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Chapter 1

Introduction

By the time John Rupert Firth (Firth, 1957) framed his famous slogan “You shall

know a word by the company it keeps!”, he may not have known that he not only set

the stage for a whole school of linguistic research, British empiricist contextualism,

but also drew the attention of many computational linguists to the language phe-

nomena he was explicitly and implicitly referring to – collocations and terms. But

why do computational linguists even need to worry about these two kinds of linguis-

tic expressions? The answer is that collocations and terms are pervasive in natural

language and, for this reason, any language processing application has to find ways

to tackle them. What makes these two types of expressions different – although to

different degrees – is that their recognition, extraction and interpretation in natural

language text falls outside the realm of standard procedures applied to the “typical”

language constructions which obey the rules of syntax and semantic compositionality

and which typically encompass natural language processing (NLP) engines such as

part-of-speech (POS) taggers, syntactic parsers, and semantic interpreters. In fact, it

is typically the case that collocations and terms as multi-word expressions need to be

treated by language processing modules as a sort of atomic linguistic units which need

not further be analyzed as they already denote stand-alone linguistic or conceptual

entities.

Although Firth (1957) did not explicitly refer to the notion of “term” (or “termi-

nological expression”) as a distinctive linguistic unit, we will see in this thesis that the

linguistic property deducible from his slogan – frequency of co-occurrence – applies

both to collocations and to terms. In fact, this property has turned out to be so
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prominent that almost all of the computational linguistics research dedicated to the

tasks of collocation and term extraction from natural language text data employs ded-

icated statistical machinery – lexical association measures – which to varying degrees

capitalize on this property and utilize it in various, sometimes quite sophisticated

ways. While the reason for this prominence may certainly be sought in the empirical

turnaround that field underwent in the mid-1990s, it has the effect that various sta-

tistical and linguistic aspects are ignored or never even considered. On the statistical

side, much of the statistical machinery employed both for the extraction of colloca-

tions and terms – having been originally devised for completely different tasks such

as significance testing for various experimental design set-ups – relies on assumptions

that are typically not borne out by the probability distributions of natural language

data (cf. section 3.3 of this thesis). Admittedly, it may be justified to overlook such

rather theoretical concerns if standard statistical association measures1 were to have

a formidable application performance in extracting collocations and terms from text.

Unfortunately, there is more than just spurious evidence in both the research liter-

ature on collocation extraction (cf. section 3.1) and on term extraction (cf. section

3.2) which indicates that plain frequency of co-occurrence counting of collocation and

term candidates appears to perform equally well.

In case, at this point, the impression may be conveyed that measuring statistical

association is an enterprise not worth undertaking, some clarifications are in order.

First of all, measuring the lexical association between words is in fact essential in any

attempt to isolate collocations and terms from their non-specific (i.e. non-collocation

and non-term) counterparts in text. The reason for this may be sought in the primary

task of a lexical association measure, viz. to determine the degree of collocativity or

termhood of a certain collocation candidate or a certain term candidate.2 In fact,

lexical associations in the form of collocativity or termhood have time and again

been described as the procedural backbones of applications tackling collocation ex-

1As we will see in section 3.3, strictly speaking, not all of these association measures are “sta-

tistical” in the sense of testing for some null hypothesis (e.g. the t-test), but some do derive their

theoretical underpinnings from information theory (e.g. mutual information).
2Here, the legitimate question may be how collocation and term candidates are actually obtained

in the first place. In fact, most approaches perform various degrees of linguistic processing on the

text corpus data from which collocations and terms are to be extracted, ranging from part of speech

tagging to full syntactic parsing. From the linguistic structures assigned in this way, collocation and

term candidates may be identified (see subsection 3.3.6).
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traction (Evert, 2005; Manning & Schütze, 1999) and term extraction (Jacquemin,

2001) from natural language text. Second of all, measuring lexical association be-

tween words may already inherently be conceived of as a statistical task which needs

to be performed on the basis of empirical observations on natural language data. The

labor-intensive and costly alternative to this would be to set up collocation or term

lists completely manually – either through manual text corpus analysis or through lin-

guistic introspection. Although such (electronic) resources do, of course, exist in forms

of collocation lexicons or term databases, they tend to be notoriously incomplete, as

has also been noticed by studies on collocation extraction (Lin, 1998b) and on term

extraction (Daille, 1994). The reason for this incompleteness is to be sought in the

productivity and creativity of natural language – one of its fundamental properties

– which obviously also holds for collocations and terms. Thus, since such linguistic

expressions are constantly being coined, it is almost impossible not to resort to some

form of automatic text corpus-based statistical machinery.

The question which then naturally follows from our previous observations is not

whether lexical association measures should be based on statistical procedures and

computations, but whether these may not be utilized in such a way that – instead

of computing their scores based on criteria from the realm of statistical hypothesis

testing or information theory – they employ more linguistically based parameters.

The source from which such linguistic parameters need to be fed naturally lies in

natural language text data itself or, to be more exact, in observable and quantifiable

properties of natural language text data. Now, the issue then is what such observable

and quantifiable linguistic properties may be in the case of collocations and terms,

besides the frequency of co-occurrence property already adduced above. In fact, an

examination of the linguistic research literature on collocations and on term shows

various directions to investigate these questions and, therefore, it will constitute one

of the major foci of this work (cf. chapter 2). What this thesis aims to show is

that there is indeed a linguistic property which fulfills the criterion of being a valid

linguistic paramter, viz. limited modifiability. As collocations and terms are different

kinds of linguistic expressions, however, this property is manifested differently in the

two types of constructions, i.e. whereas it is expressed syntagmatically in the case of

collocations, it is done so paradigmatically in the case of terms (cf. chapter 4). In

fact, this property may also well be motivated within the lexical-collocational layer of

Firth’s (1957) model of language description which serves as an appropriate linguistic
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frame of reference.3 But even if we are able to motivate and establish both observable

and quantifiable linguistic properties for collocations and for terms and, furthermore,

also incorporate these into linguistically motivated statistical association measures,

the whole enterprise would be futile if our newly coined lexical association measures

were not able to perform better than their standard statistical competitors at the

task they are designed for – extracting collocations and terms from text. Hence, an

integral part of this work will be to show whether this is the case and, for this purpose,

to establish and carry out a thorough and comparative performance evaluation (cf.

chapter 5).

1.1 Main Objectives and Contributions

The main contributions of this work are centered around five objectives which will be

outlined in the following. Each of these objectives is motivated by the gaps that re-

search on the deployment of lexical association measures for the tasks of automatically

extracting collocations and terms from natural language text corpora exhibit. While

a preview of these shortcomings has already been given, the research goals established

from them will be taken on either in particular sections or throughout the whole of

this thesis.

1. We will substantiate and define two new linguistically motivated statistical asso-

ciation measures in a language- and domain-independent manner. While their

task will be identical compared to their standard statistical and information-

theoretic competitors – the computations of lexical association scores to deter-

mine the degree of collocativity and termhood of candidate items – their defining

parameters will be based on actual linguistic properties of the targeted linguistic

constructions, viz. collocations and terms.

2. We will show that there are linguistic differences between collocations and terms

that need to be considered both for the task of isolating observable and quantifi-

able linguistic properties and for establishing an appropriate evaluation setting.

In particular, it will become clear that while collocations are general-language

3One should keep in mind that also the linguistic property already mentioned, frequency of co-

occurrence, may be motivated within Firthian linguistics.
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constructs which may surface in a wide variety of syntactic expressions, terms

are basically confined to subject-specific sublanguage domains and mainly ap-

pear in noun phrases.

3. The linguistically observable and quantifiable property isolated for both colloca-

tions and terms – limited modifiability – will be structured within an appropriate

linguistic frame of reference, viz. the lexical-collocational layer of Firth’s (1957)

model of language description. With its help, it will be possible to account

for the linguistic differences and the distinct kinds of syntactic environments in

which collocations and terms surface.

4. We will establish a comprehensive performance evaluation setting in which we

will be able to compare the linguistically enhanced association measures for

collocation extraction (limited syntagmatic modifiability – LSM) and for term

extraction, (limited paradigmatic modifiability – LPM) against their standard

frequency-based, statistical and information-theoretic competitors. In particu-

lar, while our evaluation will be run on a wide array of standard quantitative

performance metrics, we will also contribute a new qualitative performance eval-

uation metric that compares the output rankings of an association measure to

a challenging baseline – frequency of co-occurrence.

5. Finally, we will show that our linguistically enhanced term and collocation asso-

ciation measures outperform their competitors by large margins at every aspect

of performance evaluation considered. Hence, lexical association measures which

base their statistical computations on linguistic parameters instead of standard

statistical ones not only exhibit conceptual but also empirical superiority.

Some preliminary discussions and results of the research presented here have al-

ready been published in the following conference proceeding papers: the linguistically

enhanced association measure LSM for collocation extraction in Wermter & Hahn

(2004); the linguistically motivated association measure LPM for term extraction as

well as evaluation aspects in Wermter & Hahn (2005c), Wermter & Hahn (2005b) and

Wermter & Hahn (2005a); the comparative qualitative evaluation setting in Wermter

& Hahn (2006).
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1.2 Structure of this Thesis

As it is first mandatory to substantiate in detail the characteristic features of collo-

cations and terms, chapter 2 will zoom in on their linguistic properties, which have

been put forth in the scientific literature. We will focus on the observations that,

from a conceptual and linguistic point of view, collocations and terms denote differ-

ent linguistic entities and surface in different linguistic contexts, both syntactically

and pragmatically. At the same time, however, it will become clear that there is a

linguistic property – limited modifiability – which both collocations and terms share

but which is manifested differently in both kinds of linguistic expressions, i.e. while

it surfaces syntagmatically in collocations, it is manifested paradigmatically in terms.

Chapter 3 gives an extensive overview over the most representative and influen-

tial approaches to collocation and term extraction that have been proposed in the

computational linguistics research literature. Although we divide the computational

approaches into those tackling collocation extraction, on the one hand, and term ex-

traction, on the other hand, the methodological boundaries between them are not

always as clear-cut as the boundaries in the linguistic literature between collocations

and terms, as discussed in chapter 2. We will see that the processing machinery ap-

plied to both kinds of linguistic expressions – both in terms of linguistic processing

and the lexical association measures applied – is similar if not even equal in both

cases. Because it is essential for understanding their shortcomings, this chapter will

also feature an extensive discussion on the underlying statistical properties of the

standard frequency-based, statistical and information-theoretic association measures.

In addition, this discussion will highlight the fact there is already one prominent

linguistic property of collocations and terms which all standard measures exploit to

various degrees – frequency of co-occurrence.

As the centerpiece of this thesis, chapter 4 will motivate, define and illustrate the

two linguistically enhanced approaches to statistically measure lexical association for

collocations and for terms, viz. limited syntagmatic modifiability (LSM), for the case

of collocation extraction, and limited paradigmatic modifiability (LPM), for term ex-

traction. This will be done only after having formulated both their statistical and

their linguistic requirements which will derived from the observations established in

chapters 2 and 3. It will be shown that, on the statistical side, we have to make sure

that we do not make any assumptions that run contrary to the properties of natural
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language in general as well as collocations and terms in particular. On the linguistic

side, we will ensure that we utilize observable properties suitable to be formalized and

quantified in a such manner that they may be used by a statistical procedure. This

chapter will also extensively lay out and implement the requirements for constructing

an extensive comparative testing ground in order to thoroughly evaluate both lin-

guistic measures against their competitors. For collocation extraction, in particular,

the evaluation setting will be on German-language preposition-noun-verb collocation

candidates, while for term extraction it will be on English-language noun phrase term

candidates from the biomedical domain.

Then, chapter 5 will report on the experimental results obtained for both the

collocation extraction and the term extraction tasks as were outlined in the evalu-

ation settings established in chapter 4. Both the quantitative and the qualitative

performance evaluations for the collocation extraction and term extraction tasks will

show that the linguistically motivated association measures outperform the standard

frequency-based, statistical and information-theoretic association measures by large

margins in every respect. Importantly, an extensive analysis of the results will summa-

rize the commonalities and differences between our linguistically motivated association

measures at their respective tasks.

Finally, chapter 6 draws the main conclusions from the research presented in this

thesis and points out further directions of research stemming from this work.



