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ABBREVIATIONS 

ADH  alcohol dehydrogenase 
ALDH  aldehyde dehydrogenase 
APS  Adenosine 5´ phosphosulphate 
BAld  benzaldehyde 
cDNA  complementary DNA 
CTAB  cetyltrimethylammonium bromide 
DAPI  4,6-Diamidino-2-phenylindol 
DEPC  diethylpyrocarbonate 
DIG  digoxigenin 
DNA  deoxyribonucleic acid 
dNTPs  deoxyribonucleotide triphosphate 
EDTA  ethylenediaminetetraacetic acid 
EGTA  Ethylene glycol tetraacetic acid 
gpd  glyceraldehyde-3-phosphate dehydrogenase 
IAA  indole-3-acetic acid 
IAAld  indole-3-acetaldehyde 
IPTG  isopropyl β-D-1-thiogalactopyranoside 
ITS  internal transcribed spacer 
LB  luria bertani 
MMN  Modified Melin-Nokrans 
mRNA  messenger RNA 
NAD  nicotinamide adenine dinucleotide (oxidized form) 
NADH  nicotinamide adenine dinucleotide (reduced form)  
NADP  nicotinamide adenine dinucleotide phosphate (oxidised form) 
NADPH nicotinamide adenine dinucleotide phosphate (reduced form) 
OD  optical density 
ORF  open reading frame 
PCR  polymerase chain reaction 
PIPES  1,4-Piperazinediethanesulfonic acid 
rDNA  ribosomal deoxyribonucleic acid 
RNA  ribonucleic acid 
RT  room temperature 
SDS  sodium dodecyl sulphate 
SOC  super optimal broth with catabolite repressor 
SSC  sodium chloride sodium citrate 
TAE  tris-acetate-EDTA 
TAIL-PCR thermal asymmetric interlaced-PCR 
TIBA  2, 3, 5 – triiodobenzoic acid 
Tris  tris-(hydroxymethyl)-aminomethane 
VA  vesicular-arbuscular  
vol.  volume 
X-Gal  5-Bromo-4-chloro-3-indoxyl-β-D-galactoside 
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SUMMARY 

Understanding of ectomycorrhiza functioning has been slowed down by less investigations of 

this symbiotic association at the molecular level. In this study, the possible role of a specific 

fungal aldehyde dehydrogenase (ALDH) in the host-specific mutual symbiosis between the 

basidiomycete fungus Tricholoma vaccinum and its compatible host plant spruce (Picea 

abies) was investigated. Also, the involvement of indole-3-acetic acid (IAA) in 

ectomycorrhiza formation, which has been controversially observed and discussed in 

literature, was investigated in detail.  

As a first step, the ectomycorrhiza-specifically expressed gene ald1 was isolated from T. 

vaccinum. Sequence analysis showed that the ORF of ald1 is interrupted by 16 introns. The 

conceptually translated protein, Ald1, of 502 amino acids with a predicted molecular mass of 

53 kDa was subsequently confirmed by Western blotting. An alignment of Ald1 with other 53 

specific fungal ALDHs, representing all major phyla in the kingdom of fungi, was used to re-

investigate the evolutionary relationships in this enzyme family. The phylogenetic 

reconstruction, under Bayesian inference, revealed that, with the exception of 

chytridiomycota, fungal ALDHs, which clustered in distinct taxonomic groups in the 

phylogram, underwent two major duplication events during evolution resulting in multiple 

ALDH paralogs, with specifically high number of paralogs in higher fungi.  

Stress Response Elements (STREs) were observed in the promoter region of ald1, suggesting 

a possible role of stress induction for this gene. This prompted us to investigate the possible 

aldehyde- and alcohol-mediated stress induction of ald1 expression by real time RT-PCR, 

which revealed significantly increased gene expression upon addition of 0.1 mM indole-3-

acetaldehyde (IAAld), 0.1 mM benzaldehyde or 0.01% ethanol. Furthermore, heterologous 

expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay 

demonstrated the oxidation of various aldehydes with different kinetics using both NAD+ and 

NADP+ as cofactors.  

In order to understand the biological function of this gene in T. vaccinum, it was 

overexpressed in the fungus using Agrobacterium tumefaciens-mediated transformation 

(ATMT). Functional analysis showed that Ald1-overproducing transformants significantly 

reduced ethanol stress. These results unequivocally demonstrated the ability of Ald1 to 

circumvent ethanol stress, a critical function in ectomycorrhizal habitats. In addition, the 

induction of ald1 expression by IAAld suggests that the gene might be involved, at least 

partly, in production of indole-3-acetic acid (IAA). 
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Investigation of IAA biosynthesis in T. vaccinum showed that the fungus produces detectable 

levels of IAA only in the presence of its precursors, presumably through a tryptophan-indole 

pyruvate-IAAld-IAA biosynthetic pathway. Furthermore, this phytohormone was, for the first 

time in ectomycorrhizal fungi, found to increase growth and hyphal ramification of T. 

vaccinum. Taken together, these results strongly suggest that with IAA precursor availability, 

most likely tryptophan, in root exudates, IAA biosynthesis by the fungus itself might increase 

fungal ramification in intercellular spaces of root cortical cells, ultimately increasing 

mycorrhization speed and efficiency. Up to this point, the involvement of IAA in T. 

vaccinum-spruce ectomycorrhiza was still largely speculative. Thus, we tested the function of 

IAA in ectomycorrhizal symbiosis by exogenously applying the phytohormone to T. 

vaccinum-spruce ectomycorrhiza cultures in vitro. Indeed, the phytohormone increased 

ectomycorrhiza formation as shown by significantly higher Hartig’ net formation in cultures 

supplemented with 100 µM IAA. It is suggested that the growth and ramification effects of 

IAA on T. vaccinum observed in vitro represents a new mechanism involved in mycorrhiza 

morphogenesis. Interestingly, the results also suggest that IAA acts as a signal in the fungal-

plant interaction in ectomycorrhizal symbiosis.  

 

The isolation and characterization of T. vaccinum ald1, the first ALDH-encoding gene to be 

studied in mycorrhizal fungi, will form the basis of future work on the role of IAA in 

ectomycorrhizal symbiosis, communication of the symbiotic partners, and the isolation of 

other ald paralogs in order to fully resolve the aldehyde and alcohol stress torelance in 

ectomycorrhiza. The use of ATMT in functional gene analysis, demonstrated for the second 

time in ectomycorrhizal fungi, shows that the method has the potential for investigating gene 

functions in T. vaccinum as well as in other ectomycorrhizal fungi.  
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ZUSAMMENFASSUNG 

 

Das funktionelle Verständnis der Ektomykorrhiza entwickelt sich aufgrund der wenigen 

molekularen Untersuchungen dieser Symbiose nur vergleichsweise langsam. In dieser Arbeit 

wurde die mögliche Rolle einer spezifisch pilzlichen Aldehyd-Dehydrogenase (ALDH) in der 

Symbiose zwischen dem zu den Basidiomyzeten gehörenden Ektomykorrhiza-Pilz 

Tricholoma vaccinum und seiner kompatiblen Wirtspflanze, der Fichte (Picea abies), 

untersucht. Auch der Einfluss von Indol-3-Essigsäure (IAA) auf die Ektomykorrhizabildung, 

die bereits seit längerer Zeit in der Literatur kontrovers diskutiert wird, wurde detailliert 

untersucht.  

Zunächst wurde das in der Ektomykorrhiza spezifisch exprimierte Gen ald1 aus T. vaccinum 

isoliert und charakterisiert. Die Sequenzanalyse zeigte, dass der offene Leserahmen von 16 

Introns unterbrochen ist. Aus der Sequenz konnte das Protein Ald1 mit 502 Aminosäuren 

abgeleitet werden. Das vorhergesagte Molekulargewicht konnte durch Westernblot-Analyse 

mit 53 kDa bestätigt werden. Um die evolutionäre Beziehung zwischen den ALDHs dieser 

Enzymfamilie zu untersuchen, wurde in dieser Arbeit ein Alignment von Ald1 mit anderen 

pilzlichen ALDHs erstellt. Insgesamt konnten 53 spezifisch pilzliche ALDHs aus allen 

Hauptgruppen der Pilze verglichen werden. Die auf Bayes’scher Interferenz basierende 

phylogenetische Untersuchung ergab, dass, mit Ausnahme der Chytridiomycota, die 

pilzlichen ALDHs klare taxonomische Gruppen im Phylogramm bilden. Diese sind im Laufe 

der Evolution durch zwei Duplikationsereignisse entstanden, so dass multiple ALDH-

Paraloge vorliegen. Dies betrifft insbesondere die höheren Pilze und trifft auch für T. 

vaccinum zu. 

Stress-Response-Elemente (STREs) wurden in der Promotorregion des ald1-Gens 

identifiziert, was nicht überrascht, da eine wahrscheinliche Funktion im Abbau von 

Aldehyden liegt, die in der Zelle entgiftet werden müssen. Eine Induktion dieses Gens durch 

Stressfaktoren ist daher naheliegend. Daher wurde im Folgenden ie Induktion von ald1 durch 

Aldehyde und Alkohol mittels Real time-PCR untersucht. Eine signifikant erhöhte 

Genexpression wurde bei Wachstum mit 0,1 mM Indol-3-Acetaldehyd (IAAld), 0,1 mM 

Benzaldehyd und 0,01% Ethanol festgestellt.  

Um die biologische Funktion von ald1 in T. vaccinum zu charakterisieren, wurde es homolog 

im Pilz über Agrobacterium tumefaciens-vermittelte Transformation (ATMT) überexprimiert. 

Die funktionelle Analyse zeigte, dass Ald1-überproduzierende Transformanten deutlich 
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weniger anfällig für Ethanolstress waren als der Wildtypstamm. Diese Resultate 

demonstrieren die Fähigkeit der ALDH, durch Ethanol erzeugten Stress zu umgehen; eine 

entscheidende Funktion in Ektomykorrhiza-Habitaten.  

 

Die Induktion der ald1-Expression durch IAAld deutete darauf hin, dass sie zumindest 

teilweise an der Produktion der Indol-3-essigsäure (IAA) beteiligt sein könnte. Daher wurde 

die IAA-Biosynthese in T. vaccinum untersucht. Mit Hilfe des Nachweises durch GC-MS 

konnte gezeigt werden, dass der Pilz nur in Anwesenheit von Tryptophyn oder IAAld 

messbare Mengen von IAA produziert, vermutlich über den Tryptophan-Indolpyruvat-IAAld-

IAA-Biosyntheseweg. Die Synthese von IAA durch den Pilz machte eine Charakterisierung 

der Auswirkungen exogener IAA-Gaben zur Charakterisierung der Wirkung von IAA auf T. 

vaccinum nötig. Die exogene Zugabe von IAA zu T. vaccinum-Kulturen erhöhte signifikant 

das Pilzwachstum und die Hyphenverzweigung. Diese Wirkung wurde durch Zugabe des 

IAA-Transportinhibitors TIBA aufgehoben. Zusammen genommen deuten die Resultate 

darauf hin, dass mit verfügbaren IAA-Vorstufen wie Tryptophan in Wurzelexsudaten, dieser 

Pilz in der Lage ist, IAA zu produzieren. Dies wiederum führt zu erhöhter 

Hyphenverzweigung in den Interzellularräumen der Rindenzellen und somit zur schnellen und 

effektiveren Mykorrhizierung. Bisher war der Einfluss von IAA auf Ektomykorrhiza 

spekulativ, so dass hier eine funktionelle Verbindung mit der Synthese eines 

Pflanzenhormons und der Bildung der Symbiose erstmals gezeigt werden konnte. Um die 

Rolle von IAA zu bestätigen, wurde das Phytohormon in vitro zu Co-Kulturen von T. 

vaccinum und Fichte gegeben, wobei 100 µM IAA zu einer verstärkten Ausbildung des 

Hartig’ schen Netzes im Vergleich zu Kontrollkulturen führte. Damit konnten die in vitro 

beobachteten Wachstums- und Verzweigungsffekte von IAA auf T. vaccinum mit der 

Expression des Gens ald1 verknüpft werden und ein funktioneller Zusammenhang zwischen 

IAA und der Ektomykorrhizaentwicklung hergestellt werden. 

 

Die Isolierung und Charakterisierung des Gens ald1 aus dem Ektomykorrhizapilz T. vaccinum 

bietet die Grundlage für zukünfige Arbeiten wie beispielsweise die Isolierung anderer ald-

Paraloge, um so die Aldehyd- und Alkohol-Stresstoleranz in der Ektomykorrhiza aufzuklären. 

Die hier gezeigte Verwendung der ATMT in der funktionellen Genanalyse öffnet neue 

Möglichkeiten nicht nur für die Analyse weiterer ald-Paraloge, sondern auch zur 

funktionellen Analyse anderer Gene in T. vaccinum und in anderen Ektomykorrhiza-Pilzen. 
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1. INTRODUCTION  

1.1. Mycorrhiza (general overview)  

The term mycorrhiza conventionally refers to a mutualistic symbiosis between plant roots and 

filamentous fungi. However, it should be cautiously used since some experiments have shown 

that not all the mycorrhizal associations are mutualistic (Smith and Read, 1997) in terms of 

nutrient cost-benefit ratio. It is estimated that over 90% of terrestrial plants naturally form 

mycorrhiza with soil fungi (Cairney, 2000). Ever since Frank (1885) recognized the essential 

aspects of the association, it has been suggested that in this mutualistic symbiosis, there is a 

bidirectional flow of nutrients in which the fungus mobilizes and supplies inorganic nutrients 

to the plant, and the plant primarily supplies carbohydrates to the fungus. Mycorrhizal 

associations improve plant/crop growth, and this becomes relevant in environments which are 

frequently flooded or drought prone, where non-mycorrhized plants would not survive due to 

increased stress. Furthermore, mycorrhizal associations increase resistance of plants to 

pathogens (Farquhar and Peterson, 1991; Smith and Read, 1997; Pozo and Azcon-Aguilar, 

2007; Zhang et al., 2008) and support plant growth on poor soils (Smith and Read, 1997).  

Mycorrhizal associations are broadly divided, on the basis of, but not limited to, their fungal 

partners and structures formed, into vesicular arbuscular (VA) endomycorrhiza, 

ectomycorrhiza and ericoid mycorrhiza (Smith and Read, 1997). The VA mycorrhiza involves 

interaction of aseptate fungi in the order Glomales of the zygomycota with most herbaceous 

and woody angiosperm and gymnosperm plants. This type of mycorrhiza is the most ancient 

of all mycorrhizal types, as shown by fossil records and DNA sequences of living members; 

this could have happened about 450-500 million years ago (Smith and Read, 1997; Cairney, 

2000). Subsequently, as the organic matter of ancient soils increased, ectomycorrhiza (about 

200 million years ago), and later ericoid mycorrhiza (about 100 million years ago) evolved 

(Cairney, 2000). Ectomycorrhiza is formed between tree or woody angiosperms and 

gymnosperms, and the majority of ectomycorrhizal fungi belonging to the subphylum 

basidiomycotina (Kendrick, 1992) while ericoid mycorrhiza are formed by ascomycetes on 

plants of the order Ericales (Smith and Read, 1997). Whereas endomycorrhizae have 

convincingly been studied, perhaps because most of them are associated with annual crops in 

agriculture, much remains unknown about ectomycorrhizae, especially at the molecular level. 

Still, the latter associations play a central role in ecosystem functioning and stability since 

they are involved in agriculture and forestry. 
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1.2. Ectomycorrhiza 

1.2.1. Structure and function 

Although ectomycorrhizal associations have been known to exist for a very long time, it is 

only in the recent past that we began to understand them; this development was undoubtedly 

aided by in vitro systems that have been developed, and to a lesser extent, the wealth of the in 

vivo knowledge generated by morphotyping and sequencing of ITS region of fungal rDNA. In 

this mycorrhizal type, the fungus and plant interact to differentiate morphological features 

typical of this association. Initially, the fungus grows around the plant root forming a network 

of hyphae called mantle, from which some hyphae penetrate the root to grow intercellularly 

between cortical cells to form the Hartig’ net, which acts as a surface for exchange of 

nutrients between the two partners (Smith and Read, 1997; Fig. 1 A). Interestingly, these 

features can be observed, albeit at low frequencies, in axenic cultures without amending 

minimal medium with glucose or sucrose to increase fungal growth, as has been described by 

other groups, leading to development of realistic in vitro systems that reflect natural settings 

(Asiimwe et al., 2010).   

 

 
 

Morphotyping studies indicate that ectomycorrhizal fungi extend their growth from mantle to 

the bulk soil, exploring long distances with the help of an extensive network of individual 

hyphae or organized hyphal aggregates called rhizomorphs, which emanate from the mantle 

(Baier et al., 2006; Agerer, 2001; Smith and Read, 1997), as depicted in Fig. 1B. This 

extensive hyphal network facilitates absorption of nutrients, either in dissolved form or 

mobilized from organic to inorganic sources by extracellular enzymes, sequestered through 

BA

Fig. 1. A: Schematic longitudinal section of a plant root showing ectomycorrhizal features 
(http://biology.uwsp.edu); B: An extensive mycelial and rhizomorph development by Suillus bovinus in 
symbiosis with a seedling of Pinus sylvestris (adapted from Smith and Reed, 1997). Interesting to note is the  
extraradical fungal system, emanating from fungal mantle (M), which has already mycorrhized new 
germinating seedlings (NS).     

NS NS

M 
M 
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excretion of organic acids, and water uptake, which helps mycorrhized plants to better exploit 

unfavourable ecological niches. 

 

1.2.2. Ectomycorrhizal fungi 

The majority of fungi that form ectomycorrhizae are basidiomycetes, although a few 

ascomycetes and a few species of zygomycetous fungi in the genus Endogone are known to 

form this type of association (Smith and Read, 1997). It is not surprising, therefore, that a 

larger number of fungal species, as compared to VA mycorrhiza, form ectomycorrhiza. It has 

been estimated, based on field observations, that about 5000-6000 species of fungi form 

ectomycorrhizas (Molina et al., 1992). Of course, this ought to be verified experimentally by 

synthesizing ectomycorrhizae in vitro to confirm the field estimates. Observations of plant-

sporocarp associations suggest that the majority of ectomycorrhizal fungi have a broad host 

range. For example, species such as Amanita muscaria, Cenococcum geophilum, Hebeloma 

crustuliniforme, Laccaria laccata, Pisolithus tinctorius and Thelephora terrestris are 

distributed world wide on a very wide range of plants (Smith and Read, 1997). However, 

some fungi show a narrow host range or, in fact, form mycorrhiza only with a single plant 

host specie. This is the case for Tricholoma vaccinum, which forms natural ectomycorrhiza 

only with spruce. In total, about 200 species of the genus Tricholoma, most of which form 

ectomycorrhiza, are now known to exist (Kirk et al., 2008). Interestingly, Ogawa (1985) 

observed that the “ectomycorrhiza” formed between Tricholoma matsutake and Pinus spp. 

lacked a Hartig’ net, and that the association was, actually, parasitic. Because of this, Smith 

and Read (1997) discouraged the use of the term “ectomycorrhiza” to describe this specific 

association. However, the formation of true ectomycorrhiza by this fungus was later 

demonstrated by Yamada et al. (1999) by using bottle cultures of T. matsutake-Pinus 

densiflora ectomycorrhiza in vitro. Their success was, however, probably due to differences 

in infectivity or pathogenicity with isolates used in other different studies. Nonetheless, T. 

matsutake has attracted tremendous research attention, primarily because the fungus is one of 

the most popular edible mushrooms. Although the genome of T. vaccinum has not been 

sequenced, the availability of a sequenced genome of its close relative, Laccaria bicolor, the 

first ectomycorrhizal fungus to be fully sequenced (Martin et al., 2008), will facilitate its 

investigation. 
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1.2.3. Molecular plant-fungal interaction 

Much is now widely known about the morphology and function of ectomycorrhizae and the 

specificity of the interaction. In fact, over the past decades, the theme of “ectomycorrhiza 

structure” has become obvious. However, the fundamental question about what drives the 

interaction of plant and mycobiont, and the subsequent differentiation of the observed 

structures, remain unanswered. This can be resolved by investigating signals, together with 

their regulation, involved in the communication between the mycobionts and their plant 

partners during mycorrhiza development. Unfortunately, such studies are rare, although 

molecular basis of ectomycorrhizal interaction is undoubtedly central to its understanding. 

Also, in order to better utilize ectomycorrhizal fungi in biotechnology, thorough knowledge 

about their signal production and perception during ectomycorrhizal interaction is necessary. 

The morphological and physiological changes differentiated in ectomycorrhizae have been 

shown, by a few recent studies, to be accompanied by changes in gene transcript pattern. 

Genes which are differentially expressed in ectomycorrhizae have been identified in eucalypt-

Pisolithus ectomycorrhiza (Tagu et al., 1993; Tagu and Martin, 1995; Duplessis et al., 2005), 

the first type of ectomycorrhiza to receive intensive research attention in this field (Martin and 

Tagu, 1995). This is still regarded as a model system in ectomycorrhizal studies. In another 

interaction, differential display was carried out to characterize the host-specific Tricholoma-

spruce ectomycorrhiza (Krause and Kothe, 2006). Although this approach yielded several 

genes hypothesized to be involved in the interaction, physiological functions or mechanisms 

regulating expression have not yet been elucidated. This is compounded by the fact that most 

of the ectomycorrhizal fungi, mainly basidiomycetes, are not amenable to laboratory 

experimentation. Nevertheless, recent demonstrations that some of these fungi can be 

transformed present an opportunity to unravel the possible biological functions of genes 

identified in differential display studies in ectomycorrhiza establishment and maintenance. 

  

1.3. Aldehyde dehydrogenases as metabolically versatile enzymes 

1.3.1. Metabolic roles of aldehyde dehydrogenase  

ALDHs have been identified, in all phyla, to play various roles in metabolism, primarily, but 

not limited to, metabolic roles resulting from oxidation of different aldehydes to their 

corresponding carboxylic acids. Although these reactions can also be catalyzed by aldehyde 

oxidase and xanthine oxidase, ALDH is the major enzyme (Panoutsopouluos and Beedham, 

2005). The presence of these enzymes across all phyla suggests that they play critical roles in 
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metabolism of living organisms. Perozich et al (1999) phylogenetically investigated the 

ALDH relationships by comparing 145 ALDH sequences across all phyla, and revealed 

several conserved residues and motifs in the enzyme superfamily, suggesting common 

catalytic activities. The authors indicated that a typical ALDH should have between 450 and 

520 amino acids, and that it possesses 10 highly conserved motifs, which cluster around the 

active site of the enzyme (Fig. 2). A high variability in substrate specificity occurs in ALDHs, 

with some being highly specific for a limited range of substrates while others show broad 

substrate specificity. This forms the basis of their classification into gene families comprising 

the ALDH super family. Although 13 ALDH families were earlier reported (Perozich et al., 

1999), this has been updated to 20 families (Sophos and Vasiliou, 2002), and the number is 

likely to further increase as more genomes are sequenced. All ALDHs require either NAD or 

NADP as a cofactor, as indicated by many authors, although some ALDHs have been shown 

to bind either cofactor, albeit with different affinities.    

 
 
ALDH is normally regarded as an enzyme of detoxification (Jacoby and Ziegler, 1990) that 

most likely performs a dual role: metabolism of physiological compounds i.e. metabolic 

intermediate aldehydes, and active detoxification of exogenous aldehydes, all of which are 

normally toxic at low levels because of their chemical reactivity. Endogenous 

physiologically-derived aldehydes arise from metabolism of amino acids, biogenic amines, 

carbohydrates, vitamins, steroids, and lipids while xenobiotics (including drugs) are a major 

source of exogenous aldehydes (reviewed by Lindahl, 1992).  

