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1. General introduction 

 
The intimate interactions between herbivorous insects and their food plants have resulted in 

their coevolution wherein phytophagous insects overcome plant defenses followed by plants 

counter-adapting to herbivorous insect feeding damage. This constant arms race between 

plants and insect herbivores was first postulated by Ehrlich and Raven in 1964 and is one of 

the foundations of insect-plant interactions research. Although the ecology of this co-

evolutionary arms race is mostly well understood, an understanding of the molecular 

mechanisms is still lacking. In particular, molecular insight remains scarce on the insect side 

of this interaction with little known about the mechanisms used by insects to adapt and 

metabolize plant allelochemicals. Thus, developing a molecular understanding of insect 

coevolutionary innovations is very important to understanding the evolution of plant-insect 

interactions and adaptive processes in general.  

 

Molecular mechanisms for adaptive mutations  

As most plants have evolved chemical antiherbivory defenses, successful feeding on plants 

requires an efficient detoxifying mechanism. Adaptive mutations allowing an insect to utilize 

a new food plant can have different molecular origins, affecting the regulatory regions as well 

as the coding sequence of genes. Mutations in the cis-regulatory regions can either alter the 

expression level of genes or it can result in expression in different tissues or developmental 

stages. As a consequence, the organismal phenotype can be dramatically affected. Schlenke 

and Begun (2004) showed that an insertion of a transposable element in the cis-regulatory 

region of Cyp6g1 is associated with increased expression in a Drosophila simulans 

population. Cyp6g1 has been shown to be responsible for DDT resistance in Drosophila 

melanogaster (Daborn et al. 2002). Surveys of D. simulans populations show that lineages 

with the transposable insertion exhibit evidence of strong directional selection suggesting 

selection for resistance to an insecticide, a natural toxin or an environmental contaminant 

(Schlenke and Begun 2004). In Anopheles gambiae the expression of one quarter of the 

detoxification genes is developmentally regulated, indicating the importance of cis-regulation 

for the specificity of detoxification genes in this species (Strode et al. 2006).  

 

Point mutations, insertions or deletions within the coding region can result in novel gene 

function, allowing for rapid adaptation to new environments. In D. melanogaster the insertion 
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of a transposable element within the coding region of a gene resulted in a truncated gene 

product that nevertheless generated a functioning protein. The truncated protein appears to 

increase resistance to an organophosphate pesticide and population surveys indicate that this 

novel gene product has spread across D. melanogaster populations (Aminetzach, Macpherson, 

and Petrov 2005). Li et al (Li, Schuler, and Berenbaum 2003) provided evidence of how shifts 

in host plant utilization in two Papilio species were associated with the evolution of the 

corresponding P450 sequence which facilitated hostplant specialization.  

 

Gene duplications also play a very important role in the evolution of detoxification 

mechanisms, either by tandem or relocation duplication of a gene fragment, a whole gene, or 

a whole chromosomal fragment (Force et al. 1999; Lynch 2007). Although genomic resources 

suggest that duplication events arise at a very high rate of about 0.01 per gene per million 

years (Lynch and Conery 2000), the most common fate of duplicated genes will be silencing 

and loss. Only a small amount of duplicates are retained as functional genes. Such paralogous 

genes could facilitate adaptive evolution in two ways. Either one paralog could acquire a new 

function (neofunctionalization), or both duplicates could divide the existent function of the 

gene (subfunctionalization). In Papilio polyxenes for example, a duplicated P450 gene 

underwent subfunctionalization resulting in two paralogous genes, CYP6B1 and CYP6B3 

which show different efficiencies in metabolizing plant allelochemicals (Wen et al. 2006). 

Such gene duplication events, followed by neofunctionalization or subfunctionalization, are 

likely to be the origin of many detoxifying enzymes in insects. 

 

Phase I and phase II detoxifaication 

Metabolism and thereby detoxification of lipophilic toxins into more hydrophilic products 

typically occurs in two phases. In phase I, a primary product is formed, that might in some 

cases be more toxic than the parent molecule but in other cases might already be ready for 

excretion. In the phase II, the primary products are metabolized into secondary products that 

can be directly excreted (Brattsten 1992). This type I and II categorization is primarily applied 

to the metabolization of drugs in animals and humans and also provides a useful perspective 

for considering the metabolism of plant allelochemicals in phytophagous insects.  

 

Although to date knowledge is scarce about the mechanisms applied by insect to metabolize 

plant allelochemicals, in general it is assumed that phase I and phase II detoxifying enzymes 

play a major role detoxifying plant compounds in insects. Many studies have found the phase 
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I enzyme cytochrome P450 monooxygenase to be important across lepidopteran and other 

insects in the detoxification of plant allelochemicals and other toxins (Petersen et al. 2001; 

Daborn et al. 2002; Li, Berenbaum, and Schuler 2002; Li et al. 2004; Zeng et al. 2007).  In the 

generalist corn earworm, Helicoverpa zea, P450’s are upregulated upon larval exposure to 

toxic plant allelochemicals (Li, Berenbaum, and Schuler 2002; Sasabe et al. 2004; Zeng et al. 

2007). The black swallowtail (Papilio polyxenes) and the parsnip webworm (Depressaria 

pastinacella) are both specialized on plants containing high levels of the plant allelochemical 

foranocoumarin. In both species specific cytochrome P450 monooxygenases are induced after 

furanocoumarin ingestion and appear to be their primary detoxification mechamism (Petersen 

et al. 2001; Li et al. 2004). Gutathione-S-transferase (GST) belongs to the phase II enzymes. 

GSTs have been shown to be elevated in generalist caterpillars feeding on various hostplants 

and are known to be involved in many instances of insecticide resistance (Yu 1982; Nylin 

1988; Wadleigh and Yu 1988; Huang et al. 1998; Vontas et al. 2002). In sum, P450’s and 

GST’s are important and common insect detoxification mechanisms representing both type I 

and II modes of action. 

 

Plant defense mechanisms  

Plants have several different lines of defense against phytophagous insects including 

constitutive, steady state, induced and activated defenses. Many plants utilize constitutive 

physical barriers against herbivory, such as wax layers and trichomes. For example, 

Arabidopsis thaliana has trichomes that are effective in reducing herbivory since trichome 

density is negatively correlated with herbivore damage in natural field populations (Mauricio 

1998). ‘Steady state’ chemical defenses, that are always present in an active form within the 

plant tissue, such as terpenes, alkaloids, nicotine or phenolic compounds, are widespread 

across the plant kingdom and are shared among different plant families. Terpenes are not only 

present in conifers, but also in cotton plants (Gossypium hirsutum) and A. thaliana and 

countless other plants. They serve mostly as a defense mechanism against herbivorous insects 

but also contribute to plant-plant, plant-fungus and plant-insect interactions (Mumm and 

Hilker 2006; Stipanovic, Puckhaber, and Bell 2006; Herde et al. 2008). These compounds can 

be found throughout the plant, at multiple life stages. In conifers, terpenoids are abundant in 

large quantities and located throughout the wood bark, roots and needles of the trees in 

specialized resin ducts (Mumm and Hilker 2006). In cotton plants, terpenes, such as gossypol, 

are present in the seeds, leaves, stems and roots of the plants (Stipanovic, Puckhaber, and Bell 

2006).  
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Upon herbivory, defensive compounds can be further induced, and expressed at higher 

amounts or even in different compositions. The production and accumulation of the toxic 

alkaloid nicotine is rapidly increased after a herbivore attack in Nicotiana attenuata 

(Steppuhn and Baldwin 2007). Such induced responses are an effective way for plants to 

reduce costly responses until an actual herbivory attack. A different type of herbivore defense 

is the activated defense system in plants. Here the chemical compounds are stored inactive in 

a plant’s tissue and only release their harmful properties upon tissue damage during 

herbivory. This enables a faster response to herbivore attacks than induced defenses, where 

recognition of attack, transcription and translation will slow down responses. Furthermore, it 

allows plants to store the defensive compounds inactive in a nontoxic form within the plant’s 

tissue. Harmful effects on the plant tissue can be avoided and will only appear upon tissue 

damage when the compounds are activated. Two examples of an activated defense system are 

the cyanogenic glucosides in Fabaceae and the myrosinase-glucosinolate system in the 

Brassicaceae that will be discussed in detail later. 

 

Questions addressed in this thesis 

The explanations above illustrate the complexity of plant-insect interactions. Understanding 

the evolution of these interactions on a molecular level is of great interest because this 

provides important insight into general evolutionary mechanisms of adaptation. In this thesis 

two plant-insect systems are studied on a molecular level. In chapter I the molecular origins of 

a novel detoxifying enzyme used by an insect are investigated using the Pieridae butterflies 

that feed solely on glucosinolate containing plants. In chapter II the same insect-plant system 

is used to investigate the ongoing evolutionary origins and dynamics of a detoxifying gene. In 

chapter III the polyphagous comma butterfly Polygonia c-album is used as a model species to 

address the molecular mechanisms involved when insects feed on plant species containing 

different chemical defenses.   

 

The activated defense system of the Brassicacae plant family 

In chapter I and chapter II the coevolutionary system of the Brassicaceae plants and the 

Pieridae butterflies are used as a model system. The Brassicaceae plant family has been 

thoroughly studied, most notably in the model species A. thaliana (Kliebenstein et al. 2002; 

Halkier and Gershenzon 2006) which therefore offers unique opportunities to mechanistically 

understand its coevolution with herbivorous insects. The Brassicales evolved about 90 – 85 

million years ago (Wikstrom, Savolainen, and Chase 2001), presenting a novel and effective 
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two-component induced defense system. Within the intact plant tissue the substrate 

glucosinolate and the enzyme myrosinase are spatially separated. Upon tissue disruption, 

myrosinases hydrolyze the glucosinolate substrate generating biologically active hydrolysis 

products (Figure 1). The major outcome of this hydrolysis are isothiocyanates, that have been 

shown to possess antimicrobial and insecticidal activities (Wittstcok et al. 2003), but also 

other products such as epithionitriles and thiocyanates are formed. Although more than 120 

glucosinolates are known to exist in brassicaceous plants, they all share the same core 

structure and differ only in their side chain braching (Benderoth et al. 2006). Glucosinolate 

diversity is created by the methylthioalkylmalate synthase (MAM) genes encoded by the 

MAM gene cluster. Gene duplication, neofunctionalization and positive selection of the 

MAM gene cluster are the driving forces generating glucosinolate diversity (Benderoth et al. 

2006). In addition a variety of different myrosinases exist among plant species as well as in 

different plant tissues, which together with various cofactors also influence the biochemical 

outcome of the hydrolysis reaction (Rask et al. 2000).  
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Figure 1: The glucosinolate-myrosinase system in plant defenses of the Brassicaceae. In damaged plant tissue the 
glucosinolate is hydrolyzed by the myrosinase, via an unstable midproduct the major out come of this hydrolysis 
is the toxic isothiocyanates (a). In the presences of NSP in the midgut of the Pierini caterpillars the major 
outcome of this hydrolysis is nitriles (b). 
 

 

Insect adaptation to the Brassicaceae family with a focus on NSP in the Pieridae 

butterfly family  

In spite of this biochemical complexity, some lepidopteran herbivores have adapted 

successfully to the brassicaceous plants by circumventing the toxic effects of the 

glucosinolate myrosinase system. The diamondback moth Plutella xylostella inhibits the 

hydrolysis of the glucosinolates completely by using an enzyme called glucosinolate sulfatase 

(GSS) that forms nontoxic desulfo-glucosinolates rather than the toxic isothiocyanate. 
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However, the most widespread mechanism in terms of species numbers within the 

lepidopterans to disarm the activated defense system of the Brassicaceae has emerged in 

members of the Pieridae family. The basal part of this lepidopteran family feeds on plants of 

the Fabaceae family. There has been a major host shift to brassicaceous plants about 80 

million years ago, hence shortly after the appearance of the Brassicaceae (Figure 2) (Wheat et 

al. 2007).  The Pieridae owe their ability to feed on brassicaceous plants to the Nitrile-

specifier protein (NSP) that is expressed in their midgut and redirects the hydrolysis of the 

glucosinolates to the less harmful nitriles (Figure 1) (Wittstock et al. 2004). NSP is a novel 

enzyme that shows no similarities to any of the known detoxifying enzymes used by insects. 

Different to the GSS, which is only acquired by one member of the small Plutellidae family, 

NSP activity is widespread in the Pieridae family and the appearance of NSP caused a 

significantly elevated species number (Wheat et al. 2007). While the mode of action of NSP is 

unknown, experiments suggest that NSP has a catalytic role that is mostly independent of iron 

supply. The unstable intermediate of the glucosinolate hydrolysis appears to serve as a direct 

substrate for the nitrile formation by NSP (Burow et al. 2006a).  
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Figure 2: Phylogeny of the Pieridae family. Branches are scaled relative to a divergence time of 85 million years, 
as shown on the x-axes. Yellow branches refer to Fabales feeding species, green branches to glucosinolate 
feeding species and blue branches for derived non glucosinolate feeding Pieridae species. Modified from Wheat 
et al 2007.  
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Due to the evolutionary success of NSP within the Pieridae and the well understood 

phylogeny of the Pieridae family, NSP provides an ideal system to study the molecular 

evolution of novel detoxifying enzymes. This will be the focus of chapter I. In addition, the 

activated defense system of Brassicaceae and its molecular mechanisms are well understood. 

The Pieridae butterflies, such as for example the Small Cabbage White, Pieris rapae, has a 

wide host plant spectrum within the brassicaceous plants and encounters a variety of different 

glucosinolate-myrosinase systems during feeding. This makes P. rapae an ideal species to 

investigate the ongoing microevolutionary dynamics of a detoxification gene that needs to 

adapt to a variable plant defense system. Different evolutionary hypotheses can be tested in 

population study on this species and this will be the focus of chapter II.   

 
A. lo

A. uticae
A. milberti

N. album
N. polychloros

N. californica

N. antiopa

N. xanthomeiasK. canace

P. c-aureum
P. egea

P. faunus

P. c-album

P. interrogationis
P. comma

P. satyrus

P. progne

P. harldi
P. gracilis
P. oreas
P. g.zephyrus  

 

Figure 3: Most parsimonious phylogeny of Polygonia, Nymphalis and Aglais with host plant use. The use of 
urticalean rosids as food plants is depicted in black branches, a wide host plant range is depicted with grey 
branches and specialization on plant families outside the urticalean are depicted with dotted branches. Modified 
from Weingartener et al 2005.  
 

 

The polyphagous butterfly Polygonia c-album 

Generalist herbivores need different defense strategies than specialized herbivores, as 

generalist herbivores face an array of different plant defenses and consequently secondary 

plant compounds and therefore need to invest in broad detoxifying strategies. P. c-album is a 
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member of the Nymphalidae family that underwent several incidences of host plant expansion 

and constriction along the phylogeny with P. c-album being on the far end of polyphagy 

(Weingartner, Wahlberg, and Nylin 2006) (Figure 3). P. c-album has a range including nearly 

all of Eurasia, and the larvae feed on a diverse spectrum of hostplants from several distantly 

realted taxa. Although there are some overlaps of secondary plant compounds within the 

different hostplants, many species contain unique defensive compounds within the host range 

such as nicotine in Urtica dioica (see chapter III). In contrast to the specialist P. rapae, that 

has to adapt to a flexible defense system of one plant family, P. c-album is successfully 

feeding on many different plant families. Although the ecology of P. c-album is well 

understood, the molecular mechanism it applies to feed on such a wide array of food plants is 

not known and will be the focus of chapter III.  
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2. Chapter I: Evolutionary origins of a novel hostplant detoxification gene 

in butterflies 

 
Abstract  
 
Chemical interactions between plants and their insect herbivores provide an excellent 

opportunity to study the evolution of species interactions on a molecular level. Here we 

investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme 

(nitrile-specifier protein: NSP) in the butterfly family Pieridae, previously identified as a 

coevolutionary key innovation. By generating and sequencing ESTs, genomic libraries, and 

screening databases we found NSP to be a member of an insect specific gene family that we 

characterized and named the NSP-like gene family. Members consist of variable tandem 

repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-

death process. In the Lepidoptera, multiple copies of single domain genes (SDMAs) are 

present and originate via tandem duplications.  Multiple domain genes are found solely within 

the brassicaceous feeding Pieridae butterflies, one of them being NSP and another called 

major allergen (MA).  Analyses suggest that NSP and its paralog MA have a unique single 

domain evolutionary origin, being formed by intragenic domain duplication followed by 

tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed 

constraint followed by an increase in constraint, perhaps after neofunctionalization.  NSP and 

its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution 

consistent with the known role of NSP in plant insect interactions. Our results provide direct 

evidence to the hypothesis that gene duplication is one of the driving forces for speciation and 

adaptation, showing that both within and whole gene tandem duplications are a powerful force 

underlying evolutionary adaptation. 
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2.1 Introduction   

 

Understanding the evolutionary origins of genes with well understood adaptive roles is a goal 

of functional genomics.  Attaining such a goal requires both an understanding of gene 

function and its ecological consequences, along with deep taxonomic sampling of 

homologous genes.  Plant-insect interactions, exemplified by the constant arms race between 

host plants and their specialist insect herbivores, provide an opportunity to study such 

adaptive gene evolution on a molecular level.  However, developing a functional genomics 

understanding on both sides of a plant-insect interaction can be difficult.  A good example is 

the glucosinolate–myrosinase system of brassicaceous plants, which is an activated plant 

chemical defense system.  Thorough study in many plant species, the most notable being the 

genomic-model plant species Arabidopsis thaliana and relatives, has identified clear 

molecular targets of adaptive evolution in the formation of diverse glucosinolate compounds 

(Koroleva et al. 2000; Kroymann et al. 2001; Kroymann et al. 2003; Windsor et al. 2005; 

Halkier and Gershenzon 2006; Heidel et al. 2006).  Understanding insect detoxiciation of 

these brassicaceous defensive compounds has also recently advanced, with different 

mechanisms identified in two non-model lepidopteran species which enabled their 

caterpillars to feed on brassicaceous plants with impunity (Ratzka et al. 2002; Wittstock et al. 

2004).  Here we focus on the evolutionary origins of one of these detoxification mechanisms, 

the nitrile-specifier protein (NSP), present in Pieris rapae (the Small White) and its relatives. 

 Our research exemplifies how functional genomic tool development across several non-

model species can facilitate evolutionary insights into novel gene evolution. 

NSP is structurally different and has no amino acid homology to any known detoxifying 

enzymes. Only the Pierinae butterflies, members of the Pieridae butterfly family 

(Lepidoptera), specialized feeders on brassicaceous plants as larvae, possess this protein. NSP 

disarms the activated glucosinolate–myrosinase defense system of the Brassicales by shifting 

the hydrolysis of glucosinolates to nitriles instead of the more toxic isothiocyonates 

(Wittstock et al. 2004; Wheat et al. 2007). Wheat et al. (2007) have argued that NSP was a 

key innovation in Pieridae butterfly evolution, as it has a single evolutionary origin, appeared 

shortly after the origin of the Brassicales, and was followed by significantly increased 

butterfly diversification rates.  Here, we pursue this idea by comparing DNA and protein 

sequences of NSP and its relatives, within the Pierinae and across other insect species 

(Tabel1), with the goal of developing insight into how novel herbivorous insect detoxification 

mechanisms evolve. Within this plant-insect interaction, the molecular understanding of plant 
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chemical defense biosynthesis is well developed, providing a unique opportunity to develop 

similar insight for the herbivorous molecular counteractions.  

As we will show, NSP appears to have arisen by a process of domain and gene duplication, 

from a sequence of unknown function that is widespread in insect species.  The origin of gene 

diversity is thought to be primarily driven by gene duplication, either in tandem or via large 

chromosomal duplications (Force et al. 1999; Lynch and Conery 2000). While there is a high 

death rate of such duplicates, duplicated genes can also undergo subfunctionalization 

(specializing existing functions) and/or neofunctionalization (giving rise to new functions) 

(Briscoe 2001; Jordan, Wolf, and Koonin 2004; Spaethe and Briscoe 2004; He and Zhang 

2005; Rastogi and Liberles 2005; Benderoth et al. 2006). In addition to whole gene 

duplications, internal tandem duplications of specific exons or structural domains also occur 

(Bjorklund, Ekman, and Elofsson 2006). Domain duplication and reorganization may enhance 

existing functions, promote protein stability or modify functions, for example, by altering 

substrate specificity (Ponting et al. 2001; Pearson et al. 2004). We aim to understand how 

domain and gene duplication have formed the NSP gene, facilitating adaptation to new 

environments and possibly even speciation. 
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Table 1: List of all insect species from which sequence information was used in this study.  
 

ScientificName (used 
abbreviation)  

Common name phylogenetic Affiliation 
Order; Family 

Sequence source 

Pieris rapae (Pra) Small Cabbage White Lepidoptera; Pieridae cDNA Library 

Pieris brassicae (Pbr) Large cabbage White Lepidoptera; Pieridae cDNA Library 

Pieris napi (Pna) Green-veined White Lepidoptera: Pieridae PCR-product 

Anthocharis cardamines (Aca) Orange Tip Lepidoptera; Pieridae cDNA Library 

Pontia daplidice (Pda)  Bath White Lepidoptera; Pieridae cDNA Library 

Pontia protodice (Ppr)  Checkered White Lepidoptera; Pieridae cDNA Library 

Dixeia pigea (Dpi) Antheap White Lepidoptera; Pieridae cDNA Library 

Eucheira socialis (Eso) Madrone Caterpillar Lepidoptera; Pieridae cDNA Library 

Colias eurytheme (Ceu) Orange Sulphur Lepidoptera; Pieridae cDNA Library 

Gonepteryx rhamni (Grh) Brimstone Lepidoptera; Pieridae cDNA Library 

Bombyx mori (Bmo) Silkworm Lepidoptera; Bombycoidae Butterfly Base, Silk Base 

Helicoverpa armigera (Har) Cotton Bollworm Lepidoptera; Noctuidae cDNA Library 

Spodoptera frugiperda (Sfr) Fall Armyworm Lepidoptera; Noctuidae cDNA Library 

Trichoplusia ni (Tni) Cabbage Looper Lepidoptera; Noctuidae  cDNA Library 

Plutella xylostella (Pxy) Diamondback Moth Lepidoptera; Plutellidae cDNA Library 

Anopheles gambiae (Aga) Malaria Mosquito Diptera; Culicidae NCBI 

Aedes aegypti (Aae) Yellow Fever Mosquito Diptera; Culicidae NCBI 

Periplaneta americana (Pam) American Cockroach Blattodea; Blattidae NCBI 

Blattella germanica (Bam) German Cockroach Blattodea; Blattidae NCBI 

Tenebrio molitor (Tmo) Mealworm Coleoptera; Tenebrionidae NCBI 

Tribolium castaneum (Tca) Flour Beetle Coleoptera; Tenebrionidae NCBI 
 
Note.- Shown are species name, abbreviation used, common name, phlyogenetic affiliations and sequence 
source. 
 

 

2.2 Material and Methods    

 

Specimen Collection  

Colias eurytheme, Pontia daplidicae, Anthocharis cardamines, Gonepteryx rhamni, Pieris 

rapae, Pieris brassicae, and Pieris napi butterflies were collected in the field around Jena 

(Thuringia, Germany) and kept as short term lab cultures. Both adults and larvae which 

hatched from eggs laid by field-collected butterflies were partly used for tissue samples. 

Several Pontia protodice larvae were field collected in Montana (USA), larvae of Dixeia 

pigea were field collected in South Africa, larvae of Delias nigrina were from Southern 
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Australia and Eucheira socialis larvae were collected in Mexico and were dissected and used 

for extraction of RNA and DNA. Plutella xylostella, Trichoplusia ni, and Helicoverpa 

armigera larvae and adults were reared in the lab as permanent cultures on artificial diets 

described elsewhere (Ratzka et al. 2002; Maischak et al. 2007).    

 

RNA Isolation and Reverse Transcription 

Larval guts were dissected, immediately submersed in liquid nitrogen and stored at -80 °C.  

TRIzol Reagent (Invitrogen) was used to isolate the RNA according to the manufacturer’s 

protocol with the following modifications. After adding chloroform to separate the phases, the 

tubes were stored for 15 minutes at 4 °C before centrifugation. To precipitate the RNA the 

solution was stored at -20°C overnight. The dried pellet was dissolved in 90 μl RNA storage 

solution (Ambion), and any remaining genomic DNA contamination was removed by DNAse 

treatment (TURBO DNAse, Ambion). The DNAse enzyme was removed and the RNA was 

further purified by using the RNeasy MinElute Clean up Kit (Qiagen) following the 

manufacturer’s protocol and eluted in 20 μl of RNA storage solution (Ambion). To transcribe 

the mRNA into cDNA the SuperScript III First-Strand Kit (Invitrogen) was used according to 

the manufacturer’s protocol.  

