E)-α-farnesene while others such as 

Col-0 release (E,E)-α-farnesene without any or only traces of (E)-β-ocimene. We 

demonstrate that the difference in terpene volatile emission between Col-0 and Ws is caused 

by allelic variation leading to differential expression and subcellular targeting of two closely 

related bi-functional (E)-β-ocimene/(E,E)-α-farnesene synthases TPS02 and TPS03. Our 

work provides evidence that natural diversity of herbivore-induced terpene volatiles evolves 

at multiple levels of TPS gene function and regulation, including the organelle-specific 

compartmentation of TPS enzymes.  
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2.3 Results 

2.3.1 Elicitor- and Insect-Induced Emission of the Terpene Volatiles (E)-β-Ocimene and 

(E,E)-α-Farnesene Vary among Different A. thaliana Accessions, including Col-0 and 

Ws 

Since A. thaliana accessions have been shown to differ substantially in their 

composition of secondary metabolites such as glucosinolates (Kliebenstein et al., 2001) and 

floral volatiles (Tholl et al., 2005), we investigated the ecotype-specific variation of terpene 

emissions from leaves of 27 accessions in response to treatment with coronalon, a synthetic 

mimic of jasmonic acid and other octadecanoid plant hormones. As previously demonstrated 

in accession Col-0, coronalon induces the emission of MeSA, (E,E)-α-farnesene, the 

homoterpene TMTT, and its precursor geranyllinalool, a response similar to that observed 

upon feeding damage by larvae of P. xylostella (Herde et al., 2008). By comparing emissions 

of volatile terpenes from leaves of intact plants treated with coronalon for 22-30 h, we found 

that 20 accessions released the monoterpene (E)-β-ocimene as the predominant volatile 

(approximately 75 to 95% of the total amount of volatiles) at rates differing 80-fold between 

lowest and highest emitters (Table 2.1). Ws was among the accessions with highest emission 

of (E)-β-ocimene. The remaining accessions, including Col-0, emitted no or only very small 

amounts of this monoterpene (Table 2.1). The sesquiterpene (E,E)-α-farnesene was released 

from almost all accessions, including Col-0 and Ws, at emission rates approximately 10-100 

fold lower than those of (E)-β-ocimene (Table 2.1). In addition to (E)-β-ocimene and (E,E)-α-

farnesene, TMTT and MeSA were detected in the induced volatile blends of all investigated 

ecotypes, although some accessions released these compounds only in trace amounts (Table 

2.1). No emission or only traces of terpene volatiles were found in untreated plants. 

Previous feeding experiments with the specialist P. xylostella on Col-0 had shown 

that insect feeding induces a volatile response similar to that observed with coronalon  

(Herde et al., 2008). In this study, when P. xylostella larvae were applied to rosette leaves of 

accession Ws, a high (E)-β-ocimene emitter, emission of (E)-β-ocimene, TMTT, and MeSA 

was induced upon 21-30 h of feeding (Fig. 2.1) with a compound ratio similar to that 

obtained upon coronalon treatment. Emission rates were substantially lower for all 

compounds (30-fold lower for (E)-β-ocimene) than after application of coronalon but in the 

range of those observed for Col-0 upon P. xylostella damage (Herde et al., 2008) (Fig. 2.1). 
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Because of this overall lower response, no (E,E)-α-farnesene was detected in Ws in response 

to P. xylostella feeding.  

We investigated possible correlations among coronalon-induced emissions of the 

different volatile compounds in all accessions. A high correlation coefficient was found 

between emission of (E)-β-ocimene and (E,E)-α-farnesene (Fig. 2.2, Supplemental Table SI) 

indicating a common biosynthetic origin of both compounds. However, the formation of 

(E,E)-α-farnesene in Col-0 and other ecotypes that do not produce (E)-β-ocimene (Table 2.1) 

suggested the existence of more than one biosynthetic route to (E,E)-α-farnesene in the A. 

thaliana genome.  

 
Table 2.1. Emission of the four major volatile compounds from leaves of 27 A. thaliana accessions in response to 
treatment with coronalon (coron). Volatiles were collected for 8 h from single intact plants (see “Material and 
Methods”). Emission was determined in ng g-1FW h-1. Mean values ± SE of n = 3 are shown. The order of 
accessions corresponds to increasing (E)-β-ocimene emission rates. 0.0 indicates values below 0.01 ng g-1FW h-1; 
n.d., not detected. 

Compound  
Ecotype (E)-β-ocimene (E,E)-α-farnesene TMTT MeSA Total  

  Coron Control Coron Control Coron Control Coron Control Coron 
1 Bl-1 n.d. n.d. 0.1±0.0 0.0±0.0 1.8±0.2 0.0±0.0 0.7±0.1 0.0±0.0 2.5±0.4 
2 Lip-0 n.d. n.d. 1.8±0.6 n.d. 3.1±1.0 0.2±0.0 4.1±1.8 n.d. 9.0±3.4
3 Pi-0 n.d. n.d. 0.8±0.3 0.1±0.1 1.1±0.2 0.0±0.0 1.5±0.2 0.0±0.0 3.4±0.6
4 Tsu-1 n.d. n.d. n.d. 0.0±0.0 0.4±0.3 0.0±0.0 1.3±1.0 0.0±0.0 1.8±1.4
5 Can-0 0.2±0,1 n.d. n.d. n.d. 6.5±2.5 0.0±0.0 3.1±1.0 0.0±0.0 9.7±3.6
6 Bla-10 0.2±0,0 n.d. n.d. 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 n.d. 0.3±0.1
7 Col-0 0.7±0.7 n.d. 2.4±0.6 n.d. 8.8±2.0 2.4±0.7 18±5.2 0.3±0.1 29.9±8.5
8 Di-g 2.6±0.8 n.d. 0.2±0.1 n.d. 0.4±0.1 0.0±0.0 1.8±1.0 n.d. 5.0±2.0
9 Ri-0 9.4±4.4 n.d. 0.7±0.4 n.d. 0.6±0.2 0.0±0.0 1.7±1.2 0.0±0.0 12.3±6.2
10 Stw-0 9.7±1.3 0.3±0.6 0.2±0.1 n.d. 1.2±0.1 0.0±0.0 0.0±0.0 n.d. 11.1±1.5
11 Lu-1 11.1±2.8 0.3±0.3 0.4±0.2 n.d. 1.9±0.7 0.1±0.0 1.2±0.5 0.0±0.0 14.6±4.1
12 Est-0 18.6±8.8 n.d. 1.3±0.6 n.d. 0.6±0.1 n.d. 2.6±1.0 n.d. 23.2±10.5
13 Sei-0 19.9±5.8 0.1±0.0 0.3±0.1 n.d. 0.2±0.0 n.d. 0.2±0.1 n.d. 20.5±6.0
14 Chi-0 20.4±9.1 0.3±0.1 0.4±0.2 n.d. 0.5±0.2 0.0±0.0 0.6±0.2 n.d. 21.9±9.7
15 Hodja 20.8±6.7 0.2±0.2 0.6±0.2 0.0±0.0 0.6±0.2 0.0±0.0 1.5±0.7 n.d. 23.5±7.8
16 Bla-1 29.9±4.9 0.1±0.1 1.2±0.3 0.0±0.0 0.1±0.0 0.0±0.0 0.2±0.0 0.0±0.0 31.3±5.3
17 Pog-0 36.2±10.9 n.d. 2.9±0.9 0.3±0.2 0.1±0.0 0.0±0.0 0.7±0.2 0.2±0.1 39.8±12.0
18 An-1 37.5± 4.5 0.3±0.2 1.2±0.0 0.1±0.1 0.4±0.1 0.0±0.0 1.2±0.2 0.1±0.1 40.3±4.8
19 Tul-0 39.6±11.6 n.d. 3.9±1.1 n.d. 0.0±0.0 n.d. 3.4±1.1 n.d. 46.8±13.9
20 Mt-0 45.9±19.5 0.1±0,0 5.9±2.5 0.1±0.1 2.2±0.1 0.2±0.1 1.4±0.5 0.0±0.0 55.4±22.6
21 Kil-0 46.9±17.4 0.0±0.0 1.1±0.4 n.d. 0.3±0.1 0.0±0.0 1.2±0.5 n.d. 49.5±18.4
22 JI-3 51.2±20.1 n.d. 2.8±1.2 0.1±0.1 1.3±0.3 0.0±0.0 1.2±0.4 n.d. 56.4±22.1
23 Ang-0 64.4±21.9 0.8±0.1 2.1±0.8 0.1±0.1 5.1±1.4 0.2±0.1 1.9±0.9 0.0±0.0 73.5±25.0
24 Ws 64.6±16.5 0.5±0.3 5.4±1.8 0.0±0.0 7.2±1.7 0.2±0.1 2.2±0.7 0.1±0.1 79.3±20.8
25 Condara 80.4±19.4 0.3±0.1 3.6±0.8 0.3±0.3 3.5±0.8 0.1±0.1 1.1±0.3 0.0±0.0 88.6±21.4
26 Ty-0 127.3±19.4 0.1±0.1 9.6±1.8 0.1±0.0 0.4±0.2 0.1±0.0 5.7±3.3 0.0±0.0 143.0±24.6
27 Kas-1 160.6±12.2 0.2±0.1 2.7±0.2 0.0±0.0 5.4±0.9 n.d. 3.1±0.4 0.1±0.0 171.8±13.6
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Figure 2.1. Induced emission of (E)-β-ocimene, MeSA, and TMTT from leaves of accession Ws in response to 
insect feeding. Volatiles were collected for 9 h from intact individual plants upon application of P. xylostella 
larvae as described under “Materials and Methods”. Results from the second day of treatment (21 to 30 h) are 
shown. Error bars are SE of n = 3. 
 

 

Figure 2.2. Correlation of (E)-β-ocimene and (E,E)-α-farnesene emission from coronalon-treated leaves of 27 A. 
thaliana accessions. Treatment with coronalon and volatile collection were conducted as described under 
“Materials and Methods”. Emissions are in ng g-1 FW h-1. Numbers indicate individual accessions according to 
Table 2.1. Each value represents the mean ± SE of three replicates.  
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2.3.2 The Tandem Terpene Synthase Genes TPS02 and TPS03 Differ in Expression 

between the Col-0 and Ws Accessions  

From the analyzed accessions, we selected Ws and Col-0 for further investigation 

since these two accessions showed clearly different, elicitor-induced terpene volatile profiles 

and therefore seemed suitable for determining the molecular mechanisms underlying these 

differences. We reasoned that the variation of (E)-β-ocimene emission between the two 

accessions could be due to the differential expression or function of terpene synthase 3 

(TPS03/At4g16740) or a monoterpene synthase closely related to TPS03. A TPS03-encoded 

recombinant enzyme from A. thaliana accession C24 was previously shown to catalyze the 

conversion of the ubiquitous precursor GPP to (E)-β-ocimene (Bohlmann et al., 2000; Faeldt 

et al., 2003). Moreover, transcription of TPS03 was shown to be induced in leaves of the (E)-

β-ocimene emitting ecotype No-0 by treatment with jasmonic acid and wounding. Besides 

TPS03, only one other monoterpene synthase (TPS10) has been found to be induced in A. 

thaliana leaves (Bohlmann et al., 2000). However, this enzyme produces myrcene as the 

primary product with minor amounts of (E)-β-ocimene in vitro and seems to have negligible 

activity in the investigated ecotypes since no emission of myrcene was detected. In the A. 

thaliana genome, TPS03 is positioned on chromosome 4 in close proximity to terpene 

synthase 2 (TPS02/At4g16730) (Fig. 2.3A). Both genes are 51.5% identical at the nucleotide 

sequence level and share similar structures with seven exons and six introns indicating they 

likely emerged by gene duplication. We therefore analyzed both TPS02 and TPS03 alleles 

and their expression in the Col-0 and Ws accessions. 

 

 

 

 

 

 

 

 

 

 



Mechanisms of various terpene emissions                                                                   2. Chapter I 
 

23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3. Molecular nature of the TPS02 and TPS03 alleles in accessions Col-0 and Ws.  
A, Schematic representation of the structures of TPS02 and TPS03. Exons are represented by the gray boxes, 
and flanking regions and introns are represented by the line between boxes. B, Alignment of nucleotide and 
amino acid sequence regions of the TPS02 (left) and TPS03 (right) alleles from accessions Col-0 and Ws 
indicating frame shift mutations caused by base pair insertions in the Col-0 TPS02 and Ws TPS03 genes. White 
boxes mark premature stop codons. The gene-specific position of the sequences is indicated. C, Amino acid 
sequence alignment of the full-length and truncated proteins of the Col-0 and Ws TPS02 and TPS03 alleles. 
Amino acids shaded in black are conserved in all sequences, and gray shades indicate amino acids conserved in 
two or three sequences. Dashes indicate gaps inserted for optimal alignment. Horizontal lines mark the highly 
conserved DDXXD, RXR, and RRX8W motifs. A motif similar to the H-α1 loop region of apple MDAFS1 is 
marked by a thick dashed line. The asterisk indicates the putative cleavage site for a 25 amino acid plastidial 
transit peptide of the TPS02 protein.  
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In the Col-0 ecotype, which does not emit (E)-β-ocimene, TPS02 does not encode a 

full length TPS protein because of a two-base (AT) insertion 184 nucleotides downstream of 

the start codon leading to a frame shift and premature translational termination (Fig. 2.3B, C).  

Despite the apparent loss of function of this allele, transcription of TPS02 was induced upon 

treatment with coronalon (Fig. 2.4A). A splice variant of the TPS02 transcript was found, 

which lacks a part of the first exon and the entire second exon (Supplemental Fig. S1) and 

does not code for a functional protein. In contrast to TPS02, the Col-0 TPS03 gene encodes a 

full length terpene synthase protein of 565 amino acids (Fig. 2.3C). Transcription of TPS03 

was induced by coronalon treatment as well as in response to 24 h of P. xylostella feeding 

while only low levels of TPS03 transcript were observed upon mechanical wounding 

(Fig. 2.4A). However, the induced expression of TPS03 (reported as an (E)-β-ocimene 

synthase in ecotype C24 (Faldt et al., 2003)) was hard to reconcile with the lack of (E)-β-

ocimene emission in the Col-0 ecotype, indicating possible differences in the regulation or 

function of the Col-0 TPS03 protein compared to that in ecotype C24.   

We further analyzed the expression of the TPS02 and TPS03 alleles in the (E)-β-

ocimene-emitting accession Ws. Semiquantitative RT-PCR analysis demonstrated that 

TPS02 was transcribed upon coronalon treatment (Fig. 2.4B). Transcription of Ws TPS02 

was also induced by P. xylostella feeding while no transcript was detected upon mechanical 

wounding (Fig. 2.4B). A full length 1770 bp TPS02 cDNA was amplified from coronalon-

treated Ws leaves encoding a 589 amino acid protein (Fig. 2.3C). The TPS02 coding 

sequence differs from the Col allele in the position of 18 nucleotides corresponding to 11 

amino acid differences and does not show the frame shift mutation due to the AT-insertion 

(Fig. 2.3B).  The Ws TPS02 protein shares 62 % amino acid sequence identity with the 

TPS03 (E)-β-ocimene synthase protein from C24. Thus, it seemed possible that a functional 

TPS02 enzyme could produce (E)-β-ocimene or very similar monoterpene compounds.  

No transcript was found for TPS03 in response to any of the treatments of Ws leaves. 

To investigate the absence of the TPS03 transcript in Ws in more detail, we amplified the 

TPS03 gene including the 5’ and 3’-UTRs from genomic DNA of Ws. The nucleotide 

sequences of the Ws TPS03 gene and the Col TPS03 gene were 99.5% identical. An insertion 

of four nucleotides (TTAA) was found in the third exon causing a frame shift mutation and 

premature translational termination (Fig. 2.3B). We then performed RT-PCR with gene 
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specific primers designed to amplify small fragments of a putative TPS03 transcript. These 

experiments resulted in only two amplicons, 240 bp and 170 bp, situated consecutively at the 

5’-end of the gene, indicating the instability and posttranscriptional degradation of the TPS03 

mRNA (Supplemental Fig. S2).   

We also analyzed the transcription of TPS02 and TPS03 in flowers of the Col-0 and 

Ws accessions to determine a possible correlation between the expression of one or the other 

gene and the floral emission of (E)-β-ocimene. Previous analysis of terpene volatiles from 

flowers of different A. thaliana accessions demonstrated that inflorescences of Ws but not 

Col-0 emit (E)-β-ocimene, which is similar to the difference observed for elicitor-induced 

(E)-β-ocimene emission from both accessions. Inflorescences of both accessions also emit 

small amounts of (E,E)-α-farnesene. In Ws flowers, TPS02 but not TPS03 was found to be 

expressed (Fig. 2.4C). In flowers of the Col-0 ecotype, transcripts of TPS03 were detected, 

but, in contrast to elicitor-treated leaves, none or only traces of full-length TPS02 mRNA 

were amplified (Fig. 2.4C).  

Based on the transcriptional differences of TPS02 and TPS03 between the two 

accessions, we hypothesized that TPS02 is responsible for the formation of (E)-β-ocimene in 

Ws, while the TPS02 allele is inactive in the Col-0 ecotype. We further presumed that the 

actively transcribed TPS03 gene in Col-0 might encode a protein that produced (E,E)-α-

farnesene, the C15 analog of (E)-β-ocimene from FPP, instead of (E)-β-ocimene itself derived 

from GPP. Several enzymes with (E)-β-ocimene synthase activity from GPP have been 

shown to also catalyze the formation of (E,E)-α-farnesene in vitro when supplied with FPP 

(Pechous and Whitaker, 2004; Nieuwenhuizen et al., 2009) (see below). As an intermediate 

of terpene biosynthesis, GPP is thought to be largely restricted to the plastids, while FPP is 

restricted mainly to the cytosol (Aharoni et al., 2005). Analysis of putative protein targeting 

sequences via computer algorithms indicated that the Col-0 TPS03 protein does not carry a 

plastidial transit peptide while the TPS02 protein does.   
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Figure 2.4. Semi-quantitative RT-PCR analysis of TPS02 and TPS03 transcript levels in Col-0 and Ws tissues. 
Actin 8 transcripts were analyzed as a control. Results are representative for at least three independent 
experiments. A, TPS02 and TPS03 transcript analysis from rosette leaves of accession Col-0 treated with 
coronalon (coro) (upper panel), P. xylostella larvae (middle panel), and after mechanical wounding (lower 
panel). The two amplicons obtained for TPS02 represent splice variants (Supplemental Figure S1). No TPS02 
transcript was detected upon insect feeding and wounding. Treatments were conducted as described under 
“Materials and Methods”. B, Transcript levels of TPS02 in leaves of accession Ws in response to treatments as 
described under (A). No mRNA of TPS03 was detected. C, Analysis of TPS02 and TPS03 transcripts in flowers 
of Col-0 and Ws. 
 

2.3.3 TPS2 and TPS3 Loss-of-Function Plants Lack Induced Emission of (E)-β-Ocimene 

and/or (E,E)-α-Farnesene 

 To investigate the in planta function of the Ws TPS02 and Col-0 TPS03 genes, we 

analyzed elicitor-induced volatile profiles of the respective gene knockout lines. In line Salk_ 

132694, a T-DNA is located in the 5th exon of Col-0 TPS03 (Fig. 2.5A). In contrast to Col-0 

wild type plants, the mutant line did not accumulate any TPS03 mRNA after coronalon 

treatment as determined by semi-quantitative RT-PCR (Fig. 2.5B). No (E,E)-α-farnesene was 

found to be emitted from Salk_ 132694 upon treatment with coronalon (Fig. 2.5C). Although 

MeSA and TMTT were released at rates somewhat lower than those of the Col-0 wild type, 

emission of these two compounds indicated that the elicitor had been successfully 

administered (Fig. 2.5C). Moreover, no changes were observed for the induced transcription 

of the TPS02 pseudogene and the myrcene/(E)-β-ocimene synthase TPS10 in comparison to 
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wild type plants. Since no other TPSs with putative (E,E)-α-farnesene or (E)-β-ocimene 

synthase activities are expressed in Col-0 leaves upon coronalon treatment (Herde et al., 

2008), the results strongly suggested that the TPS03 gene is responsible for the induced 

formation of (E,E)-α-farnesene in the Col-0 accession.   

 
Figure 2.5. Coronalon-induced expression of TPS03 and volatile emission in detached leaves of Col-0 wild 
type plants and the TPS03 T-DNA insertion line SALK_132694. A, Position of the T-DNA insertion in the 
TPS03 gene. Gray boxes represent exons, and flanking regions and introns are shown by the black line. B, 
Semi-quantitative RT-PCR analysis of transcripts of TPS03 in comparison to genes TPS02 and TPS10. 
Transcript levels of Actin 8 were analyzed as a control. Coro, coronalon. C, Emission of MeSA, TMTT, and 
(E,E)-α-farnesene  as measured between 21 and 30 h of coronalon treatment of Col-0 wild type plants and the 
T-DNA insertion line. Normalized peak areas are shown for each compound as analyzed by GC-MS (see 
“Materials and Methods”). No (E)-β-ocimene could be detected from wild type or mutant plants under these 
conditions. Results are average values ± SE (n = 3). None of the volatiles was detected in mock controls. 

 

Next, we analyzed line FLAG_406A04, which carries a T-DNA in the first intron of 

the Ws TPS02 allele (Fig. 2.6A).When leaves of this mutant were treated with coronalon, no 

induced TPS02 transcript could be detected in comparison to wild type Ws plants (Fig. 2.6B). 

The absence of the TPS02 transcript correlated with the loss of (E)-β-ocimene and (E,E)-α-

farnesene emission in the FLAG_406A04 mutant (Fig. 2.6C). We also investigated two 

transgenic Ws lines, in which transcription of TPS02 was severely reduced or completely 

abolished by RNA interference in response to application of the fungal elicitor alamethicin 

(Supplemental Fig. S3). As expected, traces or no emission of (E)-β-ocimene and (E,E)-α-

farnesene were found in the RNAi lines confirming the result obtained for the FLAG_406A04 

mutant (Supplemental Fig. S3A, B). MeSA and TMTT were released from all lines at rates 

similar to those of wild type Ws showing that elicitor treatment was effective (Supplemental 
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Fig. S3B). The results demonstrated that formation of (E)-β-ocimene and (E,E)-α-farnesene 

is dependent on the expression of TPS02 in the Ws ecotype. 

 

 

 

 

 

 

 

Figure 2.6. Coronalon-induced expression of TPS02 and volatile emission in detached leaves of Ws wild type 
plants and the TPS02 T-DNA insertion line FLAG_406A04. A, Schematic presentation of the position of the T-
DNA insertion in the TPS02 gene. Exons are represented by gray boxes, and flanking regions and introns are 
shown by the black line. B, Semi-quantitative RT-PCR analysis of transcripts of TPS02. Transcript levels of 
Actin 8 were analyzed as a control. No full-length transcripts were found for TPS03 and TPS10 in wild type and 
mutant plants. Coro, coronalon. C, Emission of MeSA, TMTT, (E,E)-α-farnesene, and (E)-β-ocimene between 
21 and 30 h of coronalon treatment of Ws wild type plants and the T-DNA insertion line. Normalized peak 
areas are shown for each compound as analyzed by GC-MS (see “Materials and Methods”). Results represent 
mean values ± SE (n = 3). None of the volatiles was detected from mock control leaves. 
 