Detoxification of aldehydes is closely linked to that of alcohols because ALDH is the second 

enzyme in alcohol metabolism, the first being alcohol dehydrogenase (ADH). In alcohol 

metabolism, an alcohol is oxidized to an aldehyde by ADH, which is later on also oxidized to 

the corresponding carboxylic acid by ALDH (Fig. 3). This positions ALDH as a central 

Fig. 2. Proposed secondary structure of aldehyde dehydrogenase showing highly conserved motifs, which 
cluster around the enzyme active site (gray region); the structure of rat cytosolic class 3 ALDH was generated 
by Sayle and Milner-White (1995).    
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enzyme in detoxification since both aldehydes and alcohols are abundant in nature, especially 

when an organism is periodically exposed to stress, which is normally the case. The end 

products of alcohol and aldehyde metabolism, though not depicted in the scheme (Fig. 3), are 

non-toxic usable carbohydrates. This would explain, at least partly, why some fungi are able 

to utilize these rather toxic compounds as alternative nutrient sources. However, it would 

come at an energy cost, since an organism would have to increase production of ALDH and 

ADH, a phenomenon that would lead to a metabolic disadvantage.       

 

   
 

 Apart from being involved in detoxification of alcohols and aldehydes, ALDH is a major 

enzyme that catalyzes production of the phytohormone IAA from indole-3-acetaldehyde 

(Cooney and Nonhebel, 1989; Basse et al., 1996; Tam and Normanly, 1998; Fedorova et al., 

2005; Spaepen et al., 2007; Reineke et al., 2008), the last step in tryptophan-dependent IAA 

biosynthesis, using the indole-3-pyruvic acid pathway (Woodward and Bartel, 2005). While 

IAA is traditionally known as a plant hormone that mediates plant growth and development, it 

has been observed to play other important metabolic roles mediating plant-microbe 

interaction, whether beneficial or pathogenic, and microbe-microbe interaction. 
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NADH + H+

Fig. 3. A simplified scheme illustrating ethanol catabolism: Ethanol is sequentially oxidized to acetaldehyde 
and acetate, catalyzed by ADH and ALDH respectively, by utilizing NAD as a cofactor (Scheme adapted 
from Krause, 2005). 
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1.3.2. Regulation of aldehyde dehydrogenase 

The fact that aldehydes are highly reactive, mainly toxic in low concentrations, and are 

generated from limitless numbers of endogenous and exogenous sources, demands a tight 

regulation of the oxidizing enzyme, ALDH, for survival. While it is well established that ald 

genes are stress-inducible, the real inducers of the genes are most likely aldehydes, which 

mainly, but not solely, accumulate from reactions of reactive oxygen species (ROS) that 

excessively accumulate in cells after exposure to stress, with lipids and proteins. The evidence 

of this suggestion mainly comes from the well studied ethanol utilization pathway in 

Aspergillus nidulans, although there is also evidence from other organisms. In A. nidulans, 

ALDH and ADH are co-regulated, at the transcription level, by the so called alc regulon. In 

this alc gene system, the pathway-specific transcriptional activator AlcR mediates the 

induction of aldA, the aldehyde dehydrogenase-encoding gene, and ADH-encoding gene (alc) 

in the presence of either ethanol or acetaldehyde as co-inducing compounds (Fillinger et al., 

1995; Felenbok et al., 2001; Flipphi et al., 2001) (Fig. 4).  

                                           
Fig. 4. Schematic diagram showing the regulation of ethanol catabolic pathway. AlcR, which is subject to 
positive autoregulation (curved arrow), activates the alcohol dehydrogenase- and aldehyde dehydrogenase-
encoding genes (thick arrows) in presence of a co-inducer. The CreA repressor, in the presence of glucose, 
directly represses the structural genes (adapted from Flipphi et al., 2001).    
 
 

Apart from ethanol and acetaldehyde, other inducers of the alc system e.g. amino acids and 

other aliphatic alcohols have been identified, but it was concluded that the real physiological 

inducers are aldehydes, and that all other inducer compounds have to first be converted to 

their corresponding aldehydes (Flipphi et al., 2001; Flipphi et al., 2002; Flipphi et al., 2003).  
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The alc gene system is negatively controlled by the general catabolite repressor CreA in the 

presence of glucose as a repressing carbon source. The physiological induction of alcohol 

metabolism by aldehydes, in a tight co-regulation of ALDH and ADH, and given that the 

former also participates in detoxification of other non-alcohol derived aldehydes, positions 

ALDH as a critical enzyme in metabolism.  

 

1.3.3. Possible roles of aldehyde dehydrogenase in ectomycorrhiza 

In nature, plants inhabit environments that are occasionally water-logged or flooded. Under 

these anaerobic conditions, glycolysis and alcoholic fermentation is necessary for the plant’s 

survival. Unfortunately, concentrations of aldehydes are dramatically increased in the process, 

which then requires an ALDH-aided detoxification mechanism. This is, probably, one of the 

underlying mechanisms for flood tolerance, as evidenced by up-regulation of rice ALDH 

under submerged conditions (Nakazono et al., 2000). It has been shown that mycorrhiza 

increases flood tolerance of plants, mainly through suppression of toxic products of anaerobic 

respiration like ethanol (Osundina, 1998; Rutto et al., 2002), and to a lesser extent  through 

increased nitrogen acquisition, among others (Neto et al., 2006). Although these observations 

were made on VA-mycorrhiza, they might be extrapolated to suggest the same role in 

ectomycorrhiza, considering many other shared physiological roles between these 

mycorrhizal types.  

Mycorrhiza-enhanced flood tolerance by detoxification of anaerobic respiration products 

would suggest a direct role of a fungal ALDH in mediating stress effects derived from flooded 

or water-logged conditions. However, this is still a matter of speculation because there were 

no ald genes isolated to that effect, another reminder of the less molecular characterization in 

mycorrhizal studies. Nevertheless, evidence of a possible role of a fungal ALDH in 

ectomycorrhiza development and maintenance has recently started emerging, as shown by the 

study that identified a fungal ald as one of the genes that were differentially expressed in T. 

vaccinum-spruce ectomycorrhiza (Krause and Kothe, 2006). In fact, a total of three ald partial 

sequences from T. vaccinum, which cluster, in a phylogenetic tree, with other basidiomycete 

ALDHs have been reported (Krause, 2005; Asiimwe et al., 2010). Also, since an ALDH was 

shown to be involved in production of IAA in a basidiomycete, Ustilago maydis (Basse et al., 

1996; Reineke et al., 2008), this could also be true for basidiomycete ectomycorrhizal fungi. 

Although still controversial, IAA has been suggested to increase mycorrhization efficiency. 
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1.4. Indole-3-acetic acid in metabolism 

1.4.1. Metabolic roles, biosynthesis, and regulation of indole-3-acetic acid 

IAA, which is recognized as the key auxin in most plants (Woodward and Bartel, 2005), is a 

critical plant hormone that modulates different developmental processes such as general root 

and shoot architecture, tropic responses to light and gravity, organ patterning, vascular 

development and growth in tissue culture (Davies, 1995), all of which are fundamental to 

plant growth and development. However, IAA seems not only to be active in growth 

promotion of plants, but also of fungi because it has been shown that fungal growth was 

increased as a consequence of exogenous IAA application (Nasim et al., 2004). In addition, 

some fungi (Podila, 2002) and bacteria (Spaepen et al., 2007) are able to produce IAA. 

Predominantly a plant hormone, it is not clear how microbes developed the trait of IAA 

production during their evolution, but it, most probably, could have been developed as a 

signal to manipulate the host metabolic and defense systems, since most microbes producing 

IAA are plant-associated. Whereas there is convincing evidence to support this hypothesis in 

bacteria (Spaepen et al., 2007), where bacterial IAA was shown to modulate plant IAA 

signaling or host defense responses, the physiological role of fungal IAA in host interaction is 

still largely speculative. Furthermore, IAA was shown to mediate plant growth promotion by 

plant growth-promoting rhizobacteria (PGPR) (Xie et al., 1996; Bashan and Holguin, 1997), 

and nodulation in rhizobium-legume symbiosis (Mathesius et al., 1998). 

 

Although a growth-promoting hormone, IAA is toxic at high levels, and is also an unstable 

compound, which makes it plausible to suggest that IAA metabolism may be tightly 

controlled. Indeed, this seems to be the case, as only small amounts of free IAA in plants, 

bacteria or fungi are present, most of it existing in form of conjugates. These conjugates serve 

diverse roles, like transport, storage and protection of IAA from enzymatic degradation 

(Spaepen et al., 2007), but also homeostatic control of its levels in the cell, and allow its 

catabolism (Östin et al., 1998; Seidel et al., 2006). Overall, cellular IAA concentration can be 

controlled at multiple levels, such as biosynthesis, conjugation, deconjugation, degradation, 

and intercellular transport (Vanneste and Friml, 2009) to maintain the physiologically relevant 

levels. Despite the fact that there are elegant studies demonstrating that high IAA 

concentration may be important for some physiological processes like organ initiation 

(Dubrovsky et al., 2008), the so-called auxin maxima, differential IAA distribution seems to 

be the key to initiation of many IAA- dependent processes.       
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The tight control of IAA metabolism would also imply tight regulation of its biosynthesis. 

Despite the fact that the physiological roles and importance of IAA are clearly understood, its 

biosynthetic pathways have, surprisingly, not been fully elucidated. This is, perhaps, because 

of the existence of multiple IAA biosynthetic pathways, functional redundancies among the 

participating enzymes, and existence of most of IAA in conjugated form, as reviewed by 

Eckardt (2001). Thus, until now, there is no single, complete IAA biosynthetic pathway that 

has been identified, although various pathways have been proposed, on the basis of a few 

biosynthetic genes cloned and detection of biosynthetic intermediates. Furthermore, the 

pathways are proposed from a pool of different studies and systems, mainly in plants and less 

for microbes. Broadly, two main IAA biosynthetic pathways have been proposed: tryptophan-

dependent and tryptophan-independent pathways (Fig. 5). The tryptophan-independent 

pathway was proposed by Normanly et al (1993), on the basis of Arabidopsis mutants with 

reduced levels of tryptophan synthase, which showed increased amounts of IAA conjugates. 

Unfortunately, their proposal was refuted when it was realized that the increase in IAA 

conjugates was, in fact, a result of non-enzymatic degradation of indole-3-glycerophosphate, 

the IAA (and tryptophan) precursor that hyper-accumulates in the mutants (Müller and 

Weiler, 2000).        

  

 
 

As a matter of fact, the tryptophan-independent pathway is now widely disputed since, so far, 

neither intermediates nor biosynthetic enzymes have been presented, putting tryptophan at the 

center stage as the primary precursor in IAA biosynthesis. In the tryptophan-dependent 

Fig. 5. A scheme showing the proposed IAA biosynthetic pathways found in plants and microorganisms. 
The dashed lines indicate assumed reaction steps for which the predicted genes/enzymes have not been 
identified (adapted from Pollmann et al., 2009). Tryptophan-independent pathway assumes direct IAA 
production from non-tryptophan precursors. In tryptophan-dependent pathway, IAA is produced through 
indole-3-acetamide (IAM), indole-3-pyruvate (IPyr), indole-3-acetaldehyde (IAAld), tryptamine (TAM), 
indole-3-acetaldoxime ((IAOx), and indole-3-acetonitrile (IAN) as the main biosynthetic intermediates.   
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pathway, IAA production proceeds via four “hallmark” intermediates, i.e. indole-3-acetamide 

(IAM), indole-3-pyruvate (IPyr), tryptamine (TAM), and indole-3-acetaldoxime (IAOx) 

(Woodward and Bartel, 2005; Pollmann et al., 2009). It should, however, be emphasized that 

most of the knowledge about the pathways is from plants. Nevertheless, as reviewed in 

Spaepen et al (2007), all pathways, excluding IAOx, have also been proposed in bacteria. 

Although many reports have documented production of IAA by fungi, the biosynthetic 

pathways are largely unknown. Most of what is currently known about IAA biosynthesis in 

fungi comes from the basidiomycete smut fungus Ustilago maydis, which has served as a 

model organism in these studies. In this regard, it has been proposed that IAA biosynthesis in 

U. maydis proceeds from tryptophan, via IPyr and IAAld (Basse et al., 1996; Bölker et al., 

2008; Reineke et al., 2008; Zuther et al., 2008). Although TAM feeding experiments showed 

that U. maydis is able to convert TAM to IAA (Basse et al., 1996; Reineke et al., 2008), the 

downstream intermediates are not known, in which case the TAM pathway in this fungus 

remains unresolved. Furthermore, IPyr and IAM pathways have also been proposed in 

Colletotrichum gloeosporioides and C. acutum (Robinson et al., 1998; Chung et al., 2003). So 

far, no investigation on IAA biosynthetic pathways has been reported for ectomycorrhizal 

fungi.  

1.4.2. Role of indole-3-acetic acid in ectomycorrhiza development 

Auxin was proposed, in the so-called ‘auxin theory’ of Slankis (1973), as one of the agents 

contributing to the regulation of ectomycorrhiza development, by stating that mycorrhiza 

formation was regulated through the controlled production of auxins by ectomycorrhizal 

fungi. Ever since that time, the involvement of IAA in ectomycorrhiza development and 

maintenance became controversial, which, unfortunately, seems to remain the case until 

today. A strong argument in support of Slankis’ theory first came in 1994, when Gay et al., 

(1994) used IAA-overproducing transformants of Hebeloma cylindrosporum on Pinus 

pinaster seedlings to show that fungal IAA increases ectomycorrhiza formation. In fact, a 

cytological confirmation to these observations was made by using one of the mutants (Gea et 

al., 1994), where it was observed that the IAA-overproducer formed ectomycorrhiza that was 

characterized by a more highly developed Hartig’ net, up to seven layers of hyphae in width, 

which reached the endodermis (Fig. 6). However, these two studies, fascinating as they are, 

indicated that there was no correlation between the IAA synthesizing ability of the 

transformants and their mycorrhizal activity, and general plant growth.  
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Nevertheless, the studies suggest that fungal-derived IAA might trigger morphogenetic 

changes in host roots as well as the fungal partner during ectomycorrhiza formation. Exactly 

how this would happen is not understood, although, as hypothesized in a review by Podila 

(2002), fungal IAA could function as a signal to trigger transcription of auxin responsive 

genes, as supported by up-regulated genes in P. pinaster in response to colonization by H. 

cylindrosporum and external IAA application (Charvet-Candel et al., 2002; Reddy et al., 

2003), which would in turn trigger a cascade of molecular events in plant roots leading to 

formation of mycorrhiza. Many ectomycorrhizal fungi have been shown to produce IAA, but 

mainly in presence of tryptophan as the precursor, although the biosynthetic pathways are not 

known. However, the role of IAA in differentiating ectomycorrhiza features remain 

controversial (reviewed in Barker and Tagu, 2000; Podila, 2002). Whereas Gay et al., 1994 

and Gea et al., 1994 convincingly demonstrated that IAA is involved in ectomycorrhiza 

development by using the elegant IAA-overproducing transformants of Hebeloma 

cylindrosporum, which was later confirmed by using fungi with different IAA-synthesizing 

abilities and exogenous application of IAA and its inhibitors by different authors (for example 

Rudawska and Kielszewska-Rokicka, 1997; Niemi et al., 2002; Rincón et al., 2003; 

Herrmann et al., 2004), other authors indicated otherwise (Horan, 1991; Wallander et al., 

1992; Wallander et al., 1994; Hampp et al., 1996). While tryptophan availability in root 

exudates is not expected to be at the level of concentrations used in various experiments to 

test the ability of ectomycorrhizal fungi to produce IAA, it could nonetheless be sufficient to 

Fig. 6. Cross sections of H. cylindrosporum/ P. pinaster ectomycorrhiza showing wild type (A) and IAA-
overproducing (B) fungal colonization (From Gea et al., 1994). Note that the IAA-overproducing 
transformant formed more extensively developed Hartig’ net (HN) between cortical cells (CC) than the wild 
type.     

A B
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trigger the increased biosynthesis of IAA by ectomycorrhizal fungi in the symbiotic 

interaction.  

Understanding involvement of fungal IAA in ectomycorrhizal development can not be 

complete without investigating the possible function of the phytohormone in the biology of 

ectomycorrhizal fungi. Judging from reports on the role of IAA in ectomycorrhiza, it is 

plausible to suggest that, although fungal IAA plays a role in ectomycorrhiza development, 

the effect is most probably a contribution to that of other fungal and plant factors, which are 

also involved in regulation of ectomycorrhiza formation.  

 

1.5. Fungal transformation 

1.5.1. Transformation (general overview) 

Genetic transformation systems represent an essential factor in advancement of functional 

gene analysis or engineering organisms to express desirable traits. Specifically for the latter, 

commercial production of enzymes or important metabolites, and the production of 

genetically engineered organisms for broader application in agriculture and forestry is 

possible. Through genetic transformation, genomes of organisms can be manipulated, 

correlating in vitro studies of purified DNA with biological consequences in vivo. Apart from 

the yeast Saccharomyces cerevisiae and a few industrially important filamentous fungi, 

functional gene analysis in filamentous fungi has been hampered by more complicated, and 

often time-consuming, inefficient transformation methods. Yet, with the current genomics 

revolution, where increasing number of fungal genomes are completely sequenced, need 

arises for development of efficient transformation systems to unravel the biological functions 

for DNA sequences that have been determined in large scale sequencing efforts. As broadly 

stated for microorganisms (Ruiz-Díez, 2002), molecular genetic manipulation of fungi 

requires the development of efficient transformation systems that include: (1) introducing 

exogenous DNA into recipient cells; (2) expression of genes present on transforming DNA; 

and (3) stable maintenance and replication of the inserted DNA, leading to expression of 

desired phenotypic traits.   

 

1.5.2. Transformation methods 

Three decades after the first report on successful transformation of S. cerevisiae (Hinnen et 

al., 1978), efficient transformation systems have been developed for only a few dozen 



1. INTRODUCTION 21

filamentous fungi. Whereas a number of fungal transformation methods exist, the single most 

important setback to genetic transformation of a multitude of fungi is that the methods are not 

cross-cutting and so, new transformation systems need to be developed for individual fungi, 

which is not trivial for many of them. Moreover, once a transformation system has been 

successfully developed, there may still be barriers to use it for analysis of gene function. It is, 

therefore, imperative to carefully choose a transformation method that is most suitable for the 

genetic engineering strategy at hand. The most promising methods that have been used in 

fungal transformation are protoplast transformation, biolistic transformation, electroporation 

and Agrobacterium-mediated transformation (AMT). The features as well as advantages and 

disadvantages of these transformation methods are reviewed in Meyer (2008) and others (for 

example Ruiz-Díez, 2002; Michielse et al., 2005; Weld et al., 2006). AMT, which relies on 

the ability of A. tumefaciens to transfer the T-DNA region of a binary vector carrying 

transforming cassettes, which is then integrated into the recipient’s genome, has been singled 

out as a method of choice. This is, because the method has superior features which include the 

ability to transform a variety of fungal tissues, high efficiency of transformation, increased 

frequency of homologous recombination and low copy number (mostly single copy) of 

inserted T-DNA per genome. In fact, AMT has been described as an efficient method for 

transformation of fungi that were recalcitrant to other transformation methods (Michielse et 

al., 2005). The predominantly single DNA insertion into genomes by AMT greatly simplifies 

the task of demonstrating that the tagged gene represents the mutation responsible for the 

phenotype observed in the transformants. 

                       

1.6. Aims of the study 

Investigating the molecular basis of ectomycorrhizal interaction is central to its 

understanding. Our knowledge on this subject is rather scanty, as most reports have been on 

morphology and physiology of the interaction. The main aim of this study was to investigate 

the molecular mechanisms that drive Tricholoma vaccinum-spruce (Picea abies) 

ectomycorrhizal interaction. An earlier study on this ectomycorrhiza had identified an 

aldehyde dehydrogenase encoding gene (ald1) as one of the genes that were differentially up-

regulated in the mycorrhizal interaction (Krause, 2005; Krause and Kothe, 2006). This gene, 

expected to play a crucial role in ectomycorrhiza by the virtue of its metabolic roles, was fully 

isolated and characterized, specifically with regard to transcriptional regulation and functional 



1. INTRODUCTION 22

characterization. Among potential inducers tested were ethanol as well as different aldehydes, 

including IAAld. 

The notion that fungal IAA is involved in ectomycorrhiza establishment and maintenance is 

still controversial, as ever, probably because IAA regulation is tight or simply because some 

important aspects, like the effect of IAA on fungal biology have not been investigated so far. 

This study addressed three important aspects in this area: effect of IAA on fungal growth and 

hyphal ramification, IAA biosynthesis in T. vaccinum and the controversial effect of IAA on 

differentiating ectomycorrhizal features. The results of these studies were interpreted as to 

their relevance in relation to ectomycorrhiza formation and maintanance. This is, to the best 

of our knowledge, the first study that has comprehensively integrated the aforementioned 

aspects in trying to break the impasse about our understanding of IAA involvement in 

ectomycorrhiza.    
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2. MATERIALS AND METHODS  

2.1. Materials  

2.1.1. Organisms and plasmids  

Escherichia coli and fungal strains used in this study, together with their description, are 

summarized in Table 1 and 2 while plasmids are in Table 3.  The only plant used for 

mycorrhiza synthesis was Norway spruce (Picea abies (L.) Karsten). Spruce seeds were 

received from “Thüringer Forstamt Schmalkalden”. Agrobacterium tumefaciens strain AGL-

1, kindly provided by Prof. Marjatta Raudaskoski, University of Helsinki, Finland, was used 

for A. tumefaciens-mediated fungal transformation.  

 

 Table 1. Escherichia coli strains used 

Strain Genotype Reference 
DH5α 
 
 
ArcticExpress 
 
 
BL21-AI 

endA1, hsdR17, supE44, thi-1, recA1, 
gyrA96, relA1, Ф80d lacZ M15, F- 

 

F-, ompT, hsdS(r-
B m-

B), dcm+, Tefr, gal, 
endA, Hte [cpn10 cpn60 Gentr] 
 
F-, ompT, hsdSB (r-

B m-
B), gal, dcm, 

araB:T7RNAP-tetA 

GibcoLife Technologies, 
Karlsruhe, Germany 
 
Stratagene, Waldbronn, 
Germany 
 
Invitrogen, Karlsruhe, 
Germany 
 

 
  Table 2.  Tricholoma vaccinum strains used 
 
Strain Description Reference 
GK6514 
 
 
Tvaldh1-eGFP-1 
 
Tvaldh1-eGFP-2 
 
Tvaldh1-eGFP-3 
 
Tvaldh1-eGFP+1 
 
Tvaldh1-eGFP+2 
 
Tvaldh1-eGFP+3 
 
Tvaldh1-eGFP+10 
 

Wild type strain isolated from Norway 
spruce 
 
Derived from GK6514 by overexpressing 
ald1 
Derived from GK6514 by overexpressing 
ald1  
Derived from GK6514 by overexpressing 
ald1  
Derived from GK6514 by overexpressing 
ald1 fused to egfp  
Derived from GK6514 by overexpressing 
ald1 fused to egfp  
Derived from GK6514 by overexpressing 
ald1 fused to egfp  
Derived from GK6514 by overexpressing 
ald1 fused to egfp  

Kindly provided  by G. 
Kost (University of 
Marburg) 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
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Table 3. Plasmids used 
 
Designation Genotype/Description Reference 
pDrive 
pBGgHg 
 
pNEB193 
 
pET101/D-TOPO 
 
pNGaldh1 
 
pNGaldh1S 
 
 
pNGaldh1SeGFP 
 
 
pBGaldh1 
 
 
pBGaldh1SeGFP 

Cloning vector, AmpR, KanR  
AmpR, HygR, containing the Agaricus 
bisporus gpd promoter 
AmpR 
 
AmpR, directional cloning vector for 
gene expression in E. coli  
AmpR, pNEB193::ald1 under Pgpd 
promoter from A. bisporus 
AmpR, pNEB193::ald1, Pgpd from A. 
bisporus and 35S terminator from 
CaMV  
AmpR, pNEB193::ald1-egfp fusion, 
Pgpd from A. bisporus and 35S 
terminator from CaMV 
AmpR, HygR, pBGgHg::ald1, Pgpd from 
A. bisporus and 35S terminator from 
CaMV 
AmpR, HygR, pBGgHg::ald1-egfp 
fusion, Pgpd from A. bisporus and 35S 
terminator from CaMV 

Qiagen, Hilden, Germany 
Chen et al. (2000) 
 
New England Biolabs, 
Schwalbach, Germany 
Invitrogen, Groningen, 
The Netherlands 
This study 
 
This study 
 
 
This study 
 
 
This study 
 
 
This study 

 

2.1.2. Chemicals, enzymes and antibiotics  

All chemicals, reagents, enzymes, and antibiotics were obtained from the following 

companies: Oligonucleotides were synthesized at MWG Biotech (Ebersberg, Germany); 

restriction endonucleases as well as other DNA-modification enzymes and purification kits 

were obtained from Jena Bioscience GmbH (Jena, Germany), New England Biolabs 

(Schwalbach, Germany), PeQlab (Erlangen, Germany), Gibco Life Technologies (Karlsruhe, 

Germany), GE Healthcare (Freiburg, Germany), Qiagen (Hilden, Germany) and Invitrogen 

(Groningen, The Netherlands); chemicals and antibiotics were obtained from Sigma Aldrich 

(Steinheim, Germany), Fluka (Steinheim, Germany), Serva (Heidelberg, Germany), Merck 

(Damstadt, Germany), Ferak Laborat GmbH (Berlin, Germany), Miltenyi Biotech GmbH 

(Germany) and Carl Roth GmbH (Karlsruhe, Germany). 

