Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/10
Powers of cycles, powers of paths, and distance graphs

Lin, Min Chih; Rautenbach, Dieter;
Soulignac, Francisco Juan; Szwarcfiter, Jayme Luiz

2009

Powers of Cycles, Powers of Paths, and Distance Graphs

Min Chih Lin ${ }^{1,4}$,
Dieter Rautenbach ${ }^{2}$, Francisco Juan Soulignac ${ }^{1,5}$,
and
Jayme Luiz Szwarcfiter ${ }^{3,6}$
${ }^{1}$ Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Buenos Aires, Argentina, emails: \{oscarlin,fsoulign\}@dc.uba.ar
${ }^{2}$ Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: dieter.rautenbach@tu-ilmenau.de
${ }^{3}$ Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil, email: jayme@nce.ufrj.br

Dedicated to Martin Charles Golumbic on the occasion of his 60th birthday

Abstract

In 1988, Golumbic and Hammer characterized powers of cycles, relating them to circular-arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and even of the well-known circulant graphs, we consider distance graphs. While colourings of these graphs have been intensively studied, the recognition problem has been so far neglected. We propose polynomial-time recognition algorithms for these graphs under additional restrictions.

Keywords. cycle; path; circulant graph; distance graph; circular arc graph; interval graph

1 Introduction

In [15] Golumbic and Hammer proposed efficient algorithms for the maximum independent set problem restricted to circular arc graphs. As a simple reduction rule, they eliminate vertices whose closed neighbourhood contains the closed neighbourhood of another vertex. They prove that a circular arc graph which does no longer allow such a reduction is

[^0]isomorphic to the power of a cycle. In fact, their proof of this observation yields several equivalent characterizations of powers of cycles.

This nice connection between a well-known graph class and the powers of some very basic graph was our starting point for the present paper. We will first make all characterizations of powers of cycles implicit in [15] explicit and add some more. Then we prove a similar series of equivalent characterizations of powers of paths. Finally, we consider so-called distance graphs, which generalize powers of paths.

We need to review some notation and refer the reader to $[3,14]$ for further details. We consider simple, finite, and undirected graphs G with vertex set $V(G)$ and edge set $E(G)$. The order of G is the cardinality of $V(G)$. For a vertex $u \in V(G)$, the neighbourhood of u in G is denoted by $N_{G}(u)$. The degree of u in G is $d_{G}(u)=\left|N_{G}(u)\right|$ and the closed neighbourhood of u in G is $N_{G}[u]=\{u\} \cup N_{G}(u)$. The k-th power G^{k} of the graph G has the same vertex set as G and two distinct vertices u and v of G are adjacent in G^{k} if and only if their distance in G is at most k. If u and v are distinct vertices of G, then u and v are twins, if $N_{G}[u]=N_{G}[v]$ and v is a dominator of u, if $N_{G}[u] \subseteq N_{G}[v]$. A maximal sequence of at least two vertices $v_{1}, v_{2}, \ldots, v_{l}$ such that $N_{G}\left[v_{i}\right]$ properly contains $N_{G}\left[v_{i+1}\right]$ for $1 \leq i \leq l-1$ is a dominator sequence. A vertex u of G is universal, if $N_{G}[v]=V(G)$.

The path of order n is denoted by P_{n} and the cycle of order n is denoted by C_{n}.
A graph is a circular arc graph if it is the intersection graph of open arcs on a circle. A circular arc model for a circular arc graph G is a collection $\mathcal{A}=\left\{a_{v} \mid v \in V(G)\right\}$ of open arcs a_{v} on a circle such that $u v \in E(G)$ if and only if a_{u} and a_{v} intersect. Fixing an orientation of the circle, the extreme points of the arcs can be distinguished into starting points and ending points. As noted in [14], we may assume that no two arcs have a common extreme point. If no arc in \mathcal{A} contains another arc in \mathcal{A}, then \mathcal{A} is a proper circular arc model (PCA model) and G is a proper circular arc graph (PCA graph). If all arcs in \mathcal{A} have the same lengths, then \mathcal{A} is a unit circular arc model (UCA model) and G is a unit circular arc graph (UCA graph).

If we replace open arcs on a circle with open intervals in \mathbb{R} in the above definitions, we obtain the notions of an interval graph and an interval model. The extreme points of the intervals can again be distinguished into starting points and ending points and we may assume that no two intervals in a model share an extreme point. If no interval in an interval model \mathcal{A} contains another interval in \mathcal{A}, then \mathcal{A} is a proper interval model (PI model) and G is a proper interval graph (PI graph). If all intervals in \mathcal{A} have the same lengths, then \mathcal{A} is a unit interval model (UI model) and G is a unit interval graph (UI graph). It is well-known $[2,13,26]$ that the classes of PI graphs and UI graphs coincide while UCA graphs form a proper subclass of PCA graphs. It is easy to see that every (proper, unit) interval model yields a (proper, unit) circular arc model for the same graph, i.e. (proper, unit) interval graphs are special (proper, unit) circular arc graphs.

