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1 Introduction 

 

1.1 Soils as habitats 

Many of the soils of the world are affected by acidity, a problem resulting from mining, 

heavy fertilization with certain nutrients, acid rain, and weathering of sulfide minerals. 

The acidity can lead to protein denaturation and enzyme inhibition. Aside from the 

problems directly associated with low pH, acidification causes increased metal 

mobility. The ecological effects of such environmental stresses include loss of 

biodiversity and the impairment of live support functions such as decomposition and 

nutrient cycling. The ecological importance of biodiversity is complicated to 

determine, but it is commonly suggested that for ecosystem functioning under 

changing environmental conditions, it is preferable to try to maintain as high diversity 

as possible (Heinonsalo, 2004). Soils are heterogenic environments and provide a 

wide variety of niches for living organisms due to differences in physical, chemical 

and biological parameters (Rajala, 2008). The vegetation, microbes and animals in 

turn alter the soil through a wide range of biological activities. Microorganisms are 

useful indicators for environmental monitoring and ecological risk assessment 

because they are present in high amounts in all kinds of environments and play key 

roles in food webs and element cycles (Bloem & Breure, 2003). In their terrestrial 

environment, fungi are of fundamental importance as decomposers and plant 

symbionts (mycorrhizas), playing important roles in mineralization and other 

biogeochemical cycles. They are often dominant under acidic conditions and in soil 

they can comprise the largest pool of biomass. Their filamentous explorative growth 

habit and high surface area to mass ratio, leads to close interactions with soil 

particles and dissolved components. Fungus-metal interactions are an integral 

component of environmental cycling processes. The interactions of metals and their 

derivatives with fungi depend on the metal species, organisms and environment, 

while fungal metabolic activities can also influence speciation and mobility (Gadd & 

Sayer, 2000).  

Surface mineral extraction creates many substrates for primary succession and 

already covers approx. 1% of the Earth’s land. Mining has always been a part of 
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civilization and is a crucial part of the global economy. Mining removes vegetation 

and soils and creates mine pits, stockpiles of topsoil, tailings and slurry lagoons. An 

example for primary succession is the study site heap site at Kanigsberg in Thuringia 

a former uranium mining area. Additionally, surface and ground water as well as 

pollution results from mining activities. The unearthing of geological formations with 

its subsequent weathering and chemical alteration of minerals can cause the 

generation of acidic seepage waters, which percolate through soil and are distributed 

vertically and horizontally into adjacent habitats. Acid mining drainage (AMD) is often 

involved in such contamination (Kothe et al., 2005). In order to prevent AMD 

formation, remediation actions try to minimize pyrite (FeS2) oxidation. Some of these 

methods involve the control of the microflora, since the microbial community has 

been shown to be the single largest cause for AMD formation. Covers are used to 

limit the access of oxygen to the mine waste. This, in turn, will limit both the biological 

and chemical oxidation of the sulfides, which will substantially reduce the production 

of AMD. There are several types of soil covers: organic matter, forest or grassland 

vegetation and till. Vegetation has the ability to enhance the stability of mine wastes 

and decreases erosion (Fig. 1A.). At the same time, soil enhances microbial activity, 

especially at the surface of roots. The plant-root system is an effective way of 

introducing added energy supplies and microorganisms, and the use of the 

rhizosphere is being investigated as a treatment technology (Ernst, 2005). Plant roots 

may be linked by shared or common mycorrhizal networks (CMNs) that constitute 

pathways for the transfer of resources among plants. The movement of water by 

CMNs is potentially important to plant survival during drought, and that the functional 

ecophysiological traits of individual mycorrhizal fungi may be a component of this 

mechanism (Egerton-Warburton et al., 2007). In addition, fungi have capabilities for 

the disposal of recalcitrant soil contaminants and their fruitbodies are often found in 

mining areas (Fig. 1B.,C.). Increased attention to ecological interactions in soil could 

reduce costs and improve the efficacy of restoring a vegetation cover to land 

impacted by heavy metals or other disturbances. This is not only true for grassland 

ecosystems, but also for forests.  

Forest management and harvesting operations often provide disturbance, and the 

revegetation initiates secondary succession (Smith & Read, 1997; van Schöll et al., 

2008). One example is the study site near Greiz, in Eastern Thuringia (Fig. 2A.), 
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Figure 1: A. The former heap site at Kanigsberg (Thuringia) afte r waste rock removal. Fruitbodys of ECM 
fungi found at the site: B. Pisolithus tinctorius and C.  Paxillus involutus. 

where intensive silvicultural practices and cutting were followed by reforestation with 

a mixed forest including oak (Quercus robur) and some birches (Betula pendula) 

(Engler,1998). The soil is a podzol characterized by four distinct soil horizons: a dark-

coloured organic (O) horizon underlayed by a white/ash-coloured eluvial (E) horizon, 

overlying a usually dark coloured illuvial (B) horizon on top of the unaltered parent 

(C) material (van Schöll et al., 2008) (Fig. 2B). Samples taken from 0-10 cm depth 

correspond to organic horizons noted with H and from 10-20 cm depth from the 

inorganic horizon were noted with A. Podzol soils are typical for relatively poor sites 

where concentrations of available soil nutrients are highly limited and the pH is low. 

Soil acidification may be viewed as a decrease in the base saturation of the soil: in 

other words, a decrease in the proportion of the cation exchange capacity satisfied 

by basic cations and a corresponding increase in the proportion of exchangeable 

hydrogen and aluminum. However, some trees are adapted to these conditions and 

have developed mechanisms to survive and successfully compete in these 

environments. The foundation of this success is that such plants allocate 

photosynthetically fixed carbon compounds to root symbiotic fungi, which help the 

plants to mobilize nutrients in these recalcitrant soils. 

 Discussions of succession and resource availability generally involve semantic 

difficulties. It is recommended to distinguish between primary and secondary 

succession as well as between resource supply and demand. 
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Figure 2: A. Quercus robur forest at Greiz (Thuringia) after clear cut of con iferous forest and reforestation 
of mixed oak forest. B. Podzol soil profile: O=organ ic horizon, E=eluvial, B=illuvial horizon, C=parent 

material. 

 

As a control, uncontaminated land without disturbance at Jenzig forest, closed to 

Jena, was used as a third study site (Fig. 3). All three sites were mixed oak forests 

providing a habitat for ectomycorrhizal fungi, which were investigated for impact on 

disturbances. 

 

 

Figure 3: Quercus robur forest at Jenzig (Jena, Thuringia). 
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1.2  Ectomycorrhiza 

The mycorrhizal symbiosis is a common association between plant roots and fungi; in 

nature the majority of terrestrial plant roots are colonized by symbiotic fungi forming 

mycorrhizas (Smith & Read, 1997). The term “mycorrhiza” was coined by Frank in 

1885. In mutual mycorrhizal symbiosis, the fungus takes up nutrients effectively from 

the soil and translocates parts of them to the host plant. In return, the host plant 

supports mycorrhizal fungi by delivering up to 39% photosynthesized carbohydrates 

(Smith & Read, 1997).  

Ectomycorrhiza (ECM) is of special importance for boreal woodlands. ECM is formed 

between c. 5000-6000 species of fungi in the subphylum Basidiomycotina (Kendrick, 

1992, Molina et al., 1992), some Ascomycotina (e.g. members of Tuberales) and two 

members from Zygomycotina with the fine roots of c. 2000 species of plants, 

including important components of forest ecosystems worldwide, e.g. members of the 

Pinaceae, Fagaceae, Betulaceae and Myrtaceae (Kendrick, 1992), and also some 

monocotyledons and ferns (Wilcox, 1996). Usually, the fungal hyphae grow between 

root cortical cells producing a netlike structure called the Hartig’ net (Fig. 4). Many 

ECM also have a sheath, or mantle, of fungal tissue that may completely cover the 

short root. Contiguous with the mantle are hyphal strands that extend into the soil. 

Often the hyphal strands will aggregate to form rhizomorphs that may be visible to 

the unaided eye. These hyphae function in the absorption and translocation of 

inorganic nutrients and water, but also release nutrients from litter layers by 

production of enzymes involved in mineralization of organic matter or low molecular 

organic acids involved in weathering of minerals. 

The diagnostic feature of ECM is a heterorrhizic system, comprised of two kinds of 

roots; long roots of potentially unlimited extension and short roots with restricted 

growth and life span (Fig. 4A.). Root hairs are absent and these roots are completely 

enveloped by a fungal mantle along the length and apex. Mycorrhizal structures are 

not static organs but change ontogenetically from a juvenile to a mature state and 

finally senescence (Smith & Read, 1997).  

The different structures of ectomycorrhiza can be used to classify and identify the 

mycorrhizal fungi. The features may differ between different host associations. The 

mantle may be smooth or with radiating hyphae, which enter into soil to increase the 
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absorptive surface of short roots. Different ECM fungi form distinctive mantles of 

varying thickness, texture and colour. For example, the mantle formed by Lactarius 

subericatus ECM consists of a pseudoparenchymatous outer mantle and a 

plectenchymatous inner mantle with branched laticifers while Cenococcum 

geophilum mantle consists of horizontally arranged palisade cells, alternating with 

groups of small pseudoparenchymatous cells (Fig. 4D.). When the hyphae 

composing the mantle can not any longer be recognized, the structure is called a 

pseudoparenchyma or synnema. But when hyphae maintain their identity and can 

still be recognized, the structure is called plectenchyma or prosenchyma. Mantle 

surface can range from thin to profuse and texture can vary from smooth, cottony, 

velvety or warty to granular. The hyphae radiating from the mantle surface may be 

simple or branched, bearing simple or clamped septae; the colour of these hyphae 

may be hyaline, black or orange, yellow or brown. The colour of mantle is mainly due 

to coloured radiating hyphae. In general, the fine structure of the mantle is similar to 

that of basidiomata hyphae, helping the identification of ECM types.  

 

 

Figure 4: Cenoccocum geophilum + Quercus robur ECM. A. Heteror rhizic system with short roots. B. 
Cross-section with: hyphal mantle (M), intercellula r hyphae of the fully developed Hartig’ net (Hn), 

endodermis (E), and central stele (S). C. Lobed Harti g’ net hyphae. D. Micrograph of the mantle formed b y 
C. geophilum consisting of horizontally arraged pal isade cells (P) alternating with groups of small 

pseudoparenchymatous cells (s) and lobed Hartig’ ne t hyphae. 
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Hartig’ net development starts when hyphae come in contact with unsuberized living 

cortical or epidermal cells and is characterized by changes of hyphal growth and 

morphology. The diameter of the hyphae may be greater or smaller than those of the 

hyphal sheath. Hyphae are oriented transversely to the root axis and begin to branch 

out irregularly. The hyphae penetrate in the direction of the endodermis-growth and 

longitudinal direction through intercellular spaces is rather restricted. The transversal 

growth direction is surley an advantage for nutrient transport between the 

endodermis and the hyphal mantle exploiting the shortest way between both. The 

transversal growth direction also ensures hyphal establishment in the intercellular 

spaces of cortex cells of a suitable developmental space. Hartig’ net has been 

described to be “lames fungique” and examination of its structure by electron 

microscopically reveals that it consists of complicated fan-like, palmetti or labyrinth 

systems which provide a very large surface of contact between cells of the two 

symbionts (Tarkka, 2000). 

Hormone production by ECM is responsible for the club-shaped roots that are typical 

of this association. The soil surrounding ECM roots, mycorrhizosphere, has a rich 

microbe flora. The microbial diversity depends on plant and fungal partners of the 

ECM association. The ECM associated bacteria affect mycorrhizal functioning in 

several ways including the regulation of fungal growth, host root-symbiotic fungus 

recognition events, nutrient mineralization, and protection against pathogens 

(Duponnois et al., 1991). The interplay between symbiotic fungi and soil positively 

influences the biology of the fungus and the host plant. This leads to selection of 

plant beneficial bacterial strains in mycorrhizas, and the mycorrhizosphere. 

Enhanced mycorrhiza formation and the beneficial bacteria have profound positive 

influences on plant nutrition, pathogen-, and stress resistance (Lehr et al., 2007).  

For further ecological investigations, Agerer (2002) proposed a coding system with 

reference to ecologically important features, to ensure comparability of different 

mycorrhizal studies. These characters include colour, occurrence and abundance of 

cystidia or lactifers, emanating hyphae and rhizomorphs, shape and size of cells in 

mantle layers, shape and diameter of emanating hyphae, cystidia, clamp connections 

and rhizomorphs, and thickness of their cell walls.  
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1.3 Interaction of ectomycorrhizal fungi with their  environment 

ECM fungi occur in forests where low litter quality and low decomposition and 

mineralization rates cause N and P limitation (Baxter & Dighton, 2005). Plants 

provided with sufficient amount of inorganic nutrients are able to grow without 

mycorrhizae, but in the field, non-mycorrhizal seedlings do not survive as well as 

mycorrhizal seedlings (Marx et al., 1977). ECM fungi increase uptake of dissolved 

nutrients, and can also mobilize nutrients (mainly N, P, but also micronutrients) by 

extracellular enzymes, from organic to inorganic sources. Through excretion of 

organic acids they capture nutrients (Wallander, 2000; Landeweert et al., 2001; van 

Schöll, 2008), aided by plant carbohydrates to enhance metabolic activity.  

In addition, mycorrhizal fungi contribute to amelioration of stress experienced by their 

plant hosts, including metal toxicity, oxidative stress, water stress, and effects of soil 

acidification (Colpaert, 2008; Finlay et al., 2008; van Schöll et al., 2008). Mechanical 

protection and antibiotic production could play a role to fulfil this function. 

Fluctuations in the availability of water commonly occur in natural environments and 

drought periods can cause considerable stress symptoms for trees (Garbaye, 2000). 

Mycorrhizal root tips, which are typically ensheathed by mantle and which often are 

connected to extensive network of extraradical or extramatrical mycelium with or 

without rhizomorphs, are much less sensitive to dry soil conditions. The mycorrhizal 

association results in altered roots, where the presence of the thick external sheath 

affords physical protection. Thus, ECM also protect host plant roots against root 

pathogens and root herbivorous soil microfauna. Nutrient deficiencies change ECM 

seedling exudation patterns of organic acids and thus their potential to mobilize 

cations from minerals (van Schöll et al., 2008). Al is a major component of most soil 

mineral grains. Consequently, mineral weathering will release Al in the soil solution of 

the mineral soil horizons. In soils with a pH below 4, a situation typical for podzol 

soils, dissolved Al is present mainly in the form of the phytotoxic Al3+ (Kinraide, 

1991), and increased weathering will contribute to Al toxicity. In such soils, the Al 

toxicity, as well as of other toxic metals, may be reduced by increased production of 

chelating agents.  

Mechanisms of metal tolerance have been reviewed by Colpaert (2008). Extracellular 

mechanisms such as chelation and cell-wall binding as well as cellular mechanisms 
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such as binding to (non)-protein thiols and transport into intracellular compartments 

play a role in metal homeostasis of ECM fungi (Fig. 5). Reduced uptake of metals 

into the cytosol might be achieved by extracellular chelation or precipitation of metals 

with organic compounds, mostly acids such as citrate and oxalate. 

 

Figure 5: Mechanisms and cellular location of key fungal tran sformations of metals and metalloids. The 
list of interactions is not exhausive, and consider able differences may occur between different specie s 

and strains. The location of some processes, especi ally certain sequestration and tranformation 
reactions, is still uncertain, and this diagram doe s not include the possible involvement of other 
organelles, e.g., mitochondria, endoplasmic reticul um, and nucleus, in metal homeostasis and 

compartmentation (Gadd & Sayer, 2000).  

 

Fomina et al. (2005) investigated solubilization of toxic metal minerals and metal 

tolerance by ericoid and ECM fungi. Both oxalic acid and chelation are involved in the 

dissolution of depleted uranium corrosion products and transformation of metallic 

uranium into meta-autunite minerals, which are capable of long-term uranium 

retention (Fomina et al., 2008). Lanfranco et al. (2002) showed that changes in 

hyphal morphology occur when an ericoid mycorrhiza-forming ascomycete is treated 
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with millimolar concentrations of Zn. This led to apical swellings and increased 

branching in the subapical parts. 