Chapter 2

Defining Collocations and Terms

Since the main goals of this thesis are the definition, implementation and evaluation of

statistical association measures which incorporate linguistic properties of collocations

and terms, it is first mandatory to substantiate in detail the characteristic features of

these linguistic expressions which have been put forth in the scientific literature. One

can imagine that the research literature on the issue of collocations and of terms is

vast and that any attempt to provide an overview will necessarily have to zoom in on

the main aspects, in particular within the context of a computational approach like

this one. As the first two sections on defining the notion of collocations (section 2.1)

and the notion of terms (section 2.2) will show, these two kinds of linguistic expres-

sions have received quite different treatments in the respective research literature. At

first sight, this is not astonishing because from a conceptual and linguistic point of

view, collocations and terms denote different linguistic entities and surface in different

linguistic contexts. What is remarkable though (and will be discussed extensively in

chapter 3) is the fact that the computational approaches to their automatic extraction

from unrestricted text have been very similar in terms of the association measures and

extraction procedures applied.

One of the insights that this chapter aims to articulate is that, in terms of linguis-

tic discourse, the notion of collocations preferably needs to be located in the area of

general, largely subject-independent language whereas the notion of terms falls into

the area of domain-specific sublanguage of a certain subject field. Another finding is

that, from a syntactic point of view, collocations surface in different kinds of syntactic

expressions whereas terms are mainly confined to noun phrases. However, what will
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also become clear in the course of this chapter is that there is indeed a linguistic prop-

erty – viz. the property of limited modifiability – which both collocations and terms

share and which may be derived from the discussion and insights of the respective re-

search strands (as will be described and assessed in section 2.3). The linguistic frame

of reference within which this linguistic property may be located is the collocational

layer of Firth’s model of language description. This model – although from a historical

perspective located in our discussion on collocations in section 2.1 – will help us define

our linguistically motivated statistical association measures for both collocation and

term extraction. What Firth’s lexical-collocational layer is able to capture is the ob-

servation that the linguistic property of limited modifiability is manifested differently,

i.e. while it surfaces syntagmatically in collocations, it is manifested paradigmatically

in terms.

2.1 Defining Collocations

That words in natural language are neither randomly combined into phrases and

sentences nor that they are only constrained by the rules of syntax had been known

by linguists for quite some time. Curiously, this basic fact about collocations and, at

the same time, their rather diverse and apparently idiosyncratic behavior, has been

taken out of focus by a substantial part of contemporary mainstream linguistics which

has been primarily concerned with examining language from a theoretical perspective.

In particular, generative linguistics in the Chomskyan tradition (Chomsky (1965) or

Chomsky (1995)) demote all lexical and syntactic idiosyncracies safely into the realm

of the lexicon.1

By pointing out that “You shall know a word by the company it keeps!”, it is Firth

(1957), who commonly gets the credit for first intoducing the notion of collocation

into contemporary linguistics (see also Bartsch (2004)) and who thus coined probably

one of the most well-known slogans in 20th century linguistics. Still, as e.g. also Lehr

(1996) points out, already Firth used to be rather vague about a precise definition

of the concept, and hence it is not surprising that there has been a rather enormous

1It is actually only with the advent of phrase structure grammar theories which also were con-

cerned with aspects of language computability, such as Head-Driven Phrase Structure Grammar

(HPSG) (Pollard & Sag, 1994), when collocations again received at least some interest in theoretical

linguistics, as can e.g. be witnessed in the work of Krenn (1994)
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conceputal diversity surrounding the idea of collocation in linguistic research up to

today. Drawing a very rough dividing line, two lines of linguistic research may be

identified in the last half-century and we will describe them in some detail in the first

two subsections below. On the one hand, there is the structural-lexicographic approach

which is mainly concerned with adequate representation forms of collocations within

linguistic lexicons and dictionaries (subsection 2.1.1). On the other hand, there is the

frequentist corpus-based approach to collocations which was initiated and significantly

influenced by Firth’s linguistic research (subsection 2.1.2) and which is dedicated to

an empirically grounded analysis of natural language.

As the field of computational linguistics and natural language processing (NLP) is

also in need of linguistic definitions, computational linguists – if their research or ap-

plication task is to extract collocations from unrestricted text – typically acknowledge

that there is a wide array of diverse definitions provided by the two lines of linguistic

research (subsection 2.1.3). Besides the property of co-occurrence, however, these only

have minimal or no influence in how the algorithms and procedures for an extraction

task are defined, as we will also see in more detail in section 3.1 in the next chap-

ter. The consequence of this is that, in general, insights about linguistic properties

of collocations are not incorporated in computational implementations. Obviously,

this constitutes one of the gaps that this thesis aims to fill. For this purpose, we will

assemble and assess the linguistic properties of collocations adopted from the various

linguistic research strands in subsection 2.1.4. On the one hand, we will focus on four

characteristic linguistic properties of collocations which have the capacity to be algo-

rithmically formalized from a computational perspective. On the other hand, we will

capitalize on linguistic properties that will help us to draw a linguistic demarcation

line between collocations and non-collocations and also to establish different linguistic

subtypes of collocations.

2.1.1 Defining Collocations from the Lexicographic Perspec-

tive

The kinds of linguists who typically have a profound interest in examining collocations

and their linguistic properties are lexicologists and lexicographers. This is of course

due to the fact that lexicographers have to worry about how to represent information

about collocations in a linguistic dictionary or lexicon. This subsection will therefore
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describe two kinds of representative strands of work in this vein. One kind, represented

by Hausmann (1985) and Mel’čuk (1995a), places their lexicographic descriptions of

collocations into a broader linguistic and meaning-based framework (subsubsection

2.1.1.1) whereas the other kind, represented by Benson et al. (1986b) and Benson

(1989), confines itself to more or less “theory-free” lexicographic descriptions (sub-

subsection 2.1.1.2).

2.1.1.1 The Meaning-based Lexicographic Approach to Collocations

Meaning-based approaches to collocations are characterized by their often close con-

nection to applicative areas such as lexicography and foreign-language learning.

Mel’čuk, a prominent lexicographically oriented linguist, has embedded his approach

to collocations into a complete linguistic framework, viz. Meaning-Text Theory,

which attempts to account for relations between lexical items language-independently.

Within this framework, Mel’čuk (1995a) and Mel’čuk (1998) attempt to come to terms

with the idiosyncrasy of collocations by embedding them into a more semantically ori-

ented layer of description. In the Meaning-Text Theory (MTT) lexical relations are

used as a means of describing so-called institutionalized lexical relations. Such rela-

tions are defined as holding between two lexical items with a constant meaning linked

to their combination. Although these meanings, referred to as Lexical Functions, ex-

plain the relations between lexical items mostly on the semantic level, phonological

and syntactic descriptions are not excluded per se.

Lexical Functions (LFs) aim at coping with the problem of lexical choices. For

Mel’čuk, this boils down to go from a given semantic representation to a corresponding

(deep) syntactic representation. In this process, the speaker has to select lexical

units, i.e. lexical lexemes and phrasemes to build sentences.2 Although LFs are taken

as a particular device to systematically describe the relations between two lexical

units across various languages, they are far more encompassing than the notion of

collocations. A composite formulaic notation3 including phonological, syntactic and

semantic features is given to cover various syntagmatic relations between lexical items.

Thereby, it is assumed that all languages, in different ways, realize the meanings

postulated by LFs and that the main difference lies in the language-specific ways in

2See Wanner (1996) and Bartsch (2004) for a detailed description on the aspects of lexical choices.
3Mel’čuk (1995a) actually parallels them to mathematical functions represented by the following

standard expression f(x) = y.
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which the combination of given lexical items is used to arrive at various LF meanings.

There are 36 syntagmatic LFs which are distinguished by their syntactic part of

speech. Mel’čuk (1996) provides some examples and their English realizations:

Verbal Lexical Functions:

1. Degrad [Lat. degradare (to degrade, worsen)]

a. Degrad(clothes) = to wear off

b. Degrad(house) = to become dilapidated

c. Degrad(temper) = to fray

Adjectival Lexical Functions:

2. Magn [Lat. magnus (big, great)]

a. Magn(belief) = staunch

b. Magn(thin[person]) = as a rake

3. Bon [Lat. bonus (good)]

a. Bon(aid) = valuable

b. Bon(proposal) = tempting

Nominal Lexical Functions:

4. Centr [Lat. centrum (the center/culmination of)]

a. Centr(crisis) = the peak (of the crisis)

b. Centr(desert) = the heart (of the desert)

As can be seen from the above examples, the semantic radar of LFs is far more ex-

tensive and comprehensive than just natural language expressions that are typically

assumed to fall under the notion of collocation.4 In particular, Mel’čuk’s MTT is

4It has been argued (Bartsch, 2004) that Mel’čuk’s set of formulaic descriptions of syntagmatic

relations between lexical units may be beneficial for translating collocations from one language to

another because they generally apply across languages in which such relations are realized by different

lexical elements.
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aimed at providing a complete linguistic framework for the mapping from the content

or meaning of an utterance to its form or text, with collocations being one partic-

ular (i.e., idiosyncratic) lexical surface realization. The overall lexicographic goal of

MTT is the creation of so-called Explanatory Combinatorial Dictionaries (ECDs) (cf.

(Bartsch, 2004)) displaying the combinatorial properties of word combinations in a

language.

In the area of German linguistics, research on collocations is founded on a com-

pletely different conceptualization, i.e. one derived from a phraseological-semantic5

point of view. In particular Hausmann (1985) and Burger (2003), besides focusing on

prescriptive correctness of collocational language use, categorize collocations accord-

ing to the semantic specificity of their constituents. Thus, content words (i.e. verbs,

adjectives, nouns) play a central role as components of collocations. The different

constituents in a collocation do not have an equal status, but rather, their relation-

ship is a directed one. The collocational base is defined as the dominant constituent

while the collocate is dominated by the base. In particular, the base is the semanti-

cally autonomous part, which, however, needs the collocate to obtain its full meaning.

This is illustrated in the following preposition-noun-verb (PNV)6 collocations from

German (and their English translations):

5. a. “zur Verfügung stellen” (to make available)

b. “in Erwägung ziehen” (to take into consideration)

Here, the collocational base “Verfügung” (availability) is completed by the mean-

ing of the collocate “stellen” (to place) and, in the English translation, the meaning

of the collocational base “available” is completed by the meaning of the collocate

“make”. Central to Hausmann’s definition of collocations is the directionality from

the base to the collocate in that the base as the dominant constituent is the element

which is semantically more stable and which thus exerts a stronger influence in a way

that it can dominate the collocate.7 Hence, collocations consist of at least two com-

ponent parts, with at least one component part either having kept or lost its literal

meaning.

5The technical term phraseologism appears to have been coined by this line of collocational re-

search to set it apart from the Firthian approach.
6All examples are taken from the German-language newspaper text corpus collected to run the

experiments for the automatic extraction of PNV collocations as described in subsection 4.5.2.
7Hausmann’s definitions have been criticized for being too narrow by Bartsch (2004).
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Another central distinction in Hausmann’s conception of collocations is concerned

with the degree of fixedness between the different constituents of a collocational ex-

pression. On the one hand, there are fixed word combinations under which mainly

idioms can be found and for which the above definition for base and collocate hardly

applies. These fixed expressions are referred to as fully idiomatic expressions in which

every component is void of its literal meaning, as is exemplified by the following id-

iomatic expressions:

6. a. “ins Gras beißen” (literal: to bite the grass; actual: to bite the dust, die)

b. “auf der Hand liegen” (literal: to lie on the hand; actual: to be obvious)

In contrast, less fixed partly idiomatic expressions (teilidiomatisierte Wendungen)

are expressions in which some component part, typically the base in Hausmann’s

conception, still keeps its literal meaning, such as the nouns “Druck” (pressure) and

“Geltung” (importance) in the following examples:

7. a. “unter Druck geraten” (to get under pressure)

b. “zur Geltung kommen” (to become important)

These are also the types of expressions that Hausmann (1985) refers to as collo-

cations. On the other end of the continuum there are free word combinations where

all components keep their literal meaning, thus making the expression fully composi-

tional:

8. a. “auf einen Baum klettern” (to climb up a tree)

b. “an die Zukunft glauben” (to believe in the future)

In the linguistic classification task to derive a gold standard for German

preposition-noun-verb (PNV) collocations (as described in subsubsection 4.5.2.3), a

distinction along these lines has turned out to be quite operational for the human

classification of collocation candidates. We will return to this issue in subsection 2.1.4

below in which we assemble our adopted linguistic properties of collocations.
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2.1.1.2 Other Lexicographic Accounts of Collocations

This subsubsection reviews two accounts of collocations which may be mainly de-

scribed as applicational as they are primarily concerned with collecting and repre-

senting collocational entries in a lexicon or dictionary. Whereas the first account

(Benson et al., 1986b) still offers some theoretical underpinnings, the second one (Du-

denredaktion, 2002) is purely applicative in nature but needs to be discussed as it

consitutes the only such type of work for the German language.