 

Preparation of cDNA libraries  

RNA from the gut of the lepidopteran larvae was isolated as described above and poly(A)+ 

mRNA was isolated using the Poly(A)Purist mRNA Purification Kit according to the 

manufacturer’s protocol (Ambion). For T. ni, P. daplidicae, P. protodice, P. rapae, P. 

brassicae, A. cardamines, G. rhamni and E. socialis double-stranded, full-length enriched 

cDNA from dissected larvae were generated by primer extension with the SMART cDNA 

library construction kit (Clontech) according to the manufacturers protocol but with several 

modifications. In brief, 2 µg of poly(A)+ mRNA was used for each cDNA library generated. 

cDNA size fractionation was performed with SizeSep 400 spun columns (GE Healthcare) that 

resulted in a cutoff at ~200 bp. The full-length-enriched cDNAs were cut with SfiI and ligated 

to the SfiI-digested pDNR-Lib plasmid vector (Clontech). Ligations were transformed into E. 

coli ELECTROMAX DH5α-E electro-competent cells (Invitrogen). Furthermore, for C. 

eurytheme, A. cardamines, D. nigrina, H. armigera and P. xylostella normalized full length-

enriched cDNA libraries were generated using a combination of the SMART cDNA library 

construction kit and the Trimmer Direct cDNA normalization kit (Evrogen) following the 

manufacturer’s protocol.  
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Generation of EST sequence databases 

Plasmid minipreparation from bacterial colonies grown in 96 deep-well plates was performed 

using the 96 robot plasmid isolation kit (Eppendorf) on a Tecan Evo Freedom 150 robotic 

platform (Tecan). Single-pass sequencing of the 5’ termini of cDNA libraries was carried out 

on an ABI 3730 xl automatic DNA sequencer (PE Applied Biosystems). Vector clipping, 

quality trimming and sequence assembly was done with the Lasergene software package 

(DNAStar Inc.). Blast searches were conducted on a local server using the National Center for 

Biotechnology Information (NCBI) blastall program. Sequences were aligned using ClustalW 

software (Thompson et al. 1997). 

 

Cross taxon gene identification  

Genes of interest were recovered by different methods. For the species P. xylostella, T. ni, H. 

armigera, D. nigrina, C. eurytheme, P. daplidice, P. protodice, P. rapae, P. brassicae, A. 

cardamines, G. rhamni and E. socialis cDNA libraries were generated and screened as 

described below. Degenerate primers were used to amplify genes that were not found in the 

EST sequences and to identify the desired genes in P. napi and D. pigea for which no cDNA 

libraries were created. 5‘ and 3‘ RACE methods were used to obtain full length clones when 

necessary.  

 

Search of existing databases.  

Sequences from other insect species were extracted from the NCBI non redundant (nr), and 

whole genome shotgun sequence (wgs) databases and the ButterflyBase v2.9 

(http://heliconius. cap.ed.ac.uk/butterfly/db/).  

 

Genomic DNA Isolation and PCR  

For the isolation of genomic DNA from P. rapae, P. brassicae and C. eurytheme the 

abdomens of adult butterflies kept at 4°C were ground to a fine powder in liquid nitrogen and 

DNA was isolated using the genomic tip 100/G and genomic DNA buffer kit following the 

manufacturer’s protocol (Qiagen). To amplify the genomic sequences of a gene, specific 

primers for the genes of interest were used and the desired product amplified by PCR. 

Positive PCR bands of the correct size were cut out from the agarose gels, column purified 

(Zymogen), ligated into the pCR II TOPO vector (Invitrogen) and sequenced.  
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Fosmid library generation and screening  

Genomic DNA was isolated from several pupae of Colias eurytheme and Pieris rapae, using 

the genomic tip 500/G isolation kit (Qiagen) as described above. Genomic DNA quantity was 

measured photospectrometrically on a Nanodrop ND1000 and DNA quality and size was 

checked by pulsed-field gel electrophoresis on a CHEF Mapper XA (Bio-Rad). As the mean 

size range of both the Colias and Pieris genomic DNA was ~ 150 kb, the DNA was sheared to 

the desired 40 kb range with a Hydroshear device (Molecular Devices). For the generation of 

a fosmid library ~ 3 µg of sheared genomic DNA was used as starting material in a 

CopyControl fosmid library production kit protocol (Epicentre). This resulted in a library of ≈ 

120000 E. coli EPI300 clones, each carrying a ~ 40 kb DNA fragment of Colias and ≈ 90000 

E. coli EPI300 clones, each carrying a ~ 40 kb DNA fragment of Pieris in the pCC1FOS 

vector. Appr. 28000 colonies for each species were picked into 384well microtiter plates with 

a QPix II robotic colony picker (Genetix) and subsequently spotted onto large Performa II 

nylon membranes (Genetix). Colony picking, replicating, membrane spotting and quality 

testing was performed by the RZPD (German Resource Center for Genome Research). The 

library was stored as −80°C glycerol stocks in 384well microtiter plates.  

The randomly picked (n = 28000) clones represent a 2-3 fold genome coverage, assuming a 

genome size G of 450 Mbp and an insert size i of 40 kb. A first quality check of the library for 

DNA insert size and clone diversity was done by restriction analysis of fosmid DNA isolated 

from twelve randomly selected library clones for each library. This revealed a total of 24 

different restriction patterns and an average insert size of 34 kb.  

Overnight cultures of E. coli EPI300 clones were diluted 10× in LB containing 12.5 µg ml-1 

chloramphenicol and 1× induction solution (Epicentre) and incubated for 5 h at 37°C, 

300 rpm. Fosmids were isolated with the Nucleobond Xtra Midi Kits according to the 

manufacturers´ instructions (Macherey-Nagel).  

Fosmid library nylon filters were washed, blocked and hybridized with horseradish 

peroxidase (HRP)-labelled DNA fragments containing the Colias SDMA genes. Labelling, 

hybridization and probe detection were done according to specifications in the ECL DNA 

labelling and detection kit (GE Healthcare). 

 

Sequence Analysis  

Nucleotide sequences were analyzed using the commercial Lasergene Software package and 

the freeware BioEdit program.  All sequences were submitted to Genbank (Accession 

numbers EU13117-EU13739 identified in Figures).  Genes were aligned by their amino acid 
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sequences using ClustalW (Thompson et al. 1997), sequence identity calculated in the BioEdit 

7.0.2 program (Hall 1999), and dN/dS ratios calculated in the DnaSP program (Rozas et al. 

2003).  If necessary, alignments were then corrected by eye and reverted back to the 

nucleotide sequences for the phylogenetic analyses. Predictions of the secondary protein 

structure were generated by the freeware PredictProtein program 

(http://www.predictprotein.org/) (Rost, Yachdav, and Liu 2004) 

   

Phylogenetic Analysis  

The phylogenetic reconstruction implemented four methods. The PAUP 4.0b10 package 

(Swofford 2003) was used for 1) the construction of a parsimony tree with 500 bootstraps, 2) 

Neighbor Joining distance analysis, with reconstructed distances estimated using either Jukes-

Cantor model or a general time-reversible model with 5000 bootstraps (Felsenstein 2004), 3) 

maximum likelihood estimations using Model Test 3.7 (Posada and Crandall 1998) to identify 

the best fitting nucleotide substitution model for each dataset analyzed, with 100 bootstraps 

performed.  Our final method of analysis used  Bayesian inference with a GTR + I + G 

nucleotide substitution model implemented in Mr. Bayes 3.1 (Ronquist and Huelsenbeck 

2003).   Markov Chain Monte Carlo runs were carried out for 1,000,000 generations after 

which log likelihood values showed that equilibrium had been reached after the first 400 

generations in all cases, and those data were discarded from each run and considered as 

‘burnin’.  At least two runs were conducted per dataset showing agreement in topology and 

likelihood scores.  

 

Analysis of evolutionary rate differences  

Analysis of variation in molecular evolution rate among SDMA (Single Domain MA) clades 

and the NSP + MA clade was performed using likelihood ratio tests of different branch rate 

models as implemented in codeml of the PAML software package (version 3.15) (Yang 

1997). In this model both synonymous and nonsynonymous changes are allowed and are 

independent, but are constrained in their ratio, ω.  A likelihood value is then calculated for the 

fit of the DNA data to the ω constraint.  For these analyses we used the Bayesian phylogenetic 

reconstruction of these groups. Likelihood ratio tests were used to compare different 

hypotheses regarding evolutionary rate (ω) change among clades in the Bayesian phylogenetic 

tree of the NSP-like gene family.  A model assuming one rate of molecular evolution among 

branches (one ratio model) was compared with models where specific clades as a whole were 

allowed to have differing rates, resulting in two, three, and four ratio models (Table 2).  The 
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best fitting model allowed four independent rates of molecular change, one each among the 

SDMA clades of moths (Bombyx + Noctuidae), Coliadinae, Pierinae, and (NSP + MA).  

Although this model was not significantly different from another model which solely differed 

by allowing the evolutionary rate to be identical for both Coliadinae and Pierinae SDMAs, the 

conclusion is the same and highly significant (Table 2).   

 

Table 2: dN/dS (ω) estimates among different evolutionary hypotheses, assessing variation in NSP-like 

single domain evolutionary rates, with LRT comparisons to best fit model H6.     

 

Note.- Phylogenetic tree and SDMA subscripts M, C, and P stand for Moths, Coliadinae, and Pierinae clades 
found in Figure 5.  Likelihood ratios (lnL), the calculated likelihood ratio test (LRT) vs H6  lnL, degrees of 
freedom (d.f.) and significance are reported (P). 
 

 

2.3 Results  

 

EST databases and Fosmid libraries 

For many lepidopteran species, including Pieridae, only a very limited number of sequences 

are available in public databases. To identify NSP-like genes in larval tissues, cDNA libraries 

were constructed from several Lepidopteran species, generally using larvae of different 

instars. DNA sequencing from the 5' ends of (directionally cloned) clones followed by 

clustering resulted in a variable number of ESTs which were further processed. A series of 

filtering steps were applied to identify and remove reads that did not contain any or very short 

inserts and each sequence was automatically edited to remove primer sequence and exclude 

contaminants (from E. coli). Sequences were assembled with the Lasergene Software using 

moderately stringent parameters (i.e., match size was chosen to be at least 25 nucleotides, and 

match percentage was 94).  Using these parameters we obtained the following number of 

contigs and singletons (represented by single reads) for the different species (total number of 

 Estimated ω     

Models SDMAM SDMAC SDMAP 
NSP/ 

MA 
lnL LRT vs H6 d.f P value 

 

H0: SDMAM = SDMAC = SDMAP = NSP/MA 

 

0.1790 

 

= 

 

= 

 

= 

 

-13048.47 

 

81.256 

 

3 

 

<0.001 

H1: SDMAM ≠ SDMAC = SDMAP= NSP/MA 0.1512 0.1860 0.1860 0.1860 -13047.31 78.932 3 <0.001 

H2: SDMAM = SDMAC ≠ SDMAP = NSP/MA 0.1231 0.1231 0.2046 0.2046 -13039.47 63.246 3 <0.001 

H3: SDMAM = SDMAC = SDMAP ≠ NSP/MA 0.1065 0.1065 0.1065 0.2530 -13014.59 13.494 2 0.001 

H4: SDMAM ≠ SDMAC ≠ SDMAP = NSP/MA 0.1555 0.0652 0.2050 0.2050 -13034.30 52.906 1 <0.001 

H5: SDMAM ≠ SDMAC = SDMAP ≠ NSP/MA 0.1538 0.0803 0.0803 0.2519 -13008.10 0.514 1 0.473 

H6: SDMAM ≠ SDMAC ≠ SDMAP ≠ NSP/MA 0.1544 0.0687 0.0849 0.2519 -13007.84 0 n/a n/a 
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high quality reads/resulting assembled contigs/singletons): P. xylostella (15730/2072/5495), 

T. ni (6986/1065/2740), H. armigera (35389/3385/8135), D. nigrina (4638/840/2286), C. 

eurytheme (5171/944/2145), P. daplidice (463/34/158), P. protodice (1206/133/320), P. rapae 

(18599/2596/5418), P. brassicae (2780/256/668), A. cardamines (4634/551/2267), G. rhamni 

(2165/170/548), and E. socialis (1946/192/467). For putative functional assignments, the 

assembled sequences were compared against protein and nucleotide NCBI databases, using a 

locally installed BLAST search tool.  Sequences from these12 cDNA libraries, containing 

both full-length and partial cDNA sequences, resulted in databases used in subsequent 

analysis. 

Genomic organization insights (exon-intron structures and putative flanking regions) of NSP-

like genes were facilitated by in house generated Fosmid libraries from a Pierinae 

representative (Pieris rapae) and an evolutionarily distant Pieridae (Coliadinae, Colias 

eurytheme). These large-insert genomic libraries were probed with genes/gene fragments 

obtained from screening the EST databases (see above). 

 

Search results and general gene similarity  

When blasting the P. rapae NSP amino acid against the NCBI nr database, the highest 

significant hit is to the Cr-PII allergen from Periplaneta americana, a major allergen like 

protein in the american cockroach (23% identity, 42% similarity).  Similar to NSP, Cr-PII 

consists of a signal peptide resulting in excretion into the gut lumen and has repeats of an 

approximately 200 amino acid domain, which we hereafter call the major allergen (MA) 

domain. Similar proteins with different numbers of MA domain repeats exist in Aedes aegypti 

(AEG12) and Blatella germanica (Bla g1) and have been shown to be induced after food 

intake (Pomes et al. 1998; Wang, Lee, and Wu 1999; Yang and Bielawski 2000; Chad Gore 

and Schal 2005; Shao et al. 2005). Searching the publicly available databases and whole 

genome sequences across Insecta only identified major allergen like proteins, with several 

non-lepidopteran species having large MA proteins consisting of many repeating domains 

(Figure 1a). The 8 MA domain repeats of Tribolium castaneum are depicted against one of the 

three repeats of Tenebrio molitor in Figure1a showing the similarity of the domains.  In 

contrast, Dipteran species, for example Anopheles gambiae (ANG12 (CAA80505)) and most 

screened lepidopteran species only possess MA genes consisting of a signal peptide and a 

single MA domain, which we therefore named single domain MA (SDMA).  Amino acid 

alignment of the SDMA from P. brassicae and other lepidopterans and the first domains of 

the NSP and MA from P. brassicae and a single domain of the P. americana MA illustrates 
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the similarity of these sequences, implying a shared evolutionary history (Figure 1b). Pierinae 

butterflies are the Lepidopteran exception, as they additionally possess two genes with a 

signal peptide and three MA domains each (Figure 2).  Comparison between one MA domain 

and the NSP sequence without signal peptide of P. rapae in a dot plot illustrates the three 

repeat domain structure of these proteins (Figure 2a).  By searching our cDNA libraries with 

these sequences we identified one SDMA gene in P. xylostella, T. ni, A. cardamines, E. 

socialis, D. pigea, P. rapae, P. brassicae, G. rhamni and P. napi and two SDMA genes in H. 

armigera and C. eurytheme, and screening public databases we found two SDMA genes in 

Bombyx mori and  Spodoptera frugiperda (Figure 3a and 3c).  
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Pbr_D1MA   1   PKAKKNFQDYFEEFLAISEALEGAHLGRQTGN-YMGFDTFRAGLNAIDAPIKYQQLAKDLESVPEYKALTDFLKNLTIDVNYYVKRYEDYVSRVNSFNPDSSK-SGQHSRQRRHPITGSTLDTSIVDTVSMLPRRQLRQLFHEKMAHDEFFRSVIEAIKSDRFKQLYNALWANRTFRGVANALEDNALSLKYLFEELLPAFFGQN--- 
Pbr_D1NSP  1   PRLFETFQDHFQHFLDISNALEGAHWRRQQGQGYTPNPEYIEMLNKLSE-QNLKQMLADLKKEPEVQDIIEYLDNLTIDVDYYVDNLQWIIQKLHANDTDGIPGVEFHHRTRRHPMTGTTMITALADTVSMLPIRQLRATFNEKMAKNQLFRTAIEGLKSDRFLTLYKALWKNEAFLKVRDILADCHFDLKYIFEELALSLLGQN--- 
Pbr_SDMA   1   PQMRKPFHEHFSDFMNIINDDAGHEIEHLSEH-YVEFEEFTASIDYMAG-KDFNGIVNEMEELPEFKAVIEFLEGHEIDITYYIDLLDSFIDRLSA------------GQKKRHELSGRDMSAYIKDTIAVLPKEKLDALYDEKMENDEEFKRAMDSLQSDEWKEIWDALWENETFKAEADELSKNGIDLQMLLSELV-AIFGQN--- 
Bmo_SDMA1  1   PQPKKSFVENFRDFLDIIKDEAGHDIEHLFEH-YIEFEEFQRSFDYLTT-KDFRDLIYEMEDLPEFKAVVDFLENDNIDIHFFIDIFNEMIETIGER-----------VKRARHTLSGRDFTSYINDIIGEFPKDKLAALYEQKLAEDEEFRVALENLQSEEWDAVFGALWESEQFKAEVDTLAEHGIDVHVLMKELF-AIFGQN--- 
Har_SDMA1  1   PQARKLFHEHVEDFLDIISEEAAHEIEHLMEH-YVEYDEFWQALDYMRT-NNFKDLVYEMESLPEFVAVVEFLEKDQIDIHYFIDLLNDMIENVDR------------KRNARHSTSGRDLSSFVRDCINEFPKDKLSALFDQKMADDEEFRTAIENLQTEEWAAVFDALWESEVFQAEVKTLAENGIDVGVFLDEII-AVFGQNKK- 
Sfr_SDMA1  1   PQTRKLFHEHVEDFLDIIMDEAGHEIEHLNEH-YLEYDEFWTALDYMRT-NNFKDLVYEMESLPEFVAVIEFLEQDNIDIHYFIDLFNEMIESIQQT-----------ARSVRHSTSGRDFTSFMRDCIDAFPKAKLSALFEQKMAEDEEFRTAINNLNSEQWDAVFSALWANPTFQAEVATLAENGIDVKVFLDEIV-AVFGQN--- 
Tni_SDMA   1   PQPRKDFHEHVQEFIDIIMEDAGHDLEHLLEH-YEEFDEFWVAVNYMRT-NNFKDIVYEMESLPEFVAVIDFLENDNIDVHYFLDLFNDLLESSKK------------SKQTRHTLSGRDFTSFVKDSISEFPKAKLAALFDQKMNEDEAFRVAIENLQSEEWDQVFGALWDSPVFQAEVKTLSENGIEISVLLDELK-AIFGQ---- 
Pxy_SDMA   1   PQPRHAFHEHFEDFMVLIREEAGHDLDHIMGH-YLEFDDFIRGIEYMRS-EGFKNLLAELESLSEFQALVDFLEKDNIDITYFIDQVHTMLDNIKTT-----------SNKARHQMSGTDISAFMIDSIGEFPKDKLAALYEKKIAESEEFRTSMENLNSEEFEQIVDALLDNETFKKEAATLATYGFSVEVFVREIK-AVFGQ---- 
Pam D1     1   ----RNLQDDLNDFLALLPVDE---ITAIVMDYLANDAEVQEAVAYLQG-EEFHKIVFTVEGLQEFGNFVQFLEDHGLDAVGYINRLHSVFGWDPYVP----------SSKRKHTRRGVGVDGLIDDIIAILPIDDLKALFQEKLETSPDFKAFYDAVRSPEFQSIVQTLNAMPEYQDLLQKLRDKGVDVDHYIELIR-ALFGLTRAA 

 
Figure 1: (A) A comparison of amino acid sequence homology and domain repeat structure, shown as a dotplot, 
between a single domain of Tenebrio molitor Insect allergen-like protein (vertical axis) and the Tribolium 
castaneum 8-domain repeat insect allergen-like protein (horizontal axis). Dots represent ≥ 40% identity across a 
sliding window of 15 amino acids.  Below is the comparison of amino acid domain repeats of insect allergen-like 
sequences in beetles and cockroaches, aligned with the sequences above. Tca = Tribolium castaneum 
(XM_966479) Tmo = Tenebrio molitor (AY327800), Pam = Periplaneta americana (CrIII=PAU69957; CrII= 
AAC34736), Bge = Blattella germanica (1.01= AF072219, 1.02=AF072220 ). Pam-CrII, Bge-1.01 and Bge-1.02 
are partial cDNA sequences. Black and grey bars respectively represent signal peptide and MA domains. (B) 
Amino acid alignment of the SDMA from Pieris brassicae (Pbra Acc: EU137128), Bombyx mori (Bmo), 
Helicoverpa armigera (Har Acc: EU137124), Spodoptera frugiperda (Sfr Acc: EU137137), Trichoplusia ni 
(Tni, Acc: EU137139) and  Plutella xylostella (Pxy, Acc: EU137131),  and the first domains of the NSP and MA 
from P. brassicae (NSP Acc: EU137127, MA Acc: EU137126) with a single domain of the P. americana MA. 
80 % similarity is shaded in grey. 
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Exon intron structure for the formation of SDMA, MA and NSP  
Based on genomic sequence, the exon intron structure of the MA domains appears to be 

conserved across the NSP, MA and SDMA genes (Figure 2b). Each domain consists of three 

exons, with the first consisting of about 200 base pairs (bps) (range 192-204 bps), the second 

containing 69-70 bps and the third being more variable at around 337 bps (range 302-362 

bps). The only exception is given by the first domain of the MA gene, which consists of only 

two exons, with the first and second exons being 192 and 408 bps respectively.  

 

Defining the core domain of the NSP-like gene family 

The core domain of the NSP-like gene family was defined by a combination of Dot Plot 

visualization (Figure 2b), the length and amino acid sequence of the SDMA (Figure 3a), the 

exon-intron structure of the SDMAs in comparison to the exon-intron structure of NSP and 

MA (Figure 2b), and the predicted secondary protein structure generated by PredictProtein 

(Figure 3a).  All four analyses suggested a division of NSP and MA into three domains. 

Strong support comes especially from the predicted secondary protein structure. All SDMAs 

show the same motif of two times 6 Alpha-Helixes, separated by a turn, exemplified by the  

the predicted secondary protein structure of P. xylostella SDMA (Figure 3a).  