Toxic metals may cause oxidative stress and several studies of mycorrhizal fungal 

responses suggested that the fungi may be able to regulate genes providing 

protection against reactive oxygen species (ROS). Lanfranco et al. (2005) present 

evidence of a functional arbuscular mycorrhizal CuZn superoxide dismutase which 

may provide protection against localized host defence responses involving ROS. 

Other studies (Schützendübel & Polle, 2002) suggest that ECM fungi improve 

protection against toxic metal-induced oxidative stress through strongly induced 

glutathione synthesis.  

 

1.4 Diversity of ectomycorrhizal fungi 

ECM fungi occur in remarkably species-rich assemblages. ECM fungal communities 

mostly comprise few, frequently occurring species and many more rare species 

(Taylor, 2002; Buée et al., 2005; Koide et al., 2005). Species may spatially partition 

the forest floor (Dickie et al., 2002; Genney et al., 2006). Many ECM community 

studies have focussed on mycorrhizas in the humus horizon. In recent years some 

community-level studies in boreal forests used modern molecular methodology 

highlighted the vertical distribution of ECM (Dickie et al., 2002; Rosling et al., 2003). 

ECM communities are found to be vertically distributed and some ECM fungal 

species are restricted to the mineral soil (Landeweert et al., 2001; Rosling et al., 

2003; Tedersoo et al., 2003). Numerous factors may affect the diversity of an ECM 

community. 

Formation of an ECM symbiosis in forest soil depends on host species, age and 

vigour of the trees, edaphic and environmental conditions, availability of fungal 

inoculum, competition, microflora and microfauna. Anthropogenic stress, site history, 

habitat size and degree of isolation are also likely to affect the ECM community 

structure (Rajala, 2008). Ishida et al. (2007) made a significant contribution to our 

understanding of niche differentiation by showing that cooccurring host species have 

distinct mycorrhizal communities, reflecting both host taxonomy and, arguably, 

successional status. Increased plant diversity is likely to create more heterogeneous 
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litter input, which may create opportunities for niche differentiation by ECM fungi. 

Bruns (1995) hypothesized that in a monoculture forest stand, ECM diversity might 

result from resource partitioning, soil disturbance and competitive interactions 

between ECM fungal species. Mycorrhizal fungi compete for two general classes of 

resources: host-derived carbon and soil or detritus derived mineral nutrients. Both 

types of resources are heterogeneous in space (e.g., soil depth, distance from tree) 

and time (e.g., season, host successional series). Some species seem to be 

distributed accordingly, but the question of how widespread these patterns are 

remains largely unanswered. Small-scale natural disturbances that sever roots, mix 

soil horizons and litter horizons, or change local pH and nutrient availability, are likely 

to create additional habitats for ECM fungi.  

During the last decades, a number of reports have documented a decrease in 

species diversity and abundance of sporocarps of ECM fungi in northwestern and 

central Europe. Especially in forests on poor soils, while disappearance of 

specialized species has locally been noted, some generalist species remained. 

Hydnaceous, chantarelloid fungi and species of the genera Cortinarius and 

Tricholoma have been most sensitive, which suggests that the decline of ECM fungi 

is not only a consequence of decreasing tree vitality. The most important cause for 

this dramatic decline has been found to be atmospheric nitrogen deposition, with an 

additional role for acidication (Lilleskov et al., 2001). 

From the standpoint of ecosystem function, taxonomic diversity is only relevant if it 

reflects functional diversity. Functional differences between ECM fungi include 

differences in nutrient cycling, symbiotic capabilities, ability to proliferate, and to 

tolerate drought and heavy metal stress. Different morphologies and physiologies of 

ECM fungi sum up to the total benefit of symbiosis for the host plant, depend on the 

infection pattern of its total root system and the extend of infection by individual 

species. The ECM fungi, in turn, are sensitive to variation in soil nutrient status, and 

the reduced mycorrhiza formation makes them more vulnerable to environmental 

stress and pathogens. Interpretation of the functional significance of a change in 

ECM community diversity to the host plants and to the entire ecosystem is currently 

constrained by the lack of knowledge concerning the functional capabilities under 

field conditions of most ECM taxa. 
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1.5  Functional morphology: hyphae, rhizomorphs and  dispersal 

Hyphae extend from the mantle to facilitate nutrient solubilization and transport. In 

the hyphae, transport occurs by motile tubular vacuoles that can move material 

across long distances (Tarkka, 2000). In addition to normal, morphologically 

undistinct hyphae, most of the basidiomycete ECM fungi can also form rhizomorphs, 

linear aggregates of fungal hyphae containing large central “vessel” hyphae that may 

represent significant extensions to the root system (Duddrigde et al., 1980; Rousseau 

et al., 1994). At the onset of rhizomorph formation, the leading hyphae grow in 

parallel approaching each other, they form linear aggregates, and allow the formation 

of branches and intercellular bridges (Cairney & Burke, 1994). After the hight tubular 

aggregate of hyphae is formed, cellular contents of the central hyphae disappears 

and septal cross-walls break down, leading to vessel hypha formation (Agerer, 1992). 

The vessel hyphae have been implicated for acropetal C transport, and the living 

cortical hyphae for transport of P and other nutrients (Cairney & Burke, 1994). 

Studies by Wallander et al. (2002) using PIXE analysis of element contents of fungal 

rhizomorphs also suggested that Rhizopogon species had the ability to mobilize 

significant amounts of P and K from the minerals apatite and biotite and probably 

play a significant role in transporting these to the trees. The development and 

differentiation of the extramatrical mycelium may represent important predictive 

features relevant to the ecological classification of ECM.  

Agerer et al. (2001) suggested that in some cases form and function of ECM could 

be related: smooth mantles and uptake of organic nutrients; rhizomorphs and water–

uptake under dry conditions, etc. Five different exploration types of ECM are 

distinguished based on the amount of emanating hyphae or the presence and 

differentiation of rhizomorphs (Fig. 6). Field evidence for such differences was 

obtained by Dighon et al. (1990) for mycorrhizal fungi of birch (Betula pendula and B. 

pubescens). They showed that three taxa of ECM fungi differed in phosphorus 

uptake rate, with a species of Hebeloma sp. being much more efficient than species 

of Laccaria sp. or Lactarius sp.. However, it is not clear how many species have 

unique or overlapping physiological roles.  

ECM fungi can disperse and form new mycorrhizae either via living hyphal 

connections, special resting structures like sclerotia, or spores (Brundrett, 1991). 
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Living hyphae, which form parts of the plant-supported hyphal network, are probably 

the most common source of inoculum (Dahlberg & Stenlid, 1995). Within a few years 

after clear-cut logging, the remaining stumps and dying roots have been shown to 

support living hyphae of ECM fungi (Hagerman et al., 1999). 

 

 

Figure 6: Schematic drawings of different exploration strategi es, represented by cross-sections of ECM 
and the extramatrical mycelium. (1) Contact explora tion, (2) short distance exploration, (3a, b) mediu m 

distance- fringe and -mat exploration, (3c) medium- distance smooth exploration, (4) long-distance 
exploration, (5) pick-a-back exploration, shown as mycorrhiza and as soil hyphae in contact and intrud ing 

into rhizomorphs and ECM of a long distance explorat ion type ECM. All figures are to scale (Rh 
rhizomorph, – rhizomorph lacking, A–F organization types of rhizomorphs (Agerer, 2001).  

Spores and sclerotia can survive in soil for a very long time and can be activated by 

suitable conditions, e.g. increased soil moisture, heat shock after forest fire or 

stimulatory compounds in root exudates. Spore activation is followed by spore 

germination. The emanating primary monokaryotic mycelium of a basidiospore may 

already be capable of forming mycorrhizae (Kope & Fortin, 1990), but normally 

mycorrhiza formation take place with dikaryotic mycelium, formed after mating of two 

sexually compatible primary mycelia. Little is known about forms of mycelium 

responsible of mycorrhiza formation by Ascomycetes, which are numerous in ECM 

communities (e.g. Tedersoo et al., 2003). Some fungal species are known to spread 

successfully via spores while others form mycorrhizae preferentially via living 

connections or sclerotia (Brundrett, 1991). Early species are characterized mainly by 
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reproduction by spores, while late species by clonal expansion (Sarah et al., 2002). 

Mainly, medium and long distance types of exploration are found by early species, 

while mainly contact and short distance types are found by late species (Agerer, 

2001).  

 

1.6  Investigation of ectomycorrhizal fungi 

ECM fungal identification has traditionally been based on observations on the 

morphological characters of mycorrhizal root tips (e.g. Agerer, 1987-2006). 

Additionally, sequencing of the internal transcribed spacer (ITS) region of ribosomal 

DNA (rDNA) is commonly used for identification of ECM fungi (Horton & Bruns, 

2001). The ITS region between the 18S rDNA and 28S rDNA genes consists of two 

noncoding spacers, ITS1 and ITS2, which are separated by the 5.8S rDNA gene 

(Fig. 7). The interspecific variation in the ITS region is high and variation among 

individual rDNA repeats can sometimes be observed. Two standard primers 

ITS1+ITS4 (White et al., 1990), several taxon-specific primers have been described 

that allow selective amplification of fungal sequences. 

 

 

Figure 7: The scheme of  ITS region of rDNA.  

Sampling strategies are of essential importance to ECM community investigation 

(Taylor, 2002). Sound sampling strategy, statistical analyses and multiple hypothesis 

testing greatly improve the quality of biodiversity studies (Morris et al., 2002). In 

addition, the inherent difficulties in defining the identity of ‘species’, ‘individual’ and 

‘population’ or ‘community’ in the case of ECM fungi complicate matters (Taylor, 

2002). Temporal variation in ECM community structures (Kjøller, 2006; Koide et al., 

2007), spatially heterogenity (Tedersoo et al., 2003; Genney et al., 2006) imply that 

the number and size of collected soil samples may have an impact on the observed 
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ECM community structure (Menkis et al., 2005). Commonly, the investigation of ECM 

communities is restricted to the organic soil horizon. Although organic soil, along with 

the uppermost mineral horizon, usually has the highest living fine root density and 

biomass (Rosling et al., 2003), mineral soil may also contain many root tips. As ECM 

communities are found to be vertically distributed and some ECM fungal species are 

restricted to the mineral soil (Landeweert et al., 2001; Rosling et al., 2003; Tedersoo 

et al., 2003), sampling mycorrhizas also from mineral soil reveals a more complete 

picture of the ECM community. Only such broad investigations will allow to develop 

saturated databases of fungal community composition, structure and spatio-temporal 

dynamics in relation to variable resources and conditions. This requires the 

development of quantitative models of species–environment relationships built on 

several key elements: appropriate study designs, community data, environmental 

data and models (Lilleskov & Parrent, 2007). The value of an indicator is affected not 

only by stress factors, but also by soil type, land-use and vegetation.  

 

1.7 Aims of the study  

Mycological studies are rare in post mining landscapes, and it is necessary to 

improve our knowledge about the succession of ECM fungi on reclamation sites 

(Gebhardt et al., 2007; Buscot et al., 2000). In order to understand the functional 

differences between different fungal symbionts and the reasons for changes in ECM 

community structure, the relationship between ECM diversity and exploration types of 

ECM was investigated. In a succession gradient, three different Quercus robur test 

sites with high heterogeneity of soil parameters (heavy metals, essential nutrients 

and pH) and land use (uranium mining, forest harvesting and reforestation) were 

examined. The sites represented different stages of succession and were 

investigated at tree, community and ecosystem level. The sites Kanigsberg-Wismut 

(a former uranium mining area, primary succession young forest grown on naturally 

charged land), Greiz (secondary succession young forest grown on contaminated 

land after clear-cut and reforestation), and Jenzig-Jena (uncontaminated area, 

primary succession used as control) were selected to answer four main questions: 
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1) Which ECM communites can be observed in a mining area? Are ECM fungi that 

grow in primary succession able to grow on contaminated land? What is the situation 

of ECM communities in secondary succession?  

 2) Does the heavy metal distribution explaine the heterogeneity in ECM 

communities? Does the communitiy composition change with heavy metals 

concentrations? Can the environmental available fraction of esential and heavy 

metals be used as a tool to assess correlation with ECM? 

3) Can the classification of ECM in exploration types be used as a functional tool in 

experiments at large scales?  

4) It is possible to develop a general predictive model of ECM fungal community-

environment relationships? 
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2 Material and methods 

 

2.1 Sampling sites 

Three young Quercus robur forests in Eastern Thuringia in different stages of 

succession have been selected.  

One of the sampling sites is Kanigsberg, a former uranium mining site, situated near 

Ronneburg, Thuringia, Germany (50 49 48 4; 12 09 358; 334 m Gauss-Krüger 

coordinates, Potsdam-date). At Kanigsberg, remediation required removal of the 

heap and covering with 30-40 cm top soil. The site was reforested as a mixed forest 

including Quercus robur, Fagus sp., Fraxinus sp. and Larix sp. Multi-heavy metal 

contamination, low pH, sulphate, drought, lower weathering rates are lead to 

ecosystem disturbance.  

The second forest, situated close to the city of Greiz (45 12 8 37; 56 15 900; 305 m), 

was established after clear-cutting a spruce forest. A mixed Quercus robur, Fagus 

sp., forest was established providing the initiation of secondary succession. The 

acidic pH and high concentration of manganese are common and represent typical 

sites on black schist (Engler, 1998).  

The third location, Jenzig, is situated near Jena, Thuringia, Germany (44 74 28 5 ; 56 

44 93 0; 357 m) and consists of a mixted forest (Fagus sp. and Quercus robur) on 

limestone and serves as a non-contaminated control area (primary succession).  

 

2.2  Soil sampling and morphotyping 

The fungal community structure associated with the root system was determined by 

morphotyping, strain isolation and sequencing of ITS. Direct DNA extraction from soil 

samples was taken from extensive and intensive sampled probes of root tips. 

Extensive sampling was performed with two samples of 4-10 root tips from each of 10-

11 Quercus robur trees an all samplig sites in August, November 2004 and in March 

2005. The intensive sampling was performed with 100 samples around 19 selected 

Quercus robur trees respectively in Kanigsberg and Jenzig in June-July 2006 and in 
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Kanigsberg and Greiz in November 2006.  

To obtain ECM samples representative for the major rooting zone, soil cores (50 cm 

diameter, 20 cm depth) from the organic H horizons and the inorganic A-horizon 

were taken on a half circle along the radius of the crown diameter of each tree. 

Samples were taken more than 2 m distant from one another in order to avoid 

autocorrelation (Tedersoo et al., 2006). The samples were stored in plastic bags at 

5°C in the dark until processing. Cleaning was perf ormed by soaking the samples in 

tap water (24 h, 5°C), followed by selecting oak ro ots. After washing in tap water, 20 

single roots per sample were cut into segments of 30 cm in length and root tips 

chosen at random using coordinates derived from random number tables present in 

the target squares were selected. Living root tips and ECM morphotypes of each 

subsample were isolated, categorized and separated based on their morphology. 

Their total abundance was determined with the aid of a dissecting microscope 

(Stemi, 2000-C) following Agerer (1987-2006). A subsample of each ECM 

morphotype was fixed in cacodylat buffer containing 2% glutaraldehyde and 4% 

formaldehyde. Mantle, hyphae and rhizomorph preparations were used to identify the 

ECM to genus or, if possible, to species level, using a light microscope (Axioplan, 

Carl Zeiss). Subsequently, ECM were classified into exploration types (Agerer, 2001; 

1987-2006). The morphotypes which did not match any of those present in the 

reference were termed unidentified, grouped accordingly to morphological characters 

and given a descriptive name (e.g. “brown”, “orange”, etc.). Following the 

examination, up to five mycorrhizal root tips of each morphotype were taken from 

each root system and placed separately in 1.5-ml centrifuge tubes, labelled and 

stored at −80°C for direct ITS identification. To e valuate the specific distribution of 

exploration types within soil horizons, genera with more than one species have been 

grouped by their genus, and others by species. The relative abundance (number of 

living ECM per meter of the finest root length) and the relative genus/species 

abundance in a specific soil horizon (proportion of ECM expressed as percentage of 

each genus/species per total number of living mycorrhizal root tips) were recorded. 