The first dedicated and large-scale lexicographic study of collocations was under-

taken for the English language by Benson et al. (1986b), Benson (1989) and Benson

(1990), which led to the publication of the BBI Combinatory Dictionary of English:

A Guide to Word Combinations (in short: BBI) (Benson et al., 1986a).8 Benson et al.

(1986a) outline the motivation for a dictionary of word combinations and the kinds

of information included in it.9 The goal is to provide information on the general com-

binatorial possibilities of an entry word. Various types of combinatorial preferences

are listed, such as e.g. whether there are any combinatorial preferences of verbs for

nouns (e.g. “[to adopt, enact, apply] a regulation”) or what the possible adverbial

combinations (i.e. modifications) of a verb are (e.g. “to regret [deeply, very much]”.

These combinatorial preferences are classified into two types of collocations, i.e.,

grammatical collocations and lexical collocations. Grammatical collocations are

phrases consisting of a dominant word (e.g. noun, adjective, verb) and a preposi-

tion or grammatical structure such as an infinitive or a clause, as exemplified by the

following expressions:

9. a. “account for”

b. “adjacent to”

c. “dependent on”

d. “the fact that + clause”

8The current edition of this dictionary is Benson et al. (1997).
9From the viewpoint of embedding the BBI into a linguistic framework, it has to be noted that

Benson et al. (1986b), Benson et al. (1986a) and Benson et al. (1986a) make references to Mel’čuk’s

Meaning-Text Theory.
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Lexical collocations, on the other hand, are classified by the BBI approach accord-

ing to their part-of-speech patterns, such as verb-(preposition)-noun, adjective-noun

or noun-noun, as exemplified by the following expressions:

10. a. “compose music”

“launch a missile”

“set an alarm” (verb-noun pattern)

b. “strong tea”

“chronic alcoholic” (adjective-noun pattern)

c. “a swarm of bees”

“a flock of sheep” (noun-noun pattern)

Although some of these expressions describe lexically determined co-occurrences

and thus are more in line with what is commonly understood as collocation, it can

be seen that others again are fairly compositional from a semantic perspective in

that all constituents still keep their literal meaning and thus probably would not be

labelled “collocation” by approaches such as Hausmann’s (outlined in subsubsection

2.1.1.1 above). A look at the intended audience, however, explains the extensiveness of

the BBI approach to word combinations and collocations since Benson et al. (1997)

explicitly target their dictionary towards foreign-language learners. Still, the BBI

dictionary is the most comprehensive lexicographic resource of word combinations in

any language to date and thus deserves attention.

As far as dictionaries and lexicographic resources for German-language10 colloca-

tions and idiomatic expressions are concerned, Volume 11 of the Duden series (Du-

denredaktion, 2002) may be regarded as the main representative. This dictionary,

however, differs from the BBI dictionary in several respects. As already the title “Re-

dewendungen” (figures of speech, sayings) suggests, the focus of this volume is rather

on idiomatic speech figures than on the allowable and preferred combinatorial prop-

erties of words. Hence, each entry in the dictionary is accompanied by etymological

information rather than by lexico-grammatical one. Still, in practice this dictionary

has a broader definition of what is considered to fall under the notion of “Redewen-

dungen”. In their introductory remarks, for example, the Duden editorial staff points

out that, besides idiomatic expressions, they also count Funktionsverbgefüge (support

10The language under investigation for collocations in this thesis.
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verb constructions) to the class of collocations. As will be seen later on, these types

of syntactic constructions will play a prominent role in the set of collocational candi-

dates in our experimental study described in subsection 4.5.2. In particular, we will

focus on their surface realization as preposition-noun-verb (PNV) constructions.

2.1.2 Defining Collocations from the Frequentist Perspective

The notion of collocation in its original meaning is almost inseparably tied to the

linguistic tradition of British contextualism and its founder, John R. Firth. But as was

already hinted at above, Firth does not only have to be credited for having drawn the

attention to the concept collocation in linguistics but his work also laid the groundwork

for the frequentist or empiricist tradition of British (corpus) linguistics with its main

representatives Michael A. K. Halliday and John Sinclair (subsubsection 2.1.2.3). The

central notion in their research, in extension to Firth, was that the empirical, even

statistical, side of language use in text corpora could serve as a framework to describe

and explain natural language.11 Indeed many of the roots of the empirically motivated

and statistical methodology in contemporary computational linguistics may be sought

in this linguistic tradition.12 In particular, the notion of co-occurrence, which runs like

a thread through the corpus linguistics tradition, has come to be a defining property

in almost all applications to collocation extraction in computational linguistics.

But first we will lay out Firth’s model of language description and, in particular,

its lexical-collocational layer (subsubsections 2.1.2.1 and 2.1.2.2), as it will play a

central role in providing a suitable linguistic frame of reference for the linguistically

motivated statistical association methods presented in this thesis – not only for the

extraction of general-language collocations but also of domain-specific terms.

11This focus on actual empirical language use is in stark contrast to the structuralist and Chom-

skyan generative tradition in linguistics which introspectively relies on so-called “grammaticality

judgments” of language speakers – mostly the researcher himself – in order to describe and explain

linguistic constraints.
12This can also be seen in various accounts on contemporary statistical NLP (Manning & Schütze,

1999, p.6)
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2.1.2.1 Firth’s Model of Language Description

Firth’s model of language description crucially relies on the notion of linguistic context.

For Firth (1957), this meant a frame of reference for isolated words or sentences.13

Thereby, linguistic context was divided into four descriptive layers, each of which was

founded on the same textual basis, viz. one or more situationally dependent texts:

1. The phonetic layer examines the relationship of single phones to other phones

or phonetic sequences.

2. The morphological layer examines the relationship of single morphemes to other

morphemes or morpheme sequences.

3. The syntactic layer examines the relationship of grammatical classes to each

other. Grammatical classes are derived from text words by means of an empir-

ically obtained inventory of grammar rules.14

4. The lexical layer examines words in relationship to other words or word se-

quences.

The semantic level15 of Firth’s model of language description is actually located

within the situative context (hence not the linguistic context), whereby situative con-

text refers to the context of textual production. On all four layers, there are two

contextually descriptive axes, the syntagmatic axis and the paradigmatic axis (syn-

tagmatic context or structure and paradigmatic context or system (see Firth (1968)).

For example, on the lexical level the syntagmatic structure of a text results from

the sequence of subsequent words, whereas the paradigmatic system is obtained by

empirically determined substitutional classes. This principle of structural and sys-

temic contexts on various language layers is referred to as contextualization in Neo-

Firthian-style linguistics. The following section will outline in detail the relevance of

the syntagmatic and the paradigmatic axes on the lexical layer of Firth’s model as

they will play a central role for collocations and terms, respectively.

13See Lehr (1996) for an extensive overview of British contextualism and the Firthian approach to

linguistics in particular.
14Firth (1968) refers to them as collogations of generalized categories; see also Lehr (1996).
15In contextualism, the notion of meaning is equalled with function in a context and, hence, is

present on all levels of Firth’s model of language description.
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2.1.2.2 The Collocational Layer of Firth’s Model

Firth (1957) renames the lexical layer of his model of language description with the

term collocational layer, which illustrates the prominence that collocations take in his

model of language description. Lehr (1996) describes this lexical-collocational layer

in great detail, from which an apt graphical representation may be derived in figure

2.1.

Syntagmatic Context / Structure

word 1 word 2 word 3 word ... word n

Paradigmatic Context / System

word 1.1

word 1.2

word 1.m

...

word 2.1

word 2.2

word 2.m

...

word 3.1

word 3.2

word 3.m

...

word ...1

word ...2

word ...m

...

word n.1

word n.2

word n.m

...

system 1 system 2 system 3 system ... system n

Figure 2.1: The lexical-collocational layer of Firth’s model of language description.

With text being the central notion of language utterance in Firth’s model, the

words within a syntagmatic context (structure words), word1 to wordn, constitute

elements of a concrete textual structure. Those words which are elements in the

paradigmatic context (system words), system1 through systemn, only have virtual

character in that they do not appear in the current text but can be empirically made

accessible from other texts.
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Collocations are occurrences of words in the syntagmatic context which are con-

stituted of two or more structure words. How the boundaries of collocations within a

text are determined remains unclear in Firth (1957) (see also Lehr (1996)). On the

paradigmatic axis, system words may appear in place of the structure words of the

current text in that they function as potential substitutes. It is important to note

that this can only occur within the predefined substitutional frame of a system.

While Firth’s approach to describe collocations on a contextualized lexical level

has been further refined by his successors in British contextualism (see next subsubsec-

tion 2.1.2.3),16 the notions of syntagmatic context and paradigmatic context remain

foundational to his approach. By coupling these notions with the linguistic property

of limited modifiability and by putting it on a quantifiable basis, we will introduce

new approaches to the linguistic design of statistical association measures for the au-

tomatic extraction of collocations and of terms from unrestricted text (see sections

4.3 and 4.3). Thereby, it should be noted that although the concept of collocation ob-

viously plays a central role in Firth’s linguistic conceptualization, the concept of term

or technical term is not mentioned. This, however, is mainly due to historic reasons as

in traditional linguistics the difference between these two notions is not very clear-cut

and very often they were lumped together under the common heading collocation.

Only with the growing importance of and the concurrent linguistic research interest

in domain-specific (sub)language use (see subsection 2.2.6) has the notion of technical

terminology gained its place next to the notion of collocation.17

2.1.2.3 Neo-Firthian Developments: Halliday and Sinclair

Firth’s formulation of the collocational-lexical level of his model of language descrip-

tion was, to some respect, incomplete. At least concerning the methodological angles

of concrete language analysis, his descriptions are more intuitive than systematic. It

was up to his contextualist successors to form a coherent and methodologically sound

model of analysis for the lexical level of language description. In particular Halliday

(1966) and Sinclair (1966) elaborated on Firth’s (1957) thought of meaning by collo-

16At the same time, it has also been vigorously disputed by linguists who were working within the

generative paradigm at the time (e.g. by Langendoen (1968)).
17As will be seen in the next subsection 2.1.3 in contemporary computational linguistics, the

linguistic differences are often ignored or, as in Manning & Schütze (1999), terminological expressions

are described as a subclass of collocations.
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cation on the lexical level by introducing the notion that patterns of collocation can

form the basis for a lexical analysis of language and are alternative to, and indepen-

dent of, the grammatical analysis. These two levels of analysis are regarded as being

complementary, with neither of the two being subsumed by the other.

In parallel to phraseological perspectives on collocations (cf. subsubsection

2.1.1.1), contextualist linguists (e.g. Halliday (1966)) also advance the observation

that the different constituents of collocations do not have an equal (i.e., unstructured)

status but display a hierarchical structuring, which they refer to as nodal item or the

collocant (i.e., the collocational base in Hausmann’s (1985) terminology18) and the col-

locate. The node and the collocate are in a directed relationship (node → collocate,

i.e. the node collocates with the collocate but not vice versa), with the collocate

further specifiying the meaning of the node. Recognizing the necessity to extract

such structures from text to make them quantifiable in the first place, post-Firthian

linguists also attempted to specify a procedure to determine the distance between a

node and and its potential collocate (the collocational span), in order to be able to

locate the latter one.

Collocation is the syntagmatic association of lexical items, quantifiable,

textually, as the probability that there will occur at n removes (a distance

of n lexical items) from an item x, the items a, b, c ... (Halliday, 1969, p.

276)

This passage illustrates two interesting points. First, it underlines the basic as-

sumption held by British contextualists that natural language exhibits empirical and

quantifiable properties, which puts them into opposition to the mainstream generative

and structuralist linguists at that time. Second, as the necessary linguistic machinery

to adequately compute such a collocational span from unrestricted natural language

text was basically missing at that time, it led Sinclair (1966, p. 415), one of the early

proponents of a corpus-based approach to linguistics, to the following assessment:19

18It should be noted, however, that, other than with respect to the internal structure of collo-

cations, Hausmann’s (1985) and other phraseologists’ normative approach to collocations was de-

veloped in explicit contradistinction to the frequentist and empirical approach taken by the British

contextualists.
19See also Lehr (1996) for a similar assessment.
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The extent of the span is at present arbitrary, and depends mainly on

practical considerations; at a late stage in the study we will be able to fix

the span at the optimum value, but we start with little more than a guess.