2.3.4 Recombinant TPS02 and TPS03 Proteins both Produce (E)-β-Ocimene and (E,E)-

α-Farnesene in vitro 

 To further confirm the catalytic activities of the TPS02- and TPS03-encoded enzymes 

in Ws and Col-0, respectively, cDNAs of both genes were cloned into the E. coli expression 

vector pET101 in fusion with a C-terminal histidine-tag and the resulting proteins were 

partially purified by affinity chromatography and assayed for terpene synthase activity. For 

TPS02, a truncated 1647 bp cDNA was used that was amplified from the isolated full length 

Ws sequence. This truncation removed 41 amino acids containing a predicted plastidial 

transit peptide upstream of the conserved RR motif at the N-terminus of the TPS02 protein 

(Fig. 2.3C) in an effort to enhance the activity of the recombinant enzyme. It has previously 

been shown that monoterpene synthases often have higher specific activity when expressed 

in E. coli as mature proteins rather than as full-length preproteins (Williams et.al., 1998). The 

affinity-purified, recombinant Ws TPS02 protein converted the substrate GPP into (E)-β-

ocimene as the major product, with (Z)-β-ocimene and myrcene as minor products (Fig. 
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2.7A). In assays with FPP as the substrate, the TPS02 enzyme produced primarily (E,E)-α-

farnesene and small amounts (Z,E)-α-farnesene and (E,E)-β-farnesene (Fig. 2.7A). No 

activity was observed with GGPP as the substrate, and none of the terpene products was 

found in purified extracts of E. coli carrying the empty pET101 vector (not shown).  

We also tested whether a truncated 539 amino acid protein resulting from possible 

alternative translation at nucleotide 153 of the TPS02 gene from Col-0 had enzyme activity. 

However, this protein was shown to be inactive when expressed in E. coli. In addition, we 

investigated if removal of the frame shift mutation in the Col TPS02 gene restored a 

functional TPS02 protein. A 1772 bp cDNA of Col-0 TPS02 was amplified from RNA 

isolated from coronalon-treated Col-0 leaves and site directed mutagenesis was applied to 

remove the AT-two base nucleotide insertion (Fig. 2.3B). When the resulting cDNA clone 

was expressed in E. coli as described above, no terpene synthase activity was detected 

indicating that additional mutations in the Col-0 TPS02 gene contribute to the loss of enzyme 

activity.  

To analyze the activity of the Col-0 TPS03 encoded protein, a 1695 bp TPS03 cDNA 

corresponding to the full-length TPS03 protein was isolated from RNA of Col-0 leaves 

treated with coronalon. When enzyme assays were performed with GPP and FPP as 

substrates, the recombinant, partially purified TPS03 enzyme produced the same 

monoterpenes and sesquiterpenes as those synthesized by the TPS02 protein from Ws (Fig. 

2.7B). 
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Figure 2.7.  GC-MS analysis of monoterpene and sesquiterpene products of recombinant Ws TPS02 and Col-0 
TPS03 enzymes. Recombinant proteins were expressed in E. coli, extracted, partially purified and applied for 
terpene synthase assays using the substrates GPP and FPP. A, Total ion GC-MS chromatograms of 
monoterpenes (upper panel) and sesquiterpenes (lower panel) produced by recombinant  Ws TPS02 protein 
from GPP and FPP, respectively. The molecular structures of (E)-β-ocimene and (E,E)-α-farnesene are shown. 
B, Monoterpene products (upper panel) and sesquiterpene products (lower panel) of recombinant Col-0 TPS03 
enzyme detected in assays with GPP and FPP, respectively. Terpene products were identified by comparison to 
authentic standards or by library suggestion (for (Z,E)-α-farnesene). No products were found in purified extracts 
from E. coli carrying the empty expression vector.  
 

To analyze possible differences of the recombinant TPS proteins in conversion rates 

of GPP and FPP, we determined the catalytic properties of both enzymes for these substrates. 

Both enzymes had similar Vmax and kcat values for GPP and FPP with a 7 to 8-fold higher 

catalytic activity for GPP than for FPP (Table 2.2). The apparent Km values for GPP and FPP 

(1.7 – 6.7 μM) were low for both enzymes (Table 2.2) and in the range of Km values reported 

previously for other plant monoterpene and sesquiterpene synthases (Cane, 1999). Despite 

these similarities, the Ws TPS02 protein had an approximately 4-fold lower Km for GPP and 

an approximately 1.5-fold higher Km for FPP in comparison to the Col-0 TPS03 enzyme 

resulting in 4-fold higher and 1.5-fold lower corresponding kcat/Km values for GPP and FPP, 

respectively (Table 2.2). Catalysis of both enzymes was dependent on Mg2+ for maximum 

activity. We also tested the dependency of both enzymes on K+ ions. Neither Ws TPS02 nor 

Col-0 TPS03 showed any change in activity in the presence of 40 mM K+ (data not shown). 
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Taken together, our analysis of the recombinant TPS02 and TPS03 proteins from Ws 

and Col-0, respectively, showed that both enzymes can produce (E)-β-ocimene and (E,E)-α-

farnesene in vitro without major kinetic differences. However, analyses of the loss-of-

function plants clearly indicated different product profiles of the encoded enzymes in vivo 

with Ws TPS02 making both compounds (Fig. 2.6C) and Col-0 TPS03 producing 

predominantly (E,E)-α-farnesene (Fig. 2.5C). Thus, these findings supported the notion that 

TPS02 and TPS03 might be present in separate subcellular compartments with differential 

access to the substrates GPP and FPP.  

 
Table 2.2. Kinetic parameters of Ws TPS02 and Col-0 TPS03 recombinant enzymes. Each value represents the 
average ± SE of three replicates. Km, Michaelis-Menten constant; Vmax, maximal velocity; kcat, turnover number. 
Enzyme Substrate Km (μM) Vmax (pkat/mg) kcat (sec-1) kcat/Km (sec-1 mM-

1) 
Ws TPS02 GPPa 1.7±0.3 539.0±40.0 3.5x10-2±2.6x10-3  21.4±2.35 
 FPPa 4.0±0.4 69.0±3.1 4.5x10-3±2x10-4  1.12±0.05 
Col-0 TPS03 GPPa 6.7±0.9 514.8±49.8 3.4x10-2±3.3x10-3 5.12±0.18 
 FPPa 2.6±0.2 72.4±1.2 4.8x10-3±8.0x10-5 1.82±0.09 
 

2.3.5 Subcellular Localization of TPS02 in Plastids and TPS03 in the Cytosol 

Analysis of putative targeting sequences using different algorithms (CHLOROP, 

http://www.cbs.dtu.dk/services/-ChloroP; TARGETP, 

http://www.cbs.dtu.dk/services/TargetP; 

PWOLF PSORT, http://wolfpsort.seq.cbrc.jp; Predator, 

http://urgi.versailles.inra.fr/predotar/predotar.html) suggested that the TPS02 protein from 

Ws carries a plastidial transit peptide of approximately 25 amino acids and is therefore 

targeted to chloroplasts. To experimentally determine the subcellular localization of the Ws 

TPS02 protein, a 105 bp cDNA fragment beginning with the start codon of the TPS02 gene 

was inserted into the vector pCAMBIA 1302 under the control of the CaMV 35S promoter 

generating a 35 amino acid TPS02 peptide with a C-terminal fusion to GFP (green-

fluorescent protein). GFP analysis of hypocotyl cells of several independent plant lines 

transformed with the TPS02-GFP construct showed green fluorescence located in plastids, 

which clearly indicated that the TPS02 protein is targeted to chloroplasts (Fig. 2.8C, D).  

In contrast to TPS02, no consistent prediction for the subcellular localization of 

TPS03 was obtained with different algorithms with suggestions of either a cytosolic/nuclear 
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localization or the presence of a 9-28 amino acid mitochondrial targeting sequence. Longer 

transit peptides beginning at earlier start codons were not in frame with the TPS03 protein. 

We generated a Col TPS03-GFP fusion construct as described for TPS02 by cloning of a 150 

bp TPS03 cDNA fragment encoding a 50 amino acid N-terminal TPS03 peptide. In plants 

transformed with the TPS03-GFP construct, GFP fluorescence was not observed in plastids 

but appeared to reside in the cytosol with diffusion into nuclei (Fig. 2.8G, H).  

The GFP constructs clearly support the localization of TPS02 in plastids and TPS03 

in the cytosol. Given the preponderance of GPP in the plastids, TPS02 thus seems 

responsible for synthesizing (E)-β-ocimene from GPP in the Ws accession. On the other hand, 

the cytosolic TPS03 is in a compartment thought to be supplied with FPP rather than GPP, 

and thus is likely to form (E,E)-α-farnesene from FPP in Col-0. The formation of small 

amounts of (E,E)-α-farnesene in Ws is probably also attributable to TPS02, and demonstrates 

the existence of low levels of FPP in the chloroplast or low levels of TPS02 in a subcellular 

compartment provided with FPP.  
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Figure 2.8. Confocal laser scanning microscopy of stably expressed Ws TPS02 and Col-0 TPS03 peptide-GFP 
fusion proteins.  Microscopic images were taken from the hypocotyl of two-week old seedlings.  The first 
column (A, E, and I) shows light microscopic images of hypocotyl cells. Chlorophyll autofluorescence, detected 
in the red channel, is shown in the second column (B, F, and J). The third column (C, G, K) shows GFP 
fluorescence, detected in the green channel, and the fourth column (D, H, L) shows merged green and red 
channel images.  A 35 amino acid N-terminal TPS02 peptide (containing a putative 25 amino acid plastidial 
transit peptide) fused to GFP localizes to chloroplasts (A-D).  No plastidial localization was detected for a 
fusion protein containing a 50 amino acid N-terminal peptide of Col-0 TPS03 (E-H).  Ferredoxin N-reductase 
(FNR)-eGFP carrying a plastidial target peptide was used as a chloroplast marker (I-L). Scale bars: 20 μM.  
 

2.3.6 Inhibitor Studies of the MEP and the Mevalonate Pathways Support the 

Subcellular Localization of TPS02 and TPS03  

To further investigate the subcellular compartmentation of the Ws TPS02 and Col-0 

TPS03 enzymes, inhibitors were employed that are specific for one of the two pathways of 

IPP/DMAPP formation in plants, either the plastid-localized MEP pathway (Lichtenthaler, 

1999) or the cytosol-localized mevalonate pathway. Inhibitors were applied together with 

coronalon to leaves of both ecotypes. Administration of fosmidomycin, which inhibits the 

DXR enzyme in the MEP pathway, to Ws leaves, caused an almost complete loss of 

coronalon-induced (E)-β-ocimene emission (Fig. 2.9A). By contrast, inhibition of the 

mevalonate pathway enzyme HMGR by lovastatin led to only a 28% reduction in (E)-β-
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ocimene formation (Fig. 2.9A). The emission of (E,E)-α-farnesene was reduced by both 

inhibitors in a similar way as (E)-β-ocimene indicating both products are likely produced in 

the same compartment (Fig. 2.9B). Treatment of Col leaves with one or the other inhibitor 

caused effects opposite to those observed for the Ws ecotype. While application of lovastatin 

severely reduced the release of (E,E)-α-farnesene in response to coronalon treatment, 

emission of (E,E)-α-farnesene was inhibited by only 37% upon administration of 

fosmidomycin (Fig. 2.9C). The fact that some reduction was observed in the emission of 

(E,E)-α-farnesene by treatment of Col with fosmidomycin and in the emission of (E)-β-

ocimene upon treatment of Ws with lovastatin can be attributed to an exchange of terpenoid 

precursors between the cytosol and plastid as previously described (Hemmerlin et al., 2003; 

Laule et al., 2003; Schuhr et al., 2003; Dudareva et al., 2005).  Overall, our results are in 

agreement with the biosynthesis of (E)-β-ocimene and (E,E)-α-farnesene by Ws TPS02 in 

plastids and the formation of (E,E)-α-farnesene by the Col-0 TPS03 enzyme in the cytosol.  

 

2.3.7 Expression Profile of TPS02 and TPS03 Promoters 

To gain a better understanding of the organ- and tissue-specific formation of (E)-β-

ocimene and (E,E)-α-farnesene in leaves and flowers of the Col-0 and Ws ecotypes, a 2.1 and 

1.8 kb intergenic fragment upstream of the start codon of the functionally active Ws TPS02 

and Col-0 TPS03 genes, respectively, was cloned 5’ to the β-glucuronidase (GUS) reporter 

gene of the pDW137 vector, and the TPS promoter-GUS constructs were stably transformed 

into the respective Ws and Col-0 backgrounds. GUS activity driven by the Col-0 TPS03 

promoter was detected in sepals, anthers and the stigma of immature and mature flowers (Fig. 

2.10A-1). In anthers, GUS activity was found particularly in pollen (Fig. 2.10A-2). Moreover, 

GUS staining was observed in the abscission zone of developing siliques (Fig. 2.10A-3). In 

leaves, TPS03-GUS activity was induced locally around sites of feeding damage by P. 

xylostella (Fig. 2.10A-4). No activity was found in undamaged leaves. GUS staining was also 

detected at mechanical wound sites (not shown) in agreement with the transcription of TPS03 

observed upon mechanical wounding (Fig. 2.4A). Analysis of transgenic Ws plants 

expressing GUS under control of a TPS02 promoter fragment showed GUS staining only in 

response to treatment of leaves with the strong elicitor coronalon (Fig. 2.10B). GUS activity 

was strongest around the petiole after submersion in coronalon solution. No GUS activity 



Mechanisms of various terpene emissions                                                                   2. Chapter I 
 

35 
 

was observed in Ws flowers or leaves upon P. xylostella feeding in contrast to the detection 

of TPS02 transcripts in these organs, which suggested that the cloned promoter fragment 

lacked regulatory elements responsible for full activity in the intact plant.  

 
Figure 2.9. Effect of the MEP pathway inhibitor fosmidomycin (fos) and the mevalonate pathway inhibitor 
lovastatin  (lov) on emission of (E)-β-ocimene and (E,E)-α-farnesene from leaves of accessions Ws and Col-0. 
Volatiles were collected  for 8 h from detached rosette leaves treated with coronalon in the presence of a single 
inhibitor. Relative peak areas of compounds are shown. Peak areas from controls without the addition of 
inhibitors were arbitrarily set to 1.0. Results represent mean values ± SE (n = 3). 

 

 

Figure 2.10. GUS activity in Col-0 ProTPS03:GUS and Ws ProTPS02:GUS plants.  
A, Histochemical GUS staining of an inflorescence (1), pollen grains (2, arrow), a silique (3), and a P. 
xylostella-damaged mature leaf from a Col-0 ProTPS03:GUS plant. In A-4, GUS activity is induced locally 
around the sites of feeding damage. B, Induced GUS activity in a rosette leaf of a Ws ProTPS02:GUS plant 
treated for 24 h with coronalon through the petiole. The results are representative for at least three independent 
lines.  
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2.4 Discussion 

2.4.1 Elicitor- and Insect-Induced Volatile Emissions Vary among A. thaliana Ecotypes 

Intraspecific variation of herbivore-induced volatile emissions has been reported 

primarily from varieties of cultivated plants (Loughrin et al., 1995; Geervliet et al., 1997; 

Gouinguene et al., 2001; Degen et al., 2004; Lou et al., 2006). By contrast, variation of 

induced volatiles among non-domesticated species has been the subject of only few 

investigations of wild solanaceous species (Halitschke et al., 2000; Glawe et al., 2003; Hare, 

2007; Delphia et al., 2009) and teosinte (Gouinguene et al., 2001). In this study, we 

conducted a survey of 27 A. thaliana accessions for volatiles released upon treatment with 

coronalon, a synthetic mimic of octadecanoid plant hormones. As demonstrated for 

accessions Ws and Col-0 (Herde et al., 2008) and for lima bean (Schueler et al., 2001), 

coronalon induces volatile blends similar to those emitted upon insect feeding.  Most A. 

thaliana accessions emitted volatile blends of the same composition consisting of the 

monoterpene (E)-β-ocimene, the sesquiterpene (E,E)-α-farnesene, the benzenoid volatile 

MeSA, and the irregular C16-homoterpene TMTT, all of which are common constituents of 

herbivore-induced volatile mixtures (Turlings et al., 1990; McCall et al., 1994; Takabayashi 

and Dicke, 1996; Pichersky and Gershenzon, 2002; Ament et al., 2004).  

Large ecotype-specific quantitative differences were observed for the emission of (E)-

β-ocimene with approximately one third of the accessions, including Col-0, producing none 

or only traces of this monoterpene. Quantitative variation was also apparent in the emission 

of the other volatile compounds (MeSA, TMTT) resulting in ecotype-specific differences of 

compound ratio. Our results correspond to differences in herbivore-induced volatile blends 

observed among genotypes of other wild species (Halitschke et al., 2000; Gouinguene et al., 

2001; Hare, 2007; Delphia et al., 2009). The ecological significance of intraspecific variation 

of insect-induced volatile production is still not well understood because the roles of these 

compounds in plants are not completely elucidated. Among the investigated A. thaliana 

accessions, no definite correlation could be found between the geographical distribution and 

the total amount of volatiles emitted or their profiles. However, variability of herbivore-

induced volatile emissions may reflect habitat-dependent, selective adaptations of ecotypes to 

specific populations of herbivores and their natural enemies. Natural selection is also 

assumed to be responsible for significant variation of other specialized metabolites among A. 
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thaliana accessions, such as glucosinolates (Kliebenstein et al., 2001). The insect-induced 

volatile blend emitted from A. thaliana Col-0 has been shown to attract parasitic wasps such 

as Cotesia rubecula (Van Poecke et al., 2001) and preferences of parasitoid wasps for 

particular volatile mixtures have been demonstrated (Hoballah et al., 2002). Moreover, 

associative learning of parasitoids (De Boer and Dicke, 2006; Smid and Vet, 2006) may 

facilitate optimal use of the volatile cues emitted by a specific plant population. Since 

volatile terpenes exhibit antimicrobial activities, ecotype-specific variation of induced 

volatiles might also emerge under selective pressure by different microbial pathogens. 

Bacterial and fungal pathogens can elicit emission of volatile mixtures in A. thaliana, which 

are very similar to those induced by insects, as shown for infections by P. syringae (Attaran 

et al., 2008) and treatment with the fungal elicitor alamethicin (Herde et al., 2008). 

Interestingly, two accessions, Bla-1 and Bla-10, originating from the same region 

(Blanes/Genora, Spain) differed more than 100-fold in the emission of (E)-β-ocimene 

indicating intraspecific variability even among populations occurring close together.  

A significant correlation was apparent between emissions of (E)-β-ocimene and 

(E,E)-α-farnesene (Fig. 2.2, Suppl. Table I), which suggested that in most accessions both 

terpene volatiles are produced either simultaneously by a single bi-functional (E)-β-

ocimene/(E,E)-α-farnesene synthase or by co-expressed enzyme activities. Significant 

correlations were also found between emissions of MeSA and TMTT, on the one hand, and 

MeSA and (E,E)-α-farnesene, on the other (Suppl. Table I), which reflect overlapping, 

coronalon-induced responses in the expression of biosynthetic enzymes in the formation of 

MeSA (benzoic acid/SA carboxyl methyltransferase 1, AtBSMT1) (Chen et al., 2003a), 

TMTT, and (E,E)-α-farnesene. 

 

2.4.2 Col-0 and Ws Accessions Show Allelic Differences for the Duplicated (E)-β-

Ocimene/(E,E)-α-Farnesene Synthase Genes TPS02 and TPS03 that lead to Variability 

in Terpene Biosynthesis 

Within the A. thaliana terpene synthase (TPS) family, the proteins encoded by genes 

TPS02 and TPS03 cluster together with five other monoterpene synthases (TPS10, TPS14, 

TPS23, TPS27, TPS24), all of which belong to the plant TPS-b subfamily (Aubourg et al., 

2002; Chen et al., 2003) (Fig. 2.11). Based on their close proximity and similarity in gene 
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structure and sequence, TPS02 and TPS03 are most likely the result of tandem gene 

duplication. Several other terpene synthase genes are arranged as tandem pairs in the A. 

thaliana genome such as identical gene copies of the root-expressed 1,8-cineole synthase 

AtTPS-Cin (TPS23 and 27) (Chen et al., 2004) and the (Z)-γ-bisabolene synthases TPS12 and 

TPS13 (Ro et al., 2006). Rapid radiation of genes by duplication and sequence divergence is 

common within the plant TPS superfamily and other gene families of plant specialized 

metabolism (Pichersky and Gang, 2000; Kliebenstein et al., 2001; Koellner et al., 2004) and 

is thought to contribute to generating diversity of metabolites that function in plant-organism 

interactions (van der Hoeven et al., 2000; Aubourg et al., 2002).  

 
Figure 2.11. Phylogenetic tree illustrating the relationship of Arabidopsis Ws TPS02 and Col-0 TPS03 (shaded 
grey) to other selected Arabidopsis monoterpene synthases and to other plant α-farnesene and (E)-β-ocimene 
synthases of different TPS subfamilies. The tree was generated from 13 TPS proteins using ClustalW and 
phylogenetidc analysis was conducted using maximum parsimony in PAUP. Accession numbers of all genes are 
listed under “Materials and Methods”. Numbers above nodes are bootstrap values based on searches with 1000 
replicates. Myrc, myrcene; ocim, ocimene; farn, farnesene. 

 

The Ws and Col-0 accessions each maintain only one functional allele at the TPS02 

and TPS03 locus, whose recombinant proteins exhibit both (E)-β-ocimene and (E,E)-α-

farnesene synthase activities. The TPS03 allele in Ws and the TPS02 allele in Col-0 are 

inactive because of frame-shift mutations, which cause the introduction of premature stop 

codons (Fig. 2.3B). Both alleles are still transcribed under induced conditions; however, in 

the case of the Ws TPS03 gene, most of the mRNA is degraded except of a short fragment 

upstream of the nonsense codon (Supplemental Fig. S2). Premature nonsense codons, 

particularly those occurring in early exons, can decrease mRNA stability by activating 

nonsense-mediated decay pathways (vanHoof and Green, 1996; Gutierrez et al., 1999; Hori 

and Watanabe, 2007). For the TPS02 transcript in Col-0, where the nonsense codon is 

positioned at the junction between the first and second exon, full-length mRNA transcripts 
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were observed in elicitor-treated leaves. By contrast, none or only traces of full length 

mRNA of TPS02 were found in Col-0 flowers and only partial transcripts of this gene were 

previously amplified successfully from floral tissue (Chen et al., 2003), which indicates a 

possible higher mRNA instability of the TPS02 pseudogene in Col-0 flowers than under 

induced conditions in leaves.  