A natural and important generalization of powers of cycles are circulant graphs: For $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$, the circulant graph C_{n}^{D} has vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $N_{C_{n}^{D}}\left(v_{i}\right)=$ $\left\{v_{i+d}| | d \mid \in D\right\}$ for $0 \leq i \leq n-1$ where indices are identified modulo n. Clearly, we may assume max $D \leq \frac{n}{2}$ for every circulant graph C_{n}^{D}. Circulant graphs are the Cayley graphs of cyclic groups and due to their symmetry and connectivity properties, they have
been proposed for various practical applications [1]. Isomorphism testing and recognition of circulant graphs had been long-standing open problems [22,23,25] and were completely solved only recently [12,24].

A similarly defined class of graphs are distance graphs: For $n \in \mathbb{N}$ and $D \subseteq \mathbb{N}$, the distance graph P_{n}^{D} has vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $N_{P_{n}^{D}}\left(v_{i}\right)=\left\{v_{i+d}| | d \mid \in D\right.$ and $0 \leq$ $i+d \leq n-1\}$ for $0 \leq i \leq n-1$. Equivalently, $v_{i} v_{j} \in E\left(P_{n}^{D}\right)$ if and only if $|j-i| \in D$. Clearly, we may assume $\max D \leq n-1$ for every distance graph P_{n}^{D}. Distance graphs lack the symmetry of circulant graphs and the algebraic methods used in [12,24] do not apply to them. At first sight they seem to generalize powers of paths in a similar way as circulant graphs generalize powers of cycles. Nevertheless, the circulant graph C_{n}^{D} with $\max D \leq \frac{n}{2}$ is isomorphic to the distance graph $P_{n}^{D^{\prime}}$ for $D^{\prime}=D \cup\{n-d \mid d \in D\}$, i.e. every circulant graph is in fact also a distance graphs. Originally motivated by research due to Eggleton, Erdős, and Skilton [10,11] who considered coloring problems for infinite distance graphs, coloring problems for distance graphs and circulant graphs have been intensely studied $[4,8,9,19,20,27,28]$. While isomorphism testing and recognition of circulant graphs have been investigated for a long time, these problems seem to have been neglected for the more general distance graphs.

2 Powers of Cycles and Paths

Our first result collects several equivalent descriptions of powers of cycles. Theorem 1 in [15] actually only states that a circular arc graph without dominators is a power of a cycle. Nevertheless, the given arguments imply the following equivalences from our Theorem 1 below:

$$
(i) \Leftrightarrow(v) \Leftrightarrow(v i i) \Leftrightarrow(i x)
$$

Theorem 1 For a graph G of order n which is not complete, the following statements are equivalent.
(i) G is isomorphic to C_{n}^{k} for some integer k.
(ii) G is a regular UCA graph with no twins.
(iii) G is a regular PCA graph with no twins.
(iv) G is a UCA graph without dominators.
(v) G is a PCA graph without dominators.
(vi) G is a UCA graph and in every UCA model of G the starting and ending points alternate.
(vii) G is a PCA graph and in every PCA model of G the starting and ending points alternate.
(viii) G is a UCA graph and in some UCA model of G the starting and ending points alternate.
(ix) G is a PCA graph and in some PCA model of G the starting and ending points alternate.

Proof: The implications (ii) \Rightarrow (iii), (viii) \Rightarrow (ix), (vi) \Rightarrow (viii), and (vii) \Rightarrow (ix) are trivial.
(i) \Rightarrow (ii): Clearly, C_{n}^{k} is regular and has not twins. If $x_{0}, x_{1}, \ldots, x_{n-1}$ are n equally spaced points on a circle \mathcal{C}, then the set \mathcal{A} which contains the n open arcs of equal length with starting point x_{i} and ending point between x_{i+k} and x_{i+k+1} for $0 \leq i \leq n-1$ is a UCA model for C_{n}^{k}.
(ii) \Rightarrow (iv) (and (iii) $\Rightarrow(\mathrm{v}))$: If $N_{G}[u] \subseteq N_{G}[v]$, then the regularity of G implies $N_{G}[u]=N_{G}[v]$ and the twin-freeness of G implies $u=v$. Hence G is a UCA (PCA) graph without dominators.
(iv) $\Rightarrow(\mathrm{vi})($ and $(\mathrm{v}) \Rightarrow(\mathrm{vii}))$: For contradiction, we assume that s_{u} and s_{v} are two consecutive extreme points of a UCA (PCA) model of G which are both starting points of the arcs a_{u} and a_{v} corresponding to the vertices u and v of G. This implies that every arc of the model which intersects a_{u} also intersects a_{v} and yields the contradiction $N_{G}[u] \subseteq N_{G}[v]$.
(ix) \Rightarrow (i): Let $s_{0}, t_{0}, s_{1}, t_{1}, \ldots, s_{n-1}, t_{n-1}$ be the cyclically consecutive extreme points of a PCA model \mathcal{A} of G as in (ix). It suffices to prove the existence of some $k \in \mathbb{N}$ such that \mathcal{A} consists of the open arcs with starting point s_{i} and ending point t_{i+k} for $0 \leq i \leq n-1$ and some $k \in \mathbb{N}$ where indices are identified modulo n.

