
PROCEEDINGS

13 - 17 September 2010

Crossing Borders within the ABC

Automation,

Biomedical Engineering and

Computer Science

Faculty of
Computer Science and Automation

www.tu-ilmenau.de

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

55. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

http://www.tu-ilmenau.de
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

Impressum
Published by

Publisher: Rector of the Ilmenau University of Technology

Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Editor: Marketing Department (Phone: +49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

 Faculty of Computer Science and Automation

(Phone: +49 3677 69-2860)
Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Editorial Deadline: 20. August 2010

Implementation: Ilmenau University of Technology

Felix Böckelmann
Philipp Schmidt

USB-Flash-Version.

Publishing House: Verlag ISLE, Betriebsstätte des ISLE e.V.

Werner-von-Siemens-Str. 16
98693 llmenau

Production: CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts

Order trough: Marketing Department (+49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

ISBN: 978-3-938843-53-6 (USB-Flash Version)

Online-Version:

Publisher: Universitätsbibliothek Ilmenau

Postfach 10 05 65

 98684 Ilmenau

© Ilmenau University of Technology (Thür.) 2010

The content of the USB-Flash and online-documents are copyright protected by law.
Der Inhalt des USB-Flash und die Online-Dokumente sind urheberrechtlich geschützt.

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

PILOT - MODULAR ROBOT NAVIGATION FOR REAL-WORLD APPLICATIONS

Erik Einhorn, Tim Langner

MetraLabs GmbH, Am Vogelherd 22, 98693 Ilmenau, Germany

ABSTRACT

For robot navigation the E*-Algorithm and the Dy-
namic Window Approach (DWA) have emerged as
a de facto standard for path and motion planning.
Based on these algorithms we present a generic solu-
tion for robot navigation that is applicable for both
holonomic and non-holonomic robots. We propose
a number of improvements and extensions that help
to overcome several limitations of the original im-
plementations and that are required for robots in
daily operation. We introduce an adaptive Dynamic
Window that allows a fine-grained control of the robot’s
actuators enabling the system to navigate with an
inch-perfect precision while reducing the computa-
tional complexity. Furthermore, we present the flex-
ible and modular design of our navigation approach
that enables its usage in many different real-world
applications.

Index Terms— robot navigation, motion planning,
path planning, adaptive dynamic window

1. INTRODUCTION
Accomplishing navigational tasks like path planing, ob-
stacle avoidance and motion planning are essential ca-
pabilities for autonomous mobile robots allowing them
to offer more complex services. Most current naviga-
tors support a ”drive to” command only. However, for
several industrial and real-world applications where au-
tonomous mobile robots are used, this simple naviga-
tion task is no longer sufficient. Moreover, these nav-
igators path planning is often limited to a single map.
For that reason, they are not suitable for navigation in
complex environments such as multi-level office build-
ings or factories where the use of elevators is required
or the robot has to follow traffic rules like one way
streets.
Our main focus is on the development of robots

and robotic solutions for different commercial and in-
dustrial fields, like homeimprovement stores, fast-food
restaurants and clean-room surveillance. Where the op-
erational area varies from small rooms to large multi-
level halls. This leads to a variety of different require-
ments such as:

• support for non-holonomic robots of different sizes,

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
(FP7/2007-2011) under grant agreement#216487

• navigation with high precission (e.g. docking,
handling of narrow passages),

• fast path planning and online dynamic replan-
ning,

• taking moving obstacles into account,
• consideration of traffic rules (e.g. one way streets,
forbidden areas and speed limits)

Therefore, we require a navigator that combines all
these requirements in a modular architecture and that
is able to change its behaviour according to new tasks
at runtime. Additionally, in contrast to existing naviga-
tion algorithms which always consist of both, path and
motion planning parts, we present an approach where
each component can be enabled depending on the needs
of the current task.