 

2.3 Identifying ECM fungi by DNA-based methods  

To further facilitate the investigation of community structure, sequencing of ITS was 
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used. The isolation of fungal cultures was performed from individual mycorrhizal root 

tips collected during 2004-2005 and included multiple representatives of 

morphotypes recognized. For rare morphotypes represented by only one or two root 

tips, ITS sequencing was performed. For isolation, root tips were sterilized in 33% 

hydrogen peroxide for 15 to 60 s, rinsed three times in sterile deionised water, plated 

onto modified Melin Norkrans medium (Kottke et al., 1987) and incubated at room 

temperature in the dark. Dishes were checked daily and emerging cultures were 

transferred onto fresh agar medium. Fungal mycelia were examined using a Stemi 

2000C stereomicroscope, equipped with 5 fold magnification. The DNA of growing 

mycelia was extracted (Cenis, 1992) and ITS fragments were amplified by PCR using 

specific primers ITS 1 and ITS 4 (White et al., 1990). The ITS fragments of 600-800 

bp (pDrive vector, Qiagen) were cloned using Escherichia coli K12DH5α (GibroLife 

Technologies, Karlsruhe). The sequences of the cloned fragments were compared to 

GenBank entries to identify the species (http://www.ncbi.nlm.nih.gov/ and 

http://unite.zbi.ee). For direct sequencing, DNA of individual root tips was extracted 

from one to five ectomycorrhizal root tips (frozen and kept in liquid nitrogen) using the 

Power Soil DNA Isolation Kit (Mobio, USA). ITS PCR was performed and the 

resulting ITS fragments of 600-800 bp were extracted from the gel, cloned and 

sequenced. 

 

2.4 Soil composition 

Soil from each horizon was dried at room temperature, and sieved (< 2 mm). 25 ml of 

1 M KCl were given to 10 g of soil,  thoroughly stirred, incubated for 1 h, and the pH 

of the supernatant was measured (inoLab pH 720, WTW GmbH, Weilheim, 

Germany). Soil pH and organic matter have been determined by usual methods 

(Neagoe et al., 2008). Heavy metal and essential elements (As, Ba, Cd, Co, Cr, Cs, 

Cu, Ni, P, Pb, Rb, S, Sr, U and Zn) were analyzed for 23 selected soil samples using 

ICP-MS (PQ3-S-Option, VG Elemental, UK) or ICP-OES (Spectroflame, Spectro, 

Germany) after sequential extraction (after Zeien & Brümmer, 1989) (Tab. 1).  

For sequential extraction the reagents were used with 2 g of soil. During each 

extraction, an aliquot of soil suspension was taken. After extraction, the suspension 
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was centrifuged and the resulting supernatant solution was decanted and filtered. 

 

Table 1: Sequential extraction procedure for heavy metal asso ciations used in the present study (after 
Zeien & Brümmer, 1989) 

Step  Fraction  
 

Extraction reagent  Extraction conditions  

I Mobile  1 M NH4NO3 Shaken at RT for 24 h 

II 
 
 

Exchangeable fraction 1 M CH3COONH4 (pH 6) Shaken at RT for 24 h 

III 
 

Mn oxides 0.1 M NH2OH–HCl + 1 
M CH3COONH4 (pH 6) 

Shaken at RT for 30 
min 

IV 
 
 

Organic 0.025 M NH4–EDTA (pH 
4.6) 

Shaken at RT for 90 
min 

V 
 
 

Amorphous Fe oxides 0.2 M NH4OOCCOONH4 
(pH 3.25) 

Shaken at RT in the 
dark for 4 h (twice) 
 

VI 
 

Crystalline Fe oxides 0.1 M ascorbic acid in 
0.2 M NH4OOCCOONH4 
(pH 3.25) 

Shaken at 96 °C in the 
dark for 30 min (twice) 
 

VII Residual Total element content of 
the residual fraction 
detected by aqua regia 
extraction 

 

 

The summation of the mobile (1st) and the exchangeable (2nd) fractions can be used 

to assess the environmentally available components. The fractions bound to Mn 

oxides (3rd) and to organic material (4th) are supposed to represent the potentially 

mobile component under changing environmental conditions, while the more stable 

associations with Fe oxides (5th and 6th) represent both anthropogenic and geogenic 

components, the residual (7th) fraction is geogenic. 

 

2.5 Data processing 

The relative abundance needed for computing the diversity indices was based on unit 

of density on a unit of root length at α and β level, and based on density on unit of 

soil volume at γ level (in order to allow comparison with other studies at γ level, 

notably Staudenrausch et al., 2005; Iordache & Bodescu, 2005). 
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For each sampled tree, separately for humic and inorganic horizons were calculated 

the number of ECM species/tree, the Berger Parker index (maximum number of 

morphotypes in one species/total number of morphotypes) and the CV (coefficient of 

variation defined as the ratio of the standard deviation and average) of species 

abundances around trees, and its average for all species present at a tree (AvCVSp). 

For each forest, additionally, was computed the average of AvCVSp using the code 

around trees and its CV. CVa_t reflects how different individual trees are with respect 

to the heterogeneity of ECM species distribution around them. It was also calculated 

the CV of ECM abundances between trees (b_t) for each fungal species, and the 

average of the CV of ECM abundance between trees and its CV. CVb_t reflect how 

different are the species from the point of view of the distribution between trees 

(larger it is, more different are the species from the point of view of the pattern of 

distribution between trees). The Soerensen coefficient was used for comparing the 

similarity between trees. 

To compare the ECM richness between forests rarefaction (Richard et al., 2005; 

Tedersoo et al., 2006; Midgley et al., 2007) and diversity indices were used (Ishida et 

al., 2007). Mao Tau estimates of the observed species, three estimators of species 

richness Chao2, Jacknife2 and bootstrap at forest level (humic and inorganic 

horizons pooled) were computed using the program EstimateS 8.0 (Colwell, 2005). 

The same program was used for computing Fisher’s alpha and Shannon index of the 

diversity separately for the humic and inorganic horizons at forest level. To reduce 

the number of control variables, standing for metals, multivariate techniques, mainly 

principal component analyses (PCA) (e.g. Astorga Espana et al., 2007; Loska & 

Wiechula, 2003) were executed. In this study for reduction of metals dimensionality 

the PCA (Canoco for Windows version 4.54) were used, after verifying its applicability 

with Barttlet’s sphericity test (Statistica software ‘99 edition). PCA was applied to 

several combinations of metal concentrations with different mobilities. For testing 

similarity of the distribution of metals in soil a hierarchical cluster analysis was 

performed according to Ward’s method (Ward, 1983) using Statistica software ‘99 

edition. The ECM data were analyzed for the underlying gradient under the 

assumption of unimodal model by detrended correspondence analyses (DCA, in two 

variants: detrending by first order polynomials and by segments, log transformation of 

species data). The underlying gradient restricted by the metals (previously reduced 
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dimensionally by PCA) was inspected by hybrid detrended canonical correspondence 

analyses (hDCCA, detrending by second order polynomials, Hill's scaling focused on 

inter-species distances, log transformation of species data, Monte Carlo permutation 

test with 499 unrestricted permutations under full model. The first two eigenvalues 

reported are canonical, the others no). At Greiz, canonical ordination techniques 

(CCA) was designed to detect the patterns of variation in data that can be explained 

best by the observed environmental variables. The resulting ordination diagram 

expresses not only a pattern of variation in species composition but also the main 

relationships between the species and each of the environmental variables (Jongman 

et al., 1995). These multivariate analyses were performed with Canoco for Windows 

version 4.54. 

 

2.6 Heavy metal tolerance 

To investigate the effects of heavy metals on fungi, an experiment was performed 

with different concentrations of heavy metals. The heavy metals chromium, copper, 

nickel and lead in concentrations of 0 mM, 1.5 mM, 3 mM, 4 mM, 5 mM and 6 mM 

were selected. For each heavy metal and for each concentration, three parallel 

samples were used. Hymenoscyphus sp. isolate, originating from the Kanigsberg, 

was selected to be used in this experiment. 
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3 Results 

 

3.1 Improved framework for the ecosystem approach 

A key issue for ensuring the success of the ecosystem approach is to identify the 

ecosystem’s structure at the appropriate time and space scale. For instance, if there 

is one ECM community in a forest, then it is meaningful to estimate ECM richness 

and diversity directly at forest level (α diversity), but if there is an assemblage of ECM 

communities, then the diversity of forest at three levels should be characterized (α, β 

and γ). In the first case, the succession processes take place directly at forest level, 

in the second case the dynamic of diversity at forest level reflects succession 

processes occurring in elementary communities, propagating bottom-up at higher 

hierarchical levels, and constrained top-down by meta-community level processes 

(e.g. dispersion mechanisms as controlled by forest level vegetation dynamic or 

contamination). 

A methodologically relevant definition of the basic unit at which to consider diversity 

(a development from the elementary community notion) is provided by Pahl-Vostl 

(1995) under the name of ‘trophic-dynamic module’ (TDM). A TDM is defined as the 

groups of biological populations having 1) rates of biomass cycling (inversely 

correlated with lifetime of the individuals) of the same order of the magnitude, 2) the 

same location in space and time and 3) the role of each species in the food web. 

Application of criterion 1 leads to dynamic classes, further application of criteria 2 

leads to dynamic modules, which, by criterion 3 are split in TDMs. The above 

definition can be amended (Iordache & Bodescu 2005) with the remark that some 

populations can be included in more TDMs at the same time, because of their 

internal structural diversity. For instance, decidious tree populations have parts with 

very different rates of biomass cycling, like leaves and wood – criterion 1, as well as 

parts with different location in space like below vs. above grounds – criterion 2; so 

they will belong to at least 3 TDMs, two above ground and one below ground; frog 

populations have parts – tadpoles and adults – differing both in space and their role 

in food webs. The notions of “same order of magnitude”, “same location in space and 

time”, and “same role in food web” are to be defined by the researcher, and can be 
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applied more stringent or relaxed. In the most stringent application, they will lead to a 

model identical with the “reality” (isomorphic model). If relaxed too much they will 

lead to a model too aggregated and having lost the key characteristics of the real 

system (simplistic model). Only at an appropriate intermediate level, they will lead to 

a model simple enough for explanatory value, but keeping the basic characteristic of 

the system (homomorphic model). 

While succession in ecosystems is a process taking place at the level of the networks 

of TDMs, mechanisms may be analyzed for a group (e.g. fungi) at TDM level. The 

scale of the TDMs varies hugely, which implies that this is not one “true” scale for 

ecosystem processes or a simple, nested hierarchy of ecosystems. In Fig. 8 the 

linear model (dotted line) assumes that there is linear appearance of new emergent 

properties when increasing the scale of analyses, without need to privilege a certain 

scale (this model is preferred by those considering that ecosystems are 

methodological concepts applicable at any scale). The nested hierarchy model 

(continuous line) (see Fig. 8) assume that at certain scales there are jumps of 

emergent properties allowing the identification of an ecosystem level, then these 

ecosystem interact over a range of intermediary scales and at another point there is 

another jump, and so on (this model is preferred by those considering the 

ecosystems are “real” entities). 

 

Figure 8: Two simplistic models of the relationship between s pace-time scale of analyses and the 
emergence of ecosystem hierarchical levels.  

 



 Results   28 

Rather, emergence of new structural (e.g. new TDMs) and functional (e.g. increase in 

overall biological productivity, or changes in the rates of biogeochemical processes) 

properties should be defined and used to drive the mathematical function that links 

scale and emergence of new properties in different areas and in different periods of 

time.  

As ECM fungi have more or less the same rate of biomass cycling and the same role 

in food-webs, one cannot expect the separation of ectomycorrhizal TDMs based on 

these criteria. The scale of separation, howewer, can be very different. 

Applying the separation of TDMs to early versus late-stage ECM communities at the 

same tree, TDMs can be distinguisched depending on the age of the roots (two 

TDMs per tree), the net differences in communities structure with depth (humic 

horizons vs. inorganic horizon, two TDMs per tree) and the clonal development of 

late-stage (potentially allowing the same population to occupy more than one tree). 

Based on these considerations we propose a model of ECMs community structure in 

a forest (Fig. 9). Using this theoretical framework, we are able to identify the following 

components of ECM structural diversity in a tree island: number of TDMs, species 

richness inside each TDM (α), at tree (β) and at forest level (γ), and finally evenness 

inside each TDM. 

 

 

Figure 9: Model of ECMs community structure in a forest. 
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3.2  Implementing the improved framework 

In order to make these theoretical ideas approachable, an experimental design 

should be set up in which 1) different sites are investigated at tree, community and 

ecosystem level, 2) appropriate data processing procedure is devised, and 3) results 

are interpreted at all hierarchical levels. Here, data of field study were used to 

implement the framework set up in the previous chapters (Fig. 10). 

 

 

Figure 10: Relative positions of the sites from succession poi nt of view. 

 

We assume that the general successional pattern of ECM communities at TDM level 

in the first phases is an increase in richness and evenness (Dighton & Mason, 1985), 

and coupling this with the selection pressure of contamination on early stage 

colonizing fungi, will be attenuated by the development of an organic soil horizon. 

Based on these, we would predict that the richness and evenness of ECM 

communities at tree level in secondary succession young forests grown on 

contaminated lands is larger than in primary succession young forests grown on 

contaminated lands in the upper TDM (humic horizon), but smaller in the lower TDM 

(inorganic horizon). 

A structure of data processing and interpretation is presented in Figure 11. The 

relative abundance needed for computing the diversity indices has to be based on 

density per root length at α and β level, and based on density per soil volume at γ 

level. This will allow comparison with other studies at γ level, notably Staudenrausch 

et al. (2005). 
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Figure 11: Schematic diagram showing the structure of data proc essing and interpretation in thesis.  

 

3.3 Morphotyping and identification of Quercus ECM 

From the three study sites Jenzig, Greiz and Kangisberg along an increasing 

contamination gradient, both intensive and extensive sampling of oak roots were 

performed and the ectomycorrhiza was identified by ECM typing and ITS 

sequencing. Each morphotype was assigned to an exploration type, based on the 
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occurrence of structural differences (Fig. 12). 

At Jenzig, 11 frequent ECM morphotypes were found at all investigated trees and in 

both horizons with twice the abundance of occurrence in the organic H horizon as 

compared to the inorganic A horizon. Using direct sequencing of ITS, one uncultured 

ectomycorrhizal fungus was additionally identified and the resulting sequence was 

deposited with the accession number EU700262 at NCBI database. The 11 fungal 

types: three Lactarius sp., rose morphotype, Cenococcum geophilum, orange-yellow 

morphotype, Thelephoraceae sp., Xerocomus sp., Xerocomus porosporus, Pisolithus 

tinctorius and yellow rhizomorphs, covered all proposed exploration types (Fig. 12A).  

The contact exploration type is represented by ectomycorrhizae belonging to 

Lactarius with a smooth mantle with the characteristic laticiferous hyphae and only a 

few or without emanating hyphae. Lactarius sp. presents gelatinized mantle. The 

rose morphotype does not have emanating hyphae. The second identifyed Lactarius 

sp. and orange_yellow morphotypes show some fine emanating hyphae. All these 

types are hydrophilic, and often, the few emanating hyphae are in close contact with 

the surrounding substrates (Agerer, 2001). Cenococcum geophilum Fr. belongs to 

the short distance type. It was present at all trees and showed characteristic black 

emanating hyphae, hydrophilic and unramified. The resulting ITS sequence has the 

accesion number EU700264 in the above mentionated database. The medium 

distance exploration type of the fringe subtype was represented by Thelephoraceae 

sp. (EU700263). Thelephoraceae sp. type presents brown colour, monopodial 

pinnate ramification and the corresponding thelephoroid rhizomorphs. The mat 

subtype was found with Xerocomus sp., where the rhizomorphs present some 

hyphae out-grow from the margin that seem to be different than Xerocomus 

porosporus type, with higher differentiated rhizomorphs. The smooth subtype was 

represented by monopodial pyramidal ramification of Lactarius sp. with laticiferous 

hyphae in the mantle and the rhizomorphs belonging to the medium distance 

exploration type. The long distance exploration type presented by Xerocomus 

porosporus forming white hyphal fans, which could be identified by ITS (see 

EU700259), by Pisolithus tinctorius with gold-yellow rhizomorphs and yellow 

rhizomorphs.  