For contradiction, we may assume that the arc starting with s_{0} ends with t_{k} and that the arc starting with s_{1} ends with t_{k+i} for some k with $i \neq 1$. Since the model is proper, we obtain $i \geq 2$. Let the arc ending with t_{k+1} start with s_{j} for some j. Again, since the model is proper, the arc from s_{j} to t_{k+1} is not contained in the arc from s_{1} to t_{k+i} which implies $j<1$. Similarly, the arc from s_{j} to t_{k+1} does not contain the arc from s_{0} to t_{k} which implies $j>0$. We obtain the contradiction that the integer j satisfies $0<j<1$.

In view of the following diagram of the implications this completes the proof.

$$
\begin{aligned}
(i) \Rightarrow(i i) & \Rightarrow(i v) \\
\Downarrow & \Rightarrow(v i)
\end{aligned}>(v i i i) .
$$

Our next result collects several equivalent descriptions of powers of paths. Before we can state it, we need some further definitions.

Let $\mathcal{A}=\left\{\left(s_{i}, t_{i}\right) \mid 1 \leq i \leq n\right\}$ be a proper interval model for a connected graph G with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that

$$
\begin{equation*}
\left(s_{i}, t_{i}\right) \text { corresponds to } v_{i} \text { for } 1 \leq i \leq n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{1}<s_{2}<\ldots<s_{n} \tag{2}
\end{equation*}
$$

As noted by Roberts [26], the ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of G is unique up to permutation of twins and up to reversion and is therefore called a canonical ordering.

If

$$
\begin{equation*}
p=\max \left\{i \mid 1 \leq i \leq n, v_{i} \in N_{G}\left[v_{1}\right]\right\} \text { and } q=\min \left\{i \mid 1 \leq i \leq n, v_{i} \in N_{G}\left[v_{n}\right]\right\}, \tag{3}
\end{equation*}
$$

then

$$
\left\{v_{i} \mid \min \{p, q\} \leq i \leq \max \{p, q\}\right\}
$$

is the set of middle vertices. By Roberts' result [26], this set does not depend on the model \mathcal{A}. Note that the vertices v_{i} with $q \leq i \leq p$ are exactly the universal vertices of G.

Theorem 2 For a connected graph G of order n which is not complete, the following statements are equivalent.
(i) G is isomorphic to P_{n}^{k} for some integer k.
(ii) G is a UI graph in which all twins are universal and whose middle vertices have the same degree.
(iii) G is a UI graph in which all twins are universal. Furthermore, if $v_{1}, v_{2}, \ldots, v_{n}$ is a canonical ordering and p and q are as in (3), then the only dominator sequences of G are

$$
v_{r}, v_{\min \{p, q\}-1}, v_{\min \{p, q\}-2}, \ldots, v_{1}
$$

with $\min \{p, q\} \leq r \leq p$ and

$$
v_{s}, v_{\max \{p, q\}+1}, v_{\max \{p, q\}+2}, \ldots, v_{n}
$$

with $q \leq s \leq \max \{p, q\}$.
(iv) G is a UI graph and for all PI models $\mathcal{A}=\left\{\left(s_{i}, t_{i}\right) \mid 1 \leq i \leq n\right\}$ with (1) and (2), and p and q as in (3), the starting and ending points between s_{p} and t_{q} alternate.
(v) G is a UI graph and for some UI model $\mathcal{A}=\left\{\left(s_{i}, t_{i}\right) \mid 1 \leq i \leq n\right\}$ with (1) and (2), and p and q as in (3), the starting and ending points between s_{p} and t_{q} alternate.

Proof: (i) \Rightarrow (ii): Clearly, in P_{n}^{k} all twins are universal and $\left\{\left.\left(i, i+k+\frac{1}{2}\right) \right\rvert\, 1 \leq i \leq n\right\}$ is a UI model for P_{n}^{k} which yields the desired degree property.
(ii) \Rightarrow (iii): Since G is connected and not complete, we obtain $1<\min \{p, q\} \leq$ $\max \{p, q\}<n$. By (1) to (3), this implies

$$
N_{G}\left[v_{1}\right] \subseteq N_{G}\left[v_{2}\right] \subseteq \ldots \subseteq N_{G}\left[v_{\min \{p, q\}-1}\right] \subseteq N_{G}\left[v_{r}\right]
$$

for $\min \{p, q\} \leq r \leq p$, and

$$
N_{G}\left[v_{n}\right] \subseteq N_{G}\left[v_{n-1}\right] \subseteq \ldots \subseteq N_{G}\left[v_{\max \{p, q\}+1}\right] \subseteq N_{G}\left[v_{s}\right]
$$

for $q \leq s \leq \max \{p, q\}$. Since $v_{1}, \ldots, v_{\min \{p, q\}-1}$ are not adjacent to v_{n} and $v_{\max \{p, q\}+1}, \ldots, v_{n}$ are not adjacent to v_{1}, all these vertices are not universal and (ii) implies that all the above inclusions are proper. This yields the dominator sequences described in (iii). It remains to prove that there are no further dominator sequences.

Since, by (ii), all middle vertices have the same degree, every dominator sequence contains at most one middle vertex.