 

2.1.3. Solutions, reagents and buffers  

The composition, and where necessary the pH, of solutions, reagents and buffers used in 

different experiments are summarized in this chapter.  
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Microscopy: PME buffer (50 mM PIPES pH 6.7; 25 mM EGTA pH 8.0; 5 mM MgSO4), 

fixation solution (PME buffer; 4 vol.-% formaldehyde) and embedding medium (0.1M 

Tris/HCl pH 8.0; 50 vol.-% glycerol; 0.1µg/ml DAPI). 

Nucleic acid isolation: DNA extraction buffer (200 mM Tris/HCl pH 8.5; 250 mM NaCl; 25 

mM EDTA; 0.5 vol.-% SDS), CTAB-NaCl solution (10 vol.-% CTAB; 0.7 M NaCl), DEPC 

(100 mM Tris/HCl pH 8.0; 10 mM EDTA; 2 vol.-% SDS).  

Plasmid preparation: Solution A (50 mM glucose; 25 mM Tris/HCl pH 8.0; 10 mM EDTA), 

solution B (0.2 M EDTA; 1 vol.-% SDS), solution C (7 M NH4 acetate). 

Nucleic acid analysis: Marker for gel electrophoresis (0.2 vol.-% bromophenol blue; 0.2 vol.-

% xylene cyanol; 0.2 vol.-% orange G; 50% sucrose; 1 mM EDTA), 20x TAE electrophoresis 

buffer (0.8 M Tris/Acetat pH 8,0; 0.02 M EDTA) and ethidium bromide solution (1µg/ml 

deionised water) [Sambrook et al., 1989]. 

Buffers and solutions for DNA-DNA hybridization: Denaturation solution (0.5 M NaOH; 

1.5 M NaCl), 20x SSC (3 M NaCl; 0.3 M Na3Citrate pH 7-8), standard hybridization buffer 

(5×SSC; 0.02 vol.-% SDS; 0.1 vol.-% N-Lauroylsarcosin; 1 % blocking reagent(Roche 

Diagnostics, Mannheim, Germany)), 2×washing buffer (2×SSC; 0.1 vol.-% SDS), 

neutralisation solution (0.5 M Tris/HCl pH 7.5; 3 M NaCl), 0.5x washing buffer (0.5×SSC; 

0.1 vol.-% SDS), detection buffer (10 mM Tris/HCl pH 9.5; 10 mM NaCl), detection washing 

buffer (0.1 M Maleic acid pH 7.5; 0.15 M NaCl; 0.3 Vol.-% Tween 20), and blocking solution 

(0.1 M Maleic acid pH 7.5; 0.15 M NaCl; 1 % blocking reagent). 

Reagents and buffers for IAA experiments: Salkowski’s reagent (Gordon and Weber, 

1951): 150 ml concentrated H2SO4; 250 ml deionised water; 7.5 ml of 0.5 M FeCl3.6H2O. 

Buffers and solutions for proteomics experiments: Phosphate buffer (0.1 M 

Na4P2O710H2O),  separating buffer (1.5 M Tris/HCl pH 8.9); 10 vol.-% SDS; 10 vol.-% APS, 

stacking/gathering buffer (0.5 M Tris/HCl pH 6.8), sample buffer (62.5 mM Tris/HCl pH 8.6; 

10 vol.-% Glycine; 4 vol.-% SDS; 0.005 vol.-% Bromophenol blue), running buffer (25 mM 

Tris; 192 mM Glycine; 0.1 vol.-% SDS), binding buffer (20 mM Na2HPO4; 20 mM NaH2PO4; 

0.5 M NaCl; 30 mM imidazole), elution buffer (20 mM Na2HPO4; 20 mM NaH2PO4; 0.5 M 

NaCl; 0.5 M imidazole), PBS (5.84 g/l NaCl; 14.24 g/l Na2PO4; 2.4 g/l NaH2PO4). 

2.1.4. Media  

All media constituents are reported per 1 litre of deionised water. Media were sterilized by 

autoclaving at 121ºC and a pressure of 1 bar for 30 min. The chemicals which could not be 

autoclaved, including antibiotics, were filter-sterilized by using 0.22 µm filters (Carl Roth 
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GmbH, Karlsruhe, Germany), and added to pre-cooled media. Agar was only used for solid 

media. The following media were used:     

Bacterial media: LB-medium (Sambrook et al., 1989): 10 g tryptone; 5 g yeast extract; 10 

NaCl; 18 g Agar, SOC-medium (Sambrook et al., 1989): 20 g tryptone; 5 g yeast extract; 0.5 

g NaCl; 10 ml of 250 mM KCl - medium sterilized by autoclaving, cooled and 5 ml and 20 ml 

of a sterile solutions of 2 M MgCl2 and 1 M glucose respectively added, A. tumefaciens MM-

medium (10.5 g K2HPO4; 4.5 g KH2PO4; 1 g (NH4)2SO4; 0.5 C6H5O7Na32H2O; 0.2 

MgSO47H2O; 1 mg thiamine hydrochloride; 2 g glucose), and SB-medium (tryptone 32 g; 

yeast extract 20 g; NaCl 5 g pH 7.5). 

T. vaccinum medium: MMNb (Kottke et al., 1987): 0.05 g CaC122 H2O; 0.025 g NaCl; 0.5 g 

KH2PO4; 0.25 g (NH4)2 HPO4; 1 µg FeC136H2O; 83 µl 1.2 mg/ml thiamine hydrochloride; 

0.15 g MgSO4; 10 g glucose; 20 g malt extract; 1 g peptone from casein; 10 ml trace element 

solution by Fortin; 20 g agar. Trace element solution (Fortin and Piche, 1979) contained: 

3.728 g KCl; 1.546 g H3BO3; 0.845 g MgSO47H2O; 0.575 g ZnSO47 H2O; 0.125 g CuSO45 

H2O. 

Spruce seed germination medium (Chilvers et al., 1986): 2 g PIPES; 0.1 g KH2PO4; 0.2 g 

NH4NO3; 0.1 g  MgSO47H2O; 0.1 g CaC122 H2O; 1 µg FeC136H2O; 10 ml trace element 

solution by Fortin; 10 g Agar. Trace element solution (Fortin and Piche, 1979) was 

formulated as for MMNb medium. 

Mycorrhiza culture medium: MMNa: Same as the afforementioned MMNb medium for T. 

vaccinum but without glucose and malt extract.  

2.1.5. Oligonucleotides  

For PCR, oligonucleotide primers listed in Table 4 were used. 
 
Table 4. Oligonucleotide primers used 
  
Designation 5’-3’ sequence Origin of 

primers 
Sequencing 
M13 forward 
M13 reverse 
cDNA quality check 
rf13a 
rf13b 
ald1 fragment 
AD1 
AD3 
AD6 
T1 

 
GTAAAACGACGGCCAGT 
CAGGAAACAGCTATGAC 
 
GCAAGAAAGGCATACAAAACT 
GCGTCGCTGGTGAAAAT 
 
(AGCT)GTCGA(GC)(AT)GA(AGCT)A(AT)GAA 
GT(AGCT)CGA(GC)(AT)CA(AGCT)A(AT)GTT 
(GC)CAC(AGCT)TC(GC)T(AGCT)GT(AGCT)TCT 
GTCTGCCCATCCAGCATAGT 

JenaGen, 
Germany; 
Sambrook et 
al. (1989) 
This study 
This study 
 
This study 
This study 
This study 
This study 
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T2 
T1b 
T2b 
T3b 
T13b 
T23b 
T33b 
ald1 gene 
aldh1-F1 
aldh1-R1 
ald1 poly(A) 
Poly1 
dT1 
ald1-gpd fusion 
gpdF 
gpdR 
 
ORFF 
 
ORFR 
egfp gene & 35S (T) 
EgfpFII 
 
EgfpRII 
 
35SF 
ald1 expression 
aldh1Ec-F 
aldh1Ec-R 
aldRTPCRF 
aldRTPCRR 
hgh gene 
Hph-F 
Hph-R 
egfp gene 
Egfp-1 
Egfp-2 
 

CAGACAGCCACTAACCGACA 
ACAACCTTGCCGGTAGCTTA 
GCACCTGGATTGACAACACT 
GAACGCATCTTGAACGCATC 
TCAACTGGAGGCCGGTACT 
TCGGAGGGTACAAACAGTCA 
GGTCGTGAGCTAGGCCAGTA 
 
ATGCCTGGGACTTTCACTCG 
TCAACAGGAGCAACCCAAGG 
 
TGGTGCATGGAGTCAGAGAG 
GCCACGCGTCGACTAATACT (dT18)(AGC) 
 
GAGCTCAGCTTTAAGAGGTCCGCAAG 
GTGGCGAGTGAAAGTCCCAGGCATGGTACCG 
CGATAAGCTTG 
CACAACAAGCTTATCGCCGGTACCATGCCTG 
GGACTTTCACTCG 
GGCGCGCCTCAACAGGAGCAACCCAAG 
 
GGCGCGCCATGGTGAGCAAGGGCGAGGAGC
TGTTCA 
GTTTAAACGGGATGTGCTGCAAGGCGATTAA
GTTGG 
GGCGCGCCTCGACAAGCTCGAGTTTCTC 
 
CACCATGCCTGGGACTTTCACTC 
GAGCTTCATGCCGATGTTTAC 
GAAAGCTCTTGGAGCAGGTG 
TGGACTGTAGCACCCTCCTT 
 
AAGCCTGAACTCACCGCGAC 
CTATTCCTTTGCCCTCGGAC 
 
ATGGTGAGCAAGGGC 
TTACTTGTACAGCTCGTC 
 
 

This study 
This study 
This study 
This study 
This study 
This study 
This study 
 
This study 
This study 
 
This study 
This study 
 
This study 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
This study 
This study 
This study 
Hanif et al. 
(2002) 
 
Hanif et al. 
(2002) 
 

  
 

2.2. Methods  

2.2.1. Culture conditions for different organisms  

Bacterial cultures: E. coli cultures were routinely grown overnight at 37ºC shaking in LB-

medium at 200 rpm. The cells that were specially used for heterologous gene expression 

studies were grown at 18 ºC to facilitate induction of gene transcription. Transformed E. coli 

cells were allowed to recover in SOC-medium for 1 hr shaking at 37ºC before plating on solid 
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LB-medium in Petri dishes containing 40 µg/ml X-Gal, for blue-white screening, and 

overnight incubation of plates at 37ºC.  

A. tumefaciens cultures were grown at 28 ºC shaking in liquid LB-medium or standard 

‘Nutrient broth I’ at 200 rpm for 24 hrs while plate cultures were incubated for about 2 days. 

Where appropriate, media were supplemented with antibiotics for selection of resistant 

colonies. 

T. vaccinum fungal cultures: The fungus was cultured, for various purposes, in MMNb-

medium, either liquid (50 ml in 100 ml flask) or solid (Petri dishes). Typically, fungal cultures 

were established by inoculating fresh medium with 3 fungal mycelial plugs of about 0.4 cm2, 

and incubated at RT for about 4 weeks. For DNA or RNA extraction and microscopic analysis 

of hyphae, the fungus was strictly grown in liquid medium. To study the induction effects of 

different alcohols and aldehydes on T. vaccinum ald1 gene expression, liquid MMNb-medium 

was supplemented with various concentrations of these substrates.    

Germination of spruce seeds: Seeds were incubated in de-ionized water over night at RT to 

facilitate germination. After surface-sterilization by shaking in 30% H2O2 for 1-2 hrs, the 

seeds were rinsed in sterile de-ionized water 3 times under sterile conditions. The seeds were 

then germinated on solid germination medium (section 2.1.5) in 500 ml Erlenmeyer flask. 

Germination of seeds was allowed to proceed in a climate chamber KBWF 240 (WTB binder 

Labortechnik GmbH, Tuttlingen, Germany) with the following conditions: 12 hr day-night 

regime with an alternating temperature of 23 /17 °C and 80 % relative humidity. 

Mycorrhiza cultures [Asiimwe et al., 2010; Chilvers et al., 1986]: An axenic Petri dish 

system of synthesizing ectomycorrhiza was used (Chilvers et al., 1986). Mycorrhiza was 

synthesized using solid MMNa-medium both on small (94 mm x 16 mm) and big (135 mm x 

20 mm) Petri dishes. For the small Petri dish, spruce seedling shoot was left outside the plate 

through a hole made in the rim of the Petri dish, while the whole seedling was sealed inside 

the big Petri dish. The MMNa-medium, which was used to investigate the effect of IAA on 

mycorrhiza development, was supplemented with 100 µM IAA and 10 µM of its inhibitor 

(TIBA), either alone or simultaneously added. In some cases, the possibility of enhancement 

of ectomycorrhiza formation by glucose was tested by amending MMNa-medium with 2 g/l 

glucose. Mycorrhiza was synthesized as follows: Cellophane membranes (Wilhelm Isermann 

KG, Walsrode, Germany) were cut, in a circular form, shortly boiled to remove production 

residues and rinsed in de-ionized water. The membranes, separated by filter papers (90 mm 

diameter), were sealed in aluminium foil and sterilized by autoclaving at 121ºC and a pressure 

of 1 bar for 30 min. Under sterile conditions, a seedling was horizontally placed on MMNa 
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plate, sandwiched between two sterile membranes to avoid direct contact with the medium, 

and the plate was then sealed with parafilm. To avoid direct root exposure to sun light, 

aluminium foil was used to shade the petri-dish, after which the seedlings were incubated in a 

growth chamber (12 hr day-night regime with an alternating temperature of 23 /17 °C and 80 

% relative humidity). After the seedlings had differentiated the first lateral roots (2-4 weeks 

after seedling transfer from germination medium to MMNa-medium), they were inoculated 

with 4 mycelial plugs of about 0.4 cm2, which were placed near roots. At regular intervals, the 

seedling roots were visually and microscopically checked for development of mycorrhizal 

features. 

 

2.2.2. Analysis of IAA production by T. vaccinum  

The production of IAA by T. vaccinum was investigated by culturing the fungus in liquid 

MMNb-medium supplemented with various concentrations of IAA precursors indole-3-

acetaldehyde and tryptophan.  Also, the possible effect of D’orenone (kindly provided by Dr. 

Doreen Schchtschabel, Jena, Germany), an auxin polar transport inhibitor (Schlicht et al., 

2008), on production of IAA by T. vaccinum was tested by exogenous application of different 

concentrations of the compound to the fungal cultures. Cultures were incubated in dark at RT 

for about 4 weeks before determining IAA concentration in culture filtrates. To test the 

transient fungal IAA production over time, culture filtrates were sampled every week 

beginning at the time of culture establishment. Fungal IAA production was assessed by 

determining IAA quantities in culture filtrates using the following methods:  

Calorimetric method: Salkowski assay (Godon and Weber, 1951) was used to assess IAA 

production in fungal culture filtrates. The assay was performed by vigorously mixing 250 µl 

of fungal culture filtrates, obtained after centrifugation at 13000 rpm for 20 min, with 1 ml of 

Salkowski’s reagent (section 2.1.4), and incubating at RT for 20 min before measuring 

absorbance at 535 nm. Quantification of IAA in the culture filtrates was based on the 

comparison with IAA standard curve developed using pure synthetic IAA. 

Gas Chromatography-Mass Spectrometry (GC-MS): GC-MS was used to validate the 

IAA production by T. vaccinum. IAA was extracted and quantified according to a protocol 

from Dimkpa et al. (2008) with a few modifications: 5 ml of fungal culture filtrates, obtained 

from fungal liquid cultures, either supplemented or not, with different concentrations of 

indole-3-acetaldehyde and tryptophan as IAA precursors, instead of 3 ml, were used as 

starting material for IAA extraction. Also, a different calibration curve, for quantification of 
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IAA, was developed by adding known amounts of IAA to 5 ml of pure fungal medium 

(MMNb) followed by IAA extraction and quantification as done in Dimkpa et al. (2008). 

    

2.2.3. Quantification of IAA effects on T. vaccinum and mycorrhiza 

Effect on fungal biology: The effect of IAA both on radial fungal growth and hyphal 

branching was studied. The experiments were set up as in section 2.2.2, with a few 

modifications. To study the IAA effect on fungal hyphal branching, the liquid MMNb 

medium was supplemented with indole-3-acetaldehyde (0.05 mM, 0.1 mM and 0.2 mM), the 

IAA polar auxin transport inhibitors D’orenone (800 nM and 4 µM) and TIBA (10 µM), 

tryptophan (0.5 mM and 2.5 mM) and synthetic IAA (100 µM and 500 µM). IAA was either 

added alone or simultenously with its inhibitor TIBA. On top of a control, ethanol up to a 

final concentration of what was used to dissolve synthetic IAA and TIBA or D’orenone 

(0.015%) was used as a blank. The effect of these treatments on fungal hyphal branching was 

microscopically studied by observing the extent and pattern of the branching.  

For experiments involving investigation of IAA effect on radial fungal growth, solid MMNb-

medium amended with synthetic IAA (100 µM), tryptophan (500 µM) and TIBA (10 µM), 

either applied alone or simultenously with IAA or tryptophan, were used. A blank, as 

described above, was used. Fungal mycelial radial growth was quantified, in real time, by 

measuring the diameter of the fungal colonies. The measurements were commenced about 1 

week, when aerial mycelium had started forming, and stopped 4 weeks after culture 

establishment. 

Effect on mycorrhiza development: Solid MMNa-medium with or without glucose (2 g/l), 

and amended with synthetic IAA (100 µM) and TIBA (10 µM), singly or simultenously 

added, were used. A blank, as described above, was used. The co-cultivation of spruce 

seedlings and T. vaccinum was done on big plates (135 mm x 20 mm), with the whole 

seedling sealed inside the plate to minimize contaminations (Asiimwe et al., 2010). The effect 

of IAA on mycorrhiza development was quantified by regular microscopic observations for 

ectomycorrhizal features notably the fungal mantle and Hartig’ net. Plant growth and 

development parameters were also quantified in the mycorrhiza cultures by counting the 

number of newly formed lateral roots and leaves/needles on spruce seedlings.   
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2.2.4. Molecular biology methods  

2.2.4.1 Nucleic acids preparations 
 
Genomic DNA isolation: Genomic DNA of T. vaccinum was isolated by using CTAB/NaCl-

extraction method (Rozman and Komel, 1994; Wendland et al., 1996) with a few 

modifications. The fungal mycelium, from liquid culture, for DNA extraction was prepared by 

rinsing with de-ionized water using a nylon mesh, dried and frozen at -20 ºC before the 

commencement of the DNA extraction procedure. For DNA extraction, the mycelium was 

ground, using a mortar, pestle and liquid nitrogen, to fine powder. About 50 mg mycelial 

powder were weighed in a 1.5 ml Eppendorf tube and used for DNA extraction as follows:  

600 µl DEP and 80 µl pre-warmed CTAB/NaCl solution were added after which NaCl 

concentration was adjusted to 0.7 M by adding about 95 μl 5 M NaCl. The mixture was then 

incubated for about 60 min at 65 °C, cooled at RT for about 10 min, and centrifuged for 10 

min at 13000 rpm. The supernatant was subjected to chloroform extraction by mixing it with 

600 μl chloroform and incubating the mixture on ice for 15 min interrupted by regular mixing 

before centrifuging (10 min, 13000 rpm, 4 °C). Using the supernatant, the whole procedure of 

CTAB/NaCl solution/Chloroform extraction was repeated twice. DNA was precipitated by 

adding 0.7 volume isopropanol to the new supernatant, incubating on ice for 30 min followed 

by centrifugation (25 min, 13000 rpm, 4 °C). The DNA pellet was then washed with about 

500 µl 70 vol.-% ethanol by centrifugation (3 min, 13000 rpm, 4 °C). After speed vacuum-

drying the pellet for 2-3 min, it was re-suspended in about 50 µl either sterile de-ionized water 

or elution buffers from different companies, depending on the intended use of DNA, and 

incubated in water bath at 70°C for 10 min to facilitate DNA suspension and denaturing of 

DNases. 

Isolation of DNA fragments from agarose gels: Agarose gel electrophoresis (Sambrook et 

al., 1989) was done on all nucleic acid samples to ascertain their purity. The nucleic acids 

were run on an agarose gel (0.8 – 3.5 %), prepared in 1 % TAE buffer, and visualized under 

UV light after staining in ethidium bromide. Where necessary, DNA fragments were re-

isolated from the gels by using a gel extraction kit supplied by Qiagen (Hilden, Germany). 

However, in complicated cloning procedures involving large inserts and vectors, a different 

strategy, aimed at improving the quality of DNA, was used. In this strategy, agarose gels were 

neither stained with ethidium bromide nor exposed to UV light, but band positions determined 

by reference stained gels, after documentation by a ruler. DNA from such gels was then re-

isolated, for subsequent ligations, as follows: Agarose gel pieces were homogenized in a 1.5 
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ml Eppendorf tube with a pestle to fine particles. 500 µl de-ionized water and 500 µl “Roti-

phenol for RNA/DNA isolation” (Carl Roth GmbH, Karlsruhe, Germany) were added, after 

which the mixture was vortexed and frozen in liquid nitrogen for about 10 min. The mixture 

was then centrifuged (10 min, 13000 rpm, RT). The aqueous phase was washed with 

chloroform before precipitating DNA with a mixture of 0.1 and 0.7 volume sodium acetate (3 

M) and isopropanol respectively.       

Plasmid DNA isolation: For isolation of high quality bacterial plasmid DNA to be used for 

sensitive applications like sequencing, ‘PeqGOLD plasmid miniprep kit I’ supplied by PeQlab 

(Erlangen, Germany) was used. Otherwise, the routine plasmid isolation was done using the 

alkaline lysis method (Sambrook et al., 1989) as follows: About 1.5 ml of bacterial overnight 

culture was centrifuged (5 min, 13000 rpm, RT) in an Eppendorf tube. The pellet was re-

suspended in 150 µl solution A by vortexing, and incubated at RT for 5 min to destabilize the 

bacterial cell wall. 400 µl solution B were added to the mixture and incubated at RT for 15 

min for further lysis of cell walls. 300 µl solution C were added, and the mixture was 

incubated on ice for 15 min before centrifugation (30 min, 13000 rpm, RT). The plasmid 

DNA in the supernatant was precipitated by incubating with 600 µl isopropanol for 10 min 

before centrifugation (20 min, 13000 rpm, RT). The plasmid DNA pellet was then washed 

with about 500 µl 70 vol.-% ethanol by centrifugation (3 min, 13000 rpm, 4 °C). After 2-3 

min speed vacuum-drying, the pellet was re-suspended in about 20 µl sterile de-ionized water, 

and incubated in water bath at 70°C for 10 min to facilitate DNA suspension denaturation of 

DNases. 

RNA isolation: Total RNA was isolated from T. vaccinum by using RNeasy plant mini kit 

from Qiagen (Hilden, Germany). Isolated RNA was stored, in aliquots, at -80°C until use. 

Before use, RNA was purified by removing the residual DNA from the solution using a 

‘DNAfree-Kit’ from Ambion (Austin, Texas, USA). 

 

2.2.4.2 DNA-DNA hybridization by Southern blotting 
Southern blotting was carried out on T. vaccinum genomic DNA to detect ald1 sequence in 

the genome of the wild type strain. However, this procedure was also carried out to determine 

the nature of integration of the hygromycin resistance transgene (hgh) in the gDNA of 

transformants derived from A. tumefaciens-mediated transformation (ATMT) of T. vaccinum. 