2. MODULAR ARCHITECTURE OVERVIEW
To accomplish the many different requirements and nav-
igational tasks, we use a modular software design as
seen in Fig. 1. The core component of our navigator re-
ceives the current navigational task from the user or the
overlying application layer. The task can also be spec-
ified using a built-in scripting language. The script-
ing language allows remote procedure calls (RPC) and
therefore enabling the control of the navigator from dis-
tributed applications. After a task is received by the
navigator it is decomposed into distinct motion and ve-
locity commands of the robot’s wheels in order to pro-
cess the desired task.

Fig. 1. The architecture of our approach. A task re-
ceived from the application layer is processed by the
motion planner using multiple objectives in order to
generate motion commands.

382

For task processing, the motion planner and the ob-
jectives play a major role. Each objective is a separate
software module specialized for certain tasks like fol-
lowing a person, driving at a certain speed or direction,
etc. The objectives are realized as software plugins.
This allows us to add new objectives easily when new
tasks are necessary without changing other parts of the
navigator. The output of the objectives is then used by
the motion planner to generate motion commands that
are then sent to the robot’s motor controllers. Some ob-
jectives require additional information from other nav-
igational modules such as localization and mapping al-
gorithms or modules for user interaction like person
trackers. Therefore, the objectives can access this in-
formation directly from these modules. Both, the mo-
tion planner and the objectives are described in section
4 in more detail.

3. NAVIGATION BY TASK
Based on the modular concept of objectives, we need
a suitable interface for the navigator that allows us to
specify complex tasks. In order to developing a highly
generic navigator, we introduce a task based system
which allows us to define jobs consisting of several
sub-tasks and their corresponding parameters. To meet
the requirements of different applications we have, so
far, defined the following sub-tasks that can be com-
bined to create complex tasks:

• docking with a charging station
• following a person
• explore the environment autonomously while a-
voiding obstacles

• driving to a specified position
• adjust the orientation at the goal point (e.g. to
face a user)

• drive a maximum allowed distance
Each sub-task can be parametrized by numerous task-
specific options, including:

• goal point to drive to,
• map to drive to
• preferred driving direction of the robot (back-
ward, forward or both)

• accuracy for reaching a goal point
• accuracy for the orientation angle at a goal point
• maximum allowed driving distance (e.g. during
exploration)

By specifying a combination of sub-tasks and their pa-
rameters the robot’s navigational behavior can be com-
pletely modified at runtime. For example the complex
task “Drive backward to the destination (10, 0) in map
‘Floor2’ with an accuracy of ±0.5 m and turn to the
orientation of 70° with an accuracy of ±15° ” is easily
handled by our navigation system. Using our built-in
scripting languge that task can be described as follows:

Task t;
t.addSubTask(
PreferredDirectionTask(BACKWARD));

t.addSubTask(PositionTask(10, 0, 0.5));
t.addSubTask(MapTask("Floor2"));
t.addSubTask(OrientationTask(70, 15));
Navigator.setTask(t);

To fulfill the job, the navigator must complete each
sub-task by following the specified rules and options.
Moreover, the task based system allows for the addition
of new sub-tasks in the future, when required, without
changing the interface of existing tasks or interfering
with existing applications. This is an important advan-
tage of this task based design since it reduces the effort
necessary for software maintenance.

4. MOTION PLANNING
After a new task is set it is processed by the motion
planner. Existing methods for motion planning and ob-
stacle avoidance can be separated into reactive and an-
ticipatory approaches [1]. Reactive approaches usually
plan their movements in the workspace of the robot, i.e.
the xy-plane which the robot can move on. One of the
most frequently used reactive method is the VFH ap-
proach and its successor VFH+ [2]. These algorithms
compute a polar histogram that represents the obsta-
cle density in each direction around the robot. Based
on this histogram, the approach identifies consecutive
sectors where the obstacle density is below a certain
threshold. These directions are classified as free, the
other directions are blocked. Finally, it chooses a free
direction that is closest to the target direction. How-
ever, the approach cannot handle non-holonomic robots
with arbitrary shapes - one of our basic requirements.
Additionally, the robot’s dynamic is modelled insuffi-
cently.
Anticipatory approaches usually plan their decisions