We defined domains to end with the amino acids G Q N as does the SDMA protein. However, 

there are slight inconsistencies within the length of the SDMA protein versus the domains of 

MA and NSP. While SDMA is about 190 amino acids long, NSP and MA domains are both 

about 210 amino acids long. This produces a gap of 11-15 amino acids in the domain 

alignment at position 91 of the SDMA Pieris rapae SDMA (minus signal peptide). The 

observed amino acids lacking in the SDMA sequence correlate with the beginning of the third 

exon of the Pieris rapae NSP genomic sequence. These additional amino acids in NSP and 

MA are thus simple terminal exon additions and not changes to the core domain.  
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Figure 2: (A) Dotplot depicting a comparison of amino acid homology and domain repeat structure between a 
single domain of NSP (vertical axis) and the 3 domain MA of Pieris rapae (horizontal axis). Dots represent ≥ 
56% identity across a sliding window of 30 amino acids. (B) Structural comparison among the SDMA 
(EU265819), MA (EU265818) and NSP (EU265817) of P. rapae.  Shaded bars and lines respectively represent 
gene exons and 
 
 
Phylogenetic Analysis of the SDMAs within the Lepidoptera  

Figure 3 shows an alignment of insecta SDMAs (Figure 3a) and the phylogenetic 

relationships of the lepidopteran SDMA genes with Plutella xylostella as out-group due to its 

more basal position in the Lepidoptera (Figure 3c). Parsimony, ML, and Bayesian 

phylogenetic reconstruction methods found nearly identical topologies with only moderate 

variation in node support, with NJ distance reconstruction supporting these groupings albeit 

with several polytomies. For some lepidopteran species we could identify multiple SDMA 

copies in the genome. There is a clear separation of the Noctuidae from the Pieridae 

SDMAs. SDMA duplicates are of variable ages, if we assume a constant rate of evolution 

among them.  Two very recent duplicates can be seen in both Bombyx mori and Helicoverpa 

armigera. Spodoptera frugiperda duplicates appear to have arisen from an older duplication 

event while C. eurytheme duplicates have a potentially much deeper origin. Analysis of 

genomic sequence finds that B. mori and C. eurytheme SDMAs share exon intron structure 

and these duplicates in both species are tandem (Figure 3b).  These observations suggest 

conservation of gene structure with tandem duplications being common at least across the 
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higher Lepidoptera. In addition, the phylogeny of the SDMAs follows the expected species 

phylogeny of the Pieridae and their relation to the Noctuidae (Braby, Vila, and Pierce 2006). 
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Eso_SDMA   1 --....I.F.T..S..L....L.....D......NI.RE.T..DLND.M...A..D..K.TLE.ITE.N.NAI............IVD.....E.....F.EMINE...FIGS--.ERL.Q.I..K.--L...T..S.D.......A....S.V.S........E..K.....EL.N...........V...AE...E.AS..D.I...FGQN--
Aca_SDMA   1 --....I.F.......LS...P.....D.....VN..LE.SE..M...NG..L..D..K..L.F...R..NS..............V......E........MFNDI..N..S--.NGK......IN--.....Q....L......A.M....................E..QE..N.............L.AE...E.....T.....FGQN--
Ceu_SDMA1  1 --......F.TVPA..L.I..P..V.....N..LD..F.....DI...M...Q.....N.AL..LKT...NN..............VD...NDN....FF..IFN.M...VER--KRQA..Q.....--.N.F.Q.C.SEF..A..A..F.Q.VSE.....S.IEN...EK.D.V.N....S.V.LE.VQT.KD....VYW..V.ITT.FGQN--
Ceu_SDMA2  1 --..V..F..A..T..L....A..S.....D...D..LE.S.D..K..M...L..D..R..LE.AST...NQ.I............V......E...MFF..K.ND...NMVQD-ERRLK..V..K.--VN...Q....LF.....S..F...I.EY.......E....E..DQL......S....S.V.T.GEH...VRA..Y.VL..FGQN--
Grh_SDMA   1 --..T.I.F.TVLA..L.V.KP..L.....EE.LNV.DE....DI...M...L......TAL..LRT...NN..............VD...NDN....FF..IFN.M...VD.L-KRQS..Q.....--.T.F.Q.C.SEF..S..A....Q.LND..A..T.IEN......E.V.N....S...LQ.VQT.MEH...VHV..L.IQ.VFGQN--
Bmo_SDMA1  1 --..V.I.FMG.IA..FSL..PK.S.V.N.R..LDI.K.....DI...F...I.....QR.F..LTT...RD.IY...........VD...NDN...HFF..IFNEM.ETIGER-VKRA..T.....--FTS..N.I.GEF..D..A...EQ.LAE....RV.LEN...E..DAVFG....S.Q....V.T.AEH...VHV.MK..F..FGQN--
Bmo_SDMA2  1 --..V.M.FMG.IA..FSG.RPK.S.V.NLG..LDI.K....NDIDNWF.Q.I.....RR.L..LTT...RD.IY...........VD...NDN.E.HFFM.IFNEMMETIGER-VKRA.QT.....--FTS..N.I.DVF..D..A...EQ.LAE....RV.LEN...E..DAVYG....S.Q....V.T.AEH.M.IHV.MK..F..------
Har_SDMA1  1 -M..Q...V.A..G.AFS...A..L....VE..LDI.SE..A..I...M.....YD..WQAL...RTNN.KD..Y...S....V..V....KDQ...H.F....NDM.ENVDR--KRNA..ST....--L.SFVR.C.NEF..D..S..F.Q..AD....RT.IEN..TE..AAVF.....S.V.Q..VKT.AE....VGVF.D.II.VFGQNKK
Har_SDMA2  1 -M..Q...V.A..G.AFS...T..L....VE..LDV.ME.....I...M.....YD..WQALE..RTNN.KD..Y...S....V..V....KDQ...HFF....NDM.ENVDR--KRNA..ST....--L.SFVR.C.NEF..D..S..F.Q..AD....RT.IEN..TE..AAVF.....S.V.Q..VKT.VE....VGVF.D.II.VFGQNKK
Sfr_SDMA1  1 -M..Q...V.A..G.AFS...T..L....VE..LDI.M......I...N...L.YD..WTAL...RTNN.KD..Y...S....V.......QDN...H.F...FNEM.ESIQQT-ARSV..ST....--FTSFMR.C.DAF..A..S..FEQ..AE....RT.INN.N.EQ.DAVFS...A.P..Q..VAT.AE....VKVF.D.I..VFGQN--
Sfr_SDMA2  1 -M..KV..F.A..AIVSS...P..L....VE..IDI.DESS-E.FAR.M.I.S..D..WK.....KTNN.KEIIY...S....V...D...NDN..VHFF..M.NGILENVDVDTKALA.QSV....--LTSFTR.C..VF.....A..F.Q..AE....RT.IEN.E.E..ESVFS....S.V.Q..VAA..E...EISV.FEQ.L..FGQN--
Tni_SDMA   1 -M...I..-.A..ASAFS...P..D....VQE.IDI.MED...DL...L...E..D..WVAVN..RTNN.KDI.Y...S....V...D...NDN..VH.FL..FNDLLE--.SKKSKQ T..T.....--FTSFV..S.SEF..A..A..F.Q..NE..A.RV.IEN...E..DQVFG...DSPV.Q..VKT..E...EISV..D..K..FGQ---
Pxy_SDMA   1 --..V.I.V.ASIA.CLG...P.HA.....E...V..RE....DLD.IMG..L..DD.IRG.E..RSEG.KN.LA.L.S.S..Q.LVD...KDN.....F..QVHTML.NIKTT-SN.A..QM..T.--I..FMI.S.GEF..D..A...EK.IAES...RTS.EN.N.E.FEQ.V...LD.....K..AT.ATY.FSVEVFVR.IK.VFGQ---
Aga_ANG12  1 MKIA.FV.ACLVATSAVSCAPTTR.LTDD.D..VG.L--PLNDLLDLAMRYLLTDK.VQQTLL.LQ.EE.SAVWDQFFE.SAVRDLLQY..EAGVPAYESLNVVAD.LGLSPLKPTSVRSL S.AA.TGGLNGLLEEAL.MM.AAE.E.MFE...KSST...ALFEKM.NFDH.QLRALYESSTEVQNMIHK.ESL.V.VDHIVEV.KDFFGWN--
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Figure 3: (A) ClustalX alignment of identified SDMA amino acid sequences in Lepidoptera and Anopheles 
gambiae. Identical residues shaded black, with 80 % similarity shaded in grey.  Species name abbreviations 
(with accession number): Pra – Pieris rapae (EU137136), Pbra – Pieris brassicae (EU137128), Dpi – Dixeia 
pigea (EU137121), Eso – Eucheira socialis (EU137122), Aca – Anthocharis cardamines (EU137118), Ceu – 
Colias eurytheme (EU137122), Grh – Gonepteryx rhamni (EU137123), Bmo – Bombyx mori, Har – Helicoverpa 
armigera (SDMA1: EU137124, SDMA2: EU137125), Sfr – Spodoptera frugiperda (SDMA1: EU137137, 
SDMA2: EU137138), Tni- Trichoplusia ni (EU137139), Pxy – Plutella xylostella (EU137131), Aga – Anopheles 
gambiae. Predicted secondary structure of the Pxy SDMA is depicted above alignment, showing  the probability 
of alpha-helix formation from 0.2 to 1.0 (vertical axis). (B) Genomic organization and intron exon structure of 
the B. mori and C. eurytheme SDMA (with locus homology indicated), and the intron exon structure of the P. 
brassicae SDMA. (Accession numbers: C. eurytheme genomic SDMA1: EU265820, C. eurytheme genomic 
SDMA2: EU265821, P. brassicae genomic SDMA: EU265822) (C) Bayesian gene phylogeny of all identified 
lepidopteran SDMAs with P. xylostella as an outgroup. The sole nodes with a posterior probability below 0.89 is 
indicated. 
 
 
Phylogenetic Analysis of the Pierinae MAs and NSPs  

Reconstructed phylogeny of MA genes is robust to analysis methods, as all methods agree on 

tree topology with good support. Sequence divergence of the MAs is high between Pierinae 

species (P. rapae, P. brassicae, Pieris napi) and (Pontia daplidice, Pontia protodice, A. 

cardamines) (Supplementary Figure 1a). This strong deviation between Pieris and the 

grouping of Pontia + Anthocharis is not in accordance with the resolved species phylogeny.  
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Pieris and Pontia species are nearly sister genera and very derived within Pieridae, while A. 

cardamines is more basal (Braby, Vila, and Pierce 2006; Chew and Watt 2006; Wheat et al. 

2007).  In order to resolve this issue, we calculated and graphed these species pair-wise 

divergences for MA and two additional genes commonly used in phyogenetic studies, 

downloaded from Genbank (Supplementary Figure 1b).  Both elongation factor 1 alpha 

(EF1a) and cytochrome oxidase I (COXI) show expected evolutionary distance relationships, 

with Pieris vs. Pontia comparisons being much less than either compared to A. cardamines.  

However, MA comparisons between A. cardamines and Pontia are much lower than either 

compared to P. rapae.  These observations indicate that the P. rapae MA is not an ortholog to 

the A. cardamines and Pontia MA, but rather a different locus originating from an old 

duplication event.   

An unrooted phylogenetic tree (not shown) of the NSP domains from P. rapae, P. brassicae 

and Pontia daplidice shows that the three domains of the NSP genes cluster together and the 

distance between the species in each domain is in accordance with their phylogenetic species 

distances suggesting they are true orthologs.  These domain relationships can be seen in the 

domain phylogeny presented below (Figure 4).  

   

Phylogenetic Analysis of domains: SDMA, MA and NSP  

The phylogeny of all the lepidopteran SDMAs and the single domains of all identified NSPs 

and MAs of the Pieridae family is shown in Figure 4. The SDMAs give the same grouping as 

in the phylogeny in Figure 3c, showing a clear divergence between Noctuidae and Pieridae 

species. MA and NSP show a common ancestry to the Pierinae SDMAs, which are in turn 

sister to one of the two Colias SDMAs. The domains of NSP and MA group together forming 

a well supported monophyletic group. Each of the MA and NSP domains in turn group 

together, generally according to domain and locus (i.e. all third domains of both MA and NSP 

are a derived clade, and within this clade, all third domains of NSP group together). Overall 

tree topology is consistent among methods supporting a shared origin of MA and NSP and 

their clustered domains, but only Bayesian reconstruction gives good support for the relative 

grouping among these domain clusters.  Our Bayesian method is also the most robust to 

dramatic changes in rates among codon positions as it is partitioned by codon position. Other 

methods support only a polytomy for these relative clade relations.  Bayesian reconstruction 

places the first domain as basal and the third domain as derived.  
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Sequence comparison of MA and NSP domains and SDMAs   

The three MA and NSP domains differ considerably and consistently within and between each 

other (Supplementary Table 1). First, sequence identity values calculated among the domains 

of MA, beginning with the two orthologous comparisons (P. napi MA vs. P. rapae MA and 

P. daplidice MA vs. A. cardamines MA) followed by the interlocus comparison (P. rapae MA 

vs. A. cardamines MA), indicate that domain 1 is more closely related to domain 2 than 

domain 3.  This is also observed in comparisons within P. rapae MA and NSP, as well as 

between these two genes.   Domain 3 is more closely related to domain 2 in all these 

comparisons as well.   

 

Comparative analysis of molecular evolutionary rate  

Likelihood ratio tests were used to compare different hypotheses of evolutionary rate change 

along branches in the Bayesian phylogenetic tree of the NSP-like gene family domains 

(Figure 4).  A model assuming one rate of molecular evolution among all branches (one ratio 

model) was compared with models where specific clades as a whole were allowed to have 

differing rates, resulting in two, three, and four ratio models (Table 2).  The best fitting model 

(H6) allowed a total of four independent rates of molecular change, one each among the 

SDMA clades of moths (Bombyx + Noctuidae), Coliadinae, Pierinae, and NSP + MA.  

Although this model was not significantly different from another model which differed only 

by allowing the evolutionary rate to be identical for both Coliadinae and Pierinae SDMAs 

(H5), the conclusion is the same and highly significant (Table 2).  First, the rate of molecular 

change is slower in the Pieridae SDMAs compared to the other Lepidopteran SDMA 

representatives we have in our dataset, at nearly half the rate of molecular change.  Second, 

the molecular evolution rate of NSP + MA is more than three times that found in Pieridae 

SDMAs.  Thus, the rate of molecular evolution in the SDMA lineage was relatively slow, 

whereas once NSP and MA appeared, the rate increased significantly in the Pierinae.  
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Figure 4: Bayesian gene phylogeny of all lepidopteran SDMAs and the single domains of all identified NSPs and 
MAs from the Pierinae butterflies.  Posterior probability shown for all nodes below 0.8. The evolutionary rate for 
each clade measured as dN/dS ( = ω ). (Accession numbers: P. rapae NSP: AAR84202, P. rapae MA: 
EU137135,  P. brassicae NSP: EU137127, P. brassicae MA: EU137126, P. protodice NSP: EU137134, P. 
protodice MA: EU137133, P. protodice MA: EU137132, P. napi MA: EU137129, A. cardamines MA: 
EU137117) 
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2.4 Discussion  

 

Here we present a novel insect gene family and focus on the evolution of a member of that 

family, NSP, that acquired a new, ecologically important function. NSP appears to have 

evolved via gene duplication and neofunctionalization from a three domain MA only present 

in Pierinae butterflies. Their common ancestor seems to have evolved via both domain and 

gene duplication from an ancestral SDMA. While the function of both SDMA and MA 

expressed in the gut of insect species still remains unknown, SDMA was an exaptation, as 

defined by Gould and Vrba (1982) for the NSP function, which facilitated a key host plant 

shift with the macroevolutionary consequence of increased Pierinae butterfly speciation rates 

(Wittstock et al. 2004; Wheat et al. 2007).  

 

The NSP-like gene family  

The naming and current grouping of MA genes needs further development. Initial and 

ongoing research and expression studies on MAs in cockroaches have focused on the allergic 

reaction they cause in humans and the proposed name Major Allergen (MA) is solely derived 

based on these findings. This current naming infers from human health impacts, not reflecting 

anything related to the intrinsic biological function of MA. (Pomes et al. 1998; Wang, Lee, 

and Wu 1999; Yang and Bielawski 2000; Chad Gore and Schal 2005; Shao et al. 2005). The 

InterPro online database of protein families, available through the EBML-EBI website 

(http://www.ebi.ac.uk/interpro/DisplayIproEntry?ac=IPR010629), contains an accession entry 

for insect specific allergen repeats (IPR010629). This InterPro accession summarizes several 

potential major allergen like proteins in insects, listing NSP as well.  While many of these 

computer annotations indicate domain repeats in several genera of Diptera (i.e. Drosophila, 

Anopheles, Aedes), we can find no such tandem repeat structures in dot plot analyses (data not 

shown).  This InterPro accession divides the proteins into domains of 100 amino acids as 

proposed by Pomes et al (1998). However, our analysis using detailed Dot Plot analysis, 

predicted protein structure, comparisons of amino acid sequence, and analysis of the exon-

intron structure of the genes provides robust support for the division of NSP and MA into 

three 200 amino acid domains (Figure 1, 2, 3 and see also Results). With this additional 

comparative genomic insight, we use the 200 amino acid domain designation in our analyses.  

Pomes et al. (Pomes et al. 1998) proposed that the repeating units of the allergenic family of 

proteins from cockroaches were evolutionarily derived by duplication of an ancestral amino 

acid domain in the "mitochondrial energy transfer  proteins", based on the match of some (but 
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not all) allergen family members to the motif P-x-[DE]-x-[LIVAT]- [RK]-x-[LRH]-

[LIVMFY].  However, recent information on these mitochondrial proteins reveals additional 

differences that make this evolutionary scenario much less likely.  First, the characterization 

of this motif has expanded to a much larger, 78-amino acid region that is described as 

"pfam00153.13. Mito_carr, Mitochondrial carrier protein" (http://www. ncbi.nlm.nih.gov 

/Structure/cdd/cddsrv.cgi?uid= pfam00153).  This larger region shows no evident similarity to 

the cockroach allergenic proteins or the single-domain proteins (Figure 3a).  Second, the motif 

best describing the region corresponding to the shorter motif in the single-domain proteins  

(positions 142- 150 in Fig 3a) is P-K-[DEATS]-K-L-[DAS]-A-L-[YF] which shows some 

similarities but also several differences from the originally identified motif.  Third, a three-

dimensional structure has been determined for one of the pfam00153 family members 

(Protein Data Bank Accession 1okc, (Nury et al. 2006)), and it is rather different from the 

predicted structure of the NSP-like proteins as generated by PredictProtein (Figure 3a).  

Therefore, the origin of the repeating units can no longer be confidently ascribed to the 

mitochondrial solute carrier proteins as originally proposed, and we suggest that this 

hypothesis of Pomes et al. (1998) should be removed from the descriptions of pfam06757 

Ins_allergen_rp and InterPro IPR010629 (http ://www. ncbi.nlm.nih. gov/Structure/cdd/ 

cddsrv.cgi?uid =pfam06757). 

Furthermore, there is a need to both clarify and distinguish these insect gut expressed, 

multiple domain repeat proteins now that a function in an insect is well established (Wittstock 

et al. 2004). We therefore propose naming this gene family as the NSP-like gene family with 

regard to its only functionally characterized protein, while keeping the historically developed 

names for the proteins of unknown function MA and SDMA until their function is better 

understood.    

 

Evolutionary origins  

The alignment of a single domain of the P. americana MA with a single domain each of MA 

and NSP and the SDMA of P. brassicae demonstrates the similarity of the amino acid 

sequences (Figure 1c). Further support comes from their expression profiles. P. rapae, P. 

americana and A. aegypti, each from a different taxa, express their respective forms of MA 

solely in gut tissue of the primary food consuming life stage, with the latter two being adult 

stages (Chad Gore and Schal 2005; Shao et al. 2005). These findings strongly suggest that 

SDMA genes found from across Lepidoptera, as well as MA and NSP of the Pierinae 
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(Pieridae) butterflies, share a common evolutionary origin with other MA genes found across 

insecta and are involved in digestive functions.    

 

Proposed model of NSP evolution  

The only lepidopterans that appear to possess multiple domain MAs are members of the 

butterfly subfamily Pierinae, possessing two classes of three domain genes, MA and NSP. 

Genetic divergence among the different MAs of Pierinae species suggests more than one MA 

locus, but with only one of the hypothesized paralogs found in to date within any one species 

(Supplementary Figure 1). In contrast, our data to date suggest NSP to be a single locus gene 

(Figure 4). However more NSP genes need to be identified as well as their chromosomal 

regions sequenced to directly answer this question as tandem duplications are likely to occur 

in this gene family.  Our robust phylogenetic reconstruction of the SDMA, MA and NSP 

show a single shared origin of MA and NSP within the Pierinae. Within the Pieridae, only in 

Colias butterflies have we identified a duplicated SDMA, with one of the genes more closely 

related to the SDMAs found in Pierinae.  While this Colias SDMA locus itself appears to be 

the Pierinae ortholog, this is a tentative assumption (Figure 4).  Regardless, using the 

phylogeny and the gene structure we can postulate the molecular origin of MA and NSP from 

an SDMA locus most recently shared with the Pierinae, rather than a locus shared with the 

Coliadinae.   

The SDMA common to Lepidoptera seems to have been evolving under a normal birth-death 

like process with different stages of this process seen in both moths and butterflies (Figure 4). 

According to our proposed model the SDMA underwent two within gene tandem duplication 

events, effectively duplicating each time the MA domain, but not the signal peptide. This 

within gene tandem duplication is similar to what has likely happened in the other insect taxa 

possessing multiple MA domain repeats (Figure 1). These duplications led to the formation of 

the common three domain ancestor to MA and NSP. Either a gene duplication event of this 

ancestor then led to the current MA and NSP genes in the Pierinae, followed by tandem 

duplication of the MA gene, or this ancestral gene duplicated, and only one of these two MA 

genes duplicated again to give rise to NSP (Figure 5). One if not both MA loci appear to have 

lost the second intron along this process (Figure 2). Low, but consistently different 

interdomain amino acid identities within MA and NSP, within and between species suggest a 

specific domain duplication scenario. Domain 1 consistently shows a closer similarity to 

domain 2 over domain 3, while domain 3 is always more similar to domain 2 than 1 

(Supplementary Table 1). Thus a possible scenario is that domain 2 originated from domain 1 
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and is the origin of the domain 3 by a series of within gene tandem duplication events (Figure 

5). However, in this scenario, domain 3 must have experienced a considerably higher rate of 

evolution after emergence from duplication than domain 2, this we cannot explain with our 

current data set. Nevertheless, the Bayesian phylogenetic analysis of the NSP-like gene 

Family domains shows within the MA and NSP clade, domain 1 is basal while domain 3 is 

derived (Figure 4) supporting our proposed duplication scenario, which is also the most 

parsimonious explanation.  
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Figure 5: Two possible scenarios for the origin of NSP and MA. In both scenarios the ancestral SDMA 
underwent a duplication event forming a two-domain gene.  This was followed by another duplication of the 
second domain which formed the ancestral gene to NSP and MA. (A)  In the first scenario, the initial duplication 
allowed one paralog to undergo neofunctionalization, thereby acquiring NSP function. The MA gene, fulfilling 
the original function, underwent then a second duplication event, likely subfunctionalizing the two gene copies. 
(B)  In a second scenario, the first duplication event produced two MA copies, followed by a duplication of one 
of the two copies allowing the duplicate to undergo neofunctionalization into NSP (b). Abbreviations stand for 
domain numbers:  D1= Domain1, D2= Domain2, D3= Domain3 
 

 

Changed rates of dN/dS ratios and subsequent functional divergence of duplicates in the 

NSP-like gene family  

The fate of duplicated genes is a current subject of debate. The traditional 

neofunctionalization hypothesis suggests that one copy of a duplicated gene preserves the 

original function leaving the other copy free to accumulate mutations, which subsequently can 

lead to a new function or the loss of function of one gene copy (Ohno 1970). In contrast, the 

subfunctionalization hypothesis argues that the ancestral function of the gene is partitioned by 

the duplicates (He and Zhang 2005). Recent studies provide evidence supporting the second 
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scenario. For example, in the black swallowtail (Papilio polyxenes) subfunctionalization of 

Cytochrome P450 duplicates led to different efficiencies of metabolising furanocoumarins, 

the secondary plant compounds present in the caterpillar’s food plants (Wen et al. 2006). 

Computer simulations and genome analysis showed that subfunctionalization might be a first, 

rapidly occurring step in a duplication event, keeping a second gene copy active and 

preserved and opening the possibility for a latter lengthy neofunctionalization, suggesting a 

possible combination of both post-duplication scenarios (He and Zhang 2005; Rastogi and 

Liberles 2005). Our results provide additional insights into the relative role of sub- and neo-

functionalization in duplication dynamics.  

Determining the changes in functional role between SDMA, MA, and NSP within the Pierinae 

lineage is difficult without understanding the biological role of the former two.  However, we 

can gain some insights into how these three groups may differ by assessing relative changes in 

evolutionary rate. The rate of change shifted substantially between moth SDMA and Pieridae 

SDMA compared to Pierinae MA + NSP (Table 2, Figure 4),  showing a substantial increase 

in purifying selection followed by a significant relaxation within the MA + NSP clade.  

Within the MA and NSP clade we can gain insight into evolutionary processes through 

comparisons of amino acid identity within and between these gene's domains. Although these 

domains are very divergent from each other, there clearly was a reappearance of functional 

constraints after the likely neofunctionalization forming NSP and MA, which is seen in the 

high sequence identity within each domain across species, loci and genes (Supplementary 

Table1). We know that NSP and MA have diverged in function as earlier experiments showed 

that heterologously expressed MA does not show NSP function (H. Vogel, unpublished data). 

This is also reflected in very low identity value between the NSP and MA domains. 

Interestingly, the two hypothesized MA paralogous loci are very different, suggesting that 

these two MA loci may have diverged in functional role as well. We do not know the role of 

MA in the insect midgut though and experiments are planned in the future to unravel the 

function of MA giving insight into the neofunctionalization of these gene pairs.  The high 

dN/dS ratio found among MA and NSP genes suggests that one if not both proteins are still 

experiencing a high rate of evolutionary change. Thus both intragenic and whole gene 

duplication of the progenitor of MA and NSP facilitated increased evolutionary change 

compared to the SDMAs, which presumably resulted in neofunctionalization leading to NSP 

activity.  
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Mechanisms of duplication and their evolutionary consequences  

The mechanism of duplication events is important for answering the question of evolutionary 

constraints acting on a duplicate. Tandem duplication will make crossing over events between 

two copies more likely and will retain both genes in the same genomic region, therefore 

letting them experience the same local recombination or substitution rates, while non tandem 

duplication may lead to very different evolutionary rates of the duplicates (Zhang and Kishino 

2004). Comparative analysis of the NSP-like gene family members in the Lepidoptera 

indicates a birth-death process involving both within gene and whole gene tandem 

duplication. The close physical proximity of the recently diverged SDMA duplicates found in 

B. mori and the more divergent ones in C. eurytheme suggest an origin via tandem duplication 

(Figure 3b). It is therefore likely that many lepidopterans and other insects may possess more 

than one SDMA locus following recent tandem duplication but prior to death of one of the copies.  