In some cases, transcripts of pseudogenes have been shown to regulate the stability of 

their homologous coding gene transcripts (Hirotsune et al., 2003). By analyzing the Ws 

FLAG_406A04 mutant and TPS02 RNAi lines, we did not find evidence for this regulatory 

mechanism, since the absence of the TPS02 transcript did not positively affect the mRNA 

stability of the TPS03 allele. In addition, no micro RNAs have been identified for both 

TPS02 and TPS03 genes.  

Examples of pseudogene transcripts have been described in other defense metabolic 

pathways in A. thaliana (Kliebenstein et al., 2001). In particular, stress-responsive gene 

families such as the TPS family have elevated levels of pseudogenization, which can be 

interpreted as a rapid turnover of genes under varying selection pressures (Thibaud-Nissen et 

al., 2009; Zou et al., 2009). Analysis of the TPS02 – TPS03 gene pair in Col-0 and Ws 

demonstrated that either one of the duplicated genes can lose function.  However, since most 

of the investigated accessions emit (E)-β-ocimene, selection pressure seems to support 

expression of an active (E)-β-ocimene synthase. Moreover, the presence of a full-length 

though inactive TPS02 transcript in elicitor-treated leaves of the Col-0 ecotype indicates a 

more recent loss of function of the TPS02 allele than the TPS03 allele.  

Allelic variation of TPS genes contributing to terpene diversity has also been 

described in varieties of different crop plants such as basil, tomato and maize (van der 

Hoeven et al., 2000; Iijima et al., 2004; Koellner et al., 2004). For example, in maize 

inactivation of alleles of the insect-induced, duplicated sesquiterpene synthase genes tps4 and 

tps5, caused by frame shift mutation, was observed in a comparison of two different cultivars 

(Koellner et al., 2004). While extrapolating from these results to wild species is possible, the 

findings presented here provide a direct demonstration that allelic diversification of TPS 

genes in wild gene pools contributes to the natural variation in terpene formation.  
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2.4.3 Subcellular Compartmentalization of the TPS02 and TPS03 Proteins Contributes 

to Ecotype Variation of Induced (E)-β-Ocimene and (E,E)-α-Farnesene Emission 

Subcellular localization experiments demonstrated that the Ws TPS02 protein is 

targeted to plastids (Fig. 2.8C, D), where it converts GPP to (E)-β-ocimene. Inactivation of 

TPS02 in Ws caused the loss of emission of both (E)-β-ocimene and (E,E)-α-farnesene (Fig. 

2.6, Supplemental Fig. S3), which clearly showed that the TPS02 enzyme not only converts 

GPP to (E)-β-ocimene in plastids, but also catalyzes FPP to (E,E)-α-farnesene conversion in 

the same organelle. The presence of plastidial FPP was also inferred when a strawberry 

linalool/nerolidol synthase carrying a plastidial-targeting peptide was expressed in A. 

thaliana, causing the emission of a small amount of the sesquiterpene nerolidol together with 

linalool (Aharoni et al., 2003). A plastidial FPP pool might be the result of an import of FPP 

from the cytosol as a result of metabolic cross-talk between both compartments (Schuhr et al., 

2003) and/or the biosynthesis of FPP inside the organelle. The latter explanation is supported 

by the lower emission of (E,E)-α-farnesene in the presence of fosmidomycin, an inhibitor of 

the plastid-localized MEP pathway, than after treatment with lovastatin, an inhibitor of the 

cytosol-localized mevalonate pathway (Fig. 2.9A, B). Although an isoform of the A. thaliana 

FPP synthase 1 (FPPS1L) has been shown to be targeted to mitochondria (Cunillera et al., 

1996), a specific FPP synthase activity in plastids has not been demonstrated. Instead, FPP 

might be produced as a side product of plastidial GPP synthase activity.  

In comparison to TPS02, the TPS03 protein lacks 14 amino acids at its N-terminus 

(Fig. 2.3C) and is not targeted to plastids, but resides instead in the cytosol (Fig. 2.8G, H). 

The TPS03 enzyme produces (E,E)-α-farnesene mostly from cytosolic FPP, which is evident 

from a severe reduction of (E,E)-α-farnesene emission by treatment with lovastatin in 

comparison to the application of fosmidomycin (Fig. 2.9C). Formation of only trace amounts 

of (E)-β-ocimene in the Col-0 ecotype indicates the absence of a high GPP level in the 

cytosol and rules out an efficient export of GPP from plastids to the cytosol. Experimental 

evidence for small cytosolic levels of GPP has recently been provided from tobacco and 

kiwifruit (Wu et al., 2006; Nieuwenhuizen et al., 2009).  

A previous analysis of TPS03 from accession C24 assumed that the TPS03 enzyme is 

responsible for the in planta formation of (E)-β-ocimene based on the characterization of the 

over-expressed protein in vitro (Faeldt et al., 2003). However, since the N-terminal region of 
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the C24 TPS03 protein is identical to that of the Col enzyme and because of negligible GPP 

pools in the cytosol of A. thaliana leaf cells, we can now hypothesize that (E)-β-ocimene, if 

emitted from this ecotype, is probably produced by a functional TPS02 protein rather than a 

TPS03 enzyme activity. No (E,E)-α-farnesene synthase activity was found for the TPS03 

recombinant enzyme from C24 (Faldt et al., 2003) despite only a single amino acid 

difference at position 267 (S in Col, F in C24). It will be interesting to determine to what 

extent this amino acid change is indeed responsible for the loss of (E,E)-α-farnesene synthase 

activity of the TPS03 protein.  

Subcellular segregation of homologous bifunctional terpene synthases has also been 

documented in cultivated plants. In snapdragon flowers, the subcellular location of two 

nearly identical linalool/nerolidol synthases determines whether each enzyme produces 

linalool (in plastids) or nerolidol (in the cytosol) (Nagegowda et al., 2008). In cultivated 

strawberry, cytosolic and plastidial linalool/nerolidol synthases (FaNES1 and FaNES2) were 

identified, of which only the FaNES1 enzyme is expressed and seems to be responsible for 

the formation of nerolidol but also linalool from FPP and GPP pools in the cytosol (Aharoni 

et al., 2004). Our results on enzymes from a non-cultivated species expand these findings by 

showing that differential subcellular targeting of dual-function terpene synthases is a 

molecular mechanism of general importance in the natural evolution of intraspecific volatile 

terpene diversity. 

 

2.4.4 TPS02 and TPS03 Expression is under Constitutive Control in A. thaliana Flowers 

and Stress-Induced in Leaves  

Transcript analysis of the Ws TPS02 and Col-0 TPS03 genes showed that expression 

of both genes is induced in leaves upon treatment with coronalon and in response to feeding 

by P. xylostella (Fig. 2.4A, B). Moreover, histochemical assays of Col-0 TPS03 promoter 

activity demonstrated local expression of this gene at the site of P. xylostella feeding damage 

(Fig. 2.10A-4). The fact that no expression of Col-0 TPS03 was found in undamaged leaves 

of P. xylostella-treated plants supports the notion of the lack of a systemic response in 

herbivore-induced terpene volatile emission in A. thaliana. Induction of the TPS03 transcript 

was also demonstrated in leaves of A. thaliana ecotype No-0 in response to jasmonate 
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treatment and mechanical wounding, but not to feeding by the specialist herbivore Pieris 

rapae (Faeldt et al., 2003) suggesting ecotype- and/or insect-specific differences in 

herbivore-induced responses of the TPS03 gene.  

Both Ws TPS02 and Col-0 TPS03 are also expressed constitutively in flowers (Fig. 

2.4C), which is consistent with the formation of (E)-β-ocimene and (E,E)-α-farnesene as 

common constituents of floral volatile blends in plants (Dudareva et al., 2003; 

Nieuwenhuizen et al., 2009). However, for the TPS03 gene, the strong promoter-GUS 

activity and transcript abundance in Col-0 flowers (Fig. 2.10A-1, 2) do not correlate with the 

low emissions of its enzymatic product (E,E)-α-farnesene (app. 0.3 ng h-1 per 70 

inflorescences) reported from Col-0 floral tissues (Tholl et al., 2005). This discrepancy might 

be caused by differences in TPS03 enzyme activity and /or substrate availability in floral 

tissue in comparison to elicitor-treated leaves, where (E,E)-α-farnesene is readily detected. 

The specific expression profile of TPS03 in the stigma and sepals of Col-0 flowers may 

reflect the functions of (E,E)-α-farnesene in pollinator attraction or florivore/antimicrobial 

defense as discussed for the flower-specific genes TPS21 (encoding a (E)-β-caryophyllene 

synthase) (Tholl et al., 2005) and TPS24 (multi-product monoterpene synthase), which 

exhibit similar expression patterns in A. thaliana flowers  (Chen et al., 2003). Interestingly, 

TPS03 promoter activity was observed in pollen grains and resembles the recently reported 

expression of a valencene sesquiterpene synthase in the pollen of grape flowers (Martin et al., 

2009). A pattern of constitutive expression in reproductive organs and induced expression in 

vegetative tissues has also been observed for A. thaliana geranyllinalool synthase 

(TPS04/GES) (Herde et al., 2008) in the formation of the volatile homoterpene TMTT and 

has been demonstrated for other genes involved in plant defense (Pollak et al., 1993; Hoegen 

et al., 2002; Stotz et al., 2009). 

In contrast to (E,E)-α-farnesene, (E)-β-ocimene is the predominant volatile in Ws 

flowers (Tholl et al., 2005) consistent with the expression of an active TPS02 gene (Fig. 

2.3C). All of the accessions that emit (E)-β-ocimene from their foliage under induced 

conditions also release (E)-β-ocimene from floral tissue (Tholl et al., 2005), while non- or 

trace emitters of (E)-β-ocimene from leaves also lack emissions from flowers. We therefore 

assume that (E)-β-ocimene is produced primarily by the TPS02 enzyme in both leaves and 

flowers of most of the investigated ecotypes. Despite amplification of a 2.1 kb intergenic 
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promoter region, we were unable to detect TPS02 promoter activity in flowers and in 

response to insect feeding. An expanded analysis of the TPS02 promoter region may reveal 

regulatory elements necessary for full promoter activity and allow a more detailed 

comparison of organ-specific expression and function for the TPS02 and TPS03 genes.  

 

2.4.5 Formation of (E)-β-Ocimene and (E,E)-α-Farnesene by Bifunctional Terpene 

Synthases Evolved Several Times in Flower, Fruit and Herbivore-Induced Volatile 

Biosynthesis 

A phylogenetic comparison of the A. thaliana Ws TPS02 and Col-0 TPS03 proteins 

with other plant TPSs shows that both enzymes cluster in the TPS-b subfamily, which also 

includes the recently characterized bifunctional (E,E)-α-farnesene/(E)-β-ocimene synthase 

MdAFS1 from apple (Pechous and Whitaker, 2004) (Fig. 2.11). However, TPS02 and TPS03 

are more closely related to other A. thaliana monoterpene synthases of the TPS-b subgroup 

(52-59% aa sequence identity) than to MdAFS1 (35- 37 % aa sequence identity) (Fig. 2.11) 

confirming the independent convergence of genes in the A. thaliana TPS family. Besides the 

(E,E)-α-farnesene/(E)-β-ocimene synthases of the TPS-b family, bifunctional enzymes with 

similar activities were identified from cucumber within the TPS-a subgroup (Mercke et al., 

2004), and from flowers of kiwifruit (AdAFS1) in the TPS-f subfamily (Nieuwenhuizen et al., 

2009). In contrast to the enzymes from apple and kiwifruit that preferably produce (E,E)-α-

farnesene from FPP (Green et al., 2009; Nieuwenhuizen et al., 2009), the recombinant TPS02 

and TPS03 enzymes exhibit 19 and 3-fold higher catalytic efficiency for GPP than FPP, 

respectively, (Table 2.2) suggesting their original function as monoterpene synthases. The 

apparent Km values of Ws TPS02 and Col-0 TPS03 for GPP and FPP are in the range of 

those reported from other (E,E)-α-farnesene/(E)-β-ocimene synthases (Nieuwenhuizen et al., 

2009). While the Vmax and kcat values of both enzymes for GPP and FPP, respectively, are 

very similar, differences between the apparent Km values for both substrates make Col-0 

TPS03 slightly more catalytically efficient in converting FPP to (E,E)-α-farnesene than Ws 

TPS02 and less efficient in producing (E)-β-ocimene from GPP (Table 2.2). These 

differences may reflect substrate preferences arising from the predominant substrate present 

in the environment of the enzyme, GPP for the plastid-localized TPS02 and FPP for the 

cytosol-localized TPS03.  
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The activity of the MdAFS1 enzyme was shown to be dependent on K+ and the 

protein contains an H-α1 loop motif for optimal binding of K+ ions (Green et al., 2009). 

Substitution of a serine residue (S487) in this motif with lysine rendered the enzyme K+-

independent. The activity of the TPS02 and TPS03 proteins was also not K+-dependent, and 

these, as well as other TPS-b monoterpene synthases, have a Lys residue at the corresponding 

position (Fig. 2.3C).  

In addition to bifunctional (E,E)-α-farnesene/(E)-β-ocimene synthases, several other 

TPSs producing one or both of these terpenes have been identified from gymnosperms (TPS-

d) (e.g. (E,E)-α-farnesene synthase from Picea abies, (Martin et al., 2004)) and angiosperms 

(TPS-b, g subgroups) (e.g. (E)-β-ocimene synthases from Lotus japonicas (Arimura et al., 

2004), or snapdragon (Dudareva et al., 2003). The sequence variation among these enzymes 

demonstrates that the formation of (E,E)-α-farnesene and (E)-β-ocimene has arisen 

independently several times in the evolution of higher plants suggesting repeated selection 

for their roles in pollinator attraction, fruit dispersal and plant defense.  

 

 

2.5 Materials and Methods 

2.5.1 Plant Materials and Growth Conditions  

A. thaliana thaliana seeds of all accessions with the exception of Col-0 (Columbia) 

and Ws (Wassilewskija) were obtained from Tom Mitchell-Olds, Duke University, Durham, 

NC. Seeds of A. thaliana T-DNA insertion mutant lines (TPS3KO SALK_132694, TPS2KO 

FLAG_406A04) were from the ABRC stock center and INRA, France, respectively. Wild 

type and transgenic/mutant plants were cultivated on soil (Sunshine Growing Mix No.1 : 

sand, 8:1) for 5 to 6 weeks under controlled growth conditions (10 h-light/14 h-dark 

photoperiod with 150 μmol.m-2.s-1 PAR, 23 °C, 55% relative humidity). Kanamycin or 

hygromycin resistant transgenic plants were pre-selected on 1 × Murashige and Skoog 

(Duchefa, Haarlem, The Netherlands) plates with 1% sucrose and 100 µg mL-1 kanamycin or 

30 µg mL-1 hygromycin prior to being transferred to soil. Hydroponic plants of various 

accessions were grown from seeds on rockwool support (Gibeaut et al., 1997) under the same 
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light and temperature conditions as described above. All plants were used in the prebolting 

rosette stage. 

 

2.5.2 Reagents and Radiochemicals 

Unlabeled GPP (geranyl diphosphate) and FPP (farnesyl diphosphate) were 

purchased from Echelon Biosciences Incorporated (Salt Lake City, UT, USA). Tritium 

labeled GPP and FPP ([1-3H]-GPP, [1-3H]-FPP, both ~ 0.74 TBq mmol-1) were purchased 

from American Radiolabeled Chemicals, Inc. (St. Louis, MO, USA). All other reagents or 

solvents were obtained from Fisher Scientific, Sigma-Aldrich, Invitrogen and Fluka, unless 

otherwise stated.  

 

2.5.3 Plant Treatments  

For treatment of various accessions with coronalon, hydroponically grown plants 

were placed with their roots in glass beakers containing 30 ml of hydroponic medium with 33 

μg mL-1 (100 μM) coronalon, 0.1% ethanol (Schuler et al., 2004). Treatment was performed 

for 30 h. For treatments of detached A. thaliana leaves with coronalon or alamethicin, 16 

leaves were cut off from soil grown plants and transferred with their petioles into glass 

beakers filled with 10 ml aqueous solutions of 16.5 μg mL-1 (50 μM) coronalon, 0.1% ethanol 

or 10 μg mL-1 alamethicin, 0.1% ethanol. Mock solutions for all treatments contained 0.1% 

ethanol. Treatments were performed for 24 h (coronalon) and 30 h (alamethicin). For 

inhibitor treatments of detached leaves, leaves were placed in aqueous solutions of 

fosmidomycin (50 μM) and lovastatin (50 μM) and incubated for 24 h prior to the addition of 

coronalon (50 μM) and an additional 24 h treatment. Mock treatments were done with 0.2% 

ethanol. For wounding experiments, fully expanded rosette leaves of intact soil-grown plants 

were evenly penetrated 20 times by needles and harvested after 30 h. Insect feeding 

experiments were performed by placing an average of six third- to fourth-instar P. xylostella 

larvae on each fully expanded rosette leaf of soil-grown plants and allowing them to feed for 

24 h (for RNA extraction and GUS staining) or 30 h (for volatile collection). P. xylostella 

larvae were from a G88 colony and reared on artificial diet with a wheat germ base at 27 °C 

with an 18h light/6h dark cycle.  



2. Chapter                                                                     Mechanisms of various terpene emissions 
 

46 
 

 

2.5.4 Volatile Collection and Analysis 

Volatile collection from detached leaves or intact hydroponic plants was performed in 

1 L bell jars by using the closed-loop stripping method (Donath and Boland, 1995) under 

controlled growth conditions as described previously (Chen et al., 2003). If not indicated 

otherwise in the figure legend, volatiles were collected in the light for 8 h during 22 h to 30 h 

from the beginning of the treatment. Collections were performed during this time period 

because of higher volatile emissions in comparison to earlier time points of treatment. 

Volatiles emitted from inhibitor-treated rosette leaves were collected between 40 to 48 h of 

incubation with the inhibitor (i.e. between 16 to 24 h of coronalon treatment). For the P. 

xylostella treatment, plants were placed with their root balls wrapped in aluminum foil in 3 L 

bell jars and volatiles were collected during 21 to 30 h from the start of larval feeding. 

Volatiles were trapped on 25 mg Super-Q (hydroponic plants, insect feeding) (Tholl, 2006) 

or 5 mg activated charcoal (detached leaves) and eluted with 100 µL (Super-Q) or 40 µL 

(charcoal) of CH2Cl2 containing 120 ng of nonyl acetate or 80 ng of 1-bromodecane, 

respectively, as an internal standard. No major differences in the volatile profiles were 

observed between the different trapping materials.  

The eluted samples (1 µL) were injected in a splitless mode into a GC-2010 gas 

chromatograph (Shimadzu, Japan) coupled with a QP2010S mass spectrometer (Shimadzu). 

Separation was performed on an Rxi-XLB column (Restek, Bellefonte, PA, USA) of 30 m × 

0.25 mm i.d. × 0.25 μm film thickness. Helium was used as the carrier gas (1.4 mL min-1 

flow rate), and a temperature gradient of 5 °C/min from 40 °C (hold for 2 min) to 220 °C was 

applied. Samples collected from hydroponically grown accessions were analyzed in 2 μL 

volumes on a Hewlett-Packard 6890 gas chromatograph coupled to a Hewlett-Packard 5973 

quadrupole mass detector. Compounds were separated at a flow rate of 2 mL min-1 on a 5% 

phenyl-methyl-polysiloxane (DB5) column (J&W Scientific) of the same dimensions as 

described above. Qualitative analysis of volatile products of the TPS02 and TPS03 

recombinant enzymes was performed using an AOC-5000 Shimadzu autosampler with 

automated solid phase microextraction (SPME). Compounds were thermally desorbed in a 

2:1 split for 5 min at 240 °C in the GC injector.  
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The identities of volatile compounds were confirmed by comparison of their retention 

times and mass spectra with those of authentic standards (individual compounds or 

components of essential oils) and with mass spectra in the National Institute of Standards and 

Technology and Wiley libraries. For absolute quantification of MeSA and TMTT, the 

primary ion peaks of each compound were integrated (single ion method) and the amounts 

were calculated in relation to the response of nonyl acetate at m/z 69.  Response curves for 

the quantified compounds relative to the internal standard were generated by injecting a 

mixture of equal amounts of authentic standards and internal standard. Absolute 

quantification of (E)-β-ocimene and (E,E)-α-farnesene was performed using an FID detector. 

For relative quantification of volatiles, primary ion peaks (m/z 93 for MeSA, (E)-β-ocimene 

and (E,E)-α-farnesene; m/z 69 for TMTT) were integrated and normalized against 1-

bromodecane (at m/z 135). 

 

2.5.5 Genotyping of Plant Material 

Homozygous mutants in the Col and Ws background carrying a T-DNA insertion in 

the TPS03 and the TPS02 gene, respectively, were identified in the insertional mutant 

population (Sessions et al., 2002). Genomic DNA was isolated using the method by Edwards 

et al. (Edwards et al., 1991). The T-DNA insertion in Ws TPS02 and Col TPS03 was 

confirmed by PCR, using primers P1 to 3 and P4 to 6, respectively (see Supplemental Table 

SII). 

 

2.5.6 Generation of Ws TPS02 RNAi Lines 

To prepare an RNAi construct for targeting Ws TPS02, first, a DNA fragment 

spanning a portion of the last exon of TPS02, the downstream intergenic region, and a 

portion of the first exon of TPS03 was amplified by PCR using primers P7 and P8 and Ws 

genomic DNA. The PCR product was cloned into the pCR2.1® TOPO vector (Invitrogen) 

and used as a template for a second PCR to amplify a 106-bp fragment spanning 29-bp of the 

last exon and 77-bp of the 3’-UTR of WS TPS02 with  primers P9 and P10. The amplicon 

was cloned into pENTR-TOPO-D (Invitrogen) and transferred to pHELLSGATE8 (Wesley 

et al., 2001) using the LR recombination reaction (Invitrogen). The resulting construct was 

transformed into Agrobacterium tumefaciens (strain GV3101) using chemical transformation 
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(An, 1987) and WS plants were transformed with the vacuum infiltration method (Bechtold 

et al., 1993). Transgenic plants were selected on kanamycin resistance as described above. 

Experiments were performed with plants in the T3 generation. 

 

2.5.7 Determination of Terpene Synthase Gene Expression by Semi-Quantitative RT-

PCR 

Total RNA was isolated from treated and untreated leaves of Col-0 and Ws wild type 

and mutant lines as well as from roots and flowers of both accessions using the Trizol reagent 

(Invitrogen, Carlsbad, CA, USA). One µg of total RNA was treated with RQ1 RNase-free 

DNase (Promega, Madison, WI, USA). The DNA-free total RNA was reverse transcribed 

into cDNA using SuperScript II reverse transcriptase (Invitrogen) in a total volume of 20 µl 

following the manufacturer’s instructions.  PCRs were performed with primers P11 and P12 

for TPS02 (At4g16730), P13 and P14 for TPS03 (At4g16740), P15 and P16 for TPS10 

(At2g24210), and P17 and P18 for Actin8 (At1g49240) as listed in Supplemental Table SII. 