in the robot’s action or velocity space. They simulate
the consequences for carrying out a certain action and
choose the action that is expected to yield the highest
benefit for reaching the target. One of the most of-
ten used algorithms for anticipatory motion planning
is the Dynamic Window Approach [3]. This algorithm
searches for the optimal motion command directly in
the space of velocities. Therefore, the robot’s two di-
mensional velocity space is discretized into regular two
dimensional cells where each cell represents a certain
trajectory. Each cell is defined a cost function. Fi-
nally, the velocities corresponding to the cell that yields
the smallest costs are chosen as motion commands. In
these computations the DynamicWindowApproach takes
the robot’s dynamic into account by reducing the search
space to those velocities which are reachable under the
dynamic constraints such as limited speed and acceler-
ation. Additionally, only velocities are considered that
are safe and do not lead to collisions. To check if cer-
tain velocities lead to collisions, the robot’s trajectory
is simulated for a small time frame using a kinematic
model of the robot. The resulting circular trajectories
are then tested for the distance they keep to the obsta-

383

cles around the robot [1]. In this collision test non-
holonomic robot shapes can also be taken into account.
Beside other advatages, this makes the approach very
attractive for our purposes.
In recent years several modifications and variants of

the Dynamic Window Approach have been proposed.
In [4] the robot’s movements are simulated for larger
time intervals to achieve a larger planning horizon. From
the resulting circular trajectories, called “tentacles”, the
tentacle is chosen that yields the smallest costs com-
puted according to a predefined cost function.
In [1] clothoids are used instead of circular trajec-

tories, since they can approximate the robot’s real tra-
jectories better. However, since these curves, with lin-
ear variation of the curvature, are described by three
parameters the resulting search space becomes three-
dimensional and cannot be discretized into regular cells
as this was done in the original Dynamic Window Ap-
proach. Instead, a particle filter is used to sample the
search space in [1].

4.1. Adaptive Dynamic Window Approach
For our navigation framework we implemented a mod-
ified Dynamic Window Approach. Since we apply our
navigator on robots with a differential drive, our veloc-
ity space i.e. the search space S = [vmin, vmax] ×
[vmin, vmax] is spanned by the velocities of the robot’s
left and right wheel (vl, vr). In contrast to most exist-
ing Dynamic Window Approaches we explicitly model
negative velocities. This allows the robot to plan back-
wards motion in a seamless way. For most of our robots
we choose vmin = −0.5m

s
and vmax = 1.0m

s
to achieve

the maximum translation velocity of 1m
s
in the forward

direction while limiting the speed to 0.5m
s
when driv-

ing backwards.
Since the robots must be able to move with very

high precision, the velocity space of our Dynamic Win-
dow Approach must be discretized with a high resolu-
tion to produce fine-grained motion commands. How-
ever, this would result in enormous computational costs
since the robot’s movements must be predicted for a
huge number of different speeds. In contrast to the
original Dynamic Window Approach we therefore do
not raster the velocity space regularly. Instead, we take
into account that large changes in the robot’s velocity
cannot be performed and predicted accurately. When
predicting the robot’s motion, most approaches assume
a linear motion model with constant acceleration. Due
to unmodeled effects in the robot’s hardware and its
motion controllers, these models lose precision when
the robot changes its velocity due to a large accelera-
tion or deceleration. Hence it is not necessary to use
a high resolution for large changes in the velocity’s
space. Therefore, we apply an adaptive discretization
of the velocity space. While the resolution is high for
velocities near the robot’s current speed, it decreases
for velocities near the border of the dynamic window
(see Fig. 2b). On the one hand, this allows a fine-

grained motion control since small changes in speed
can be taken into account while on the other hand, it
also reduces the computational costs since large regions
of the velocity space that can not be reached by precise
motion commands, are coarsly represented.