Which molecular mechanism caused the duplication of the ancestral gene of NSP and MA can 

not be answered with our currently limited dataset. However, the high microsynteny within 

the lepidopteran genomes allows us to draw some conclusions. Sequencing of the 

neighbouring genomic area of SDMA, NSP and MA in P. rapae and comparison of those 

regions with the B. mori genome suggest that SDMA and MA of P. rapae are located on the 

same chromosome, about 100 kb apart from each other and only separated by one open 

reading frame. NSP however, appears to be located on a different chromosome. Hence, a 

relocational duplication event most possibly gave rise to those two paralogs. 

   

Gene evolution insights from non-model species  

Using sequenced ESTs from multiple species, degenerate PCR, and database information we 

were able to find many members of the NSP-like gene family across the higher Lepidoptera. 

With the exception of B. mori, lepidopteran genomic resources are poor. Incomplete sequence 

data make differentiation of paralogs from orthologs, and by that the understanding of the 

evolutionary origin of a gene, problematic. Although we can show that MA, SDMA and NSP 

have a common origin, and we can determine when genes are paralogous and not orthologous 

via phylogenetic comparisons, we cannot satisfactorily infer orthologous gene copies except 

when they are very similar in sequence.  In sum, although our utilization of the molecular 

tools available for the weaker molecular half of this insect plant interaction has greatly 

facilitated our understanding, more resources are needed for further molecular evolutionary 

insights in ecologically well characterized species, such as Lepidoptera.  
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Molecular evolution of an ecologically important gene  

Gene duplications have been shown to frequently occur in genomes. These studies on 

duplicated genes, however, have mainly been restricted to genes in model species, whose 

impact on the evolution of that species were mostly not well understood (Force et al. 1999; 

Zhang and Kishino 2004; He and Zhang 2005; Nei and Rooney 2005; Kawahara and Nishida 

2007). Here, in contrast, we have generated a broad sketch of the evolutionary origins of an 

adaptive trait, which facilitated an ecologically important host shift and the diversification of 

the Pieridae butterfly family (Wheat et al. 2007).  Thus, we provide direct evidence to the 

hypothesis that gene duplication is one of the driving forces for speciation and adaptation 

(Lynch 2002), showing that both within and whole gene tandem duplications are a powerful 

force underlying evolutionary adaptation. 
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Supplementary Figure 1: (A) Bayesian gene phylogeny of the known Pierini MA genes. All nodes are supported 
by a posterior probability of 0.95 or more.(B) Pair wise divergence among P. rapae, P. protodice and A. 
cardamines across three genes. The x-axis is divided among the three genes (cytochrome oxidase (COX), 
Elongation Factor 1 alpha (EF1a), major allergen (MA)).  Y-axis is pairwise divergence for A. cardamines vs. P. 
protodice (gray diamond), A. cardamines vs. P. rapae (open square), P. protodice vs. P. rapae (black diamond),  
MA pairwise divergences involving P. rapae are much greater than expected based on control genes (COX and 
EF1a), suggesting P. rapae MA is not orthologous to the other species. 
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Supplementary Table 1: Amino acid sequence identity values based on clustalW alignments of the single 
domains of MA and NSP. Shown is a comparison of each MA domain from Pieris rapae with Pieris napi (a) and 
a comparison of each MA domain from Antocharis cardamines with Pieris rape(b) and Pontia daplidice (c), an 
intragene domain comparison of the P. rapae MA (d) and NSP (e) domains and an intergene comparison of the 
P rapae MA domains with the NSP domains (f). Boxes comparing identical domain positions are shaded in grey.    
 
a) Recent within MA locus domain comparison  b) Divergent within locus domain comparison 

 Pna MA 
D1 

Pna MA 
D2 

Pna MA 
D3   Pda MA 

D1 
Pda MA 

D2 
PdaMA 

D3 

Pra MA 
D1 

0.901 0.408 0.257  Aca MA 
D1 0.81 0.46 0.336 

Pra MA 
D2 

0.375 0.859 0.338  Aca MA 
D2 0.436 0.886 0.441 

Pra MA 
D3 0.271 0.347 0.861  Aca MA 

D3 0.321 0.465 0.699 

 

 

c) Between MA locus domain comparison  d) Within MA domain comparison 

 Pra MA 
D1 

Pra MA 
D2 

Pra MA 
D3 

  Pra MA 
D1 

Pra MA 
D2 

Aca MA 
D1 0.584 0.396 0.302  Pra MA 

D1 ID - 

Aca MA 
D2 0.424 0.504 0.362  Pra MA 

D2 0.375 ID 

Aca Ma 
D2 0.315 0.357 0.492  Pra MA 

D3 0.271 0.347 

 

 

c) Within NSP domain comparison  e) Between MA and NSP by domain 
comparison 

 Pra NSP 
D1 

Pra NSP 
D2 

  Pra NSP 
D1 

Pra NSP 
D2 

Pra NSP 
D3 

Pra 
NSP D1 ID -  Pra MA 

D1 0.446 0.352 0.315 

Pra 
NSP D2 0.401 ID  Pra MA 

D2 0.352 0.399 0.318 

Pra 
NSP D3 0.292 0.322  Pra MA 

D3 0.292 0.399 0.378 
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3. Chapter II: Microevolutionary dynamics of a macroevolutionary key 

innovation in a Lepidopteran herbivore 
 

Abstract 

 

Understanding the microevolutionary dynamics of genes influencing plant-herbivore 

interactions can help elucidate their role in the coevolutionary process. Previous work 

documents the macroevolutionary importance of the nitrile-specifier protein (NSP) in 

hostplant detoxification which facilitated the hostshift of Pierid butterflies onto Brassicacae 

hostplants ~80 Myr ago. Here we assess the microevolutionary dynamics of the NSP gene, by 

studying the within and among-population variation at NSP and reference genes in the 

butterfly Pieris rapae (Little Cabbage White). NSP exhibits unexpectedly high amounts of 

amino acid polymorphism, unequally distributed across the gene, with little to no genetic 

differentiation among four populations on two continents.  A comparison of synonymous (dS) 

and nonsynonymous (dN) substitutions in 70 randomly chosen genes among P. rapae and its 

close relative Pieris brassicae (Large Cabbage White) finds NSP to be evolving much faster 

than the genomic average. In addition, multiple NSP haplotypes in P. rapae have a dN/dS 

ratio in excess of 1 even though some portions of the gene exhibit strong purifying selection.  

While these microevolutionary insights are consistent with diversifying selection at the NSP 

gene, functional studies are necessary to infer the action of selection upon NSP variation 

within populations.  
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3.1 Introduction 

 

Studying plant insect interactions provides an opportunity to investigate the coevolution of 

species on a molecular, ecological, and evolutionary level. While ecologists are interested in 

the overall dynamics and interactions between plants and their insect herbivores, biochemical 

and molecular level studies focus on the genes and gene products that actually interact 

between these species groups (Berenbaum 2002).   Evolutionary understanding is aided by 

combining both approaches, investigating the origins of genes and understanding their fitness 

level impacts.  In this light, developing a molecular population genetics understanding of the 

likely selective dynamics acting on candidate genes can greatly facilitate ecological studies, 

providing markers for genetic variants whose ecological performance can be characterized in 

the field.  Here we present the results of our population genetic study of a novel butterfly 

detoxification gene, extending previous biochemical, molecular, and macroevolutionary 

insights to the microevolutionary dynamics between Pieridae butterflies and their host plants, 

the Brassicaceae.  

 

Brassicaceous plants present a formidable anti-herbivore defense system, where the enzyme 

myrosinase upon tissue damage catalyzes the hydrolysis of its glucosinolate substrates to 

toxic end products (Rask et al. 2000; Wittstock and Halkier 2002; Halkier and Gershenzon 

2006). Studies of this plant family, most notably on the model species Arabidopsis thaliana 

and relatives, have identified a complex array of molecules involved in this activated 

chemical defense system (Kliebenstein et al. 2002; Halkier and Gershenzon 2006). A 

diversity of myrosinases exist in some brassicaceous plants (Rask et al. 2000), which can be 

accompanied by a variety of cofactors and coenzymes, resulting in the hydrolysis of 

glucosinolates to variable end products which can influence feeding behavior (Barth and 

Jander 2006; Burow et al. 2007a; Burow et al. 2008). Additionally, myrosinase concentration 

in a given plant tissue has been shown to affect herbivore feeding (Kliebenstein et al. 2002; 

Barth and Jander 2006).  Glucosinolate diversity is also an important factor driving adaptive 

evolution.  Methylthioalkylmalate synthases (MAM), encoded by the MAM gene cluster, 

control an early step in the synthesis of glucosinolates and are responsible for a major part of 

the glucosinolate diversity within a given plant tissue (Kroymann et al. 2001; Kroymann et al. 

2003; Kliebenstein, Kroymann, and Mitchell-Olds 2005; Benderoth et al. 2006; Heidel et al. 

2006). Within the MAM gene family, gene duplication, neofunctionalization and positive 

selection drive biochemical adaptation (Benderoth et al. 2006).  
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While our understanding of the plant side of this plant insect interaction is well developed, we 

lack a similar depth of insight on the insect side.  We previously identified the enzyme 

enabling the Pieridae butterfly larvae to circumvent the activated defense of brassicaceous 

plants (Wittstock et al. 2004). This enzyme, designated a nitrile-specifier protein (NSP), is 

expressed in the midgut of the caterpillar and promotes the formation of nitriles rather than 

toxic isothiocyanates upon the myrosinase breakdown of glucosinolates. NSP is a unique 

detoxifying gene that shows no homology to any known detoxifying enzyme (Fischer et al. 

2008).  

 

Macroevolutionary studies allowed us to demonstrate that NSP is a key biochemical 

innovation in the Pieridae family, evolving shortly after the appearance of the brassicaceous 

plants and associated with an significantly increased speciation rate (Wheat et al. 2007).  

More recently we showed that NSP belongs to an insect specific gene family designated the 

NSP-like gene family and that domain and gene duplication are the driving forces enabling 

the molecular evolution of NSP (Fischer et al. 2008).  NSP has a distinct three-domain 

structure and is only found in the brassicaceous-feeding Pieridae species (Figure 1). Thus, 

although we have made some advances in developing an understanding for the insect side of 

this system, much information is still lacking.  While previous macroevolutionary study 

indicates that the evolution of NSP was likely a key event in the host shift of pierid ancestors 

from Fabaceae to Brassicaceae, we know nothing about the population level dynamics of NSP 

with respect to the highly variable and complex activated plant defense system of the 

Brassicaceae. Here, we begin to address these microevolutionary questions by conducting a 

population genetic study of P. rapae butterflies, the species in which we originally identified 

the NSP gene. 
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200bp

Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 Exon7

NSP-D2 NSP-D3

 
Figure 1: Structural overview of NSP (EU265817) from P. rapae.  Shaded bars and lines respectively represent 
gene exons and introns to scale. The signal peptide region is indicated by a blank box while the three domains 
are shaded to different degrees. Depicted are also the approximate annealing sites of the primer pairs used to 
amplify  ~1 kb large segments of the gene and the corresponding names of the fragments. The two segments 
studied were NSP-D2 (in domain2) and NSP-D3 (in domain3). Dashes show approximate sites of amino acid 
substitutions located in the amplified coding regions as listed in Figure 2.  
 

Pieris rapae (small cabbage white) is a highly abundant pierid butterfly species. It is native to 

Europe and has up to four generations per year in temperate zones.  A high dispersal ability 

coupled with feeding on common agricultural plants (e.g. alfalfa and cabbage) has enabled it 

to spread rapidly and successfully colonize Australia, New Zealand and North America within 

the last 120 years (Ohsaki 1979; Jones et al. 1980; Ohsaki 1980). P. rapae caterpillars have 

over 17 reported host plants within the Brassicaceae and thus encounter a high diversity of 

glucosinolate-myrosinase systems which vary in all the previously discussed components.  

 

Several hypotheses emerge when considering the possible microevolutionary dynamics and 

patterns of diversity at the NSP gene.  For comparative purposes, NSP and a set of reference 

genes (likely to be experiencing normal purifying selection) were sequenced from the same 

individuals: two nuclear coding enzymes, as well as a mitochondrial gene, from ten 

individuals from each of four populations (Italy, France, Germany, and U.S.A.).  

Additionally, the divergence among 70 random genes between P. rapae and Pieris brassicae 

was compared with the divergence at NSP. These datasets allow us assess the relative support 

for alternative hypotheses of selection at the NSP locus, with a null hypothesis of no adaptive 

selection and patterns of genetic variation solely reflecting demographic effects (H0).  

Hypothesis one (H1) expects NSP to be involved in local host plant adaptation, showing 

unique alleles in each population with greater variation among than within populations. 

Hypothesis two (H2) proposes a high diversity of NSP across all populations due to P. rapae 

being a highly dispersive generalist, encountering a diverse spectrum of host plants across its 

range. This hypothesis thus predicts a greater diversity within populations than among them. 

An additional hypothesis (H3) assumes low diversity in NSP both within and across 
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populations, due to strong purifying selection on the NSP locus coupled with selective sweeps 

since diverging from a recent ancestor.   

 

 

3.2 Material and Methods 

 

Sampling 

Ten P. rapae adults were collected in the wild at each of three different locations in Europe in 

the summer of 2002. In Germany (DE) samples were taken 1 km north of Jena, in France (FR) 

from 50 km northeast from Lyon, and in Italy (IT) from 15 km south of Modena. An 

additional ten P. rapae adults were collected in Ithaca, New York, USA (US) in the summer 

of 2007. Thus, a total of 40 butterflies were kept at -20°C until their DNA was isolated.  

 

DNA Extraction and PCR 

Abdomens of the adult butterflies were homogenized with a TissueLyser (Eppendorf) in the 

buffer system provided by the genomic DNA extraction kit (Qiagen), and the genomic DNA 

isolated using genomic tip 20/G columns and the genomic DNA extraction Kit following the 

manufacturer’s protocol (Qiagen). The Eppendorf Master Mix (Eppendorf) was used for the 

amplification of the desired gene. The PCR products were extracted using a DNA purification 

kit following the manufacturer’s protocol (Zymogen) and cloned into the pCR II TOPO vector 

(Invitrogen). Eight clones were picked per individual per gene and sequenced. 

 

Amplified genes 

Two segments of the NSP gene located directly downstream of each other were amplified 

from genomic DNA, here referred to as NSP-D2 and NSP-D3 (Figure 1). The three reference 

gene regions studied did not contain introns: isocitrate dehydrogenase (IDH), Glyceraldehyde 

dehydrogenase (Ga3pdh) and Cytochrome oxidase I (COI) . 

Primer sequences were: PraNSP-D2for: tcggctagtcctgctttcaa, PraNSP-D2rev: 

tgtgttgtcaagggtgtcca, PraNSP-D3for: tggacacccttgacaacaca, PraNSP-D3rev: 

gtaaagggcaggcacgaagg, PraGa3pdhfor: aaaagggagccaaggttgtt, PraGa3pdhrev: 

acgccacaattttcctgaag, PraIDHfor: tgctaccatcacaccagatga, PraIDHrev: accaaattcctgcaccttca 
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Sequencing 

Plasmid minipreparation from bacterial colonies grown in 96 deep-well plates was performed 

using the 96 robot plasmid isolation kit (Eppendorf) on a Tecan Evo Freedom 150 robotic 

platform (Tecan). Single-pass sequencing of the 5’ termini of cDNA libraries was carried out 

on an ABI 3730 xl automatic DNA sequencer (PE Applied Biosystems).  

 

Data analysis 

Vector clipping, quality trimming and sequence assembly was done using the Lasergene 

software package (DNAStar Inc.). The resulting contig assemblies were aligned using the 

Clustal W (Thompson et al. 1997) program as implemented in the freeware BioEdit program 

and corrected by eye. Standard measures of DNA polymorphism, demographic analysis and 

selection, as well as the G-test, were calculated using DnaSP version 4.50.2 (Rozas et al. 

2003) including nucleotide diversity (π) (Nei 1987), nonsysnonymous and silent site 

substitutions ns/nn (Nei 1987) within P. rapae as well as across species (ω) (Watterson 1975),  

number of segregating sites (S), theta per site from S (θ defined as 4Neμ) (Watterson 1975),  

recombination rate using the 4 gamete test (Rm) (Hudson, Kreitman, and Aguade 1987), 

Tajima’s D (Tajima 1989), the McDonald Kreitman Test (McDonald and Kreitman 1991) as 

well as Fay and Wu’s H (Fay and Wu 2000) and Fu and Li’s D with and without outgroup (Fu 

and Li 1993). For outgroup analysis P. brassicae sequence information was used.  P values 

were determined using coalescent simulations (10,000 runs) of a standard neutral model as 

implemented in DnaSP.  Finally, multilocus tests of selection used the maximum-likelihood-

ratio Hudson-Kreitman-Aguadé test (ML-HKA-test) (Wright and Charlesworth 2004). 

Simulations found that 100,000 chains were sufficient for convergence and the starting value 

of divergence time for the Marcov chain (T) was obtained using a standard HKA test for the 

control genes, implemented in DnaSP.     

 

For the following calculations the Arlequin Software package was used (Excoffier, Laval, and 

Schneider 2005). Population genetic structure in P. rapae populations were examined using 

an analysis of molecular variance (AMOVA ) (Excoffier, Smouse, and Quattro 1992; 

Michalakis and Excoffier 1996). A population pairwise Fst was estimated by the AMOVA, 

which can be used as a measure of genetic distanced between populations, by linearizing the 

distance with population divergence time (Slatkin 1995). The significance of the estimated Fst 

was determined via Markov chain analysis (Raymond and Rousset 1995) using 10,000 

permutations. Sequential Bonferroni adjustment was applied to control for Type I errors (Rice 
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1989). For AMOVA analysis samples were classified in two groups (USA vs Europe). For Fst 

estimation samples were classified as a single group. Migration rate (m) (Slatkin 1991), and 

from m the absolute number of migrants exchanged between two populations (M), were 

computed. An exact test for population differentiation was also computed. The exact test of 

population differentiation is equivalent to the Fisher’s exact test, which tests the null 

hypothesis of identical allelic distribution across all populations.  Significance was 

determined via Markov chain analysis with 400,000 steps and 100,000 dememorization steps, 

again applying Bonferroni adjustment when screening for significant values. 

 

P. rapae vs. P. brassicae EST comparison 

Random sequencing of cDNA libraries made from P. rapae and P. brassicae gut tissue and 

the NSP sequence of P. brassicae have been described elsewhere (Fischer et al. 2008). 2593 

number of unique EST contigs were identified for P. rapae from 8153 sequencing reads, 

while only 973 were found among 2560 reads of P. brassicae.  The reciprocal best blast hits 

between each of these two cDNA libraries to the predicted genes of Bombyx mori was used to 

identify homologous genes in both Pieris EST collections.  Identified sequences were aligned 

by Clustal X (Thompson et al. 1997) and each visually inspected for regions of high quality 

sequence and alignment.  End regions of alignments were trimmed such that reading frame 

(i.e. amino acid sequence) was identical for 3 consecutive codons.  Degenerate base pair calls 

were included.  Maximum likelihood estimates of the number of pairwise nonsynonymous 

(dN) and synonymous (dS) substitutions were performed using codeml of the PAML software 

package (Yang 1997), with the estimates of codon frequencies set as free parameters (option 

F3x4). The ratio of dN/dS, ω, is indicative of strong purifying selection when ω << 1 and is 

suggestive of diversifying selection when ω > 1. 

 

 

3.3 Results 

 

Molecular variation 

We examined variation in two segments of the NSP gene (NSP-D2 and NSP-D3) in 

comparison to exons of reference genes isocitrate dehydrogenase (Idh) and glyceraldehyde 

dehydrogenase (Ga3pdh) and a portion of the mitochondrially-encoded Cytochrome oxidase I 

(COI) gene.  All genes in all populations harbored genetic variation, with the NSP gene 

segments generally being the most diverse. Nucleotide diversity (π) was roughly 2 to 3 times 
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higher in NSP-D2 compared to the control genes, while NSP- D3 π was nearly double the 

control genes (Table 1).  θ W showed similar patterns of diversity as π.  Levels of synonymous 

diversity (πss) are roughly similar across all the nuclear genes, except for NSP-D2 which has 

about 50% higher diversity.  Nonsynonymous diversity (πns) is highest in NSP-D2, followed 

by NSP-D3, followed by the control genes which have much lower levels of amino acid 

variation (Table 1).  NSP-D2 and NSP-D3 have a πns/πss that is over twice that of Idh and 

more than 20 times that of Gapdh (Table1). 

 
Table 1: Summary statistics for all sequenced genes in Pieris rapae for each population separately and 
across all populations. 
 

  n bp Лall Өall S Лss Лns ns/ss bp Л Ө bp Лall Өall
DE 20 0.0108 0.00902 19 0.02182 0.00769 0.347378 0.02013 0.01823 0.0405 0.03938
FR 20 0.0093 0.00795 17 0.02121 0.00593 0.275416 0.0164 0.01326 0.02925 0.02542
IT 20 0.01042 0.00723 15 0.02307 0.00684 0.292393 0.01689 0.01209 0.02858 0.02087
US 20 0.01145 0.00854 18 0.02783 0.00683 0.240799 0.01783 0.01319 0.02951 0.02342

total 80 594 0.01093 0.01054 31 0.02473 0.00703 0.27995 943 0.01722 0.01797 349 0.03159 0.03494
DE 20 0.00739 0.00732 12 0.01476 0.00531 0.356045 0.01337 0.01335 0.02735 0.02759
FR 20 0.0062 0.00671 11 0.01262 0.00437 0.342969 0.01241 0.01335 0.02665 0.02759
IT 20 0.00562 0.00549 9 0.01159 0.00392 0.335038 0.01247 0.01092 0.02809 0.02519
US 20 0.00538 0.00549 9 0.0153 0.00256 0.16538 0.01114 0.0105 0.02444 0.02269

total 80 462 0.00642 0.00918 21 0.01419 0.00422 0.294649 717 0.01255 0.01537 327 0.02681 0.03279
DE 20 0.00459 0.00613 9 0.01723 0.00084 0.048752
FR 18 0.00422 0.00492 7 0.01062 0.00233 0.219397
IT 18 0.00155 0.00281 4 0.00562 0.00035 0.062278
US 15 0.00394 0.00524 7 0.01144 0.00174 0.152098

total 71 291 0.00365 0.00755 15 0.01163 0.00131 0.11264
DE 18 0.0042 0.00496 6 0.01564 0.00042 0.026854
FR 20 0.00302 0.0016 2 0.01217 0 0
IT 18 0.00743 0.00743 9 0.01781 0.00042 0.023582
US 18 0.00418 0.00248 3 0.01684 0 0

total 74 352 0.00444 0.00583 10 0.0173 0.00021 0.012139
DE 8 0.0079 0.00715 14 0.03026 0.00075 0.024785
FR 8 0.01003 0.01022 20 0.03865 0.00088 0.022768
IT 8 0.00629 0.00715 14 0.02595 0 0
US 7 0.00164 0.00162 3 0.03026 0.00075 0.024785

total 31 755 0.00691 0.00963 28 0.02611 0.00076 0.029108

coding whole gene non coding

N
SP-D

2
N

SP-D
3

ID
H

G
a3pd

C
O

X

 
Note.- Shown are the number of sequences (n), the number of base pairs (bp), the average pairwise differences 
(π), the pairwise differences for synonymous and nonsynonymous sites (πss and πns),  θw, the number of 
segregating sites (S) and the rate of nonsynonymous to synonymous substitutions for the coding part of the 
genes. If introns are included in the sequence, the number of base pairs, the average pairwise differences and θw 
is given separately for the whole gene and the non coding part 
 
 
The location of amino acid substitutions varied across the sequenced domains of NSP.  Each 

domain is composed of three exons, with codon lengths of about 66, 23 and 110 respectively 

(Figure 1) (Fischer et al, 2008).  The 12 amino acid polymorphisms in NSP domain 2 are only 

found in its terminal exon (exon five), while 11 of the 14 amino acid polymorphisms in NSP 

domain 3 are also found in its terminal exon; the other three are in the first exon of the domain 

3 (Figures 1,2). The distribution of nonsynonymous polymorphisms across these domains 
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significantly departs from a random distribution based on the size of the exons, with a paucity 

of amino acid polymorphisms observed in the first and second exons, and an excess in the 

terminal exons, of both domains (G value = 5.99, P = 0.014; Supplemental Material). The 

distribution of synonymous polymorphisms does not show this trend (G value = 0.43, P = 

0.512). 