Seven morphotypes were found in Greiz: Lactarius quietus, Russula ochroleuca, 
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Laccaria amethystina, Cenococcum geophilum, Paxillus involutus, Pisolithus 

tinctorius and brown rhizomorphs (Fig. 12B). The morphotypes were found at only 

few trees while most trees show little or no mycorrhization in the inorganic A horizon. 

The identified morphotypes belong to the contact exploration type (Lactarius quietus 

sequenced as ITS EU700258 with a hydrophilic, gelatinous mantle and white colour; 

Russula ochroleuca with yellow colour, the typical greenish-yellow patches and soil 

particles adherent to the mantle and identified ITS (EU700257)), the short distance 

type with Cenococcum geophilum in lower abundance, the medium distance 

exploration type (the fringe subtype is represented by Laccaria amethystina. This 

ECM shows a characteristic colouration of laticifers which is similar to the violet 

colour in the fruitbody). The long distance exploration type with smooth 

ectomycorrhizae and few, but highly differentiated rhizomorphs was represented by 

Paxillus involutus, Pisolithus tinctorius, brown rhizomorphs. Pisolithus tinctorius forms 

golden yellow mycelial strands. The brown-white ECM of Paxillus involutus (Batsch) 

Fr. has characteristic sclerotia that adhere to rhizomorphs. The brown rhizomorphs 

present smooth margins (Agerer, 1987-2006).  

At Kanigsberg, only 5 morphotypes were isolated: Cenococcum geophilum, 

Tomentella sublilacina, Scleroderma sp., Paxillus involutus, and brown rhizomorphs 

(12C). Additional, by direct sequencing of ITS, 2 different Scleroderma species were 

identified: Scleroderma areolatum (EU700255) and Scleroderma sp. (EU700256). 

Helotiales sp. (EU700254) and Hymenoscyphus sp. (EU700265) were identified by 

indirect isolation in pure culture. Fruitbodies of Pisolithus tinctorius and Paxillus 

involutus were found at the site, indicating its existence in the roots. The 

morphotypes are heterogeneously distributed, Cenococum geophilum being the 

predominant morphotype, while the brown rhizomorphs could also be found in each 

sample and horizon. For the short distance type, Cenococcum geophilum was 

present. The long distance exploration types with smooth ectomycorrhizae and few, 

but highly differentiated rhizomorphs could be observed by Paxillus involutus, 

Pisolithus tinctorius, brown rhizomorphs and Tomentella sublilacina (EU700253). 

Pisolithus tinctorius forms golden yellow mycelial strands. The brown-white ECM of 

Paxillus involutus has characteristic sclerotia that adhere to rhizomorphs (Agerer, 

1987-2006).  
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Figure 12: Exploration types of ECM found at the three study si tes: 

A) Jenzig: contact types  of Lactarius sp. (1.), Lactarius sp. (2.), rose morphotype (3.); short distance 
exploration type  Cenococcum geophilum (4.); medium distance types of monopodial Lactarius sp. (5.), 

orange-yellow morphotype (6.), Thelephoraceae sp. (7.) Xerocomus sp . (8.) and long exploration type with 
Xerocomus porosporus (9.), Pisolithus tinctorius (10.) and  yellow rhizomorphs (11.). 

B) Greiz: contact types Lactarius quietus (1.); Russula ochroleuca (2.); medium distance types of  Laccaria 
amethystina (3.); short distance exploration type  Cenococcum geophilum (4.); and long exploration type 

with  Pisolithus tinctorius (5.), M. brown  (Paxillus involutus) (6.) and  rhizomorphs brown (7.). 

C) Kanigsberg: short distance exploration type Cenococcum geophilum (1.) and long exploration type 
with  Tomentella sublinacina (2.), Scleroderma areolatum (3.), Paxillus involutus (4.) and  rhizomorphs 

brown (5.). 
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3.4 Comparison of ECM communities 

The highest average number of species per tree was at the uncontaminated site, 

Jenzig, for both horizons (Tab. 2). At Kanigsberg, the average richness was higher in 

the A horizon than at Greiz, but lower in the H horizon. The richness per tree and 

horizon was most heterogenous between trees at Greiz, and at Kanigsberg. The 

evenness per tree and horizon was highest at Jenzig in both horizons (Tab. 2, 

Berger-Parker index), and lowest at Kanigsberg in both horizons, while it was also 

low in the A horizon at Greiz. The highest similarity between trees (Soerensen index) 

was found at Jenzig, followed by Greiz, and lowest at Kanigsberg, for both horizons. 

The CVb_t index indicates that the pattern of species distribution between trees was 

most similar at Jenzig in both horizons, followed by Kanigsberg in both horizons, and 

Greiz in H horizon. The particular situation of Greiz in the A horizon was due to the 

fact that two trees showed most of the morphotypes of all types, with very low 

numbers of all types in all other samples. The same CVb_t index indicates that ECM 

distribution around the trees (by horizon) is most similar for Jenzig (both horizons) 

and Greiz (H horizon), followed by Greiz and Kanigsberg (both A horizons), with 

highest heterogeneity of the samples around trees in Kanigsberg (H horizon).  

In Greiz was immediately obvious that some roots presented high abundance of 

mycorrhizae, and even sometimes a diverse selection (Fig. 13), whereas other roots 

had no ECM. This indicates a highly heterogenous distribution of ECM in this 15 year 

old oak forest.  

 

 

 

 

 

 

 

 

 

Figure 13: Root containing  Cenococcum 
geophilum (Cen_geo), Russula ochroleuca 

(Rus_och), Laccaria amethystina (Lac_ame) 
and unidentified brown rhizomorphs ( B_rhi) 

found to the second tree (sample 2QH). 
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The abundance of ECM was higher in the organic H compared to the inorganic 

horizon. In addition, the distribution was very heterogeneous and differed from 0 to 

38 ECM types per sample. Generally, the abundance was high only for the second 

and third investigated tree, where ECM were present in the inorganic horizon (Fig. 

14).  
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Figure 14: Numerical abundance of ectomycorrhiza for six rando mly selected Quercus robur trees at 

Greiz (H-humic horizon; A-inorganic horizon; a, b- two collected probes). 

 

To evaluate functional characteristics, the identified ECM were grouped into contact, 

short, medium and long distance exploration types (Fig.12). The two most frequent 

ECM types, Lactarius quietus Fr. and Russula ochroleuca (Pers.), belong to the 

contact exploration type. They were found on tree number 2, in both horizons; and in 

the organic H horizon of tree number 5. Russula ochroleuca was found on trees 

number 2 and 6.  

The short distance exploration type was abundantly represented by Cenococcum 

geophilum (Agerer, 1987-2006) present on trees number 2, 3 and 6, mostly in the 

organic H horizon, but occasionally also found in the inorganic horizon. The medium 

distance exploration type was represented by Laccaria amethystina (Agerer, 1987-
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2006) and was found only in the organic H horizon of the second tree. 

The long distance exploration type included ECM characterized by rather smooth 

ectomycorrhizae with few, but highly differentiated rhizomorphs and was 

heterogeneously distributed. Representatives of this group include Paxillus and the 

brown rhizomorphs of unknown fungal origin found on tree number 6. Pisolithus was 

present on all trees with exception of tree number 6.  

Only one tree (number 2) presented all four exploration types of ECM but only in the 

organic H horizon, with Lactarius quietus, Russula ochroleuca, Cenococcum 

geophilum, Laccaria amethystina, Pisolithus tinctorius and brown rhizomorphs. In all 

other samples, the low abundance and highly heterogeneous distribution of ECM 

along the six trees investigated indicated that ECM had been repressed, most likely 

by ecotoxicologically elevated heavy metal concentrations. This seemed especially 

probable because of the low pH measured in most samples.  

Fig. 15 allows the comparison of the estimators of diversity indices in each horizon in 

the studied forest (average and SD). At the minimum number of the studied trees, 

Fisher’s alpha index (reflecting mostly the species richness) is highest at Jenzig, both 

in the H and in the A horizons. Greiz diversity appears higher than at Kanigsberg in 

the H horizon, but lower in the A horizon. The Shannon index of diversity (putting an 

equal accent on richness and evenness) is lowest at Kanigsberg in the H horizon, 

and apparently highest at Greiz in the H horizon. No significant effects were detected 

between sites in the A horizon. One can notice also the very high CV of this index in 

the A horizon at Greiz. 

The total number of morphotypes (abundance at the sites) was highest in Jenzig, 

followed by Kanigsberg and Greiz (Fig. 15). Most morphotypes of the A horizons 

were also present in the H horizons, with the exception of the orange-yellow 

morphotype at Jenzig (where it was present only in the A horizon), Pisolithus 

tinctorius and gray mycelium of Scleroderma sp. at Kanigsberg (present only in the A 

horizon). These morphotypes were not dominant in the A horizon. 

The results of the estimations of the total number of species at forest level (pooling 

the data for H and A horizons, and including only the samples with non-zero number 

of morphotypes) are presented in Fig. 16. At Jenzig, the estimated richness is 

highest in all variants (Chao2, Jacknife2 and Bootstrap estimators). Chao2 and 
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Jacknife2 suggest no significant differences between the real richness at forest level 

in Greiz and Kanigsberg. The number of species observed at Greiz and Kanigsberg 

is probably not significant (large overlap of confidence boundaries for MaoTau). The 

only estimator indicating larger species richness at Greiz, than at Kanigsberg, is the 

bootstrap estimator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Estimators of diversity indices at the studied sites . Values near site names indicate maximum 
possible values of the Shannon index. The indices ar e plotted after 50 randomizations. 

 

Information concerning the relative abundances of the species at forest level (pooled 

data), and implicitly, about evenness at this level is provided in Fig. 17. In contrast to 

results at tree level, at forest level the lowest evenness is observed in Jenzig and the 

highest is in Greiz, with Kanigsberg having intermediary values. The situation at 

Jenzig is due to the peculiar distribution of morphotypes between trees. At one 

Jenzig tree a large number of Cenococcum geophilum morphotypes and a consistent 

number of morphotypes of other species was found, thus the evenness was not very 
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low at tree level. But the species present with Cenococcum geophilum at that tree 

had low abundance values at other trees, being replaced by other locally abundant 

species. 

 

Figure 16: Rarefaction curves (Mao Tau method, with upper and lower 95% confidence boundaries) and 
three estimators of the species richness at the inv estigated sites (Chao2 with upper and lower 95% 

confidence boundaries, Jacknife2 and Bootstrap with  SD). Inserted graph: sampled number of 
morphotypes (individuals) as the number of samples has increased. The cumulative number of species at 

each site is plotted after 50 randomizations. 
 

While Cenococcum geophilum was still locally abundant at other trees, at forest level, 

Cenococcum geophilum became highly dominant. Another interesting issue is that 

there are many site specific species, and, in particular, that most of the minority 

species present at the non contaminated site Jenzig are not present at Kanigsberg or 

Greiz. Greiz, on the other hand, is characterized by large numbers of Pisolithus 

tinctorius, Russula ochroleuca and Lactarius quietus, while Kanigsberg is dominated 

by Scleroderma areolatum, Tomentella sublilacina, and brown rhizomorphs. 
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Figure 17: Abundance of different ECM morphotypes. A) Abundance  of morphotypes which occurred at 
all three sites. B) Abundance of morphotypes restri cted to one or two sites. 

(Cen_geo=Cenococcum geophilum; Pis_tinc=Pisolithus tinctorius; Xer_sp=Xerocomus sp ; 
The_sp=Thelephoraceae sp.; Scl_are=Scleroderma areolatum; Lac_mon=Lactarius sp. monopodial; 

Lac_sp.=Lactarius sp.; Lac_qui=Lactarius quietus; Lac_ame=Laccaria amethystina, Rus_och=Russula 
ochroleuca; B-W_rhiz=Paxillus involutus rhizomorphs ; Tom_sub=Tomentella sublinacina; W-o_rhi=White 

morphotype without rhizomorphs ; R_rhiz=Rose_morphotype; O-b_rhiz=Orange braun morphotype; 
Y_rhiz=yellow rhizomorphs; B-d_rhiz=Beige drop morphotype; B_rhi= Brown rhizomorphs; G_myc=Gray 

mycelium of Scleroderma sp .). 

 

3.5 Heavy metal distribution 

The average total concentration of metals, P and pH in the studied soils (Tab. 3) 

shows high U at Kanigsberg and Jenzig and high Pb for Greiz, while most other 

metals do not exceed the limits for soil protection.  

However, sequential extraction could show the ecotoxicological relevant fractions of 

metals (Tab. 4). Results revealed, that, e.g., U at Jenzig is unavailable and not 

relevant in ecotoxicological terms while U concentrations at Kanigsberg and Greiz, 

are bioavailable with up to 16% (fractions 1 + 2). While P availability was low at 

Kanigsberg, in contrast to the high S availability, very high available fractions of Al, 

Cd, Mn and Sr at Greiz could be shown. These pattern warranted multivariate 

analyses to gain a holoistic view of these distribution patterns.  
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Table 3: Average concentration of elements ( µg/g d.w.) and pH in the soil of the studied ecosyst ems.  

 Kanigsberg Greiz Jenzig 
 Av. SD Av. SD Av. SD 
Al 14499 2433 10639 2528 20404 1912 
As 47 27 44 8 20 3 
Cd 0.3 0.1 0.5 0.4 0.8 0.2 
Co 14 10 10 3 9 3 
Cr 46 18 19 4 30 6 
Cs 3 1 3 1 2 1 
Cu 79 19 26 6 31 19 
Fe 65453 16181 36151 9368 17751 1119 
Mn 135 22 1337 668 432 16 
Ni 47 19 23 4 31 18 
P 758 142 1112 303 1686 16 
Pb 23 5 218 67 53 15 
S 1276 260 1207 351 1376 255 
Sr 36 15 25 10 322 190 
U 12 8 2 1 65 48 
Zn 84 22 125 26 56 95 
pH 4.01 0.67 3.08 0.22 6.03 0.90 

 

 

Table 4: Percent of easily extractable fractions from total m etals in soil samples (K – Kanigsberg, G – 
Greiz, J – Jenzig). 

 Fraction 1 Fraction 2 Fraction 3 Fraction 4 
 K G J K G J K G J K G J 
Al 1.26 5.22 0.01 0.08 0.43 0.05 0.07 0.37 0.09 0.23 3.08 0.27 
As 0.62 0.20 1.99 0.59 0.22 2.44 0.55 0.45 1.56 0.80 0.99 2.54 
Cd 10.85 26.63 2.03 3.23 6.43 4.10 3.69 5.57 3.79 2.82 2.35 14.88 
Co 3.86 5.82 0.79 0.58 1.08 0.87 6.26 1.14 1.47 0.51 1.54 10.88 
Cr 0.21 0.87 0.11 0.39 2.95 0.27 0.77 0.74 0.36 0.38 3.14 0.32 
Cs 7.93 1.30 1.11 0.87 0.27 0.06 0.18 0.06 0.04 0.17 0.07 0.04 
Cu 4.09 0.16 1.32 1.41 0.41 0.61 1.03 0.14 0.06 3.07 10.15 15.92 
Fe 0.01 0.16 0.01 0.005 0.22 0.10 0.13 0.89 0.19 0.36 5.86 0.46 
Mn 7.85 26.70 3.10 0.64 4.98 0.20 0.77 5.92 1.25 0.26 1.22 0.32 
Ni 4.23 4.28 0.57 0.63 0.10 0.13 0.90 0.10 0.13 0.41 2.02 11.85 
P 0.40 1.70 1.22 0.55 2.53 3.20 0.54 1.57 1.32 1.44 6.55 3.21 
Pb 0.42 4.84 0.16 0.39 7.53 0.86 0.49 7.29 0.87 2.18 16.32 14.71 
S 15.77 5.09 4.02 6.77 4.13 2.00 1.96 2.12 1.17 1.96 6.39 2.48 
Sr 3.61 29.06 11.14 0.55 4.14 2.95 0.15 0.44 0.38 0.39 0.36 0.28 
U 1.25 1.53 0.06 14.89 4.69 0.31 3.22 3.09 0.31 1.60 1.66 0.74 
Zn 3.49 9.43 0.88 0.57 1.05 5.01 0.69 0.79 5.36 0.61 0.89 35.03 

 

Principal component analyses was applied to toxic element concentrations in fraction 

1 (variant A), the sum of fractions 1 and 2 (variant B), the sum of fractions 1-4 

(variant C), and the percent of fractions 1 to 4 from the total concentration (variant 
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D)(see Tab. 5). Most metals group in 3-4 factors in all variants of the analyses. The 

extracted factor explain 86% of the variance in metals concentrations in variant A, 

89% for the variant B, 87% for the variant C and 79% for the variant D. The most 

stable group of metals is Al, Cr, Fe and Pb which is highly correlated with factor 1 in 

variant A and B, and with factor 3 in variant C. Another stable group is Cs, Cu and Sr 

(correlated with factor 2 in variant A and B), and a third is Cd, Mn and Zn (correlated 

with factor 3 in variant A and B, and with factor 1 in variant C). The number of metals, 

not correlated with the extracted factor ranges from 1 to 4, being lowest in variant B 

(As). Interestingly, variant B explaining the highest percent of variation in 

concentration, had the lowest number of non-correlated elements, and reflected the 

sum of the highest bioavailable concentrations (Tab. 5). 