If $i<\min \{p, q\}$ and $p<j$, then $v_{1} \in N_{G}\left[v_{i}\right] \backslash N_{G}\left[v_{j}\right]$. Furthermore, either $q \leq j$ which implies $v_{n} \in N_{G}\left[v_{j}\right] \backslash N_{G}\left[v_{i}\right]$, or $q>j$ which implies that v_{j} is a middle vertex and, by (ii), $d_{G}\left(v_{j}\right)=d_{G}\left(v_{p}\right)>d_{G}\left(v_{i}\right)$. Hence, in both cases, v_{i} and v_{j} do not both appear in one dominator sequence.

Similarly, if $i>\max \{p, q\}$ and $j<q$, then v_{i} and v_{j} do not both appear in one dominator sequence. Altogether, this implies that there are no further dominator sequences as those described in (iii).
(iii) \Rightarrow (iv): Let \mathcal{A} be a PI model for G. For contradiction, we may assume, by symmetry, that there are two consecutive extreme points which are starting point s_{i} and s_{i+1} between s_{p} and t_{q}. By (3), the extreme point following s_{p} is t_{1} which implies $i>p$. Since \mathcal{A} is a proper interval model, we obtain $N_{G}\left[v_{i}\right] \subseteq N_{G}\left[v_{i+1}\right]$. Since $v_{1} \notin N_{G}\left[v_{i}\right] \cup$ $N_{G}\left[v_{i+1}\right]$, the vertices v_{i} and v_{i+1} are not universal. Hence, by (iii), v_{i+1} and v_{i} are no twins and they appear in this order in some dominator sequence of G. By (iii), this implies the contradiction $i+1 \leq p$.
(iv) \Rightarrow (v): trivial.
(v) \Rightarrow (i): Let \mathcal{A} be a UI model as described in (v). By (3), (v), and the fact that $s_{i}<s_{j}$ implies $t_{i}<t_{j}$, the order of the extreme points is as follows

$$
s_{1}<s_{2}<\ldots<s_{p}<t_{1}<s_{p+1}<t_{2}<s_{p+2}<t_{3}<\ldots<s_{n}<t_{q}<t_{q+1}<\ldots<t_{n}
$$

which implies that $p=n-q-1$ and that G is isomorphic to C_{n}^{p-1}.
In view of the corresponding recognition algorithms for circular arc graphs [7, 18, 21] and interval graphs [5, 6, 16, 17], Theorems 1 and 2 imply that powers of cycles and paths can be recognized in linear time.

3 Distance Graphs

For a set $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\} \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, we consider the distance graph P_{n}^{D} with vertex set $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ where

$$
\begin{equation*}
v_{i} v_{j} \text { is an edge if and only if }|i-j| \in D \tag{4}
\end{equation*}
$$

The next lemma collects some simple observations about P_{n}^{D}.
Lemma 3 Let $1 \leq d_{1}<d_{2}<\ldots<d_{k} \leq n-1$.
(i) P_{n}^{D} has $\sum_{i=1}^{k}\left(n-d_{i}\right)$ edges.
(ii) If P_{n}^{D} is connected, then the greatest common divisor $\operatorname{gcd}(D)$ of the elements in D equals 1.
(iii) If $\operatorname{gcd}(D)=1$ and $d_{k} \leq n-\operatorname{gcd}\left(\left\{d_{i} \mid 1 \leq i \leq k, d_{i} \leq \frac{n-1}{2}\right\}\right)$, then P_{n}^{D} is connected.

Proof: (i) Since there are exactly $n-d_{i}$ edges of the form $v_{i} v_{i+d_{i}}$, the statement follows.
(ii) If P_{n}^{D} is connected, then there is a path from v_{0} to v_{1}. This implies that 1 is an integral linear combination of the elements of D and hence $\operatorname{gcd}(D)=1$.
(iii) Let $d=\operatorname{gcd}\left(\left\{d_{i} \mid 1 \leq i \leq k, d_{i} \leq \frac{n-1}{2}\right\}\right)$. Let

$$
\begin{equation*}
d=\sum_{\mu=1}^{r} a_{\mu}-\sum_{\nu=1}^{s} b_{\nu} \tag{5}
\end{equation*}
$$

be such that $a_{\mu}, b_{\nu} \in\left\{d_{i} \mid 1 \leq i \leq k, d_{i} \leq \frac{n-1}{2}\right\}$ for $1 \leq \mu \leq r$ and $1 \leq \nu \leq s$, and $r+s$ is minimum. (The existence of such a representation of d follows from the Euclidean algorithm.) Clearly, $r \geq 1$. Furthermore, if $r+s \geq 2$, then $r, s \geq 1$.