Perhaps the most influential effect of post-Firthian British linguists on collocation

(and term) extraction research in computational linguistics was their observation that

the constituents of collocations follow the basic pattern of co-occurrence.

This tendency to co-occurrence is the basic formal pattern into which

lexical items enter. It is known as “collocation”, and an item is said to

collocate with another item or items. (Halliday et al., 1965, p. 33)

In this respect, it should be mentioned, however, that already Firth took notice of the

pattern of co-occurrence which is reflected, to some extent, in his recurrence criterion

(Firth, 1957).

Being the most recent one in the line of Neo-Firthian linguistic research, it is

finally Sinclair (1991) who grounds these ideas into the notion of co-occurrence-based

corpus analysis and states that evidence from large corpora suggests that grammatical

generalizations do not rest on a rigid foundation, but are the accumulation of the

patterns of hundreds of individual words and phrases. Two principles are proposed in

order to explain the way in which meaning arises from language text. The grammatical

level is represented by the the so-called open-choice principle, which sees language text

as the result of a very large number of complex choices, with the only constraint being

grammaticality. The idiom principle represents the lexical level and accounts for the

constraints that are not captured by the open-choice model – with collocations being

part of the idiom principle.

Up until today, the notion of co-occurrence runs like a thread through the corpus

and computational linguistics literature on collocations (see e.g. (Manning & Schütze,

1999, p.153–157)) and can be said to be one of the defining quantifiable linguistic

properties of collocations (see subsubsection 2.1.4.1 below).

2.1.3 Defining Collocations from a Computational Linguis-

tics Perspective

The various approaches, previously described, to define and pinpoint collocations from

a linguistic perspective had a mixed impact on the research on automatic procedures to
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extract collocations from machine-readable natural language text. Early approaches,

such as Berry-Rogghe (1973) (see subsection 3.1.1 for an extensive discussion of this

approach), adhered quite closely to the theoretical specifications on collocations which

linguistic research had come up with and, as a consequence, attempted to examine lin-

guistic theories, or even aimed at developing them further. More current approaches,

while still describing and emphasizing the groundwork done by linguists, are more

driven by the requirements of computability and applicability and, hence, the no-

tion of collocation is defined and used in a much broader and practical sense than in

linguistics.

In their widely used and acclaimed textbook on statistical NLP, Manning &

Schütze (1999) dedicate a complete chapter (chapter 5) to the topic of collocation

extraction from text corpora. Without doubt, this prominence reflects the fact that

recognizing collocations in a natural language processing pipeline is an important

processing step, which – ideally – should be situated somewhere before the semantic

module (cf. subsection 3.1.3 for more discussion of this point). On the other hand,

however, due to the empirical turnaround of the 1990s in computational linguistics,

collocations, due to their frequentist properties framed by the British contextualists,

have also turned out to be an ideal linguistic construction to apply and adapt common

statistical machinery and measures to problems in natural language processing.

Nonetheless, current approaches to collocation extraction in computational lin-

guistics also need, at least, a working definition of their notion of collocation. For

quite a few researchers, such a definition turns out to be rather operational, such as

in Choueka (1988):

A collocation is defined as a sequence of two or more consecutive words,

that has characteristics of a syntactic and semantic unit, and whose exact

and unambiguous meaning or connotation cannot be derived directly from

the meaning or connotation of its components.

The definition has two parts, with the first part describing the presumed surface token

representation of collocations in natural language text and the second part stating a

semantic property with respect to the component parts of a collocation. The first

part of this definition on the surface token representation is pertinent to Choueka’s

(1988) method for identifying potential collocations in text20 while the second, more

20The application setting of this work is information retrieval.
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linguistically tuned part merely serves as an illustrating point.

This kind of procedure is quite characteristic for a lot of research on colloca-

tion extraction in NLP. Typically, both linguistic definitions and linguistic proper-

ties of collocations are laid out, or, at least, referred to. For example, Manning &

Schütze (1999) dedicate around six pages to defining the notion of collocation from

a linguistic viewpoint and reference foundational linguistic research, such as Benson

(1989), in working out three essential linguistic properties of collocations, viz. non-

compositionality, non-substitutability, and non-modifiability.21 However, this is not

reflected in the algorithmic methods or lexical association measures (i.e., their com-

putational implementation) of a corresponding collocation extraction procedure. The

extraction machinery presented is typically rather unrelated to the linguistic prop-

erties outlined, with one exception, though, viz. the notion of co-occurrence. As

we already described in the previous subsubsection 2.1.2.3, co-occurrence is taken to

be a defining linguistic property of collocations, at least for the British contextual-

ist linguists. And in fact, frequency of co-occurrence, as it turns out, actually plays

an important role for almost all of the standard statistical and information-theoretic

asssociation measures employed for collocation extraction.22

In this respect, it is illuminating to elaborate on the kinds of subclasses that

Manning & Schütze (1999) actually consider to be collocations, the vast majority of

which are in line with much of the NLP research on collocations but some of which

would certainly be controversial in the linguistics research community.

• Idioms are defined as frozen expressions in which “there is just one way of

saying things and any deviation will completely change the meaning of what is

said” (Manning & Schütze, 1999, p. 186)

• Support Verb Constructions are characterized by the little semantic content

their light verbs have, such as in “make a decision”, “do a favor”, in which there

is hardly any meaning on its own in the verbs “do” and “make”.

• Phrasal Verbs: Such verbal constructions (e.g. “tell off ” or “go down”) are

an important part of the lexicon in English and consist of a combination of

main verb and particle. These verbs often correspond to single lexemes in other

languages.

21These will be explained in detail in the next subsection.
22These association measures will be described in depth in section 3.3.
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• Terminological Expressions: For Manning & Schütze (1999) these are

phrases which refer to concepts and objects in technical domains. It is noted that

such expressions are often fairly compositional (contrary to general-language

collocations), such as in the case of “hydraulic oil filter”, but it is noted to be

important that they be treated consistently throughout technical texts.

The first three collocational subclasses would probably be uncontroversial among

linguists or lexicographers.23 However, Manning & Schütze (1999)’s fourth colloca-

tional subclass, terminological expressions (or short technical term or terms), would

most probably not be regarded as a collocation by linguists. On the one hand, they

would not fall under the definitional status postulated by the meaning-oriented or

lexicographic approaches to collocations, and certainly not by their phraseological

representatives (see subsection 2.1.1 above). In the case of contextualist approaches

to collocations, the situation may be less clear. As laid out in the previous sub-

section 2.1.2, Neo-Firthian linguistic approaches (e.g. (Halliday, 1966) or (Sinclair,

1966)) attempted to flesh out Firth’s model of language description concerning the

methodological angles of concrete language analysis and in this respect, the notion of

collocation plays a major role although rather from a general-language perspective.

Still, Firth’s original basic notion of the lexical (or collocational) level of language

does of course not exclude technical terminology per se.24

Nevertheless, the task of finding and compiling terminological expressions from

specialized technical domains is a comparatively new need which has been put to the

foreground, both in linguistics and even more so in computational linguistics more

recently and which has arisen due to the increasing amount of textual databases in

specialized technical domains. Hence, it is not astonishing that this issue was not

pressing at the time when most linguistic definitions on collocations were formulated.

At the same time, however, it is not surprising either that computational linguists de-

fine and use the notion of collocations in a much broader and more practical sense in

that certain types of natural language expressions, such as technical terms, which are

challenging from an application perspective, are included because the automatic asso-

ciation measures and extraction methods developed for general-language collocations

23Although phrasal verbs would probably be considered to be a kind of collocational expression

peculiar to the English language.
24Indeed, Firth does not exclude any kind of natural language expression.
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have turned out to be applicable to them as well. Thus, Manning & Schütze (1999,

p. 152) even go so far to consider technical terms as a special case of collocations:

There is a considerable overlap between the concept of collocation and

notions like term, technical term, and terminological phrase. As these

names suggest, the latter three are commonly used when collocations are

extracted from technical domains (in a process called terminology extrac-

tion).

Although this statement would most probably not be subscribed to by linguists

working on collocations or by terminologists in the theoretical vein of terminology

research (see section 2.2), it illustrates that, for the tasks of automatically finding

both collocations and terms in a text corpus, for computational linguists these two

types of natural language expressions appear to show statistical and distributional

similarities which warrant the use of similar or even common methods and association

measures25 – with frequency of co-occurrence being the most salient one.

2.1.4 Linguistic Properties of Collocations Adopted

As we witnessed in the previous two subsections, collocations are not easily defined.

We showed that this is reflected by the great variety of definitional approaches that

were developed in linguistic research. In the following, we will synthesize two es-

sential perspectives on collocations which have been laid out by linguistics research

and, because they exhibit formalizable and partly even quantifiable linguistic features

and observations, were picked up by computational linguistics research on collocation

extraction. On the one hand, these are concerned with four basic characteristic lin-

guistic properties of collocations, and, on the other hand, with linguistic criteria that

draw the demarcation line between collocational expressions and non-collocational

expressions.

25McKeown & Radev (2000, p. 527) make a similar point by stating that “by applying the same

algorithm to different domain-specific corpora, collocations specific to a particular sublanguage can

be identified.”
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2.1.4.1 Four Basic Characteristic Properties

With respect to basic linguistic properties of collocations, it has already been noted

on several occasions that, while most computational linguistics research references

and describes such properties, they do not necessarily flow into the methodological

considerations when designing collocation extraction algorithms. Indeed, only the

first one of the basic linguistic properties below, (frequency of) lexical co-occurrence,

has been a widely used one, if not the most influential one in this respect. The other

three, non-compositionality, non-substitutability, and non-modifiability, while having

been highlighted by Manning & Schütze (1999),26 have had limited or no influence on

the design of collocation extraction algorithms.27

Lexical Co-occurrence. As described in subsection 2.1.2, a recurrent observation

in Firthian and Neo-Firthian linguistics was that collocations follow the basic

patterns of co-occurrence with respect to their constituent parts. Due to its

inherently quantitative and empirically verifiable nature, this property exerted

a great influence on many of the proposed methods for collocation extraction

(see section 3.3 below for a detailed account), especially after the empirical turn

in computational linguistics. In a way, it is even safe to say that many of these

methods are basically variations on the common theme of co-occurrence.

Non- or limited compositionality. One of the fundamental principles of seman-

tic theory is the principle of compositionality, which states that the meaning

of a natural language expression is a function of the meaning of its parts.28

For collocations, however, the meaning is not a straightforward composition of

26It should be noted that Manning & Schütze (1999) highlighted these three properties to the

computational linguistics research community; in linguistics research on collocations, of course, they

are taken for granted (cf. (Benson, 1989))
27As will be discussed in detail in subsection 3.1.3, although the collocational procedures de-

vised by Lin (1999) and Lin (1998b) make use of the properties of non-compositionality and non-

substitutability, these methods are not applied to separate collocations from non-collocations but

rather to fine-classify an already acquired set of collocations in order to identify the idiomatic ones.
28In semantic theory (cf. (Cann, 1993)) this principle, sometimes referred to as Fregean Principle

of Compositionality, accounts for the fact how the lexical meanings of individual words contribute

to the overall meaning of a phrase or a sentence, i.e. more generally speaking, how the meanings

of smaller expressions contribute to the meanings of larger ones that contain them. The notion of

“function” is essentially an operation that derives a single result given a specified input.
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its parts. The collocational subtype of idioms is at the extreme end of this

property (see subsubsection 2.1.1.1 above) in that the meaning is completely

different from its (usually also existing) meaning as a free word combination.

This property will serve as an adequate criterion to draw the demarcation line

between collocations and free word combinations and will be further illustrated

in the respective subsubsection 2.1.4.2 below.

Non- or limited substitutability. The components of a collocation cannot be sub-

stituted by other words, neither syntactically nor semantically, and keep their

collocational meaning. This is even the case if a substitute word has the same

part of speech and a similar meaning in that context, as shown in the following

examples from German preposition-noun-verb combinations:29

11. a. “im Raum stehen” (to be unsolved or undone)

b. *“im Raum posieren”

c. *“im Zimmer stehen”

In this example, first the verbal constituent “stehen” (to stand) and then the

nominal constituent “Raum” (room) have been replaced by syntactically equal

(in terms of part of speech) and semantically similar words (with the verb “to

posture” and the noun ”chamber”, respectively). As a consequence, the expres-

sion adopts a rather non-sensical meaning and looses its status as a collocation.