(a) (b)
Fig. 2. Discretization of the velocity space. (a) Regular
rasterization. (b) Our proposed adaptive rasterization.
Cells that cannot be reached due to the robot’s dynamic
constraints are colored in red.
Our subdivision of the velocity space into discrete

cells is done as follows. We place a cell with a given
minimum size, i.e. a maximum resolution, at the posi-
tion in the velocity space that corresponds to the robot’s
current position. Afterwards, more cells are added in a
ring around that cell. That ring is again surrounded by
another ring with cells and so on. The number of cells
in each ring is controlled by a configuration (r1, r2,

. . . , rn), where ri specifies the width of the i-th ring
in cells. In Fig. 2b the configuration (3, 5, 5, 5, . . .) is
shown. That configuration is used in most of our ap-
plications. However, depending on the requirements,
the configuration and the adaptive resolution of the dy-
namic window can be changed arbitrarily. The classic
regular decomposition of the velocity space in Fig. 2a
can be obtained using the configuration (3, 5, 7, 9, . . .).

4.2. Objectives
As stated before, each cell covers a certain area of the
velocity space and corresponds to a certain velocity
command. For motion planning, a cost function is com-
puted for each cell and therefore the velocity command
that yields the smallest cost is chosen. In the origi-
nal Dynamic Window Approach [3] that cost function
is composed of three different functions, called objec-
tives. One objective yields large costs when the robot
would get too close to obstacles by choosing that cer-
tain action. The second objective prefers actions that
lead to high speeds and the third one takes care of the
robot’s orientation. Additionally, each objective can
forbid a certain action completely by marking it as “not
admissible” when a certain requirement, like the mini-
mal distance to an obstacle, is not met. If at least one
objective marks an action as “not admissible” the ac-
tion is excluded from the set of allowed actions.
In our approach we generalize this idea and decom-

pose all navigational behaviors into objectives. For
each cell of the adaptive dynamic window, that lies

384

within the dynamic constraints of the robot, each ob-
jective is called to compute its cost value ci for that cell
or to mark the associated action as “not admissible”. In
the latter case the computation for the cell is aborted
immediately to save computation time. The final over-
all cost of each cell is then computed by the weighted
sum of the returned cost values ci of all objectives:

c =
∑

wici (1)
where wi denotes the weight for each objective that
controls the influence of each objective on the overall
cost. Like in classical multi agent systems, the choice
of the correct weights may be crucial. Therefore, it is
reasonable to design the objectives in a way that they
return their decision about a certain action using the
“not admissible” marker instead of a cost value wher-
ever this is applicable. The Distance Objective, the No-
Go Objective and the Direction Objective which are
described below are good examples of where the “not
admissible” marker is sufficient. When using such a
design the majority of objectives simply vote for the
exclusion of an action from the set of allowed actions
while only a few objectives finally compute a cost value
for the remaining actions in order to choose the best
one. In our applications the number of these objec-
tives usually varies from one to three. The choice of
the weights for such a small number of objectives is
uncomplicated.
In order to reduce the computational costs the ob-

jectives are activated and deactived automatically de-
pending on the current task. Each objective usually is
specialized for one or two certain sub-tasks. There-
fore, an objective is activated automatically if it “un-
derstands” at least one sub-task of the current task, oth-
erwise it is deactived since it cannot contribute in the
processing of that task.
After all active objective were processed for all cells

in the dynamic window and the costs of all cells were
computed according to Eq.1, from all admissible cells,
the cell with the lowest cost value is chosen and the
corresponding action is sent to the motor controllers in
terms of a velocity command. Afterwards, the whole
processing cycle is repeated until the current task and
the specified goal is reached. This happens if all active
objectives report that their sub-tasks have been reached.