PCRs were conducted with 0.5 μM of each primer, 0.2 mM of each deoxynucleotide 

triphosphate (dNTP), 0.5 U of Taq DNA polymerase (New England Biolabs, Ipswich, MA, 

USA) and 30 cycles for each reaction. Reactions for Actin8 were applied to judge the 

equality of cDNA template concentrations. RT-PCRs were performed in three replicates with 

similar results using RNA extracted from three individual plants. Expression of the TPS03 

gene in Ws was probed with seven pairs of gene specific primers (P19 to P32) (see 

Supplemental Table SII) designed to amplify small fragments of a putative TPS03 transcript. 

 

2.5.8 Genomic and cDNA Cloning of TPS02 and TPS03 by RT-PCR 

To obtain genomic sequence information of the TPS03 gene from accession Ws, PCR 

primers P19 and P33 were used to amplify a TPS03 genomic fragment, and 5’- and 3’-UTRs 

were amplified using primer pairs P34/P35 and P36/P37, respectively. The TPS03 amplicon 

was cloned into the pGEM-T easy vector (Promega) and sequenced.  

For cloning of TPS02 and TPS03 cDNAs from accessions Ws and Col-0, respectively, 

total RNA was extracted from alamethicin-treated leaves and reverse transcribed as described 

above. Primer P38, which binds 123 nucleotides downstream of the start codon of TPS02 and 

P39, which corresponds to the end of the TPS02 coding region, were used for RT-PCR 
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amplification of the TPS02 cDNA from Ws. For amplification of a truncated version of 

TPS02 from Col-0, primer P40, binding 153 bp downstream of the start codon, and P39 were 

employed. To remove the AT insertion of the Col-0 TPS02 pseudogene, a site-directed 

mutagenesis was performed with primer P41 and the Col-0 TPS02 full-length cDNA cloned 

in the pCR-T7/CT vector (Invitrogen) using the Stratagene QuikChange Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA, USA).   

The entire open reading frame of TPS03 from Col-0 was amplified using primers P42 

and P43. Both reverse primers (P39, P43) allowed a translational fusion to a carboxyl-

terminal His6-tag. The amplified TPS02 and TPS03 cDNA products were inserted by 

directional cloning into the protein expression vector pET101-TOPO (Invitrogen). 

Correctness of cDNA clones was confirmed by sequencing. 

 

2.5.9 Heterologous Protein Expression and Purification of Ws TPS02 and Col TPS03 in 

E. coli 

The pET101-TOPO plasmids containing Ws TPS02 or Col TPS03 cDNA were 

transformed into E.coli BL21 DE3 competent cells (Invitrogen) for recombinant protein 

expression. Transformed cells were incubated in 500 ml cultures, started with an overnight 

culture, at 18 °C until an OD600 of 0.6 was reached. Protein expression was induced by 

adding 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) followed by additional incubation 

for 16 h at 18 °C. Cells were extracted and the TPS proteins were partially purified on 0.5 ml 

Ni-NTA-agarose columns (Quiagen, Valencia, CA, USA) as described by Tholl et al. (2004) 

and according to the manufacturers protocol. Following desalting into assaybuffer (10 mM 

MOPSO (3-N-morpholino-2-hydroxypropanesulfonic acid), pH 7.0, 1 mM DTT and 10% 

[v/v] glycerol), fractions with the highest enzyme activity were used for determination of 

enzyme kinetic parameters. Protein concentrations were determined by the Bradford method 

(Bradford, 1976) using reagents obtained from Bio-Rad (Richmond, CA, USA) and bovine 

serum albumin (BSA) as calibration standard.  The specific amount of TPS protein in the 

active fraction was determined by SDS-PAGE separation of the partially purified protein and 

quantitative comparison of the intensity of the Coomassie-stained TPS protein band to those 

of BSA standards.  
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2.5.10 Terpene Synthase Enzyme Assay and Kinetic Characterization  

For qualitative analysis of TPS enzyme products via SPME, enzyme assays were 

performed in screw-capped 10 ml glass vials in a total volume of 250 μl containing 10 µl 

(TPS02) or 150 µl (TPS03) of partially purified enzyme, 20 mM MgCl2, 0.2 mM NaWO4, 

0.1 mM NaF, 1 mM DTT, and 60 µM GPP or FPP. The assay was incubated in the presence 

of a PDMS fiber at 30 °C for 10 min prior to volatile analysis by GC-MS as described above. 

For enzyme characterization, assays were carried out for 5 min (TPS03 with FPP) or 20 min 

in 50 μl reaction volumes with 0.35 to 4.5μg partially purified Ws TPS02 or Col TPS03 

enzyme under the same buffer conditions described above. Reaction products were extracted 

with 300 μl hexane and total radioactivity was determined by scintillation counting. For 

evaluation of the Km values for GPP and FPP, five different concentrations of [1-3H]-GPP 

(35.2 MBq μmol-1) and [1-3H]-FPP (35.2 MBq μmol-1) were applied. Assays were conducted 

in three replicates and apparent Km values were determined by Hanes-Plot analysis using the 

Hyper 1.01 program (J.S. Easterby, University of Liverpool). To determine a possible 

activation of the TPS enzymes by K+ ions, assays were performed with 5 μM [1-3H]-GPP or 

[1-3H]-FPP in the presence or absence of 50 mM KCl. 

 

2.5.11 Construction and Analysis of TPS02 and TPS03 Promoter-GUS Reporter Gene 

Fusions  

A 2.1 kb promoter fragment of Ws TPS02 was isolated from genomic DNA of Ws via 

PCR using the forward primer P44, containing a HindIII site, and the reverse primer P45, 

containing the TPS02 start codon and a BamHI site. The PCR product was inserted into the 

HindIII and BamHI cloning sites of the uidA (GUS) gene-containing binary vector pDW137 

(Blazquez et al., 1997) according to Chen et al. (2004). A 1.8 kb Col-0 TPS03 promoter-GUS 

fusion construct was obtained accordingly using primers P46 and P47. Transformation of the 

Ws TPS02 and Col-0 TPS03 promoter-fusion constructs into Ws and Col-0 plants, 

respectively, selection of transformed lines and GUS enzyme assays were conducted as 

described previously (Chen et al., 2003, 2004). At least four independent transformed lines 

were analyzed. For histochemical analysis of insect-induced GUS activity, P. xylostella 

larvae were allowed to feed for 24 h. Coronalon-induced GUS activity was determined after 

24 h of treatment.  
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2.5.12 Construction of Ws TPS02 and Col-0 TPS03-GFP Reporter Fusions and 

Subcellular Localization 

A 105 bp fragment encoding a 35 amino acid N-terminal peptide of Ws TPS02 was 

amplified by PCR with primers P48, carrying a NcoI site, and P49, which contains a SpeI site 

and cloned into pCR-TOPO4 (Invitrogen). The fragment was cut out of the vector with NcoI 

and SpeI and subsequently cloned downstream of a 35S-CaMV promoter in the vector 

pCAMBIA1302 (Hajdukiewicz et al., 1994) to generate a C-terminal fusion to mGFP5 

(Siemering et al., 1996). The same procedure was applied to clone a 150 bp fragment 

encoding a 50 amino acid N-terminal peptide of the Col TPS03 protein using primers P50 

and P51 for initial PCR amplification. Following confirmation of error free constructs by 

sequencing, constructs were transformed in A. tumefaciens, and Ws and Col-0 plants were 

transformed as described above. Transgenic plants were screened on agar plates for 

hygromycin resistance and genomic insertion of the corresponding fusion constructs was 

confirmed by genomic PCR. Two-week-old plantlets of at least four independent lines were 

used for observation by confocal laser scanning microscopy using a LSM 510 microscope 

(Carl Zeiss, Jena, Germany) equipped with a HeNe laser. Tissue autofluorescence was 

excited at 458 nm and GFP fluorescence at 488 nm, respectively. Band pass was set to 500-

550 nm and long pass was set to 560 nm. Bright field images were acquired with the 

differential interference contrast channel. Images were processed from optical sections taken 

along the optical axis and projected into one image using the Zeiss LSM Image Browser 

3.2.0.  

 

2.5.13 Phylogenetic Analysis 

 Amino acid sequence alignment of plant TPS proteins was produced with ClustalW 

(Lasergene 8) and exported as a Nexus file. Phylogenetic analysis of the data set was 

conducted using maximum parsimony in PAUP* (D.L. Swofford, 2002, Florida State 

University). Maximum Parsimony analyses were conducted using heuristic tree searches with 

tree bisection-reconnection (TBR) branch-swapping and 1000 random addition sequence 

replicates. Support for the clades was obtained by performing bootstrap (BS) (Felsenstein, 
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1985) searches with 1000 replicates and 10 random sequence replicates. Trees were compiled 

using TreeGraph2 (Stover and Muller, 2010). 

 

2.5.14 Statistical Analysis 

Correlations of induced volatile emissions were determined with a Pearson 

correlation hypothesis test using the SAS program.   

 

2.5.15 Accession Numbers 

The deduced amino acid sequences of cited terpene synthase genes from 

gymnosperms and angiosperms can be found in the GenBank NCBI database with the 

following accession numbers: A. thaliana thaliana multi-product monoterpene synthase, 

( AtTPS24, At3g25810), NP_001031651; A. thaliana thaliana 1,8-cineole synthase, 

(AtTPS23&24, At3g25820& At3g25830), NP_189212; A. thaliana thaliana myrcene/(E)-β-

ocimene synthase, (AtTPS10, At2g24210), NP_179998;  Malus domestica α-farnesene 

synthase, AAS01424; Pyrus communis α-farnesene synthase, ABC25002; Lotus japonicus 

(E)-β-ocimene synthase, AAT86042; Cucumis sativus (E,E)-α-farnesene synthase, 

AAU05951; Antirrhinum majus (E)-β-ocimene synthase, AAO42614; Pinus taeda α-

farnesene synthase, AAO61226; Picea abies (E,E)-α-farnesene synthase, AAS47697; 

Actinidia deliciosa (E,E)-α-farnesene/(E)-β-ocimene synthase, ACO40485. 
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2.6 Supplemental Material 

Supplemental Table SI. Pearson correlation coefficients determined for emission of the four main 
volatile compounds induced in leaves of 27 A. thaliana accessions (Table 2.2.) in response to treatment 
with coronalon. The correlation hypothesis test rejected the null hypothesis of no linear relation between 
(E)-β-ocimene and (E,E)-α-farnesene as well as between (E,E)-α-farnesene and MeSA and TMTT and 
MeSA. 

Pearson Correlation Coefficients, N = 81 
Prob > |r| under H0: Rho=0 

Compound MeSA (E)-β-Ocimene (E,E)-α-Farnesene TMTT 
MeSA 1.0 0.09 

p=0.42 
0.33 
p=0.002

0.58 
p <0.0001

(E)-β-Ocimene 0.09 
p=0.42 

1.0 0.71 
p<0.0001

0.22 
p=0.05 

(E,E)-α-Farnesene 0.33 
p=0.002 

0.71 
p<0.0001 

1.0 0.21 
p=0.05 

TMTT 0.58 
p <0.0001 

0.22 
p=0.05 

0.21 
p=0.05 

1.0 

 

Supplemental Table SII. Primer sequences 
Primer Sequence (5' to 3') Primer Sequence (5' to 3') 
P1 GAAAACGTCAAAAGCATCTGC P37 TCGACTCCTCTATGAATAGCC 

P2 TAAGCCACCAAAGTGTTTGTG P38 CACCATGCGCCGTTCCGCCAATT 

P3 CTACAAATTGCCTTTTCTTATCGAC P39 TCTTCAATCCCGTTCCGTTA 

P4 GAGCAAGACGGGATTAAC P40 CACCATGGGATCATCAATATCTC 

P5 GTCGCCTCTCGCTAATTC P41 TCCTCTCGCTCGAGAATATATATGTGAAAGAAGTTG 

P6 TGGTTCACGTAGTGGGCCATCG P42 CACCATGCCTAAACGACAG 

P7 AAGCCCAGAAAAGACCAAGACC P43 ATTGAGTGGAAGAGGGTGG 

P8 CGCCGTTGAGCCTGTCGTTTAG P44 ATATTAAGCTTAGTAAGAGTTGACAACTCTGAG 

P9 CACCCAGTACTCTTCAATCCCGTTCC P45 ATATTGGATCCATATATTTGTAAAGGTTAATGGAGC 

P10 GATCATTTTTCCGGCAAACCAAATACC P46 ATATTAAGCTTTTTACATAATTAAAAGGTATTTGGTTTGC 

P11 ATAAGCCACCAAAGTGTTTGTG P47 ATATTGGATCCATTTCTTTGCGTTGCTAATGATTAC 

P12 CTATAACGGAACGGGATTGAAG P48 TAACCATGGCTGCTCATAATCTATGCTTC 

P13 CACCATGCCTAAACGACAGGC P49 TAACTAGTGGTCGAGGTCGTTTTGGAGACAGC 

P14 ATTGAGTGGAAGAGGGTGGACG P50 TAACCATGGCTAAACGACAGGCTCAACGGCG 

P15 ATGGCCACTCTCCTGC P51 TAACTAGTTTTCACATATGTATTACCGAGCG 

P16 TCAATCTAAAGGAATCGGATTG 

P17 ATGAAGATTAAGGTCGTGGCAC 

P18 GTTTTTATCCGAGTTTGAAGAGGC 

P19 ATGCCTAAACGACAGGCTCAAC 

P20 CGATGAGCTCTAGCTGTTC 

P21 CGAACAGCTAGAGCTCATCG 

P22 CCATGTTGCCTTAGGAGTCG 

P23 CGAAGCTTCATATCTCTCGACC 

P24 GCATCTCTAACGCATGTATAACC 
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P25 GGTTATACATGCGTTAGAGATGC 

P26 CTAGAGAGGGATTTGAGCTC 

P27 GGAGCAAGACGGGATTAAC 

P28 CTATGGTCGTGAATAGTTGGAGC 

P29 AACCTTAGACATTCTTGGCTC 

P30 GTGTCGCCTCTCGCTAATTCC 

P31 GGAATTAGCGAGAGGCGACAC 

P32 GGAAACCTTGATGTAGCCTACAAC 

P33 TTAATTGAGTGGAAGAGGGTGGAC 

P34 GGTGATGGCCACGGAAGC 

P35 CGTTGAGCCTGTCGTTTAGG 

P36 GCTCGTCCACCCTCTTCC 
 

 

Supplemental Figure S1.  

 

Supplemental Figure S1. Nucleotide sequence alignment of RT-PCR products of Col-0 TPS02 amplified from 
RNA isolated from coronalon-treated Col-0 leaves. PCR primers P11 and P12 were used for amplification (see 
Supplemental Table SII). Identical nucleotides are marked in black. Horizontal arrows indicate the 5’-UTR 
(solid) and the first and second exons (dashed). The start codon is marked by a box. The upper sequence is a 
splice variant lacking 153 bp of the first exon and the entire second exon (267 bp).  
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Supplemental Figure S2. 

 

Supplemental Figure S2.  RT-PCR analysis of partial transcripts of the TPS03 gene in coronalon-treated leaves 
of accession Ws. Results are shown for mRNA isolated from leaves of two different plants. Seven primer pairs 
(P19 to P32, see Supplemental Table SII) designed to amplify overlapping regions spanning the entire TPS03 
coding sequence were applied (upper row). Amplicons were only found for primer pairs P19/20 and P21/22. 
Transcript analysis of Actin 8 was used as a control. The validity of all primer pairs was tested by PCR using 
genomic DNA of two separate plants (lower row). Low intensity bands represent unspecific PCR products.  
 
Supplemental Figure S3.  

 

Supplemental Figure S3. Expression of TPS02 and volatile emission in detached leaves of Ws wild type plants 
and two TPS02 RNAi lines treated with the fungal elicitor alamethicin (ala). Alamethicin was used as an 
alternative elicitor because of limited availability of synthetic coronalon. A, RT-PCR analysis of transcript 
levels of TPS02. Transcripts of Actin 8 were analyzed as a control. Trace levels of TPS02 transcript were found 
in leaves of TPS02 RNAi line #1 (arrow), while no TPS02 transcripts were detected in TPS02 RNAi line #2. No 
transcripts were found for TPS03 and TPS10 in wild type and transgenic plants. C, Emission of MeSA, TMTT, 
(E,E)-α-farnesene, and (E)-β-ocimene monitored between 21 and 30 h of alamethicin treatment of Ws wild type 
and TPS02 RNAi plants. Normalized peak areas are shown for each compound as analyzed by GC-MS (see 
“Materials and Methods”). MeSA is the predominant compound induced by alamethicin. Small amounts of (E)-
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β-ocimene were emitted from TPS02 RNAi line #1 in agreement with the “knock-down” of TPS02 expression in 
this line. Results represent mean values ± SE (n = 3). None of the volatiles was detected in mock controls. 
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This manuscript demonstrated the novel anti-microbial function of (E)-β-caryophyllene, an 
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3.1 Abstract 

The sesquiterpene (E)-β-caryophyllene is one of the most common volatile 

compounds emitted from flowers and the major volatile produced by Arabidopsis thaliana 

flowers where it is released from the stigma. We investigated the role of (E)-β-caryophyllene 

in defense against pathogens since flowers have a high risk of pathogen attack due to the 

presence of nutritive tissues, elevated moisture content, and a high frequency of insect 

visitors. Plant lines lacking a functional (E)-β-caryophyllene synthase and constitutively 

over-expressing this gene were challenged with the native A. thaliana bacterial pathogen, 

Pseudomonas syringae pv. tomato DC3000. Lines lacking (E)-β-caryophyllene emission 

suffered more bacterial infection on their stigmas and the seeds produced were lighter and 

often misshapen. On the other hand, lines with ectopic (E)-β-caryophyllene emission from 

vegetative parts had increased resistance to pathogen infection in leaves, reduced cell damage 

and higher seed production when infected. Based on in vitro experiments, (E)-β-

caryophyllene seems to act by direct inhibition of bacterial growth, rather than by triggering 

the salicylate or jasmonate signaling pathways. (E)-β-Caryophyllene appears to serve as a 

defense against floral pathogens, but like other floral volatiles may have multiple roles in 

defense and pollinator attraction.  
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3.2 Introduction 

Plants synthesize and release a large variety of volatile organic compounds (VOC) 

into their environment (Pichersky and Gershenzon, 2002). Volatiles are emitted from all 

organs, but floral volatiles have long been a chief focus of research because of their pleasant 

smells and important role in plant reproduction (Dudareva et al., 2006). The primary function 

of floral volatiles is usually assumed to be the attraction and orientation of pollinators 

(Knudsen et al., 2006). However, these substances are being increasingly implicated in floral 

defense as well. Floral rewards, both pollen and nectar, are attractive to many organisms 

besides pollinators, and non-pollinators may feed on other floral tissue as well as disturbing 

legitimate pollinators (McCall and Irwin, 2006; Junker and Bluethgen, 2010). Floral volatiles 

have been shown to defend flowers against feeding by ants, beetles and other insects (Junker 

and Bluethgen, 2008; Willmer et al., 2009). 

The largest group of floral volatiles is the terpenes, which include both monoterpenes 

(C10) and sesquiterpenes (C15) (Knudsen et al., 2006). One of the most widespread 

sesquiterpene floral volatiles is (E)-β-caryophyllene which occurs in floral blends in more 

than 50% of angiosperm families, and is one of twelve most common volatile compounds in 

floral scents (Knudsen et al., 2006). For instance, the volatiles of mature carnation (Dianthus 

caryophyllus) flowers contain 23% (E)-β-caryophyllene (Lavy et al., 2002), while Nicotiana 

sylvestris volatiles include 35% caryophyllene (Loughrin et al., 1990). (E)-β-Caryophyllene 

accounts for over 40% of the total volatiles emitted from Arabidopsis thaliana flowers (Chen 

et al., 2003), where this compound is almost released exclusively from the stigma (Chen et 

al., 2003; Tholl et al., 2005).  

Curiously, (E)-β-caryophyllene has not yet been directly demonstrated to serve in 

pollinator attraction, but has been reported to act in defense against herbivores when it occurs 

in non-floral tissues. For example, this compound decreases the growth and survival of 

insects feeding on cotton and Hymenaea (Langenheim, 1994), and also serves as an indirect 

defense in maize, attracting parasitic wasps to oviposit on lepidopteran larvae feeding on 

leaves (Koellner et al., 2008), and attracting nematodes to attack coleopteran larvae feeding 

on maize roots (Rasmann et al., 2005). Given the antimicrobial activity of (E)-β-

caryophyllene, it may also act in defense against pathogens (Cowan, 1999). A previous study 
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showed that caryophyllene-rich rhizome oil from Zingiber nimmonii had significant 

inhibitory activity against the bacteria Bacillus subtilis and Pseudomonas aeruginosa 

(Sabulal et al., 2006). However, no study has yet been conducted to investigate whether (E)-

β-caryophyllene benefits plant reproductive organs by its antimicrobial role.  

Plant reproductive organs, as well as vegetative organs are continuously exposed to 

various microorganisms. Daily arrivals of insect-carried bacterial pathogens are common, 

and airborne pathogens are carried by raindrops or by the wind as aerosols (Hirano and 

Upper, 2000). Compared to leaves, flowers are richer in nutrients and moisture and therefore 

carry higher densities of microorganisms. Bacterial populations can reach up to 1010 CFU g-1 

on stigmas, and about 4 log units more than those on leaf surfaces (Johnson & Stockwell, 

1998; Stockwell, 2005). Thus, volatiles with antimicrobial activity such as (E)-β-

caryophyllene that are emitted from floral tissues might be expected to have a function in 

pathogen resistance.   

Here we studied the antimicrobial role of (E)-β-caryophyllene in Arabidopsis thaliana 

where it is a major floral volatile (Chen et al., 2003; Tholl et al., 2005). A. thaliana like other 

Brassicaceae plants has dry-type stigmas with approximately 150 finger-like papillar cells 

(Heslop-Harrison and Shivanna, 1977; Tung et al., 2005). During pollen adhesion, hydration 

and germination on stigmas, the superficial pellicle consisting of exudates and a 

proteinaceous matrix provides an excellent humid and nutritive environment for microbial 

pathogens (Ngugi and Scherm, 2006).  As a pathogen, we chose Pseudomonas syringae pv. 

tomato DC3000 (Pst DC3000), a natural bacterial pathogen of Arabidopsis thaliana (Whalen 

et al., 1991; Alfano and Collmer, 1996; Jakob et al., 2002). This species causes disease 

symptoms like necrotic lesions with chlorotic halos on leaves, but seldom on flowers. In this 

contribution, we demonstrate the role of volatile (E)-β-caryophyllene in bacterial pathogen 

resistance in A. thaliana flowers using lines knocked-out in emission or over-producing this 

sesquiterpene. Our work suggests that, among the mixture of floral volatiles, (E)-β-

caryophyllene volatiles serve as an antimicrobial substance to protect flowers directly. The 

study provides support for the idea that floral volatiles, such as sesquiterpenes, help defends 

flowers against microorganisms in addition to or instead of attracting pollinators. 
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3.3 Results 

 

3.3.1 A. thaliana mutant lines that lack (E)-β-caryophyllene emission suffer more 

bacterial growth on their stigmas  

In A. thaliana, (E)-β-caryophyllene is produced by terpene synthase 21 (TPS21), 

which cyclizes the C15 isoprenoid pathway intermediate, farnesyl diphosphate, to the 

sesquiterpene (E)-β-caryophyllene with a small amount of α-humulene (Chen et al., 2003). 