The extracted factors and other soil parameters (like root density and pH) show a 

significant (or nearly significant, at alpha 0.05) correlation coefficient (R). While there 

is a negative correlation between the Al, Cr, Fe, Pb, Cs and Ni concentrations to root 

density and pH, a positive correlation is found between Sr and the same parameters. 

The highest concentrations of Sr at Jenzig, where also the pH and root density was 

highest (Tab. 5). S availability is clearly negatively correlated with pH and root 

density, while easily available P is positively correlated with depth and inversely 

correlated with the organic matter concentrations present in the top soil (Tab. 6). 

 

 

Figure 18: Plot of sample scores after PCA of cumulated heavy me tal of variant B. 
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The distribution of elements showed different pattern for the three sites. Fig. 18 

presents the sample scores plotted on the factors extracted in variant B. The 

samples from Jenzig were homogenous with respect to all metals, the samples from 

Greiz were heterogenous with respect to factors 1 and 2 (Al, Cr, Fe, Pb, Cd, Mn and 

Zn), while the samples from Kanigsberg were heterogenous with respect to the 

factors 3 and 4 (Cs, Cu, Sr, Co, Ni and U).  

Soil analysis was done at Greiz, where samples were taken from two horizons at 

each tree (numbers 1, 2, 6; see Tab. 8) and analyzed by sequential extraction. The 

pooled environmentally available fractions (1+2) showed elevated Al, Mn, Fe, Pb 

concentrations distributed heterogeneous between trees. Most heavy metals and 

essential nutrients were found at higher concentrations in the organic compared to 

the inorganic A horizons, except of Al, which was present in higher concentrations in 

the inorganic horizon. Pb was uniformly distributed between both horizons. Two 

subsequent time points for collection of soil samples revealed that the availability of 

metals was constant (Tab. 7 and Tab. 8). 

 

Table 7: Environmental available element content ( µg/g; mean±SD) in the Q soil sample at Greiz 2005.  
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The constant availability of metals is highly relevant for correlation with ECM 

distribution and therefore it was verified by cluster analysis (Fig. 19). Different sites 

separate well with respect to metal concentrations (best in variant B). The linkage 

distance, an indicator of heterogeneity at site level, between the Jenzig samples in 

variants A and B is smaller than the distance between Greiz or Kanigsberg sites. The 

variant B (sum of fractions 1 and 2) groups best the samples according to sites. 

Thus, both Greiz and Kanigsberg sites are heterogenous in the distribution of metals 

in soil, but with respect to different elements. 

 

Figure 19: Cluster diagrams (Ward`s method, City-block (Manhat tan) distances) of the samples built 
using sample scores on extracted factors, and stand ardized values of P, S and not correlated elements.  

(variant A=fraction 1, variant B=the sum of fractio ns 1 and 2, variant C=the sum of fractions 1-4 and 
variant D=the percent of fractions 1 to 4 from the total concentration of sequencial extraction) 

 

3.6 Ecological implications of metals on ECM divers ity  

The relationship between ECM distribution and the ecological context was 

investigated primarily based on the average values of the parameters at each tree 

and depth. Table 9 and 10 presents the summary of the multivariate analyses 

performed under the assumption of unimodal distributions of the ECMs along 
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environmental gradients. Detrended correspondence analyses followed by 

correlation of the extracted factors (gradients) with independent environmental 

parameters (P, S, pH and density of roots). Hybrid detrended canonical 

correspondence analyses based on the environmental factors extracted by PCA and 

independent of metals where the metals were not correlated with the PCA extracted 

factors. As expected, the total variance in ECM abundance explained by the factors 

extracted in the unrestricted analyses (DCA) is smaller than the restricted variant 

(DCCA): 53.6% vs 57.7-60.8%, depending of the PCA factors used – variants A, B, 

or C (Tab. 9). In a visual form, this can be seen in the length of the gradients 

extracted, which are larger in DCA than in the hDCCA. An important aspect is that 

only the first two factors of the canonical analyses are, in fact canonical; the other 

two factors are not correlated with the included PCA factor and independent metals. 

Thus, the total explained variance in species data which can be attributed to metals 

is only corresponding to variant B (28.6% for the metals in variant A, 32.1% percent 

for the metals in variant B, and 30.8% for the metals in variant C). The sum of most 

available metals in soil (variant B) is the best variant for explaining the distribution of 

ECMs as correlated with metals (Tab. 9). 

 

Table 9: Summary of multivariate analyses. a) Eigenvalues ( λ) and cumulated percentages of explained 
species variance (CPVS) of the extracted factors (axes  1 to 4) after detrended correspondence analyses 

(detrending by first order polonomials and by segme nts ) and detrended canonical correspondence 
analyses using hDCCA and detrending by second order  polinomials. 

 

 

Taken separately, none of the extracted axes are significant at alpha 0.05 (p value 

ranges between 0.114 and 0.246), but considering all canonical axes together, their 

relation between the distributions of all considered metals and ECMs distribution 

result as statistically significant (Tab. 10). 
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Table 10: Canonical coefficients for standardized environment al variables (E.V.) and p level of 
significance of the canonical axes (first axes and all canonical axes). 

 

 

In the Fig. 20 the directions of the arrows indicate an increase in the value of a 

parameter. The relative importance of an environmental parameter is proportional 

with the length of the arrow. The degree of correlation of an environmental variable 

with axes is proportional with the projection of the environmental arrow on the axes. 

Preference of a species for a parameter value (average in origin, larger values in the 

arrow direction) can be assessed by projecting the species point on the 

environmental arrow. Average value of the parameter in a site-horizon can be 

assessed by projecting the site-horizon point (centroid) on the environmental arrow. 

The centroid of the sampled sites is surrounded by species most characteristic at that 

site. The species show clear differentiation along the extracted factors, which in turn 

are highly correlated with the environmental variables (Fig. 20).  

The clearest separation of community structure with depth is found at Kanigsberg, 

followed by Jenzig. The central position of Cenococcum geophilum reflects its 

ubiquitous distribution. The B variant of PCA explains the highest percentage of ECM 

variance, and thus this variant was used for representative analysis (Fig. 21). The 

correlated separation of trees versus horizons and sites by ECM and metals shows 

that not one, single metal is responsible. Rather, the overall contamination (relevant 

to ECMs) seems to be higher at Greiz than at Kanigsberg, at least for the metals 

retained in the factors extracted by PCA in variant B. One tree at Kanigsberg is 

atypical in terms of ECM species composition and correlated with low concentrations 

of the analyzed soil elements. 
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Figure 20: DCA plot of species, environmental variables and ce ntroids of sampled sites (detrending by 
segments). 

(Cen_geo=Cenococcum geophilum; Pis_tinc=Pisolithus tinctorius; Xer_sp=Xerocomus sp ; 
The_sp=Thelephoraceae sp.; Scl_are=Scleroderma areolatum; Lac_mon=Lactarius sp. monopodial; 

Lac_sp.=Lactarius sp.; Lac_qui=Lactarius quietus; Lac_ame=Laccaria amethystina, Rus_och=Russula 
ochroleuca; B-W_rhiz=Paxillus involutus rhizomorphs ; Tom_sub=Tomentella sublinacina; W-o_rhi=White 

morphotype without rhizomorphs ; R_rhiz=Rose_morphotype; O-b_rhiz=Orange braun morphotype; 
Y_rhiz=Yellow rhizomorphs; B-d_rhiz=Beige drop morphotype; B_rhi= Brown rhizomorphs; G_myc=Gray 

mycelium of Scleroderma sp .). 

 

The separation for the non-canonical axes (not dependent on the analysed metals; 

Fig. 22) is due to several atypical samples, two at Kanigsberg, one at Jenzig, and 

one at Greiz. Since As was not correlated with the PCA factors in variant B, these 

samples were double-checked with respect to As concentrations. The samples from 

Kanigsberg and Jenzig plotted separate correlating with available As concentrations 

(varaint B). Knowing that P can be protective towards As toxicity, the distribution of 

available P was also checked. The samples with atypical distribution indeed showed 

high available As and, at the same time, low available P concentrations. 

Consequently, there are indications that As (antagonized by P) plays an important 
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role in the separation of ECM communities along the non-canonical axes extracted 

by hDCCA.  

 

Figure 21: hDCCA plots on canonical axes 1 and 2 non canonica l axes 3 and 4.  
(Cen_geo=Cenococcum geophilum; Pis_tinc=Pisolithus tinctorius; Xer_sp=Xerocomus sp ; 

The_sp=Thelephoraceae sp.; Scl_are=Scleroderma areolatum; Lac_mon=Lactarius sp. monopodial; 
Lac_sp.=Lactarius sp.; Lac_qui=Lactarius quietus; Lac_ame=Laccaria amethystina, Rus_och=Russula 

ochroleuca; B-W_rhiz=Paxillus involutus rhizomorphs ; Tom_sub=Tomentella sublinacina; W-o_rhi=White 
morphotype without rhizomorphs ; R_rhiz=Rose_morphotype; O-b_rhiz=Orange braun morphotype; 

Y_rhiz=Yellow rhizomorphs; B-d_rhiz=Beige drop morphotype; B_rhi= Brown rhizomorphs; G_myc=Gray 
mycelium of Scleroderma sp .). 

 
 

In order to identify the best possible correlations with high, low and no ECM diversity 

at Greiz, samples from oak tree number 1, 2 and 6, respectively, were selected (see 

Fig. 14).  

In Fig. 23, Canonical correspondence analysis (CCA) revealed that samples 1 and 2 

(belonging to tree number 1), and sample 6 (from the inorganic horizon of tree 

number 6) show similar abiotic stressors. Sample 5 (from the organic horizon of tree  
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Figure 22: hDCCA plots on non canonical axes 3 and 4. Concentr ations of As an P (µg/g d.w., extracted in 
fractions 1 and 2) are indicated below selected sam ples. ( Tom_sub=Tomentella sublinacina; Scl_are= 

Scleroderma areolatum). 

number 6) clusters opposite, indicating different environmental variables. Samples 

belonging to tree number 2 (samples 3 and 4) cluster separately. According to CCA, 

four groups of elements were the strongest contributors to the ordination axis: Al, Cr, 

Cs, U strongly correlate with each other and represent group I (Eigenevalue 0.111); 

Fe, Pb, Cu form group II; Co and Ni group together with the essential elements S and 

P as well as low pH and represent group III; Mn, Cd, Zn, Sr cluster with P and low pH 

in group IV. These groups form a gradient of correlation: group I correlates well with 

group II, which also correlates with group III, and group III strongly correlates with 

group IV. Group I, made up of heavy metals is negatively correlated with group IV 

including the essential elements. 

Introducing the four exploration types of ECM into this matrix of heavy metals 

showed a second level of clustering: with the first group of heavy metals, the medium 

exploration type, Laccaria amethystina, and the long exploration type, represented by 

Paxillus involutus and the brown rhizomorphs, strongly correlate. The latter was 
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absent from tree number 1 (samples 1, 2) and represented by few mycorrhizae in the 

inorganic horizon of tree number 6 (in sample 6), the sample with the highest 

concentration of Al and Cr. The inorganic horizon of tree number 1 (sample 2) was 

the sample with the highest U concentration in the environmentally available fraction. 

Thus, U seems detrimental to the long exploration type ECM. The contact 

morphotype, Russula ochroleuca, is negatively correlated with group I (heavy metals) 

and clusters to group IV, closely correlated to Mn. Lactarius quietus, the second 

contact morphotype, clusters near tree number 2 (samples 3 and 4). This ECM also 

clusters to group IV and includes the essential element P. The short exploration type 

of ECM, Cenococcum geophilum, clusters to group III and strongly correlates with Ni, 

Co, and with the essential elements S and P. 

The contact types Lactarius quietus and Pisolithus tinctorius are negatively correlated 

with group II. Sample 5 (organic H horizon) clusters separately from group I and 

presents a low concentration of Al, higher concentration of Cd and the highest Ni, Co, 

and S concentrations, but also P. This sample is correlated with Cenococcum 

geophilum. The highest concentration of toxic metals belonging to group I is 

correlated with low ECM diversity on trees number 1 and 6 (in samples 1, 2 and 6). 

Russula ochroleuca and Cenococcum geophilum are correlated with low pH and 

toxic metals but also with the essential element P. The relation between 

environmental factors and ECM types shows a clustering of the highest ECM 

diversity with group IV and the strongest disagreement with groups I and II.  

Thus, it can be concluded that the availability of P positively affects ECM and group I 

has neither a negative or a positive effect. The presence of nutrients, specifically P, 

in the inorganic horizon of tree number 2 could explain the higher ECM abundance 

and diversity in the inorganic horizon of this tree.  
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Figure 23: Canonical correspondence analysis shows ECM type di stribution in relation to environmental 
variables. (1-6: sample number, odd number represen t the organic horizon and even number the 

inorganic horizon from tree number Q1, Q2 and Q6).  

(Cen_geo=Cenococcum geophilum; Lacc_ame=Laccaria amethystina; Lac_qui=Lactarius quietus; 
M_br_wh=Paxillus involutus; Pis_tinc=Pisolithus tinctorius; rhiz_br=Brown rhizomorphs; 

Russ_och=Russula ochroleuca). 

 

3.7 Heavy metal tolerance of ECM fungi 

Pisolithus tinctorius types collected on 1 Nov., 2006 at Greiz seems to accumulate 

heavy metals in the mantle (Fig. 24) in contrast to Laccaria amethystina (Fig. 25). 

Heavy metal tolerance and host protection in ectomycorrhizal fungi were investigated 

in a Hymenoscyphus sp. (Ascomycota) isolated from the metal-polluted soil in 

Kanigberg in 2005. The heavy metals Cr, Cu, Ni and Pb were used. The experiment 

shows that the Hymenoscyphus sp. strain protect oak-seedlings against Pb and Cr-

toxicity. The strain shows no resistence to Ni at 3 mM and 6 mM, but grows very well 
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in the contol. In the case of Cu, the strain grows well in the control, and tolerates 

concentration of 3 mM, but shows no resistance for Cu at 6 mM (Fig. 26). 

 

Figure 24: Pisolithus tinctorius + Quercus robur ECM. A. Heterorrhizic system with monopodial short 
root. B. Cross-section with hyphal mantle (M), inte rcellular hyphae of the fully developed Hartig’ net  (Hn),  
endodermis (E), and central stele (S). C. Magnificati on of the mantle formed by  P. tinctorius consisting of 

8-10 fungal cells layers. D. Magnification of the m antle hyphae with accumulating heavy metals. 

 

Figure 25: Laccaria amethystina + Quercus robur ECM. A. Heterorrhizic system with monopodial pinat 
short root . B. Cross-section with hyphal mantle (M ), intercellular hyphae of the fully developed Hart ig’ net 
(Hn), endodermis (E), and central stele (S). C. Magni fication of the mantle formed by  L. amethystina with 
10-12 fungal layers . D. Magnification of the mantl e and  lobed Hartig’net hyphae without accumulating  

heavy metals. 
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Figure 26:  Hymenoscyphus sp . isolated from the metal-polluted soil Kanigsberg i n 2005. Heavy metal 
tolerance and host protection in ectomycorrhizal fu ngi investigated for A. Cu (left to right: 6 mM, 3 mM, 0 

mM) and B. Pb (left to right: 0 mM, 6 mM, 3 mM).  
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4 Discussion 

 

4.1  Methodological considerations: Investigation o f 

ectomycorrhizal communities 

The application of molecular methods combined with morphotyping in ECM 

community studies have been proposed by several authors (Horton & Bruns, 2001; 

Menkins et al., 2005; Staudenrausch et al., 2005). Therefore, the results of 

morphotyping and ITS-PCR fingerprinting can be compared in our studies due to 

identical experimental set-up and the reliability of this approach can be evaluated. 