4.3. Distance Objective
One of the most important objectives is the Distance
Objective, that is responsible for avoiding collisions by
calculating the distance between the robot and obsta-
cles on the predicted trajectory. Similar to [3] the min-
imal braking distance dV0

for the given velocity is cal-
culated. It is the distance the robot would move before
coming to a stop when performing an emergency brake.
Furthermore, we compute the minimum distance dmin

of the predicted trajectory to the closest obstacle. This
is done efficiently by applying a distance transforma-
tion to the current local map and by searching for the

minimum value in the intersection area of the robot’s
shape and map. If dmin ≤ dV0

the underlying action is
discarded by marking it as “not admissible”.
4.4. Path Objective
To combine the proposed reactive method for local mo-
tion planning with a global goal oriented path planning
stage, we use a special Path Objective. This objective
is active whenever a certain goal position is specified
that should be reached by the robot. Using this objec-
tive the motion planner is turned into a Global Dynamic
Window Approach in a similar way as presented in [5].
The cost value c2 for this objective is taken directly
from the navigation function of the path planner. For
each position in the global map this navigation function
contains a value that resembles the distance to the goal.
Hence, the path objective prefers actions that lead the
robot closer to the specified target. In contrast to other
navigators where the path planner is an integral part of
the architecture, in our system it is a part of the Path
Objective, allowing the activation and deactivation of
the path planner depending on the current task. Our
path planner is described in section 5.
4.5. Speed and No-Go Objective
In some scenarios there may be a request for the robot
to abide speed limits (e.g. in areas with dense traffic)
or to avoid forbidden areas. The Speed Objective ful-
fills this request by looking up speed limits in an addi-
tional grid based map where the grid cells encode the
maximum translational speed at a certain position. The
No-Go Objective uses another grid map that encodes
forbidden areas where the robot is not allowed to drive.
All actions leading to a violation of the speed limit or
which let the robot enter a, so called, No-Go area are
rejected.
4.6. Heading Objective
Looking in a predefined direction when arriving at the
destination is an important factor for guiding customers
to products in home improvement stores. Also a proper
orientation at the end of a navigation process is nec-
essary for docking with charging stations or deliver-
ing goods to delivery stations in a transport system.
The Heading Objective will turn the robot by weight-
ing the actions leading to orientation ϕr according to
how close they get the robot to the specified target ori-
entation ϕg by computing c5 = |ϕr − ϕg|. To prevent
the robot from turning to the desired direction while
still driving to the goal, we choose a very small weight
for this objective. This way the heading objective only
gains influence when the robot is near its target loca-
tion.
4.7. Person Follow Objective
Following and observing a person are essential tasks
for robots assisting elderly people in their home. The
Person Follow Objective can be parameterized to fol-
low a person while taking privacy into account by keep-
ing a given minimum distance between the robot and

385

the user. Hypothesis about the users position obtained
from a person tracker are constantly interpreted as new
target positions. The robot shortens the distance to
these positions until a minimum spacing is reached with-
out the need of planning a path. The objective will also
turn the robot to face the user.

4.8. ASTRoNAuT Objective
The termASTRoNAuT stands for Accurate ShorT Range
NAvigaTion. This name was chosen since this objec-
tive is used whenever the robot needs to move or be
positioned very accurately at short range without plan-
ning a global path, like docking with a docking station.
The target t = (tx, ty, tϕ)� is specified by its posi-
tion (tx, ty) and the target orientation tϕ. Furthermore,
the desired precision is given as a covariance matrix S.
The cost for an action that leads the robot to a predicted
pose p = (x, y, ϕ) can then be computed by the Maha-
lanobis distance: c7 =

√
(p − t)�S−1(p − t).