As will be described in subsection 3.1.3, although it requires a wide-coverage

and resource-intensive thesaurus, this property has been computationally im-

plemented by Lin (1999) to fine-classify an already existing set of collocations

into compositional and non-compositional ones.

Non- or limited modifiability. This property describes the syntagmatic effect that

many collocations cannot be modified freely with additional lexical material

or through other kinds of grammatical transformations. Very often, linguistic

research (Benson, 1989)30 notes, at least intuitively, that this is particularly the

case for idiomatic expressions, such as the following ones:

29Following standard notational practice in linguistics research, ill-formed or odd expressions are

marked with an asterisk (*).
30This is also expressed by Manning & Schütze (1999).
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12. a. “jmdn auf die Schippe nehmen” (to lampoon somebody)

b. *“jmdn auf die alte Schippe nehmen”

c. *“jmdn auf die hölzerne Schippe nehmen”

As can be seen, the nominal constituent of this collocation, “Schippe” (shovel),

cannot be modified by additional lexical material, such as the modifying adjec-

tive “alt” (old), at least not without completely loosing its collocational meaning

and adopting a completely different, rather odd one.31 Concerning other sub-

types of collocations, e.g. support verb constructions (cf. subsubsection 2.1.4.2

below), standard linguistic testing seems to allow for some modification:

13. a. “jmdn zur Verantwortung ziehen” (to make s.o. responsible)

b. “jmdn zur politischen Verantwortung ziehen” (to make s.o. politically

responsible)

c. “jmdn zur alleinigen Verantwortung ziehen” (to make s.o. solely re-

sponsible)

Given these examples, it looks, superficially at least, as if the property of non-

or limited modifiability does not equally hold for support verb constructions.

Whether or not all these observations with respect to the property of non- or

limited modifiability can also be empirically verified will be discussed extensively

in subsection 5.1.3 below. Crucially, however, in section 4.2, we will see how this

property of non- or limited modifiability may be related to the lexical level of the

Firthian model of language description, in particular its view on syntagmatic

context in which the constituent words of a collocation are located32 and thus

how this may serve as the linguistic basis in defining our linguistically motivated

statistical association measure for collocation extraction (see section 4.3).

31This linguistic judgment, of course, is derived in a rather intuitive and introspective way, which

is the standard methodology of mainstream (i.e., structural and generative) linguistics. Neo-Firthian

linguistics, on the other hand, would also ask whether such a judgment can be empirically verified.
32This has been explained in detail in in subsubsection 2.1.2.2 and depicted in figure 2.1 above.
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2.1.4.2 Demarcation Line: Collocations vs. Free Word Combinations

Another linguistic perspective on collocations, which has been picked up by compu-

tational linguistics research, concerns the demarcation line between collocations and

their various subtypes, on the one hand, and so-called free word combinations, on the

other hand. There are various linguistic possibilities on how and where to draw this

line33 but the most common and accepted way is to do this on the semantic layer, i.e.

with respect to the compositionality (cf. the previous subsubsection 2.1.4.1) between

the component parts of a natural language expression. Naturally, since the demarca-

tion line is located on the semantic level of natural language, this linguistic perspective

on collocations has mainly been shaped by the meaning-based account of collocations

described in subsection 2.1.1.1. From these sources, three major subtypes of collo-

cations can be derived, viz. idiomatic phrases, support verb constructions or narrow

phrases, and fixed phrases, all with varying degrees of and contributions to semantic

compositionality between their lexical constituent parts. They are all different from

so-called free word combinations in which every component part fully contributes to

the overall meaning of the expression, which makes them fully compositional from

a semantic perspective. As we will also see in subsubsection 4.5.2.3, these kinds of

semantic criteria are helpful for linguistically informed human judges to classify natu-

ral language expressions as collocational or non-collocational and thus to construct a

gold-standard test data set to evaluate the quality of collocation extraction methods.

Idiomatic Phrases. The semantically most intransparent subtype of collocations, in

terms of the constituent parts contributing to the overall meaning, are idiomatic

phrases or idioms. In their case, none of the lexical components involved con-

tribute to the overall meaning in a semantically transparent way, which makes

the meaning of the expression metaphorical or figurative.34 Some examples of

these have already been given above (in subsubsections 2.1.1.1 and 2.1.4.1). For

example, the literal meaning of the German preposition-noun-verb combination

“[jemanden] auf die Schippe nehmen” is “‘to take [someone] onto the shovel”,

whereas its completely intransparent figurative meaning is “‘to lampoon some-

33McKeown & Radev (2000) give an overview of different approaches.
34In Hausmann’s (1985) conception of collocations this is referred to as the degree of fixedness

between the different constituents of a collocational expressions.
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body”. Some further adjective-noun and verb-noun idioms from the English

language are given below:

14. a. “red tape”

b. “to kick the bucket”

c. “to bite the dust”

Support Verb Constructions / Narrow Collocations. The second subtype of

collocations, support verb constructions,35 contains expressions which are partly

compositional in that at least one component contributes to the overall meaning

in a semantically transparent way and thus constitutes its semantic core. For

example, in the support verb construction “zur Verfügung stellen”, in which the

literal meaning is “to put to availability” and the actual collocational meaning is

“to make available”, the noun “Verfügung” (availability) is the semantic core of

the expression, while the verb only has a support function with some impact on

argument structure, causativity or lexical aspect. Besides the German examples

in subsubsections 2.1.1.1 and 2.1.4.1 above, some more verb-preposition-noun

and verb-noun collocations from the English language are given below:

15. a. “to put at risk”

b. “to come to an end”

c. “to do a favor”

There are, however, also (preposition)-noun-verb constructions in which not the

noun but the verb is the semantic core contributing to the overall meaning of

the collocational expression, as shown in the example below:

16. a. “aus eigener Tasche bezahlen”

b. literal: to pay out of one’s own pocket

c. actual: to pay oneself

In a strict linguistic sense, of course, these expressions are not support verb con-

structions. Still, because they are also characterized by the fact that only one

35The equivalent linguistic term in German is Funktionsverbgefüge.
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component part, which happens to be the verb in this case, contributes to the

overall meaning in a semantically transparent way, these so-called narrow col-

locations (McKeown & Radev, 2000) are put in the same collocational subtype

as true support verb constructions.36

Fixed Phrases. Very often, so-called fixed phrases which are right at the border to

free word expressions, are adduced as a third subtype of collocations in linguis-

tic treatments of collocations (Benson, 1989).37 In their case, all basic lexical

meanings of the components involved contribute to the overall meaning in a

semantically quite transparent way. There are two basic patterns of composi-

tionality involved here. They are either not as completely compositional as to

classify them as free word combinations (as in example 17a) or, although com-

positional, their combination is very fixed and retracted (as in example 17b).

17. a. “im Koma liegen” (literal: to lie in coma; actual: to be comatose)

b. “Zähne putzen” (to clean teeth)

Although in example 17a all the basic lexical meanings of the different lexical

components somehow contribute to the overall meaning of the expression, this

contribution is not as compositionally complete as in the case of free word com-

binations. Example 17b would most probably be regarded as collocational by

linguists subscribing to the Neo-Firthian tradition because this expression satis-

fies one of its essential requirements to classify a collocation, viz. the tendency of

the lexical component parts to co-occur (see the previous subsubsection 2.1.4.1).

Free Word Combinations. Outside the three previously described collocational

subtypes there are free word combinations, which are characterized by com-

pletely adhering to the principle of compositionality in that the meaning of

every natural language expression is a function of the meaning of its component

parts.38 Cowie (1981) defines a free word combination as a maximally variable

type of composite unit which is characterized by the openness of combinability

36What also unifies these two types is the fact that they both function as predicates.
37This subtype is controversial among linguists in that, for example, phraseologists such as Haus-

mann (1985), would not count fixed phrases to the linguistic class of collocation, due to their quasi-

compositional nature.
38The complete meaning of a linguistic expression is of course not solely dependent on the meanings
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of each element in relation to the other or others. For example, in a verb-noun

combination such as “to manage a business”, nouns are freely combinable with

the verb “to manage and, vice versa, verbs a freely combinable with the noun

“business”. In particular, as shown in the following example from German, this

may also be tested by means of the property of substitutability (see subsubsec-

tion 2.1.4.1) above):

18. a. “auf einen Baum klettern” (to climb a tree)

b. “auf einen Baum steigen” (to climb up a tree)

c. “auf eine Tanne klettern” (to climb a fir tree)

As can be seen, in this case of the free word (noun-verb) combination “auf einen

Baum klettern” (to climb a tree), it is very well possible to replace both the verb

and the noun by a semantically similar item.

2.2 Defining Terms

Terms are pervasive in the document collections of scientific and technical domains.

Their identification is a vital issue for any application dealing with the analysis, under-

standing, generation, or translation of such documents. As pointed out by Jacquemin

& Bourigault (2003), this need arises, in particular, because of the ever-growing mass

of specialized documentation on the world wide web, in industrial and government

archives and document collections or in various digital libraries, to name just a few

of these fast-growing document stores. Hence, the identification and extractions of

relevant technical terminology is essential for such purposes as information retrieval,

document indexing, translation aids, document routing or summarization.

The definition of what actually constitutes a term, however, substantially differs

between computational approaches to term identification, on the one hand, and the

classical notion of terminology, as particularly elaborated by Eugen Wüster (as out-

lined in the following next subsection 2.2.1), on the other hand. This has to do with

the fact that the characterization of terms in a computational framework must take

into account novel dimensions of termhood in order to be able to tackle application

of its lexical component parts. The syntactic structure (of the component parts) of an expression is

also relevant to the derivation of its meaning.
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tasks, such as terminology extraction from text corpora. Contrary to that, tradi-

tional approaches to defining terminology heavily focus on the conceptual and even

philosophical aspects of terms. As pointed out by Sager (1990) and elaborated on by

Pearson (1998), the notion of terminology39 itself is rather polysemous and may be

referred to in three different yet related ways as:

1. a theory, i.e., the set of premises, arguments and conclusions required for ex-

plaining the relationships between concepts and terms;

2. a vocabulary of a special subject field.

3. the set of practices and methods for the collection, description, and presentation

of terms;

According to the first notion, terminology may be a scientific theory, in fact even

a discipline in its own right, whose object of investigation is to illuminate the relation-

ship between concepts and terms. As already hinted at, Wüster’s General Theory of

Terminology (see subsection 2.2.1 below) as well as its contemporary offsprings (see

subsection 2.2.2) and other related approaches (subsection 2.2.3) may be seen as the

main proponents and will be described accordingly. What they all share is that terms

are primarily defined from a conceptual perspective and only marginally, if at all, from

a linguistic one. The problems that this strand of research has with respect to the

increasing cross-disciplinarity of subject fields and with respect to the requirements

for computational approaches to terminology extraction will be discussed in subsec-

tion 2.2.4. The second notion of terminology takes a rather pragmatic stance in that

it is not tied to a particular theory or framework of terminology but rather views

terminology from a quite utilistic perspective as specialized vocabularies for particu-

lar subject fields or simply the stock of words associated with a particular discipline

(subsection 2.2.5).

The third notion points out that terminology may be used to describe procedures

to collect and process terms. This may be done manually by a standardization body

in making recommendations for an existing terminology. For example, as a result

of Wüster’s strive to establish and standardize the study of terminology in an in-

ternational setting, the International Organization for Standardization (ISO), as an

39Several aspects of the study of terminology discussed in the following subsections are based on

Pearson (1998).
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international standard-setting body, includes the following definition of term in ISO

1087 (1990):40

5.3.1.2 term: Designation (5.3.1) of a defined concept (3.1) in a special

language by a linguistic expression.

NOTE – A term may consist of one or more words (5.5.3.1) [i.e. simple

term (5.5.5) or complex term (5.5.6)] or even contain symbols (5.3.1.1).

The procedures, however, to collect and process terms may of course also be au-

tomated and hence constitute the core of computational approaches to automatic

term extraction from text corpora – one of the two major foci of this thesis. As one

of the seminal works in this respect, Justeson & Katz (1995) extensively motivate

and elaborate on defining the properties of terms from a linguistic perspective, some-

thing which other approaches to terminology have not done systematically (subsec-

tion 2.2.7). However, the crucial groundwork towards defining terms from a linguistic

perspective and establishing the respective properties that may be utilizable for com-

putational approaches has been carried out by research on the notion of sublanguage,

i.e. the linguistic properties which make language use in specialized domain different

from general every-day language use (subsection 2.2.6).

