Information Technology and Electrical Engineering - Devices and Systems, Materials and Technologies for the Future

Faculty of Electrical Engineering and Information Technology

Startseite / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089
A new control strategy for Active Filters of harmonic voltage using an observer

I. Shakra, T. Ellinger and U. Raedel
Department of power electronics and control
Ilmenau University of Technolog
Ilmenau Germany

ABSTRACT

This paper presents a practical application of a DSP-based current controller for three-phase shunt active filter with a new Control Strategy of voltage harmonics using an observer for measurements of grid impedance. The harmonics will be compensated to a value at PCC (Point of Common Coupling) based on norm EN50160 for low voltage (400 V).

Keywords: Active filters, harmonic isolation, grid impedance measurement, renewable energy systems, digital signal processor.

1. INTRODUCTION

The harmonic cause serious problems in power system which due to non linear loads. It was the solution in many situations: These harmonics adjust to zero [1], [2] that means: The active filter needs sometimes large elements at relatively large currents. So that leads to uneconomic solutions. The article suggests, the individual voltage harmonics will be only regulated to a specified value at PCC for example: 6% for die 5th harmonic at low voltage (based on norm EN50160 [3] and this value must not be exceed.

An observer with measurements of grid impedance has been used to achieve the aim. As a starting point has been assumed that the grid impedance consists of only a resistive portion R and an inductive portion L. It is possible at PCC, which is far from the shunt active filter to calculate the voltage and to renounce a measurement. The proposed method leads to a financial and energy savings.

2. THE SYSTEM CONFIGURATION

Fig.1 shows the system configuration. The system consists of 3 components: a Grid (400 V), a non-linear load and the shunt active power filter. The load is formed by a diode bridge with resistance and large inductance. The output current of the load generates several harmonics and disrupt the grid. The active filter is a three-phase voltage inverter with control of DC-link voltage. A passive filter has been built on the output of the inverter (Lg=0.5 mH with Rf=10 mΩ, and Cf=15 µF).

3. PROPOSED CONTROL METHOD

This section will deal with the control method for fundamental component of the current, On-line grid impedance measurement and finally the control of the harmonics to a value.

3.1. Control method for fundamental component of the current

The measured voltage \(u_{fs,s,t} \) are used to determine the grid angle by means of a PLL (Phase-locked-loop). Fig. 2 shows this. The measured currents \(i_{fs,s,t} \) will be converted using a 3 to 2 transformer (Clarke’s transformation) [4] to two AC-values \(i_{α, β} \) and using a Park’s transformation (φ) and the PLL-angle (φPLL). to two DC-values of the currents \(i_{d, q} \).

\[
\begin{align*}
 i_d &= i_α \cos \phi_{PLL} + i_β \sin \phi_{PLL} \\
 i_q &= i_β \cos \phi_{PLL} - i_α \sin \phi_{PLL}
\end{align*}
\]
The DC-values of the currents will be controlled using a PI-controller as actual values. The target values for PI-controller of current consist of two components:
1. The i_q current base value is set to zero.
2. The i_d current is the output value of the PI-controller of the DC-voltage (The DC-voltage is controlled to a constant value using outer loop controller).

The output signal of the current controller is converted to the grid-coordinate-system using a Cartesian-Polar-converter and the PLL-angle. The phase and amplitude will be decomposed using a 2 to 3 transformer to three components. In the final stages the 3 signals go into the modulator.

3.2. Grid impedance measurement

Fig.3 shows the single-phase equivalent circuit of the three-phase system. The inverter is connected as voltage source at the grid with a resistance R and an inductance L. R and L are the real- and imaginary components of the grid impedance.

$$Z = R + j \omega L$$ \hspace{1cm} (3)

Several harmonics h_i can occur in a three phase system with non–linear load,:
$$i = 6N \pm 1 \text{ with } N:1, 2, 3...$$ \hspace{1cm} (4)

The harmonics are the b_6, b_7, b_{11}, b_{13} etc. They correspond to the frequencies 250, 350, 550, 650 Hz etc. The impedance has been calculated though a simple principle as in (5):

$$Z = \frac{\Delta u}{i} = \frac{u_{f,\text{grid}} - u_f}{i}$$ \hspace{1cm} (5)

The problem is the following: The grid is often distant from the inverter. As a consequence, the voltage grid is not measured and the Δu over Z cannot be determined.

The proposed solution is the following: feeding another frequency into the grid using the shunt active power filter. The frequency (i.e. the current and voltage at this frequency) occurs not in the normal situation. Several measurements are carried out with different frequencies from 25 Hz to 1000 Hz with steps of 50 Hz Fig.10. The reason for feeding the 75 Hz is that 75 Hz is the least negative sequence voltage (about zero) in U_{grid}.

3.2. Grid impedance measurement

The differential equations are:

$$\ddot{u}_{f(75Hz)} = R \cdot \dot{i}_{f(75Hz)} + L \cdot \dot{\dot{i}}_{f(75Hz)}$$ \hspace{1cm} (6)

$$\ddot{u}_{f(75Hz)} \cdot e^{(-j\omega t)} = R \cdot \dot{i}_{f(75Hz)}\cdot e^{(-j\omega t)} + L \cdot \dot{\dot{i}}_{f(75Hz)} \cdot e^{(-j\omega t)}$$

whereas:

$$\dot{i}_{f(75Hz)} = \dot{i}_{f(75Hz)} \cdot e^{j\omega t} \Rightarrow \dot{i}_{f(75Hz)} = \dot{i}_{f(75Hz)} \cdot e^{j\omega t} + j \omega \ddot{i}_{f(75Hz)} \cdot e^{j\omega t}$$ \hspace{1cm} (8)

$$\ddot{u}_{f(75Hz)} = R \cdot \dot{i}_{f(75Hz)} + L \cdot (\dot{i}_{f(75Hz)} + j \omega \ddot{i}_{f(75Hz)})$$ \hspace{1cm} (9)

The dash (') denotes the value in a dq- coordinate system.