TPS21 is almost exclusively expressed in the stigma, especially in mature, open flowers 

(Tholl et al., 2005). To determine the possible antimicrobial activity of (E)-β-caryophyllene, 

loss-of-function plants without any (E)-β-caryophyllene emission from stigmas were used. 

We inoculated two independent TPS21 loss-of-function lines (tps21) with GFP-labeled 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) under high humidity. After 

inoculation, petals, sepals, and anthers displayed wilting symptoms and stigmas/styles 

became slightly yellowish. Bacterial growth on stigmas was observed by confocal laser 

scanning microscopy (Fig. 3.1). Bacterial abundance correlated with the intensity of GFP 

fluoresecence. Forty eight hours post inoculation, stigmas of both tps21 lines carried more 

GFP-labeled cells than those of wild type plants (Fig. 3.1) Serial scanning of stigmas at 

different depths (using the z-stack technique) confirmed this impression. Less bacterial 

fluorescence appeared at sites located deeper in the tissue indicating that bacteria were 

mostly present on the surface of the stigma. However, some areas of strong bacterial 

accumulation were also observed in the center of the stigmatic tissue of the tps21-1 line (Fig. 

3.1, B, B1-4). 
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Figure 3.1. Comparison of P. syringae pv. tomato DC3000 (Pst DC3000) growth on stigmas of (E)-β-
caryophyllene emitting Arabidopsis wild-type plants (A) and non emitting tps21-1 and tps21-2 mutants (B and 
C) using confocal laser scanning microscopy. Images were taken 48 h post inoculation. Chlorophyll 
autofluorescence appears in red; GFP fluorescence from GFP-labeled Pst DC3000 appears in green. Numbered 
images are from serial scanning at various depths within the sample: 6.0 µM (1); 11.1 µM (2); 16.1 µM (3); 
21.1 µM (4). A, B and C are merged z-stack images. The sketch below indicates the approximate position of 
each image on a longitudinal section of the stigma. The images shown are representative for at least three 
independent replicates. Scale bars: 20 µM.  

 

3.3.2 Non-(E)-β-caryophyllene-emitting lines have lower seed weight after stigmatic 

bacterial infection 

To determine if loss of (E)-β-caryophyllene emission from the stigma would affect 

future seed development, wild type and loss-of-function mutants were infected with Pst 

DC3000 and their seed weight and appearance monitored.  Infection of inflorescences 

dramatically reduced seed production of both wild type and loss-of-function lines (data not 

shown). Comparing the weight of 100 randomly-chosen seeds of each plant revealed a 

similar average seed weight of uninoculated wild type and mutant plants. However, after 
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Figure 3.4. Effect of (E)-β-caryophyllene emission on growth of Pst DC3000. Bacterial population size was 
measured in leaves of transgenic plants with constitutive expression of (E)-β-caryophyllene synthase (TPS21-1, 
TPS21-2) in comparison to wild-type controls at day1, 2 and 3 post-inoculation. Results represent mean values 
± SE (n = 3). Different letters represent significant differences (P < 0.0001 according to ANOVA with a Tukey 
post-hoc test).  
 

The extent of bacterial damage to the plant was estimated by cell death staining 

performed on day 3 after inoculation. In this semi-quantitative approach, leaves of (E)-β-

caryophyllene emitting lines showed fewer damaged cells than wild type (Fig. 3.5). These 

results are consistent with the differences in bacterial population size and support the premise 

that (E)-β-caryophyllene may increase resistance to invasion of a phyllosphere pathogen.  
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Figure 3.5. Effect of (E)-β-caryophyllene emission on Arabidopsis resistance to infection by Pst DC3000. Cell 
death was measured using lactophenol-trypan blue staining. Comparisons were made among wild type Col-0 (A) 
and transgenic plants over-expressing (E)-β-caryophyllene synthase (TPS21-1, TPS21-2) (B, C) at day 3 after 
inoculation. Three representative images are shown from at least three independent replicates of each plant line. 
Dark stained areas indicate dead cells. 

 

The benefit of (E)-β-caryophyllene emission to plant defense may be canceled out if 

terpene emission represents a significant loss of energy and fixed carbon (Vickers et al., 

2009). To determine the net value of (E)-β-caryophyllene production to the plant, we 

compared the reproductive fitness of over-expressing and wild-type lines with and without 

Pst DC3000 infection using seed production as a measure. In the absence of the pathogen, 

transgenic plants produced a similar amount of seeds compared to wild types (Fig. 3.6). 

However, when leaves were inoculated with Pst DC3000, transgenic plants produced 

significantly more seeds than wild type. The seed output of wild-type plants was not affected 

by Pst DC3000 infection. By contrast, TPS21-expression lines showed greater seed 

production after leaf infection in comparison to wild type. 
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Figure 3.6. Effects of (E)-β-caryophyllene emission on seed production of Arabidopsis wild type plants and 
TPS21-expression lines 5 weeks post inoculation with Pst DC3000. Results are average values ± SE (n = 4). 
Different letters represent significant differences (P < 0.0069 according to ANOVA with an LSD test).  
 

3.3.4 (E)-β-Caryophyllene inhibits bacterial growth in vitro 

To gain a better understanding of how (E)-β-caryophyllene might act to increase plant 

resistance to Pst DC3000, a direct in vitro assay was performed to test the activity of the 

sesquiterpene against this pathogen. In a previous study, (E)-β-caryophyllene dissolved in 

DMF (N,N-dimethylformamide) showed moderate antimicrobial activity to 

Propionibacterium acnes and weak activity to Streptococcus mutans (Kubo et al., 1992). 

Thus we explored the use of organic solvents such as DMF and DMSO (dimethyl sulfoxide) 

to deliver the highly lipophilic (E)-β-caryophyllene into aqueous solution, but found DMSO 

to show unexpected enhancing effects on Pst DC3000 in vitro growth (data not shown). As 

another approach, we calculated the solubility of authentic (E)-β-caryophyllene in water and 

in King’s B liquid medium, since isoprene and other terpene hydrocarbons dissolve slightly 

in water (Milne et al., 1995; Fichan et al., 1999). We estimated that up to 7×10-4 mmol and 

2×10-4 mmol of (E)-β-caryophyllene could dissolve in 1L water and King’s B liquid medium, 

respectively. We tested (E)-β-caryophyllene at a concentration of 1×10-5 mmol L-1 and 2×10-

5 mmol L-1 in King’s B liquid medium containing Pst DC3000. At these concentrations, the 

sesquiterpene significantly inhibited Pst DC3000 growth in a dose-dependent manner (Fig. 

3.7). A concentration of 1×10-5 mmol L-1 (E)-β-caryophyllene led to 28% reduction of 
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bacterial growth, and 2×10-5 mmol L-1 inhibited Pst DC3000 growth by 74%. Thus (E)-β-

caryophyllene had antibacterial activity in vitro.  

 
Figure 3.7. Inhibitory effect of (E)-β-caryophyllene on Pst DC3000 growth in liquid medium. (E)-β-
Caryophyllene was applied at two different concentrations (1, 1x10-5 mmol L-1; 2, 2x10-5 mmol L-1). Results are 
average values ± SE (n = 3). Different letters indicate significant differences among treatments (P < 0.0001 
according to ANOVA with a Tukey test).  
 

3.3.5 The defensive function of (E)-β-caryophyllene against Pst DC3000 is independent 

of JA or SA signaling 

An alternative to the direct action of (E)-β-caryophyllene on Pst DC3000 is that this 

sesquiterpene instead triggers a signaling pathway leading to increased pathogen defense. 

Both salicylic acid (SA) and jasmonic acid (JA) signaling pathways play important roles in 

plant resistance against pathogens (Truman et al., 2007). To assess whether these signaling 

cascades are activated by (E)-β-caryophyllene, the expression levels of two genes, PR1 

(pathogenesis-related gene 1) associated with SA signaling and LOX2 (lipoxygenase 2) 

associated with JA signaling (Beckers and Spoel, 2006) were determined by quantitative RT-

PCR on wild-type A. thaliana and transgenic plants with (E)-β-caryophyllene emission.  

Pst DC3000 inoculation induced PR1 expression in all plant lines, but the expression 

levels in both two transgenic lines showed no consistent difference from the wild type (Fig. 

3.8). One of the transgenic lines, TPS21-2, showed a slower induction of the PR1 gene, while 

the other line, TPS21-1, exhibited no significant difference from wild-type expression during 

the entire period.  
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The induction of LOX2 transcript also increased after Pst DC3000 inoculation but on 

a much smaller scale than PR1 (Fig. 3.9). However, no statistically significant difference 

between transgenic plants and wild-type expression was observed. Taken together, these 

transcript results indicate the activation of SA and JA signaling pathways after pathogen 

challenge in both transgenic and wild-type plants, but no consistent differences between (E)-

β-caryophyllene-emitting and wild-type lines were noted. If (E)-β-caryophyllene expression 

triggered resistance against Pst DC3000 by signaling via the SA or JA pathways, induction 

of PR1 and LOX2 would be expected to be higher and/or sooner in the transgenic lines 

compared to the wild type. This was not the case. In fact, there was even a trend (not 

statistically significant) to lower expression in transgenic plants (Figs. 3.8, 3.9). We conclude 

that activation of JA or SA pathway are not the mechanism by which (E)-β-caryophyllene 

emission causes less pathogen growth, less leaf damage and more seed production. 

 
Figure 3.8. Comparison of PR1 gene expression in Col-0 wild-type and (E)-β-caryophyllene synthase over-
expression lines (TPS21-1, TPS21-2) after Pst DC3000 infection. Transcript levels of PR1 in leaves before and 
1, 2 and 3 days after inoculation were quantified by qRT-PCR. Bars represent the means ± SE (n = 3). Different 
letters indicate significant differences (P < 0.0001 according to ANOVA with Tukey post hoc tests).  
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Figure 3.9. Comparison of LOX2 gene expression in Col-0 wild-type and (E)-β-caryophyllene synthase over-
expression lines (TPS21-1, TPS21-2) after Pst DC3000 infection. Transcript levels of LOX2 in leaves before 
and 1, 2 and 3 days after inoculation were quantified by RT-PCR. Bars represent the means ± SE (n = 3). 
Different letters indicate significant differences (P < 0.0001 according to ANOVA with Tukey post hoc tests). 

 

3.4 Discussion 

 

3.4.1 (E)-β-Caryophyllene increases the resistance of A. thaliana flowers to bacterial 

pathogens 

The sesquiterpene (E)-β-caryophyllene is the major volatile compound emitted by 

Arabidopsis thaliana flowers. In this investigation, we demonstrated that mutants lacking 

(E)-β-caryophyllene emission suffered greater infection on their stigmas by the natural 

bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 (Fig. 3.1) and had reduced 

seed output (Fig. 3.2). On the other hand, constitutive expression of (E)-β-caryophyllene 

emission throughout the plant reduced pathogen infection (Fig. 3.4), decreased cell death due 

to the pathogen (Fig. 3.5) and led to increased seed production (Fig. 3.6). Thus (E)-β-

caryophyllene released from flowers helps defend against bacterial pathogens.  

Flowers may have a higher risk of pathogen attack than other plant tissues because of 

their high nutrient content (due to the presence of pollen and nectar) and elevated moisture 

level (Morris et al., 2008). Stigmas may be especially vulnerable due to their humid, nutritive 

environment (Ngugi and Scherm, 2006) which is designed to facilitate the germination and 

growth of pollen grains, but may be equally conducive to the growth of pathogens. Bacterial 
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pathogens are capable of causing severe disease to reproductive parts. For instance, Erwinia 

amylovora is the causative agent of severe fire blight disease on apple and pear flowers (van 

der Zwet and Keil, 1979).  

The population of floral pathogens depends not only on the local environment in the 

flower, but also on the availability of agents, such as water drops, aerosols or insects, to 

transfer pathogens. Bacterial pathogens including P. syringae are frequently vectored 

between plant tissues by insects in a process independent of either insect species or bacteria 

species (Hirano and Upper, 2000). For example, Erwinia amylovora can be transported by 

various insects (Emmett and Baker, 1971). Since flowers are a beacon for insect visitors, they 

may have especially high pathogen loads.  

The optimal defense theory hypothesizes that allocation to plant defense among 

different plant parts is based on the value of those parts to plant fitness as well as the risk of 

attack. Since flowers obviously make a high contribution to plant fitness, it is not surprising 

that they contain high amounts of defense compounds (McKey, 1974; Zangerl and Rutledge, 

1996). As we have seen, flowers also face high risks of pathogen attack. Hence it is 

reasonable that they possess effective anti-pathogen defenses that are present constitutively 

without the time delay needed for the production of inducible defenses. (E)-β-Caryophyllene 

emission in A. thaliana is not only constitutive, but is also confined to the flowers; this 

sesquiterpene is not released at all from the vegetative organs (Chen et al., 2003; Tholl et al., 

2005).  

 

3.4.2 (E)-β-Caryophyllene acts directly to inhibit bacterial growth 

To gain insight into the mode of action of (E)-β-caryophyllene against Pst DC3000, 

we tested whether this compound had any direct action against the pathogen or instead 

triggered one of the known anti-pathogen signaling cascades. (E)-β-Caryophyllene did not 

appear to induce the SA or JA signaling pathways (Figs. 3.8, 3.9), but did in fact act directly 

against Pst DC3000 when added to the culture medium (Fig. 3.7). It is difficult to compare 

the concentration used in our tests with the amount of volatiles a pathogen would experience 

on the plant surface. The concentration of (E)-β-caryophyllene tested in culture (1- 2 × 10-5 

mmol L-1, that is 2000- 4000 ng L-1 or 2- 4 ng gFW-1 of culture) is very similar to the amount 

of (E)-β-caryophyllene produced in the (E)-β-caryophyllene synthase over-expression lines 
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(2.4- 4.7 ng gFW-1 h-1) on an hourly basis. However, the amount released by flowers (28.2 

ng gFW-1 h-1) on an hourly basis is higher, suggesting that (E)-β-caryophyllene is very likely 

to have a direct defensive role in nature.  

(E)-β-Caryophyllene has been previously shown to have activity against a wide range 

of bacteria, including species of Bacillus, Pseudomonas and Streptococcus (Kubo et al., 1992; 

Sabulal et al., 2006; Delamare et al., 2007; Amor et al., 2008; Kim et al., 2008). Terpenes are 

generally recognized as antimicrobial metabolites (Cowan, 1999), and the mechanism of 

action of (E)-β-caryophyllene on a bacterium like Pst DC3000 might be similar to that of 

other terpenes on microorganisms. It has long been suggested that lipophilic compounds like 

terpenes act to disrupt membranes leading to ion leakage, membrane potential reduction, 

proton pump dysfunction and ATP pool depletion (Bakkali et al., 2008). But, recently it has 

been reported that terpenes like citral, a mixture of the monoterpenes geranial and neral, can 

disrupt cell microtubules (Chaimovitsh et al., 2010). Moreover, the monoterpenes carveol 

and carvone effectively disperse bacterial cells from aggregation in liquids by decreasing the 

percentage of fatty acids of bacteria cell membranes (de Carvalho and de Fonseca, 2007).  

The mode of action of (E)-β-caryophyllene might also be influenced by its rapid 

chemical reaction with certain oxygen species. The atmospheric lifetime of (E)-β-

caryophyllene with hydroxyl radicals (42min), O3 (2min) and NO3 (3min) is very short 

(Atkinson and Arey, 2003). The oxidation products of (E)-β-caryophyllene are found to 

reside almost 100% into the aerosol phase (Hoffmann et al., 1997) and are much stabler than 

non-oxidized (E)-β-caryophyllene (Howard et al., 1989). The rapid reactivity of (E)-β-

caryophyllene in the atmosphere should not affect pathogen growth on the plant surface. But, 

it is possible that this reactivity creates new products that are themselves active antimicrobial 

agents. A recent study with photooxidized (E)-β-caryophyllene shows that oxidation products 

have strongly enhanced activity against Vibrio parahaemolyticus and Streptococcus aureus 

compared to the parent compound (Sabulal et al., 2006; Delamare et al., 2007; Amor et al., 

2008; Kim et al., 2008). This could mean that oxidized (E)-β-caryophyllene exerts its effect 

after deposition back on A. thaliana stigmas, as hypothesized for reactive sesquiterpenes 

emitted from leaves (Himanen et al., 2010). Whether active as parent compound or oxidized 

product, the activity of (E)-β-caryophyllene may be enhanced by synergistic interactions 



Anti‐microbial role of caryophyllene                                                                             3. Chapter II 
 

73 
 

(Kubo et al., 1992) with other components of the complex blend of volatiles emitted from A. 

thaliana flowers. 

 

3.4.3 (E)-β-Caryophyllene may serve in floral attraction as well as defense 

Serving as an inhibitor of pathogen growth in A. thaliana flowers does not exclude 

(E)-β-caryophyllene from also acting as a pollinator attractant. A. thaliana flowers are 

thought to be mostly self-pollinated under natural conditions, but cross-pollination occurs 

with a low frequency as a result of insect visitors, such as flies, beetles or solitary bees (Chen 

et al., 2003) (Hoffmann et al., 2003). These insects may be attracted to floral volatiles, such 

as sesquiterpenes. In previous work, higher emission of (E)-β-caryophyllene from flowers of 

Cucurbita pepo ssp. texana resulted in more visitation from beetles (Ferrari et al., 2006). (E)-

β-Caryophyllene has also been shown to serve as an attractant for other types of insects, such 

as herbivore enemies (De Moraes et al., 1998; Rasmann et al., 2005; Koellner et al., 2008). 

Some insects may have an inherent attraction for this compound since it serves as an 

aggregation pheromone for the multi-colored Asian lady beetle (Harmonia axyridis) (Brown 

et al., 2006; Verheggen et al., 2007) and a sex pheromone for the European grape berry moth 

(Eupoecilia ambiguella) (Schmidt-Busser et al., 2009). 

(E)-β-Caryophyllene is also a deterrent as we have demonstrated for a plant bacterial 

pathogen in this study. In fact, this compound is even used by microorganisms themselves in 

their own defense. For example, Serratia spp. use (E)-β-caryophyllene to inhibit Rhizoctonia 

solani, a plant pathogen (Kai et al., 2007). Volatile (E)-β-caryophyllene is also reported to be 

a long distance antagonistic agent of one strain of Fusarium oxysporum against another 

(Minerdi et al., 2009). This deterrence extends to insects as well. When volatilized from the 

foliage of certain tree species, (E)-β-caryophyllene repels leaf-cutting ants and termites 

(Hubbell et al., 1983; Messer et al., 1990). This sesquiterpene also has the potential to deter 

unwanted floral visitors, as it repelled the ant Lasius fuliginosus in olfactometer tests (Junker 

and Bluethgen, 2008). 

Given the reported activities of (E)-β-caryophyllene, it could well serve in A. thaliana 

flowers as both an attractant and a deterrent depending on the context. Other floral volatiles 

also seem to have dual attractive and repellent roles. For example, cones of the cycad 

Macrozamia lucida attract thrips (Cycadothrips) in one phase of flowering when the 
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monoterpenes (E)-β-ocimene, (Z)-β-ocimene and low concentrations of myrcene are present. 

But, in a later phase of flowering, high concentrations of myrcene emitted by the 

thermophilic cones repel the thrips and cause them to transfer pollen to another cycad (Terry 

et al., 2007).  

A dual role of floral volatiles may reflect their evolutionary origin. It has been 

theorized that volatiles were first emitted from flowers as herbivore feeding deterrents and 

only later came to be attractive to pollinators who began to associate the scent with a reward 

(Pellmyr and Thien, 1986; Terry et al., 2007). To this scenario, we can now add that volatiles 

may have also functioned originally as pathogen defenses and still do today. Since the advent 

of pathogenic microorganisms in evolutionary history long predates the rise of flowering 

plants, flowers have likely had to adapt to these invaders from a very early point in their 

history. 

 

3.5 Materials and Methods 

 

3.5.1 Plant materials, growth conditions  

Seeds of Arabidopsis thaliana ecotype Col-0 (CS 6000) were obtained from ABRC 

(Arabidopsis Biological Resource Center, OH, USA). Seeds of At5g23960 (TPS21) T-DNA 

insertion mutant lines (tps21) SALK_133613 (N636913) and SALK_138212 (N638212) 

(Alonso et al., 2003) were from the NASC stock center (Nottingham Arabidopsis Stock 

Centre). For experiments with vegetative stage plants, wild type and transgenic lines were 

grown on soil (Sunshine Growing Mix No.1 : sand, 8:1) for 5 to 6 weeks under controlled 

growth conditions (10 h-light/14 h-dark photoperiod with 150 μmol.m-2.s-1 PAR, 23 °C, 55% 

relative humidity). At the end of this period, plants were still in the rosette stage and had not 

yet bolted. For experiments with flowering plants, wild type and mutant lines were cultivated 

on soil for up to 7 weeks under a 16 h-light/8 h-dark photoperiod. Kanamycin-resistant 

transgenic plants were selected on 1 × Murashige and Skoog (Duchefa, Haarlem, The 

Netherlands) plates with 1% sucrose and 100 µg mL-1 kanamycin prior to being transferred 

to soil. 
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3.5.2 Reagents 

All reagents or solvents were obtained from Fisher Scientific, Sigma-Aldrich, 

Invitrogen or Fluka, unless otherwise stated. 

 

3.5.3 Bacterial cultures and plant treatments 

Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and a GFP-labeled 

Pseudomonas syringae pv. tomato DC3000 strain were obtained from Boris A. Vinatzer, 

Virginia Tech, Blacksburg, VA. Bacteria strains were cultivated on King’s B solid medium 

with 15 µg mL-1 tetracycline or 50 µg mL-1 kanamycin at 28 °C for 24 h (Katagiri et al., 

2002). One day prior to inoculations, plants were sprayed with distilled water and placed in 

separated containers under controlled growth conditions with 100% relative humidity. 

Bacterial suspensions at OD600 0.01 (leaves, 1 × 106 CFU mL-1) or 0.1 (flowers, 5 × 107 CFU 

mL-1)in 10 mM MgCl2 with 0.025% Silwet L-77 (Vac-In-Stuff, Lehle Seeds, Round Rock, 

TX, USA) were applied on surfaces of leaves or flowers as a fine mist until the suspension 

ran off. Control plants were sprayed with 10 mM MgCl2 solution containing 0.025% Silwet 

L-77. After spraying, plants were returned to their containers, placed under controlled growth 

conditions, and leaf infection symptoms were quantified at 1 day to 3 days post-inoculation. 