The procedure was done according to the protocol ‘DIG system for filterhybridisation’ 

(Roche Diagnostics, Mannheim, Germany), based on the DIG-dUTP insertion in a nucleic 

acid fragment as a probe, followed by DIG-antibody binding and chemiluminescent detection 
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in a specific manner. To prepare DNA probes, DNA fragments, which were earlier isolated 

from agarose gels, were labeled with DIG-dUTP as follows: Fragment DNA was first 

denatured (10 min 95°C) and cooled on ice. 2 µl each of hexanucleotide and ‘dNTP labeling’ 

mixtures and 1 µl Klenow-Enzyme (stock solution 0.1 U/µg) were added. The mixture was 

incubated for 20 hrs at 37°C before stopping the labeling with 2 µl EDTA (stock solution 200 

mM). 

DNA-DNA hybridization was performed as follows: Genomic DNA was first digested 

overnight with restriction enzymes (either single or double digestion). Then, the restriction 

mixture was run on a 0.8% agarose gel and documented with a ruler under UV light after 

ethidium bromide staining. DNA in the gel was depurinated by shaking the gel in 250 mM 

HCl for 10 min at RT. DNA was denatured by rinsing the gel twice for 15 min in denaturation 

solution followed by short rinsing in de-ionized water to get rid of excess denaturation buffer. 

The gel was then rinsed twice for 15 min in neutralization solution I before it was transferred 

to a nylon membrane (Macherey-Nagel, Düren, Germany) for overnight blotting by capillary 

transfer. The nylon membrane, now containing DNA, was incubated for 30 min in an oven 

(120 °C) to fix the DNA onto the membrane. Then, the membrane was transferred to a 

hybridization tube containing standard hybridization buffer and incubated rolling in 

hybridization oven (68 °C) for 2-3 hrs to bind unspecific sites on the membrane. The standard 

hybridization buffer was removed and replaced with a fresh one containing the DIG-labeled 

probe, which was first denatured (10 min 95 °C, cooling on ice). Hybridization was allowed 

to proceed overnight at 68 °C by rolling of the tube in the hybridization oven. The membrane 

was then washed twice for 5 min in 2×washing buffer at RT, followed by two times washing 

for 15 min in 0.5×washing buffer at 68 °C. The membrane was equilibrated in detection 

washing buffer for 1 min and cooled to RT. It was then incubated in blocking solution at RT 

for 30 min to bind more unspecific sites followed by incubation with another fresh blocking 

solution containing 1:10000 alkaline phosphotase-coupled anti-DIG antibody for 30 min at 

RT. The membrane was washed twice for 15 min in fresh detection washing buffer at RT 

followed by 2 min equilibration in detection buffer. The membrane was then transferred to a 

cling film and 1-5 drops CPD-Star solution (Roche Diagnostics, Mannheim, Germany) 

applied before wrapping the whole membrane in the cling film and incubated for 5 min at RT. 

After this, the membrane was wrapped in a fresh cling film, fixed on a board and covered by 

X-ray film (X-OMAT AR, Kodak, New York, USA) in a dark room. The board was then 

incubated at 20°C-37°C for 1 min – 2 hrs, depending on the intensity of the signal, before the 

detection of chemiluminescence on X-ray film. 
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2.2.4.3 Polymerase chain reaction (PCR) 
 

General routine PCR: For routine amplification of DNA fragments, either for cloning, 

sequencing or detection of specific fragments, a general gene specific PCR procedure, 

outlined below, was performed. The PCR reaction mixture typically contained 2 µl PCR 

buffer (10x), 2 µl dNTPs (2 mM), 2 µl each forward and reverse primers (5 pmol/µl), 0.1 µl 

Taq DNA polymerase (5 U/µl), 4 µl enhancer (5x) and 1 µl DNA sample (40 – 100 ng/µl) in a 

final volume of 20 µl. As a quick identification of positive clones in heterologous expression 

of ald1 gene in E. coli, a single colony was used as a template, instead of DNA. Where high 

fidelity of a DNA polymerase was required, a proofreading polymerase (Pfu-x) was used. 

Thermocycling was carried using a ‘Thermalcycler’ (Biometra, Göttingen, Germany) as 

follows: Initial DNA denaturation (94°C, 2 min), denaturation (94°C, 30 sec), annealing 

(temperature chosen to suit the oligonucleotide primer pair, 30 sec), initial elongation (72°C, 

time chosen to suit expected size of amplification product) and final elongation (72°C, time 

dependent on the downstream use of amplification product). A total of 30 – 34 cycles were 

carried out.  

Reverse Transcriptase-PCR (RT-PCR): RT-PCR was carried out to synthesize cDNA from 

mRNA of T. vaccinum. The cDNA was synthesized by using the ‘iScriptTM cDNA Synthesis 

Kit’ supplied by Bio-Rad laboratories (Hercules, CA, USA). 500 ng to 1 µg of total RNA was 

used as the template in final reaction volume of 20 µl consisting of other reaction 

components, as recommended by the manufacturer. One PCR cycle [(25°C, 5 min), (42°C, 30 

min), (85°C, 5 min)] was carried out. 

Real time Reverse Transcriptase PCR (Real time RT-PCR): The transcription of ald1, as 

induced by ethanol and various aldehydes, was analyzed with the help of real time RT-PCR. 

T. vaccinum for this study was cultured in liquid MMNb-medium supplemented with 0.01% 

and 0.1% ethanol, 0.01 mM and 0.1 mM indole-3-acetaldehyde, and 0.1 mM benzaldehyde. 

Mycelium was then harvested, and total RNA extracted before cDNA synthesis from the 

mRNA fraction. Real time RT-PCR was performed by using a kit supplied by Fermentas (St. 

Leon-Rot, Germany), which uses SYBR Green as a DNA intercalating dye, according to the 

manufacturer recommendations. To increase the accuracy of the PCR procedure, replicates 

were included at all crucial levels of the procedure i.e. biological, RNA and cDNA replicates. 

Thermalcycling was carried out using a ‘Smart Cycler’ supplied by Cepheid (Sunnyvale, CA, 

USA). The ald1 mRNA accumulation was quantified in absolute terms (Bustin, 2000) by 

comparing transcript levels to a standard curve generated by using ald1 cDNA cloned in 

pDrive. Transcription was, therefore, monitored in real time by amplification of a 132 bp ald1 
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fragment using aldRTPCRF and aldRTPCRR primers. The amplified ald1 sequence region 

spans an intron, an attribute that helped to control amplification target artifacts against gDNA 

contamination.  

Thermal Asymmetric Interlaced (TAIL)-PCR: In order to isolate unknown sequences 

flanking ald1 fragment, earlier identified using RNA fingerprinting (Krause and Kothe, 

2006), which was aimed at cloning the full length gene, TAIL-PCR was carried out. This 

PCR, which utilizes nested sequence-specific primers together with an arbitrary degenerated 

primer, was carried out according to Liu and Whittier (1995) and Liu et al. (1995) with 

modifications. Thus, gene-specific and arbitrary degenerated primer pairs were carefully 

chosen to facilitate isolation of both the 5’ and 3’ previously unknown sequences of the ald1 

fragment. Thermocycling was carried out using a ‘Thermalcycler’ (Biometra, Göttingen, 

Germany). Different TAIL-PCR reactions, consisting of three rounds of PCR with three gene-

specific primers and an arbitrary degenerate primer (AD), were carried out as follows:  

A typical first round TAIL-PCR reaction contained 2 µl PCR buffer (10x), 0.5 µl dNTPs (2 

mM), 1.6 µl gene-specific primer (5 pmol/µl), 8.0 µl AD1, AD2 or AD3 primer (10 pmol/µl), 

0.5 µl Taq DNA polymerase (5 U/µl), 4 µl enhancer (5x) and 1 µl gDNA (40 ng/µl) in a final 

volume of 20 µl. The first round PCR cycling conditions were [92°C (2 min), 95°C (1 min), 

94°C (30 sec), 59°C (1 min), 72°C (2 min) with 5 cycles]; [94°C (30 sec), 25°C (3 min) 

followed by ramping at a rate of 4°C/sec to 72°C over 3 min, 27°C (2 min)]; [94°C (30 sec), 

59°C (1 min), 72°C (2 min), 94°C (30 sec), 59°C (1 min), 72°C (2 min), 94°C (30 sec), 44°C 

(1 min), 72°C (2 min) for 15 cycles] and a final elongation of 72°C (5 min). 

The second round PCR reaction contained the same reaction mixture except the AD primer 

and the template. The template used was 1 µl of the 50x diluted PCR products from the first 

round of PCR, and AD primer was scaled down to 4 µl (10 pmol/µl) to decrease unspecific 

amplification. Thermocycling for the second round of PCR was 94°C (30 sec), 59°C (1 min), 

72°C (2 min), 94°C (30 sec), 59°C (1 min), 72°C (2 min), 94°C (30 sec), 44°C (1 min), 72°C 

(2 min) for 12 cycles and a final elongation of 72°C (30 min). 

In the third round of PCR, the reaction volume was scaled up to 100 µl. 1 µl of 10x diluted 

second round PCR products was used, representing a final 1000x dilution of the second round 

PCR products, to further minimize unspecific amplification. Thermocycling conditions for 

this PCR were 94°C (2 min), 44°C (1 min), 72°C (2 min) with 20 cycles and a final 

elongation of 20 min. 
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The consecutive first, second and third round PCR products were run alongside each other on 

an agarose gel to differentiate specific products from non-specific ones, based on the size 

differences of bands as compared to gene-specific primer positions in the ald1 fragment. 

Poly(A) region PCR: A special PCR procedure was carried out to isolate the 3’ flanking 

sequences of ald1, including the polyadenylation (Poly(A)) signal and tail. This was done 

using a gene-specific, Poly1, and a modified oligo (dT18) dT1 primer pair. The oligo (dT18) 

was modified by attaching an adaptor sequence (5’-GCCACGCGTCGACTAATACT-3’) to 

the 5’ end and a single nucleotide anchor V (A, G, or C) to the 3’ end of oligo (dT18) to 

stabilize the primer and increase annealing temperature to match the gene-specific primer for 

better amplification of target. The general PCR procedure, under specific conditions (outlined 

above), was used for this task. 

 

2.2.4.4 DNA modifications 

Restriction: Typically, restriction digests of DNA were carried out in appropriate buffers and 

according to instructions of the manufacturers using a final volume of 20 µl. Restriction 

mixtures were incubated overnight at recommended temperatures before analysis by agarose 

gel electrophoresis. Where necessary, after restriction digest of plasmid DNA, 5’ phosphate 

groups were removed to avoid re-ligation of compatible ends. This was carried out by using 

Antarctic phosphotase enzyme (New England BioLabs, Schwalbach, Germany) according to 

the manufacturer recommendations.  

Ligation: Ligation of restriction fragments was carried out overnight at 16°C in a final 

volume of 5 – 20 µl, depending on the nature of the ligation procedure. The molar ratios of 

vector: insert DNA used was 1:1 – 1:16, with higher ratios being used in complex ligations. 

Also, in these complex ligations, ligation buffers supplied by companies were supplemented 

with additional ATP (5 µM) to cater for its possible degradation over a period of time. Except 

for routine ligations involving cloning vectors, T4 DNA ligase (Jena Bioscience, Jena, 

Germany) was used to enhance ligation according to the manufacturer recommendations. 

 

2.2.4.5 DNA sequencing 

For routine screening of the cloned PCR fragments, the insert DNA was sequenced at 

JenaGen GmbH (Jena, Germany) while the full length ald1 gene and other clones, which 

required a high sequencing accuracy, were sequenced at GATC Biotech (Konstanz, 

Germany). The standard M13 sequencing primers (table 4) were used, either solely or in 
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combination with ald1 gene-specific primers, depending on the size of the insert to be 

sequenced. In all the sequencing operations, plasmid DNA of the vectors containing inserts 

was used. Plasmid DNA for sequencing was prepared by using a “Plasmid Miniprep Kit” 

(PeQLab, Erlangen, Germany). 

 

2.2.4.6 Sequence analysis 

DNA and protein sequences were assembled and analyzed by using DNASTAR or Lasergene 

(DNASTAR Inc., USA) softwares. Using these softwares, the sequences were aligned by 

Clustal W method (Thompson et al., 1994), embedded in Megalin program. The nucleotide 

and protein sequence identity were determined with the help of ‘BLAST search’ 

(http://www.ncbi.nlm.nih.gov/blast) to access the related sequences in the GenBank database. 

Putative localization of Ald1 enzyme in a cell was predicted by analyzing the protein 

sequence with the help of WoLF PSORT software (http://wolfpsort.org). The putative Ald1 

protein molecular weight was calculated using the program ExPASy 

(http://www.expasy.org/tools). 

 

2.2.4.7 Reconstructing phylogeny 

The phylogenetic relationship between Ald1 with other fungal aldehyde dehydrogenase 

enzymes was investigated. Amino acid sequences of related aldehyde dehydrogenase enzymes 

were retrieved from NCBI GenBank and genomes, using Ald1 protein sequence as a query in 

“tblastn” and “blastp” searches. The sequences were then aligned with MAFFT v6 (Katoh and 

Toh, 2008), under assumption of a BLOSUM80 amino acid substitution matrix using the E-

INS-i option, which assumes multiple conserved domains and long gaps. Phylogenetic 

reconstruction was performed under Bayesian inference using MrBayes 3.1.2 (Huelsenbeck & 

Ronquist, 2001). Amino acid substitution frequencies were assumed to vary over the 

alignment. Substitution rate variation among sites was taken into account by using four 

classes of gamma distribution. Two runs, each with 2000000 generations in four chains, were 

performed, sampling every 100 generations, with a burn-in of 25 percent. Results were 

evaluated with TRACER v1.4 (Rambaut & Drummond 2007); all analyses had log likelihood 

ESS values above 100. Maximum Likelihood using Treefinder version of October, 2008 

(Jobb, 2008) was used for validation of MrBayes tree, with 500 replicates of LR-ELW branch 

support. Both unpartitioned data and a dataset partitioned into conserved motif regions and 

unconserved regions were analyzed.  In fact, more validation of the results was done by 
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performing additional analyses using Maximum Likelihood with RAxML (Stamataka, 2006); 

and with Maximum Parsimony using PAUP (Swofford, 2002) in a heuristic search with “tree 

bisection and reconnection” branch swapping. Phylogenetic trees were evaluated using 

FigTree v. 1.2.3 (Rambaut, 2009).    

 

2.2.4.8 Transformation of different organisms 

Bacterial transformation: E. coli and A. tumefaciens were routinely transformed by using 

electroporation. The exception to the rule was transformation of either E. coli with large 

plasmids or E.coli strains (ArcticExpress and BL21-AI) (table 1) used for heterologous ald1 

gene expression, where heat shock was used to increase transformation efficiency. Both the 

preparation of calcium competent E. coli DH5α cells and the subsequent transformation by 

heat shock were done according to Inoue et al. (1990). Transformation of one shot competent 

cells ArcticExpress and BL21-AI, and subsequent induction of protein production was done 

according to the suppliers’ recommendations.   

Electrocompetent E. coli cells were prepared as follows: 10 µl of previously prepared 

electrocompetent E.coli DH5α was cultured overnight in 20 ml LB medium at 37°C. 5 ml of 

the overnight culture were added to freshly prepared 500 ml SB medium, and incubated 

shaking at 37°C for 3-4 hrs until OD600nm reached 0.6. The bacteria cells were then collected 

by centrifugation (4000 rpm, 15 min, 4°C) and washed once with sterile water by 

centrifugation as before. The cells were then washed twice with sterile 10 % glycerol before 

eluting the pellet in 2 ml 10 % glycerol. 50 µl aliquots were kept frozen at -80°C until use.  

Electrocompetent A. tumefaciens cells were prepared as follows: A fresh colony of A. 

tumefaciens (AGL-1) was grown in 5 ml LB medium containing 50 µg/ml rifampicin for 

about 24 hrs shaking (150 rpm, 28°C). 100 ml fresh LB medium containing 50 µg/ml 

rifampicin were inoculated with 1 ml of the overnight culture, and  incubated overnight 

shaking (150 rpm at 28°C) until OD600nm reached 0.4-0.6. The bacteria cells were then 

collected by centrifugation (4000 rpm, 10 min, 4°C), washed once with sterile de-ionized 

water and twice with 10% glycerol by centrifugation as before. Aliquots of 40 µl were kept 

frozen at -80°C until use. 

50 µl electrocompetent E. coli cells were transformed with 1-3 µl of ligation mix while 40 µl 

electrocompetent A. tumefaciens cells were transformed with 1 µl plasmid DNA (about 3 ng/ 

µl). Electrotransformation of the bacterial cells was carried as follows: After thawing the cells 

on ice, they were gently mixed with DNA samples and transferred to electroporation cuvette. 

Electroporation was carried out by using ‘Gene Pulser II’ supplied by Bio-Rad laboratories 
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(Hercules, CA, USA) at 2.5 kV, 25 µF and low range/high range resistance of 200/800 Ohms. 

The transformed cells were immediately incubated shaking (150-200 rpm) in 500-900 µl SOC 

medium for about 1 hr at 28°C and 37°C for A. tumefaciens and E. coli respectively, in order 

to recover from transformation shock, before plating. 

Fungal transformation: Transformation of T. vaccinum with A. tumefaciens (AGL-1) 

carrying plasmids containing ald1 overexpression cassettes was performed using a recently 

optimized protocol (Schlunk, personal communication) based on Pardo et al. (2002) and 

Hanif et al. (2002) protocols for A. tumefaciens-mediated transformation (ATMT) of fungi. T. 

vaccinum to be used for transformation was grown on about 1 cm2 dialysis Saatifil PES 41/23 

W WT nylon membranes (SaatiTech, Veniano, Italy) overlying solid MMNb-medium for 1- 2 

weeks until aerial mycelium was formed. The membranes were then inoculated with about 50 

µl A. tumefaciens culture, which was prepared as follows: A. tumefaciens was grown 

overnight shaking (28°C, 200 rpm) in 4 ml ‘Standard Nutrient broth I’ (Carl Roth GmbH, 

Karlsruhe, Germany) containing 50 µg/ml kanamycin. Bacterial cells were collected by 

centrifugation (4000 rpm, 20 min, 4°C). The pellet was re-suspended in 4 ml induction 

medium [MM-medium (section 2.1.5) containing 50 µg/ml kanamycin and 200 µM 

acetosyringone]. The bacterial suspension was then incubated shaking for about 6 hrs (29°C, 

200 rpm) until OD600nm of 0.1 was reached. Co-cultivation plates were incubated at RT for 2 

days before the membranes were transferred to MMNb-medium selection plates containing 25 

µg/ml hygromycin B, 200 µg/ml cefotaxime and 100 µg/ml ampicillin. After about 2 weeks, 

putative transformants were screened by using PCR methods before transferring them to fresh 

selection plates, as before, for the second round of selection. After the second selection, 

transformants were again screened by using PCR and Southern blotting methods. 

 

2.2.5. Protein methods  

2.2.5.1 Protein preparation 

Crude proteins from E. coli cells expressing ald1 were extracted according to the following 

procedure: E. coli cells were pelleted by centrifugation (4000 rpm, 15 min, 4°C) and re-

suspended in 0.1 M sodium pyrophosphate solution. The bacterial cells were then sonicated at 

3 cycles for 3 min on ice and centrifuged (12000 rpm, 20 min, 4°C). The crude proteins, in 

supernatant, were collected and stored frozen at -20°C until use. 
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2.2.5.2 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

One dimensional SDS-PAGE was used to analyze proteins extracted from E. coli cells 

expressing ald1, under denaturing conditions, by fractionating before visualization after 

staining. The procedure was carried out as follows: First, protein concentrations were 

quantified by using the Bradford method (Bradford, 1976). Then, about 100 µg total soluble 

proteins were loaded on 4.2% stacking/gathering gel (3.6 ml de-ionized water, 0.63 ml 

gathering buffer, 0.7 ml (Bis)Acrylamide, 50 µl SDS, 5 µl TEMED, 200 µl APS) and 

fractionated on 11% resolving/separating gel (5.1 ml de-ionized water, 1.25 ml separating 

buffer, 3.6 ml (Bis)Acrylamide, 100 µl SDS, 20 µl TEMED, 38 µl APS), which was cast 

immediately beneath the stacking gel. Before loading the gel, proteins were boiled in a 

loading buffer containing SDS at 95°C for 5 min. The stacking gel and resolving gel were run 

at 100 V and 180 V respectively at 4°C. The resolving gel was then Coomassie-stained for 2 

hrs at RT before de-staining overnight at RT. 

 

2.2.5.3 Western blot analysis 

Western blotting was carried out, on total soluble proteins previously separated by SDS-

PAGE, to specifically target Ald1 protein, which was His-tagged at the C-terminal end, by 

using Anti-His antibodies (Miltenyi Biotech GmbH, Germany). First, proteins in SDS-PAGE 

gel were transferred to nitrocellulose membrane (GE Healthcare, Freiburg, Germany) using 

the standard blotting method; the protein transfer was carried out at 2.5 mA/cm2 gel size for 1 

hr at 4ºC. Then, immuno-detection was carried out as follows: To reduce background noise, 

the membrane was blocked by incubating in a blocking solution (3% milk powder) for 1 hr 

after which it was overlaid with Anti-His antibody (1:7000) for 1-2 hrs on a shaker. This was 

followed by two washing steps with PBS solution (5 min each) before drying the membrane. 

The membrane was then incubated with ECL detection reagent (GE Healthcare, UK) for 5 

min, exposed to X-ray film for 30 sec before developing the film.     

 

2.2.5.4 Enzyme activity assays 

ALDH activity on crude enzyme extracts was carried out according to Guru and Taranath-

Shetty (1990) and Isobe et al. (2007) with modifications. The typical enzyme reaction mixture 

consisted of 100 µl crude protein extracts, 10 mM aldehyde substrates, 0.1 M sodium 

pyrophosphate buffer, pH 7.4, and 0.5 mM cofactor β-NAD+ or β-NADP+ in a final volume of 

1 ml. The reactions, which were carried out at 30ºC, except acetaldehyde reactions carried out 
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at 25ºC because of its high volatility, were started by addition of aldehydes, which was done 

after about 30 sec of pre-reaction. The enzyme activity was measured spectrophotometrically 

by monitoring the change in absorbance at 340 nm, which is a widely accepted wavelength at 

which reduction of NAD+ and NADP+ to NAD(H) or NADP(H) respectively takes place. To 

eliminate a possible non-enzymatic reaction of NAD+ or NADP+ with aldehydes to form a 

complex, which also contributes to increase in absorbance at 340 nm (Guru and Taranath-

Shetty, 1990), enzyme activity was measured against a substrate blank (cofactor + aldehyde), 

as opposed to enzyme blanks (cofactor + enzyme) used by many investigators.  Enzyme 

activity was expressed as change in absorbance per min relative to the control, which was a 

protein extract from E. coli cells not expressing ald1. Three replicates for each reaction were 

used.      

  

2.2.6. Microscopy  

2.2.6.1 Specimen preparation 

Preparation of root cryosections and fungal mycelium: Mycorrhized spruce seedling roots 

were cut into about 20 µm thick cyosections using the cryomicrotome Leica CM 1100 (Leica 

Microsystems GmbH, Nussloch, Germany) at -20°C as follows: About 5 mm long root 

section was incubated in fixation solution (section 2.1.4) at 4°C for 1-2 days. The root section 

was then fixed onto the cryomicrotome pre-cooled pistil by applying several layers of tissue 

freezing medium (Leica Microsystems GmbH, Nussloch, Germany) on the pistil and around 

the root section, with 5-10 min freezing interval, after which it was incubated freezing for a 

period of 1 hr to overnight. Cryosections were cut from the root, picked with the help of a 

glass slide and incubated in fixation solution (section 2.1.4) at 4°C until use. 