 

DE
Haplotypes 32 38 50 82 88 99 112 127 133 137 175 189

1 Hap1 Y Q E S I E D Q D V I R
6 Hap2 F H · · · · · · · · · ·
1 Hap5 F H · · · G · · · · V ·
2 Hap6 F H · · · · A · · · · K
1 Hap12 F H · · M · · · · · · ·
1 Hap14 F R · · · · · · · · · ·
1 Hap15 · · · · M · · K · A · ·
7 Hap16 · · · · M · A K · A · ·

FR 1 Hap1 · · · · · · · · · · · ·
1 Hap10 · H · · · · A K · A · ·
10 Hap16 · · · · M · A K · A · ·
2 Hap2 F H · · · · · · · · · ·
4 Hap7 F H · · · · A K · A · ·
1 Hap8 F H · · · · A · · · · ·
1 Hap9 F H A · · · A K · A · ·

IT 1 Hap20 · · · · M · · · G A · ·
2 Hap21 · · · · M · · · · A · ·
2 Hap22 · · · · · · A K · A · ·
6 Hap2 F H · · · · · · · · · ·
1 Hap3 F H · · · · · · · A · ·
2 Hap7 F H · · · · A K · A · ·
1 Hap11 F H · · M A K · A · ·
1 Hap13 F H · · M · · · · A · ·
3 Hap16 · · · · M · A K · A · ·
1 Hap19 · · · · M · · · · · · ·

US 7 Hap2 F H · · · · · · · · · ·
4 Hap4 F H · · · · · K · A · ·
2 Hap6 F H · · · · A · · · · K
2 Hap16 · · · · M · A K · A · ·
1 Hap17 · · · P M · A K · A · ·
2 Hap18 · · · · M · A · · · · ·

Hap19 · · · M · · · · · ·
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DE 7 Hap1 Q R E G I T E N E F R P

1 Hap2 · · · · · · · · · I · ·
2 Hap3 · · · S · · · · · · · ·
4 Hap7 · · · · · S D · · · · ·
2 Hap9 · · · · · S · · · · · ·
1 Hap14 K · · · · · · · · · · ·
1 Hap16 K H · · · S D · · · · ·
1 Hap17 K H · · · S · · · · K ·
1 Hap18 K H · · · S · · · · · ·

FR 9 Hap1 · · · · · · · · · · · ·
1 Hap4 · · · · V · · · · · · ·
1 Hap6 · · K · · · · · · · · ·
2 Hap7 · · · · · S D · · · · ·
2 Hap9 · · · · · S · · · · · ·
1 Hap11 · · · · · S · · D · · ·
1 Hap14 K · · · · · · · · · · ·
2 Hap15 K · · · · · · · D · · ·
1 Hap18 K H · · · S · · · · · ·

IT 4 Hap1 · · · · · · · · · · · ·
3 Hap5 · · · · · · · · D · · ·
4 Hap7 · · · · · S D · · · · ·
1 Hap8 · · · · · S D · D · · ·
6 Hap9 · · · · · S · · · · · ·
1 Hap10 · · · · · S · H · · · ·
1 Hap12 · · · C · S · · · · · ·

US 4 Hap1 · · · · · · · · · · · ·
5 Hap7 · · · · · S D · · · · ·
9 Hap9 · · · · · S · · · · · ·
2 Hap13 · · · · · S · · · · · L
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Figure 2: Overview of the haplotypes of NSP-D2 (A), NSP-D3 (B) present in each population. Amino acid 
variation with reference to first sequence is depicted for each unique allele, with shared alleles across 
populations highlighted with same color. Bars across the top of the sequences indicates the exon location (Figure 
1). A pairwise distance comparison in C) and D) for NSP-D2 and NSP-D3 respectively. gives the number of 
pairwise comparisons (y-axis) that share the same number of differences (x-axis). 
 
 
There was also variation among genes in the number and distribution of haplotypes across 

populations (Figure 2). Populations contained both distinct haplotypes as well as some 

haplotypes that were shared across populations (Figure 2a, b).  There was also variation 
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across genes in terms of the age of alleles.  Graphing the pairwise differences between all 

observed haplotypes (Figure 2c, d) reveals a non-normal distribution of pairwise differences 

in NSP-D2 (Figure 2 c).  The outlying peak indicates that there are two common alleles which 

differ from each other at 6 amino acids.  These are found in the German population, where 

haplotypes two and sixteen are the two most common types, having 6 and 7 copies in the 

population respectively. 

 
Population genetic structure    

Population structure analysis using AMOVA on the coding region of all five gene fragments 

indicated no significant differentiation between populations and rather high variation within 

each population (Figure 3). Fst values show an overall low differentiation between 

populations, with most variation located within them (Table 2). After Bonferroni correction 

we detected significant differences only in NSP between Germany and the USA and in 

Ga3pdh between France and the other populations. COI shows Germany and the USA to be 

differentiated (Table 2). Similarly, across all genes and many population comparisons, the 

migration rate is high and in many cases indicative of complete gene flow.   
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Figure 3: Results of the analysis of molecular variance (AMOVA) used as an estimate for genetic structure. On 
the y-axis the percentage of variation is graphed for each gene, as stated on x-axis. Comparisons are made within 
each population and between and within two groups, namely Europe and the USA. 
 
 
In contrast the exact test for population differentiation suggests more population structure. 

While the AMOVA uses the number of genetic differences between haplotypes to assess 

structure, the exact test uses the haplotype identities themselves and is thus more sensitive to 
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recombinant haplotypes and recent gene flow.  Exact test results indicate non-identical allelic 

distributions across more populations for NSP and Ga3pdh, hence more genetic structure at a 

finer scale (see also Table 2).  

 
Table 2: Estimates of population differentiation.  
 

pop NSP-D2 NSP-D3 IDH Gap3 COX
DE-FR 0.03 -0.02 -0.01 0.14* -0.05
DE-IT 0.00 0.02 0.03 0.05 -0.03
DE-US 0.01 0.09 -0.02 0.04 0.20*
FR-IT 0.03 0.04 0.10 0.29** 0.00
FR-US 0.06 0.13 -0.04 0.17* 0.14
IT-US 0.03 0.07 0.07 0.02 0.11
DE-FR 0.0009* 0.0082* 0.4361 0.0279 0.4868
DE-IT 0.0321 0.1859 0.3974 0.1286 0.5966
DE-US 0.0373 0.0001* 0.9271 0.0177 0.0507
FR-IT 0.1009 0.0911 0.0060 0.0022* 0.1747
FR-US 0.0007* 0.1322 0.7671 0.0525 0.3480
IT-US 0.0039 0.1107 0.0842 0.5326 0.2481
DE-FR 15.48  inf inf 3.01 inf
DE-IT 101.85 30.21 14.32 10.31 inf
DE-US 45.25 4.92 inf 12.93 1.93
FR-IT 16.88 11.76 4.65 1.22 inf
FR-US 8.20 3.33  inf 2.40 3.04
IT-US 15.79 6.49 6.50 32.73 4.23

Fst
Exact Test

M
igration

 
 

Note.- Fst values, p-values for the exact test and the estimated absolute number of migrants between two 
populations (M) as implemented in the Arlequin program are given for every population comparison for every 
sequenced gene. Analysis always includes the whole sequenced fragments, thus both exons and intron in NSP-
D2 and NSP-D3. Values significant after Bonferroni corrections are marked with an asterisk, if significant value 
is < 0.0017 (after Bonferroni) two asterisks are used. 
 

 

Tests for selection 

We employed standard tests based on the null hypothesis of the standard neutral model.  

Tajima’s D is not significant for any of the tested gene regions, but the most positive values 

are found in NSP-D2 while all the other genes are negative or close to zero (Supplementary 

Table1). Fu and Li’s D also show no significant values, either with or without P. brassicae as 

an outgroup. Analysis of the relationship of non-synonymous vs. synonymous polymorphism 

within species to non-synonymous vs. synonymous divergence between species used the 

McDonald-Kreitman test on data from P. brassicae as an outgroup (Supplementary Table 2).  

Results for all genes are not significant, although the numbers of fixed and polymorphic 

substitutions are high in NSP compared to the control genes with the exception of COI. 

Substitution rates range from 9 to 29 in NSP, compared to 0 to 13 in IDH and GA3pdh. COI 

has the highest synonymous substitution rate at 73. The multilocus HKA tests on either of the 
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NSP regions (NSP-D2 and NSP-D3) showed no significant divergence from the standard 

neutral model. Both loci were tested individually against the control genes and in 

combination. Values of ω were calculated for each pairwise combination of the P. rapae NSP 

domains separately and in combination (i.e. as a full gene), with full gene comparisons 

finding ω values > 1 and the single domain analyses finding ω values > 2 (Figure 4). 
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Figure 4: Distribution of dN/dS ratios from interspecific and intraspecific comparisons across genes. dN/dS 
values (x-axis) among 70 random genes compared between P. rapae and P. brassicae are represented as a gray 
histogram showing their frequency (y-axis). The range of dN/dS across all pairwise comparisons of P. rapae 
NSP domain 2 (white box) and 3 (black box) haplotypes with P. brassicae NSP sequence is shown to the right of 
the histogram. Above these, with respect to the x-axis, are shown the distribution of dN/dS ratios among all 
pairwise comparisons of P. rapae NSP domains 2 and 3. The datapoint row shows a stem and leaf plot for the 
data, where the box indicates the 25 % and 75 % quantiles, the line in the middle is the median, and the location 
of specific datapoints are represented as dots for the remaining outliers. 
 
 
Interspecific divergence and dN/dS  

P. rapae and its congener P. brassicae diverged approximately 11.75 Myr ago, based on 

temporal calibration of sequence divergence in the EF-1α gene as previously applied to 

Pieridae (Wheat et al. 2007).  To compare the pattern of divergence at NSP with a genomic 

random sample of genes, 70 homologous gene sequences were identified in EST collections 



Chapter II 

 52 

of these two species. These ranged from a length of 183 to 792 bps, with a mean of 520.9 bps 

(std. dev. = 144) and 75% of sequences being > 430 bp long.  This translates into a mean of 

130 synonymous and 390 nonsynonymous sites per gene pair respectively (std. dev. 40.7 and 

108 respectively).  There was a range of between 5 to 71 bp differences between sequence 

pairs, with a mean of 27.2 bps (std. dev. = 13.2 bp).   

 

Maximum-likelihood analysis of synonymous (dS) and nonsynonymous (dN) divergence 

between these Pieris species across these 70 genes finds substantial divergence, with the 

average dS = 0.189 (std. dev. = 0.073) and dN = 0.018 (std. dev. 0.018).  However, these 

genes are, as expected, experiencing a fair amount of purifying selection with a mean ω = 

0.097 (std. dev. = 0.091), with a range from 0 to 0.38.   

 

The divergence and diversification at NSP between these species is much greater than the 

observed average genomic divergence. The mean dS and dN across the P. rapae combined 

NSP domains 2 & 3, when compared pairwise with P. brassicae NSP, is dS = 0.269 (std. dev. 

= 0.010) and dN = 0.071 (std. dev. = 0.002). The combined NSP domains 2 & 3 have a mean 

ω = 0.25, which is greater than 90% of the random gene ω values (Figure 4). Separate 

analysis of NSP domains 2 and 3 finds that domain 3 has a range of ω values overlapping and 

exceeding the largest values of ω in our random gene dataset, while domain 2 is lower than 

the combined domain NSP average (Figure 4).    

 

 

3.4 Discussion 

 

Our interest in the NSP gene originates from its role in host plant detoxification and the 

macroevolutionary consequences of its function (Wittstock et al. 2004; Wheat et al. 2007). 

With this functional and macroevolutionary insight the present study was focused at the 

population level, aiming to understand the microevolutionary dynamics of NSP in response to 

a complex host plant defense system.  Here we use molecular tests of selection to help 

discriminate among alternative adaptive hypotheses and uncover segregating genetic variation 

upon which future ecological studies can focus.  
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Three alternative hypotheses were developed to assess the microevolutionary dynamics at 

NSP in the sampled P. rapae populations (Table 3). Hypothesis 1, positing local adaptation 

and a greater level of genetic diversity among than within populations, is not supported by our 

results.  All populations contain a high diversity of NSP amino acid alleles with many alleles 

shared among populations (Figure 2).  In addition, the NSP loci have low Fst values, high 

migration rates, and AMOVA results indicate greater variance within than among populations 

(Table 2 and Figure 3).  While the exact tests of population differentiation in both NSP-D2 

and NSP-D3 do give some hint of population structure (Table 2), this test is sensitive to the 

unique recombinant haplotypes found in each of the four populations which are at low 

frequency (Figure 2).    
 

Table 3: Alternative hypotheses for the microevolution of NSP. 

 

Hypothesis  Assumption Expected pattern of 
variation  

H0 No adaptive role 
Reflects demographic 
history 
 

 

H1 Unique local host plant 
adaptation 

Variation within 
populations < variation 
among populations   
 

 

H2 
Generalist response to 
diverse host plant 
assemblages 

Variation within 
populations > variation 
among populations 

 

H3 Purifying selection upon 
optimal genotype 

Little variation within 
and among populations  

 

 

The high levels of amino acid polymorphism at NSP argue against Hypothesis 3, which posits 

purifying selection upon an optimal genotype with little variation among populations (Figure 

2). In addition, NSP has ω values > 1 within P. rapae and ω values are in the 90th percentile 

when compared to a genomic average of interspecific comparisons (Figure 4).  Thus, NSP is 

evolving at a faster rate compared to these reference genes and the observations of ω > 1 may 

be indicative of diversifying selection.  These results as well as those from the AMOVA 

analysis are consistent with Hypothesis 2, where NSP diversity is expected to be higher within 

than among populations (Figure 3). 
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Let us now consider our null Hypothesis 0, which posits a demographic basis for the observed 

patterns of variation at NSP. First, we find a general pattern of greater genetic diversity within 

vs. among populations in the sequenced reference genes, which is consistent with the high 

dispersal abilities of P. rapae. Young females migrate long distances before egg laying (Jones 

et al. 1980), and human interference by long-distance transport of crop plants may lead to 

additional admixture in certain areas as suggested by an AFLP study of the genetic structure 

of urban and rural P. rapae populations in comparison to a native Japanese Pieridae species 

(Takami et al. 2004). In addition, the North American sample shows no clear distinction from 

the European populations, which may be indicative of recent and ongoing movement of P. 

rapae into the Americas instead of one historical introduction. Second, the other molecular 

tests of selection we have employed, with and without outgroups, do not detect departures 

from standard expectations of neutrality for any genes (Supplementary Table1). Together, 

these two observations suggest that Hypothesis 0 of selective neutrality cannot be rejected.  

However, demographic effects cannot account for the high level of amino acid diversity 

within NSP, the unequal distribution of this variation across the exons of NSP domains 2 and 

3, or the fast rate of molecular evolution observed for NSP compared to a genomic average. 

 

Our data suggest that the evolutionary dynamics acting at the NSP gene do not readily lend 

themselves to the standard molecular tests of selection.  Hughes (2007) has argued that tests 

of neutrality only provide an appropriate test for very specific types of selection, which are 

not representative of selective events in general.  For example, a large number of repeated 

selective sweeps are needed to generate a significant result in the McDonald-Kreitman test 

and they must occur over a short evolutionary time and in different areas of the protein 

(Hughes 2007).  In addition, when the impact of biologically realistic conditions are used to 

assess the power of molecular tests of selection, such as when selection acts upon existing 

genetic variation in regions of moderate recombination rates and does not result in complete 

fixation of novel haplotypes, the power of tests to detect selective events is extremely weak 

(Nordborg and Innan 2003; Barrett and Schluter 2008).  Our results presented here document 

that a large amount of existing variation, moderate levels of recombination, and no recent 

haplotype sweeps are all hallmarks of the NSP locus.  Thus, if we posit that variation might be 

maintained within populations by the requirement of diverse hostplant use, we should expect 

to detect little if any molecular signature of selection from the standard tests we have 

employed here.  With these issues in mind, we consider whether there are objective aspects of 

our data suggestive of a role in microevolutionary dynamics. 
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Compared to both our reference genes and level of genetic variation found within populations 

of diverse taxa in general, there is an unexpectedly high amount of amino acid polymorphism 

at NSP. The levels observed here are even greater than the well studied Pgi gene in Colias 

butterflies, which is remarkable in having 15 segregating amino acid sites spread across 556 

codons (Wheat et al. 2006).  Combining the information we have for NSP domains 2 and 3, 

we have identified 24 segregating amino acid polymorphisms across 346 codons.  

Considering that we have not even surveyed the first domain of NSP, it is very likely that 

NSP could harbor over 30 amino acid polymorphisms.  Importantly, this diversity does not 

appear to be a general relaxation of constraint on amino acid variation randomly distributed 

across the gene, but a rather specifically restricted to the third exon of each NSP domain 

(Figure 1, Supplemental Material).  This suggests a complex regime of selection pressure 

variation.   

 

Inspection of the amino acid polymorphism within populations reveals very divergent 

haplotypes in NSP domain 2, some of which are at intermediate frequencies.  In addition, 

numerous pairwise comparisons of NSP alleles in P. rapae find ω values > 1. While ω values 

> 1 are conservatively considered to be a hallmark of diversifying selection, ω values can be 

inflated due to the accumulation of deleterious nonsynonymous mutations when population 

size is low (e.g. (McBride and Arguello 2007)). However, given the high population densities 

and large range of P. rapae, and a genomic range of interspecific ω values consistent with 

relatively strong purifying selection (Figure 4), the accumulation of deleterious mutations at 

NSP due to demographic effects appears very unlikely. 

 

Greater knowledge of the structure-function relationships of the NSP protein would facilitate 

understanding of the observed excess amino acid variation in the third exon of each of the 

domains. However, despite numerous efforts at heterologous expression, the secondary 

structure of NSP has not yet been experimentally determined (H.H-F. unpublished data; U. 

Wittstock pers. comm.) and structural prediction programs fail to produce consistent models. 

Nevertheless, the amino acid haplotypes identified in this study now provide the opportunity 

to study their relative functional performance in larval feeding assays across diverse hostplant 

species (Heidel-Fischer, ongoing work). While patterns of molecular variation are suggestive 

of a potential microevolutionary adaptive role for NSP, functional study is necessary to 
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determine whether the uncovered genetic variation has the potential for performance and 

fitness consequences in the wild (Dean and Thornton 2007).  

 

NSP appeared more than 80 million years ago as an evolutionary novelty enabling a host 

range shift onto Brassicaceae and a subsequent increase in species diversity of the group 

(Wheat et al. 2007).  The triple domain NSP was formed by two rounds of duplication of an 

original single domain enzyme (Fischer et al 2008).  Our ability to reconstruct the 

evolutionary history of NSP (Fischer et al. 2008), and its maintenance in the genome is due at 

least in part to the purifying selection which we observe in the first two exons of domain 2 

and 3 (Figure 1). In contrast, the observed high levels of intraspecific amino acid variation 

and fast divergence in the third exon of these domains suggests this region is experiencing 

very different selective dynamics more in the range of relaxed purifying selection and 

potentially diversifying selection (Figure 1). Although we do not know precisely the mode of 

action of NSP, the repeated domain structure suggests the potential for functional 

independence of these three individual domains. Such structural independence could allow for 

slightly deleterious mutations in one domain to be compensated by the independent 

functionality of the other two domains.   

 

In conclusion, the microevolutionary dynamics at the NSP gene are complex. The NSP locus 

harbors an extremely high amount of amino acid diversity unequally distributed across its 

repeated domain structure which is suggestive of diversifying selection.  Patterns of 

nucleotide diversity and molecular tests for selection rule out the potential for strong local 

adaptation, as well as directional and strong purifying selection. Patterns of genetic variation 

fail to provide a clear signature of historical selection at the micorevolutionary level, 

highlighting the necessity for functional study of the diverse set of NSP alleles we have 

uncovered in P. rapae.   
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Supplementary Table 1: Summary statistics for molecular tests for selection. No tests had a value of P < 0.05 
under the standard neutral model. Tests employing an outgroup are indicated w out. 
 

Taj D Fu &Li D Fu &Li D w out Fay & Wu H w out 

DE 0.52466 -0.01758 0.45161 -1.07368
FR 0.62481 0.3006 0.63641 -1.95238
IT 1.65115 0.84646 0.90748 -0.73684
US 1.02003 1.01419 1.06926 -1.88421

DE 0.0354 0.22999 0.18187 -0.01053
FR -0.27156 -0.3242 -0.45619 -0.58947
IT 0.0785 -0.68651 -0.47456 -0.48421
US -0.07133 0.86241 0.9011 -0.71579

DE -1.13975 -0.49086 0.9011 -3.29474
FR -0.48363 0.09399 0.02404 0.54902
IT -1.34736 -0.70114 0.16108 -1.30719
US -0.89286 -0.97212 -1.21763 0.2381

DE -1.26827 -0.84169 0.20307 -0.8366
FR 0.68713 1.00649 1.01226 -0.30526
IT -1.53674 -1.7989 -1.64146 -1.33333
US 0.79344 1.1232 1.14969 0.88889

DE 0.53266 0.73372 1.08928 -2.21429
FR -0.3401 -0.21328 0.64362 -7.64286
IT -0.61245 -0.07256 0.09829 -5.28571
US 0.05031 0.38925 0.23258 -0.19048

G
a3pd

C
O

X 
N

SP-D
2

N
SP-D

3
ID

H

 
 
 
Supplementary Table 2: Summary statistics for the McDonald-Kreitman Test as implemented in DnaSP.  
 

Gene Substitution fixed polymorphic Fisher's exact test

 syn 29 18
nonsyn 24 11

 syn 16 9
nonsyn 24 13

 syn 36 22
nonsyn 22 18

 syn 11 13
nonsyn 3 4

 syn 7 10
nonsyn 0 2

 syn 73 10
nonsyn 0 2

Ga3pdh

COX

0.53425

0.641663

1

1

0,508772 

0,181992

NSP-D2

NSP-D3

MA-D2

IDH
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4. Chapter III: Gene expression in a generalist butterfly upon feeding on 

different hostplants 
 

Abstract 

 

The mechanisms that shape the hostplant range of herbivorous insect are to date not well 

understood but knowledge of these mechanisms and the selective forces that influence them 

can expand our understanding of the larger ecological interaction. Nevertheless, it is well 

established that chemical defenses of plants influence the host range of herbivorous insects. 

While hostplant chemistry is influenced by phylogeny, also the growth forms of plants appear 

to influence the plant defense strategies as first postulated by Feeny (Feeny’s “plant 

apparency” hypothesis). In the present study we aim to investigate the molecular basis of the 

diverse hostplant range of the comma butterfly (Polygonia c-album) by testing differential 

gene expression in the caterpillars on three hostplants that are either closely related or share 

the same growth form. The data suggest a complex interaction between the comma butterfly 

and its hostplants. On the one hand, each plant species appears to require a very specific 

subset of genes to be regulated in the midgut upon feeding, on the other hand species that 

share a growth form or are closely related have a higher agreement of gene regulation in the 

midgut of the caterpillar than species that do not share these traits. No known detoxifying 

enzymes were found to be differently regulated on different hostplants, suggesting the use of 

very broad acting continuously expressed detoxifying genes in P. c-album caterpillars. 
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4.1 Introduction 

 

Chemical defenses of plants influence the host range of herbivorous insects (Dethier 1941, 

1954, Fraenkel 1959, Thorsteinson 1960, Ehrlich and Raven 1964). Although by no means 

the only factor involved in shaping insect-host associations (Bernays 1989, Roy 2001), few 

researchers would argue against its general importance. However, there is an ongoing 

argument about why plant defense chemicals are similar. There are two ways for evolution to 

achieve similarity: either through shared ancestry or through evolutionary convergence (or 

parallelism). Ehrlich and Raven (1964) suggested that related insects tend to feed on related 

plants, and several other studies have continued to demonstrate a role of hostplant phylogeny 

(shared ancestry) on patterns of hostplant use (Futuyma et al. 1995, Menken 1996, Becerra 

1997, Janz and Nylin 1998, Janz et al. 2001, Ronquist and Liljeblad 2001, Lopez-Vaamonde 

et al. 2003, Kergoat et al. 2005, Murphy and Feeny 2006). Hence, there is strong support for a 

historical component in patterns of hostplant use. 

 

On the other hand, several authors have also pointed out that plant chemistry does not always 

follow phylogeny (Wahlberg 2001, Kergoat et al. 2005, Ohshima and Yoshizawa 2006). 