4.9. Additional Objectives
As new objectives can be easily added due to the mod-
ularity of the system we are able to implement some
simple but yet effective objectives such as a Mileage
Objective whose goal it is to let the robot drive a spec-
ified distance. Combined with the Explore Objective
which rewards actions corresponding to high veloci-
ties, a step aside behavior can be simulated where the
robot moves out of the way. The Direction Objective is
used to influence the driving direction of the robot by
prohibiting velocities in the dynamic window that con-
tradict to the prescribed moving directions. Finally, the
User Objective enables a person to manually steer the
robot remotely. Therefore, in the dynamic window the
costs of the cells are weighted according to the desired
actions of the remote controller. If used together with
the Distance Objective the robot will follow the users
commands while still avoiding obstacles automatically.

5. TOPOLOGICAL PATH PLANNING
Planning a path in complex scenarios including mul-
tiple maps on different floors implies that a topologi-
cal representation of all known maps is used. In our
approach we make use of a directed graph representa-
tion. Each map M =

⋃
Ri consists of different re-

gions Ri, 1 ≤ i ≤ n, where each region Ri contains
nodes n

j
i that have certain positions within their re-

gion. Different nodes are connected via directed edges
E = (nj

i , n
l
k) that have either predefined or calculated

traversal costs. Each region Ri contains two special
nodes nrobot

i and n
goal
i . The first one represents the

robot’s pose and is connected to all nodes n
j
i . The lat-

ter represents the goal and all nodes n
j
i are connected

to it as well. Additionally all nodes n
j
i of region Ri

are connected with each other bidirectional. For the
calculation of the traversal costs we differentiate be-
tween different edge types. Costs for edges in the same

region Ei ⊆ E, with Ei = (nj
i , n

l
k), i = k are calcu-

lated once in an initialization step using the E* plan-
ning algorithm. Edges between nodes in different re-
gions Et ⊆ E, with Et = (nj

i , n
l
k), i �= k are called

transitions. The traversal costs of transitions must ei-
ther be predefined or could be zero. Moving between
nodes connected by edges from Ei requires the robot
to drive along a path in Ri, while executing a transition
from Et always implies a change of the region or even
the current map. Since maps may be based on different
coordinate systems or could be of different resolution
we use the relation between maps that are described as
transformation matrices. They allow the conversion of
the robot’s pose from map to map. Additionally, the
graph planner will wait for the execution of user con-
text (e.g. calling an elevator, opening a door) which
can be added to transitions. Transition nodes should al-
ways have corresponding coordinates. An example for
this with three regions could be seen in the right of fig-
ure 3. Here the regions overlap in the area where the
transition nodes are located. This way the pair of nodes
n1

1 and n1
3 as well as n1

2 and n2
3 can have the same co-

ordinates. Region R3 is used as a transit area. The
robot will wait at the transition E1 = (n1

1, n
1
3) for the

door to open. In the left of figure 3 it is shown that the
graph planner adds no further overhead to the simple
case of having a single region in one map only. Our
approach currently requires the user to split maps into
regions manually. However, in future versions we plan
to implement automatic map partitioning algorithms as
proposed in [6].

(a) (b)
Fig. 3. Examples for topological graphs. The graph is
shown in the lower part of the figure, while the upper
part shows the corresponding maps and regions. (a)
If one map is used containing a single region only, no
additional overhead is imposed by the graph planner.
(b) A more complex scenario where a path is planned
across three regions.
Planning a path in topological maps involves sev-

eral sub steps. Without loss of generality we assume
that the robot is currently localized in region Rc and
the goal resides in region Rg. First we update the costs
of the edges connected to nrobot

c and the costs of the
edges ending in ngoal

g . Then a path P = (nrobot
c , nk

c ,

. . . , n
j
i , . . . , n

goal
g) from nrobot

c to ngoal
g is planned in

the topological representation using one of the stan-

386

x [m]

y
[m

]

−12 −10 −8 −6 −4 −2 0 2 4

12

14

16

18

20

22

24

26

A

S

(a)

x [m]

y
[m

]