For studying the effect of IAA on T. vaccinum fungal hyphae morphology, the fungus was 

grown in liquid MMNb-medium supplemented with various IAA and precursor 

concentrations (section 2.2.3), after which actively growing mycelium in embedding medium 

(section 2.1.4) was used for microscopy. The mycelium of the egfp transformants for eGFP 

protein visualization, also obtained from liquid cultures, was suspended in sterile de-ionized 

water before examining the eGFP-associated green fluorescence emission of the detached 

mycelium on an LSM 510 META confocal laser-scanning microscope (Carl Zeiss 

MicroImaging GmbH, Jena, Germany).   

Staining of specimens: For ordinary fluorescent microscopy, mycorrhized root cryosections 

or fungal mycelium were transferred to microscopic glass slides (Carl Roth GmbH, Karlsruhe, 
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Germany), and stained with a 1:800 DAPI solution in embedding medium (section 2.1.4), 

which stains nucleic acids, by incubation for about 5 min at RT before viewing under 

microscope. 

 

2.2.6.2 Object viewing  

Both binocular and ordinary fluorescent microscopic observations were routinely carried out 

to identify ectomycorrhizal features. For observations of the effect of IAA on fungal hyphae 

morphology, only fluorescent microscopy was done. Binocular microscope KL 1500 (Zeiss, 

Jena, Germany) was used to observe the fungal mantle around a mycorrhized root, as a first 

line of evidence of mycorrhiza formation. Ordinary fluorescent microscopy was carried out 

using the microscope ‘Axiophot 2’ (Zeiss, Jena, Germany) by using filter 02 (Zeiss), with 

310-355-400 nm excitation and 405-450-540 nm emission. Microscopic images were obtained 

with the help of a digital camera, acting as an interface between a microscope and computer, 

after which the images were processed with ‘SPOT advanced’ software (Diagnostics 

instruments, USA).  

The expression of Ald1 fused to eGFP was monitored on an LSM 510 META confocal laser-

scanning microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany).   

The green fluorescence emission associated with eGFP was detected using an argon laser with 

488 nm excitation and 505 nm long pass (LP 505) emission.  Images were obtained with a 

40x water objective. 

  

2.2.7. Statistical analysis   

Statistical analysis was carried out using Origin 7.0 program (OriginLab, USA). Data were 

analyzed for variance (ANOVA), and where significant, treatments were separated by Tukey 

test, which is based on studentized range distribution. 
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3. RESULTS  

3.1. Isolation and characterization of ald1 from T. vaccinum  

3.1.1. Isolation of ald1 

For the isolation of full-length ald1 from the basidiomycete ectomycorrhizal fungus T. 

vaccinum, a 1.986 kb fragment of this gene (Krause, 2005) was used. Subsequently, TAIL-

PCR was used to isolate both the 5’ and 3’, previously unknown, sequences of ald1. Using an 

arbitrary degenerated primer AD3 and gene-specific primers T1 and T2, a 307 bp fragment 

was amplified at the 5’end of ald1, after the second round of PCR (Fig. 7A).  

 
 

The next 5’ TAIL-PCR with gene-specific primers T1b, T2b and T3b, which were designed in 

the new sequence, and an arbitrary degenerated primer AD1, yielded an 847 bp new fragment 

(Fig. 7B) after the third round of PCR. Sequence analysis revealed that the new 847 bp 

sequence included the ald1 start and the 5’ flanking sequences. Next, an attempt to isolate the 

unknown 3’ sequences using gene-specific primers T13b, T23b and T33b in combination with 

an arbitrary degenerated primer AD6 yielded a 487 bp fragment (Fig. 7C) after the second 

round of PCR. Sequence analysis revealed a stop codon in the new sequence. In order to 

isolate the characteristic 3’ flanking sequences, a special PCR, the “Poly (A) region PCR”, 

was used. This PCR yielded a 213 bp fragment (Fig. 7D) of the 3’ flanking region, including 

all the major characteristic sequences.                 

M M 1 2 M 1 2 3 M 1 2 3
A B C D

Fig. 7. Agarose gel analysis of PCR products for the isolation tvaldh1 gene from T. vaccinum. TAIL-PCR 
was used to isolate the 5’ flanking sequences (A and B) and 3’ flanking sequences (C) while non-coding 
sequences at the 3’ end were isolated by “poly (A) PCR” (D). Lanes denoted 1, 2, and 3 represent the first 
round, second round and third round of PCR reactions respectively, and M the size marker λPstI. The 
marked fragments represent the correct amplifications.  
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3.1.2. Sequence analysis of ald1  

The full genomic sequence of ald1 and its flanking regions were generated by combining all 

fragment sequences. Sequence overlap analysis of all fragments showed that the entire gene, 

which contains an ORF of 2,448 bp, was obtained (Fig. 8). In order to determine the coding 

sequence, ald1 cDNA was amplified using primers aldh1-F1 and aldh1-R1. After sequencing, 

the fragment was compared to the genomic sequence. To further characterize the intron start 

and end (splicing regions), the GT----AG rule (Breathnach et al., 1978) was applied. 

Furthermore, the translated amino acid sequence of the putative Ald1 protein was compared 

to database homologs (http://www.ncbi.nlm.nih.gov/blast), as a confirmation of the 

conceptually translated cDNA nucleotide sequence. The sequence analysis revealed that ald1 

encodes a putative polypeptide of 502 amino acid residues, which is interrupted by 16 introns 

(Fig. 8).  

The comparison of Ald1 with other fungal ALDHs also shows that it clusters with specific 

fungal ALDHs with up to 74% amino acid identity, the closest ALDH being from Laccaria 

bicolor (Xp_001889968), which is also an ectomycorrhizal fungus (Fig. 9). Interestingly, 

Ald1 has an amino acid identity of 58% with U. maydis indole-3-acetaldehyde 

dehydrogenase, iad1, which is involved in production of IAA (Basse et al., 1996). The 

alignment of the fungal ALDHs revealed 10 highly conserved motifs, which were observed to 

cluster near the active site of the enzymes (Perozich et al., 1999). Also, conserved amino acid 

residues were observed; most of them had earlier been reported for this enzyme superfamily 

(Hempel et al., 1993; Perozich et al., 1999). One putative signature sequence, GXTXXG, 

proposed for the NAD binding of ALDHs (Lie et al., 1997), and two sequences for the 

general glycine motif, GXGXXXG, for NAD(P) binding (Ferres et al., 1989; Jung and Lee, 

2006), were identified (Fig. 9). 

Most fungal ALDHs aligned with Ald1 show a relatively high similarity of the first 16 amino 

acids to Ald1 (Fig. 9). The ATG start codon is supported by the possible translational start site 

AAGCATG (Fig. 8), with the consensus sequence A/GNCATG for vertebrates, and strong 

bias to purines (As) at the -3 and -4 nucleotide position, typical of eukaryotic genes (Cavener 

and Ray, 1991). 

Using the program ExPASy (http://www.expasy.org), the protein molecular weight was 

calculated to be 53.5 kDa, and the theoretical isoelectric point is 6.28. Protein localization in 

the cell was predicted, using the program WoLF PSORT (http://wolfpsort.org), to be 

cytosolic.   
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Fig. 8. Full length ald1 gene. A. Diagramatic representation of ald1 showing the ORF, interrupted by 16 
introns, and conserved domains. B. Nucleotide and amino acid sequence of ald1 and its flanking sequences. 
Five stress response elements (black boxes), two GC-box-like elements (blue boxes), two CAAT box-like 
elements (green boxes) and a TATA box-like element (red box) were putatively identified in the promoter 
region. The putative polyadenylation signal is shaded as a purple box in 3’ non-coding sequence. Start and 
stop codons are underlined.          

A

B
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The analysis of the promoter region led to the prediction of five putative Stress Response 

Elements (STREs) with consensus sequence CCCCT or AGGGG (Fig. 8), which characterize 

stress-inducible genes (Martinez-Pastor et al., 1996; Görner et al., 1998; Moskvina et al., 

1999; Zähringer et al., 2000). A putative TATA box, TATATATT, the possible core promoter 

sequence of ald1, which is consistent with TATA boxes of eukaryotes (Juo et al., 1996), was 

identified 179 bp upstream the transcription start codon. A search for a putative CAAT box, 

which binds  the transcriptional factors CAAT transcriptional factor (CTF) and/or CAAT 

binding protein (CBP), yielded two sequences (TCAATGT and TCAATAT) adjacent to each 

other, upstream the TATA box (Fig. 8). Two putative GC boxes (consensus sequence 

GGGCGG), which bind the transcription factor Sp1 (reviewed in Dynan and Tjian, 1985), 

were identified upstream of TATA box and CAAT box. Thus, the promoter elements 

expected for a eukaryotic gene could be identified. 

Downstream of the putative stop codon (TAA), the mRNA contains 525 bp of non-coding 

sequence as indicated by the cDNA sequence, i.e. 525 bp before the poly-A tail (Fig. 8). A 

putative polyadenylation signal (AATTAT), with a core consensus sequence AATAAA, is 

found 427 bp down stream from the stop codon. A search for nucleotide frequencies of the 

translation termination site common to eukaryotes revealed the presence of adenosine at 

position +1 (immediately downstream of the stop codon), which is the most preferred among 

eukaryotes (Cavener and Ray, 1991). Also, the downstream region of the putative 

polyadenylation signal is rich in T and G nucleotides, a feature shared by most eukaryotic 

mRNAs (Kim and Martinson, 2003).     

Furthermore, adenosine is found in position +4, immediately after the stop codon, which 

conforms to the nucleotide frequency bias reported in Cavener and Ray (1991) that may be 

the result of selection for nucleotides that optimize termination of translation. The region +1 

to +10 is AT rich (80%), which is the preferred condition for transcription/translation 

termination by mRNAs with TAA stop codons (Cavener and Ray, 1991).  

 

3.1.3. Phylogenetic relationships between fungal aldehyde dehydrogenases  

Using the full length translated amino acid sequence of Ald1, a phylogenetic relationship with 

other fungal ALDHs was reconstructed. The search for fungal ALDHs to be used in 

reconstructing phylogeny revealed ALDH sequences of fungal genomes that belong to the 

ALDH superfamily characterized by 10 conserved motifs indicated in Perozich et al. (1999). 

However, only a small part of the ALDH sequences clusters in the specific group of fungal 

ALDHs (Table 5). Sequences and GenBank accession numbers for Phanerochaete 
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chrysosporium, Sporobolomyces roseus, Schizophyllum commune, Phycomyces blakesleeanus 

and Batrachochytrium dendrobatidis can be found at http://genome.jgi-psf.org and those for 

Cryptococcus neoformans and Puccinia graminis at http://blast.jcvi.org and 

http://www.broadinstitute.org, respectively. The remaining sequences and their GenBank 

accession numbers can be found at http://www.ncbi.nlm.nih.gov. As the table indicates, all 

fungi, with the exception of the chytridiomycete Batrachochytrium dendrobatidis, are 

characterized by duplication of fungal ALDHs, with the basidiomycetes closely related to T. 

vaccinum possessing at least 3 paralogs.    

 

 
 

Fig. 9. Alignment of the deduced Ald1 amino acid sequence (1) with other fungal ALDH sequences: 
Laccaria bicolor (2: XP_001889968), Coprinopsis cinerea (3: XP_001834665), Agaricus bisporus (4: 
074187), Ustilago maydis (5: XP_758655) and Aspergillus niger (6: P41751). The red horizontal lines 
represent conserved motifs while the conserved amino acid residues are shaded in red. One putative NAD-
binding domain proposed for ALDHs (green box) and two general NAD(P)-binding domains (red boxes) 
were identified. 

MPGTFTRHFDTPAFKGTS-TINTGLFINGQWVDPVEPATIDIVNPATGKVVTSVAAGSSKDVDIAVEAARK--AYKTSWGLKCPGSVRGK1 1
MTGTFSYTFDTAAYKGTA-TINTGLFIDGKWVEPVEGGTIDVVNPATGKVITKVSAGSTKDVDIAVAAAKK--AYKTLWGLKTPGVVRGK1 2
MPKTYTHKFDTQAYKGSS-TISTGLFINGEWVDPVQGDEIDIVNPATGEVITKVAIGTKADVDKAVAAARKVCAYKTTWGLKASGSERAR1 3
MPSIFTHQWDTPVYKG-STSINTGLFINGEFVDGVKNTTIDVVNPANGKLITKISEATEADIDIAVEAAHK--AFETTWGLNCSGSKRGD1 4
MPTL---NLDLP--NGIKSTIQADLFINNKFVPALDGKTFATINPSTGKEIGQVAEASAKDVDLAVKAARE--AFETTWGENTPGDARGR1 5
MSDLFA-TITTP--NGVKYEQPLGLFIDGEFVKGAEGKTFETINPSNEKPIVAVHEATEKDVDTAVAAARK--AFEGSWRQVTPST-RGR1 6

LLNKLVDLLEANADEFSALESLNVGKTFAMSKMADVGGSISILRYYAGWADKVHGQTVETNENKLAYTRHEPYGVVGQIIPWNFPLVMLA88 1
LLNKLADLIEKNAAEFAALEALDAGKVYEKAKSQDVAGAIAVIRYYAGWADKIQGKTIETNDKKFAYTRHEPYGVVGQIVPWNFPMGMVS 88 2
LLNKLADLIEKNLEELAALESLDVGKVYANAKVMDIGGAVIVFRYYAGWADKIQGTTVESGDTKLNYVRREPYGVCGQIIPWNFPM---- 90 3
MLYKLAQLMEKNIDDLSAIEALDNGKTFLWAKSVDLSLSISTIKHYAGWADKNFGQVIETDEKKLTYSRHEPIGVVGQIIPWNFPLLMLA 88 4
LLIKLAELVEANIDELAAIESLDNGKAFSIAKSFDVAAVAANLRYYGGWADKNHGKVMEVDTKRLNYTRHEPIGVCGQIIPWNFPLLMFA 84 5
MLTKLADLFERDAEILASIEALDNGKSITMAHG-DIAGAAGCLRYYGGWADKIHGQTIDTNSETLNYTRHEPIGVCGQIIPWNFPLLMWA 85 6

CKVGPALATGNTIVLKPSEITPLTALKFAGLLNEAGIPPGVVNIINGYGQTVGDAISHHPLIEKVAFTGSTVIGRKILKASAESNLKVVT178 1
WKIGPALATGNTIVLKPSEMTPLTALKLAGLINEAGFPPGVVNIVNGYGHTVGQAISEHPLIEKVAFTGSTLTGRKILRASAETNLKVVT 178 2
--VAPALATGNTVVLKPSEVTPLTALRFADLVVEAGFPPGVVNIVNGYGHTVGAAIAEHPNIDKVAFTGSTLTGRRILKAAADSNLKPVT 176 3
WKIGPALATGNCIVLKPSEFTPLSALRMCALIQEAGFPPGVVNVVTGYGSTTGQAISSHMKIDKVAFTGSTLVGRKVMEAAAKSNLKNVT 178 4
WKLGPALATGNTIVLKTAEQTPLSAIKMCELIVEAGFPPGVVNVISGFGPVAGAAISQHMDIDKIAFTGSTLVGRNIMKAAASTNLKKVT 174 5
WKIGPAIATGNTVVIKTAEQTPLSGLYAANVIKEAGIPAGVVNVISGFGRVAGSAISHHMDIDKVAFTGSTLVGRTILQAAAKSNLKKVT 174 6

LELGGKSPTIIFDDADLDQAVKWASHGIYFNMGQVCTAGSRIFVQEGIYDQFLAKFTEAAKALGAGAGDPFSPATLHGPQVSQTQFDRVM268 1
LELGGKSPTIIFDDADIDQAVKWASHGIFFNMGQCCTAGSRIFVQEGIYDEFLKRFTAITKYLGDTTGDPFTPSTQHGPQVSQIQFDRVM 268 2
LELGGKSPTIIFDDADFEQALKWTTAGIYSNMGQVCTAGSRIFVQEGIYDKFVESFAAVAKGFGQATGDPFAEGTKHGPQVSQTQFDRVL 264 3
LELGGKSPVVIFDDADLEQSVNWTAHGLFWNHGQACCAGTRIFVQEGIYDKFLQKFTDKIKEI--KLGDPFGLGIDQGPQVSQIQYDRIM 268 4
LELGGKSPNIIFKDADLDQAVRWSAFGIMFNHGQCCCAGSRVYVEESIYDAFMEKMTAHCKAL--QVGDPFSANTFQGPQVSQLQYDRIM 264 5
LELGGKSPNIVFNDADIDNAISWANFGIFYNHGQCCCAGSRILVQEGIYDKFIARLKERALQN--KVGDPFAKDTFQGPQVSQLQFDRIM 264 6

GYIDIGKKEGATVHVGGERHGQEGYFIQPTIFTECKPEMKIMQEEIFGPVAAVVKFKTEEE----AVEAANNTTYGLACSVFSQNGSRAL358 1
GYIESGKEEGAKVHIGGVRHGEEGFFIKPTIFTDCHQGMKIVREEIFGPVAAIIKFKTEEE----VIELANDTTYGLASNVFSENGSRAI 358 2
SYIESGKKEGATAIVGGDKHGDKGYFIQPTIFTGVTKDMKIAREEIFGPVASVFKFKTEEGELSFVIELANDTVYGLAAYVFSENISRGI 354 3
SYIESGRAEGATVHVGGERHGNEGYFIQPTIFTDTTPDMKIVKEEIFGPVGAVIKFKDGKE----VIKQANDSNYGLAAAVFSQDINKAI 356 4
EYIESGKKD-ANLALGGVRKGNEGYFIEPTIFTDVPHDAKIAKEEIFGPVVVVSKFKDEKD----LIRIANDSIYGLAAAVFSRDISRAI 352 5
EYIQHGKDAGATVAVGGERHGTEGYFIQPTVFTDVTSDMKINQEEIFGPVVTVQKFKDVED----AIKIGNSTSYGLAAGIHTKDVTTAI 352 6

RVAHQLEAGTACVNCANATDISLPFGGYKQSGIGRELGQYALDTYTQIKSVHVNIGMK--L                444 1
RVAHAIESGTVWVNCAQMSDVSVPFGGYKQSGMGRELGEYALDTYTQVKAVQVNLGVR--L                              444 2
RVAHALEAGSVAVNSTVPFDVGMPFGGYKQSGIGRELGQYAIDTYTQNKAVHVNIGLR--I                              444 3
ETAHAFKAGTAWVNCANTIDAGVPFGGYKQSGIGRELGEYALHNYTNVKAVHVNLNWK--M                              442 4
ETAHKLKAGTVWVNCYNQLIPQVPFGGYKASGIGRELGEYALSNYTNIKAVHVNLSQPAPI                              437 5
RVSNALRAGTVWVNSYNLIQYQVPFGGFKESGIGRELGSYALENYTQIKAVHYRLG-DALF                              438 6
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The widely observed duplication of fungal ALDHs prompted us to investigate the 

evolutionary origin of this enzyme family. Thus, fungal ALDH phylogeny was reconstructed 

under Bayesian inference using MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001) on 

MAFFT-aligned amino acid sequences. The resulting phylogram (Fig. 10) shows a well 

supported (high probability values) clustering of fungal ALDHs in two groups each of 

basidiomycota and ascomycota, with a chytridiomycota ALDH being basal to all other fungal 

ALDHs, agreeing with the current tree of life (Blackwell et al., 2009). The 3 ALDH 

sequences from a zygomycete Phycomyces blakesleeanus clustered in two different clades, 

with ascomycetes, surprisingly, being basal to them.  

 

Table 5. Aldehyde dehydrogenase enzymes retrieved from fungal genomes of basidiomycota, 

ascomycota, zygomycota and chytridiomycota   

Fungal genome ALDH superfamily homologs Fungal ALDH homologs 
Laccaria bicolor 15 3 
Coprinopsis cinerea okayama 14 4 
Phanerochaete chrysosporium 20 7 
Schizophyllum commune 16 3 
Ustilago maydis 18 3 
Cryptococcus neoformans 12 2 
Puccinia graminis 10 2 
Sporobolomyces roseus 10 2 
Aspergillus nidulans 26 3 
Neurospora crassa 13 2 
Candida albicans 12 2 
Saccharomyces cerevisiae 5 3 
Schizosaccharomyces pombe 5 2 
Phycomyces blakesleeanus 9 3 
Batrachochytrium 
dendrobatidis 

3 1 

 

As shown in the phylogram, fungal ALDH duplication events probably happened two times 

during the course of evolution. The first major duplication event happened after the split of 

chytridiomycetes since only one ALDH sequence was found in the genome of 

Batrachochytrium dendrobatidis. The second major duplication event happened within the 

basidiomycota 1 group (Fig. 10), primarily in the agaricomycetes clade. Interestingly, Ald1 

clustered together with the other two T. vaccinum ALDH partial sequences, Ald2 and Ald3, 

earlier identified by Krause (2005). The three ALDHs from T. vaccinum clustered with other 

agaricomycetes of the basidiomycota 1 group, but formed a distinct, fully supported branch 

typical for a duplication after the separation of this species from others. Multiple fungal 

ALDH sequence alignments had indicated that Coprinopsis cinerea Ald4, which clusters in 
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the basidiomycota 1 group (Fig. 10), had lost many amino acids, especially from the essential 

conserved motifs (Perozich et al., 1999), probably explaining why it has a long branch. 

Further phylogenetic analyses using Treefinder, RAxML and PAUP confirmed these results 

since similar topologies were generated (data not shown). 

 

 
 

 

 

 

Fig. 10. A semistrict consensus phylogram of fungal aldehyde dehydrogenase enzymes (ALDHs), created with 
MrBayes 3.1.2. Bayesian posterior probability values are shown above corresponding branches. Branch 
lengths are proportional to evolutionary distances. Mammalian, plant and mycetozoa ALDHs were included as 
an outgroup. The first single digit number immediately in front of a binomial represents the ith ALDH 
sequence of a given species, in a descending order of similarity to Ald1. After the binomials, GeneBank 
accession numbers (in brackets) are given. Binomials in capitals indicate availability of their genome.   
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3.1.4. Verification of ald1 cDNA by heterologous expression in E. coli 

To confirm the integrity of the cloned ald1 gene, its cDNA was heterologously expressed in 

E. coli using the pET-expression system (Invitrogen). The ald1 expression was then verified 

by electrophoresis and enzyme activity assays using crude soluble protein extracts.  

SDS-PAGE analysis of crude soluble protein extracts, stained with Coomassie Brilliant Blue 

R250 solution, did not reveal significant gene expression differences between the 0.9 mM 

IPTG-induced and uninduced E. coli cells (Fig. 11A). Therefore, to specifically detect only 

Ald1 protein and reduce the background, SDS-PAGE gels were subjected to Western blot 

analysis targeting the C-terminal His-tag fused to Ald1 in the pET-expression system. The 

results show that Ald1, with an apparent molecular mass of approximately 53 kDa, was 

expressed (Fig. 11B). This protein size correctly corresponds to the calculated 

(http://www.expasy.org/tools) size of 53.5 kDa. However, as observed in Coomassie-stained 

SDS-PAGE gels, there was no significant induction by the used concentration of IPTG since 

there was no enrichment of the protein band corresponding to Ald1, with crude proteins 

extracted from induced E.coli cells compared to uninduced cells (Fig. 11B). In addition, a 

second band of a smaller size (approximately 45 kDa) was observed, which might indicate 

proteolysis.    

  

  
   

The enzymatic activity, substrate specificity and cofactors were tested using crude soluble 

protein extracts of the E. coli cells expressing ald1. The activity was assayed 

spectrophotometrically by monitoring the formation of NAD(P)H. Ald1 oxidized short chain 

aliphatic aldehydes notably propionaldehyde and, to some extent, butyraldehyde (Tables 6 

Fig. 11. SDS-PAGE (A) and Western blot (B) analysis of Ald1 protein. Crude soluble protein extracts from 
tvaldh1-expressing E. coli cells were analyzed. Lane 1 His-tagged molecular mass standard, Rotimark 
standard (Roth), lane 2 protein extracts from IPTG-induced E.coli, lane 3 protein extracts from uninduced 
E.coli.    

1 2 3

A

Western blotting 

B

kDa

~53

1 32
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and 7). Although there was no enzyme activity detected with the tested aromatic aldehydes, 

the data with indole-3-acetaldehyde as a substrate seem to suggest that Ald1 may also, at least 

to some extent, oxidize it because the reaction showed consistently higher absorbance than the 

control, albeit loss of activity with time (data not shown). This made it impossible to calculate 

change in relative absorbance per unit time, which was used as the measure for enzyme 

activity (Tables 6 and 7). Furthermore, despite the fact that the results indicate that 

acetaldehyde is not a substrate for Ald1, this cannot be confirmed since the extremely volatile 

aldehyde made it impossible to conclude the enzyme activity assay for it.  