2.2.1 General Theory of Terminology

Terminology gradually began to emerge as a separate discipline when one of its main

proponents, Eugen Wüster (see Wüster (1974) and Wüster (1979) as well as Pearson

(1998)),41 contended that terms should be treated differently from general-language

words in three respects. First, in contrast to lexicology or lexicography in which

the lexical unit is the natural starting point, Wüster’s work on terminology sets out

from the notion of “concept”.42 As a consequence, a concept should be considered

independent of its label or term, even independent of any particular language. For

40The dotted numbers in this quotation denote cross-references to other ISO definitions.
41This influential approach to the notion of terminology and termhood originated from the posi-

tivist movement during the inter-war period, and emerged from the so-called Vienna Circle, a group

of philosophers who gathered at Vienna University.
42The notion of “concept” as an abstract idea or a mental construct, of course, may warrant a

whole discussion on its own because of its many facets depending on the scientific discipline looking

at it (i.e., philosophical, ontological, cognitive, etc.).
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terminologists such as Wüster, this definition also has a cognitive aspect in that

concepts are the product of mental processes in which objects and phenomena in the

actual words are first perceived and postulated as mental constructs.

The second point is that terminologists are only interested in vocabulary alone

and hence are not concerned with linguistic questions regarding lexis, morphology

or syntax. As also noted by Pearson (1998), this seems to suggest that the General

Theory of Terminology, and Wüster in particular, perceive terms as being separate

from words not not only with respect to their meaning but also with respect to their

nature and use. As a separate class, there is a one-to-one correspondence between

terms as labels and concepts as mental constructs, and in an ideal world, a term

uniquely maps to one concept within a given subject field or domain. As labels, terms

are set apart from language in use and enjoy a sort of protected status. Traditional

terminologists in this vein took a rather prescriptive stance and thus, in principle,

were not concerned with terms in textual use but only with what they represented.43

Wüster flanked his goal of establishing a General Theory of Terminology, the

classical stance on the study of terminology, by the following tasks:

1. The development of standardized international principles for the description and

recording of terms.

2. The formulation of general principles of terminology.

3. The creation of an international center for the collection, dissemination, and

coordination of information about terminology, which developed into Infoterm44

and is sponsored by the UNESCO.

Wüster (1979) attempts to draw a clear distinction between terminology and lin-

guistics in order to arrive at an autonomous discipline. There, the objects considered

are no longer considered as units of natural language, but rather concepts as clusters

of internationally unified features which are expressed by means of equivalent signs of

43In fact, Wüster (1974) and Wüster (1979) are concerned with imposing normative guidelines

for terminological language use which should be used to establish fixed and standardized meanings

of term concepts in order to avoid terminological confusion in technical communication. On the

cognitive side, these standardized terms were to serve as a means to represent conceptual structures

of particular subject domains.
44http://www.infoterm.info/
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different linguistic and non-linguistic systems. Central to these postulations is the as-

sumption that a concept is universal and its only variation is given by surface forms in

different languages. As a matter of fact, Wüster (1979) attempts to prescribe that the

language experts and users of a certain domain (i.e., scientists and technicians) char-

acterize their subject field in the same way so that the only possible differences arising

would be due to their different languages or their use of alternative linguistic desig-

nations for the same object (i.e. interlingual synonymy and intralingual synonymy).

Since these divergences could disrupt professional communication, Wüster (1979) was

a staunch advocate of a single language for scientific and technical communication,

although the efforts to promote terminology standardization on an international level

was considered as a more attainable short-term goal.

2.2.2 Beyond General Theory of Terminology

Current terminologists in the vein of Wüster’s General Theory of Terminology ap-

pear to have loosened the strict division to linguistics. The focus, however, is still on

the pre-linguistic (and in this respect also pre-textual) notion that domain experts in

an area of knowledge have terms as conceptualized constructs in their mind.45 Still,

Cabré Castellv́ı (2003) slowly approaches the theoretical study of terminology to lin-

guistics in that it is assumed that the elements of a terminology are terminological

units and that these are units of knowledge, units of language, and units of com-

munication. Admitting that these are not distinctive features with respect to other

linguistic units, such as words or lexical items in general usage, Cabré Castellv́ı (2003)

defines the following linguistic conditions which distinguish terminological units from

other ones:

1. terminological units are lexical units, either through their lexical origin or a

through a process of lexicalization.

2. they may have lexical and syntactic structure, which, however, tends to be more

constrained than for general lexical units.

3. regarding word class, they occur as nouns, adjectives, verbs and adverbials,

although there is a strong tendency towards nominal and adjectival structures.

45What also certainly plays a role here is the strive of terminological researchers to establish (or

maintain – depending on the viewpoint) the study of terminology as a discipline in its own right.
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4. they may belong to one of the following semantic categories: entities, events,

properties or relations.

5. their meaning is self-contained within a special subject.

6. their syntactic combinability is restricted on the basis of the combinatory prin-

ciples of lexical items, although, in general, it is more restrictive.

Although these conditions show that terminological units, in several respects, ex-

hibit linguistic properties similar to general lexical units, they highlight the contrasts

when these properties diverge. On the semantic or discourse level (see conditions 4

and 5), it is noted that their meaning is tied to a particular (technical) domain and

that they fall into all of the semantic categories used to describe linguistic structure.

On the lexical and syntactic level (see conditions 2 and 6), it is noted that termino-

logical units have a tendency to occur as adjectives and nouns and that they are more

constrained with respect to their syntactic structure. As can be seen, this may already

be considered a hint at the linguistic property of limited modifiability of terms. In

fact, this condition is in line with observations made by research on domain-specific

sublanguage use (see 2.2.6 below) and computational approaches to automatic term

extraction from natural language corpora, in particular Justeson & Katz (1995) (see

subsection 2.2.7 for a more detailed account).

2.2.3 Conventional Definitions of Terms

Newer but still conventional approaches to the definition of terms try to distinguish

between terms on the one hand and words on the other hand. In particular, Sager

(1990, p. 19) attempts to frame the boundary of terminology to linguistics from this

angle:

The lexicon of a special subject reflects the organizational characteristics

of the discipline by tending to provide as many lexical units as there are

concepts conventionally established in the subspace and by restricting the

reference of each such lexical unit to a well-defined region. Besides con-

taining a large number of items which are endowed with the property of

a special reference, the lexicon of a special language also contains items
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of general reference which do not usually seem to be specific to any dis-

cipline or disciplines and whose referential properties are uniformly vague

or generalized. The items which are characterized by a special reference

within a discipline are the “terms” of that discipline, and collectively, they

form its “terminology”; those which function in general reference over a

variety of sublanguages are simply called “words”, and their totality the

“vocabulary”.

The first assertion, viz. that there are as many lexical units as there are concepts,

seems to be in line with Wüster’s idealistic goal of a terminology reflecting the concep-

tual structure of a subject domain. Rather problematic is the point that the lexicon of

a special language contains two classes of entries, the ones with special reference and

the ones with general reference. The fact that the latter kind of items presumably has

reference to a variety of sublanguages indicates that they may not merely constitute

general-language words used in everyday communication. Still, there are no examples

given for the words and the vocabulary of a particular subject domain and, hence, this

attempt to arrive at a distinction between terms on the one hand and words on the

other hand remains superficial and poorly motivated (for a similar point why such a

distinction may not hold see Pearson (1998)).

2.2.4 Problems with the Classical and Conventional Ap-

proaches

Both the classical view (i.e. based on Wüster’s General Theory of Terminology) and,

with some qualifications previously outlined, its modern successors emphasize the

cognitive role of conceptual maps in the mind of domain experts. However, even if

this were the case, this assumption may turn out to be rather misleading because

domain experts would not build up such conceptual maps from introspection.46 On

the contrary, domain experts and terminologists alike constantly refer to textual data

and analyze lexical elements for the purpose of acquiring and validating “conceptual”

descriptions.

More current but still conventional definitions follow the prescriptive stance of

46Jacquemin (2001) provides a similar counter-argument.
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the classical view and pursue a one-to-one correspondence between concept and term.

Although such a reduction of ambiguity may be useful to ease the burden of commu-

nication bottlenecks and to facilitate the compilation of standardized terminologies,

it is difficult if not impossible to apply in a computational environment in which one

deals with occurrences of terms in text.

Another classical assumption is that terminology is only used by a closed expert

community and that each subject domain more or less has its own discrete terminology.

Conventional approaches qualify this assumption to a certain respect in that they try

to distinguish between terms on the one hand and words on the other hand, whereby

the notion of words is used as an all-inclusive category for those lexical items which do

not fit elegantly into the classical classification scheme for terms. As a consequence,

technical terms which are used in a single subject field are set apart from general

terms which are used in more than one subject domain.

Both from a text-based and a computational perspective, the problem with such

an approach lies in its “closed-world assumption” with respect to subject domains.

Already the subject field in which this work is to be located, viz. computational lin-

guistics, provides obvious counter-evidence that such an assumption would be feasible

in practice. If a (standardized) terminology of the field would have been compiled 15

years ago, it would have looked conspicuously different from a terminology of com-

putational linguistics compiled nowadays. Because of the surge in using statistical

and machine-learning-based methodology in computational linguistics, a lot statistics

terms47 would have to be included in such a terminology, although, in a strict sense,

these are terms from another, separate subject field. Obviously, an approach that

would classify these cross-disciplinary terms simply as “words”, as opposed to the

genuine computational linguistics terms (as suggested by Sager (1990) – see subsec-

tion 2.2.3 above), would ignore the relevance such terminology has attained in current

computational linguistics research. It should also be noted that a computational ap-

proach to automatic term recognition from text, as described below and pursued in

this work, would definitely output a lot of statistics terminology, in particular if the

document collection for such a procedure would include material from the last ten

years. This example also illustrates the problems one would run into with such an

approach in the light of the increasing cross-disciplinarity, in which the traditional

47For example, statistics terms such as “maximum likelihood estimate”, “maximum entropy”, “hid-

den markov model”, “mutual information”, “hypothesis testing”, “likelihood ratio” etc.
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demarcation lines between subject fields are becoming blurred and there is often a

considerable terminological overlap between them.

2.2.5 Pragmatic Definitions of Terms

“Pragmatic” definitions of terms are understood as approaches which are not com-

mitted to a particular theory or framework of terminology, but still are concerned

with finding a sort of “working definition” for their purposes.48 The setting for such

definitions is typically such that a language is used for special purposes, such as a

second language curriculum. What they have in common is that they try to ad-

dress the above described shortcomings of the classical approaches to terminology.

For example, Hoffmann (1985) suggests that within a specialized vocabulary, there

are three categories of terms in a domain-specific terminology: subject-specific terms,

non subject-specific specialized terms and general vocabulary. Thus, terms with a

special reference in only one domain are distinguished from such which have a special

reference in more than one domain. Such an approach certainly acknowledges the fact

that a domain-specific terminology cannot be conceived as a static block.49 A slightly

different stance is taken by Trimble (1985) who distinguishes between three types of

terms, i.e. highly technical terms, a technical term bank, and subtechnical terms.

Highly technical terms are, more or less, roughly equivalent to Hoffmann’s (1985)

subject-specific terms whereas the technical term bank seems to have an approximate

equivalent to the non-subject-specific vocabulary. The third category, subtechnical

terms, is constituted by common words that may have adopted special meanings in

certain subject fields.50

Although such categorizations attempt to accommodate the fact the terminology

of a particular domain may be divided into different “semantic” portions, the criteria

for membership differ from terminologist to terminologist, and thus make it difficult

to arrive at a consistent, let alone standardized way for such a procedure. In fact,

Hoffmann (1985) himself concedes that a systematic way of distinguishing between

such types of terms is not only difficult in practice but also questionable with respect

to its intended purpose in the first place. Furthermore, like it was the case with

48See also Pearson (1998) for a similar definition.
49It certainly would address the question of computational linguistics vs. statistics terminology

discussed above.
50Examples given in this respect are control, operation, positive, etc.



2.2 Defining Terms 43

respect to the classical approach described above, such categorizations do not give

any indications on how it may be helpful for the computational tractability of terms

from natural language texts.

2.2.6 Terms and Sublanguage

The notion of sublanguage appears to have been made an issue, in particular, by

researchers on the boundaries between computational language analysis and its ap-

plications in various specialized language domains, such as e.g. the medical domain.