Claim For every $0 \leq i \leq n-1-d$, there is a path in P_{n}^{D} from v_{i} to v_{i+d}.
Proof of the Claim: We will argue by induction on $r+s$. If $r+s=1$, then $d \in D$ and $v_{i} v_{i+d}$ is an edge of P_{n}^{D}. If $r+s>1$ and $i \leq \frac{n-1}{2}$, then $v_{i} v_{i+a_{1}}$ is an edge of P_{n}^{D} and, by induction, there is a path from $v_{i+a_{1}}$ to $v_{i+d}=v_{\left(i+a_{1}\right)+\left(d-a_{1}\right)}$. If $r+s>1$ and $i \geq \frac{n-1}{2}$, then $v_{i} v_{i-b_{1}}$ is an edge of P_{n}^{D} and, by induction, there is a path from $v_{i-b_{1}}$ to $v_{i+d}=v_{\left(i-b_{1}\right)+\left(d+b_{1}\right)}$. This completes the proof of the claim.

By the claim, for every $0 \leq i \leq n-1$, there are paths between v_{i} and vertices v_{j} and $v_{j^{\prime}}$ with $j, j^{\prime} \equiv i \bmod d, 0 \leq j \leq d-1$ and $n-d \leq j^{\prime} \leq n-1$. Since $d_{k} \leq n-d$, this implies that for every $0 \leq i \leq n-1$ and every d^{\prime} with $\left|d^{\prime}\right| \in D$, there is a path from v_{i} to a vertex v_{j} with $j \equiv\left(i+d^{\prime}\right) \bmod d$.

Since $\operatorname{gcd}(D)=1,1$ is an integral linear combination of the elements of D. This implies, by an inductive argument, that for every $0 \leq i \leq n-2$, there is a path from v_{i} to a vertex v_{j} with $j \equiv(i+1) \bmod d$. Applying the claim again, we obtain that there is a path from v_{i} to v_{i+1} which completes the proof.

As we have already observed in the introduction, circulant graphs are special distance graphs. Since isomorphism testing and recognition of circulant graphs were major achievements, these problems will be very hard for distance graphs. In order to represent a circulant graph as a distance graphs P_{n}^{D}, the set D typically contains elements which are larger than $\frac{n-1}{2}$. In the sequel we will restrict our attention to the case

$$
\begin{equation*}
1=d_{1}<d_{2}<\ldots<d_{k} \leq \frac{n-1}{2} \tag{6}
\end{equation*}
$$

This assumption essentially results in distance graphs which seem closer to powers of paths than to circulant graphs. The assumption $d_{1}=1$ ensures that the path $v_{0} v_{1} v_{2} \ldots v_{n-1}$ is
always contained in P_{n}^{D}. The assumption $d_{k} \leq \frac{n-1}{2}$ ensures that for $0 \leq i \leq k-1$, the set of vertices of P_{n}^{D} of degree $k+i$ is exactly

$$
\begin{equation*}
\left\{v_{j} \mid d_{i} \leq j \leq d_{i+1}-1\right\} \cup\left\{v_{j} \mid n-d_{i+1} \leq j \leq n-d_{i}-1\right\} \tag{7}
\end{equation*}
$$

where $d_{0}:=0$. Furthermore, the vertices v_{j} with $d_{k} \leq j \leq n-1-d_{k}$ are all of degree $2 k$. Hence P_{n}^{D} has $2\left(d_{i+1}-d_{i}\right)$ vertices of degree $k+i$ for $0 \leq i \leq k-1$ and the set D is uniquely determined by the degree sequence of the graph P_{n}^{D}.

We consider the recognition problem for distance graphs. Equivalently, for a distance graph P_{n}^{D} given up to isomorphism, we consider the problem to reconstruct the set D and an ordering $v_{0}, v_{1}, \ldots, v_{n-1}$ of its vertices which satisfies (4). As we have already observed, the set D is uniquely determined by the degree sequence of P_{n}^{D}.

We call some r with $1 \leq r \leq \frac{n-1}{2}$ an index of ambiguity of P_{n}^{D}, if there is an index $r<s \leq n-1-r$ such that

$$
\begin{align*}
& N_{P_{n}^{D}}\left(v_{r}\right) \cap\left\{v_{j} \mid 0 \leq j \leq r-1\right\}=N_{P_{n}^{D}}\left(v_{s}\right) \cap\left\{v_{j} \mid 0 \leq j \leq r-1\right\}, \tag{8}\\
& N_{P_{n}^{D}}\left(v_{r}\right) \cap\left\{v_{j} \mid n-r \leq j \leq n-1\right\}=N_{P_{n}^{D}}\left(v_{s}\right) \cap\left\{v_{j} \mid n-r \leq j \leq n-1\right\}, \tag{9}\\
& d_{P_{n}^{D}}\left(v_{r}\right)=d_{P_{n}^{D}}\left(v_{s}\right), \tag{10}\\
& N_{P_{n}^{D}}\left[v_{r}\right] \neq N_{P_{n}^{D}}\left[v_{s}\right] . \tag{11}
\end{align*}
$$

We call v_{s} a cuckoo twin of v_{r}. The role of these notions is captured by the following result.
Theorem 4 Let D satisfy (6). If P_{n}^{D} has no index of ambiguity, then D and an ordering $v_{0}, v_{1}, \ldots, v_{n-1}$ of its vertices which satisfies (4) can be obtained from P_{n}^{D} in time $O\left(n^{2}\right)$.