Since both NAD and NADP binding sites were identified in the Ald1 amino acid sequence, 

the heterologously expressed enzyme was tested for both cofactors. By using propionaldehyde 

as a substrate, the enzyme activity with β-NADP+ was approximately 13-fold higher than with 

β-NAD+, suggesting that Ald1 prefers β-NADP+ as a cofactor. However, butyraldehyde was 

only oxidized using β-NAD+. As expected, Ald1 exhibited no enzyme activity on ethanol.    

 

Table 6. Enzyme activity and substrate specificity of Ald1: β-NAD+ as a cofactor    

Substrate Enzyme activity (change in relative absorbance/min x10-4) 
Propionaldehyde 
Butyraldehyde 
Acetaldehyde 
Benzaldehyde 
Indole-3-acetaldehyde 
Ethanol 

1.1 
2.7 

    n.d** 
0.0 

  n.d* 
0.0 

n.d: not detected 
* Absorbance higher than in controls, but declined over time    
** Enzyme activity, using acetaldehyde as a substrate, was not conclusive due to its high volatility 
 

Table 7. Enzyme activity and substrate specificity of Ald1: β-NADP+ as a cofactor 

Substrate Enzyme activity (change in relative absorbance/min x10-4) 
Propionaldehyde 
Butyraldehyde 
Acetaldehyde 
Benzaldehyde 
Indole-3-acetaldehyde 
Ethanol 

13.1 
0.0 

    n.d** 
0.0 

  n.d* 
0.0 

n.d: not detected 
* Absorbance higher than in controls, but declined over time    
** Enzyme activity, using acetaldehyde as a substrate, was not conclusive due to its high volatility 
 

3.1.5. Induction of ald1 expression by alcohol and aldehyde-related stress 

The regulation of ald1 expression, as mediated by various aldehydes and ethanol, was 

investigated using real time RT-PCR. First, aldRTPCRF and aldRTPCRR primers were used 
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to generate a standard curve using different concentrations of ald1 cDNA cloned in pDrive 

(Fig. 12B). The expected 132 bp real time RT-PCR amplicon (Fig. 12A) was monitored in 

amplification plots (Fig.13) for amplification artifacts. The standard curve was used to 

calculate the ald1 transcript levels in aldehyde- and ethanol-treated fungal cultures.  

The results show that 0.1 mM Indole-3-acetaldehyde and benzaldehyde significantly induced 

ald1 transcription (Fig. 14), with about 3 fold and 4 fold transcript accumulation, respectively 

(Table 8). However, a concentration of 0.01 mM Indole-3-acetaldehyde was probably too low 

to significantly increase the ald1 mRNA amount. The observation of treatments with ethanol 

revealed a concentration-dependent ald1 transcriptional inhibition, with 0.01% ethanol 

showing about 4 fold relative transcript accumulation compared to 1 fold of 0.1% ethanol 

(Table 8), probably suggesting ethanol toxicity as, in fact, reflected in the reduced biomass 

with 0.1% ethanol concentration. The results, nonetheless, indicate that low, most likely 

physiologically relevant ethanol concentrations strongly induce ald1 transcription (Fig. 14). 

 

 
 

 

 

 

 

 

Fig. 12. Real time RT-PCR standard curve generation for quantification of ald1 mRNA levels. A shows 
PCR products, which were run on 3.5% agarose gel to visualize the expected 132 bp ald1 cDNA fragment. 
A molecular ruler Hyperladder V (Bioline) (Lane 1) was used to estimate the fragment size. Lanes 2-6 
represent 1000 pg, 100 pg, 10 pg, 1 pg and 0.1 pg plasmid DNA of ald1 cDNA clone respectively. B shows 
the standard curve for quantifying ald1 mRNA levels in samples.     
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Fig. 14. Ethanol and aldehyde-mediated ald1 transcription induction. RNA for Real time RT-PCR was 
extracted from fungal cultures incubated with 0.01% and 0.1% ethanol, 0.01 mM and 0.1 mM IAAld, and 
0.1 mM benzaldehyde (BAld). Each treatment had 2 replicates. The PCR was carried out on 2 cDNA 
replicates in 3 reactions per cDNA replicate. Bars denote standard error.  
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Fig. 13. Amplification plots of ald1 cDNA Real time RT-PCR. Different concentrations of plasmid DNA 
with ald1 cDNA fragment were used as template: 1 ng – 100 fg (A) and 10 fg-1 fg (B). Non-template 
control (NTC), which was nucleic acid free water (Fermentas, Germany), was used. Threshold fluorescence 
was set at 30. Three PCR reactions per concentration were used.  
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Table 8. Effect of ethanol and aldehyde stress on ald1 transcript accumulation 

Treatment Relative transcript level 
0.01% ethanol 
0.1% ethanol 
0.01 mM indole-3-acetaldehyde 
0.1 mM indole-3-acetaldehyde 
0.1 mM benzaldehyde  

                     4 
                     1 
                     1 
                     3 
                     4 

 

3.2. Analysis of ald1 gene function by overexpression in T. vaccinum  

3.2.1. Construction of ald1 gene overexpression vectors 

In order to analyze the possible function of ald1 gene, two plasmids carrying ald1-

overexpressing cassettes, one with gpd promoter and 35S terminator, designated pBGaldh1 

(Fig. 15A), and the other with the same features but with an additional egfp fusion, designated 

pBGaldh1SeGFP (Fig.16A), were constructed. Both plasmids consist of a pCAMBIA 1300 

backbone containing the kanamycin and hygromycin resistance genes. First, different PCRs 

were carried out to generate fragments for the constructs. Using the forward primer gpdF, 

with SacI restriction site at the 5’ end, and the reverse primer gpdR on pBGgHg plasmid DNA 

as a template, an approximately 280 bp fragment of the constitutive strong glyceraldehyde-3-

phosphate dehydrogenase promoter (Pgpd) from A. bisporus was obtained. Next, ald1 was 

amplified with the ORFF forward and ORFR reverse (AscI restriction site at the 5’ end) 

primer pair on genomic T. vaccinum DNA. A fusion PCR was subsequently carried out using 

both fragments as the new template, with the primers gpdF forward and ORFR reverse, which 

resulted in a fragment of about 2.8 kb corresponding to Pgpd promoter fused to ald1. An 

approximately 1.1 kb egfp-cauliflower mosaic virus terminator (35S) fragment was amplified 

by using pBGgHg plasmid DNA as a template with EGFPFII forward (AscI restriction site at 

5’ end) and EGFPRII reverse (PmeI restriction site at 5’ end) primer pair. A 35S fragment of 

340 bp was generated by a PCR on the same plasmid DNA template using 35SF forward 

(AscI restriction site at 5’ end) and EGFPRII reverse primers. 

Then, series of ligations of the PCR fragments generated in different plasmids followed by 

restrictions and re-ligations generated the final binary vectors for ald1 overexpression. To 

construct plasmid pBGaldh1 (Fig. 15A), intermediate plasmid pNGaldh1 was generated by 

excising the SacI-AscI fragment from a commercial vector pNEB193 and inserting the Pgpd-

ald1 PCR product via SacI-AscI ligation. Plasmid pNGaldh1 was then restricted with AscI and 

PmeI, followed by insertion of the 35S terminator PCR fragment to generate plasmid 

pNGaldh1S. The correct Pgpd-ald1-35S construct (Fig. 15B) was confirmed both by PCR and 
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restriction analyses. The entire Pgpd-egfp-35S fragment was excised from plasmid pBGgHg 

by SacI and PmeI and replaced by the Pgpd-ald1-35S excised from pNGaldh1S by the same 

restriction enzyme combination to obtain plasmid pBGaldh1. Again, Pgpd-ald1-35S construct 

integration into this plasmid was confirmed by PCR and restriction analyses (Fig. 15C). Since 

this was the destination vector for overexpression, the correct nucleotide sequence and 

orientation of the construct was confirmed by sequencing.   

 
 

Plasmid pBGaldh1SeGFP (Fig. 16A) was constructed by first restricting plasmid pNGaldh1 

with AscI and PmeI followed by insertion of the egfp-35S PCR fragment to generate the 

plasmid pNGaldh1gfp. Both PCR and restriction analysis confirmed the correct cloning of 

Pgpd-ald1-egfp-35S (Fig. 16B). The entire Pgpd-egfp-35S fragment was excised from 

plasmid pBGgHg by SacI and PmeI and replaced by the Pgpd-ald1-egfp-35S fragment 

excised from pNGaldh1gfp by the same restriction enzyme combination to obtain plasmid 

pBGaldh1SeGFP. Again, Pgpd-ald1-egfp-35S integration was confirmed by PCR, restriction 

analysis (Fig. 16C) and sequencing.   

 

Pgpd 35S ald1 

B

Fig. 15. Construction of ald1 overexpression plasmid pBGaldh1. pBGaldh1 (A) is  11.312 kb in size and 
consists of a pCAMBIA 1300 backbone containing the kanamycin resistance gene and the right border 
(R/B) and left border (L/B) sequences of A. tumefaciens T-DNA. The hygromycin resistance gene and ald1 
gene, introduced in the plasmid by insertion of a 3.1 kb Pgpd-ald1-35S (T) cassette (B), are located between 
the border sequences, and each is joined to the constitutive strong A. bisporus glyceraldehyde-3-phosphate 
dehydrogenase promoter (Pgpd) and cauliflower mosaic virus terminator (35S). Correct cloning of Pgpd-
ald1-35S construct into the vector was confirmed by, among others, restriction analysis (C). Lane 1 shows 
DNA size marker λPstI. Plasmid pBGaldh1 restriction by SacI and PmeI releases the 3.1 kb construct from 
the plasmid (lane 2) while SacI (lane 3) and PmeI (lane 4) linearize the plasmid.   

C
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3.2.2. Agrobacterium tumefaciens-mediated transformation of T. vaccinum 

T. vaccinum was transformed with A. tumefaciens strain AGL-1 carrying plasmids pBGaldh1 

(Fig. 15A) or pBGaldh1SeGFP (Fig. 16A), which were constructed to overexpress ald1. After 

co-cultivation for about 2 weeks on selection plates, putative hygromycin resistant fungal 

transformants were observed. PCR analysis, using primers Hph-F and Hph-R spanning the 

hygromycin resistance gene (hgh), on DNA isolated from the putative transformants 

confirmed the presence of hgh both in the Hygr/eGFP+ and Hygr/eGFP- transformants, while 

this DNA segment was not detected in wildtype (Fig. 17A). PCR analysis with Egfp-1 and 

Egfp2 spanning the egfp gene confirmed the presence of egfp in Hygr/eGFP+ transformants, 

which was absent in wildtype (Fig. 17 B). These results indicated that the T-DNA regions of 

the transforming plasmids, which included hgh and egfp genes as a selection marker and a 

reporter gene, respectively, were integrated into T. vaccinum genome.  

Pgpd 35S egfp ald1 
B

Fig. 16. Generation of ald1 overexpression plasmid pBGaldh1SeGFP, with egfp fusion. pBGaldh1SeGFP 
(A) is 12. 050 kb in size and consists of a pCAMBIA 1300 backbone containing the kanamycin resistance 
gene and the right border (R/B) and left border (L/B) sequences of A. tumefaciens T-DNA. The hygromycin 
resistance gene and ald1 gene, introduced in the plasmid by insertion of a 3.9 kb Pgpd-ald1-egfp-35S (T) 
cassette (B), are located between the border sequences, and each is joined to the constitutive strong A. 
bisporus glyceraldehyde-3-phosphate dehydrogenase promoter (Pgpd) and cauliflower mosaic virus 
terminator (35S (T)). Correct cloning of Pgpd-ald1-egfp-35S (T) construct into the vector was confirmed by, 
among others, restriction analysis (C). Lane 1 shows “high range DNA ladder” (Bioline) and lane 5 the 
marker λPstI. Plasmid pBGaldh1SeGFP restriction by SacI and PmeI releases the 3.9 kb construct from the 
plasmid (lane 2) while SacI (lane 3) and PmeI (lane 4) linearize the plasmid.      
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The positive transformants were transferred to fresh selection agar plates of MMNb-medium 

containing 25 µg/ml hygromycin B for the second round of antibiotic selection. Hygromycin 

resistant transformants, observed on selection plates after the second round of antibiotic 

selection (Fig. 18), were transferred to non-selective MMNb-medium for mitotic stability 

tests.  

A
WT Tvaldh1-eGFP- WT Tvaldh1-eGFP+ 

B

Fig. 18. Hygromycin resistant T. vaccinum transformants observed on plates after the second round of 
antibiotic selection. T. vaccinum was transformed with A. tumefaciens AGL-1 carrying the transforming 
plasmids pBGaldh1 without egfp gene fusion (panel A) and pBGaldh1SeGFP with egfp gene fusion (panel 
B). A: Non-transformed T. vaccinum wild type (WT) failed to grow on selection plates while Tvaldh1-
eGFP- transformants grew, albeit slowly. B: Tvaldh1-eGFP+ transformants established good growth on 
selective plates as compared to the wild type T. vaccinum that failed to grow. Cultures were grown on 
MMNb-medium supplemented with 25 µg/ml hygromycin B.    

A B
111 2 3 4 5 6 7 8 9 10 12

kb 
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1 2 3 4 5 6 7 8 
kb

0.7

Fig. 17. PCR analysis of T. vaccinum transformants. PCR targeting the 1.0 kb hgh gene (A) was carried out 
both on transformants with or without egfp gene fusion: Lanes 1 and 9 DNA size maker λPst1, lanes 2-5 
Hygr/eGFP+ transformants, lane 6 wild type, lane 7 negative control without DNA, lane 8 positive control 
with vector pBGgHg, lanes 10-12 Hygr/eGFP- transformants. PCR targeting the 0.7 kb egfp gene (B) was 
carried out only on Hygr/eGFP+ transformants: Lane 1 DNA size maker λPst1, lanes 2-5 Hygr/eGFP+ 
transformants, lane 6 wild type, lane 7 negative control without DNA, lane 8 positive control with vector 
pBGgHg. PCR was carried out on gDNA of the transformants.          



3. RESULTS 58

For mitotic stability tests, transformants were grown on non-selective MMNb-plates for about 

2 months before transferring them back to selective plates containing 25 µg/ml Hygromycin 

B, and evaluating their growth. All transformants were still able to grow well on hygromycin 

plates (Fig. 19), indicating that the introduced hgh gene is mitotically stable.  

 

 
 

In order to investigate the correct functional expression of the egfp, mycelium was detached 

from colonies of transformants and analyzed for eGFP-associated green fluorescence by 

confocal laser-scanning microscopy. Preliminary confocal microscopy indicated that green 

fluorescence, associated with eGFP, was well distributed in the fungal hyhae of transformants, 

with significantly higher accumulation in specific regions (Fig. 20). A closer observation of 

different specimens indicated that the eGFP-associated green fluorescence was mostly 

confined to cytoplasm. Unfortunately, efforts to quantify eGFP-associated fluorescence of the 

transformants relative to wild type strain later on in sub-cultured transformants yielded no 

significant difference in green fluorescence to the wildtype (data not shown). These data 

showed that the green fluorescence in mycelium of transformants was drastically reduced, as 

compared to the first confocal images taken.  

 

Fig. 19. Mitotic stability test for T. vaccinum transformants. After approximately 2 months growth on non-
selective plates, the growth of transformants on selective plates containing hygromycin B was monitored. 
Both the transformants with (A) and without (B) egfp gene fusion maintained their growth on the selective 
plates while no wild type fungal growth was observed. The transformants were grown on MMNb-medium 
supplemented with 25 µg/ml hygromycin B.    

A

Tvaldh1-eGFP+ WT Tvaldh1-eGFP- WT

B
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3.2.3. In vitro mitigation of stress by ald1 

Aldehyde dehydrogenase is widely known for its role in maintaining low levels of toxic 

aldehydes in organisms by oxidizing them to non-toxic, usable carbohydrates. To test 

detoxification ability of ALDH in ectomycorrhiza, T. vaccinum transformant (Tvaldh1-

eGFP+1) overexpressing ald1 was investigated for ethanol and aldehyde stress torelance. 

First, toxicity tests were carried out using different concentrations of ethanol and aldehydes to 

determine the optimal concentrations for investigating the function of the fungal ALDH in 

Fig. 20. Analysis of eGFP-associated green fluorescence in transgenic T. vaccinum, transformed with an 
egfp fusion plasmid pBGaldh1gfp, by laser-scanning confocal microscopy. (B) Detached mycelium 
visualized using transmitted light. (C) The same field showing green fluorescence due to eGFP 
accumulation in mycelium. (A) The two images were superimposed. The green fluorescence associated with 
eGFP was detected using 488 nm excitation and 505 nm long pass (LP 505) emission. Images were obtained 
with a 40x water objective.    

B C

A
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stress mitigation (data not shown). Concentrations of ethanol below 2% did not significantly 

slow down fungal growth; in fact, at lower concentrations, fungal strains showed increased 

growth by producing a dense network of aerial mycelium, probably as a result of using the 

non-inhibitory concentrations as alternative energy source. Therefore, 2% ethanol was chosen 

as the optimal concentration for ald1 functional analysis, since higher concentrations were 

detrimental to fungal growth. 

 

Aldehyde stress mitigation by Ald1, tested with different concentrations of benzaldehyde and 

butyraldehyde, did not yield significant results, probably due to limited uptake (data not 

shown). On the other hand, observations carried out on 2% ethanol-treated fungal cultures 

indicated that the Ald1-overproducing transformant Tvaldh1-eGFP+1 significantly reduced 

ethanol stress compared to the wildtype (Fig. 21). Whereas the ethanol stress reduced growth 

of the wildtype by almost 50%, the growth of the transformant was only reduced by about 26-

33% throughout the growth period of about 4 weeks (Fig. 21).  

 
 

3.3. Role of indole-3-acetic acid in biology of T. vaccinum  

A fundamental question about the involvement of IAA in ectomycorrhiza, which has not been 

investigated so far, is the effect of the phytohormone on the biology of ectomycorrhizal fungi. 

Fig. 21. Ethanol stress mitigation by ald1. The reduction in fungal growth, quantified using colony diameter 
measurements, as a result of exogenous application of 2% ethanol to fungal agar cultures was compared 
between the wild type T. vaccinum (WT) and a transformant overexpressing ald1 gene with egfp fusion T1 
(Tvaldh1-eGFP+1). The fungal cultures were replicated at least 3 times. Bars denote standard error, and 
letters show significantly different fungal growths.   
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This question was answered in this study. Furthermore, the capacity of T. vaccinum to 

produce IAA, a beneficial trait in ectomycorrhiza, was investigated. 

3.3.1. Effect of IAA on T. vaccinum hyphal morphology 

The effect of exogenously applied IAA or its precursors on fungal hyphal ramification was 

investigated in vitro by supplementing the liquid medium with varying concentrations of 

synthetic IAA or its precursors, and microscopically monitoring fungal morphology. 

Inoculation with the immediate IAA precursor, indole-3-acetaldehyde (IAAld), resulted in 

significant increase in fungal hyphal branching at precursor concentrations above 0.05 mM 

(Fig. 22). This effect was more pronounced at 0.2 mM IAAld, which was the highest 

concentration tested. The effect of another precursor, tryptophan, on branching was also 

tested. Tryptophan concentrations above 0.5 mM significantly increased hyphal branching, 

with highest branch formation becoming visible at 2.5 mM (Fig. 22). 

 

  
 

Fig. 22. T. vaccinum hyphal branching, as influenced by IAA precursors. Exogenous application of the IAA 
precursors Indole-3-acetaldehyde (IAAld) and tryptophan caused extensive fungal hyphal branching 
compared to the control where the fungal growth medium was not supplemented with the precursors, which 
showed almost no branching.     

0.1 mM IAAld

0.2 mM IAAld

Control

2.5 mM tryptophan 
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To find out if the hyphal phenotype observed was a result of IAA produced from the 

precursors, IAA concentrations in fungal culture filtrates were determined by the calorimetric 

Salkowski assay. Indeed, the assay showed that the fungus produced IAA from the precursors 

in a concentration-dependent manner (Fig. 23 and 24), which in turn correlated with the 

observed increased fungal hyphal branching. Although the results with IAAld as the precursor 

indicate that IAA concentration is reduced over time, an unsurprising observation since the 

phytohormone is unstable, the differences in phytohormone concentrations for different 

precursor concentrations are still discernable, even after 4 weeks of fungal culture incubations 

(Fig. 23). Importantly, the calorimetric IAA measurements suggest that T. vaccinum is able to 

produce IAA both in the presence and absence of exogenously supplied precursors, albeit 

with reduced concentrations in the latter case.  

 

   

   
 

Fig. 23. IAA concentrations in fungal culture filtrates containing indole-3-acetaldehyde (IAAld). 
Concentrations were measured, in 4 week-old cultures, using Salkowski assay. The fungal cultures were 
replicated at least 4 times. Bars denote standard error, and letters show significantly different treatments.   
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To confirm the observation that IAA may be responsible for the increased hyphal branching 

with precursor treatments, pure synthetic IAA was exogenously applied to fungal cultures, 

and hyphal branching was monitored. Supplementation with 0.5 mM IAA provoked extensive 

hyphal branching (Fig. 25 B), although 0.1 mM of the phytohormone was enough to already 

significantly increase branching compared to cultures not supplemented (Fig. 25 A). IAA 

polar transport is known to be inhibited by different compounds including 2,3,5-

triiodobenzoic acid (TIBA). To test if the exogenously supplied IAA was transported into the 

fungal cells, cultures were supplemented with a mixture of 0.5 mM IAA and 10 µM TIBA. 

Microscopic observations indicated that addition of TIBA reversed the phenotype observed 

with IAA inoculations. As expected, branching was significantly reduced upon addition of 

TIBA (Fig. 25 C). Efforts to test the hyphal branching effect of D’orenone, a precursor of 

trisporic acids, which was observed to inhibit plant root hair tip growth by interfering with 

PIN2-mediated intercellular auxin transport and signaling (Schlicht et al., 2008), resulted in 

branching pattern that was not significantly different from control mycelium (data not shown). 
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Fig. 24. IAA concentrations in fungal culture filtrates containing tryptophan (trp). Concentrations were 
measured using Salkowski assay in the 4 week-old cultures. The fungal cultures were replicated at least 4 
times. Bars denote standard error, and letters show significantly different treatments.   
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3.3.2. Effect of IAA on T. vaccinum fungal growth 

To test the growth response of the ectomycorrhizal fungus T. vaccinum to IAA, 100 µM of the 

phytohormone were exogenously applied to solid medium and growth quantified by 

measuring colony diameter. The growth measurements indicated that, although inoculation 

with IAA resulted in colonies larger than uninoculated controls, the difference was not 

statistically (P<0.05) significant (Fig. 26). However, application of 10 µM TIBA, the polar 

auxin transport inhibitor, either alone or together with 100 µM IAA, drastically reduced 

fungal growth (Fig. 26 and 27) clearly indicating that IAA is involved in T. vaccinum growth. 

In fact, the same observations were made when the experiment was carried out using 0.5 mM 

tryptophan as the IAA source, instead of pure synthetic IAA (data not shown).  