Morphotyping is a good method to go through large numbers of root tips and is 

suggested to give reliable diversity estimates of the individual seedlings and 

classification of ECM in exploration types. However, often it is difficult to identify 

similar ECM by morphotyping, because one root tip may be colonized by two ECM 

fungi. ITS-PCR fingerprinting, on the other hand, allows a better identification, but 

does not identify all ectomycorrhiza. However, the definition of ECM species by 

sequence similarities is complicated by the fact that the level of intraspecific ITS 

sequence variation differs between ECM fungi. Contaminations and artifacts are 

always risks in PCR amplification. Identification of sequences by comparing them to 

the sequences deposited in public nucleotide databases may be problematic, since 

taxonomic coverage of databases is limited. This was clearly highlighted in the 

comparable analysis of our ITS-taxa and sequences. Probably the most serious 

drawbacks of public databases are mistakes in sequences and in their identifications 

(Nilsson et al., 2006). To help overcome these problems in mycorrhizal studies, the 

UNITE database (http://unite.ut.ee) was created comprising 2511 well-annotated 

fungal ITS sequences from 118 genera as of January 2008 (Rajala, 2008). The 

combination of both morphotyping of defined sample units as a stratifying sampling 

method and subsequent PCR-ITS fingerprinting was found to be a reliable and 

relatively cost-efficient method for ectomycorrhizal species identification in large 

scale experiments, like this study. 
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4.2  Ecological implications of metals on ECM diver sity 

Environmental risk analaysis in cases of sediment and soil pollution is generally 

based on chemical analysis of selection of xenobiotic compounds. Many metals are 

essential nutrients (Cu, Co, Fe, Mo, Mn, Ni, and Zn) if they are present in apropiate 

concentrations, and often toxic if they are present at higher levels. Others, (Cd or Pb) 

have no known physiological activity. Usually, the total concentrations are used to 

predict the degree of pollution and the potential risks. However, the bioavailability of 

contaminants varies strongly with the properties of the environment. In soils and 

sediments the availability and toxicity of heavy metals is inversely related to pH, 

organic matter content and clay content. Ecotoxicological studies generally focus on 

toxic effects of pure chemicals on single species. When results of such studies are 

extrapolated to the field situation in order to predict ecological effects, interactions 

between populations and communities are not taken into account and food chain 

effects are neglected. In addition, toxicity tests generally have (sub) lethal toxicity 

endpoints and are based on relatively short-term test periods. Limiting ecological 

relevance in labor, contaminants may be adsorbed to soil organic matter and mineral 

soil particles, and soil organisms may be adapted to the heavy metals (Bloem & 

Breure, 2003). The often complex mixture of contaminants present in the field long-

term determin effectes like reduced decomposition. Therefore, sensitive biological 

indicators are needed to detect changes in ecosystem. Multilevel experiments or 

gradient studies are necessary for determining the shape of a response curve. As the 

scale of investigation expands, additional variables, such as temperature, 

precipitation and biogeographic constraints (e.g. endemism), will probably emerge as 

significant variables. Thus variable choice affect model quality (Lilleskov & Parrent, 

2007).  

If pH is low enough Al3+ and heavy metals (explanatory variables) may be leached 

from soil particles. This may damage soil microbial life (ECM in the role of response 

variable) as well as reduce nutrients availability to trees (P, S in the role of 

covariables). Additionally covariables were used as root density, depth of the roots, 

organic matter.  

As reviewed in detail by Colpaert, 2008, woody plants often are not considered as 

primary colonisers of metal-polluted soils, but on a number of sites pioneer tree 
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species, such as willows, poplars, birches and pines, are able to build up small 

pioneer populations. In trees with their long reproductive cycles, the adaptive 

potential for metal tolerance seems to be low (Meharg & Cairney, 2000) and even if 

there is a selection for individuals with a higher tolerance, it may take many decades 

before a reasonable tolerant population establishs. In addition, woody pioneers rely 

much more on their ECM fungi than herbaceous pioneer plants rely on their AM 

mycobionts, irrespective of any soil pollution (Ashkannejhad & Horton, 2006). After 

severe disturbances, when mycorrhizal propagules are scarce, ECM plants are slow 

colonisers. Therefore, it can be concluded that trees resist extreme metal toxicity 

through a large phenotypic plasticity and through their association with a small guild 

of well-adapted ECM fungi (Wilkinson & Dickinson, 1995).  

For ECM fungi, species diversity seems to be lower on the most polluted areas 

(Staudenrausch et al., 2005). Colpaert et al. (2004) focused on the occurrence of 

ECM fungi in pioneer pine forests along the Zn pollution gradient. Only on the most 

polluted area the very low number of four ECM morphotypes was found on roots of 

25 yr-old pine trees and the frequent occurrence show the dark septate 

ascomycetous Hymenoscyphus ericae. Similar ascomycetes are also present on 

pioneer pine trees that colonise Cu mine spoil in Norway (Vrålstad et al., 2002). 

Whether this ericoid mycorrhizal fungus can improve fitness of an ECM host under 

metal stress remains unclear. There are indications that particular ascomycetes are 

more stress-resistant than basidiomycetes and show up more frequently in 

mycorrhizal communities facing harsh environmental conditions or after severe 

disturbances (Baar et al., 1999; Trowbridge & Jumpponen, 2004). In the uranium 

mining area we have also isolated Cenococcum geophilum, Hymenoscyphus ericae 

and Helotiales sp.. Cenococcum geophilum is a ubiquitere species but remarkable is 

the frequent occurrence of a Hymenoschyphus ericae and Helotiales aggregate, 

which was absent from the control plots. 

In general, we have only a very incomplete view on the biodiversity of mycorrhizal 

fungi in metal-polluted environments especially for the belowground community 

(Colpaert, 2008). Studies based on aboveground sporocarp observations show that 

apart from the dark ascomycetes, the metalliferous sites had also a basidiomycete 

ECM fungus in common: Suillus luteus, a typical mycobiont of young pine trees that 
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is very common in primary successions (Rühling et al., 1984, Rühling & Söderström, 

1990). Although molecular studies regularly find a considerable lack of 

correspondence between the above- and belowground communities of ECM 

colonizers (Gardes & Bruns, 1996), the field studies of Rühling suggest that particular 

mycorrhizal species disappear with increasing metal stress. Some basidiomycete 

taxa that have been frequently found on heavily polluted soils include Hebeloma sp., 

Pisolithus tinctorius (Turnau et al., 1988), Rhizopogon sp. (Turnau et al., 1996), 

Scleroderma sp. (Jones & Hutchinson, 1986), and the Cd-accumulating Amanita 

muscaria (Kalač et al., 1991).  

We could define the belowground ECM in a primary succession established in a 

uranium mining area. Apart from the dark septate ascomycetous fungi we have 

isolated basidiomycetous fungi like Tomentella sublinacina, Pisolithus tinctorius, 

Paxillus involutus and two strains of Scleroderma sp. (Scleroderma verrucosum and 

Scleroderma sp). Tomentella sublinacina was reported as early- and late-stage 

fungus by Bellei et al. (1992). The identified basidiomycetous fungi at Kanigsberg 

belong to the long exploration type of mycorrhiza. Long distance ECM fungi can 

alleviate low nutrient stress which presents a major challenge at the poluted site at 

Kanigsberg. Their external mycelia contribute largely to the nutrient uptake and 

transfer to the host. However, it proved to be quite difficult to demonstrate 

unequivocally that metal toxicity exhibited selection pressure on fungal communities 

and populations. It seems likely that in a primary succession in contaminated land the 

particular mycorrhizal guilds may have a high constitutive metal tolerance so that 

evolution for higher tolerance is simply not necessary. 

The colonization of ECM is completely different in secondary successions where tree 

seedlings rapidly recruit ECM fungi, more often specialists, from dormant spore 

banks or other resistant propagules (Nara, 2006b; Izzo et al., 2006). Mycorrhizal 

fungi that colonize podzolic acidic soils can be exposed to high levels of toxic metals 

such as aluminium, iron and manganese. For a successfull symbiosis, both partners 

must be able to withstand the metal toxicity during all stages of colonization events. 

We have assessed the distribution of ECM in a 15-year old oak (Quercus robur) 

mixed forest on podzol with acidic pH of 2.85 to 3.40. Our results show that the 

observed abundance of ECM types was lower than on alkaline or slightly acidic 
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substrates and differed among the soil horizons: the organic horizon contained more 

ECM than the mineral horizon. The investigation by CCA indicated that a group of the 

heavy metals, including Al, Cr, Fe and Pb, strongly contributes to the reduction of 

ECM abundance. Although present at a low level, the medium distance exploration 

type fungus Laccaria amethystine and the long distance exploration type fungus 

Paxillus involutus as well as the observed brown rhizomorphs correlated with this 

group. The contact ECM types Russula ochroleuca, Lactarius quietus and a long 

distance exploration type fungus Pisolithus tinctorius were in sharp disagreement 

with these heavy metals but correlated positively with Mn, Cd, Zn, Sr and with the 

essential element P. The short distance exploration type Cenococcum geophilum 

was strongly correlated with Ni, Co and Cd, followed by a cluster of Fe, Pb and Cu, 

and also by the essential elements P and S. These findings indicate that the toxicity 

of heavy metals may be ameliorated by the availability of P.  

It is likely that in this secundary succession (with reforestation of oak replacing a 

spruce forest) mycorrhizal guilds have no high constitutive metal tolerance so that 

evolution for higher tolerance is necessary. 

 

4.2.1  Succession in primary versus secundary conta mination 

Factors responsible for patterns of successional stage and distribution of ECM roots 

are forest management and metal contamination. Discussed in terms of managing 

systems in order to maximize tree growth and form while effectively restoring soil 

water balance. The presence of ECM contact types in the higly heterogenous 

secundary succession area of Greiz is most likely due to preexisting spores or living 

mycelia. Horewer, the long distance exploration type seems to prevail over time. In 

conditions, where the heavy metal pollution is so severe that there are consistent 

detrimental effects on metabolism, organisms are subjected to selective pressure for 

increased resistance to toxic metals and species with the least efficient detoxification 

systems will disappear from the ecosystem. There has been a long debate whether 

mycorrhizal fungi have evolved adaptive tolerance against particular heavy metals 

(Hartley et al., 1997). A major reason was the lack of sufficient data from different 

populations from sites with high and low levels of pollution. Measuring and comparing 

metal tolerance can only be achieved by screening a significant number of individuals 
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from one or more species. It is necessary to analyze the intra- and interpopulation 

variation in metal tolerances. This is far easier for plants than for their fungal 

partners. The isolation and axenic cultivation of large numbers of mycorrhizal fungi 

can be quite troublesome. Nevertheless, inter-species comparisons in vitro can still 

be misleading because some fungi might be much more sensitive to stress in vitro 

than in symbiosis in contrast to grow equally well in vitro as in nature. Intraspecific 

comparisons are probably less susceptible to such confounding factors. Ideally once 

tolerance identified in vitro, it should also be verified in a plant experiment. Selection 

for adaptive metal tolerance in mycorrhizal fungi has been discovered in only a few 

higher fungi. Pisolithus tinctorius isolated from an old coal mining site had higher Al 

tolerance than isolates from rehabilitated and forest sites (Egerton-Warburton & 

Griffin, 1995). In the pioneer forests around several Zn smelters in Belgium, adaptive 

Zn tolerance was found in Suillus luteus, S. bovinus and Rhizopogon luteolus, but not 

in Paxillus involutus (Colpaert et al., 2004).  

From a system’s ecology perspective, succession is a process occurring at 

ecosystem level (community and its environment), so it is a priori not appropriate to 

search for reductive species level understanding of succession, while it is meaningful 

to look for species level mechanisms supporting succession in a community and 

ecosystem context. The search for indicator species of successional stages has 

been, however, a part of the reductive paradigm, both in plant ecology and in fungal 

ecology. Consequently, much of the literature dealing with ECM succession is 

dedicated to the concept of early and late succession species, as label species for 

certain succession stages.  

 

4.2.2  Early- and late-stage species approach 

Mason et al. (1982, 1983) coined the term early and late stage fungi for groups of 

species identified based on basidiocarp production around Betula trees. The early 

and late succesional dominants could be affected by resource availability (Gibson & 

Deacon, 1990; Lilleskov & Bruns 2003). Early species are characterized mainly by 

reproduction by spores, while late species by clonal expansion. Removal of forest 

floor increased both the fungal species richness and abundance of fruiting bodies, 

but increase in fruiting body production occurred mainly in early succession fungal 
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species (Bigg, 2000). Large and persistent genets formed by clonal expansion in 

some ECM species (Suilus sp., Xerocomus spp.) were shown to possess stress 

tolerant adaptive characteristics (mycelial cords or strands) that facilitate their 

competitive ability in mature forests (Bergemann & Miller, 2002), while for other 

species (e.g. Russula spp.) growth results only from mycelia radiation in multiple 

directions. Sarah et al. (2002) found the persistence of a genotype of Russula over 

an 11 years sampling period. The clonal behavior may have consequences on the 

colonization of new trees: disturbing the tree roots of existing plants changed the 

fungal species that formed mycorrhizas on roots of planted seedlings adjacent to 

existing plants (Bigg, 2000). In addition the disturbance at the tree root, the 

distribution of early and late species are influenced by the tree species, by 

differences in the life cycle of the tree, or by litter type. Early stage species for 

instance were found with Quercus up to 20 years, while with Betula, up to 6 years 

have been described. This apparently correlated with the life time of the tree species 

(Keizer & Arnolds, 1994). Different litter types below trees also have been found to 

induce different ectomycorrhizal communites to develop, linked possibly to functional 

differences like P cycling (Conn & Dighton, 2000). 

Another influencing factor is the overall environment of the tree. Air pollution, e.g. can 

influence the nutritional status of the tree and indirectly the quantity of organic 

exudates available for ECM, leading to unfavorable conditions for late ECM species 

(Keizer & Arnolds, 1994). And finally, the age of the roots is a biotic determinant of 

ECM types. Bigg (2000) found that the youngest roots were populated with early 

succession species, while older parts of the root system were associated with later 

stage species. Thus, a habitat separation between early and late stage ECM 

communities are be seen in the same forest, suggesting that processes of ECM 

succession are either infra-ecosystem (if we accept that the forest is the ecosystem), 

or that the forest is an assemblage of (micro)ecosystems (if we accept that the fungal 

community supports a micro-ecosystem).  

For lines of arguments are found which limited the concept of early and late stage 

mycorrhizal fungi. The first direction of criticism provides exceptions to the 

characteristics shortly mentioned above (1). Another criticism points out the major 

role of the dispersion and other biological mechanisms in regulating the communities’ 
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structure over succession (2). A third line puts the accent on the influence of the 

environment on the succession mechanisms (3). An integrative approach is based on 

an ecological perspective (4). 

(1) For instance Fiore-Donno (2001) demonstrates that in a mature forest two late 

stage species have contrasting colonization patterns: one by clonal growth, the other 

one by sexual spore propagation. Consequently, one can not expect necessarily 

higher genetic diversity in early-stage communities. 

(2) Newton (1992) proposed a functional classification of fungi based on 

epidemiological, dispersion characteristics (the relative ability of different fungi to 

colonize and spread from different sources of inoculum) in search for more 

appropriate classification criteria than early and late successional. The different 

morphs (emanating hyphae or the presence and differentiation of rhizomorphs, 

mantel type, laticifers, cystidia, sclerotia, the hydrophoby) were used to classifyd 

ectomycorrhiza in a wide range of potential exploration groups extending from the 

contact to the long distance exploration types (Raidl, 1997; Agerer, 2001). Mycelia 

that remain non rhizomorphic are thought to reflect a limited ability to explore 

surrounding soil, while mycelia that comprise highly differentiated rhizomorphs are 

regarded as more adapted to long-distance exploration (Agerer, 2001). To some 

extent, Agerer’s classification is relevant also for the early versus late stage 

classification, as one can expect to have long distance exploration types especially 

when the nutrients are scarce, i.e. in early stage communities. Buscot et al. (2000) 

also suggested that it should be possible to re-classify the species involved into a 

small number of groups biological and ecological traits were used therein, ranging 

from dispersal and foraging abilities to stress tolerance and nutrient mobilization and 

uptake. These parameters for classification rely on „ecological strategies” as 

described for fungi by Pugh (1980). 