−20 −15 −10 −5 0

−6

−4

−2

0

2

4

6

B

G

(b)

Fig. 4. Trajectory of the robot that was driving from its start position (S) to a specified goal (G) on a different floor.
The speed of the robot is indicated by the colors, where red corresponds to the robot’s maximal speed of 1 m

s
. (a)

The partial trajectory on the first floor when driving to the elevator (A). (b) The partial trajectory on the second
floor when driving to the goal position (G)

dard graph search algorithms such as Dijkstra or A*.
After that, a local path from nrobot

c to nj
c is planned

using the grid based planner in Rc. This local path is
used by the path objective as described in 4. When the
robot reaches node nj

c the transition given by P is exe-
cuted and the process starts over again with the update
of edge costs.
Using the topological representation we are able to

model scenarios were the robot is only allowed to en-
ter a room through one door and leave through another.
Also one way corridors could be easily realized with
the region based approach. As a side effect - divid-
ing large maps into several regions and restricting the
grid based planner to these regions reduces the compu-
tational costs for the planning process.

6. RESULTS
The navigation framework that is described in this pa-
per is in long-term use in many different applications
ranging from target navigation to person following in
different scenarios like home improvement stores, fast
food restaurants and factory buildings. In the follow-
ing we show a small excerpt of its capabilities. Figure 4
shows the trajectory the robot took when it was adviced
to drive from its position (S) to a goal position (G) on
a different floor in an office building. The topological
path planner first guided the robot to the elevator (A)
that was used to get to the floor where the target is lo-
cated (Fig. 4b). After the robot arrived on that floor,
the path from the elevator (B) was planed to the goal
position. The actual speed of the robot when following
the driven trajectory is coded using different colors.
Fig. 5a shows the distance transformed local map

of the robot that is used by the Distance Objective. The
shades of gray indicates the distance to the closest ob-
stacle. The predicted trajectory and the robot shapes
along that trajectory are shown in green. These shapes
are used for collision detection in the distance trans-
formed map. Fig. 5b shows a part of the velocity space

(a) (b)
Fig. 5. (a) Distance transformed local map that is used
by the Distance Objective. (b) Part of the velocity space
showing the adaptive dynamic window. Red cells were
classified as not admissible, while the colors green-
yellow indicate the calculated costs for the different ac-
tions.

while driving through a narrow corridor. Cells that
were marked as “not addmissible” are shown in red,
while cells that cannot be reached due to the robot’s
dynamic constraints are drawn using yellow color. The
green colors indicate the calculated cost of admissible
cells.

7. REFERENCES
[1] Ch. Schröter, M. Höchemer, and H.-M. Gross, “A Particle Filter

for the Dynamic Window Approach to Mobile Robot Control,”
in Proc. 52nd Int. Scientific Colloquium (IWK), 2007, vol. 1, pp.
425–430.

[2] I. Ulrich and J. Borenstein, “VFH+: Reliable Obstacle Avoid-
ance for Fast Mobile Robots,” in Proc. IEEE Intl. Conf. on
Robotics and Automation (ICRA98), 1998, pp. 1572–1577.

[3] D. Fox, W. Burgard, and S. Thrun, “The Dynamic Window Ap-
proach to Collision Avoidance,” 1997, vol. 4.

[4] F. Hundelshausen, et.al, “Driving with tentacles: Integral struc-
tures for sensing and motion,” Journal of Field Robotics, vol.
25, no. 9, pp. 640–673, 2008.

[5] O. Brock and O. Khatib, “High-speed Navigation using the
Global Dynamic Window Approach,” in Proc. IEEE Intl. Conf.
on Robotics and Automation (ICRA99), 1999, pp. 341–346.

[6] S. Thrun, “Learning Metric-Topological Maps for Indoor Mo-
bile Robot Navigation,” Artificial Intelligence, vol. 99, no. 1, pp.
21–71, 1998.

387