The effects of infection on flowers were quantified by measuring seed production. To 

visualize the population of bacteria on stigmas, inflorescences of wild type and tps21 lines 

were cut off and placed in 5 ml glass beakers filled with tap water. The flowers were 

inoculated by applying drops of GFP-labeled Pst DC3000 at OD600 0.1 with 0.025% silwet 

L-77 on top of stigmas of newly opened flowers. The beakers with flowers were then placed 

separately into covered 400 ml beakers to maintain high humidity, and returned back to 

controlled growth conditions.  

 

3.5.4 Confocal microscopy of GFP-labeld Pst DC3000 

Bacterial growth on stigmas of Arabidopsis wild type Col-0 and tps21 mutants at 2 

days post-inoculation was analyzed by confocal laser scanning microscopy using a LSM 510 

microscope (Carl Zeiss, Jena, Germany). Cut stigmas were mounted in water on a micro slide 

(Corning Glass Works) with a microscope cover glass (#1.5, Fisher Scientific). Scans were 

performed by a Zeiss LSM 510 water-immersion C-Apochromat 40× / 1.2 W corr objective 
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lens. The GFP signal was obtained using the 488-nm argon laser line set at 11% and a 

BP505-550 emission filter. Autofluorescence of chlorophyll was visualized using an LP560 

emission filter. Confocal images with a resolution of 512 × 512 pixels were obtained from at 

least three independent plants of each line. Scanned images of z-stack sections of each 

sample were made at 6.0 µM, 11.1 µM, 16.1 µM and 21.1 µM. Images of all scanned z-stack 

images of a stigma were converted into a merged single image by the Zeiss LSM Image 

Browser 3.2.0. 

 

3.5.5 cDNA cloning of TPS21, vector construction and plant transformation 

The coding sequence of TPS21 (At5g23960, Col-0) was amplified by PCR using the 

forward primer P1 and the reverse primer P2 introducing the restriction sites BamHI (5’) and 

SacI (3’), respectively (Table 3.1). The PCR fragment was cloned into BamHI/SacI 

restriction sites of the binary vector pBIN420 under control of a CaMV 35S promoter. The 

resulting vector construct was transformed into Agrobacterium tumefaciens GV1301 and 

used to transform A. thaliana ecotype Col-0 by vacuum infiltration (Bechtold et al., 1993). 

Transformed seeds carrying the pBIN420 derived fragment were selected on agar plates for 

kanamycin resistance and confirmed by PCR. Selfing and selection was carried out for three 

more generations to obtain nonsegregating homozygous plants. 

 

3.5.6 Seed production measurements 

The rosette leaves of A. thaliana wild type Col-0 and TPS21 expressing transgenic 

plants were inoculated with Pst DC3000 as described and placed in separate containers with 

100% relative humidity for 7 days, prior to being returned to 55% relative humidity. Two 

weeks before the final stage of seed ripening, shoots of each plant were placed into a paper 

bag and plants was kept under controlled growth conditions without any further watering. To 

determine seed production from flowers of wild-type and tps21 mutants, flowers were 

inoculated with Pst DC3000 and plants were placed in separate containers with 100% 

relative humidity for 14 days before seeds were harvested into paper bags and dried under 

room temperature. In the experiment with tps21 mutants, it was difficult to clearly separate 

the seeds from other plant debris. Therefore, one hundred seeds of each plant were randomly 
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chosen and weighed. The total amount of seeds from each individual plant was collected 

from the bag and weighed to an accuracy of 0.01 g.  

 

3.5.7 In vivo quantification of bacterial growth  

Bacterial populations in leaves were analyzed by harvesting four leaf discs per plant 

at 1, 2 and 3 days post-inoculation, homogenizing the discs in 200 μl of 10 mM MgCl2 

solution and plating appropriate serial dilutions on King’s B medium plates with antibiotics 

for 2 days at 28 °C (Katagiri et al., 2002). Bacterial growth was calculated on the third day of 

tissue harvest by determining number of colony forming units (CFU) (Katagiri et al., 2002). 

Experiments were repeated at least three times with similar results. Each data point 

represents the average CFU from three biological replicates ± standard error of the mean. 

Data were analyzed by the statistical methods described below.  

 

3.5.8 Volatile Collection and GC-MS Analysis 

Volatile collection from intact rosette plants with their root balls wrapped in 

aluminum foil was performed in 3 L bell jars by using the closed-loop stripping method 

(Donath and Boland, 1995) under controlled growth conditions as described previously 

(Chen et al., 2003). Volatiles were collected in the light for 8 h on 1.5 mg activated charcoal 

and eluted with 40 µL of CH2Cl2 containing 80 ng of 1-bromodecane as an internal standard.  

The eluted samples (1 µL) were injected in a splitless mode into a GC-2010 gas 

chromatograph (Shimadzu, Japan) coupled with a QP2010S mass spectrometer (Shimadzu). 

Sample compounds were separated on an Rxi-XLB column (Restek, Bellefonte, PA, USA) of 

30 m × 0.25 mm i.d. × 0.25 μm film thickness. Helium was used as the carrier gas (1.4 mL 

min-1 flow rate), and a temperature gradient of 5 °C/min from 40 °C (hold for 2 min) to 220 °

C was applied.  

The identities of volatile compounds were confirmed by comparison of their retention 

times and mass spectra with those of authentic standards and with mass spectra in the 

National Institute of Standards and Technology and Wiley libraries. For absolute 

quantification of (E)-β-caryophyllene, the primary ion peaks of (E)-β-caryophyllene were 

integrated (total ion method) and the amounts were calculated in relation to the response of 

1-bromodecane.  Response curves for the quantified (E)-β-caryophyllene relative to the 
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internal standard were generated by injecting a mixture of equal amounts of authentic 

standards and internal standard.  

 

3.5.9 Quantitative RT-PCR analysis of gene expression 

The expression levels of (E)-β-caryophyllene synthase (TPS21, At5g23960), PR1 

(At2g14610) and LOX2 (At3g45140) in wild type Col-0 and transgenic plant leaves were 

measured by quantitative RT-PCR with Brilliant SYBR Green PCR Master Mix (Stratagene, 

USA). Total RNAs from treated and untreated leaves of wild type Col-0 and transgenic 

plants were extracted by the RNeasy Plant Mini Kit (Qiagen, USA), and DNA contamination 

was eliminated by DNase treatment for 15 min at room temperature (Qiagen, USA). The 

DNA-free total RNA was reverse transcribed into cDNA as previously described (Chen et 

al., 2003). A 1 mL aliquot of 50 times diluted cDNA was analyzed with 25 mL SYBR Green 

Master Mix (Stratagene, USA) in triplicate using primers P3 and P4, P5 and P6, and P7 and 

P8 for genes TPS21, PR1 and LOX2, respectively (Table 3.1). Fold change differences of 

TPS21, PR1 and LOX2 expression were calculated according to the efficiency corrected by 

Pfaffl’s method with APT1 (adenine phosphoribosyltransferase1, At1g27450) as the 

reference gene (Pfaffl, 2001). Each data point represents the mean of three independent 

biological replicates and three technical replicates.  

 
Table 3.1 Primer sequences 

Primer Sequence (5' to 3') 
P1 ATAGGATCCATGGGGAGTGAAGTCAACCG 
P2 ATAGAGCTCTCAAATGGGTATAGTTTCAATGT 
P3 AGTAACATACACAAGGCATAGGATAACAG 
P4 TCTCATCAGGAACAACGGGAAGC  
P5 TTCACAACCAGGCACGAGGAG 
P6 CCAGACAAGTCACCGCTACCC 
P7 GTTTCTGGAGGGCATAACTTGGTC 
P8 TGGTATTGGTTCTGAATCTTGATGGC 

 

3.5.10 Leaf cell death staining   

Leaf cell death symptoms after infection were observed by applying the lactophenol-

trypan blue staining method on day 3 post-inoculation as previously described. (Koch and 

Slusarenko, 1990).   
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3.5.11 In vitro antibacterial assay 

Antibacterial activity of (E)-β-caryophyllene against Pst DC3000 was tested by a 

modified broth dilution method according to Kubo et al. (1992) and Muroi and Kubo (1993). 

Pst DC3000 (pLARR3) (kindly provided by Christiane Gatz, University of Goettingen, 

Germany) was cultivated in King’s B liquid medium with 25 µg mL-1 rifampicin and 5 µg 

mL-1 tetracycline at 28 °C until an OD600 of 0.8. Cultures were supplemented with (E)-β-

caryophyllene at concentrations of 1x10-5 mmol L-1 and 2x10-5 mmol L-1 and incubated at 

220 rpm for another 24 h. Then, 100 µL aliquots were sampled and diluted by a 10-fold 

dilution series. One hundred microliter of each dilution were incubated on King’s B solid 

medium at 28 °C for 48 h and the colony forming units of each plate counted. (E)-β-

Caryophyllene concentrations were tested in three replicates with three aliquots sampled per 

replicate. Serial dilutions were performed with three technical replicates..   

 

3.5.12 Statistical analysis 

Statistical significance was determined according to ANOVA with Tukey or LSD 

post-hoc tests using SAS9.1 (SAS Institute Inc., Cary, NC, USA). 
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4. Chapter III. (E)-β-caryophyllene-induced molecular and physiological 

responses in Arabidopsis thaliana suggest a role in resistance to oxidative 
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4.1 Abstract 

Certain volatile hemiterpenes (C5) and monoterpenes (C10) have been shown to 

protect plants against high light, high temperature and oxidative stress. The potential of a 

common sesquiterpene (C15), (E)-β-caryophyllene, to protect plants in the same fashion was 

tested by using transgenic Arabidopsis thaliana over-expressing (E)-β-caryophyllene 

synthase. Physiological analyses showed reduced hydrogen peroxide contents in (E)-β-

caryophyllene-producing plants suggesting protection against oxidative stress. However the 

content of the important antioxidant ascorbate and total chlorophyll were not changed. 

Moreover, expression of genes encoding the ROS-scavenging enzymes, ascorbate peroxidase 

and catalase, were not significantly altered. To explore what other mechanisms might be 

responsible for (E)-β-caryophyllene-mediated oxidative stress protection, we examined 

transcriptome changes in plants with constitutive (E)-β-caryophyllene production. 

Microarray gene expression profiling suggested that over 154 transcrpits were significantly 

down-regulated upon induction of (E)-β-caryophyllene emission, among which was a high 

representation of transcription factors and other regulatory proteins. One significantly down-

regulated gene is an F-box family transcription factor.  
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4.2 Introduction 

Photosynthetic organisms may all experience photooxidative stress under certain 

environmental conditions. For example, under high light regimes, photooxidative stress 

results in the generation of reactive oxygen species (ROS) (Foyer et al., 1994). ROS 

production is caused from perturbed photosynthesis processes in which light harvesting and 

light energy consumption are out of balance. Excess light energy induces the generation of 

reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide radicals (O2
.-), 

hydrogen peroxide (H2O2), and hydroxyl radicals (OH.) (Niyogi, 1999). ROS are lethal at 

high concentration by damaging cellular proteins, nucleic acids, membrane lipids and other 

molecules, whereas sublethal levels of ROS may serve as signaling molecules in plant 

development and defense responses (Apel and Hirt, 2004; Foyer and Noctor, 2005).  
Excess ROS are detoxified by a variety of antioxidant mechanisms, including both 

enzymatic and non-enzymatic antioxidation processes (Apel and Hirt, 2004). Water soluble 

antioxidants, including ascorbate (Vitamin C) and gluthathione (GSH) serve as direct ROS 

reductants or cofactors for peroxidases (Niyogi, 1999; Apel and Hirt, 2004). Lipid soluble 

antioxidants such as carotenoids and tocopherols (Vitamin E) (Fryer, 1992; Munne-Bosch 

and Alegre, 2002) are crucial for cellular membrane protection because of their direct 

quenching or scavenging of ROS on membranes (Niyogi, 1999). Interestingly, most lipid 

antioxidants such as zeaxanthin (a xanthophyll-type carotenoid), tocopherols (Vitamin E), 

and carnosic acid (diterpene) (Munne-Bosch and Alegre, 2001) belong to the terpene family, 

but are non-volatile (DellaPenna and Pogson, 2006; Vickers et al., 2009).  

In addition to nonvolatile terpenes, some volatile terpenes have also been shown to 

protect photosynthesis under various abiotic stresses including oxidative stress (Loreto et al., 

2001; Behnke et al., 2010a). Fumigation with the C5 terpenoid, isoprene, leads to less 

cellular and photosynthetic damage and less ROS accumulation in ozone (an oxidative air 

pollutant, O3)-treated plants (Loreto et al., 2001). Fosmidomycin, an inhibitor of the DXR 

enzyme in the MEP pathway, inhibits isoprene emissions and makes plants more sensitive to 

ozone (Loreto and Velikova, 2001). Similarly, the antioxidant activities of monoterpenes 

(C10) have been demonstrated by inhibition and fumigation experiments (Loreto et al., 2004; 

Loreto and Fares, 2007). Taking advantage of transgenic plants emitting volatile terpenes, 

transgenic tobacco plants (Nicotiana tabacum) emitting isoprene constitutively by over-
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expressing an isoprene synthase gene were shown to be more resistant to ozone treatment 

than wild-type tobacco (Vickers et al., 2009).  

Despite many studies of the antioxidant properties of isoprene (C5) and monoterpenes 

(C10), the properties of sesquiterpenes (C15) have not yet been investigated in this regard. 

Sesquiterpenes have reactive conjugated or terminal double bonds which may mediate ROS 

scavenging (Vickers et al., 2009). However, whether plants benefit from this antioxidant 

activity, and how sesquiterpenes influence metabolism in general are still open questions. 

Here, we report an investigation of transgenic Arabidopsis thaliana that was engineered to 

over-express the widespread sesquiterpene, (E)-β-caryophyllene. Large-scale transcriptome 

analyses demonstrated that 154 genes were significantly down-regulated in leaves of the 

transgenic plant compared to the wild-type control. One gene (At3g26000) that is most 

significantly down-regulated belongs to the F-box protein family. We also showed that 

hydrogen peroxide (H2O2) content is significantly lower in transgenic lines under normal 

growth condition, while ascorbate and chlorophyll contents are similar in both transgenic and 

wild-type plants. The transcript level of the ROS scavenging enzymes, ascorbate peroxidase 

(APX1) and catalase (CAT2) was unchanged in transgenic lines under normal and oxidative 

stress. Taken together, our work suggests that the sesquiterpene (E)-β-caryophyllene may be 

directly involved in the ROS scavenging network in plants and provide resistance to 

photooxidative stress owing to its high chemical reactivity.   
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4.3 Results 

 

4.3.1 Over-expression of (E)-β-caryophyllene synthase TPS21 leads to down-regulation 

of many genes 

(E)-β-Caryophyllene over-expressing lines were generated by transforming Col-0 

flowers via Agrobacterium tumefaciens GV3101with a construct of TPS21 full-length cDNA 

in pBin420 vector under the control of the CAMV35S promoter. Compared to wild type Col-

0 leaves, transgenic plants showed constitutive emissions of (E)-β-caryophyllene. The (E)-β-

caryophyllene emissions of two over-expression lines (TPS21-1 and 2) were 4.7 ng gFW-1 h-1 

and 2.4 ng gFW-1 h-1, respectively and the accumulation of (E)-β-caryophyllene in the plant 

tissue was negligible (see Chapter II for more details). Southern blot analysis indicated that 

the transgenic lines TPS21-1 and 2 contained more than one transgene insersion (data not 

shown). All transgenic lines analyzed in this work were nonsegregating T4 homozygous 

plants. The transgenic and wild-type plants have identical growth phenotypes under the 

growth conditions used. 

Microarray analyses were done with (E)-β-caryophyllene over-expression plants and 

the transcriptome profiles were compared to wild type Col-0 plants. The analysis was 

performed with 4-week old rosette leaves and repeated with three biological replicates, each 

of which was a sample pool of four independent plants of each line. Transcript signals from 

Affymetrix GeneChips were reproducibly detected and were analyzed statistically by a set of 

gene-specific t tests (Tusher et al., 2001). With a significance threshold of 0.7, to give a low 

false discovery rate (Tusher et al., 2001), there were 154 significantly down-regulated genes 

in (E)-β-caryophyllene over-expressing lines (green spots in Fig. 4.1A) compared to wild-

type plants, but no significant up-regulated genes. The 15 most significantly down-regulated 

genes (Table 4.1) are listed with putative function, expression time and location in plants in 

Table 4.2. After the threshold was changed to 0.18 to include more up and down-regulated 

genes, 1773 differentially up-regulated genes and 3106 differentially down-regulated genes 

were detected (Fig. 4.1B) although the false discovery rate (FDR) could be as high as 61%. 

This set included the over-expressed (E)-β-caryophyllene synthase gene, with a score of 3.8.  
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Figure 4.1. Transcriptome profiles of A. thaliana transgenic lines which over-express (E)-β-caryophyllene 
synthase (TPS21) analyzed by the methods of (Tusher et al., 2001). (A) Significantly down-regulated genes 
(154 genes) are shown in the graph as green dots in using a threshold Delta=0.7. There were no significantly up-
regulated genes according to this threshold. (B) With the threshold Delta=0.18, 1773 differentially up-regulated 
genes and 3106 differentially down-regulated genes were identified.  
 
Table 4.1. Significantly down-regulated genes in (E)-β-caryophyllene synthase over-expressing transgenic lines 
according to the methods of the significant analysis of microarrays (Tusher et al., 2001). Down-regulated genes 
are shown with negative number; the lowest score represent the most significant down-regulation. False 
discovery rate are shown as q values (q-val). 
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Table 4.2. The function and expression pattern of significantly down-regulated genes in (E)-β-caryophyllene 
synthase over-expressing transgenic lines 

 
 

To learn more about the transcriptome affected by over-expressing (E)-β-

caryophyllene synthase, we sorted the significantly down-regulated 154 genes according to 

the TAIR Gene Ontology (GO) categorization system (www.arabidopsis.org). Genes were 

sorted by three criteria: cellular location, biological process and molecular function (Fig. 4.2). 

In the category of cellular location, transcripts within chloroplasts, nucleus, membranes and 

intracellular components were highly represented in transgenic plants (Fig. 4.2A). In the 

“biological processes” category, transcripts associated with transcription, protein metabolism 

and abiotic/biotic stress were more frequently present than transcripts associated with other 

biological processes (Fig. 4.2B). In the category of “molecular functions”, the transcription 

factors had the highest representation, and the relative abundances of protein binding and 

DNA/RNA binding factors were also high (Fig. 4.2C).  
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Figure 4.2. Distribution of transcripts significantly down-regulated in (E)-β-caryophyllene synthase over-
expression lines according to the criteria of cellular location, biological processes, and molecular functions. 
Genes are sorted by the TAIR Gene Ontology (GO) categorization system.  
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In (E)-β-caryophyllene synthase over-expressing transgenic plants, 26 different 

transcription factors were significantly down-regulated (Table 4.3). Most of these are 

members of the zinc finger family (23.1% of the 26 significantly down-regulated 

transcription factors). Transcription factors in the auxin response and the MYB families both 

account for 19.2% of the down-regulated transcription factors (Fig. 4.3). 

 

 

Figure 4.3. Distributions of significantly down-regulated transcription factors in (E)-β-caryophyllene-emitting 
plants among major families of transcription factors. 
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Table 4.3. Significantly down-regulated transcription factors in (E)-β-caryophyllene synthase over-expressing 
transgenic lines 
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4.3.2 (E)-β-Caryophyllene production reduces hydrogen peroxide but does not affect 

ascorbate or chlorophyll content  

Since (E)-β-caryophyllene was suspected of being able to react readily with ROS in 

vivo, we compared the oxidative status of (E)-β-caryophyllene synthase-over-expressing lines 

with wild-type controls by measuring their hydrogen peroxide levels. H2O2 is a less reactive 

ROS compared to singlet oxygen (1O2), superoxide radicals (O2
.-) and hydroxyl radicals 

(OH.). Because it is a non-charged molecule, it can diffuse throughout the cell and thus 

damage cellular components, signal stresses or even recruit defense responses in a wide 

variety of cellular locations (Ledford and Niyogi, 2005). The quantification of hydrogen 

peroxide (H2O2) in rosette leaves was performed by using the potassium titanium oxalate 

method. A significant decrease of H2O2 was observed in the two over-expression lines 

(TPS21-1, 2) with constitutive (E)-β-caryophyllene emission compared to the wild-type 

control (Fig. 4.4). The H2O2 level in TPS21-1 and TPS21-2 was 2.9 and 1.8-fold lower than 

those of wild type, respectively. Thus, the cellular redox environments in transgenic lines 

appear to be less oxidized than in plants without (E)-β-caryophyllene.  

 
Figure 4.4. Hydrogen peroxide (H2O2) contents in leaves of A. thaliana Col-0 and transgenic lines over-
expressing (E)-β-caryophyllene synthase (TPS21-1, -2). Results represent mean values ± SE (n = 4). Letters 
represent significant differences (P < 0.0001 according to Tukey, ANOVA).  
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In addition to H2O2, we compared the levels of ascorbate between the (E)-β-

caryophyllene-emitting lines and wild-type plants. Ascorbate (vitamin C) is an important 

photoprotective antioxidant in quenching 1O2, O2
.-, OH. directly, serving as a cofactor of 

ascorbate peroxidase for scavenging H2O2, and participating in the regeneration of 

tocopherols (Asada, 1999; Niyogi, 1999). Plant tissues can accumulate ascorbate in up to 

millimolar concentrations and the total amount of ascorbate represents one of the most 

important pools of reduced antioxidants in cells (Noctor and Foyer, 1998). In our 

measurements, both transgenic and wild-type plants had micromolar concentrations of 

ascorbate in their leaves without any significant difference between them (Fig. 4.5A). Thus 

the pool of this antioxidant is not affected by over-expressed (E)-β-caryophyllene.  

Since chlorophyll is protected from oxidative stress by carotenoids, a type of non-

volatile terpenes (Anderson and Robertson, 1960), we investigated if the volatile terpene (E)-

β-caryophyllene could also act in this manner. Total chlorophyll contents in over-expression 

lines and wild-type controls were measured according to the DMF method, but the total 

chlorophyll contents of transgenic lines were not significantly different from those of wild 

type under the growth conditions used (Fig. 4.5B).  

 

 

 

 

 

 

 

 

 

 

Figure 4.5. A) Ascorbate (AsA) contents of leaves from wild-type A. thaliana and transgenic plants with (E)-β-
caryophyllene emission. Results represent mean values ± SE (n = 4). Letters represent significant differences 
(P<0.0001 according to Tukey, ANOVA). B) Chlorophyll (Chl) content. Results represent mean values ± SE 
(n = 12). Letters represent insignificant differences according to ANOVA. 
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4.3.3 (E)-β-Caryophyllene production has no effect on antioxidative scavenging enzymes  

ROS scavenging relies on both enzymatic and non-enzymatic process. Two of the 

important enzymes that scavenge H2O2 in plants are ascorbate peroxidase (APX) and catalase 

(CAT). APX and CAT also play key roles in signaling in adaptation to oxidative stress. 