(3) Keizer and Arnolds (1994) studied the relationship between Quercus tree age and 

numbers of ectomycorrhizal species and sporocarps, and found that changes in 

species composition and diversity showed much variation correlated to different 

environmental conditions, and also that succession in later stages cannot be 

explained by root extension alone (after 30 years, the soil was entirely occupied by 
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fine roots). The crucial role of soil factors in the course of succession had been 

previously suggested (e. g. Mason et al.,1987). 

(4) From an ecological perspective it became obvious that both environmental 

variables and dispersal were important factors shaping mycorrhizal communities. 

This stresses the importance of using a metacommunity approach when dealing with 

the diversity and succession processes of a certain community (Lekberg et al., 2007). 

In particular, the distance to other tree islands (Peay et al., 2007) resulted to be a key 

factor controlling EM diversity at tree islands (forest) level. 

What can be retained from the early/late-stage distinction is synthesized in Tab. 11 

and is well summarized by Keizer and Arnolds (1994):”The concepts of early and late 

stage fungi are primarily based on physiological characteristics of species and indeed 

are useful to unterstand early phases of primary forest succession. However, they 

are not appropriate to describe ectomycorrhizal succession under field conditions 

over a longer period since: 1) some early-stage fungi are restricted to young trees but 

others are maintained on the root systems of old trees; 2) some late-stage fungi 

appear already with young trees; 3) seedlings near mature trees may be infected by 

late-stage fungi; 4) late-stage fungi are dominant during some 90-95% of the lifetime 

of a tree and can be divided into several groups.” 

 

Table 11: Comparison of early- and late-stage EM species char acteristics.  

Species / 
Characteristic  Reproduction 

Genetic 
diversity Requirement of C, N, P 

Exploration 
types 

Early 
primarily by 
spores higher small 

mainly medium 
and long distance 

Late 

primarily by 
clonal 
expansion lower greater 

mainly contact 
and short 
distance 

Source Sarah et al., 2002 Our hypothesis 

 

4.2.3 Application of the ecosystem approach to fung al succession 

 The ecosystem concept was used to explain the high diversity of ECM communities, 

and the distribution and dynamic of this diversity: the high diversity of ECM was 

explained by referring to the concept of niche, fundamental in ecosystem theory. 
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Dickie (2007), for instance, points out that: “ectomycorrhizal fungi encounter a highly 

variable environment with myriad possible niche dimensions. Many of these niche 

dimensions are relatively narrow in breadth. Nonetheless, dimension breadth is 

relatively unimportant compared with dimension numbers (n), as available niche 

space in a community, i.e. the ‘n dimensional hypervolume’, increases multiplicatively 

with niche breadth but, exponentially with increasing dimension numbers”.  

The differences in ECM diversity from one ecosystem to another in space and time 

were explained by correlating them to the abiotic characteristics of the ecosystem or 

by attempting to build an ecosystem level succession theory. This kind of work 

seems to have started with Christensen (1969) who investigated 36 ecosystems and 

used classification, ordination and regression techniques to describe the species 

composition of the fungal communities. During the International Biological Program, 

there was a vogue for comparing fungal succession on different types of litter 

(Frankland, 1998). For the particular case of ECM fungi, Bigg (2000) showed, that 

usually young stands have few, very abundant fungal species, with other species 

present in low to very low quantities. Over time, the community changes to more 

species present, but roots are still dominated by relatively few species. So species 

richness would increase with succession, but the evenness will remain more or less 

the same. Dighton and Mason (1985) had previously developed a three stages model 

in which species richness increases from young to medium-aged stands, then 

strongly decreases in old stands, to reach a very low final level (following the 

vegetation pattern in Fagus forests, for instance), apparently contradictory to Bigg’s 

(2000) model. Because both models reflect correct data sets, it seems that there is 

no unique diversity pattern in the dynamics of ECM with succession. Twieg et al. 

(2007) for instance stated explicitly that simple categories such as ‘early stage’, ‘multi 

stage’, and ‘late stage’ were insufficient to describe fungal species’ successional 

patterns and that ECM fungal succession may be best described in the context of 

stand development, without the need for a universal explanation theory. 

From the above short overview it can be seen that, until now, the application of 

ecosystem concept in the study of ECM diversity patterns in space and time had 

more a heuristic than a quantitative explanatory value. This situation arose from the 

fact that the ecosystem approach seems to be applied especially in the interpretation 
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phase of the research programs dealing with ECM, and to a lesser extent in the 

design phase. This short coming can only be rescued by specific design of 

experiments. 

The ecosystem model proposed in this thesis suggest that diversity patterns of ECMs 

communities in forests can be investigated at three hierarchical levels: number of 

TDMs, species richness inside each TDM (α), at tree (β) and at forest level (γ), and 

finally evenness inside each TDM.  

Based on review of the literature data it can be concluded that the scale of separation 

in TDMs can be very different. In one example, species richness of ectomycorrhizal 

fungi was investigated, on tree islands of constant age and host composition that 

range in size from <10 to >10000 m2 showing that ectomycorrhizal species richness 

is significantly reduced on smaller and more isolated tree islands, and the species–

area slope that we observed (0.20–0.23) is similar to average slopes reported for 

macro-organisms. Species occurrence patterns across tree islands and investment 

trends in fungal fruit bodies suggested that a trade-off between competition and 

dispersal could play an important role in structuring ectomycorrhizal assemblages 

(Peay et al., 2007). Another impact on TDM separation is seen with on sampling 

effort. Appropriate estimation of diversity was found to be difficult task because of the 

large number of samples needed and the heterogenous distribution of ECM in forest 

floor. By constructing species area curves for data published in previous studies, 

Horton & Bruns (2001) demonstrated that usually insufficient samples were analyzed 

to have covered the diversity of ECM taxa present. Anderson & Cairney (2007) show 

that is necessary to take cores at least 3 m apart, in order to achieve the greatest 

sampling efficiency, but point out that community composition is variable at much 

finer scale (5-20 cm), with a complete change in ECM community composition 

occurring in some cases at a scale of 50 cm. In the vertical dimension, different fungi 

tipically occupy different horizons (Anderson & Cairney, 2007). 

The model proposed is a way of conceptualizing the structural diversity allowing a 

functional interpretation. For instance, changes in microbial diversity did not always 

correspond to changes in functional redundancy (Yin et al., 2000). The reason for 

this is that diversity is usually characterized unstructured, at tree island level, which 

mixes the diversity of different TDMs. As functional redundancy of species occurs 
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only at infra-TDM level, an increase of overall diversity (across pooled TDMs) does 

not reflect functional redundancy. E.g., decrease of redundancy in one TDM coupled 

with an increase in another TDM (or appearance of new TDMs) would load to similar 

results. The approach of defining structural diversity, in contrast, allows to 

quantification of the role of each species in the production of ecosystem services by 

investigating the influence of each species on the rate of relevant processes 

occurring at functional group (TDM) level (Luck et al., 2003; Kremen et al., 2005). At 

the same time, the extent to which ECMs contribute to the resource partitioning by 

physiological connections between trees is shown (Egerton-Warburton et al., 2007). 

The study could show a decreasing number of exploration types along a 

contamination gradient from Jenzig, to Greiz, to Kanigsberg. Especially at the former 

mining site Kanigsberg, the abundance of ectomycorrhiza is reduced, and the contact 

morphotype is missing. Beside the interpretation at ecosystem and community level, 

the interpretation at population/species level is a must in order to underline the 

mechanisms supporting the higher level patterns. In this respect we suggest the use 

of a cluster of species with different characteristics, such as: 

Cenococcum is a versatile species of ectomycorrhizal fungi  

Cenococcum geophilum is not host-specific and forms tiny, jet-black, hairy and 

unbranched ectomycorrhizas with a wide range of tree species in all ectomycorrhizal 

forests worldwide but displays additional characters that may contribute to drought 

tolerance, such as the accumulation of melanin and thick, microfibrillar and 

gelatinous cell walls (di Piedro et al., 2007) and this character appear to be distinct 

from other mechanisms involved in water supply and conservation by 

ectomycorrhizas and which cannot be tested on excised root tips, such as uptake 

and conduction by rhizomorphs (Lamhamedi et al., 1992). 

It is possible that the Cenococcum geophilum at such disturbed sites is genetically 

highly hetorogenous. The high functional heterogeneity of Cenococcum geophilum is 

remarked by Horton & Bruns (2001) and high genetic diversity was proved by Jany et 

al. (2002). Recombination and genetic differentiation in the mycorrhizal fungus 

Cenococcum geophilum between two populations indicated that there was genetic 

differentiation (LoBuglio & Taylor, 2002). Such genetic variation was documented for 

other species in areas contaminated with metals. The genetic variation in the 



 Discussion   68 

population of S. luteus from an unpolluted site was considerably larger than that 

observed at a polluted site (Colpaert et al., 2000). With increasing distance from Zn 

smelters, the frequency of Zn tolerant genotypes decreases (Colpaert et al., 2004). 

Addition of small concentration of metals to isolates of Aspergillus niger from mine 

surroundings can even stimulate the production of biomass, compared to isolates 

from not contaminated areas (Buckova et al., 2007). 

Tomentella as an example of a “late stage” versatile species 

Tomentella sublinacina, a species characterizing Kanigsbergs’ community, may be 

based upon slower colonization rates and greater competitive ability (Lilleskov, 2003) 

and it is characterized as late stage (Visser, 1995). Despite the fact that the capability 

to colonize roots from spores has eventually dispersed by soil invertebrates (Lileskov 

& Bruns, 2005). This may be an important detail in the context of soil application for 

remediation porposes. Also, Tomentella species are well known from other mining 

areas (Danielson, 1991), despite the fact that T. sublilacina is not the most ubiquitous 

of the group (Koljag et al., 2000). Belling & Abler (2004) confirms that T. sublilacina 

prefers habitats with little or no organic matter, a fact underlined also by Baar et al. 

(1999) who found viable propagules of T. sublilacina on mineral soils. Early stage 

and late stage ECM fungi were also reported (Bellei et al., 1992). It is possible, 

however, that the same fungus could act as an ‘early-stage fungus’ as well as a ‘late-

stage fungus’ depending on host species and habitat. 

Pisolithus and Paxillus 

Pisolithus tinctorius and Paxillus involutus ectomycorrhizae have been reported on 

various tree species and on numerous types of adverse sites, such as exhibitig high 

soil temperature, extreme acidity, drought, low fertility or high levels of toxic metals. 

Paxillus involutus is tolerant specially for Ni (Blaudez et al., 2000). Growth of 

vegetative mycelium on fly ash variants and metal accumulation data indicated that 

Pisolithus tinctorius ECM-1290 was very tolerant towards many metals (Ray et al., 

2005). Therefore, Pisolithus sp. shows potential for application at degraded sites 

because of its adaptation to ecologically diverse and adverse conditions. 

Scleroderma sp. 

Scleroderma sp. on Eucalyptus globulus with long distance exploration type 
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ectomycorrhizae revealed a higher growth increase, at least in a homogenized, 

sterile mineral soil, than some species with a medium distance, smooth exploration 

type. The proximal parts of hyphae and rhizomorphs are relatively hydrophobic. 

Therefore, the formation of rhizomorphs will shift the zone of uptake from the direct 

vicinity of the mycorrhizae to more remote areas (Unestam & Sun, 1995). 

Helotiales sp. and Hymenoscyphus sp. 

In addition, Helotiales sp. and Hymenoscyphus sp. were isolated from metal poluted 

areas (Vralstad et al., 2002). This implies Hymenoscyphus sp. as a fungus that might 

be able to tolerate higher metal concentrations. 

Gebhardt et al. (2007) suggested that most ECM morphotypes from reclamation sites 

are not adapted to well-developed organic horizons, and should be present in the 

inorganic horizon of reference sites. However, in our case, none of the species 

present in the inorganic horizon at Jenzig or Greiz was present at Kanigsberg except 

for Cenococcum geophilum. The fact that most species were present in both 

horizons (H and A) at a site could be an argument for only one TDM corresponding to 

the two horizons. The fact that most of the minority species present at Jenzig are not 

present at Kanigsberg or Greiz cannot be attributed to incomplete sampling, because 

the estimators of diversity show only very limited differences between the number of 

species observed and estimated at the sites. A point of convergence between the 

results of the two studies is the larger heterogeneity in ECM distribution in the 

contaminated sites compared to the controls.  

The richness and evenness of ECM communities at tree level in Greiz a secondary 

succession young forest grown on contaminated land was larger than at Kanigsberg 

a primary succession young forest grown on contaminated land in the upper TDM 

(humic horizon), but smaller in the lower TDM (inorganic horizon). Thus, the 

ecosystem level hypotheses of this study could be generally validated. Another 

interesting finding was the relationship between the diversity at TDM level and the 

diversity at stand level. A reversal of community evenness patterns took place 

between sites, with highest evenness in TDMs at Jenzig site, but lowest evenness of 

the overall community in Jenzig at forest scale. 

From the perspective of relating diversity patterns with the metals’ contamination, an 

interesting result is that not a single element was responsible for the pattern of ECM 
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distribution. We found a typical case of multiple stressors, and the ECMs probably 

experienced synergistic multimetal effects. Another finding is related to the 

heterogeneity in metals’ distribution. The distribution of metals at small scale is 

important in controlling the rates of microbial processes in contaminated areas (e.g., 

Bringmark & Bringmark, 2001). Local heterogeneity of abiotic paramaters may favor 

an increased diversity by increasing the number of niches. We found a larger 

heterogeneity in metals’ distribution both at Kanigsberg and at Greiz (with respect to 

different clusters of metals) than at Jenzig, and this was associated with an increased 

evenness in the forest, but with lower species richness. The heterogeneity in the 

distribution of ECM species around trees was indeed higher at the contaminated 

sites, and in particular in the top horizon at Kanigsberg. 

From a successional perspective our results show that the distinction early versus 

late stage species is not meaningfully applicable in the case of contaminated areas. 

The diversity in successionally more advanced contaminated systems such as Greiz 

(secondary succession) was higher at tree level in the humic horizon than in 

contaminated areas under primary succession (Kanigsberg), but lower in the 

inorganic horizon. Overall, at site level the community was more diverse at Greiz than 

at Kanigsberg, but very heterogeneously distributed between trees. This indicates 

that the distinction between primary and secondary succession is a good basis to 

predict ECM development at disturbed sites over time. The ecosystem concept, as a 

basis for modeling ECM community structures in a forest allows development of 

predictive tools and can be adopted for further studies.  
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5  Conclusion  

Mycorrhizal symbioses play fundamental roles in shaping terrestrial ecosystems and 

the characteristic forest plant communities that dominate the major terrestrial biomes 

of the world do so because selection has favoured different types of ECM association 

that are functionally adapted to the prevailing situation of edaphic and climatic 

conditions characterizing different environments. The significance of mycorrhizal 

fungi is that they connect the trees as primary producers of the ecosystems, to the 

heterogeneously distributed nutrients required for growth.  