 

 

 

 

 

 

 

 

 

 

A B C

 
Fig. 25. Effect of IAA on T. vaccinum hyphal branching. 0.5 mM IAA, exogenously applied to fungal 
cultures, significantly increased fungal hyphal branching (B) compared to less or no branching observed in 
control (A). Co-inoculation of IAA with TIBA significantly reversed this phenotype (C).  
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Fig. 26. Real time quantification of the effect of IAA on T. vaccinum growth. IAA and/or its polar transport 
inhibitor, TIBA, were exogenously applied to fungal MMNb culture plates. Fungal growth was quantified 
by measuring colony diameter. Bars denote standard error, and letters show significantly different 
treatments.      
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Fig. 27. Radial colony growth of T. vaccinum as influenced by IAA. IAA and/or its polar transport inhibitor, 
TIBA, were exogenously applied to MMNb culture plates. A: Comparison of control to TIBA; B: Effect of 
co-inoculating IAA with TIBA as compared to IAA a lone. 30 days old plates are shown.    
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3.4. Biosynthesis of indole-3-acetic acid in T. vaccinum   

To validate the observation that T. vaccinum is able to produce IAA both with and without 

precursors, as shown by Salkowski assay, IAA in fungal culture filtrates was quantified by 

Gas Chromatography-Mass Spectrometry (GC-MS). Although IAA was detected in cultures 

without precursor supplements, indicating ability of the fungus to produce IAA on its own, 

the amounts were too low to be quantified since they were outside the calibration range 

established for the measurements (Fig. 28 and 29). However, the GC-MS results 

unequivocally demonstrated the ability of T. vaccinum to produce IAA in the presence of its 

precursors.    

     
       

Inoculation of fungal cultures with 0.2 mM IAAld produced high amounts of IAA, an 

unsurprising observation since it is expected to be an immediate precursor of the 

phytohormone (Table 9). The possibility of IAA being produced from IAAld by non-
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Fig. 28. Representative chromatograms of IAA purified from T. vaccinum culture filtrates containing the 
IAA precursors tryptophan and indole-3-acetaldehyde as compared to control cultures without precursor 
amendments (in bold). IAA was purified from 4 week-old cultures and analyzed by GC-MS. IAA peaks were 
obtained by tracing (13C6)-IAA.       
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enzymatic oxidation of IAAld was tested by inoculating the medium, without the fungus, with 

0. 2 mM IAAld under the same growth conditions. Measurements using GC-MS did not 

detect quantifiable IAA, indicating that the oxidation of IAAld to IAA earlier observed is 

purely enzymatic, with IAAld aldehyde dehydrogenase as the most probable enzyme 

candidate. 

Exogenous application of tryptophan to fungal cultures produced significant amounts of IAA 

even at 0.5 mM, the lowest concentration tested (Fig. 28 and Table 9). The IAA amounts 

were, however, much less than those in cultures supplemented with 0.2 mM IAAld, an 

expected observation since a small fraction of tryptophan would be expected to be finally 

converted to IAA, the rest going into the production of other metabolic compounds. Also, an 

attempt was made to test the transient production of IAA from tryptophan by measuring IAA, 

in real time, every week until the normal 4 week fungal growth period. The results indicated 

that IAA production is significant even during the first week of incubation, but steadily 

increases and reaches a maximum in the 4th week (data not shown). Since all IAA 

measurements were done on 4 week-old fungal cultures, this test rules out the possibility of 

underestimating the IAA production potential of T. vaccinum. Furthermore, quantification of 

IAA in culture filtrates containing D’orenone revealed accumulation of IAA in the cultures, 

which was concentration-dependent (Fig. 29 and Table 9). However, visual observations 

indicated that D’orenone significantly reduced fungal growth (Fig. 30). Important to note in 

the quantification of IAA in fungal cultures (Table 9) is the fact that there was high variation 

between replicates.  

To unequivocally prove the biosynthesis of IAA from tryptophan, 13C-labeled tryptophan was 

fed and 13C-labeled IAA measured. The production of labeled IAA could be shown, which, as 

earlier observed with unlabeled tryptophan, increased over time (Fig. 31). Interestingly, the 

labeled tryptophan feeding seemed to stabilize the variations in IAA amounts between 

replicates, which were earlier observed in unlabeled tryptophan feeding experiments, 

probably due to increased reproducibility.   
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Table 9. Production of IAA by T. vaccinum, as quantified by GC-MS measurements   

Treatment IAA concentration (µM) 
0.8 µM D’orenone 
4 µM D’orenone 
0.5 mM tryptophan 
2.5 mM tryptophan 
0.2 mM IAAld  

0.06 
0.17 
1.20 
3.99 

140.39 
    

A close observation of chromatograms generated during IAA measurements by GC-MS 

revealed two unknown compounds with retention times of about 12.5 and 13.5 min (Fig. 28 

and 29). Interestingly, addition of IAA precursors, tryptophan and IAAld, as well as its 

transport and signaling inhibitor, D’orenone, downregulated the production of the compounds. 

Although the chemical structures of these compounds were not determined, MS results show 

that both of them possess an indole ring.  
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Fig. 29. Chromatograms of IAA purified from T. vaccinum culture filtrates containing polar auxin transport 
and signaling inhibitor, D’orenone, as compared to control cultures without the compound (in bold). IAA was 
purified from 4 week-old cultures and analyzed by GC-MS. IAA peaks were obtained by tracing (13C6)-IAA.      
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3.5. Role of indole-3-acetic acid in ectomycorrhiza formation   

3.5.1. Influence of IAA on T. vaccinum-spruce ectomycorrhizal development  

The effect of IAA on establishing ectomycorrhizal features was investigated in co-cultures. In 

order to minimize the time to establish contact and therefore to increase chances of 

Fig. 30. Representative 4 week-old cultures of T. vaccinum showing biomass reduction in the cultures 
supplemented with D’orenone. Exogenous application of 0.8 µM (B) and 4 µM (C) D’orenone significantly 
decreased fungal colony size as compared to the control (A) without D’orenone application.  

A B C

Fig. 31. Real time quantification of IAA from T. vaccinum cultures supplemented with labeled tryptophan. 
IAA was purified from 1, 2, 3 and 4 week-old cultures and analyzed by GC-MS. IAA peaks were obtained 
by tracing (13C6)IAA. The IAA amounts shown represent only IAA from labeled tryptophan. Bars denote 
standard error, and letters show significantly different IAA amounts.   
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mycorrhiza establishment, MMNa-medium was supplemented with 2 g/l glucose. 

Microscopic observations over time indicated that the mycorrhizal cultures established the 

same level of fungal mantle development, which was higher than that without glucose, 

regardless of whether they were treated with IAA or not. However, the observations show 

good Hartig’ net establishment in cultures supplemented with 100 µM IAA compared to 

controls without IAA in which there was hardly any Hartig’ net formation (Fig. 32). The 

effects of TIBA, an IAA inhibitor, could not be quantified since the controls without the 

compound also hardly established a Hartig’ net (Fig. 32). Despite the fact that the fungus 

established contact with all the roots, it was only able to easily penetrate them in the presence 

of IAA, as shown by DAPI-stained fungal nuclei between cortical cells (Fig. 32C) and highly 

developed Hartig’ net (Fig. 32F). 

 

   

Fig. 32. T. vaccinum-spruce ectomycorrhizal development, as influenced by IAA after about 2 months of 
co-cultivation. Cryosections of mycorrhized seedling roots were obtained for visualization of fungal nuclei, 
after DAPI staining. Fluorescence microscopic visualization of stained nuclei (A, B and C), together with 
the corresponding bright field images (D, E and F) showed considerably high Hartig’ net (h) development 
between cortical cells as a consequence of exogenous application of 100 µM IAA (C and F). Hartig’ net was 
neither observed in mycorrhiza without IAA application (A and D) nor in mycorrhiza with exogenous 
application of 10 µM TIBA (B and E). However, the fungal mantle (m) was observed in all treatments.  
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3.5.2. Effect of fungal and IAA inoculation on plant growth and development   

Plant growth promotion by ectomycorrhiza was tested in vitro. Spruce seedling lateral root 

and leaf needle development were quantified in mycorrhizal cultures supplemented with IAA 

or TIBA. The results indicate that fungal inoculation, either on medium with (Fig. 34) or 

without (Fig. 33A) glucose, repressed lateral root development up to 2.8 fold (Fig. 34, 28 dpi). 

The repression of lateral root development was, however, reversed by exogenous application 

of 100 µM IAA (Fig. 33A and 34). Furthermore, inoculation of T. vaccinum did not increase 

seedling shoot development, and exogenous application of 100 µM IAA never compensated 

for this shortfall (Fig. 33B). In fact, like the observed effect on lateral root development, 

fungal inoculation slightly slowed down shoot development. The results also indicate that 

IAA inoculation reduces shoot development, at least under the artificial co-inoculation 

conditions.   
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Fig. 33. Quantification of plant growth parameters in T. vaccinum-spruce ectomycorrhizal cultures 
established on MMNa-medium without glucose supplements. Spruce seedling lateral root (A) and leaf needle 
(B) development was quantified in 42 day-old mycorrhiza cultures. NMc, non-mycorrhized; Mc, 
mycorrhized. For IAA treatment, 100 µM of the phytohormone were exogenously applied to the cultures. 
Bars denote standard error.   
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Fig. 34. Real time quantification of lateral root development on T. vaccinum-spruce ectomycorrhizal 
cultures established on MMNa-medium supplemented with 2g/l glucose. For IAA treatment, 100 µM of the 
phytohormone were exogenously applied to the cultures. NMc, non-mycorrhized; Mc, mycorrhized. Bars 
denote standard error.  
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4. DISCUSSION  

4.1. Characterization of an ectomycorrhizal fungal aldehyde dehydrogenase 

4.1.1. The structure and phylogeny of ald1 

The molecular investigation of mechanisms underlying ectomycorrhiza formation and 

functioning has received less attention, yet it is fundamental to understanding this symbiotic 

association. Here, a full-length aldehyde dehydrogenase gene (ald1) from an ectomycorrhizal 

agaricomycete fungus Tricholoma vaccinum was characterized. The gene had earlier been 

shown to be differentially expressed in T. vaccinum-spruce ectomycorrhiza (Krause, 2005; 

Krause and Kothe, 2006) and therefore was expected to play a crucial role in the association. 

With 16 introns, ald1 is an intron-rich gene, encoding the ALDH protein Ald1 of 502 amino 

acids. The molecular mass was calculated to be 53.5 kDa, with an isoelectric point of 6.28. 

The molecular mass was experimentally verified by heterologous expression of ald1 cDNA in 

E. coli, followed by Western blot analysis. A second protein band observed on the Western 

blot (Fig. 11) could have resulted from protein degradation. As suggested by Pflug et al 

(2007), the low protein yield could be associated with the slowed transcription and translation 

machinery of the E.coli cells used in pET-system at the low temperature of 18ºC, at which the 

cultures were incubated.   

The heterologous ald1 expression confirmed the integrity of the cloned gene. As ALDH 

activity could be shown in the overexpressing E. coli cells, the cDNA cloned was functional. 

Both NAD+ and NADP+ were accepted as cofactors, agreeing with the potential binding sites 

for both cofactors identified in the Ald1 sequence. To the best of our knowledge, this is the 

first ald gene to be characterized in mycorrhizal fungi.  

        

The availability of a sequenced genome of another ectomycorrhizal agaricomycete fungus, 

Laccaria bicolor, greatly facilitated the analysis of Ald1 structure and phylogeny. An 

interesting feature about ALDHs is a large extent of homology of these enzymes across all 

eukaryotic phyla. The alignment of the Ald1 amino acid sequence with other fungal ALDHs 

revealed similarities of up to 74%, with L. bicolor showing the highest amino acid similarity. 

ALDHs, which can oxidize different aldehydes, are grouped in an enzyme superfamily 

sharing 10 highly conserved motifs, which were suggested to cluster near the active site of 

ALDH enzymes (Perozich et al., 1999), and residues as reported in Hempel et al. (1993) and 

Perozich et al. (1999). Apparently, this might help to deduce the potential biological function 
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of Ald1. However, with the exception of Ustilago maydis, none of the related enzymes have 

been functionally characterized. 

 

At the time Perozich et al. (1999) reconstructed ALDH phylogeny by using the 145 known 

amino acid sequences available by then, the fungal ALDH family was poorly represented. We 

have re-investigated the evolutionary relationships of fungal ALDHs, since now a 

considerable number of fungal genomes, including agaricomycetes previously not 

represented, have been sequenced. Because of this wider fungal ALDH resource base, we 

used a total of 53 specific fungal ALDHs, representing all major phyla in the kingdom of 

fungi, compared to Perozich et al. (1999) where only 9 specific fungal ALDHs were used. 

Database mining, using Ald1 as an amino acid sequence search querry, indicated that most 

fungal ALDHs have multiple paralogs, suggesting possible duplication events during the 

course of their evolution. With this in mind, a phylogenetic reconstruction of fungal ALDH 

revealed that fungal ALDHs diverged in accordance with the conventional fungal 

classification based on morphological and molecular characteristics, as evidenced by 

clustering of ALDHs in distinct taxonomic groups, with chytridiomycota being basal to all 

other fungal groups (Blackwell et al., 2009). However, the occurrence of two distantly related 

groups of each taxon, with some fungi possessing multiple paralogs, implies early duplication 

and divergency of this enzyme family. Indeed, a closer look revealed two possible major 

duplication events during the course of evolution, the first duplication happening after the 

split of chytridiomycetes and another, more recent one, within the agaricomycetes (Fig. 10). 

These possible duplication events are also supported by the fact that higher fungi posses 

higher numbers of paralogs compared to lower fungi. Furthermore, multiple fungal ALDH 

sequence alignments had indicated that the sequence of Coprinopsis cinerea 4, which clusters 

in the agaricomycetes clade (basidiomycota I group) (Fig. 10), had undergone deletion events, 

including essential conserved motifs. This would suggest that this paralog is non-functional. 

Another surprising observation is the fact that the phylogram depicts ascomycetes being basal 

to zygomycetes. However, this could be due to the effect of long branch attraction (reviewed 

in Bergsten, 2005). Nonetheless, the fact that phylogenetic analyses using Treefinder, 

RAxML and PAUP generated the same topologies with that of MrBayes unequivocally 

demonstrated the reproducibility of our phylogenetic investigation.   

 

Although T. vaccinum has received little research attention so far, and its genome has not 

been sequenced, a total of three ald paralogs, including the now fully sequenced ald1, have 
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been reported (Krause, 2005; Asiimwe et al., 2010). Obviously, the total number of paralogs 

in the genome of this ectomycorrhizal agaricomycete fungus can not be deduced until the 

genome is sequenced. However, since all basidiomycetes with sequenced genomes, including 

close relatives of T. vaccinum, have paralogs that cluster in basidiomycota 2 group (Fig. 10), 

we predict at least one additional T. vaccinum paralog in this group. Nonetheless, the 

identified paralogs are likely to play roles in the symbiotic association between the fungus and 

its compatible host plant spruce (Picea abies), since their “parent” fragment was differentially 

expressed in the ectomycorrhiza (Krause and Kothe, 2006). Until the biological functions of 

the paralogs are investigated in detail, it will remain a matter of speculation that the functions 

of ald2 and ald3 are not so different from those of ald1 considering the close clustering in the 

phylogram. Assuming the current status of fungal ALDH evolution, T. vaccinum ALDH 

amino acid sequence is suggested to have diverged relatively recent, compared to other 

agaricomycetes. 

 

4.1.2. Regulation of ald1 gene expression 

Analysis of the promoter region of ald1 revealed the presence of five putative Stress 

Response Elements (STREs). These elements have been detected, and suggested, to be 

involved in induction of stress-inducible genes (Martinez-Pastor et al., 1996; Görner et al., 

1998; Moskvina et al., 1999; Zähringer et al., 2000). The presence of such elements is 

tempting to suggest that ald1 is induced under stress conditions. However, reports of STRE 

elements in promoter regions of fungal ald genes are rare, which is also the case with other 

ald genes across all phyla, yet this is one of the gene superfamilies that have been widely 

studied. All reports on ald, nonetheless, agree that these genes are stress-inducible, although 

some level of constitutive expression also exists, depending on the ALDH class, and 

conditions prevailing. The presence of the putative transcriptional control sequences, the 

“GC” boxes (consensus sequence GGGCGG), which bind the transcription factor Sp1, 

common in constitutively expressed genes (Dynan and Tjian, 1985), in the promoter region of 

ald1, hints on the fact that it may also show a low constitutive, and stress-inducible expression 

pattern.  

 

Alcohol- and aldehyde-related stress effects may be different from those of the stress factors 

like heat, osmosis, low pH and nutrient starvation, mentioned in the studies demonstrating the 

function of STREs. However, induction by various aldehydes and ethanol could be expected. 

Using real time RT-PCR, it was established that 0.1 mM indole-3-acetaldehyde and 
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benzaldehyde significantly induced ald1 expression by 3 fold and 4 fold, respectively. A 

relatively low concentration of ethanol (0.01%) increased ald1 expression by 4 fold while 

0.1% ethanol only led to 1 fold increase in transcript accumulation. This may be attributed to 

ethanol toxicity, which is, in fact, supported by the generally observed reduced fungal 

biomass in cultures containing 0.1% ethanol. These results support the earlier findings in the 

PhD work of Krause (2005), which were carried out by using competitive RT-PCR. The 

induction of ald1 transcription only at low levels of ethanol probably implies mediation of 

ald1 in mitigating stress effects resulting from ethanol, only at low concentrations that may be 

physiologically relevant.  

The level of induction, however, was lower than the 50 fold increase observed by Krause 

(2005). A number of reasons could have brought about this discrepancy. Firstly, the fungal 

medium in the current study contained 20 g/l of malt extract, instead of 5 g/l used by Krause 

(2005). This could have resulted in metabolic accumulation of carbon compounds, including, 

but not limited to, glucose, in the fungal cultures, which would have then repressed ald1 

expression. Glucose is considered as a strong repressor of the ethanol regulon in A. nidulans, 

of which aldehyde dehydrogenase gene aldA is part, although other carbon compounds like 

fructose and lactose were also identified as weak repressors (Fillinger et al., 1995). The 

ethanol utilization (alc) pathway in A. nidulans is a model system for studying gene regulation 

(Felenbok et al., 2001), implying that alcohol and aldehyde metabolism of T. vaccinum is 

most likely regulated similarly. Secondary, the T. vaccinum strain used had undergone a 

prolonged sub-culturing regime from the time it was last used in ald expression studies by 

Krause (2005), without contact with the host plant. Since ald1 was differentially expressed in 

ectomycorrhiza (Krause and Kothe, 2006), implying a probable requirement for plant signals, 

the sub-culturing of the fungus on rich medium could have led to a relaxed ald induction 

system resulting in weaker transcript accumulation. Thirdly, the inaccuracy of competitive 

RT-PCR, just like any other conventional RT-PCR-based procedures in quantifying gene 

transcript accumulation (Souaze et al., 1996; Bustin, 2000), could have inflated the estimated 

gene transcript to higher levels. On the other hand, after reviewing all mRNA quantification 

methods, Bustin (2000) concluded that real time RT-PCR, which was used in the present 

study, must be a method of choice for any experiments requiring sensitive, specific and 

reproducible quantification of mRNA. Nonetheless, these two studies agree on the fact that 

ethanol, at low levels of concentrations, induce ald1 gene expression.            
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Ethanol, together with other alcohols, was also observed to induce the transcription of aldA 

from the model fungus A. nidulans (Fillinger et al., 1995; Flipphi et al., 2001). However, 

Flipphi et al. (2001) clearly indicated that the real physiological inducers of the aldA gene 

expression, by using alcohols as the co-inducing compounds, are the corresponding aldehydes 

produced by oxidation of the respective alcohols. Therefore, the induction of ald1 

transcription by ethanol would indirectly implicate acetaldehyde as the real physiological 

inducer. Unfortunately, this could not be confirmed by using acetaldehyde as an ald1 gene 

inducer due to its high volatility at room temperature.  

ALDHs are generally regarded as detoxification enzymes (Jacoby and Ziegler, 1990), largely 

because they are involved in oxidation of various aldehydes to non-toxic, usable 

carbohydrates. The fact that ald1 was induced by both aliphatic and aromatic aldehydes 

(Krause, 2005), which has been confirmed in the present study by using real time RT-PCR, 

where for example the aromatic aldehydes indole-3-acetaldehyde and benzaldehyde strongly 

induced the gene expression, may imply that either the gene product has a wide substrate 

specificity or is simply induced as a consequence of the general stress effects resulting from 

these aldehydes. It is tempting, therefore, to speculate that ald1 gene may be involved in the 

production of the phytohormone indole-3-acetic acid (IAA) since ALDH has been reported to 

catalyze the oxidation of indole-3-acetaldehyde to IAA (Cooney and Nonhebel, 1989; Basse 

et al., 1996; Tam and Normanly, 1998; Fedorova et al., 2005; Spaepen et al., 2007; Reineke 

et al., 2008). In fact, this argument is further supported by the fact that Ald1 has an amino 

acid identity of 58% with U. maydis indole-3-acetaldehyde dehydrogenase, iad1, which is 

involved in production of IAA (Basse et al., 1996).   

 

The results, taken together, suggest that T. vaccinum ald1 is likely to play two important roles 

in ectomycorrhiza in vivo. Firstly, it may be involved in detoxification of alcohols and 

aldehydes that tend to accumulate in ectomycorrhizal habitats, especially under conditions of 

flooding and water logging. Secondary, the possible involvement of ald1 in IAA production 

would facilitate mycorrhiza establishement and maintanance, as reviewed in Podila (2002). 

 

4.1.3. The function of ald1 in T. vaccinum 

In order to understand the biological function of ald1 in T. vaccinum, the gene was 

overexpressed in the fungus by using A. tumefaciens-mediated transformation (ATMT). 

Hygromycin resistant fungal transformants haboring ald1-overexpression vectors were 

screened on selection plates, and confirmed by PCR. Furthermore, tests confirmed that the 
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transgene was stably integrated into T. vaccinum genome, which is in agreement with the 

findings of Schlunk (personal communication) who also observed the stability of hgh in 

ATMT of this fungus using the plasmid pBGgHg (Chen et al., 2000), which forms the 

backbone of the plasmids used here. Schlunk, using the same plasmid backbone, found 

predominantly single copy integrations (Schlunk, personal communication), which has also 

been reported elsewhere (reviewed in Meyer, 2008).   

A PCR targeting the egfp gene on one of the transforming plasmids had indicated that this 

gene was successfully integrated into the genome of T. vaccinum (Fig. 18 B). In an effort to 

investigate whether the gene was functionally expressed in T. vaccinum, eGFP-associated 

green fluorescence in detached mycelium of transformants was monitored by confocal laser-

scanning microscopy. Preliminary results revealed cytoplasmic eGFP-associated green 

fluorescence in the transformants with some accumulation in specific regions, probably nuclei 

(Fig. 20), which is typical for all eukaryotic organisms (Fabre and Hurt, 1994; Müller et al., 

2006). Unfortunately, this was not reproducible in subsequent fungal sub-cultures. In these 

cultures, the eGFP-associated green fluorescence was drastically reduced to background 

fluorescence comparable to the wild type. This could have been either due to a possible 

difficulty in the egfp transgene expression or its instability upon sub-culturing of the fungal 

transformants on non-selective plates. Although reporter GFP green fluoresecnce has been 

reportedly detected in a few agaricomycete fungal transformants (Burns et al., 2005; 

Rodríguez-Tovar et al., 2005; Müller et al., 2006), other authors had reported difficulties in 

egfp gene expression. For example, Chen et al. (2000), Hanif et al. (2002) and Combier et al. 

(2003) were unable to observe eGFP fluorescence in the transformants of agaricomycetes A. 

bisporus, Suillus bovinus and Hebeloma cylindrosporum, respectively, transformed with 

pBGgHg, which formed the backbone of the current transforming plasmids. However, like in 

the present study, the authors were able to prove, by Southern blot analysis, PCR and mitotic 

stability tests, that egfp was successfully integrated into the fungal genomes. Other cases 

where GFP expression has been problematic, which was actually attributed to codon 

preference, are the yeast fungus C. albicans (Cormack et al., 1997) and the basidiomycete 

fungus U. maydis (Spelling et al., 1996), not to mention other organisms. In fact, even in the 

most of the successful stories in GFP expression, it was shown that an intron fusion to gfp 

gene was needed before significant levels of protein expression were seen. However, the 

recent reports of eGFP expression without the requirement of an intron (Rodríguez-Tovar et 

al., 2005; Müller et al., 2006) suggests the existence of other impedements to significant 
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eGFP expression. These were observed to include preferential methylation, and inactivation 

of gene expression by AT-rich sequences like egfp, among others (Burns et al., 2005). 

Nevertheless, the expression of eGFP in T. vaccinum, albeit being unstable, demonstrates the 

feasibility of using egfp as a reporter gene in this ectomycorrhizal fungus. The enhancement 

of gene expression will, however, be necessary before full exploitation of GFP as a reporter in 

this fungus is possible.     