Proof: Since $d_{1}=1, P_{n}^{D}$ has exactly two vertices of degree k. Since $v_{i} \mapsto v_{n-1-i}$ is an automorphism of P_{n}^{D}, we can select any of the two vertices as v_{0} and the other as v_{n-1}.

In view of an inductive approach, we assume that we have already identified the vertices in

$$
U=\left\{v_{j} \mid 0 \leq j \leq r-1\right\} \cup\left\{v_{j} \mid n-r \leq j \leq n-1\right\}
$$

for some $r \geq 1$. Now, since P_{n}^{D} has no index of ambiguity, v_{r} and v_{n-1-r} are uniquely determined by D, their degrees, and their neighbours within U. (Note that a vertex v of the same degree as v_{r} and with the same neighbours within U, does not satisfy (11). Hence v and v_{r} are twins and we can select an arbitrary such vertex as v_{r}).

Clearly, this approach can be implemented in quadratic time.
The next lemma captures some properties of indices of ambiguity.
Lemma 5 Let D satisfy (6). If r is an index of ambiguity of P_{n}^{D} and $d_{P_{n}^{D}}\left(v_{r}\right)=k+i$ for some $0 \leq i \leq k$, then the following statements hold.
(i) $1 \leq i \leq k-1$.
(ii) $d_{i} \leq r \leq d_{i+1}-1$ and $n-d_{i+1} \leq s \leq n-1-d_{i}$.
(iii) $s-r=d_{k}-d_{i}=d_{k-1}-d_{i-1}=\ldots=d_{k-i+1}-d_{1}$. Furthermore, v_{r} has a unique cuckoo twin v_{s}, and v_{s} is no cuckoo twin of a vertex $v_{r^{\prime}}$ with $r^{\prime} \neq r$.
(iv) $N_{P_{n}^{D}}\left(v_{r}\right) \cap\left\{v_{j} \mid s+1 \leq j \leq n-1\right\}=N_{P_{n}^{D}}\left(v_{s}\right) \cap\left\{v_{j} \mid s+1 \leq j \leq n-1\right\}$.
(v) $n-d_{i}-1-2\left(d_{i+1}-d_{i}-1\right) \leq d_{k} \leq n-d_{i}-1$.

Proof: Since $r \geq 1$ and $1 \in D$, we obtain $i \geq 1$. If $i=k$, then $r-d_{k} \geq 0$ and $v_{r-d_{k}} \in N_{P_{n}^{D}}\left(v_{r}\right) \backslash N_{P_{n}^{D}}\left(v_{s}\right)$ which contradicts (8). Hence $i \leq k-1$ and (i) follows.

Since $r^{n} \leq \frac{n-1}{2}$, (7) implies $d_{i} \leq r \leq d_{i+1}-1$. Furthermore, (6) and (8) imply that v_{r} has exactly k neighbours v_{j} with $j>r$ and exactly i neighbours v_{j} with $j<r$. If $s \leq \frac{n-1}{2}$, then (6) and (8) imply that v_{s} has k neighbours v_{j} with $j>s, i$ neighbours v_{j} with $0 \leq j \leq r-1$ and at least one further neighbour v_{s-1}. This implies $d_{P_{n}^{D}}\left(v_{s}\right) \geq k+i+1$ which contradicts (10). Hence $s>\frac{n-1}{2}$, v_{s} has exactly k neighbours v_{j} with $j<s$ and exactly i neighbours v_{j} with $j>s$. By (7), $n-d_{i+1} \leq s \leq n-1-d_{i}$ and (ii) follows.

Since $N_{P_{n}^{D}}\left(v_{r}\right) \cap\left\{v_{j} \mid 0 \leq j \leq r-1\right\}=\left\{v_{r-d_{1}}, v_{r-d_{2}}, \ldots, v_{r-d_{i}}\right\}$, (8) implies

$$
s-r=d_{k}-d_{i}=d_{k-1}-d_{i-1}=\ldots=d_{k-i+1}-d_{1} .
$$

Since $s=r+d_{k}-d_{i}$, the cuckoo twin v_{s} of v_{r} is uniquely determined. If v_{s} is also the cuckoo twin of a vertex $v_{r^{\prime}}$ for an index of ambiguity r^{\prime} different from r, then the degree of v_{s} implies that $v_{r^{\prime}}$ has exactly i neighbours v_{j} with $j<r^{\prime}$ which coincide with the i neighbours $v_{r-d_{1}}, v_{r-d_{2}}, \ldots, v_{r-d_{i}}$ of v_{s}. This clearly implies the contradiction $r^{\prime}=r$ and (iii) follows.

Furthermore, $N_{P_{n}^{D}}\left(v_{s}\right) \cap\left\{v_{j} \mid s+1 \leq j \leq n-1\right\}=\left\{v_{s+d_{1}}, v_{s+d_{2}}, \ldots, v_{s+d_{i}}\right\}$, and, by (iii), (iv) follows. (ii) and (iii) imply $n-2 d_{i+1}+1 \leq d_{k}-d_{i} \leq n-2 d_{i}-1$, and (v) follows.

In view of Theorem 4, situations with no or with only few indices of ambiguity are of interest. The following two corollaries make this more precise.