The experimental design used in this thesis took into account variables at tree, forest 

and ecosystem level. This enabled us to assess the possibility of model approaches 

that might provide a realistic evaluation of the roles played by mycorrhizae in natural 

communities. The ecosystem concept used in this thesis explain the high diversity of 

ECM communities and the distribution and dynamics of this diversity. The high 

diversity of ECM was explained by referring to the concept of niche, fundamental to 

ecosystem theory. The differences in ECM diversity between the investigated 

ecosystems could be explained by correlation to abiotic characteristics of the 

ecosystem and an ecosystem level succession theory was formulated. Our results 

show that the distribution and diversity of ECM was significantly correlated with 

specific clusters of metals. The correlation of long distance ECM type with heavy 

metals clusters indicate that the toxicity of heavy metals may be ameliorated by the 

availability of P. The absence of the contact types of ECM could be used as sensitive 

biological indicators to detect changes in ecosystem. It seems likely that in a primary 

succession on contaminated land, the particular mycorrhizal guilds may have a high 

constitutive metal tolerance. Selection among fungi in secundary succession is based 

on fungal propagules preexisting in the area bevor disturbance (acidification/heavy 

metal bioavailability). Here, adaptation towards metal tolerance is required. The 

ecosystem level hypotheses of this study could be generally validated. It is suggested 

that 1) classification of ECM species should be done relative to a well defined 

succession series; the differention early and late stage ECM fung is not helpful; 2) the 

heterogeneity within the ecosystem can be used as indicator for ecosystems 

disturbance and succession stage. Elucidating the diversity of mechanisms involved, 

the range of interactions with other organisms, and the ways in which these are 
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regulated remains the ultimate challenge in understanding the role of these fungi in 

biogeochemical cycles. Comparative analysis of different systems improve our 

understanding of responses to environmental and climatic perturbations. This new 

knowledge is an important prerequisite for future, sustainable management of 

terrestrial ecosystems. In conclusion, this study stresses the imporance of 

investigating the ECM at ecosystem level. As concluded also by Read (2002), two 

factors have contributed to show progress in analysis of ECM communities. The first 

is simply, that the essentially short-term structure of science funding, is not 

compatible with the need to investigate processes at the ecosystem level many of 

which, by their very nature, are long term phenomena. The second, is that progress 

towards understanding of ecosystem level processes requires interdisciplinary 

collaborations like such betwen soil scientists, microbiologists and mycologists. The 

investigated sites here contributed to form a more realistic picture of ECM function 

during primary and secondary succession in oak forests.  
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6 Summary 

Mycorrhizal symbiosis plays an important role for forest establishment, tree growth 

and nutrition. Precise information is available on mycorrhizal function under 

experimental conditions, but little reliable information on the extent to which these 

functions are expressed under relevant, essentially multi-factorial circumstances of 

the kind that prevail in nature. The aim of this thesis was to understand the functional 

differences between different fungal symbionts and the reasons for changes in ECM 

community structure. The relationship between the diversity and exploration types of 

ECM was investigated in tree different Quercus robur forests with high heterogeneity 

of soil parameters (heavy metals, esential nutrients and pH) and land use (mining, 

forest harvesting and reforestation). Different succession stages at tree, community 

and ecosystem level were investigated to allow modeling of ecosystem development 

after disturbance.  

Surface mineral extraction creates many substrates for primary succession, ideal 

sites to investigate the influence of metals on ECM community. ECM in primary 

succession was investigated at the former uranium mining heap site Kanigsberg, 

Thuringia, Germany, that has been covered with 30-40 cm top soil and was then 

planted with a mixed forest including Quercus robur, Betula sp., Fraxinus sp. and 

Larix sp.. At the study site near Greiz, Eastern Thuringia, a mixed forest including 

oak (Quercus robur) and some birches (Betula sp.) was planted and the reforestation 

initiated a secundary succession. Jenzig (Jena, Germany) was used as unpolluted 

control site.  

Two field campaigns have been performed: an extensive one for qualitative 

description of the fungal diversity, and an intensive one focusing on estimation of 

abundances around 19 selected trees. The fungal community structure was 

quantitatively determined in 100 samples by classification in types of exploration, 

direct DNA isolation and strain isolation followed by morphological identification as 

well as sequencing of ITS. The use of ECM typing of defined sample units as a 

stratifying sampling method for PCR-ITS fingerprinting was found to be a reliable and 

relatively cost-efficient method for ECM species identification and functional 

characterization. Diversity ECM indexes were highest at Jenzig, and had low, similar 

values at Kangisberg and Greiz. At Jenzig, the diversity was homogenous, while at 
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Kanigsberg and Greiz the diversity was highly heterogeneous, both between trees 

and around trees.  

To compare metal contamination, 17 elements were determined in 23 selected soil 

samples after a seven step sequential extraction. The three chosen ecosystems are 

well individualized by metals distribution in soil and by other soil covariables. Highly 

correlated metals grouped in 3-4 clusters, depending on the extracted fraction. The 

bioavailable fraction was a good estimator explaining 89% of diversity. Kanigsberg 

and Greiz had a heterogeneous distribution of metals, in contrast to Jenzig with a 

homogenous distribution. Relations between environmental variables and 

genus/species abundance of ECM fungi were analyzed by means of multivariate 

ordination techniques. After removing the ECM variability due to P and organic 

matter/depth, several groups of metals could be identified as explaining most of the 

data variability. Clusters of Al-Cr-Fe-Pb and Cd-Mn-Zn separated well the ECM 

composition of Jenzig, Kanigsberg and Greiz ecosystems, with highest 

concentrations of metals at Greiz, leading even to trees without mycorrhiza in three 

samples. Clusters of Cs-Cu and Co-Ni-U separated Greiz from Kanigsberg, with 

highest metals concentrations in Kanigsberg. Further heterogeneity of ECM 

distribution at Kanigsberg (and in particular the presence of Tomentella sublilacina) 

was correlated with high concentrations of As, coupled to relatively lower 

concentrations of other metals and P in soil.  

In primary succession, particular mycorrhizal guilds may be found, with occurrence of 

dark ascomycetes. In the uranium mining area, we isolated Cenococcum geophilum, 

Hymenoscyphus ericae and Helotiales sp.. Cenococcum geophilum is a ubiquitous 

species while the frequent occurrence of a Hymenoschyphus ericae and Helotiales, 

which was rare or absent from the controle area, is remarkable. Through our study, 

we complement the information on belowground ECM in a primary succession 

established in a mining area. Apart from the dark, septate ascomycetous fungi, we 

isolated basidiomycetous fungi like T. sublinacina, Pisolithus tinctorius, Paxillus 

involutus and two strains of Scleroderma sp (Scleroderma areolatum and 

Scleroderma sp.). Tomentella sublinacina was reported both as early- and late-stage 

fungus. It is possible, however, that the same fungus could act as an ‘early-stage 

fungus’ as well as a ‘late-stage fungus’ depending on host species and habitat. The 
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identified basidiomycetous fungi at Kanigsberg belong to the long exploration type of 

mycorrhiza, compared with Jenzig where the 11 fungal types covered all proposed 

exploration types. 

The colonization of ECM is completely different in secondary succession where tree 

seedlings rapidly recruit ECM fungi, more often specialists, from dormant spore 

banks or other resistant propagules. Seven frequent ECM types were identified: 

Laccaria amethystina, Russula ochroleuca, Lactarius quietus, Cenococcum 

geophilum, Paxillus involutus, Pisolithus tinctorius and brown rhizomorphs of 

unknown fungal origin. The long distance exploration type seems to be selected over 

time, indicating that the toxicity of heavy metals may be ameliorated by the 

availability of P. The absence of contact types of ECM could be used as sensitive 

biological indicators to detect changes in ecosystems. 

The diversity and evenness of ECM communities in both sampled horizons of the 

uncontaminated site was larger than in the contaminated forests when computed at 

tree level, but the evenness was lowest in the uncontaminated site when computed 

at forest level. The richness and evenness of ECM communities at tree level in Greiz 

was larger than at Kanigsberg in the upper TDM. The distribution and diversity of 

ECM was significantly correlated with clusters of metals. 

The ecosystem concept was used to explain the high diversity of ECM communities 

and the distribution and dynamics of this diversity. The high diversity of ECM was 

explained by referring to the concept of niche. The differences in ECM diversity from 

one ecosystem to another in space and time were explained by correlation to abiotic 

characteristics of the ecosystem. This leads to an ecosystem level succession theory. 
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7 Zusammenfassung 

Die Mykorrhiza spielt eine wesentliche Rolle in der Überlebensstrategie 

verschiedener Pflanzen. Obwohl es aufschlussreiche Informationen über die 

Funktion von ECM an unbelasteten Standorten gibt, exisitieren nur wenige 

Informationen darüber, wie diese unter relevanten, essentiell multifaktoriellen 

Umständen in belasteten Gebieten beschaffen sind. Das Ziel dieser Arbeit war es, 

funktionelle Unterschiede zwischen verschiedenen Mykorrhizapilzen und die Gründe 

für die Veränderungen der ECM bezüglich der Bodenparameter zu analysieren und 

darzustellen. Der Zusammenhang zwischen der Diversität und den 

Ausbreitungsstrategien wurde in drei verschiedenen Quercus robur-Wäldern mit 

hoher Heterogenität der Boden-Parameter (Schwermetalle, Nährstoffe und pH) und 

der Landnutzung (Uran- Bergbau, Waldrodung und Aufforstung) untersucht. Die drei 

gewählten Standorte befinden sich in verschiedenen Sukzessionsstadien. Um ein 

Ökosystem-Modell entwerfen zu können, wurden die Baum-, Stand- und 

Waldebenen untersucht. 

Das ehemalige Uranbergbaugebiet bei Kanigsberg in Thüringen, Deutschland, wurde 

als belastetes Gebiet untersucht. Es ist ein idealer Standort für die Untersuchung der 

Ektomykorrhiza in Abhängigkeit von Schwermetallen in einem primärem 

Sukzessionstadium. Die untersuchte Fläche wurde durch die Wismut GmbH saniert 

und mit einem Mischwald aus Quercus robur, Betula sp., Fraxinus sp. und Larix sp. 

aufgeforstet. Am Standort Greiz (Forst, Ost-Thüringen) wurde das Gebiet nach der 

Waldrodung mit Mischwald aufgeforstet, sodass hier eine sekundäre Sukzession 

ausgelöst wurde. Als unbelastetes Waldgebiet wurde das Areal um den Jenzig bei 

Jena, untersucht. 

Zur Untersuchung des Bodens und der ECM-Pilze wurden Bodenproben in zwei 

verschiedenen Strategien entnommen: eine extensive Probenentnahme wurde zur 

qualitativen Beschreibung der ECM-Pilze durchgeführt, während eine intensive 

Probenentnahme um 19 ausgewählte Bäume zur Auswertung der Abundanz 

angewendet wurde. Um detaillierte Aussagen über die Diversität der Ektomykorrhiza 

machen zu können, wurden morphologische Analysen der Ektomykorrhiza-

Kurzwurzeln sowie eine molekularbiologische Bestimmung der Pilzheterogenität von 

100 Bodenproben  durchgeführt. Es zeigte sich, dass die ECM-Ausbreitungsstrategie 
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eine zuverlässige und kostengünstige Methode darstellt, um ECM-Pilze auf einer 

funktionellen Basis zu charakterisieren.  

Nur im Untersuchungsgebiet Jenzig wurde im Gegensatz zu Kanigsberg und Greiz 

eine hohe ECM-Diversität gefunden. Das Untersuchungsgebiet Jenzig wies eine 

homogene Diversität auf. In Kanigsberg und Greiz war Sie heterogen. Die 

Untersuchungen wurden zwischen und im Umkreis der Bäume durchgeführt. 

Zur Bestimmung der Schwermetallbelastung wurden 17 Elemente aus 23 

ausgewählten Bodenproben mit Hilfe der sequenziellen Extraktion gemessen. Die 

drei ausgewählten Ökosysteme unterschieden sich im Schwermetallgehalt und in 

weiteren Bodenparametern. Durch statistische Verfahren konnten stark korrellierte 

Schwermetalle in 3-4 Cluster zusammengefasst werden. Es konnte gezeigt werden, 

dass die bioverfügbare Fraktion 89% der Diversität erklärt. Dabei zeigten wieder 

Kanigsberg und Greiz eine heterogene Verteilung der Schwermetalle. Durch 

multivariate Statistiken konnten Aussagen über die Anpassungen an abiotische 

Stressfaktoren, wie die Schwermetallbelastung gewonnen werden. Nach Abzug der 

ECM-Variabilität durch P und C org konnten einige Schwermetalle, zusammengefaßt 

in 3-4 Gruppen, die Variabilität größtenteils erklären. Die Gruppen Al-Cr-Fe-Pb und 

Cd-Mn-Zn zeigten deutlich unterschiedliche die ECM in den drei Ökosystemen 

Jenzig, Kanigsberg und Greiz, wobei in Greiz die höchsten Konzentrationen der 

Schwermetalle vorlagen. Besonders hohe Belastungen wurden an Bäumen ohne 

Mykorrhizen gefunden. Der höhere Gehalt der Schwermetalle Cs-Cu und Co-Ni-U 

grenzen das Ökosystem Kanigsberg vom Ökosystem Greiz ab, mit einem höheren 

Gehalt dieser Schwermetalle in Kanigsberg. Des Weiteren korrelierte die heterogene 

ECM-Verteilung am Kanigsberg (z.B. die Anwesenheit von Tomentella sublilacina) 

mit den höheren As- und geringere P-sowie anderen Schwermetallkonzentrationen. 

Die primäre Sukzession wird vorrangig durch Ascomyceten-ECM bestimmt. Aus 

Proben des Uranbergbaugebiet es wurden Cenococcum geophilum, 

Hymenoscyphus ericae und Helotiales sp. isoliert. Obwohl Cenococcum geophilum  

eine weltweit häufigere Art ist, werden Hymenoscyphus ericae und Helotiales sp. 

ebenfalls oft nachgewiesen.  In unbelasteten Gebieten fehlen sie jedoch oder 

kommen sehr selten vor. Außer Ascomycetenpilzen wurden Basydiomyceten wie 

beispielsweise Tomentella sublinacina, Pisolithus tinctorius und Paxillus involutus 
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sowie zwei Stämme von Scleroderma sp. (Scleroderma verrucosum und 

Scleroderma sp.) isoliert. Die identifizierten Basidiomyceten am Kanigsberg zeichnen 

sich durch eine Ausbreitungsstrategie aus, die große Distanzen überwinden kann, 

indem die glatten Ektomykorrhizakurzwurzeln mit wenigen, aber hoch differenzierten 

Rhizomorphen verbunden sind. Dagegen wurden im unbelasteten Ökosystem Jenzig 

alle Ausbreitungsstrategien vorgefunden. 

Die ECM-Besiedlung verläuft in der sekundären Sukzession anders, weil die Bäume 

ECM-Pilzen und deren Überdauerungsformen aus der Umgebung rekrutieren 

können. Sieben häufige ECM wurden identifiziert: Laccaria amethystina, Russula 

ochroleuca, Lactarius quietus, Cenococcum geophilum, Paxillus involutus, Pisolithus 

tinctorius und braune Rhizomorphen unbestimmter Zugehörigkeit. Die 

Ausbreitungsstrategie über große Distanzen überwiegt mit der Zeit, sodass die 

Schwermetallbelastung über P-Lieferbarkeit verbessert werden kann. Es scheint, 

dass die ECM-Pilze im Ökosystem Greiz eine Schwermetallanpassung benötigen. 

Die Abwesenheit der Pilze mit Kontaktausbreitung könnte als sensitiver biologischer 

Indikator benutzt werden, um Änderungen im Ökosystemen nachzuweisen.  

Die Diverstät und die Äquität der ECM-Pilze in beiden Horizonten des unbelasteten 

Gebietes war höher als in den belasteten Gebieten, wenn Populationen an Bäumen 

direkt betrachtet wurden. Jedoch war die Äquität im unbelasteten Gebiet geringer, 

wenn der Wald betrachtet wurde. Der Reichtum und die Äquität der ECM- 

Gemeinschaften auf Baumebene im Ökosystem Greiz war größer als im Ökosystem 

Kanigsberg in der oberen TDM, beispielsweise im H-Horizont. Die Ausbreitung und 

die Diversität der ECM korrelierten im Wesentlichen mit den Schwermetallgruppen. 

Das Ökosystem-Konzept wurde benutzt, um die höhere Diversität der ECM- 

Gemeinschaften, die Ausbreitung und Dynamik dieser Diversität zu erklären. Die 

höhere Diversität der ECM wurde durch das Nischenkonzept erklärt. Die 

Unterschiede zwischen der ECM-Diversität eines Ökosystems in Raum und Zeit 

wurde mit Hilfe der Korrelation abiotischer Faktoren des Ökosystems dargestellt. Das 

konnte zu einer Ökosystemtheorie zusammengeführt werden. 
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