In other, more linguistically oriented research, also the terms language for specific

purposes, specialized language, or scientific language are encountered. No matter,

however, what the label may be, sublanguage always plays an implicit or explicit role

when talking about domain-specificity, subject-specificity or a subject field. Therefore,

it is important to describe, on the one hand, what the properties of sublanguages are

and, on the other hand, if and to what extent these properties may contribute to the

definition of terms. As the ultimate goal, we hope to arrive at a better understanding

of how to isolate the domain-specific terms of a particular subject domain.

Harris (1968, p. 152), who may be considered as having introduced the concept

of sublanguage in the first place, attempts to define it in terms of mathematical (set-

theoretic) properties of sentences:

Certain proper subsets of the sentences of a language may be closed under

some or all of the operations defined in the language, and thus constitute

a sublanguage of it.

In this respect, a sublanguage would display some sort of mathematical closure, i.e.

a finite set of sentences. The same, however, would not hold for the grammar of a

sublanguage (Harris, 1968, p. 155):

Thus the sublanguage grammar contains rules which the language violates

and the language grammar contains rules which the sublanguage never

meets. It follows that while the sentences of such science object-languages

are included in the language as a whole, the grammar of these sublanguages

intersects (rather than is included in) the grammar of the language as a

whole.
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From a current linguistic point of view, such a different treatment of sublanguage

sentences, on the one hand, and sublanguage grammar, on the other hand, may seem

rather odd. Thus, Sager (1982, p. 9), one of the early investigators of sublanguage in

the medical context, defines it as follows:

The discourse in a science subfield has a more restricted grammar and

far less ambiguity than has the language as a whole. We have found

that research papers in a given science subfield display such regularities

of occurrence over and above those of the language as a whole that it

is possible to write a grammar of the language used in the subfield, and

that this specialized grammar closely reflects the informational structure

of discourse in the subfield. We use the term sublanguage for that part of

the whole language which can be described by such a specialized grammar.

The focus of this definition is on the information structure of sublanguages which

is reflected in specialized grammatical structures. It should be noted that this rather

represents a “top-down” approach in that a (however described) information structure

dictates allowable grammatical structures. In the practice of the Linguistic String

Project (LSP), however, the specialized sublanguage grammar often did not fit the

domain language used (i.e., clinical narratives).51 This observation is related to the

fact that it is not sufficient to talk about a domain-specific sublanguage (or even

sublanguage grammatical structures) per se, and thus simply imply the existence of

a (sub)language of physics, aeronautics, medicine, etc. (as e.g. Lehrberger (1982)

and Lehrberger (1988) seem to suggest). Using such a definition of sublanguage,

one at first glance might be tempted to label the linguistic context of the LSP as

“language of medicine”. This, however, would ignore the fact that such a domain-

specific language of medicine itself is not a monolithic block but rather itself may be

comprised of different “sublanguages” in form of text categories or genres, such as

clinical narratives, textbooks for medical students, scientific publications etc.

In a slightly different vein which is of particular interest with respect to terminology

and terms, Hirschman & Sager (1982, p. 27) characterize sublanguage as follows:

We define sublanguage here as the particular language used in a body of

texts dealing with a circumscribed subject area (often reports or articles

51As a consequence, e.g., parses output by the LSP system had to be hand-edited (Macleod et al.,

1987).
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on a technical specialty or science subfield), in which the authors of docu-

ments share a common vocabulary and common habits of word usage. As

a result, the documents display recurrent patterns of word co-occurrence

that characterize discourse in this area and justify the term sublanguage.

Here it is suggested that language used in restricted domains exhibits recurrent word

co-occurrence patterns or habits of word usage52 which may be utilized as what is

termed as the “informational” content of the text. Harris (1988, p. 40) states a

similar observation:

When the word combinations of a language are described most efficiently,

we obtain a strong correlation between differences in structure and differ-

ences in information. This correlation is stronger yet in sublanguages.

To find evidence for his assumption, Harris (1988) developed a sublanguage grammar

for a collection of scientific articles on medicine53 by recording how words occurred

with each other in sentences of the articles and by collecting words with similar com-

binability into classes. Because Harris wanted to establish mathematical properties of

sublanguage and language use, he actually replaced words by symbols thus creating

a sort of string grammar, in which he then used string analysis to determine patterns

of substring combinability.

At this point, we may conclude that there is tight interconnection between domain-

specificity, on the one hand, and sublanguage, on the other hand. Although from

a current linguistic point of view, various inadequacies may be invoked, both with

respect to the theoretical basis and the methodological repertoire of the description

of sublanguage properties, various sublanguage researchers have observed that there

appear to be limitations and constraints on the grammatical and lexical structure of

sublanguages. In subsection 4.2.3, we will see that in fact we will be able to identify

such a limiting property for terms, based on the notion of limited modifiability, and

that we will be able to use it for their automatic identification in domain-specific text

and thus distinguish them from general-language words – a concern that has long

been a point of scientific debate among terminologists.

52It should be noted these observations are mostly based on manual text data analysis using a

KWIC (keyword in context) computer program, or even by manual text corpus data analysis.
53On immunology, to be exact.
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2.2.7 (Computational) Linguistic Definitions of Terms

Somewhat in parallel to computational linguists doing research on collocation extrac-

tion (see subsection 2.1.3), NLP researchers in the realm of term extraction from

(domain-specific) text data appear to acknowledge that there is indeed a body of re-

search on definitions and properties of terms. At the same time and in a similar vein,

however, there appears to be little impact of this on the development of respective

term extraction procedures. Jacquemin (2001) may have the most radical utilitistic

stance in that, in the context of corpus-based terminology, he defines a term as the

output of a procedure of terminological analysis. Such an approach may very well

be the reaction to the position of classical and conventional terminologists to draw a

clear distinction between terminology, on the one hand, and linguistics, on the other

hand.

While acknowledging that the notion of terminology (or technical terminology)

may neither have nor need a formal definition in the context of automatic term ex-

traction, Justeson & Katz (1995), in their seminal work on automatic term extraction

from corpora, emphasize that there are linguistic properties of terms which may be

derived, either by careful manual analysis of domain-specific dictionaries or text cor-

pora or by both. In their corpus and dictionary analysis from the several subject

domains (i.e. fiber optics, medicine, physics, mathematics, psychology), one first im-

portant syntactic property derived by Justeson & Katz (1995)’s analysis is that the

vast majority of terms actually are or occur within noun phrases (NPs), which are

referred to as terminological noun phrases. They are distinguished from “other” NPs

in that they are lexical,54 i.e. they are supposed to be of limited compositionality and

thus are distinctive entities requiring inclusion in the lexicon because their meanings

are not unambiguously derivable from the meanings of the words that compose them.

The presumed property of limited compositionality, however, is not investigated any

further, and it may not be as straightforward, as it is in the case of collocations in the

first place. In their discussion of collocational subclasses, Manning & Schütze (1999)

(see subsection 2.1.3), for example, note that terms may often be fairly compositional

(cf. their example “hydraulic oil filter”).

Justeson & Katz (1995) outline two general linguistic properties of terminologi-

cal noun phrases, of which the first one is vaguely described as “statistical” and the

54Hence, they are also sometimes referred to as lexical NPs.
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second one as “structural”. These two properties are then incorporated into their

terminology identification algorithm to different degrees (see subsection 3.2.1). Al-

though the former (statistical) property is also labeled as “repetitive” , a closer look at

it reveals that it boils down to the – by now well known – frequency of co-occurrence

property (see the discussion on collocations in subsection 2.1.4 above), which is also

set to hold for terms by stating that terms occur more frequently than non-terms.

What is interesting in Justeson & Katz (1995)’s discussion is that, for terminological

noun phrases, this property is linked to a more restricted range and extent of modifier

variation as well as to repeated references to the entities designated. Repetition in

case of non-terms, on the other hand, is much more restricted [p.11]:

Repetition including the modifiers of a nonlexical (i.e., non-terminological)

NP can be appropriate pragmatically, when repetition of the specify-

ing function is motivated . . . The more modifiers are involved, the less

likely such possibilities are. Even when repetition of the full NP might

be pragmatically appropriate, precise repetition can create a tedious or

monotonous effect, the more so the NP and the more recently the re-

peating phrase was used; some sort of stylistic variation is usual. Exact

repetition of nonlexical NPs is expected to occur primarily either when

they are widely separated in relatively large texts or else as an accidental

effect.

In the case of terminological NPs, on the other hand, the property of repetition is

natural:

. . . omission of modifiers from a lexical NP normally involves reference to

a different entity. Lexical NPs – even those with compositional semantics

– are much less susceptible to the omission of modifiers. When a lexical

NP has been used to refer to an entity, and that entity is subsequently

reintroduced after an intervening shift of topic, the reintroduction to it is

very likely to involve the use of the full lexical NP, especially when the

lexical NP is terminological. Lexical NPs are also far less susceptible than

nonlexical NPs to other types of variation in the use of modifiers. Modi-

fying words and phrases can be inserted or exchanged within a nonlexical

NP but not, without a change of referent within a lexical NP. Similarly,
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the precise words comprising a nonlexical NP can be varied without a

change of referent, but usually not in a lexical NP. Variations either in

the choice of some words or in the presence vs. absence of some words

in terminological NPs reflect distinct terms, often differentia of a noun or

NP head.

Here, it appears as if the property of repetition (i.e., frequency of occurrence) is

tied to another property, i.e. limited or lack of variation.55 Thus, in this respect,

there appears to be mounting evidence that also terms seem to exhibit certain forms

of limitations on their variability or, to put it in different words, their modifiability – a

notion of a linguistic property which also has been hinted at by Cabré Castellv́ı (2003)

above in subsection 2.2.2. Although such a property typically would be perceived as

being different from frequency of co-occurrence, Justeson & Katz (1995) consider

it as a sort of prerequisite for it. This means that, due to limited variability (or

modifiability) within lexical noun phrases because of their terminological status, terms

are often repeated in text and thus exhibit a high frequency of occurrence. Thus, as

we will see in the description of their term extraction procedure in subsection 2.2.2,

the adduced property of limited variability or modifiability has no influence on their

actual term extraction algorithm, which is merely based on the “repetitive” notion of

frequency of co-occurrence counting of candidate items.

The other general property of terminological noun phrases postulated by Justeson

& Katz (1995) states that terminological NPs also differ in structure from non-lexical

NPs. For each domain corpus and dictionary resource examined in their study, sam-

ples of 200 technical terms were analyzed, of which 92.5% to 99% were found to be

noun phrases. An interesting (because typically assumed) finding was that most terms

were actually multi-word items with a length greater than one. Indeed, almost 80%

of all terms across all domains examined were multi-word terms, with the average

length of NP terms being 1.91 words. Justeson & Katz (1995) explain this by the

fact that one-word terms are typically quite ambiguous or polysemous and thus multi-

word terms are preferred. Between 50% and 63% of the multi-word-terms analyzed

were two-word items,56 between 6% and 20% were three-word items, and only up

55It should be noted that Justeson & Katz (1995) exclude determiners (articles and quantifiers)

from the class of NP modifiers because, first, they are applicable to almost any NP and, second,

because they tend to indicate discourse pragmatics rather than lexical semantics.
56Daille (1996), who conducted a (manual) corpus study for both English and French terms from
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to 6% were four words long or more. Of these multi-word terms, the vast majority

(97%) only contained nouns and adjectives, and hardly any other parts of speech, such

as prepositions or adverbials.57 These findings on term length are also in line with

other NLP approaches to term extraction, e.g. (Jacquemin, 2001) and (Jacquemin &

Bourigault, 2003) who state that multi-word items should be the focus of automatic

procedures for the acquisition and recognition of terms from text whereas one-word

terms, besides being far less frequent, should be rather subject to word sense disam-

biguation procedures and thus constitute a completely different field of computational

approaches.

2.3 Assessment of Linguistic Definitions for Collo-

cations and Terms

The previous subsection 2.2.7 has shown that computational linguistics or NLP re-

searchers working on terminology extraction typically refrain from defining terms from

a theoretical terminological perspective or from considering corresponding properties

put forth by terminologists. This may have to do with the fact that the theory of

terminology, in defining (and justifying) its own field, has sought to draw a clear de-

marcation line from linguistics. This might even have led some NLP researcher to

take a completely utilistic stance on this issue by simply defining terms as the output

of a term extraction procedure (Jacquemin, 2001). In any case, if NLP researchers

define properties of terms or terminology at all, they do this so on linguistic grounds.

The most prominent work on this, (Justeson & Katz, 1995), reveals interesting find-

ings about the structural constitution of terms in text, pointing to a constrained

variability which in turn leads to repetitiveness (i.e. frequency of co-occurrence).