In the stationary state is

$$\dot{i}_{f(75Hz)} = 0$$ \hspace{1cm} (10)

This leads to the following simplification:
\[\tilde{u}'_{(75Hz)} = R \cdot \tilde{i}'_{(75Hz)} + L \cdot j \omega \tilde{q}'_{(75Hz)} \]

(11)

The individual components follow:

\[u_{fd(75Hz)} = R \cdot i_{fd(75Hz)} - \omega \frac{L}{r} \cdot i_{q(75Hz)} \]

(12)

\[u_{fq(75Hz)} = R \cdot i_{fq(75Hz)} + \omega \frac{L}{r} \cdot i_{d(75Hz)} \]

(13)

\[i_{f q(75Hz)} = 0 \Rightarrow R = \frac{u_{fd(75Hz)}}{i_{fd(75Hz)}} \]

(14)

\[\omega \frac{L}{r} = \frac{u_{f q(75Hz)}}{i_{fd(75Hz)}} \]

(15)

3.2.1 Realization of Grid impedance measurement

\[i_{d, q(75Hz)} \rightarrow BPF \rightarrow \text{PLI-controller} \rightarrow \text{Impedance} \rightarrow \overline{\varphi} \]

The Fig.5 shows the idea in the impedance calculation. The \(i_d, q(75Hz) \) is controlled at 10 A and \(i_q(75Hz) \) to zero. The PLL-angle turns with 50 Hz. Thus the 75 Hz arises as DC-values with a band-pass filter (BPF) and using a Park’s transformation 1.5 times of the PLL-angle Fig. 11.

After the controller the AC-values will be used.

\[u_{\alpha} = u_{d} \cos 0.5 \varphi_{PLL} - u_{q} \sin 0.5 \varphi_{PLL} \]

(16)

\[u_{\beta} = u_{d} \sin 0.5 \varphi_{PLL} + u_{q} \cos 0.5 \varphi_{PLL} \]

(17)

This Signal is added to the output signal of the PI-current controller in Fig. 2. \(N_i \) and \(N_u \) is current-standardization-factor and voltage-standardization-factor for the calculation in the DSP.

The injection current \(i_{f d(75Hz)-target} \) is determined less than what exists in norm for 75 Hz.

3.3. Control method of 5th harmonic to a certain value

Figure 6. Single-phase equivalent circuit with respect to 5th harmonic.

Fig. 6 shows the single-phase equivalent circuit of the Fig. 1. The load (with a large inductance) and the inverter are shown as current sources. Although the inverter is a voltage source, it can be regarded as current source in case of a fast current control.

The cable impedance \(Z_k \) is shown in Fig. 6 up as a T-element. Since C is very small, it has been neglected and it remains only an RL-element for \(Z_k \).

According to the norm[3] 6% of the nominal voltage \(V_n=400 \text{V} \) is the allowable value amplitude of the 5th voltage harmonic at the PCC. The control has been built at this value. This value must not be exceeded.

The phase-shift of the current grid for the 5th harmonic \(i_{grid(5\text{th})} \) must be equal to the current load for the 5th harmonic \(i_{load(5\text{th})} \), so that the least the compensating current it is used.

Figure 7. Load current and Grid current of 5th harmonic

\[\text{Figure 5. Block diagram of Grid impedance measurement with 75 Hz} \]

\[\text{Impedance calculation} \]
Using the reference equations the target value for current $i_{\text{grid}(5^\text{th})}$ for a given value $u_{\text{f}(5^\text{th})}$ and the voltage at PCC u_{pcc} can be generated. Fig. 8 shows the required block structure.

Note: the grid impedance is very small in the laboratory. For this reason it has been used additional impedance, so that the grid can have sufficient voltage harmonics and the regulation method can be tested.

This paper discussed the control method of the 5^th and 7^th harmonic. For the 11^th and 13^th to 25^th harmonics it is also possible.

In the laboratory both will be regulated at the half of the norm value, which means the 5^th to 3% and the 7^th to 2.5%.

4. EXPERIMENTAL RESULTS

In the remainder of the paper, we present selected results.

Fig. 9 shows the output signal of the PI-controller in Fig. 2 for the control of the fundamental component.
The following results were measured with an oscilloscope (300 MHz, 2GSa/s).

Figure 11. Ratio between the PLL-angle and the angle of 75 Hz-Signal using 25 Hz

Figure 12. Voltage at PCC with the regulation (5th to 3%, 7th to 2.5%)

Figure 13. Fourier analysis of the voltage harmonics with regulation to a specific value at PCC (5th and 7th to 1.7%)

Figure 14. Fourier analysis of the voltage harmonics with regulation to a specific value at PCC (5th and 7th to 1.7%)

Figure 15. Fourier analysis of the voltage harmonics with regulation to zero at PCC (5th and, 7th to zero)

Figure 16. Load current (red), compensating current (green) and grid current (purple) at PCC (5th to 3%, 7th to 2.5%)
The control of the harmonics is important, but it costs a lot of energy and money. Therefore, we can optimize this case if we control the harmonics only at a norm value and not always at zero. Part of the control strategy is an observer with Online-grid impedance measurement. If the impedance is determined, it is possible by active filter the harmonics to control not only at the connected point but also at another place. The paper presents a control method through which no further measurements are needed.

6. REFERENCES
[4] DIN EN 62428; Februar 2009