Feeny (1976) suggested that plant defense strategies should differ depending on their 

“apparency”; plants that are long-lived and/or physically large will always be found by 

attacking insects and should possess constitutive chemical defenses such as tannins, terpenes, 

and flavanoids  (see also Futuyma 1976, Wasserman 1979, Chew and Courtney 1991, Miller 

et al. 2007) that have a quantitative, dosage-dependent effect. Unapparent plants, with lower 

risk of detection by herbivores, should instead tend to utilize induced chemical defenses. 

Trees should be the most apparent of plants as they are both physically large and long-lived. 

According to the apparency hypothesis, trees should then tend to have more convergent 

constitutive defenses than herbs, and as a consequence we should see more host shifts 

involving trees than herbs.  

In a phylogenetic reanalysis of Ehrlich and Raven’s (1964) study on butterfly and plant 

coevolution Janz & Nylin (1998) found strong effects of both plant phylogeny and growth 

form on patterns of host use among butterflies. An overwhelming majority of host shifts 

occurred while feeding on trees, giving support for Feeny’s “plant apparency” hypothesis. 

Trees appeared to serve as a “bridge” that could facilitate host shifts between distantly related 

plants. 
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Hence, there is support for both shared ancestry and convergent evolution in the large-scale 

chemical structuring of insect-host associations, but the mechanistic basis remains largely 

unknown. However, recent years have seen great progress in understanding of the molecular 

mechanisms that enable insect to feed on certain hostplants. In general it is assumed that 

insects apply phase I and phase II detoxifying enzymes to metabolize secondary plant 

compounds. Several studies have for example revealed the important role of the cytochrome 

P450 enzyme family for detoxification of plant secondary compounds as well as insecticides. 

(Berenbaum et al. 1996, Daborn et al., 2002, Zangerl and Berenbaum 2003, Li et al. 2004, 

Mao et al. 2006, 2007, Berenbaum and Feeny 2008). Glutathione S-transferases (GST) have 

also been shown to be induced in generalist and specialist lepidopteran larvae upon feeding on 

their hostplants (Wadleigh et al 1987, (Yu 1982). Wittstock et al (2004) identified the Nitrile-

specifier protein (NSP) in Pieris rapae. NSP redirects the glucosinolate hydrolysis and by that 

enables the Pierinae butterflies to feed on the plant family Brassicaceae. Further research has 

been done on the evolution of NSP showing its evolution by domain and gene duplication 

from a gene of unknown function that is widespread in insect species (Wheat et al. 2007, 

Fischer et al. 2008). Plutella xylostella also feeds on glucosinolate containing plants. Here the 

Glucosinolate sulfatase (GSS) inhibits the hydrolysis of glucosinolates completely by forming  

desulfo-glucosinolates. In spite of progress in recent years, much is still to be discovered in 

the detoxification mechanisms of insects.  

 

In the present study we aim to investigate the molecular basis of the diverse hostplant range of 

the comma butterfly (Polygonia c-album, Lepidoptera: Nymphalidae), by testing Feeny’s 

“plant apparency” hypothesis. P. c-album is a widespread polyphagous butterfly species of 

the family Nymphalidae. It is found all over Eurasia, from England to Japan and from the 

center of Sweden to the northern tip of Africa. The larvae can be found on hostplants from 

several taxa: the “urticalean rosids” Urtica, Humulus and Ulmus and the distantly related 

Salix (Salicaceae), Ribes (Grossulariaceae), Betula and Corylus (Betulaceae) (Nylin 1988); 

hence the species is at the extreme end of polyphagy among butterflies, although by no means 

an indiscriminate generalist. For this study, we used a test array with three hostplants of P. c-

album that are either closely related (Stinging nettle Urtica dioica and Wych Elm Ulmus 

glabra – both in Urticales) or share the same growth form (Great Sallow Salix caprea and 

Ulmus glabra – both trees). Following Feeny’s “plant apparency” hypothesis we expected to 

find more similarities in the gene expression profiles of caterpillars that have been feeding on 
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plants that either have a shared ancestry (U. dioica and U. glabra) or belong to the same 

growth form (S. caprea and U. glabra).  

 

 

4.2 Material and Methods 

 

Larval rearing and preparation 

The stock used in the experiments was the offspring of four female comma butterflies 

collected in early May 2007 in the area near to Stockholm in Sweden. The females had 

already mated in the wild with unknown males and were put into cages for oviposition. Each 

female was presented with the hostplants stinging nettle (U. dioica) and Great Sallow (S. 

caprea). Eggs were counted in the beginning of each day and were incubated in small jars on 

a sun-lit windowsill until hatching. 

Larvae of each female were evenly spread across the three hostplants. They were raised on 

stinging nettle, Great Sallow or elm (U. glabra) in individual jars. The jars were placed in a 

climate room (temperature 20 °C, LD 12:12) where larvae were raised to the 4th instar before 

dissection of the midgut. Plants were changed when needed due to withering or feeding. To 

maintain humidity, water was sprayed over the jars twice a day. Jars were changed randomly 

to avoid position effects. Between 10 and 43 individuals from each family were dissected, for 

a total of 109 individuals across the three different diets. Midguts and the rest of the larval 

body were preserved separately in RNAlater. 

 

RNA Isolation and Reverse Transcription  

Larvae were dissected, and the midguts and restbodies were stored in RNAlater® (Ambion). 

Tissue samples were pooled (10-13 individuals) according to the larval diet (Salix, Urtica, 

Ulmus). The guts were homogenized by a Ultra-Torax homogenizer (Beckman Coulter 

Scientific) in TRIzol (Invitrogen) reagent and restbodies were crushed in liquid nitrogen. For 

all samples TRIzol Reagent was used to isolate the RNA according to the manufacturer’s 

protocol with the following modifications. After adding chloroform to separate the phases, the 

tubes were stored for 15 minutes at 4 °C before centrifugation. To precipitate the RNA, the 

solution was stored at -20°C overnight. After precipitation the RNA solution was centrifuged 

for 30 min at 4 °C. The obtained dried pellet was dissolved in 90 μl RNA storage solution 

(Ambion), and any remaining genomic DNA contamination was removed by DNAse 

treatment (TURBO DNAse, Ambion). The DNAse enzyme was removed and the RNA was 
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further purified by using the RNeasy MinElute Clean up Kit (Qiagen) following the 

manufacturer’s protocol and eluted in 20 μl of RNA storage solution (Ambion).  

 

Differential gene expression 

To study differential gene expression between P. c-album larvae grown on different plants (U. 

glabra, S.  caprea and U.  dioica) the DEG GeneFishing Kit was used (SeeGene), following 

the manufacturer’s protocol with a few modifications. The GeneFishing allows the 

amplification of the same set of genes from different samples due to a 10-mer core of 

arbitrary annealing control primers. By not exceeding the exponential phase of the PCR 

amplification, differentially expressed genes can be identified on an agarose gel.  

In short, 3 µg of DNA-free total RNA was converted into single-stranded cDNA using 

annealing control primer one (dTACP1) and a mixture of different reverse transcriptases 

(Array Script, Ambion; Power Script, Clontech; Bioscript, Bioline). Second-strand cDNA 

synthesis and subsequent PCRs were performed as described in the DEG GeneFishing 

protocol. PCR products were separated and visualized on a 2% agarose gel. Differentially 

expressed bands were cut out from the agarose gels and PCR products extracted using 

Zymoclean Gel DNA Recovery Kit ™ (Zymo Research) according to the manufacturer’s 

instructions. DNA fragments were cloned into the pCR II TOPO vector (Invitrogen). Eight 

clones were picked for each extracted band and further processed. 

 

DNA Sequencing and Analysis 

Plasmid minipreparations from bacterial colonies grown in 96 deep-well plates were 

performed using the 96 robot plasmid isolation kit (Eppendorf) on a Tecan Evo Freedom 150 

robotic platform (Tecan). Single-pass sequencing of the 5’ and 3’ termini of individual clones 

was carried out on an ABI 3730 xl automatic DNA sequencer (PE Applied Biosystems).  

Vector clipping, quality trimming and sequence assembly was done with the Lasergene 

software package (DNAStar Inc.). BLAST searches were conducted on a local server using 

the National Center for Biotechnology Information (NCBI) blastall program and best hits 

were recorded. When two independently indentified differentially expressed sequences 

clustered in the assembly in the same contig, it was assumed to be a recent duplication. 

 

Quantitative real-time PCR 

500 ng of DNA-free total RNA was converted into single-stranded DNA using a mix of 

random and oligo-dT20 primers according to the ABgene protocol (ABgene). Real-time PCR 
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oligonucleotide primers were designed using the online Primer3 internet based interface 

(http://frodo.wi.mit.edu). Primers were designed by the rules of highest maximum efficiency 

and sensitivity rules were followed to avoid formation of self and hetero-dimers, hairpins and 

self-complementarity. Gene-specific primers were designed on the basis of sequences 

obtained for selected P. c-album genes and two additional genes as potential house-keeping 

genes (ribosomal protein subunit S 18 and elongation initiation factor 4 alpha) to serve as the 

endogenous control (normalizer). Both house-keeping primers were tested thoroughly. RPS 

18 was the most consistent gene, and was therefore used for the further analysis. QRT-PCR 

was done in optical 96-well plates on a MX3000P Real-Time PCR Detection System 

(Stratagene) using the Absolute QPCR SYBR green Mix (ABgene) to monitor double-

stranded DNA synthesis in combination with ROX as a passive reference dye included in the 

PCR master mix. 

 

 

Results 
 
Function and patterns of differentially expressed genes 

P. c-album larvae were raised to the 4th instar on three different natural hostplants, namely the 

stinging nettle, (U. diocia), the great sallow (S. caprea) and the elm (U. glabra). Midgut and 

restbody RNA was then isolated, transcribed to cDNA and differences in gene expression 

analyzed using the GeneFishing method (SeeGene). For a selected number of sequences the 

expression profile obtained by the GeneFishing method was independently confirmed using 

qRT-PCR. 

In total we identified 120 differentially expressed genes, 55 expressed genes in the midgut of 

P. c-album and 65 in the restbody (Table 1 and Table 2). In the midgut six sequences gave no 

hit in BLAST searches and in the rest body 2 sequences gave no hit. We identified the 

potential function of the genes found with the GeneFishing protocol using BLAST searches 

(Table1). Many of the differentially expressed genes in the midgut are likely to be involved in 

metabolism and digestion, ranging from protein degradation to starch and lipid breakdown for 

nutrient acquisition. We could also identify eight ribosomal genes and seven genes that are 

involved in translation regulation and maintaining the DNA structure in the cell nucleus. 

Furthermore, we found three genes involved in immunity and one gene with a predicted 

transmembrane transport domain (Table 1). In the midgut pairwise similarities in upregulation 

were higher between plants that shared either growth form (U. glabra and S. caprea) namely 
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10 or were phylogenetically closer related (U. glabra and U. diocia), namely 11 (Table 3 and 

Figure 1). For this all sequences were scored that showed an upregulation (+, or ++) in two 

hostplants and were absent (-) in the third, or vice versa. We identified differentially 

expressed proteases and four differentially expressed genes of unknown function. We did not 

identify any differentially expressed known detoxifying enzymes in the midgut.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter III 

 66 

Table 1: Differentially expressed genes identified from larvae fed on three different hostplants (Salix, 
Ulmus, Urtica) from the GeneFishing experiments of the midguts of P. c-album.  
 

Contig Hit e value Salix Urtica Ulmus
Digestion

40 chymotrypsin-like protease [Helicoverpa armigera], CAA72952.1 9.00E-84 ++ + +
123 chymotrypsinogen-like protein 3 [Manduca sexta], CAM84318.1 3.00E-35 - ++ -
15 trypsin Ia precursor [Sesamia nonagrioides], AAT95347.1 7.00E-20 ++ - -
42 trypsin-like protease [Helicoverpa armigera], CAA72955.1 3.00E-37 + ++ +
63 trypsin-like serine protease [Ostrinia nubilalis], AAX62033.1 8.00E-36 + + ++
30 RE38869p, alpha-amylase [Drosophila melanogaster], AAL48973.1 2.00E-97 - + -
82 lipase-1 [Bombyx mori], NP_001036966.1 3.00E-57 + - -
12 lipase-1 [Bombyx mori], NP_001036966.1 4.00E-62 - ++ +
35 lipase [Bombyx mandarina], AAX39410.1 9.00E-49 + - -
14 lipase-1 [Bombyx mori], NP_001036966.1 3.86E-48 - ++ +
14 lipase-1 [Bombyx mori], NP_001036966.1 3.86E-48 - + +
155 beta-glucosidase precursor [Spodoptera frugiperda], AAC06038 6.00E-04 - ++ +
39 alpha-amylase 3 [Diatraea saccharalis], AAP97394.1 7.00E-26 ++ + +
68 serine protease precursor [Bombyx mori], NP_001036826.1 3.00E-61 ++ + +
1 serine protease [Bombyx mandarina], AAX39408.1 1.00E-18 + ++ +
68 serine protease precursor [Bombyx mori], NP_001036826.1 3.00E-61 + ++ +
98 serine protease [Bombyx mori], AAX39409.1 2.06E-05 ++ + +
135 35kDa protease [Bombyx mori], NP_001037037.1 3.00E-24 - ++ -
27 zinc carboxypeptidase A 1 [Culex pipiens quinquefasciatus], XP_001851495.1 1.00E-65 - - ++
27 zinc carboxypeptidase A 1 [Culex pipiens quinquefasciatus], XP_001851495.1 1.00E-65 + + ++

Immunity
20 immune related protein [Spodoptera frugiperda], AAZ94260.1 3.60E-01 - + +
133 cobatoxin long form B [Spodoptera frugiperda], AAQ18900.1 2.70E-01 ++ - -
11 gloverin [Trichoplusia ni], ABV68856.1 6.00E-11 - ++ -

Metabolism
140 proteasome 26S non-ATPase subunit 9 [Bombyx mori], NP_001093084.1 4.00E-44 ++ + +
140 proteasome 26S non-ATPase subunit 9 [Bombyx mori], NP_001093084.1 4.00E-44 ++ + ++
13 PREDICTED: similar to CG3609-PA, oxidoreductase [Apis mellifera], XP_624408.1 3.00E-93 - ++ -
152 NADH dehydrogenase subunit 1 [Himantopterus dohertyi], CAH59762 3.00E-10 ++ + ++
94 short-chain dehydrogenease/reductase 2 [Bombyx mori], NP_001040155.1 2.00E-03 - ++ +
13 PREDICTED: similar to myo-inositol dehydrogenase [Nasonia vitripennis], XP_001603982.1 2.74E-91 ++ + +
104 PREDICTED:similar to short-chain dehydrogenase [Tribolium castaneum], XP_001812912.1 8.00E-36 ++ ++ +
80 PREDICTED: similar to tafazzin CG8766-PA, isoform A [Apis mellifera], XP_623296.1 4.00E-27 ++ + +
95 peripheral-type benzodiazepine receptor [Bombyx mori], NP_001040343.1 9.00E-09 + ++ ++
6 selenoprotein M [Litopenaeus vannamei], ABI93178.1 2.63E-18 + ++ +
27 zinc carboxypeptidase A 1 [Culex pipiens quinquefasciatus], XP_001851495.1 1.00E-65 ++ + +

36 PREDICTED: similar to GM14009p, Long-chain acyl-CoA synthetases (AMP-forming) [Nasonia vitripennis], 
XP_001606071.1 1.42E-95 - ++ -

141 PREDICTED: hypothetical protein, S-adenosyl-L-homocysteine hydrolase [Nasonia vitripennis], 
XP_001599389.1 2.00E-38 + ++ ++

148 XP_001861763.1 3.00E-62 ++ + +
Ribosomal proteins

65 ribosomal protein L39 [Bombyx mori], NP_001037251.1 8.17E-23 ++ - ++
137 ribosomal protein L27A [Bombyx mori]NP_001037522.1 6.72E-56 + ++ +
92 ribosomal protein S16 [Bombyx mori], |NP_001037508.1 6.45E-34 + ++ +
50 ribosomal protein S25 [Bombyx mori] NP_001037275.1 1.06E-38 - ++ -
44 ribosomal protein L15 [Bombyx mori],NP_001037162.1 1.06E-38 + - +
43 ribosomal protein S2 [Bombyx mori], NP_001037564.1 1.00E-109 + ++ +

Translation regulation/DNA Structure
131 hypothetical protein AaeL_AAEL004467, similar to Chromobox protein [Aedes aegypti], XP_001649228.1 2.00E-04 ++ - -
57 eukaryotic initiation factor 5A [Papilio xuthus], BAG30779.1 2.00E-41 + ++ +
119 argonaute 2 [Bombyx mori], NP_001036995.1 7.05E-72 ++ + ++
93 Sui1 protein [Bombyx mori], NP_001037082.1 3.90E-16 ++ - -

33 PREDICTED: similar to GA18560-PA , Predicted cysteine protease (OTU family)[Posttranslational 
modification, protein turnover, chaperones][Nasonia vitripennis],  XP_001602110.1 1.71E-95 + + ++

55 XP_001808987.1 3.00E-03 ++ + +
Transport

151 transmembrane emp24 protein transport domain containing 9 [Bombyx mori], NP_001040538.1 4.37E-104 + ++ ++
Unknown

46 AGAP003713-PA [Anopheles gambiae str. PEST], XP_001230950.2 1.10E-02 - - +
134 AGAP003713-PA [Anopheles gambiae str. PEST], XP_001230950.2 5.00E-03 - - ++
61 unknown [Helicoverpa armigera], ABU98617.1 3.00E-07 + ++ +
102 PREDICTED: similar to CG11964 CG11964-PA [Tribolium castaneum], XP_967379.1 5.00E-32 + ++ +
142 PREDICTED: similar to DC2 protein [Tribolium castaneum], XP_001811714.1 4.00E-42 + - +  

 

Note.- Shown are the accession numbers and the best BLAST hits with e-values for each gene. Differential 
gene expression visualized as band intensity on agarose gels is depicted (++ strong, +  moderate, - absent). 
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In the restbody of the comma butterfly larvae, the majority of the gene products are again 

most likely involved in the metabolism of the caterpillar or translate into ribosomal proteins. 

Seven of the sequenced gene fragments appear to have a structural role, and are mostly 

involved in chitin binding. We could also identify translation regulation genes and some 

involved in cellular architecture (Table2). One sequence showed moderate similarities (e-

value of 0,00000008) to potential detoxification genes, namely a cytochrome P450 of Plutella 

xylostella (Table 2). There were more similarities in upregulated genes between the 

“unrelated” plants (18) than between the trees (11) or urticalean rosid groups (1) (Table 3). In 

both insect tissues seven differentially expressed bands had homologies only to genes of 

unknown function (Table 1 and 2).  
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Table 2: Identified differentially expressed genes for larvae fed on three different plants (Salix, Ulmus, 
Urtica) from the GeneFishing experiments of the restbodies of P. c-album. 
 

 

Contig Hit e value Salix Urtica Ulmus
Cell Signaling

N17 Der1-like domain family member 1, [Bombyx mori], NP_001040297.1| 5.741E-100 + + -
Detoxification

44 cytochrome P450, [Plutella xylostella], BAF95609.1|        0.00000001 ++ + ++
Hormon synthesis

86 similar to CG10638-PA, [Papilio xuthus], BAG30781.1|          1E-28 ++ ++ +
N1 juvenile hormone epoxide hydrolase, [Bombyx mori], BAF81491.1| 1E-113 ++ + +

Immunity
43 conserved hypothetical protein, [Culex pipiens quinquefasciatus], |XP_001869584.1   3E-36 + ++ -
212 mitochondrial aldehyde dehydrogenase, [Bombyx mori], NP_001040198.1|  7E-39 + + -

Metabolism
N 9 mitochondrial aldehyde dehydrogenase, [Bombyx mori], NP_001040198.1| 8E-50 - + -
72 methionine-rich storage protein, [Spodoptera exigua], EU259816 4E-81 + ++ ++
72 methionine-rich storage protein, [Spodoptera exigua], ABX55887 4E-81 ++ + +
72 methionine-rich storage protein, [Spodoptera exigua],ABX55887 4E-81 + - ++
69 aspartate aminotransferase, [Bombyx mori], NP_001040337.1|  2E-35 ++ ++ +
4 alpha-amylase, [Helicoverpa armigera], ABU98613.1|                     2E-77 + ++ -

136 putative reverse transcriptase, [Zingiber officinale], ABK60177 1E-20 + ++ +
10 vacuolar proton atpases [Aedes aegypti] XP_001657344.1 4.26E-24 ++ ++ +
145 PREDICTED: similar to BcDNA.GH02921, [Nasonia vitripennis,] |XP_001600178.1| 6E-53 + ++ -
161 PREDICTED: similar to CG2656-PA, [Apis mellifera], XP_625026.1 :Conserved hypothetical ATP binding protein. 6E-23 ++ ++ +
143 cyclic beta 1-2 glucan synthetase [Xanthomonas campestris pv. campestris str. ATCC 33913] NP_637420.1 3.34E+00 - - ++
20 PREDICTED: similar to alpha isoform of regulatory subunit A, protein phosphatase 2, [Apis mellifera], XP_001120202.1| 5.6058E-47 + ++ +
2 hypothetical protein PFE0755c, [Plasmodium falciparum 3D7], XP_001351708.1|, NADH dehydrogenase subunit 0.53 ++ ++ +

38 trypsin, [Choristoneura fumiferana], AAA84423.1|  1E-23 ++ ++ +
147, 89 ubiquinol-cytochrome c reductase, [Bombyx mori], NP_001106738.1 0.00000007 ++ ++ +

44 26S proteasome regulatory ATPase subunit 10B, [Bombyx mori], NP_001040484 0.00004 + - +
N 32 serine protease precursor, [Bombyx mori],NP_001036826.1| 3E-50 ++ ++ +
47 serine protease precursor [Bombyx mori], NP_001036826.1 - + -

N 49 phosphate transport protein [Bombyx mori ] 6.00E-104 - + -
Ribosomal protein

50 ribosomal protein S7 [Bombyx mori] NP_001037261.1 4.12E-67 + + -
79 ribosomal protein L35A, [Bombyx mori], NP_001037243.1 2E-37 ++ ++ +
25 ribosomal protein S11-1 [Bombyx mori] AAV34867.1 7.47E-37 ++ ++ +
154 ribosomal protein S25 [Bombyx mori] NP_001037275.1 1.27E-31 - + -
23 ribosomal protein S10 [Bombyx mori] NP_001037524.1 2.42E-51 ++ + +
23 ribosomal protein S10 [Bombyx mori] NP_001037524.1 2.42E-51 + ++ +

N124 ribosomal protein L39, [Bombyx mori], NP_001037251.1 9E-23 ++ + +
N 48 ribosomal protein L5, [Bombyx mori], AAV34814 5E-76 + + -
 N 18 ribosomal protein L27 [Bombyx mori] NP_001037235.1 2.91E-68 + ++ +
N 46 ribosomal protein L6, [Bombyx mori], NP_001037132.1 2E-26 ++ ++ +
N 38 ribosomal protein L27A [Bombyx mori] NP_001037522.1 1.37E-55 ++ + ++
N 15 ribosomal protein S18 [Bombyx mori] NP_001037269.1 1.57E-42 + ++ +

Silk production
9 BAB39503.1| fibroin L-chain [Papilio xuthus] 1E-46 + ++ -

144  fibroin L-chain, [Papilio xuthus], BAB39503.1| 7E-47 + ++ -
Stress

150, 78  heat shock cognate 70 protein, [Sesamia nonagrioides], AAY26452.2| 2E-37 + + ++
Structure

122 Kettin1 protein, [Helicoverpa armigera],ABU96746.1| 4E-91 ++ + ++
13 obstractor B, [Tribolium castaneum], NP_001073566 ,Chitin binding Peritrophin-A domain 1E-104 + + -
8 CU15_MANSE Cuticle protein CP14.6 precursor (MSCP14.6), Q94984| 0.001 ++ ++ +
1 cuticular protein CPR41A [Papilio xuthus], BAG30737.1 6E-36 ++ ++ -

N 51, 22 cuticular protein 78, RR-1 family (AGAP009876-PA), [Anopheles gambiae str. PEST], XP_318996 1E-10 ++ ++ +
N 52 pupal cuticle protein [Bombyx mori], NP_001119729 1.7 + ++ -
N 37 mCG13192, isoform CRA_a, [Mus musculus], EDL05910.1| 5.8706E-05 + + -
N 16  basement membrane collagen,[Brugia malayi], AAC46611.1| 2E-39 + + -

Translation regulation/ Cell structrure
59 eukaryotic initiation factor 5A [Papilio xuthus], AB264704 2E-41 ++ ++ +
74 histone H3.3 type 2, [Culex pipiens quinquefasciatus],XP_001865500 5E-43 + - ++
101 small nuclear ribonucleoprotein E, [Bombyx mori], NP_001040370.1| 1E-20 ++ ++ -
49 elongation factor 1 alpha, [Papilio xuthus],BAG30769 2E-52 + + -
24 PREDICTED: similar to exosome complex exonuclease RRP41, putative, [Tribolium castaneum], XP_975230.2 8E-20 ++ ++ -
109 ribophorin, [Aedes aegypti], XP_001663283.1| 8E-69 + + -
N 54 PREDICTED: similar to shroom family member 4, [Danio rerio],XP_687426        1.3 - ++ -

Transport
156 binding-protein-dependent transport systems inner membrane component [Roseiflexus sp. RS-1], ABQ88845.1 0.231895 + + ++
92 binding-protein-dependent transport systems inner membrane component [Roseiflexus sp. RS-1], ABQ88845.1 2.28E-01 + - +
36 sodium-dependent phosphate transporter, [Aedes aegypti], XP_001658313.1| 3E-76 + - +

N14 sodium-dependent phosphate transporter, [Aedes aegypti],XP_001658313.1| 6E-76 ++ ++ +
15 signal sequence receptor beta subunit, [Bombyx mori], NP_001040332.1| 2E-21 ++ ++ +
223 transport protein Sec61 alpha subunit, [Bombyx mori], NP_001037628.1 0.79 ++ - -

Unknown
14 hypothetical protein, [Paramecium tetraurelia], XP_001428456.1| 3.9 ++ ++ +
27 hypothetical protein UM00309.1, [Ustilago maydis 521], XP_756456 0.46 ++ ++ -
152 PREDICTED: hypothetical protein [Homo sapiens], XP_001714781 2.6 + + ++
17 unknown [Drosophila pseudoobscura pseudoobscura] XM_002133986  0.041 + - ++  

 
Note.- Shown are the accession numbers and the best BLAST hits with e-values for each gene. Differential 
gene expression visualized as band intensity on agarose gels is depicted (++ strong, +  moderate, - absent) 
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Table 3: Number of sequences that showed pairwise similarities in upregulation. 
 