Corollary 6 Let D satisfy (6).
(i) If $d_{k}<\frac{n+2}{3}$, then P_{n}^{D} has no index of ambiguity.
(ii) If $\delta=\max \left\{d_{i+1}-d_{i} \mid 1 \leq i \leq k-1\right\}$, then P_{n}^{D} has at most $\delta-1$ indices of ambiguity.

Proof: Let r be an index of ambiguity and let $d_{P_{n}^{D}}\left(v_{r}\right)=k+i$. Let v_{s} be the cuckoo twin of v_{r}.
(i) By Lemma 5 (v), $n \leq d_{k}+2 d_{i+1}-d_{i}-1 \leq 3 d_{k}-2$ which implies the contradiction $d_{k} \geq \frac{n+2}{3}$.
(ii) By the definition of δ, the vertex v_{r} has a neighbour v_{j} with $j \leq \delta-1$. By Lemma 5 (ii), $\frac{n+1}{2} \leq n-d_{i+1} \leq s \leq j+d_{k} \leq \delta-1+\frac{n-1}{2}$. By Lemma 5 (iii), there are at most $\delta-1$ cuckoo twins and hence also at most $\delta-1$ indices of ambiguity.

Corollary 7 Let D satisfy (6). If P_{n}^{D} has l indices of ambiguity, then D and an ordering $v_{0}, v_{1}, \ldots, v_{n-1}$ of its vertices which satisfies (4) can be obtained from P_{n}^{D} in time $O\left(4^{l} n^{2}\right)$.

Proof: Note that if r is an index of ambiguity, then also $n-1-r$ satisfies similar conditions as r. If P_{n}^{D} has l indices of ambiguity, then a similar strategy as used in the proof of Theorem 4 can be applied: Every time an index r of ambiguity is reached, one has to branch into 4 possibilities according to the two choices for each of v_{r} and v_{n-1-r}. Since the branching depth is at most l, the resulting time complexity of this modified approach is $O\left(4^{l} n^{2}\right)$.

By Lemma 5 (iii), indices of ambiguity typically lead to repeated differences among the elements of D. Therefore, we will consider the following choice for D with most repeated differences:

$$
\begin{equation*}
D=\{1+(i-1) p \mid 1 \leq i \leq k\} \tag{12}
\end{equation*}
$$

for some $p, k \in \mathbb{N}$. Note that for $p=1, P_{n}^{D}=P_{n}^{k}$. Furthermore, for $p=2, P_{n}^{D}$ is a proper interval bigraph [16].

Theorem 8 If D satisfies (12) for some $p, k \in \mathbb{N}$ and $1+(k-1) p \leq \frac{n-1}{2}$, then D and an ordering $v_{0}, v_{1}, \ldots, v_{n-1}$ of its vertices which satisfies (4) can be obtained from P_{n}^{D} in time $O\left(n^{2}\right)$.

Proof: We only need to argue how to resolve the indices of ambiguity. Therefore, let r be an index of ambiguity and let v_{s} be the cuckoo twin of v_{r}.

By (8), (11), and Lemma 5 (iv), there is some j with $r<j<s$ such that $v_{j} \in$ $N_{P_{n}^{D}}\left(v_{s}\right) \backslash N_{P_{n}^{D}}\left(v_{r}\right)$. This implies $p \geq 3$.

Clearly, we may assume that $n \geq 4$. In this case v_{1} is the unique neighbour of v_{0} of degree $k+1$ which implies $r \geq 2$. Now v_{r-2} and v_{j} are adjacent while v_{r-2} is non-adjacent to the vertices in the non-empty set $N_{P_{n}^{D}}\left(v_{r}\right) \backslash N_{P_{n}^{D}}\left(v_{s}\right)$. This allows to distinguish between v_{r} and its cuckoo twin v_{s} and completes the proof.

4 Induced subgraphs

The graph classes to which we have related the powers of cycles, the powers of paths, and the distance graphs are hereditary. Therefore, it makes sense to consider the induced subgraphs of these graphs.

Theorem 9 (i) A graph is an induced subgraph of a power of a cycle if and only it is a UCA graph.
(ii) A graph is an induced subgraph of a power of a path if and only it is a UI graph.
(iii) Every graph is an induced subgraph of a distance graph.

Proof: Since the proofs of (i) and (ii) are very similar, we will only give details for the proofs of (ii) and (iii).
(ii) By Theorem 2, powers of paths are UI graphs and, hence, so are their induced subgraphs. For the converse, we assume that G is a UI graph and that $\mathcal{A}=\left\{\left(s_{v}, t_{v}\right) \mid v \in\right.$ $V(G)\}$ is a UI model for G. As we have noted in the introduction, we may assume that all $2|V(G)|$ extreme points are distinct. Therefore, there is some $n \in \mathbb{N}$ such that strictly between every two consecutive extreme points of \mathcal{A} there are at least two points from the set $\mathbb{Z} / n=\left\{\left.\frac{i}{n} \right\rvert\, i \in \mathbb{Z}\right\}$.