 

Although, over the past decade, ATMT has been developed for a number of filamentous 

fungi, the validation of the method in functional gene analysis is rare. This is, therefore, one 

of the few pioneering studies that are, of recent, taking a step further from describing 

transformation methods to utilizing them for the ultimate purpose of analyzing gene functions. 

For ectomycorrhizal fungi, this is the second demonstration of using ATMT in investigating a 

gene function. Investigation of gene function using agrotransformation in ectomycorrhizal 

fungi was first demonstrated by heterologously overexpressing a Paxillus involutus 

metallothionein in Hebeloma cylindrosporum (Bellion et al., 2007). In this study, the possible 

mitigation of ethanol- and aldehyde-related stress by T. vaccinum aldehyde dehydrogenase, 

Ald1, was functionally investigated in a fungal transformant overexpressing the enzyme. Real 

time experiments with 2% ethanol showed that the transformant tremendously reduced the 

ethanol stress, compared to the wildtype. These results clearly indicate that ald1 mediates, at 

least partly, ethanol stress tolerance of the ectomycorrhizal fungus T. vaccinum. Since ALDH 

is the second enzyme in ethanol catabolism (Flipphi et al., 2001), Ald1 could have acted by 

oxidizing the rather toxic acetaldehyde, produced by an alcohol dehydrogenase-mediated 

oxidation of ethanol. This confirms that ethanol- and aldehyde-induced ald1 gene expression 

is linked to ethanol detoxification, a function that is directly relevant in ectomycorrhizal 

habitats. Interestingly, concentrations of ethanol lower than 2% resulted in higher growth 

compared to controls without ethanol, a trend that was observed both in the transformant and 

wild type strains. This, unsurprisingly, suggests that, with the help of ADH and ALDH, the 

fungus is able to utilize ethanol as a carbon source for its energy requirements. 

 

It has been shown, in separate experiments, that ald1 gene is significantly induced by 

benzaldehyde, but does not necessarily alleviate benzaldehyde-related stress. Also, Ald1 

enzyme activity assays indicated that benzaldehyde does not react with the enzyme. This 

implies that the aromatic aldehyde is not a substrate for Ald1, and that the induction of ald1 

gene expression earlier observed could, most likely, be due to a general stress stimulus acting 
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by a different pathway. However, we could show that aromatic substrates are not completely 

rejected. Indole-3-acetaldehyde induced gene expression and was accepted as a substrate in 

enzyme activity assays. This means that Ald1 may be, at least partly, involved in oxidation of 

indole-3-acetaldehyde to indole-3-acetic acid. Nevertheless, Ald1 exhibited a strong activity 

on the aliphatic aldehyde propionaldehyde, but with a 13 fold higher activity when using β-

NADP+ as a cofactor than with β-NAD+. The strong preference of propionaldehyde and the 

predicted, and GFP-confirmed cytosolic localization is in agreement with previously studied 

substrate specificities of other cytosolic aldehyde dehydrogenases (Chen et al., 2008; Guru 

and Taranath-Shetty, 1990).  

The fact that a low enzyme activity was also detected while using β-NAD+ as a cofactor on 

propionaldehyde, and that another aliphatic aldehyde, butyraldehyde, was accepted only by 

using β-NAD+ as a cofactor, shows that Ald1 is able to bind both cofactors with different 

affinities. This is, in fact, supported by the fact that both the signature sequences for NAD 

binding (GXTXXG; Lie et al., 1997) and the general glycine motif for NADP binding 

(GXGXXXG; Ferres et al., 1989; Jung and Lee, 2006) were present in Ald1. This may sound 

unusual for fungal ALDHs, which were suggested, by Perozich et al. (1999), to be NAD-

dependent enzymes. The same authors, despite their acknowledgment of difficulty in 

assigning co-enzyme preferences to ALDHs, went ahead to suggest that with the exception of 

class 3 ALDHs, which can utilize NAD or NADP, other ALDHs can only utilize one of the 

cofactors. Obviously, it was too early to make such conclusions, especially in the case of 

fungal ALDHs, which were poorly represented at that time. Since then, several authors have 

revisited this topic, and what is clear now is the fact that some ALDHs have the ability to bind 

the two cofactors, albeit with different affinities. For example, Isobe et al. (2007) reported the 

isolation of an ALDH from Rhodococcus sp, which was able to utilize various aldehydes by 

using both β-NADP+ and β-NAD+ as cofactors, with the activity with β-NADP+ being about 

5% of that with β-NAD+. Another intriguing observation is the fact that whereas Perozich et 

al. (1999) indicated that betaine ALDH prefers NAD as a cofactor, different authors like 

Velasco-García et al. (2000) and Mori et al. (2002), among others, showed that the enzyme 

can actually utilize both cofactors. This dual cofactor preference phenomenon of some 

ALDHs had been known even earlier since a cytosolic ALDH from a rat liver (Marselos and 

Lindahl, 1988) and later, a fungal ALDH from Saccharomyces cerevisiae (Wang et al., 1998) 

were observed to utilize both cofactors.  

Assuming that some ALDHs are, indeed, able to utilize both cofactors, the question then 

arises as to what mechanisms could be employed by these highly versatile enzymes for this 
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purpose. It may be that, ultimately, the prevailing NAD/NADP ratio determines, at least 

partly, which cofactor the enzyme will more readily utilize, but the cofactor with less affinity 

would of course remain at a physiological disadvantage at all times. Also, Perozich et al. 

(2000) indicated that class 3 ALDH, a model ALDH for the dual factor preference, may shift 

the cofactor preference to either NAD or NADP, depending on the prevailing conditions. 

Since their study has not been extended to other ALDHs that have been shown to bind the two 

cofactors, this may be an alternative explanation for their proven dual cofactor binding. 

 

4.2. Indole-3-acetic acid in ectomycorrhiza 

4.2.1. Indole-3-acetic acid biosynthesis, and influence on T. vaccinum biology 

As has been observed and discussed, we speculated that T. vaccinum Ald1 may be involved in 

IAA production. Cultures incubated with indole-3-acetaldehyde (IAAld), an IAA precursor, 

show more branches than controls without IAAld supplements, an observation that was also 

earlier hinted on by Krause (2005). This prompted us to speculate that the increased hyphal 

branching may be due to the influence of IAA produced from IAAld. If so, this would be the 

first study to demonstrate the effect of IAA on ectomycorrhizal fungal biology, a possible 

fundamental phenomenon that would help to explain the involvement of IAA in 

ectomycorrhiza, which has been controversially observed and discussed in literature (see 

Podila, 2002).  

Subsequently, by using different concentrations of IAAld to test our hypothesis, we observed 

a significant increase in hyphal branching at concentrations above 0.05 mM IAAld, with 

extensive branching at 0.2 mM IAAld. Calorimetric quantification of IAA showed 

significantly higher amounts in cultures supplemented with IAAld, suggesting that, indeed, 

IAA produced from IAAld was responsible for the observed branching phenotype. Another 

IAA precursor, tryptophan, also led to hyperbranching, which correlated with IAA amounts in 

cultures supplemented with the precursor. Exogenous application of pure synthetic IAA, 

either alone or simultenously with its transport inhibitor, TIBA, indicate that IAA 

significantly increased branching, starting at a concentration of 0.1 mM, with extensive 

branching at 0.5 mM. This phenotype was reversed by TIBA. These observations, the first of 

their kind in ectomycorrhizal fungi, unambuigously confirmed our earlier speculation that 

IAA increases hyphal branching in this ectomycorrhizal fungus.  

At the same time, IAA had a positive impact on growth of the fungus. Exogenous application 

of TIBA in cultures drastically reduced growth, indicating that IAA is needed for fungal 
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growth. This was subsequently confirmed by co-inoculation of IAA or tryptophan with TIBA. 

Since TIBA interferes with IAA transport, the effect of TIBA can be explained with 

endogenously produced IAA that has to be transported between hyphal compartments, and 

between cytosol and vacuole. Clearly, these experiments show that IAA is involved in the 

growth of T. vaccinum. Although this is the first report on the effect of IAA on growth of a 

basidiomycete fungus, Nasim et al. (2004) also observed that the phytohormone promotes 

growth of soil ascomycete fungi. Another interesting observation is that IAA supplements 

seemed to increase fungal growth, although this was found to be statistically not significant. 

This may imply that under these in vitro conditions, which are not likely to prevail in vivo, 

and given the nutritional status of the rich medium used, the fungus produces enough IAA for 

its metabolic activities hence not requiring supplements. Furthermore, the observed reduction 

of fungal growth in TIBA-inoculated cultures implies blocking of endogenous IAA polar 

transport, meaning that the inhibitor was transported across the fungal cell plasma membrane 

from culture medium to the cell, and probably from cell to cell. In earlier studies involving 

corn coleoptiles (Thomson et al., 1973), TIBA intercellular transport was suggested to be 

polar, probably via the same channels as auxin. 

Taken together, these results clearly indicate that IAA influence on T. vaccinum biology is 

two fold: The phytohormone increases growth of the fungus and hyphal ramification. The 

observed phenotypes of IAA and its inhibitor TIBA, the first of their kind in basidiomycete 

ectomycorrhizal fungi, thus far, suggest a profound influence of the phytohormone on 

ectomycorrhiza development. The rationale behind this suggestion is the assumption that with 

IAA or its precursor availabilty, most likely tryptophan, in ectomycorrhizal habitats, the 

phytohormone would increase fungal biomass and hyphal ramification, which would in turn 

increase Hartig’ net formation in intercellular spaces of cortical cells. The result would then 

be an increased speed and efficiency of ectomycorrhiza development. 

 

Salkowski assay suggested that T. vaccinum is able to produce IAA both with and without its 

precursors. However, before meaningful conclusions could be drawn from this observation, it 

was necessary to validate the calorimetric test with a more sensitive and accurate method of 

IAA quantification. Thus, IAA in fungal culture filtrates was quantified by using GC-MS. 

Although IAA production in fungal cultures without precursor supplements was insignificant 

and not quantifiable, considerable IAA amounts were detected in cultures supplemented with 

IAAld and tryptophan. In fact, the fungus produced high amounts of IAA in cultures 

supplemented with 0.2 mM IAAld, which was confirmed to be enzyme-driven, estimated to 
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be 35 fold that recovered in cultures supplemented with 2.5 mM tryptophan. This was not 

surprising, since IAAld is immediate IAA precursor. The fact that the oxidation of IAAld to 

IAA, the last step in tryptophan-dependent IAA biosynthetic pathway (Woodward and Bartel, 

2005), is an enzymatic reaction, is supported by earlier findings of Basse et al. (1996), and 

later Reineke et al. (2008), that in the basidiomycete smut fungus Ustilago maydis, this step is 

catalyzed by an indole-3-aldehyde dehydrogenase. Nonetheless, significantly high amounts of 

IAA were also produced, by the fungus, from tryptophan, even at 0.5 mM, the lowest 

concentration tested. The low yield of IAA in tryptophan-inoculated fungal cultures could be 

due to the fact that tryptophan is subjected to metabolic losses en route to IAA because, 

according to Woodward and Bartel (2005), it is further upstream in the IAA biosynthetic 

pathways.  

Apart from IAA precursors, D’orenone was tested. This compound resulted in formation of 

IAA, albeit at low levels, which was concentration-dependent. D’orenone was observed to 

increase PIN2 protein abundance leading to increased auxin efflux from Arabidopsis thaliana 

root hair trichoblasts resulting in blocking of polarized tip growth (Schlicht et al., 2008). 

Whereas this is a metabolically relatively less studied compound, the increase in IAA 

amounts observed in T. vaccinum cultures could be a result of increased IAA transport from 

fungal cells to the cultures caused by upregulation of a fungal PIN transporter. If this was the 

case, then the fungal biomass would be reduced as IAA was shown to be essential for T. 

vaccinum growth. Indeed, this seems to be the case as shown in Fig. 30, where the fungal 

colony size was drastically reduced by D’orenone application. Alternatively, the results could 

also imply that D’orenone itself could be involved in diverting tryptophan from being used for 

other metabolic activities, like protein synthesis, to IAA biosynthesis. Of course this would 

also lead to slower fungal growth, again resulting in smaller colony size. During IAA 

quantification by GC-MS, two unknown compounds, which seemed to be metabolically 

antagonistic to IAA, were observed in chromatograms. Although the MS results showed that 

the compounds possess indole rings, and could, therefore, be tryptophan analogs, the full 

identification of these compounds would shed more light on their possible involvement in 

IAA biosynthesis in T. vaccinum.  

Most studies investigating IAA production by microbes did not proove that the IAA reported 

is, indeed, from tryptophan or other IAA intermediates fed, since unlabeled compounds were 

used. Whereas the authors were quick to make conclusions about specific IAA biosynthetic 

pathways, it could well be that a fraction of IAA amounts they report may have been derived 

from non-enzymatic oxidation reactions or other yet unidentified sources, in which case the 
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reported pathways would be questionable. To proove, beyond any reasonable doubt, that the 

IAA production kinetics for T. vaccinum reported here is accurate, we fed the fungus with 

labeled tryptophan, and tracked the isotope in IAA. Indeed, this study confirmed the fact that 

T. vaccinum produces IAA from tryptophan.  

Until today, surprisingly, no single IAA biosynthetic pathway has been fully elucidated. This 

is even worse for fungi, where such studies are rare. Nevertheless, there are a number of 

uncomplete tryptophan-dependent IAA biosynthetic pathways, indicated in Pollmann et al. 

(2009), based on convincing evidence. Critical evidence of the possible biosynthetic pathways 

that could be used by fungi comes from U. maydis. It has been proposed that IAA 

biosynthesis in this fungus proceeds via IPyr, IAAld, and TAM (Basse et al., 1996; Bölker et 

al., 2008; Reineke et al., 2008; Zuther et al., 2008), but IPyr and IAM pathways have been 

proposed for Colletotrichum gloeosporioides and C. acutum (Robinson et al., 1998; Chung et 

al., 2003). Although different authors have demonstrated the ability of some ectomycorrhizal 

fungi to produce IAA in vitro (Karabaghli et al., 1998; Rudawska and Kieliszewska-Rokicka, 

1997), no investigation on IAA biosynthetic pathways has been reported for these fungi. The 

fact that T. vaccinum produced IAA both from tryptophan and IAAld suggests that this fungus 

employs the tryptophan-IPyr-IAAld-IAA biosynthetic pathway (Fig. 5), which is in 

agreement with one of the pathways proposed for U. maydis (Basse et al., 1996; Bölker et al., 

2008; Reineke et al., 2008; Zuther et al., 2008). Feeding experiments with labeled IPyr could 

be employed to prove that this ectomycorrhizal fungus produces IAA via the proposed 

biosynthetic pathway. Investigation of the IAA biosynthesis by feeding labeled tryptophan to 

identify IAA intermediates has been launched to close this knowledge gap.  

 

The in vitro studies on T. vaccinum have shown that the fungus produces IAA, primarily from 

precursors. On the other hand, the phytohormone was shown to increase fungal growth and 

ramification. These observations are supportive for a role of IAA in enhancing 

ectomycorrhization efficiency. Thus, with tryptophan availability in root exudates, this fungus 

will produce IAA, which in turn increases mycorrhization speed and efficiency. Root 

exudates were reported to stimulate hyphal growth of ectomycorrhizal fungi (Tagu et al., 

2002). Although tryptophan was not quantified in these studies, it is known to exist in root 

exudates, and therefore the observed fungal growth could, at least partly, be attributed to this 

IAA precursor, making IAA the actual growth stimulator. The question, of course, would now 

be how much tryptophan would be expected to be in plant root exudates in vivo. While it is 

not expected to be at the level of concentrations used in various experiments to test the ability 
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of ectomycorrhizal fungi to produce IAA, it could, nonetheless, be sufficient to trigger the 

increased biosynthesis of IAA by ectomycorrhizal fungi under symbiotic interaction. After all, 

our results, as well as those of other authors, show that tryptophan concentration does not 

necessarily have to be high for significant IAA production. In fact, since rich medium 

suppresses IAA production (reviewed in Gogala, 1991), in vivo phytohormone levels are 

expected to be higher than what was observed in in vitro studies, including the current one, 

which are characterized by high nutrient levels. This corresponds to Slankis’ claim (Slankis, 

1973) that the absence of mycorrhizae in rich soil can be explained by inhibition of auxin 

synthesis in fungi under such conditions.         

 

4.2.2. Ectomycorrhiza development, as influenced by indole-3-acetic acid 

The controversial topic about the involvement of IAA in ectomycorrhiza (Podila, 2002; 

Barker and Tagu, 2000) was revisited in this study. Since IAA was shown to increase the 

growth and hyphal ramification of the ectomycorrhizal fungus T. vaccinum, with a possible 

consequential enhancement of ectomycorrhiza formation, we aimed at confirming this 

hypothesis by investigating the effect of IAA on differentiation of ectomycorrhizal features in 

T. vaccinum-spruce ectomycorrhiza in vitro. Initial attempts to investigate this, using culture 

medium without glucose supplements, prooved futile because, as observed in the cultures, 

fungal growth and colonization was poor leading to almost no Hartig’ net formation. Whereas 

Hartig’ net formation has been reported in cultures without addition of glucose (Asiimwe et 

al., 2010; Krause and Kothe, 2006), consistent observations over time indicate that T. 

vaccinum, routinely cultured on rich medium containing 10 g/l glucose and 20g/l malt extract, 

had led to difficulties for the rich medium-conditioned fungus to sufficiently grow on minimal 

medium in co-culture with rather small spruce seedlings, which offer less carbohydrates.  

Also, prolonged cultivation of the fungus on rich medium may have led to a decline in 

mycorrhization ability.        

Since Giovannetti et al. (1996) stated that the initial stages of mycorrhizal colonization events 

are dependent on saprophytic fungal growth, the experiment was repeated with culture 

medium containing 2 g/l glucose to increase fungal growth and, therefore, facilitate 

establishment of fungal contact with roots. Thus, exogenous application of 100 µM pure 

synthetic IAA in mycorrhiza cultures led to a well established Hartig’ net, compared to 

cultures without IAA supplements, in which there was hardily any Hartig’ net formation. At 

the same time, microscopic monitoring revealed the same extent of fungal mantle 

development, regardless of whether cultures received IAA supplements or not. This is 
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supported by the observed promotion of ectomycorrhizal development by exogenously 

applied IAA in oak-Piloderma croceum ectomycorrhiza cultures (Herrmann et al., 2004).   

The results imply that the fungus was able to penetrate spruce seedling roots largely in the 

presence of IAA, although the fungus-root contact (mantle) was the same across treatments. 

This further suggests that IAA could have acted as a signal in communication between the 

fungus and seedling roots to facilitate entry into the roots, and subsequently establish a 

Hartig’ net. This hypothesis is not far from that of Podila (2002) who suggested that by acting 

as a signal, IAA could trigger the transcription of auxin responsive genes, which would in turn 

trigger a cascade of molecular events in plant roots leading to formation of mycorrhiza. 

Contrary to the observations on Pinus densiflora-T. matsutake ectomycorrhiza (Yamada et al., 

1999) and ectomycorrhiza between Populus tremula and various Paxillus isolates (Langer et 

al., 2008), that glucose supplementation improved ectomycorrhiza development, even after 

initial contact was established, this effect was not observed in T. vaccinum-spruce 

ectomycorrhizal cultures. In essence, therefore, the results suggest that while glucose 

increases fungal growth and hence the contact with roots, an IAA signal may be needed for 

the fungal-plant interaction to differentiate ectomycorrhizal structures. Since IAA 

accumulation in the ectomycorrhiza cultures of these authors was not quantified, their 

observations may not entirely be attributed to glucose. 

The results of the current study support the elegant findings of Gay et al. (1994) who used 

IAA-overproducing transformants of H. cylindrosporum to convincingly demonstrate that 

IAA is involved in Hartig’ net formation, although the mechanism leading to this phenotype 

was not known. Also, Rudawska and Kielszewska-Rokicka (1997) indicated that Paxillus 

involutus strains that were characterized by high IAA synthesizing activity induced 

significantly higher numbers of mycorrhizae than strains with low activity. Although there are 

a number of other studies supporting the hypothesis that IAA is important in regulating 

ectomycorrhiza colonization, other authors (Horan, 1991; Wallander et al., 1992; Wallander 

et al., 1994; Hampp et al., 1996) contested the IAA involvement. In a major critic of Slankis’ 

auxin theory (Slankis, 1973), Wallander et al. (1992, 1994), based their suggestions on the 

fact that they never observed significantly high IAA amounts in mycorrhized compared to 

non-mycorrhized roots. However, they acknowledge difficulties in accurately quantifying 

IAA in plant roots. Thus, considering the existence of a multitude of convincing observations 

that support the auxin theory, and based on the current study, it is proposed that IAA is 

involved in regulating ectomycorrhiza formation. 
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Quantification of plant growth and development parameters in T. vaccinum-spruce 

ectomycorrhiza showed that inoculation of T. vaccinum repressed lateral root development. 

This repression was reversed by exogenous application of 100 µM IAA. Furthermore, fungal 

inoculation did not increase spruce seedling shoot development. Therefore, contrary to the 

current theory that mycorrhization increases plant growth and development, no evidence for 

plant growth promotion was observed in the current study under in vitro conditions. The 

results are supported by the observation that inoculation of Piloderma croceum onto oak 

microcuttings had no effect on the branching index of the first order roots (Herrmann et al., 

2004). Contrary to these findings, in other earlier studies, inoculation of spruce seedlings with 

Laccaria bicolor increased lateral root development (Rincón et al., 2003; Karabaghli-Degron 

et al., 1998). Also, Smith and Read (1997) reported plant growth promotion by 

ectomycorrhiza in general. Karabaghli-Degron et al. (1998) could not rule out the fact that L. 

bicolor was able to increase lateral root development of spruce seedlings because of its ability 

to produce IAA in vitro. Therefore, the observed failure of T. vaccinum to promote spruce 

lateral root development and leaf needle development could be due to the fact that it does not 

produce quantifiable IAA without precursors in vitro. In fact, an elegant study by Scagel and 

Linderman (1998) showed that ectomycorrhizal fungi characterized by high IAA-producing 

capacity in vitro stimulated higher plant growth and development in seedlings transplanted to 

a forest site than those with low capacity. This, therefore, argues against the idea of a general 

effect of ectomycorrhizal fungi on plant growth and development promotion, and affirms the 

fact that the effects are likely to vary with different mycobiont-plant associations and with 

altering abiotic factors.   

On the other hand, the promotion of lateral root development by IAA, which was also shown 

here, is now a widely accepted phenomenon. Also, like in the current study, Karabaghli-

Degron et al. (1998) observed repression of spruce seedling needle development by IAA 

while Rincón et al. (2003) observed that the phytohormone does not have any effect on spruce 

seedling shoot growth and plant dry weight. Although none of the authors speculated on the 

possible reason of the shoot development repression by IAA, it could be due to enhanced 

apical dominance effect or simply the concentration of IAA used being inhibitory to 

differentiation of new leaf needles. According to the apical dominance phenomenon, 

exogenously applied IAA could have increased the dormancy of lateral buds hence reducing 

leaf needle development.  
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In this study, IAA was shown to play a role in mycorrhiza establishment and maintenance, 

specifically linking the Hartig’ net formation to the fungus’ response to IAA by 

hyperbranching of hypae. The biosynthesis of IAA could be shown to be induced in the 

fungus by tryptophan as well as IAAld. The conversion of IAAld to IAA is dependent on 

oxidation, which is proposed to be perfomed by the newly described gene product of ald1 of 

T. vaccinum. The gene has been shown to be inducible by ethanol as well as aldehydes, which 

corresponds to finding of consensus sequences for stress response elements in the promoter 

region. Taken together, a function of ald1 in plant interaction is proposed. Two other T. 

vaccinum ald genes clustering with ald1 in a phylogenetic tree open the possibility that during 

evolution, ald1 became specifically necessary for IAA metabolism while the other genes may 

be involved in other stress response pathways. The use of A. tumefaciens-mediated fungal 

transformation in functional gene analysis demonstrated here will allow monitoring of 

expression of mycorrhizal-specific genes in vivo, which will help to enhance our knowledge 

on ectomycorrhizal symbiosis on a molecular level.    
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