Detoxification of H2O2 to H2O by APX occurs by oxidation of ascorbate (ASA) to 

monodehydroascorbate, while CAT converts H2O2 into H2O and O2 (Apel and Hirt, 2004). In 

A. thaliana, the cytosolic ascorbate peroxidases are APX1 (At1g07890) and APX2 

(At3g09640), with APX1 playing a key role in protecting the chloroplastic H2O2-scavenging 

system (Davletova et al., 2005). The catalase (CAT) multigene family is composed of CAT1 

(At1g20630), CAT2 (At4g35090) and CAT3 (At1g20620). CAT2 is the most predominant 

highly expressed catalase in peroxisome of leaves (Vandenabeele et al., 2004). In order to 

evaluate the influence of (E)-β-caryophyllene on the ROS scavenging system, the transcript 

levels of ascorbate peroxidase (APX1, At1g07890) and catalase (CAT2, At4g35090) were 

determined by quantitative RT-PCR. The relative transcript abundance of both genes was 

decreased in both transgenic lines (TPS21-1 and 2), although this was not statistically 

significant (Fig. 4.6).  

The expression of APX1 and CAT2 were also compared using the microarray data. 

For CAT2, the results of microarray analysis and quantitative RT-PCR were consistent, both 

showing a weak, statistically insignificant decline in (E)-β-caryophyllene over-expressing 

lines (Table 4.4). APX1 showed weak down-regulation in the quantitative RT-PCR analysis, 

but up-regulation from microarray results (Table 4.4). However, neither of these differences 

is statistically significant and so the expression of these genes can be concluded not to differ 

between transgenic and wild-type plants.  

 

 

 

 

 

 

 

 



Multiple ecological roles of caryophyllene                                                                 4. Chapter III 
 

93 
 

 

 

 

 

 

 

 

 

 

Figure 4.6. Transcript levels of H2O2-scavenging-enzymes ascorbate peroxidase (APX1) and catalase (CAT2) 
from wild-type A. thaliana and transgenic lines with (E)-β-caryophyllene production as determined by qRT-
PCR. Results represent mean values ± SE (n = 3). Letters represent insignificant differences according to 
ANOVA.  
 
Table 4.4. Microarray expression scores of APX1 and CAT2 in (E)-β-caryophyllene over-expressing transgenic 
lines 

 
 

4.3.4 Treatment with Paraquat to induce oxidative stress has no effect on expression of 

genes encoding antioxidative scavenging enzymes  

To determine if the expression of APX1 and CAT2 genes would be altered by 

oxidative stress, we treated plants with Paraquat (methyl viologen, 1,1’-dimethyl-4,4’-

bipyridinium chloride). This non-selective toxic herbicide is photoreduced rapidly by 

photosystem I under light, and then transfers electrons to oxygen to form the superoxide 

anion (O2
.-). The production of other toxic ROS (OH. and H2O2) leads to lethal oxidative 

damage (Bowler et al., 1992). We compared Paraquat-induced oxidative stress on wild type 

and (E)-β-caryophyllene over-producing plants, treating both types of plants under high light 

intensity. However, quantitative RT-PCR revealed again that there was no significant 

difference in gene expression between transgenic and wild-type plants, although most 

transcript levels of antioxidant enzymes remained lower than wild type 3 and 24 h after 

Paraquat treatment (Fig. 4.7). Taken together, our results indicate that scavenging enzyme 

systems are not regulated significantly by (E)-β-caryophyllene with or without oxidative 

stress. 
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biotic stress, protein metabolism and transcription (Fig. 4.2). It is interesting to compare this 

list with one of A. thaliana genes found to be up- or down-regulated after fumigation with 

monoterpenes (Godard et al., 2008). Monoterpenes applied to A. thaliana leaves were found 

to induce more up-regulated transcripts than down-regulated ones (Godard et al., 2008) in 

contrast to our work which showed that (E)-β-caryophyllene only triggered significant down-

regulation (Fig. 4.1B). Sesquiterpenes might be expected to cause different responses than 

monoterpenes, but another important difference is that our study involved ectopic expression 

of (E)-β-caryophyllene within the plant while (Godard et al., 2008) fumigated plants 

externally with monoterpenes.  

According to our microarray analysis, the most significantly down-regulated 

transcript (At3g26000) in the transgenic plant encodes a protein that belongs to the F-box 

family (Table 4.1). F-box proteins are major components of the E3 ubiquitin ligase complex 

termed SCF (Skp1/Cdc53/F-box protein) and serve as special biding factors to recruit protein 

substrates for ubiquitination and subsequent degradation (Elledge and Harper, 1998). F-box 

proteins are named after the first identified member of the family, “human cyclin F” (Xiao 

and Jang, 2000). In plants, ubiquitin-mediated proteolysis is of great importance in turnover 

of proteins, including various regulatory proteins. F-box proteins are found to be involved in 

essential signal transduction pathways in plants. For instance, the F-box protein TIR1 

(transport inhibitor response 1) is an auxin receptor in Arabidopsis thaliana (Dharmasiri et al., 

2005; Kepinski and Leyser, 2005). In addition, F-box proteins called SLEEPY1 (Dill et al., 

2004) and SNEEZY (Strader et al., 2004) regulate gibberellin induced degradation; F-box 

proteins named EBF1 and EBF2 (ethylene insensitive 3 (EIN3)- binding F-box protein 1 and 

2) repress ethylene action and promote growth by degrading EIN3 (Gagne et al., 2004); and 

the F-box protein involved in the SCFCOI1 ubiquitin-ligase complex is essential for jasmonate 

response to pathogens and insects in Arabidopsis thaliana (Xu et al., 2002). Moreover, F-box 

proteins play important roles in controlling lateral root, leaf and floral development, and self-

incompatibility as well as in regulating light signaling, circadian rhythms, and stress 

responses (Xiao and Jang, 2000; Yu et al., 2007). Our microarray data indicate that the F-box 

protein (At3g26000) might have a close relation with (E)-β-caryophyllene mediated 

responding process in Arabidopsis thaliana, although we may not exclude that the (E)-β-

caryophyllene-affected ROS may have direct impact on transcriptional changes in transgenic 
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plants because of the signaling activity of ROS (Mittler et al., 2004) (see discussion below). 

Here we designate this novel F-box protein as Caryophyllene-Suppressed F-box protein 

(CarSF). Our findings warrant future work to identify whether regulatory responses to 

volatile sesquiterpenes like (E)-β-caryophyllene are mediated through the ubiquitin-mediated 

proteolytic system in A. thaliana, and provide new molecular targets for dissection of the 

function of (E)-β-caryophyllene in plant-abiotic stress interactions.  

 

4.4.2 (E)-β-caryophyllene production reduces ROS in transgenic plants without 

affecting anti-oxidant pools 

The formation of ROS in plants in an unavoidable consequence of processes 

associated with photosynthesis. For example, direct electron transfer at photosystem I 

towards O2 generates the superoxide (O2
.-) radical at PSI (Mehler reaction). Superoxide is 

rapidly converted to H2O2 by superoxide dismutase (SOD) in the chloroplast and the product 

H2O2 is detoxified by ascorbate peroxidase (APX) in the water-water cycle (Asada, 1999, 

2006). ROS are also generated in photorespiration in the chloroplast, where H2O2 is produced 

by glycolate oxidase, and scavenged by catalase and peroxidase reactions in the peroxisome 

(Apel and Hirt, 2004). If (E)-β-caryophyllene can help protect plants against oxidative stress, 

lines in which (E)-β-caryophyllene synthase has been over-expressed should have lower ROS 

levels. From our results, the (E)-β-caryophyllene-producing lines do have significantly lower 

amounts of H2O2 in leaves (Fig. 4.4). (E)-β-Caryophyllene is known to react very rapidly 

with ROS species in the atmosphere, with atmospheric-lifetime with OH (42 min), O3 (2 min) 

and NO3 (3 min) being much shorter than for almost any other plant terpene (Atkinson and 

Arey, 2003). Thus, reduction in H2O2 levels may be accomplished via direct chemical 

reaction. Moreover, because of its lipophilicity (E)-β-caryophyllene may cross membranes 

and react with different pools of H2O2 in the cell. However, the effect of (E)-β-caryophyllene 

may also be realized by reaction with other ROS, which are often in equilibrium with 

hydrogen peroxide. H2O2 may be reduced to hydroxyl radicals (OH.) by superoxide (O2
.-) 

radicals via the Haber-Weiss reaction in the presence of transition metal ions (Apel and Hirt, 

2004). Hydroxyl radicals (OH.) are the most reactive and destructive forms of ROS (Imlay 

and Linn, 1988; Ledford and Niyogi, 2005). In addition, singlet oxygen (1O2) is more toxic 
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than H2O2 too. (E)-β-Caryophyllene reaction with these species could be of great value to the 

plant and should impact H2O2 levels as well, due to chemical equilibria.  

As a major antioxidant in plant cells, ascorbate represents over 10% of the soluble 

carbohydrate (Noctor and Foyer, 1998), and its abundance is especially high in chloroplasts 

(~25 mM) (Niyogi, 1999). Our results show that the total ascorbate content in transgenic 

lines is not affected when (E)-β-caryophyllene synthase is over-expressed (Fig. 4.5A). We 

also investigated chlorophyll content as a way of detecting perturbations to photosynthesis 

caused by redox changes, but total chlorophyll content was not changed significantly in 

transgenic lines. In order to know more about the energy status of chlorophyll and changes in 

the rate of photosynthesis, more studies need to be performed (Foyer et al., 1994; 

Lichtenthaler et al., 2007).  

Recently, transgenic tobacco lines engineered to produce isoprene were shown to 

have higher amounts of reduced ascorbate than non-producing controls, although the total 

ascorbate contents showed little difference. Therefore isoprene was suggested to improve a 

plant’s antioxidant capacity (Vickers et al., 2009). However, in (E)-β-caryophyllene-

producing lines, it seems that the antioxidant capacity in term of total ascorbate content is not 

reduced. Like isoprene, (E)-β-caryophyllene is lipophilic but larger and less volatile, and so 

may not have the same effect, although its reduction of H2O2 levels suggests its ability to 

influence cellular redox status. It may protect lipid membrane as carotenoids and tocopherols 

do preventing lipid peroxidations, or stabilize membranes as isoprene is thought to act 

(Sharkey and Yeh, 2001).  

 

4.4.3 (E)-β-Caryophyllene production and regulation of antioxidant genes 

Cellular redox status is not only controlled by the levels of ROS and ascorbate, but 

also by the activity of a variety of enzymes of which four are prominent. Superoxide 

dismutase (SOD) is the first line of defense against ROS accumulation by dismutating 

superoxide (O2
.-) to H2O2. Glutathione peroxidase (GPX), ascorbate peroxidase (APX) and 

catalase (CAT) then metabolize the resulting H2O2 (Inze and Van Montagu, 1995; Apel and 

Hirt, 2004). In A. thaliana, so far six isozymes of APX have been identified. A thylakoid-

bound APX, a lumen APX and a stromal APX were found in chloroplast. One peroxisome 

APX, and two cytosolic APXs have been characterized as well (Davletova et al., 2005). All 
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APXs require ascorbate and glutathione as cofactors for the detoxification of H2O2 (Inze and 

Van Montagu, 1995), whereas no cofactors are required for three CAT isozymes found in the 

peroxisome (Apel and Hirt, 2004). During light induced photooxidative stress, cytosolic 

APX1 is the key scavenging enzyme protecting the chloroplast by reacting with H2O2 

transported to the cytosol, (Davletova et al., 2005), while CAT2 is the most predominantly 

expressed catalase (Vandenabeele et al., 2004). According to our results, there were no 

significant differences in APX1 and CAT2 transcript levels in (E)-β-caryophyllene-producing 

A. thaliana compared to wild type under normal growth conditions (Fig. 4.6) or under 

oxidative stress (Fig. 4.7), although the (E)-β-caryophyllene lines tended to have lower 

amounts. The activities of ROS scavenging enzymes are critical to maintain redox status at 

physiological levels. Mutants of APX or CAT are hypersensitive to stresses, and loss of one 

scavenging enzyme may up-regulate others (Mittler et al., 1999; Apel and Hirt, 2004). In our 

(E)-β-caryophyllene over-expression lines, the slight reduction of APX and CAT expression 

may indicate that there is more anti-oxidative capacity available from other sources, such as 

(E)-β-caryophyllene. Further analysis of gene expression and protein levels in these 

transgenic lines is necessary to determine the effect of (E)-β-caryophyllene on plant oxidative 

stress.  

Transgenic plants with manipulated volatile terpene emission sometimes show 

complex responses upon oxidative stress. For example, transgenic grey poplar plants 

(Populus × canescens) with repressed isoprene emission are not sensitive to oxidative stress 

(Behnke et al., 2009), suggesting the presence of other plant components that act in 

protection (Behnke et al., 2010b).  In our study, the role of (E)-β-caryophyllene as an in vivo 

protectant against oxidative stress is suggested based on the evidence that transgenic plants 

have significantly lower H2O2 content than wild-type controls. These findings are consistent 

with studies on the antioxidant activities of isoprene and monoterpenes (Loreto and Velikova, 

2001; Loreto et al., 2004; Vickers et al., 2009). However, additional work is required to 

confirm the role of (E)-β-caryophyllene and other sesquiterpenes in protecting plants against 

oxidative stress and defining their mechanism of action.   
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4.5 Materials and Methods 

4.5.1 Plant materials, growth conditions  

Seeds of Arabidopsis thaliana ecotype Col-0 (CS 6000) were obtained from the 

ABRC (Arabidopsis Biological Resource Center, OH, USA). Plants were grown on soil 

(Sunshine Growing Mix No.1 : sand, 8:1) for 4 to 6 weeks until rosette stage under controlled 

growth conditions (10 h-light/14 h-dark photoperiod with 150 μmol.m-2.s-1 PAR, 23 °C, 55% 

relative humidity). Kanamycin resistant transgenic plants were pre-selected on 1 × Murashige 

and Skoog (Duchefa, Haarlem, The Netherlands) plates with 1% sucrose and 100 µg mL-1 

kanamycin prior to being transferred to soil.  

 

4.5.2 Reagents 

All reagents or solvents were obtained from Fisher Scientific, Sigma-Aldrich or 

Fluka, unless otherwise stated. 

 

4.5.3 Plant treatments 

For Paraquat treatment, a 50 µM solution was sprayed directly on leaves of A. 

thaliana wild type and TPS21 transgenic plants. Plants were then placed under controlled 

growth conditions with a light intensity of 600 µmol m-2 s-1. Leaf samples were collected on 

3 and 24 h after spraying. 

 

4.5.4 Hydrogen peroxide content determination 

Hydrogen peroxide (H2O2) content in leaves was determined by using the potassium 

titanium oxalate method (Sellers, 1980). The absorbance was measured at OD 508 nm 

(Patterson et al., 1984). 

 

4.5.5 Ascorbate content measurement 

Total ascorbate contents of leaf tissue were measured using the method of analyzing 

ascorbate and dehydroascorbate (Hewitt and Dickes, 1961) (Foyer et al., 1983). Leaves were 

ground in liquid nitrogen with 0.75 mL of 6% metaphosphoric acid and centrifuged at 

maximum speed for 10 min. A 50 µL portion of supernatant was added to 950 µL potassium 

phosphate buffer (0.1 M, pH 6.9) and the absorbance at OD 265 nm was recorded after 
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mixing. The absorbance was recorded again after the addition of 1 U of ascorbate oxidase 

and the stabilization of the reading. The difference between the two values represents the 

ascorbate content. The amount of dehydroascorbate was measured to account for possible 

losses of ascorbate due to oxidation. A 50 µL portion of supernatant was added to the 950 µL 

potassium phosphate buffer (0.1 M, pH 6.9) and the absorbance at OD 265 nm was recorded 

as previously mentioned. Then after addition of 1 µL of 0.2 M dithiothreitol, the absorbance 

at OD 265 nm was allowed to rise for approximately 10 min and stabilize, before recording 

the final absorbance. The difference between these two values represents the amount of 

dehydroascorbate. The total ascorbate content is then represented by the sum of ascorbate 

and dehydroascorbate content.  

 

4.5.6 Chlorophyll content analysis 

Plant leaves were harvested under normal growth condition, and total chlorophyll 

contents determined at OD 647 nm and 665 nm according to the DMF (N,N-

dimethylformamide) method (Inskeep and Bloom, 1985). 

 

4.5.7 Quantitative RT-PCR analysis of gene expression 

The expression levels of ascorbate peroxidase (APX1, At1g07890) and catalase 

(CAT2, At4g35090) in wild type Col-0 and transgenic plant leaves were measured by 

quantitative RT-PCR with a Power SYBR® Green PCR Master Mix (Applied Biosystems, 

USA). Total RNAs from wild type Col-0 and transgenic plants from both Paraquat-treated 

and untreated leaves were extracted by Trizol reagent (Invitrogen, Carlsbad, CA, USA), and 

DNA contamination was eliminated with RQ1RNase-free DNase (Promega, Madison, WI, 

USA). The DNA-free total RNA was reverse transcribed into cDNA as previously described 

(Chen et al., 2003). A 1 mL aliquot of 50× diluted cDNA was analyzed with 25 mL SYBR 

Green Master Mix (Applied Biosystems, USA) in triplicate. The primers (P1&P2, P3&P4) 

used for each gene (APX1 and CAT2) are shown in Table 4.5. The efficiencies of the primers 

were examined by Pfaffl’s standard curve method (Pfaffl, 2001). According to the test of 

gene candidates (Phillips et al., 2009), Actin8 (At1g49240) (P5&P6, Table 4.5) was selected 

for normalization of overall expression levels between wild-type and transgenic plant leaves, 

both treated and untreated. Fold change differences of APX1 and CAT2 expression were 
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calculated according to the efficiency corrected by the Pfaffl method with Actin8 

(At1g49240) as the reference gene. Each data point was obtained from three independent 

biological replicates and three technical replicates. 

 
Table 4.5. Primer sequences 
 

 

 

 

 

 

 

4.5.8 Microarray analysis 

Leaves of 4 week old A. thaliana wild type (Col-0) and TPS21 transgenic lines 

(TPS21-1 and 2) were collected. Total RNA extracted from 4 plants of each line was pooled 

together as one biological replicate. Three biological replicates were obtained from each line. 

RNA was extracted by the Trizol reagent (Invitrogen, Carlsbad, CA, USA), and DNase 

treatment and RNA purification was performed with the RNeasy Plant Mini Kit (Qiagen, 

USA). RNA quality was evaluated by agarose gel, spectrophotometry analysis and Agilent 

2100 BioAnalyzer assessment in the core laboratory facility (CLF) of Virginia 

Bioinformatics Institute at Virginia Tech (VBI). Microarray hybridizations were done on 

Affymetrix GeneChip by VBI CLF 

(https://www.vbi.vt.edu/core_laboratory_facility/gene_expression_analysis/affymetrix_techn

ology_description). The signal intensity of the probes on the individual arrays was 

normalized by MAS5.0 for a quick quality check. RMAExpress (Robust Multichip Average) 

was used for comparing and normalizing different chip signals (Bolstad et al., 2003; Irizarry 

et al., 2003). Further data processing was performed by applying Significance Analysis of 

Microarrays (SAM) for identifying significantly changed genes (Tusher et al., 2001).  

 

4.5.9 Statistical analysis 

Significance was determined according to ANOVA with a Tukey post-hoc test using 

SAS9.1 (SAS Institute Inc., Cary, NC, USA). 
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5. Discussion 

5.1 Various volatile terpenes with diverse ecological functions 

Volatile terpenes belong to the category of secondary metabolites. They are 

historically thought to be waste products and not directly involved in primary processes such 

as growth, development and reproduction. A growing body of evidence shows that secondary 

metabolites such as volatile terpenes have direct (De Moraes et al., 2001; Kessler and 

Baldwin, 2001; Wang et al., 2008) or indirect (Kappers et al., 2005; Rasmann et al., 2005; 

Schnee et al., 2006) defensive functions against herbivore attack and certain abiotic stresses 

(Delfine et al., 2000; Loreto et al., 2001; Loreto and Velikova, 2001; Sharkey et al., 2001; 

Loreto et al., 2004; Copolovici et al., 2005). However, the formation of only a small fraction 

of plant volatile terpenes has been investigated (Dicke and Loreto, 2010). Advances in 

molecular biology facilitate functional studies of plant metabolites via transgenic lines with 

particular biochemical phenotypes. The objectives of this thesis were to understand the 

molecular mechanisms that are responsible for the intraspecific variation of herbivore-

induced terpene emissions from Arabidopsis thaliana leaves and to gain insight into the 

ecological functions of terpene emission from A. thaliana flowers. 

  

5.1.1 Mechanisms of various terpene emissions 

Volatile terpenes have been discovered from various plants, such as Arabidopsis, rice, 

maize, cotton, tobacco, cucumber, mint, basil, snapdragon, strawberry, apple, kiwifruits, oak, 

pine, spruce and other plants. Among theses, Arabidopsis thaliana has become a model plant 

to study the biosynthesis and regulation of terpene emission for its abundant genetic and 

genomic resources. From the vegetative parts of A. thaliana, the ecotype Col-0 was found to 

release the sesquiterpene (E,E)-α-farnesene along with methyl salicylate and the C16-

homoterpene 4,8,12-trimethyltridecatetra-1,3,7,11-ene after feeding damage by the crucifer 

specialists Pieris rapae and Plutella xylostella or application of the fungal peptide elicitor 

alamethicin (Van Poecke et al., 2001; Herde et al., 2008). The resulting volatile emissions are 

suggested to be signals in tritrophic interactions to attract the parasitic wasp Cotesia rubecula 

which increases plant fitness (van Loon et al., 2000; Van Poecke et al., 2001). However, it 

was unknown whether other A. thaliana ecotypes release similar induced volatiles, and if not, 
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what controls such differences. Intraspecific variation in plant volatiles has been studied in 

cultivated plants (maize, basil, snapdragon and strawberry) and wild species (wild tobacco, 

wild maize and horse nettle). A. thaliana and its abundant natural ecotypes are suitable tools 

to discover the molecular mechanisms governing natural diversity of volatile terpenes.  