If I_{1} and I_{2} are two open intervals of the same length, then $\left|I_{1} \cap \mathbb{Z} / n\right|$ and $\left|I_{2} \cap \mathbb{Z} / n\right|$ differ by at most one. Therefore, suitably replacing every extreme point x with one of the two smallest elements of \mathbb{Z} / n which are larger than x, we obtain a UI model \mathcal{A}^{\prime} for G which uses only extreme points from \mathbb{Z} / n. Suitably adding further intervals of the same length with starting points in \mathbb{Z} / n yields in a UI model for a power of a path.
(iii) In view of a simple inductive argument, we may assume that $G-v$ is an induced subgraph of P_{n}^{D} for some n and D with max $D \leq n-1$. If $N_{G}(v)=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{1}}\right\}$, then G is an induced subgraph of $P_{2 n}^{D^{\prime}}$ with $D^{\prime}=D \cup\left\{n+i_{1}, n+i_{2}, \ldots, n+i_{l}\right\}$.

5 Conclusion

We have presented several characterizations of powers of cycles and powers of paths relating them to well-known graphs classes. Furthermore, we studied the recognition problem for distance graphs which generalize powers of paths. The main problem left open in this paper is the recognition of distance graphs without further simplifying assumptions.

References

[1] J.-C. Bermond, F. Comellas, and D. F. Hsu, Distributed Loop Computer Networks: A Survey, J. of Parallel and Distributed Computing 24 (1985), 2-10.
[2] K.P. Bogart and D.B. West, A short proof that "proper = unit", Discrete Math. 201 (1999), 21-23.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.
[4] G.J. Chang, L. Huang, and X. Zhu, Circular Chromatic Numbers and Fractional Chromatic Numbers of Distance Graphs, Europ. J. Combinatorics 19 (1998), 423-431.
[5] D.G. Corneil, A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs, Discrete Appl. Math. 138 (2004), 371-379.
[6] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A.P. Sprague, Simple linear time recognition of unit interval graphs, Inform. Process. Lett. 55 (1995), 99-104.
[7] X. Deng, P. Hell, and J. Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput. 25 (1996), 390-403.
[8] W. Deuber and X. Zhu, The chromatic number of distance graphs, Discrete Math. 165/166 (1997), 195-204.
[9] B. Effantin and H. Kheddouci, The b-chromatic number of some power graphs, Discrete Math. Theor. Comput. Sci. 6 (2003), 45-54.
[10] R.B. Eggleton, P. Erdős, and D.K. Skilton, Coloring the real line, J. Combin. Theory, Ser. B 39 (1985), 86-100.
[11] R.B. Eggleton, P. Erdős, and D.K. Skilton, Colouring prime distance graphs, Graphs Combin. 6 (1990), 17-32.
[12] S.A. Evdokimov and I.N. Ponomarenko, Circulant graphs: recognizing and isomorphism testing in polynomial time, (English. Russian original), St. Petersbg. Math. J. 15 (2004), 813-835, translation from Algebra Anal. 15 (2003), 1-34.
[13] F. Gardi, The Roberts characterization of proper and unit interval graphs, Discrete Math. 307 (2007), 2906-2908.
[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, NY, 1980.
[15] M.C. Golumbic and P.L. Hammer, Stability in circular arc graphs, J. Algorithms 9 (1988), 314-320.
[16] P. Hell and J. Huang, Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs, SIAM J. Discrete Math. 18 (2005), 554-570.
[17] C.M. Herrera de Figueiredo, J. Meidanis, and C. Picinin de Mello, A linear-time algorithm for proper interval graph recognition, Inform. Process. Lett. 56 (1995), 179184.
[18] H. Kaplan and Y. Nussbaum, Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs, in: Graph-Theoretic Concepts in Computer Science, vol. 4271 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, 289-300.
[19] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Discrete Math. 191 (1998), 113-123.
[20] A. Kemnitz and M. Marangio, Colorings and list colorings of integer distance graphs, Congr. Numerantium 151 (2001), 75-84.
[21] R.M. McConnell, Linear-Time Recognition of Circular-Arc Graphs, Algorithmica 37 (2003), 93-147.
[22] M Muzychuk and G. Tinhofer, Recognizing circulant graphs of prime order in polynomial time, J. Comb. 5 (1998), 347-374.
[23] M Muzychuk and G. Tinhofer, Recognizing circulant graphs in polynomial time: An application of association schemes, Electronic J. Combin. 8 (2001), \#R26.
[24] M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proc. Lond. Math. Soc., III. Ser. 88 (2004), 1-41.
[25] I. Ponomarenko, Polynomial-time algorithms for recognizing and isomorphism testing of cyclic tournaments, Acta applicandae Mathematicae 29 (1992), 139-160.
[26] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), Academic Press, New York, 1969, 139-146.
[27] M. Voigt, Colouring of distance graphs, Ars Combin. 52 (1999), 3-12.
[28] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math. 51 (1994), 197-209.

[^0]: ${ }^{4}$ Partially supported by UBACyT Grants X184 and X212 and by PICT ANPCyT Grant 1562
 ${ }^{5}$ Partially supported by UBACyT Grant X184, PICT ANPCyT Grant 1562 and by a grant of the YPF Foundation
 ${ }^{6}$ Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brasil