 Midgut Restbody 

 
Urtica-
Ulmus 

Salix-
Ulmus 

Salix 
Urtica 

Urtica-
Ulmus 

Salix-
Ulmus 

Salix 
Urtica 

Digestion 6 3 1 0 ne ne 
Immunity 2 1 0 0 0 2 
Metabolism 1 2 0 0 5 2 
Ribosomal Protein 0 3 0 0 1 2 
Tr. Regul./DNA Str. 2 0 0 0 2 4 
Unknown 0 1 2 0 1 1 
Cell Signaling ne ne ne 0 0 1 
Detoxification ne ne ne 0 0 0 
Silk production ne ne ne 0 0 2 
Structure ne ne ne 0 0 5 
Transport ne ne ne 1 2 0 
total 11 10 3 1 11 19 
 
Note.- Sequences were scored when present (++or +) on two diets and absent (-) on the third diet or 
vice versa. The number of pairwise similarities in upregulation in each category and in total in the gut 
and in the restbody tissue is diplayed. ne: not existent in this tissue. 
 
 
Confirmation of differentially expressed genes 

Of the total of 122 genes originating from GeneFishing, we picked 27 genes (18 from midguts 

and 9 from restbodies) to confirm differential gene expression patterns with qRT-PCR. We 

were able to see identical expression patterns in the GeneFishing and in the qRT-PCR results 

for 14 of the 27 genes (10 in midguts and 4 in restbodies). Partial similarity (same in relation 

to one or two diets) in expression patterns between two independent methods could be 

observed in 7 genes (4 in midguts and 3 in restbodies) and 6 genes (4 in midguts and 2 in 

restbodies) behaved differently (Table 4). 

In the midgut, genes that showed similar expression patterns as in the GeneFishing 

experiment included proteins involved in digestion, namely chymotrypsinogen-like protein 3, 

serine protease, chymotrypsin-like protease, alpha-amylase, trypsin-like protease, trypsin Ia 

precursor, long-chain acyl-CoA synthetase and short-chain dehydrogenease/reductase 2. In 

addition, a ribosomal protein S16 and the immune response related protein cobatoxin showed 

similar expression patterns in the qRT-PCR and in the differential gene expression study. In 

the restbodies, alpha-amylase and the serine protease precursor were similarly expressed. The 

stress related heat shock cognate 70 protein and a potential cytochrome P450 also showed 

similar expression patterns by both methods. 
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Table 4: qRT-PCR results for P. c-album midguts and restbodies fed on three different plants (Salix, 
Urtica, Ulmus).  
 

Salix Ulmus Urtica-Ulmus Salix-Ulmus Salix-Urtica

MC 123 -7.79 ± 0.62 -2.90 ± 0.28 gi|146327862|emb|CAM84318.1| chymotrypsinogen-like protein 3 [Manduca sexta]
MC 92 -1.18 ± 0.15 -2.58  ± 0.24 gi|112984394|ref|NP_001037508.1| ribosomal protein S16 [Bombyx mori]
MC 17 -1.29 ± 0.11 1.36 ± 0.08 gi|112983142|ref|NP_001037037.1| 35kDa protease [Bombyx mori]
MC 36 -2.03 ± 0.01 -2.32 ± 0.15 gi|156550737|ref|XP_001606071.1| PREDICTED: similar to GM14009p [Nasonia vitripennis]
MC 44 1.27 ± 0.16 1.09 ± 0.04 gi|54609223|gb|AAV34827.1| ribosomal protein L15 [Bombyx mori]
MC 81 1.02 ± 0.02 -2.18 ± 0.03 gi|112983352|ref|NP_001036966.1| lipase-1 [Bombyx mori]
MC 159 -6.78 ± 0.06 -6.14 ± 0.04 gi:61191881 serine protease [Bombyx mandarina]
MC 40 2.22 ± 0.04 -1.34 ± 0.04 gi|2463064|emb|CAA72952.1| chymotrypsin-like protease [Helicoverpa armigera]
MC 42 -4.76 ± 0.03 -1.87 ± 0.002 gi|2463070|emb|CAA72955.1| trypsin-like protease [Helicoverpa armigera]
MC 65 -1.09 ± 0.05 -1.16 ± 0.15 gi|112984118|ref|NP_001037251.1| ribosomal protein L39 [Bombyx mori] 
MC 133 -1.47 ± 0.06 -6.76 ± 0.03 gi:33439724] cobatoxin long form B [Spodoptera frugiperda]
MC 151 -1.55 ± 0.04 -1.37 ± 0.03 gi|114052711|ref|NP_001040538.1| transmembrane emp24 protein transport domain containing 9 [Bombyx mori]
MC 28 -4.14 ± 0.06 -1.15 ± 0.02 gi|108881060|gb|EAT45285.1| zinc carboxypeptidase [Aedes aegypti]
MC 93 -1.18 ± 0.04 -1.48 ± 0.04 gi|112983000|ref|NP_001037082.1| Sui1 protein [Bombyx mori]
MC 13 1.69 ± 0.06 -0.54 ± 0.04 gi|66514540|ref|XP_624408.1| PREDICTED: similar to CG3609-PA [Apis mellifera]
MC 30 -2.12 ± 0.02 -1.79 ± 0.03 gi|157126491|ref|XP_001660906.1| alpha-amylase [Aedes aegypti]
MC 94 -1.50 ± 0.06 1.10 ± 0.02 gi|114050773|ref|NP_001040155.1| short-chain dehydrogenease/reductase 2 [Bombyx mori]
MC 97 10.02 ± 0.05 1.56 ± 0.13 gi|157113343|ref|XP_001657786.1| trypsin [Aedes aegypti]

RC 1 -1.65 ± 0.04 -3.02 ± 0.00 cuticular protein CPR41A [Papilio xuthus], gi:183979370
RC 13 -1.54 ± 0.20 -1.01 ± 0.04 obstractor B, [Tribolium castaneum], gi:121582324,Chitin binding Peritrophin-A domain
RC 2 -1.22 ± 0.15 1.14 ± 0.04 hypothetical protein PFE0755c, [Plasmodium falciparum 3D7], gi:124506221, NADH dehydrogenase subunit
RC 4 -8.31 ± 0.05 -16.68 ± 0.25 alpha-amylase, [Helicoverpa armigera], gb|ABU98613.1|  
RC 43 -2.11± -1.04 ±  ref|XP_001869584.1|  conserved hypothetical protein, Destabilase [Culex pipiens quinquefasciatus] 3E-36
RC 44 1.27 ± 0.01 2.36 ± 0.14 cytochrome P450, [Plutella xylostella],  dbj|BAF95609.1|    
RC 47 -33.24 ± 0.44 -9.45 ± 0.04 serine protease precursor [Bombyx mori], NP_001036826.1
RC 78 -1.38 ± 0.04 2.04 ± 0.11 gi|157064217|gb|AAY26452.2| heat shock cognate 70 protein [Sesamia nonagrioides]
RC 9 -1.90 ± 0.44 1.04 ± 0.25 gi|13383201|dbj|BAB39503.1| fibroin L-chain [Papilio xuthus]

Midguts

Restbodies

GENE relative fold gene expression match with Gene Fishing data best BLAST hit

 
 

Note.- Relative expression of genes of interest were normalized using RPS18 as an expression control. The 
gene expression of larvae fed on Urtica was used as a reference to which relative expression in larvae fed on 
Ulmus and Salix was compared (values are mean ± SD). Consistency with GeneFishing results is depicted in 
color-code. (black bars – agreement, white – disagreement). Comparisons are always one diet relative to another 
diet. 
 

 

4.3 Discussion 

 

Phylogenetically related plant species are expected to possess similar chemical defenses and 

might therefore demand similar detoxifying mechanisms from herbivores. Feeny’s “plant 

apparency” hypothesis suggests that plants of the same growth form should also have similar 

defense strategies. Here, we analyze the gene expression of P. c-album caterpillars feeding on 

three different host pants that are either closely related (stinging nettle, Urtica dioica and 

wych elm, Ulmus glabra – both in Urticales) or share the same growth form (great sallow, 

Salix caprea  and wych elm, Ulmus glabra – both trees) to find evidence for one or both plant 

defense hypotheses in the response of the caterpillars. We chose this butterfly species because 

it has an unusually diverse hostplant spectrum and is therefore at the extreme end of 

polyphagy among butterflies. In the GeneFishing approach we could identify a total of 120 

differentially expressed sequences, 55 of them were expressed in the gut lumen of the 

caterpillars and 65 in the restbody. Independent verification by qRT-PCR experiments 

showed a good correlation of the expression profiles with the Gene Fishing data (Table 4). 
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Figure 1: Number of sequences that showed pairwise similarities in regulation in the midgut (black bars) and the 
restbody (grey bars). Sequences were scored when present (++ or +) on two diets and absent (-) on the third diet 
or vice versa. 
 

Secondary metabolites, leaf texture and nutrient contents vary greatly between different plant 

species and also depend on the plant age (Brenes-Arguedas et al. 2006). The three chosen P. 

c-album hostplants have different leaf architecture, with the stinging nettle possessing thin 

hairy leaves, and both trees waxy leaves, that differ in shape. Besides the prominent stinging 

trichomes that provide an effective defense against vertebrate herbivores (Pullin 1986) and 

also can inhibit small larvae movement, stinging nettle leaves contain the phenolic compound 

caffeic acid, tannins, nicotin in measurable amounts and flavonoid glycosides (Basaran et al 

2000, Özen and Kokmaz 2003). In elm tree leaves flavonoid glycosides have also been shown 

to exist (Martin-Benito et al 2005), as well as the phenolic compound chlorogenic acid. In 

Salix leaves the contents of phenolic glycosides including salicin, chlorogenic acid and 

condensed tannins varies depending on age, with the highest concentration in young leaves 

(Jassib 2003). This leaves us with a complex and incomplete picture of secondary compounds 

in these three plant species (Table 5). Phenolic compounds, nicotine, tannins and flavonoids 

have been shown to affect insects feeding on them. Tannins for example are astringent, bitter 

plant polyphenols that either bind and precipitate or shrink proteins. Studies on the effect of 

tannins on the gut pH and redox potential of larvae found that many specialist and generalist 

insects have developed adaptations to cope with them (Johnson and Felton 1995, Johnson 

2005). Tannin metabolites are for example oxidized during the gut passage in the aquatic 

caterpillar Acentria ephemerella. Resistance against polyphenols appears to be correlated in 

general with better repair mechanisms in the gut tissue that enables to cope with free radical 
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stress occurring during oxidation better (Gross et al. 2008). Nicotine acts as agonist of the 

postsynaptic nicotinic acetylcholine receptors of the insect central nervous system. 

Metabolism of nicotine has been attributed to the action of cytochrome P450 (Dowd et al 

1983, Nauen and Denhol 2005). Flavonoids in contrast can be sequestered from the diet and 

used for protection and pigmentation. In B. mori for example three flavonoid glycosides could 

be isolated from the cocoon shell (Hirayama et al 2007). The role of these secondary plant 

compounds in the interaction between P. c-album and its hostplant and the adaptations P. c-

album developed to them however, is not known.  

 
Table 5: Short surveys of secondary plant compounds identified in U. diocia, U. glabra and S. caprea, that 
have been proven elsewhere to poses anti-herbivore attributes.  
 

Compound group Urtica dioica Ulmus glabra Salix caprea 

Phenols +1) 2) +5) +4) 

Phenolic glycosides – – +4) 

Flavonoids +1) 2) – – 

Condensed tannins – +5) +4) 

Flavonoid glycosides +1) 2) +3) +5) 

Nicotine +1) 2) – – 

 
Note. – “+” indicates present in this species and “–“ indicates not identified in this species 
1) Basaran et al 2000, 2) Özen and Kokmaz 2003, 3) Martin-Benito et al 2005, 4) Jassib 2003, 5) Hegnauer 1973 

 

Our expression data suggest a complex interaction between the comma butterfly and its 

hostplants. On the one hand, each plant species appears to require a very specific subset of 

genes to be regulated in the midgut upon feeding. This involves digestion proteins, immunity 

related genes, general metabolism genes and ribosomal proteins as well as translational and 

transport genes. In the restbody we also find cell signaling related domains, hormone 

synthesis genes and genes involved in silk production, suggesting gene regulation tuned 

specifically for each plant species. On the other hand, counting of upregulation versus 

downregulation of genes in the midgut shows a suggestive pattern (Table 3). Both species of 

the Urticales family (Ulmus and Urtica,) as well as both trees, have a higher agreement of 

gene regulation than do the stinging nettle and the great sallow (Table 1, Figure 1 and Table 

3). Especially the digestion and ribosomal genes show clear differences here. This suggests, 

that phylogenetic and/or growth form relatedness demand more similar expression profiles in 

the midgut of the caterpillars. However, this only holds true for the midgut of the comma 
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butterfly; the restbody of the caterpillars show a completely different picture. Here the 

stinging nettle and great sallow diet in contrast share the highest similarity in gene expression, 

while the wych elm appears to require less gene upregulation in general (Table 2, Table 3, 

Figure 1). The midgut is the place of contact with the food bolus, and the location where the 

first detoxifying and digestive actions will take place, whereas the restbody is only indirectly 

involved in this process by receiving the solubilized products and only sometimes toxic or 

toxin degradation products. Here the actual nutrient content is of more importance. This might 

explain the converse picture we observe in those two tissues. While the defense compounds of 

the phylogenetically or growth form-related plants might be more similar, our data suggests 

that the nutritional value does not follow this line.  

 

In the midgut we could not detect any differentially expressed known detoxifying genes, such 

as cytochromes P450s or glutathione-S-transferases (GST). However, those enzymes are with 

a high probability active in the gut of the comma butterfly larvae when encountering plant 

material. The GeneFishing method identifies solely differentially expressed genes. Hence, P. 

c-album might express such Phase I and Phase II detoxifying genes, but in a constant manner 

independent of the diet. Being a highly polyphagous insect species, the comma butterfly 

might be endued with very broad acting detoxifying enzymes that can cope with a wide 

variety of the compounds and hence are expressed continuously when feeding independent of 

the diet. The lack of differentially expressed detoxifying enzymes could also be due partly to 

an overlap of toxic chemistry on the three hostplants.  

With the exception of cytochrome P450s and GSTs not much is known about detoxifying 

enzymes applied by generalist insects. Hence such expressed enzymes could not be identified 

in databases. In the midgut we identified 4 unknown differentially expressed genes, which 

could be unknown genes involved in detoxification. We could, however, identify a 

differentially expressed gene homologous to a cytochrome P450 of P. xylostella in the 

restbody of P. c-album larvae. Cytochrome P450s are also involved in the metabolism of 

many endogenous compounds, hence this P450 expresssed in the restbody is possibly not 

involved in the detoxification of plant defense compounds, but in general metabolism.  

 

While the detoxifying mechanisms appear not to be differentially expressed we see genes 

belonging to other classes differentially expressed.  Short-chain dehydrogenases (SCDH) for 

example are upregulated in the midguts of larvae feeding on Urtica and Ulmus. SCDH form a 

large protein family with highly different enzymes, which only share 15-30% identity among 



Chapter III 

 74 

each other (Jörnvall et al, 1995). They are present in all the life forms studied so far, have a 

wide substrate spectrum and are generally involved in cellular differentiation and signaling 

(Kallberg et al, 2002).  

 

Not surprisingly also many digestive enzymes are differentially expressed in the midgut 

(Table 1). For example an alpha-amylase was down-regulated in both tree diets in comparison 

to the stinging nettle. Amylases are enzymes participating in carbohydrate digestion. It is 

known that insects possess different amylases for starch degradation (Terra & Ferreira, 2005). 

It is possible that the differential expression we observe is due to different starch contents in 

the stinging nettle compared to the other plants. We also found several serine proteases being 

differentially expressed upon feeding on the hostplants, namely trypsins and chymotrypsins. 

Plants possess proteinase inhibitors (PIs) that are insect inducible peptidases that can suppress 

insect proteinases and by that reduce the  digestibility (Zavala, et al., 2004; Steppuhn & 

Baldwin, 2007). It has been shown that lepidopteran larvae adapt their proteinases expression 

profile to the PI content of their food plant, upregulating proteinase that are insensitive to the 

plant PIs (Terra & Ferreira, 2005). Our expression patterns suggest different proteinase 

requirements for the three hostplants. We also excised four bands that were identified as 

homologous to Bmlipase-1, of which three were highly expressed in larvae feeding on Urtica 

and one on Salix. Insect midgut lipases have been studied in few insects so far and little is 

known about differential expression of lipases in insects (Terra & Ferreira, 2005). In insects 

they form a gene family that underwent many duplication events (Horne et al. 2008) with 

resulting diverse and overlapping function. Bmlipase-1 from Bombyx mori shows a high 

antiviral activity against B. mori nucleopolyhedrovirus, although it is not inducible by viral 

infection. Its main function is probably as a digestive enzyme, as it is exclusively expressed in 

the gut tissue and has lipase activity (Ponnuvel, et al, 2003).  

 

We also found many ribosomal proteins to be differentially regulated upon feeding on 

different hostplants, namely seven in the midgut and twelve in the restbody of P. c.-album. 

Ribosomal genes are considered to be stably expressed and have been suggested and used as 

housekeeping genes in expression analysis. However, there are a number of ribosomal 

proteins that have been found to be differentially expressed between tissues and 

developmental stages upon different treatments (Thorrez et al 2008), suggesting that there are 

major differences in expression patterns between different ribosomal proteins.  
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Different plants can possess very different microfloras (Meyling & Eilenberg, 2006), that 

affect immune response-related gene expression in the midgut of lepidopteran larvae (Freitak 

et al., 2007).  We detected cobatoxin and gloverin homologous genes that are known to be 

inducible by bacterial challenge to be differentially expressed in the midgut tissue 

(Lundström, et al., 2002, Volkoff et al, 2003). We see gloverin expression only in Urtica fed 

larvae and cobatoxin in Salix fed larvae, suggesting different microbial environments or 

microbial load on those two species. In addition to differences in plant secondary metabolites, 

P c.-album must therefore also likely face different bacterial quantities and qualities on its 

various hostplants. 

 

Our data suggest a complex picture of gene expression in response to hostplant feeding. 

While each plant evidently requires an unique set of genes regulation in the caterpillar, both 

phylogenetic relatedness and hostplant growth form appear to influence the expression profile 

of the polyphagous comma butterfly, in agreement with phylogenetic studies of hostplant 

utilization in butterflies. 
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5. General discussion 
 

Although the defensive and counter-defensive molecules underlying many ecological 

interactions are known, the genetic mechanisms controlling these molecules are often 

unknown. Knowledge of these mechanisms, as well as the selective forces and adaptations 

that have shaped them, is necessary if we are to understand the evolution of ecological 

interactions. In this thesis the detoxification genes of two lepidopteran herbivores are 

characterized at different levels. The evolutionary origins of a detoxification adaptation are 

studied at the molecular level in a specialist lepidopteran herbivore (chapter I). Next, the 

microevolutionary dynamics of this detoxification gene in this specialist are investigated 

using molecular population genetics (chapter II). Finally, as a comparison to the study of a 

specialist herbivore, the molecular fundamentals of detoxification adaptation in a very broad 

generalist lepidopteran species are investigated (chapter III). While the specialist needs to 

avoid counter defenses of the main host plant family and can fine tune its detoxification 

against these specific plant species, the generalist herbivore needs to have a detoxifying 

system which can respond to a broad range of defenses presented by different plant families. 

Together these chapters provide important insights into the origins and ongoing evolution of 

detoxification mechanisms in specialist herbivores and compares these insights with the 

detoxification mechanisms used by a generalist herbivore.  

 

The ability to adapt to new environments such as a new host plant can arise through different 

adaptive mutations. In chapter I the origins of the novel detoxifying enzyme NSP were 

investigated in the butterfly family Pieridae. It was found that NSP evolved through domain 

duplication followed by gene duplication from a single domain gene called SDMA. SDMA, 

NSP and MA, the paralog of NSP, are all members of the NSP-like gene family that appears 

to be widespread within the insects and underwent multiple gene and domain duplication 

events. In eukaryotic species, duplicated genes arise at a very high rate on an evolutionary 

time scale, with an average rate of about 0.01 duplications per gene per million years (Lynch 

and Conery 2000). While duplication generates potentially substantial molecular substrates 

for the origin of evolutionary novelties, the fate awaiting most gene duplicates appears to be 

silencing with selection only retaining favorable duplicates. Chapter I illustrates that after 

duplication, the resulting NSP gene was retained in the Pierinae and facilitated adaptation to 

feeding on Brassicaceae plants. 
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Gene duplication is widely found in the plant and animal kingdoms (Force et al. 1999; 

Briscoe 2001; Chinen et al. 2003; He and Zhang 2005; Loppin et al. 2005; Benderoth et al. 

2006; Frentiu et al. 2007; Hoffmann et al. 2007) and in spite of the high rates of silencing it is 

now firmly established that duplication of genes is a major contributor to the evolution of 

novel adaptive function (Lynch and Conery 2000; Lynch 2007). However, the evolution of 

novel functions after duplication is difficult to trace. This is mostly due to problems 

identifying novel functions of a duplicated gene with no homologs serving similar functions. 

In the case of the NSP-like gene family, the function of the members other than NSP is 

unknown. However, research in Periplaneta americana, Aedes aegypti, Blatella germanica 

and most recently in Tenebrio molitor all show that members of the NSP-like gene family are 

expressed in the midgut of the insects after food intake (Pomes et al. 1998; Wang, Lee, and 

Wu 1999; Chad Gore and Schal 2005; Shao et al. 2005; Ferreira et al. 2008). In A. aegypti, 

AEG12 is only expressed in adult females and is strongly induced after a blood meal (Shao et 

al 2005) and in B. germanica the expression of Blag1 is also increased after food intake in 

adult females (Chad Gore and Schal 2005). It has also been suggested that PMAP in T. 

molitor has a role in peritrophic membrane formation (Ferreira et al 2007), but there is no 

evidence supporting this hypothesis so far. From these studies a digestive function of at least 

some members of the NSP-like gene family is suggested, but no detoxification function has 

been observed in any of these genes. Hence, while tissue and temporal expression patterns of 

the SDMA gene and the derived NSP gene are conserved (chapter I), the function that the 

multidomain NSP gene acquired, is to our knowledge very divergent from SDMA. This 

makes NSP a unique detoxifying gene with no known homolog serving similar functions. In 

this light, the results of chapter I studying the molecular evolution of NSP provide a rare 

example of proven neofunctionalization after duplication.  