 

5.1.1.1 Allelic variation contributes to volatile terpene diversities 
 

Induced volatile terpenes among 27 ecotypes of A. thaliana were quantified and 

compared after coronalon induction by using the closed-loop stripping method and gas 

chromatography- mass spectrometry. Coronalon is a jasmonate-mimic (Schueler et al., 2001) 

that can induce plant responses similar to those after insect feeding (Herde et al., 2008). It 

was shown that the monoterpene (E)-β-ocimene was emitted as a main volatile by 20 

ecotypes, including Ws but not Col-0. Almost all ecotypes release the sesquiterpene (E,E)-α-

farnesene with lower emission rates than those of (E)-β-ocimene. The Ws ecotype was 

chosen as a representative of high (E)-β-ocimene emitters, while the Col-0 ecotype was 

chosen as a representative of low (E)-β-ocimene emitters. From the significant correlation 

between (E)-β-ocimene and (E,E)-α-farnesene in most ecotypes, these two volatile terpenes 

were hypothesized to be produced either simultaneously by a single bi-functional terpene 

synthase or by two co-expressed enzymes. In order to test these proposals, Ws and Col-0 

were analyzed in detail. A previous study had shown that the (E)-β-ocimene synthase (TPS03) 

from A. thaliana ecotype C24 has the activity to convert the precursor GPP to (E)-β-ocimene 

(Faeldt et al., 2003), so we started to analyze the TPS03 gene. Using semiquantitative RT-

PCR, we showed TPS03 induction in Col-0 upon both coronalon and Plutella xylostella 

feeding. In Ws, no induction of TPS03 transcripts could be found. Since TPS03 is in close 

proximity to a similar terpene synthase gene TPS02 on chromosome 4 (Aubourg et al., 2002), 

we extended our analysis to include TPS02 also. TPS02 and TPS03 are likely to have 

emerged by tandem gene duplication. Tandem pairs of TPS genes in the A. thaliana genome 

are not rare. The root-specific 1,8-cineole synthases AtTPS-Cin (TPS23 and 27) (Chen et al., 

2004) and the (Z)-γ-bisabolene synthases (TPS12 and 13) (Ro et al., 2006) are two examples. 

After coronalon and insect treatment, transcripts of TPS02 could be found in both ecotypes 

along with splicing variation in Col-0. Combining the expression studies with sequencing 

analyses, the Ws-TPS03 allele and Col-TPS02 alleles were found to be inactive because of 
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frame shift mutations and consequent premature translational terminations; however, both 

Ws-TPS02 and Col-TPS03 have full-length cDNAs which encode terpene synthase proteins.  

Therefore, TPS02 is hypothesized to be responsible for (E)-β-ocimene and (E,E)-α-farnesene 

formation in Ws, and TPS03 is responsible for (E,E)-α-farnesene formation in Col-0. 

Analysis of knockout lines and RNAi lines of Ws-TPS02 and Col-TPS03 strongly support 

our hypothesis that the active tandem genes, Ws-TPS02 and Col-TPS03, are responsible for 

the difference of induced volatile terpenes from Ws and Col-0, respectively. For genes in the 

TPS superfamily and other families of secondary metabolism, it is known that gene 

diversification occurs rapidly via gene duplication and sequence divergence (Pichersky and 

Gang, 2000; Kliebenstein et al., 2001; Koellner et al., 2004). Observations from different 

cultivars of crop plants (tomato, basil and maize) show that inactivation of alleles of TPS 

often contributes to terpene diversity (van der Hoeven et al., 2000; Iijima et al., 2004; 

Koellner et al., 2004). Our findings provide direct evidence that allelic variation of TPS 

genes in wild gene pools contributes to the natural variation in terpene formation. 

 

5.1.1.2 Subcellular segregation of terpene synthases and their substrates leads to volatile 
terpene diversity  
 

Whether Ws-TPS02 and Col-TPS03 are bifunctional enzymes depends on their 

catalytic abilities and access to different substrate pools in vivo. We analyzed the in vitro 

catalytic activities of TPS02 and TPS03 encoded enzymes by using the heterolgous E. coli 

expression system to clone and express both genes. The mature protein of TPS02 without a 

predicted plastidial transit peptide converted GPP and FPP into (E)-β-ocimene and (E,E)-α-

farnesene, respectively, as main products, while the full length TPS03 protein converted GPP 

and FPP into (E)-β-ocimene and (E,E)-α-farnesene in a similar fashion. Thus both 

recombinant TPS proteins show bifunctional activity without major kinetic differences in 

vitro. To understand why the bifunctional Col-TPS03 enzyme only produces (E,E)-α-

farnesene as its main product in vivo, while the bifunctional Ws-TPS02 produces (E)-β-

ocimene as a main product and (E,E)-α-farnesene in small amounts, we performed 

subcellular localization studies by cloning N-terminal signal peptides of Col-TPS03 and Ws-

TPS02 into GFP constructs. Using confocal laser scaning microscopy, we saw a stable GFP 

signal for Col-TPS03 in the cytosol and a signal for Ws-TPS02 in plastids. Thus differential 
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subcellular targeting of bifunctional enzymes may lead to compartment-specific formation of 

monoterpenes and sesquiterpenes in wild A. thaliana due to differential availability of 

substrate.  

To investigate substrate availabilities in different compartments, inhibition of terpene 

biosynthetic pathways was performed together with coronalon induction. Treatments with the 

MEP pathway inhibitor fosmidomycin (inhibits DXR) and the MVA pathway inhibitor 

lovastatin (inhibits HMGR) demonstrate that the major substrate supplies of GPP and FPP 

are located in plastids and the cytosol, respectively although crosstalk between plastid and 

the cytosol are present as previously described (Hemmerlin et al., 2003; Laule et al., 2003; 

Schuhr et al., 2003; Dudareva et al., 2005). The presence of plastidial FPP may arise from an 

import from the cytosol (Schuhr et al., 2003) or from biosynthesis in plastids. The 

biosynthesis of FPP in plastids is not only supported by our results but also by the description 

of a (Z,Z)-FPP synthase in wild tomato (Sallaud et al., 2009). It has been suggested that 

terpene biosynthetic intermediates are particularly exported from plastids to the cytosol 

rather than the other way around (Laule et al., 2003). The trace emission of (E)-β-ocimene in 

Col-0 indicates that the flow of GPP precursor to the cytosol is low, consistent with the 

results from tobacco and kiwifruits (Wu et al., 2006; Nieuwenhuizen et al., 2009). Together 

with the investigations of peppermint, snapdragon and strawberry plants (Aharoni et al., 2004; 

Turner and Croteau, 2004; Nagegowda et al., 2008), we prove that subcellular segregation 

and differential substrate availabilities to bifunctional terpene synthases are important 

molecular mechanisms in the natural evolution of the intraspecific volatile terpene diversity. 

 

5.1.1.3 Individual terpene synthase enzymes also contribute to diversity by making 
multiple products  
 

In studying the biosynthesis of volatile terpenes, terpene synthases play prominent 

roles. For instance, monoterpene formation and biosynthetic rates in pepperemint are 

controlled mainly by the relevant monoterpene synthases (McConkey et al., 2000). 

Interestingly, nearly half of all characterized monoterpene and sesquiterpene synthases 

produce multiple products from a single substrate (Degenhardt et al., 2009). Starting from the 

divalent metal ion-dependent ionization, the substrates GPP or FPP undergo a series of 

cyclizations, hydride shifts and other chemical rearrangements until the reaction is terminated 
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(Tholl et al., 2005; Degenhardt et al., 2009; Boland and Garms, 2010). The formation of 

multiple products results from the fact that the carbocationic intermediates of the reaction can 

have multiple fates depending on the type of terpene synthase and the cellular environment. 

For example, the biosynthesis of the monoterpenes (E)-β-ocimene and myrcene starts with 

the ionization of the GPP substrate, but removal of a different proton leads to different 

products (Degenhardt et al., 2009) (Fig. 5.1). Specific amino acid motifs and active site 

sequences of individual terpene synthases might facilitate multiple product formation. 

 
Figure 5.1. The proposed reaction pathway from GPP to (E)-β-ocimene and myrcene. 

 

5.1.1.4 Organ, tissue and cellular specialization of terpene biosynthesis is a form of 
regulation and contributes to patterns of diversity 
 

Terpene synthases are differentially expressed in different plant species, and can be 

localized in specialized organs or tissues. For instance, the biosynthesis of volatile 

monoterpenes from peppermint plants is localized to the secretory cells of glandular 

trichomes on leaf surfaces (Gershenzon et al., 1992; McCaskill et al., 1992). In A. thaliana, 

Ws-TPS02 and Col-TPS03 genes are expressed upon herbivore induction in leaves and 

constitutively expressed in flowers. A similar expression pattern of the A. thaliana 

geranyllinalool synthase is observed in leaves and flowers (Herde et al., 2008). Although 

terpene synthase expression plays a critical role in the regulation of natural variation in 

terpene formation, a hierarchy of other factors contributes as well (Fig. 5.2). 
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Figure 5.2. The multiple mechanisms regulating volatile terpene biosynthesis  
 

The release of (E)-β-ocimene and (E,E)-α-farnesene from A. thaliana flowers and 

herbivore-damaged leaves indicates that the functions of these terpenes are probably related 

to pollinator attraction and tritrophic interactions. Volatile mixtures containing (E)-β-

ocimene and (E,E)-α-farnesene from pathogen-attacked silver birch or aphid-attacked 

soybean suggest similar ecological defensive functions of these two volatile terpenes (Zhu 

and Park, 2005; Vuorinen et al., 2007; Holopainen and Gershenzon, 2010). In A. thaliana, 

other secondary metabolites including glucosinolates are known to show widespread 

intraspecific variation (Kliebenstein et al., 2001). But, in all of these cases, the ecological 

significance of intraspecific variation is still not understood. 
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5.1.2 Multiple ecological roles of terpene emissions 

It has often been suggested that volatile terpenes play various ecological roles in 

plants, but rigorous tests of these ideas have not often been carried out. The sesquiterpene 

(E)-β-caryophyllene is one of the most common volatile terpenes and is present in many 

plant species, such as clove (Eugenia caryophyllata) (Zheng et al., 1992), cinnamon 

(Cinnamomum spp.) (Jayaprakasha et al., 2003), hemp (Cannabis sativa L) (Gertsch et al., 

2008), ginger (Zingiber spp.) (Sabulal et al., 2006), and sage (Salvia spp.) (Liang et al., 2009). 

It is a common component of floral scent (Knudsen et al., 1993; Knudsen et al., 2006) as well. 

In this thesis, we turned our attention to the ecological significance of (E)-β-caryophyllene 

using A. thaliana as model plants.  

A. thaliana flowers constitutively emit large amounts of volatile terpenes with 

monoterpenes and sesquiterpenes making up more than 60% of total volatiles (Chen et al., 

2003). But, there is extensive variation among ecotypes. In flowers of Col-0, 24 

monoterpenes were identified (Rohloff and Bones, 2005) and the major monoterpenes are β-

myrcene and linalool; the predominant volatile in Ws flowers is (E)-β-ocimene (Chen et al., 

2003; Tholl et al., 2005). From Col-0 flowers, 26 sesquiterpenes were recognized (Rohloff 

and Bones, 2005) which account for more than 95% of the total terpene volatiles from the 

inflorescences of Col-0 (Chen et al., 2003). In particular, (E)-β-caryophyllene and α-

humulene together account for 43% of the total terpene volatiles (Chen et al., 2003). Two 

sesquiterpene synthase genes (At5923960 and At5g44630) were shown to be responsible for 

the complex mixture of sesquiterpenes emitted from A. thaliana flowers and the volatile 

differences are controlled by differential transcription of terpene synthase (TPS) genes and 

putative posttranslational modifications (Tholl et al., 2005). The characterization of (E)-β-

caryophyllene synthase (At5923960, TPS21) facilitated our functional studies by allowing us 

to generate transgenic plants that over-express (E)-β-caryophyllene synthase and to identify 

loss-of-function knock-out lines. 
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5.1.2.1 (E)-β-caryophyllene is suggested to be a direct antioxidative compound 
 

Information on the role of volatile terpenes in plants can sometimes be inferred from 

analysis of gene expression changes when plants are exposed to these substances. Previously, 

a large-scale transcriptome analysis showed that A. thaliana plants fumigated by exogenous 

volatile terpenes exhibited significant changes in transcript levels (Godard et al., 2008). Here 

we demonstrated for the first time that substantial transcriptome changes also occur after 

constitutive endogenous fumigation with (E)-β-caryophyllene due to over-expression of (E)-

β-caryophyllene synthase. In transgenic leaves, 154 genes were significantly down-regulated. 

The physiological significance of most of these down-regulated genes is unknown and needs 

further investigation. The gene that is most significantly down-regulated (At3g26000) 

belongs to the F-box protein family, and we designate it as Caryophyllene Suppressed F-box 

protein (CarSF) gene. The finding of CarSF and other down-regulated genes provides new 

molecular targets for dissection of the function of (E)-β-caryophyllene in plant-abiotic stress 

interactions. In plants growing in nature, variability of (E)-β-caryophyllene emission is 

commonly observed (Duhl et al., 2008). Since high temperature and in some cases, high light 

increase β-caryophyllene emissions, this compound may be postulated to have a natural role 

in resistance to these abiotic factors. Interestingly, we found out that hydrogen peroxide 

(H2O2) content is significantly lower in (E)-β-caryophyllene over-producing lines under 

normal growth conditions. However, the pool of the antioxidant, ascorbate, is similar in both 

transgenic and wild-type plants. And, the expression of two enzymes that reduce oxidative 

stress by scavenging reactive oxygen species, ascorbate peroxidase (APX1) and catalase 

(CAT2), are insignificantly changed in transgenic lines under normal and oxidative stress 

conditions. Taken together, our results suggest that (E)-β-caryophyllene may be directly 

involved in a reactive oxygen species (ROS) scavenging network, like that indicted for 

isoprene and monoterpenes in other plant species (Loreto et al., 2001; Loreto and Velikova, 

2001; Loreto et al., 2004; Loreto and Fares, 2007; Vickers et al., 2009). To confirm the 

antioxidative function of (E)-β-caryophyllene, further analyses are required, such as 

measuring the levels of different reactive oxygen species, determining gene expression and 

activities of scavenging enzymes in antioxidative networks, and quantifying the amounts of 

other metabolites that respond to abiotic stress (Behnke et al., 2010b).  
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5.1.2.2 (E)-β-caryophyllene is a defense against bacterial pathogens 
 

Besides abiotic factors, biotic factors also influence (E)-β-caryophyllene emission. 

(E)-β-Caryophyllene has been found to serve as induced signal for plant indirect defense. For 

example, when released from maize leaves, it attracts parasitic wasps to oviposit on larvae of 

the lepidopteran Spodoptera littoralis (Koellner et al., 2008). And, when released from maize 

roots it attracts nematodes to attack larvae of the beetle Diabrotica virgifera virgifera 

(Rasmann et al., 2005). (E)-β-caryophyllene can also directly decrease the growth and 

survival of insects feeding on cotton and Hymenaea (Langenheim, 1994). (E)-β-

Caryophyllene has been reported to act in defense against herbivores when it occurs in non-

floral tissues, but has not yet been directly demonstrated to serve in pollinator attraction in 

flowers. Knowledge of the role of (E)-β-caryophyllene emission in flowers is scarce, 

especially as a possible defense against pathogen attack. Since floral stigmas provide a humid 

and nutritive environment for microbial pathogens (Ngugi and Scherm, 2006) and there may 

be a high frequency of infection due to vectoring by insect visitors, we investigated the 

ability of (E)-β-caryophyllene to serve as an anti-bacterial defense in A. thaliana flowers and 

demonstrated significant antimicrobial activity against the bacterial pathogen Pseudomonas 

syringae. Knockout mutants lacking (E)-β-caryophyllene emissions from stigmas were more 

susceptible to this pathogen, and the seed production and fitness of knock-out mutants were 

reduced compared to wild-type A. thaliana. Moreover, transgenic lines over-expressing (E)-

β-caryophyllene synthase throughout the plant were more resistant to pathogens applied to 

leaves. Our results suggest that (E)-β-caryophyllene, whose production in flowers is 

restricted to the stigma, serves as an antimicrobial substance. A previous study of 

caryophyllene-rich rhizome oil from Zingiber nimmonii showed significant inhibitory 

activity against the bacteria Bacillus subtilis and Pseudomonas aeruginosa (Sabulal et al., 

2006). In our in vitro study, (E)-β-caryophyllene showed a direct inhibitory effect on the 

pathogen in a liquid medium. Since the tested concentration of (E)-β-caryophyllene in the 

medium was actually lower than the amount found in A. thaliana flowers on an hourly basis, 

this compound appears to be present in sufficient amounts in nature to have an antimicrobial 

role. Of course, serving as an inhibitor of pathogen growth in A. thaliana flowers does not 

exclude (E)-β-caryophyllene from also acting as a pollinator attractant. Floral (E)-β-

caryophyllene may be both an attractant and a deterrent because of its attractiveness to 
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beetles, moths and herbivore enemies (Brown et al., 2006; Verheggen et al., 2007; Koellner 

et al., 2008; Schmidt-Busser et al., 2009).  

 

5.2 Conclusion 

Taken together, our investigations of (E)-β-caryophyllene as an anti-oxidant and an 

anti-bacterial floral volatile suggest multiple roles for this substance in plants. Given the 

widespread distribution of volatile terpenes in different plant species and organs in nature, a 

wide range of other roles can be expected. Elucidation of these roles should reveal many new 

aspects of how plants are adapted to cope with stressful biotic and abiotic factors in their 

environment. 

 



6. Summary 
 

113 
 

6. Summary 

Plants are a very successful group of organisms over the evolutionary history of our 

planet developing a range of responses to cope with various stress factors in their 

environment. Plants are adapted to both biotic stresses (e.g. attacks from herbivores or 

pathogens) and abiotic stresses (e.g. high light or temperature, poor nutritional conditions, 

oxidative stress). Volatile terpenes may facilitate resistance to many of these stress factors. 

In this thesis, numerous ecotypes of Arabidopsis thaliana were investigated to gain a 

picture of intraspecific variation in volatile formation. We demonstrated that the Col-0 

ecotype emits the sesquiterpene (E,E)-α-farnesene as a major volatile upon herbivore attack, 

whereas the Ws ecotype releases the monoterpenes (E)-β-ocimene in large amounts and 

(E,E)-α-farnesene in smaller amounts. Two homologous bifunctional terpene synthase genes 

(TPS02 and TPS03) were discovered, each of which is active in one ecotype, but present as a 

non-functional copy in the other. The difference in product formation can be attributed to 

different subcellular compartmentations of the active enzymes (plastids vs. cytosol) giving 

each one access to different substrate pools. These results reveal how variation in terpene 

synthase genes leads to the natural diversity of herbivore-induced volatile terpenes in A. 

thaliana.  

One of the well-known ecological functions of volatile terpenes is the attraction of 

pollinators to flowers. However, pollinator attraction may not be the only function of floral 

volatiles. This study illustrated that (E)-β-caryophyllene – one of the most common 

sesquiterpene volatile from flowers and found in the flowers of A. thaliana Col-0, can inhibit 

the growth of pathogenic microbes, such as Pseudomonas syringae, a natural bacterial 

pathogen of A. thaliana. Transgenic Arabidopsis plants lacking (E)-β-caryophyllene floral 

emission are more vulnerable to stigmatic infection than wild type plants, while plants that 

over-produced (E)-β-caryophyllene in leaves are more resistant to pathogen attacks there. 

The in vitro inhibitory effects of (E)-β-caryophyllene on bacteria support the idea that floral 

(E)-β-caryophyllene helps defend flowers directly. But (E)-β-caryophyllene may have other 

roles in stress resistance, since lines over-expressing this sesquiterpene had reduced oxidative 

stress as measured by H2O2 content and large scale transcriptome changes. Thus widespread 

plant volatiles, such as (E)-β-caryophyllene, may have multiple roles in defense, pollinator 

attraction and abiotic stress resistance. 
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7. Zusammenfassung  

Evolutionär gesehen sind Pflanzen sehr erfolgreiche Organismen. Sie haben 

komplexe, aber effiziente Systeme entwickelt, um unterschiedliche Stressfaktoren zu 

bewältigen. Pflanzen reagieren sowohl auf biotischen Stress (z.B. Herbivore, Pathogene) als 

auch auf abiotischen Stress (z.B. Licht, Temperatur, Ernährung, oxidativer Stress). In einer 

sich verändernden Umwelt haben flüchtige Terpene eine ökologische Bedeutung für die 

Fitness der Pflanzen. 

Anhand der verschiedenen Ökotypen von Arabidopsis thaliana sind Untersuchungen 

zu Änderungen in der Duftstoffzusammensetzung der Pflanzen möglich. Durch die Kenntnis 

der genomische Sequenz und die Verfügbarkeit zahlreicher Mutanten ist Arabidopsis 

thaliana ein gutes Werkzeug zur Untersuchung molekularer Mechanismen. Durch Blattfraß 

wird beim Ökotyp Col-0 hauptsächlich das Sesquiterpen (E, E)-α-Farnesen induziert, 

während der Ökotyp WS vor allem (E, E)-α-Farnesen und das Monoterpen (E)-β-Ocimen 

freisetzt. Für diese Unterschiede sind 2 homologe bifunktionale Terpensynthasegene 

verantwortlich. Die Tandem-Allele Col-TPS03 und WS-TPS02 sind aktiv und können beide 

Terpene bilden. Die Pseudogene Col-TPS02 und WS-TPS03 sind nicht funktionsfähig. Die 

unterschiedlichen Endprodukte beruhen auf der subzellularen Kompartimentierung der 

beiden aktiven Proteine und der dort vorhandenen Vorstufen. Es gibt molekulare Beweise, 

dass die Vielfalt der Pflanzenfraß-induzierten flüchtigen Terpene unter natürlichen 

Bedingungen auf verschiedenen Ebenen reguliert wird. 

Die Blüten der Pflanzen setzen auch ohne äußere Reize kontinuierlich flüchtige 

Terpene frei. Eine ökologische Funktion dieser Duftstoffe ist die Anlockung von Bestäubern. 

Dies ist aber nicht die einzige Aufgabe. (E)-β-Caryophyllen ist eine Sesquiterpen, das in 

großen Mengen von A. thaliana Col-0 Blüten freigesetzt wird. Es ist in der Lage das 

Wachstum von Pseudomonas syringae zu hemmen und damit die Blütenorgane vor diesem 

Pathogen zu schützen. A. thaliana-Mutanten ohne (E)-β-Caryophyllen sind anfälliger als 

Wildtyp-Pflanzen, während Pflanzen, die (E)-β-Caryophyllen überproduzieren, 

widerstandsfähiger gegen Krankheitserreger sind. (E)-β-Caryophyllen hat in vitro einen 

direkten hemmenden Einfluss auf Bakterien. Das zeigt, dass flüchtige Terpene den Blüten bei 

der direkten Verteidigung helfen können. Darüber hinaus führt die Überproduktion von (E)-
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β-Caryophyllen zu weitreichenden Transkriptom-Veränderungen sowie zu einer 

Modifikation des Redoxsystems mit einem niedrigerem Gehalt von H2O2 in den Blättern. Die 

verschiedenen Funktionen von (E)-β-Caryophyllen unterstützen die Vorstellung, dass 

flüchtige Terpene der Verteidigung von Blüten in der Natur helfen. 
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