 

The variability of domain numbers in members of the NSP-like gene family that have likely 

retained the original function is striking. While the SDMA genes in all lepidopteran and 

AEG12 of A. aegypti have one domain, T. molitor has a three domain gene, Tribolium 

castaneum has a gene with eight repeats, and B. germanica and P. americana have at least 

two to three domain repeats in their NSP-like gene family genes. Hence, there appears to be 

an ongoing driving force for duplication even while fulfilling the original function. This force 

for duplication might have enabled the emergence of NSP in the Pieridae by favoring domain 

duplication of the original function before neofunctionalization.    
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How neofunctionalization occurs is still under debate. In the classical gene duplication model, 

one gene copy drifts neutrally and is able to accumulate mutations while the other copy 

retains the original function. In the majority of cases mutations will lead to the loss of 

function of one copy, but in rare cases mutations will by chance yield beneficial functions. 

When such beneficial mutations are fixed by selection, both the original and the 

neofunctionalized gene copies will subsequently remain active in the genome (Ohno 1970) 

(Figure 1a). Alternatively, under the DDC (Duplication-Degeneration-Complementation) 

model of Force et al. (1999) complementary degenerative mutations in different regulatory 

elements of duplicated genes facilitate the preservation of both duplicates and subsequently 

subfunctionalization. Neofunctionalization in this model can be acquired by one gene copy 

gaining a beneficial expression pattern at the expense of an ancestral subfunction (Figure 1b). 

With the available data it is not possible to decide which of these models might be more 

accurate for the evolution of NSP. No difference in regulatory elements between NSP and 

MA could be detected as both NSP and MA are expressed solely in the gut lumen of insect 

and are dependent on food intake (own preliminary data and Wittstock et al 2004). However, 

many other not so readily testable regulatory elements could and should show differences 

between NSP and MA. They could differ in expression across the fore-, mid-, or hind-gut of 

the caterpillar. Future research of location, function and mode of action of NSP and MA 

might shed light on the mechanism of neofunctionalization that gave rise to NSP and MA. 

 

Duplication

Mutation

Complementation

Duplication

Degeneration

Complementation

Subfunctionalization Neofunctionalization NonfunctionalizationSubfunctionalization Neofunctionalization Nonfunctionalization

A) B)

 
 

Figure 1: Alternative models for the fate of duplicated genes. A) In the classical model duplicated genes 
accumulate mutations in the coding area leading mostly to nonfunctionalization and rarely to neo- or 
subfunctionalization. B) In the DDC model the ancestral genes is here depicted with two mutable regulative 
regions upstream. After duplication through a degenerative mutation in one of the regulative region (open box) 
one subfunction is eliminated. The second mutational event dictates the fate of the duplicates. 
Subfunctionalization will occur when the gene loses the complementary part of its function, neofunctionalization 
will occur when one copy acquires a novel expression pattern and nonfunctionalization occurs when one copy 
looses all functional abilities. Modified from Force et al 1999 and Lynch 2007 
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While duplication mechanisms are the driving force in the evolution of NSP, the actual mode 

of duplication is not known as the origins of segmental duplications are diverse and the actual 

location of the three genes relative to each other not fully understood yet. Many duplicated 

genes appear in tandem to their parental copy, such as the multiple copy SDMA genes in B. 

mori (Chapter I). Such organization may arise by unequal crossing over events or replication 

slippage (Figure 2). Tandem duplications can produce whole gene duplications or duplication 

of gene parts depending upon the chromosomal region duplicated. Two domain duplication 

events were necessary to create the precursor gene of NSP and MA from SDMA as discussed 

in chapter I. Once duplicated, selection retained novel mutations in NSP and MA allowing 

their function to drift apart. Functional constraint appears to be lower in MA and NSP 

compared to SDMA, as MA and NSP have higher omega values (see chapter I). In addition, 

NSP and MA are highly divergent from each other as they only share 50 percent amino acid 

identity. Comparisons of genomic data from P. rapae with the newly released whole genome 

assembly of Bombyx mori suggest NSP to be located on a different chromosome than MA and 

SDMA, while SDMA and MA appear to be located on the same chromosome (chapter I). 

Movement of one gene to another chromosome may occur via sloppy transcription of non-

LTR (long terminal repeat) retrotransposons followed by the replication of downstream genes 

and their reinsertion elsewhere in the genome (Lynch 2007), however, this would not replicate 

the introns as it happened in NSP. While the general mechanisms of duplication for the origin 

of NSP and MA can be retraced, it is not possible with the current dataset to decide on the 

mechanism of the segmental duplication that has taken place. 
 

Unequal
crossing-over

Retrotransposition

 
 

Figure 2: Two mechanisms for the origin of gene duplication. An unequal crossing over event occurs between 
two regions of sequences similarities (black) at nonhomologous sites. As a result one chromosome harbors a 
duplication, whereas the other chromosome is lacking that area. Sloppy transcription of a retrotransposon (white) 
can lead to the additional transcription of a downstream gene (grey). This can lead to insertion in another gene 
area after reverse transcription (here only depicted as a dashed line). Modified from Lynch 2007. 
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Duplicated genes retained by selection will experience strong purifying selection after their 

emergence. The appearance of NSP more than 80 million years ago  was an evolutionary 

novelty enabling a host range shift onto Brassicaceae and a subsequent increase in species 

diversity of the group (Wheat et al. 2007).  The persistence of this adaptation and its now 

ancient status must be due at least in part to purifying selection, but the current level of 

intraspecific protein variation suggests limits to the intensity of purifying selection today, as 

illustrated in chapter II. It appears that NSP is exhibiting an unexpectedly high amount of 

amino acid polymorphisms in P. rapae populations. These polymorphisms are however 

unequally distributed across the gene, showing regions of high conservation neighboring 

those with relaxed functional constraint. Surprisingly, this diversity is common in nearly all 

populations with little to no genetic differentiation among four populations on two continents. 

The potential implications of this intraspecific protein variation in NSP will be discussed 

below.   

 

Selection pressure and evolutionary dynamics acting on genes will change over time. Novel 

genes will experience strong purifying selection enabling their ‘survival’ in the genome. 

Adaptive evolution may however - over an evolutionary time frame - cause different selection 

pressures to act on a given gene. The now ancient status of NSP could allow other factors to 

influence the evolutionary dynamics acting on it. NSP consists of three repetitions of the same 

basic domain.  Although the precise mode of action of NSP is not known, the repeat structure 

presents the possibility of functional redundancy and, or, independence among the individual 

three domains. The increased dN/dS values that we observe in NSP in comparison to the 

reference genes (chapter II) could be explained in part by functional redundancy reducing 

purifying selection in certain regions of the domain structure. Slightly deleterious mutations in 

one domain could be compensated for by the independent functionality of the other two 

domains. Hence, the possible independent functionality of the NSP domains could obscure the 

signal of purifying selection in the NSP gene, resulting in the high dN/dS values we observe 

at the NSP locus compared to random genes. 

 

Adaptation to variable environments can demand variability in the insect responses. In 

addition to the above proposed compensation effect afforded by the repeated domain 

structure, the high variability in the NSP alleles might also be driven by environmental 

factors. P. rapae has been reported to feed on at least 16 different plant species, and although 

specialized on glucosinolate containing plants, it will encounter a large variety of 
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glucosinolates within its host plant range. Preliminary experiments show that the ability of 

NSP alleles to convert glucosinolates to nitriles is highly variable. Individuals from the same 

genetic background appear to have differently performing NSP variants when exposed to 

glucosinolates and myrosinases in an in vitro experiment. These findings suggest that the 

known high variability of glucosinolates in brassicaceous plants (Windsor et al. 2005) might 

affect the microevolutionary dynamics of NSP. The variability of the NSP loci might in that 

respect be a response to the highly variable set of glucosinolates and myrosinases between 

plant species and even within one plant species enabling P. rapae to feed successfully on a 

wide variety of brassicaceous species. However, the data so far can not rule out the possibility 

that differences in NSP performances might also be due to different expression intensities of 

NSP in the caterpillars. Functional antibodies are necessary to test this hypothesis. 

Nevertheless, the variability of the NSP gene could be a response to the diversity of the host 

plant system. 

 

The formation of nitriles rather than isothiocyanates has not only evolved in the gut of 

Pieridae species but also in brassicaceous plants. In Arabidopsis thaliana the hydrolysis of 

glucosinolates will result in epithionitriles and simple nitriles in the presence of the specifier 

protein ESP (epithio specifier protein) or to simple nitriles in the presence of a nitrile specifier 

protein (AtNSP1-AtNSP5) (Lambrix et al. 2001; Burow et al. 2006a; Burow et al. 2007b; 

Burow et al. 2008; Burow et al. 2009). The Arabidopsis nitrile forming proteins all belong to 

one gene family and show no structural or sequence similarity to the Pieridae NSP. However, 

insect and plant derived nitrile specifier proteins are all not iron dependent for their activity, 

whereas ESP activity is strictly iron dependent (Burow et al. 2006a; Burow et al. 2009). The 

functional role of the plant proteins is not clear yet as nitriles are less toxic than 

isothiocyanates and generalist herbivore performance is significantly better on nitrile 

producing plants (Burow et al. 2006b). Nevertheless, recent studies have shown that 

ovipositing P. rapae females prefer wild type over nitrile producing Arabidopsis plants and 

the parasitoid Cotesia rubecula, a specialist on P. rapae larvae, is significantly more attracted 

to P. rapae infested, nitrile producing plants than to infested wild type plants (de Vos, 

Kriksunov, and Jander 2008; Mumm et al. 2008), suggesting that both species might use the 

highly volatile nitriles as cues for infestation. Simple nitrile formation also is inducible by P. 

rapae herbivore damage in Arabidopsis wild type plants, possibly to attract parasitoids 

(Burow et al. 2009).  Hence, regulation of nitrile versus isothiocyanate formation might 
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enable brassicaceous plants to adjust their chemical defense in response to specific herbivore 

attacks and by that adapt better to their environment.  

 

Generalist herbivores need different response strategies to their host plants than specialized 

herbivores as they will encounter a broad variety of plant defenses. In contrast to the 

specialized lepidopteran herbivore P. rapae, P. c-album is feeding on a wide variety of plant 

species and will therefore encounter a large variety of different secondary compounds as 

illustrated in chapter III. Either broad detoxifying enzymes could be utilized by P. c-album to 

cope with this complexity or many different detoxifying enzymes that are induced by 

compounds in the different host plants.  

 

The gene expression profile of P. c-album on different hostplants is complex, but the 

utilization pattern of detoxification genes is not clear. While many differentially expressed 

genes could be detected in the different treatments, no known detoxifying enzymes could be 

found to be differently regulated on different host plants in the midgut tissue. This finding can 

have two divergent explanations. One reason for this finding could be a constant expression of 

broad acting detoxifying genes in the caterpillar independent of the actual host plant. A 

constant expression would not have been detected by the experimental approach taken in 

chapter III. A couple of arguments support this hypothesis. Different to induced genes, that 

will be slowed down by transcription and translation, constantly expressed genes will be 

acting immediately, which might be important especially straight after hatching when 

caterpillars can be expected to be very vulnerable to toxins. This is important since the plant 

species young P. c-album caterpillar will ingest is largely dependent on the availability of host 

plants as well as on the oviposition choice of the mother and therefore variable and hard to 

predict. Ovipositing female P. c-album butterflies of one population show a surprisingly large 

variability in host preference, that is not strictly correlated with the performance of their 

offspring (Janz, Nylin, and Wedell 1994). Hence, as the larvae may hatch on one of many 

possible hostplants, P. c-album might be required to have a detoxifying system that is acting 

on a very broad substrate range reasonably well. In a second explanation P. c-album might 

have acquired novel inducible detoxifying enzymes that are specific for certain plant 

compounds. Such enzymes would also not be identified with the approach in chapter III as the 

sequences found were only compared to known sequences in the databases. This scenario 

nevertheless appears to be less likely for two reasons. Firstly, induction appears to take too 

long when host plant availability is very variable as discussed above. Secondly, generalist 
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lepidopterans have been shown before to use phase I and phase II enzymes to detoxify 

allelochemicals (Li, Berenbaum, and Schuler 2002; Sasabe et al. 2004; Zeng et al. 2007), 

making it likely that P. c-album is also utilizing them. Therefore, while the data are not clear 

on detoxification, P. c-album caterpillars most likely have a constantly expressed very broad 

functioning detoxification enzyme system that will act on a broad range of substrates to deal 

with the variability of plant compounds they encounter. 

 

In generalist herbivores, feeding on chemically-defended plants can be expected to always 

induce a stronger stress response than in specialist herbivores. In spite of the supposedly 

successfully metabolized and or excreted allelochemicals P.c-album caterpillars will 

encounter a variety of other factors that will differ between their different host plants. 

Nutritional contents can be expected to vary greatly as well as slightly toxic compounds that 

have not been completely metabolized. Many genes involved in digestion, metabolism and 

translation regulation are differentially expressed in the different treatments. While some of 

these genes might simply be involved in digestion, it illustrates the complexity of the 

response, whereby the whole metabolism of the caterpillar needs to adapt to the different plant 

systems. However, also P. rapae will encounter different conditions on different 

brassicaceous plants and the data in chapter II furthermore suggest that some allelic variants 

might not be as efficient in converting the encountered glucosinolates, so that differential 

gene expression to a lesser extent could also be expected in P. rapae.    

 

While adaptation to variable environments is important for both butterfly species investigated 

here, the molecular scale of adaptation appears to differ. P. rapae fine-tunes its detoxifying 

system to different glucosinolate-myrosinase systems, while P.c-album is most likely using 

very broad detoxifying enzymes that will cope with a large variety of allelochemicals. The 

depth of molecular understanding varies greatly between the two model systems. The origins 

of adaptation are now better understood for the Pieridae butterflies, while the mode of action 

of NSP is still unknown. Only after a general understanding of the interaction of NSP with the 

myrosinase is reached, will it be possible to fully understand the genetic variability detected 

within the NSP gene. NSP activity could only be detected in glucosinolate feeding Pieridae 

species, not in basal or derived species (Wheat et al. 2007) and while it could be shown in this 

thesis that NSP evolved via domain and gene duplication, an interesting future approach 

would be to understand the mechanisms of loss of NSP in derived non glucosinolate feeding 

species. The mechanisms of detoxification in P. c-album are not understood yet. While the 
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thesis presented here provides a preliminary glance into the complexity of the caterpillars' 

response to different hostplants, a better understanding of the host plant chemistry would be 

useful to identify target genes that serve detoxification in this polyphagous butterfly species.  
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6. Summary 
 

Although the defensive and counter-defensive molecules underlying many ecological 

interactions are known, the genetic mechanisms controlling these molecules are often 

unknown. Knowledge of these mechanisms, as well as the selective forces and adaptations 

that have shaped them, is necessary if we are to understand the evolution of ecological 

interactions. In the thesis presented here the molecular mechanisms underlying two plant-

insect interaction systems were investigated. Adaptive mutations allowing an insect to utilize 

a new food plant can have different molecular origins, affecting the regulatory regions as well 

as the coding sequence of genes. In general it is assumed that phase I and phase II enzymes 

are important in insects to detoxify plant allelochemicals, but detailed knowledge is still 

scarce.  

 

The first system involves the Pieridae butterflies and the Brassicaceae plants that have been in 

a coevolutionary arms race for about 80 million years. To circumvent the activated defense 

system of the plants, the Pieridae caterpillars posses a unique detoxifying enzyme called 

Nitrile-specifier protein (NSP), that redirects the hydrolysis of glucosinolates to less toxic 

nitriles rather than the toxic isothiocyanates in the caterpillar gut. Here the molecular origins 

of this novel detoxifying mechanism were investigated. It was found that NSP is a member of 

an insect specific gene family, called the NSP-like gene family. Members of this family 

consist of variable tandem repeats, are expressed in the gut lumen of the insect and are 

evolving in an ongoing birth-death process. NSP and its paralog MA evolved through two 

tandem duplications of the single domain gene SDMA in the Pieridae caterpillars that feed on 

glucosinolate containing plants. While gene duplication is a common mechanism to adapt to 

new environments, the molecular evolution of NSP provides a rare example of proven 

neofunctionalization after duplication. Future research on location, mode of action and 

genomic location of NSP are necessary to shed light on the mechanism of duplication and 

neofunctionalization that gave rise to NSP and MA.  

 

Population studies on the little cabbage white, Pieris rapae, using four different populations 

from two continents revealed that NSP is exhibiting unexpectedly high rates of amino acid 

polymorphism with little to no genetic differentiation among the four surveyed populations. 

The amino acid substitutions are unequally distributed across the NSP gene and comparisons 

of synonymous (dS) to nonsynonymous (dN) substitutions between 70 randomly chosen 
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genes of P. rapae and its close relative Pieris brassicae (Large Cabbage White) revealed NSP 

to be evolving much faster than the genomic average.  Preliminary experiments indicate 

performance differences between NSP alleles. Therefore the variability of the NSP loci might 

be a response to the highly variable set of glucosinolates and myrosinases in and between 

Brassicaceae plant species, enabling P. rapae to feed successfully on a wide variety of plants. 

Future studies on the mode of action of NSP will also facilitate a better understanding of the 

variability on the NSP loci. 

 

The second study system in this thesis is the polyphagous Comma Butterfly Polygonia c-

album. In contrast to P. rapae, specialized on glucosinolate containing plants, P. c-album 

feeds on a wide variety of plant species and will therefore encounter a large variety of 

different secondary compounds. A differential gene expression analysis of P. c-album 

caterpillars on different hostplants revealed a complex picture of gene regulation. Many genes 

involved in digestion and metabolism and ribosomal proteins were differentially expressed in 

the caterpillars on the different hostplants, indicating that each plant species requires a very 

specific set of genes to be regulated. However, no differentially regulated detoxifying 

enzymes could be identified suggesting that P. c-album possesses very broad acting 

detoxifying genes that are continuously expressed independent of the hostplant. A more 

detailed knowledge of host plant allelochemicals and genetic resources of P. c-album 

caterpillars are necessary to gain a better understanding of the adaptation mechanisms of this 

species to its host plants. 

 

In conclusion, adaptations to variable environments are important for both butterfly species 

investigated, but the molecular scale of adaptation appears to differ. P. rapae fine tunes its 

detoxifying system to different glucosinolate-myrosinase systems, while P.c-album is most 

likely using very broad detoxifying enzymes to cope with a large variety of allelochemicals.  



Zusammenfassung 

 87

7. Zusammenfassung 
 

Obwohl die Abwehr- und Gegenabwehrmoleküle, die vielen ökologischen Interaktionen 

unterliegen, bekannt sind, sind die molekularen Mechanismen die diese Moleküle 

kontrollieren oft unbekannt. Kenntnisse über diese Mechanismen, als auch das Wissen über 

die selektiven Kräfte und Anpassungen die diese Mechanismen geformt haben, sind 

erforderlich, wenn wir die Evolution von ökologischen Interaktionen verstehen wollen. In der 

hier vorliegenden Dissertation wurden die molekularen Mechanismen untersucht, die zwei 

Pflanzen-Insekten-Interaktionssystemen unterliegen. Adaptive Mutationen, die Insekten 

erlauben neue Wirtspflanzen zu nutzen, können unterschiedliche molekulare Ursprünge 

haben. Im Allgemeinen wird angenommen, dass Phase I- und Phase II-Enzyme für die 

Entgiftung von Pflanzensekundärstoffen in Insekten notwendig sind, aber ein detailliertes 

Wissen und Verständnis ist noch nicht vorhanden.  

 

Eines der zwei untersuchten Systeme umfaßt die Weißlinge (Pieridae: Lepidoptera) und deren 

Wirtspflanzen, die Kreuzblütler (Brassicacae), die seit 80 Millionen Jahren in einem 

coevolutionären Wettlauf stehen.  Um das aktivierte Abwehrsystem der Kreuzblütler zu 

umgehen, besitzen die Raupen der Weißlinge ein einzigartiges Entgiftungsenzym, das 

sogenannte Nitrile-Specifier-Protein (NSP), welches die Hydrolyse der Glukosinolate zu 

Gunsten von Nitrtilen beeinflußt, so dass keine giftigen Isothiocyanate entstehen können. In 

der hier vorgelegten Arbeit werden die molekularen Grundlagen dieses neuen 

Entgiftungsenzyms untersucht. Es wurde herausgefunden, dass NSP zu einer 

insektspezifischen Genfamilie gehört, die NSP-like gene family benannt wurde. Mitglieder 

dieser Genfamilie bestehen aus einer variierenden Anzahl von Tandemwiederholungen, 

werden im Mitteldarm der Insekten exprimiert und entwickeln sich in einem kontinuierlich 

dynamischen "birth-death" Prozess. NSP und sein paraloges Gen MA sind durch 

Tandemduplikation aus dem Einzeldomän-Gen SDMA in den Weißlingen entstanden, die auf 

glukosinolat-haltigen Pflanzen fressen. Obwohl Genduplikation ein verbreiteter molekularer 

Mechanismus ist, um sich an neue Umwelten anzupassen, stellt die molekulare Evolution von 

NSP ein seltenes Beispiel für die nachgewiesene Neufunktionalisierung nach stattgefundener 

Genduplikation dar. Zukünftige Forschung an der Lokalisation des Proteins, der 

Wirkungsweise und der genomischen Lokalisation von NSP sind nötig, um die Mechanismen 

der Duplikation und Neufunktionalisierung aufzuklären, die die Entstehung von NSP und MA 

ermöglicht haben. 
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In Populationsstudien am Kleinen Kohlweißling Pieris rapae in vier verschiedenen 

Populationen von zwei Kontinenten wurde festgestellt, dass NSP eine unerwartet hohe 

Variation an Aminosäurepolymorphismen besitzt, die wenig bis keine Differenzierung 

zwischen den vier untersuchten Populationen aufweist. Die Aminosäureaustausche sind 

ungleichmäßig über das NSP Gen verteilt und Vergleiche von synonymen (dS) mit 

nichtsynonymen (dN) Austauschen zwischen 70 zufällig ausgewählten Genen von P. rapae 

und dem nahe verwandten Pieris brassicae (Großer Kohlweißling), zeigte, dass NSP sich 

schneller entwickelt als der genomische Durchschnitt. Vorläufige Versuche deuten 

Umsatzunterschiede zwischen unterschiedlichen NSP-Allelen an. Die Variabilität des NSP 

Gens könnte daher eine Antwort auf das hoch variable Repertoire an Glukosinolaten und 

Myrosinasen in Kreuzblütlern sein und P. rapae befähigen, an einer großen Vielzahl von 

Kreuzblütlern zu fressen. Zukünftige Forschung an der biochemische Wirkungsweise von 

NSP wird auch das Verständnis über die Variabilität diese Genes fördern.  

 

Das zweite untersuchte System umfaßt den polyphagen C-Falter Polygonia c-album. Im 

Gegensatz zu der nur auf glukosinolat-haltigen Pflanzen vorkommenden spezialisierten Raupe 

von P. rapae, frißt P. c-album an einer großen Vielfalt von Pflanzenarten und wird als 

Konsequenz auch auf eine Vielzahl von unterschiedlichen sekundären Pflanzenstoffen treffen. 

Eine differentielle Genexpressionsanalyse  der P. c-album Raupen nach Fraß auf 

verschiedenen Wirtspflanzen zeigte ein komplexes Bild der Genregulation. Viele Gene die in 

der Verdauung und dem Stoffwechsel involviert sind und auch ribosomale Proteine zeigten 

differentielle Regulation nach Fraß auf verschiedenen Pflanzen und geben dadurch zu 

erkennen, dass für jede Pflanzenart ein sehr spezifischer Satz an Genen reguliert werden muß. 

Es wurden jedoch keine differentiell regulierten Entgiftungsenzyme gefunden, was auf 

Entgiftungsenzyme mit einem breiten Wirkungsspektrum hindeuten könnte, welche 

kontinuierlich und unabhängig von der Wirtspflanze exprimiert werden. Es ist jedoch ein 

besseres Verständnis der in den Wirtspflanzen zu findenden Allelochemikalien und der 

genetischen Ressourcen von P. c-album nötig, um zu einer tieferen Einsicht der 

Anpassungsmechanismen dieser Art zu gelangen. 

 

Als Fazit sind Anpassungen and eine veränderliche Umwelt wichtig für beide untersuchte 

Schmetterlingsarten, aber der molekulare Maßstab der Anpassungen scheint sich zu 

unterscheiden. Währen P. rapae seine Entgiftungsmaschinerie mit dem Glukosinolat-
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Myrosinase-System der Kreuzblütler sehr fein abstimmt, benutzt P. c-album weitreichend 

aktive Entgiftungsenzyme, um die große Vielfalt an pflanzlichen Allelochemikalien zu 

bewältigen.  
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