Interestingly, this (manually derived) empirical observation has been independently

echoed by some current terminologists in the vein of Wüster’s General Theory of Ter-

minology (Cabré Castellv́ı, 2003) which appear to have loosened the strict division

to linguistics (see subsection 2.2.1, in particular Cabré Castellv́ı (2003)’s postulated

linguistic conditions 2 and 6). Justeson & Katz (1995)’s main insight centers around

the telecommunications domain, also found that most terms are bigrams, for both languages. How-

ever, their actual proportion was not quantified.
57In the physics domain, however, Justeson & Katz (1995) report that there are disproportionately

high numbers of adverbials, as e.g. witnessed by the term “almost periodic function”.
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the observation that variation of modifying words within a terminological phrase, be

it their insertion, deletion or substitution, either changes the referent of the term (i.e.,

a different “entity”) or turns the expression into a non-term. Although, in order to

put Justeson & Katz (1995)’s linguistic analysis into practice, sophisticated linguistic

analysis may be necessary to identify the modifiers (and the head) of a noun phrase,58

the basic insight into possible terminological NP modifications and their effect is in-

triguing and thus may be worthwhile to be incorporated into a linguistically enhanced

statistical association measure as the backbone for automatic term identification (cf.

subsection 4.2.3). This is even so much inciting, as the linguistic properties with

respect to terminological NP variability, although being analyzed and elaborated on

quite extensively, were not included into Justeson & Katz (1995)’s term identifica-

tion algorithm, but rather only its presumed effects – repetition (i.e., frequency of

co-occurrence).

Unlike theoretical research on terminology, research on collocations has been a

vital part of linguistics research and, in the case of British contextualism, even the

driving force (see subsection 2.1.2). Also, computational linguists working on col-

location extraction (see e.g. Manning & Schütze (1999) in subsection 2.1.3) address

various linguistic properties of collocations and, typically, refer to linguistic work done

on collocations. Of the linguistic properties addressed, however, it is mainly the con-

textualist property of lexical co-occurrence (see subsubsection 2.1.4.1) which has a

direct or indirect role, both in various collocation extraction algorithms (see section

3.1 ahead) or in respective term extraction algorithms, such as e.g. the one proposed

by Justeson & Katz (1995) (see section 3.2 ahead).

Among the linguistic properties of collocations assembled and synthesized in sub-

section 2.1.4, however, it is the property on linguistic variability of collocations, viz.

limited modifiability (see subsubsection 2.1.4.1) which appears to bear quite some re-

semblance with the aforementioned property of multi-word terms put forth by Juste-

son & Katz (1995), viz. limited or lack of variation. We have seen that for collocations

this property surfaces as limiting the degree by which collocational components may

be modified by additional lexical material while for terms this property, among others,

rather restricts the modification by substitutional lexical material. Now, in subsub-

section 2.1.2.2 we have actually introduced a linguistic frame of reference – Firth’s

58This is something Justeson & Katz (1995) do not attempt. Rather, they employ shallow linguistic

analysis (see subsection 3.2.1).
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lexical-collocational layer of language description – which will help us to structure

the notion of modifiability for both collocations and terms appropriately, viz. from a

syntagmatic and a paradigmatic perspective, respectively (see subsection 4.2.1 below).

Crucially, this in turn will help us to make these properties empirically quantifiable

– in order to turn them into linguistically enhanced statistical association measures

for the extraction of collocations and of terms from unrestricted text (see sections 4.3

and 4.4 below).

One additional aspect that the previous sections on defining collocations and terms

have revealed is that these linguistic expressions tend to be located within different

types of textual discourse. Thus, terminologists anchor terms, to various degrees

though, as active ingredients to certain technical domains or subject fields. This,

in turn, has the linguistic consequence that the issue of terms and terminology is

very closely tied to the linguistic notion of sublanguage as a fundamental notion in

describing domain-specificity, subject-specificity or a subject field from a linguistic

perspective. Also, the concept of sublanguage has generated a lot of attention as a

result of the increasing importance of specialized languages, both from a linguistic

and language processing perspective (see subsection 2.2.6). In addition to that, it is

interesting to note that also various sublanguage researchers have observed that there

appear to be limitations and constraints on the grammatical and lexical structure of

sublanguages. Thus, these observations also appear to fall in line with observations on

the structure of terms made by some contemporary terminologists (Cabré Castellv́ı,

2003) and NLP researchers (Justeson & Katz, 1995) which are extensively discussed

above. Concerning collocations, there is the perception, at least from a linguistic

perspective, that they are constructions which are part of what is typically referred

to as general language. The notion of general language is itself vague and, like the

notion of sublanguage, can not be pinpointed to a single monolithic block. In this

respect, corpus linguists (e.g. Biber (1993)) have argued that general language may

be viewed from different levels and perspectives – typically referred to as registers

– which should be considered in assembling a well-balanced text corpus of a given

language. But still, as far as the linguistic status of collocations is concerned, it is

pervasive to all facets of general language, and may not be regarded as more or less

prominent in one particular register or another.



Chapter 3

Approaches to the Extraction of

Collocations and Terms

This chapter gives an extensive overview over the various approaches to collocation

and term extraction which have been proposed in the computational linguistics re-

search literature. Of course, the goal of such a chapter cannot be to discuss every

single approach ever proposed but rather to focus on the most representative and in-

fluential ones. In this respect, it has to be noted that basically all approaches proposed

for the extraction of collocations and terms from text make use of several standard

statistical and information-theoretic association measures which compute some form

of association score determining the collocativity or termhood of a given linguistic

expression and decide whether or not it qualifies as a collocation or term. While

these association measures were first devised and used in areas completely unrelated

to computational linguistics, such as the statistical testing of differences for various

experimental design set-ups in e.g. medicine or psychology, their underlying statis-

tical capabilities became quite popular during the empirical turn of computational

linguistics research in the 1990s.1

1Already as early as in 1964, the then precursors of today’s computational linguistics and in-

formation retrieval communities, meeting at the Symposium on Statistical Association Methods For

Mechanized Documentation documented by Stevens et al. (1965), took notice of the availability of

statistical procedures which allow to compute some score determining the strength of association be-

tween two words (Dennis, 1965). It was only because of the ban of statistics from the computational

linguistics community which occurred afterwards why their use did not gain wider prominence until

the 1990s.
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While the main focus of the first two sections 3.1 and 3.2 will be on discussing

the most pertinent approaches to collocation and to term extraction, respectively, the

aforementioned association measures – being the fundamental building block – will

play a role in these discussions, although their underlying statistical properties will

be described later in section 3.3. Also, an influential study on collocation extraction

(Dunning, 1993) will be demoted to this section as it is tightly interlinked with one

such particular association measure, viz. log-likelihood. Consequently, although we

divide the computational approaches into those tackling collocation extraction, on

the one hand, and term extraction, on the other hand, the boundaries between them

are not always as clear-cut as the boundaries are in the linguistic literature between

collocations and terms, as discussed in the previous chapter. This is certainly also due

to the fact that the processing machinery applied to both kinds of linguistic expressions

is similar if not even equal in both cases – a matter which was already hinted at in

section 2.1.3. Still, by and large, such a division is corroborated by explicit or implicit

statements either made by the authors of a certain study themselves or by references

to it. Furthermore, what they all share is the filtering of text by some form linguistic

processing in order to obtain a set of collocation or term candidates to which an

association measure may then be applied. The fact that such linguistic filtering may

also be a beneficial to meet the statistical assumptions of some association measures

will be an issue in subsection 3.3.6.

3.1 Approaches to Collocation Extraction

Most of the procedures to collocation extraction may be distinguished in terms of

either the kind of linguistic processing performed, which ranges from shallow part-of-

speech assignments to full dependency-based syntactic parsing (see subsection 3.1.3 on

Lin’s approach), or the sort of association measure employed. Also, whether linguis-

tic processing precedes or follows the application of an association measure to some

collocation candidate set is where approaches may differ. In particular, the work de-

scribed subsection 3.1.2 (Smadja, 1993) reverses the canonical order of first applying

a linguistic filter and then an association measure. The approach outlined by Berry-

Rogghe (subsection 3.1.1), on the other hand, suffers from the severe limitations of

linguistic processing capacity that were prevailing at that time.

What distinguishes the approach by Lin (subsection 3.1.3) from the other ones is
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that its main focus lies on fine-classifying an already extracted set of collocations. The

work by (Evert & Krenn, 2001; Evert, 2005) described in subsection 3.1.4 is also dis-

tinctive in that it compares different association measures from a mathematical point

of view and attempts to frame a sound evaluation setting to make them comparable

in the first place. The insights from this study will in fact be guiding the way of how

we will construct our evaluation setting in section 4.5 of this thesis.

3.1.1 Berry-Rogghe

Berry-Rogghe (1973) may be regarded as one of the earliest approaches to the auto-

matic extraction of collocations from machine-readable text. Her approach to auto-

matic collocation extraction was motivated by the goal to develop a general method to

isolate “significant” collocations from machine-readable texts.2 On the linguistic side,

this study relied heavily on the contextualist lexical approach to collocations laid out

by Halliday (1969) (see subsubsection 2.1.2.3 above) and thus attempted to isolate

potential nodal items (or collocational bases, in the terminology of phraseologistic

approaches) and their collocates from text. This, however, posed several challenges

which were hard to overcome by the available linguistic processors at that time.3 Even

if a potential nodal item was determined, one particular problem was in estimating

the appropriate range for the collocational span and find a potential collocate, which

was approached by heuristically experimenting with different span sizes and without

taking into account any sentence boundary information. Furthermore, due to the

limitations of computing resources and processing power, the size of the text corpus

(approximately 1000 sentences) was comparatively small. Moreover, no evaluation of

the quality of the extraction procedure is reported, which again is due to the period

in which the study was undertaken. Still, the interesting aspect of this study is that

the notion of significant collocation was defined according of the established notion

of statistical significance and thus, to a certain respect at least, anticipated what

would become mainstream in computational linguistics 30 years later. In fact, Berry-

Rogghe (1973)’s adopted (and heuristically adapted) statistical methods to identify

collocations – the z-score – may be regarded as peculiarly “modern”, in particular in

2The text corpus used in this study, however, consisted of literary and philosophical texts.
3For example, the automatic detection and disambiguation of parts of speech or the identification

of phrasal units was almost impossible to achieve.
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comparison to current standard references on statistical natural language processing

(e.g. such as Manning & Schütze (1999)):4

the aim is to compile a list of those syntagmatic items (‘collocates’) sig-

nificantly co-occurring with a given lexical item (‘node’) within a specified

linear distance (‘span’). ’Significant collocation’ can be defined in statis-

tical terms as the probability of the item x co-occurring with the items a,

b, c, ... being greater than might be expected from pure chance (Berry-

Rogghe, 1973, p. 103)

Due to the aforementioned lack of linguistic preprocessing capacities (e.g. lack

of sentence boundary recognition or part-of-speech disambiguation), Berry-Rogghe

(1973) looks at all words within a predefined span and counts the number of co-

occurrences of a potential nodal item (collocational base) and a potential collocate.

Computing the z-score is then done in quite an idiosyncratic way in that the predefined

size of the collocational span is factored into it.

Besides the severe limitations on linguistic processing capacity in this study, the

applicability of the z-score to the task of collocation extraction has been questioned.

For example, Dunning (1993) points out that the z-score substantially overestimates

the significance of rare events. Hence, its application to statistical NLP problems in

general may be considered inadequate and thus a close relative to it, the t-test, is typ-

ically preferred (see subsection 3.3.2 for a description of the statistical underpinnings

of both the z-score and t-test).

3.1.2 Smadja

Smadja (1993), and its precursor Smadja & McKeown (1990), may be described as

one of the classical works on collocation extraction from natural language text cor-

pora. Its main focus is on the acquisition of collocational knowledge, in particular

in addition to established grammatical and semantic rule inventories, for the task of

language generation. This is motivated by the fact that language generation algo-

rithms, which only rely on grammatical and semantic rules, fall short of preferentially

4Curiously, Berry-Rogghe (1973)’s work is not mentioned in Manning & Schütze (1999)’s chap-

ter on collocations, which, besides this, is remarkably complete regarding previous approaches to

collocation extraction.
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selecting collocationally adequate word combinations, such as “take a bath”, instead

of syntactically and semantically similar (but incorrect) ones, such as “have a bath”.

According to Smadja, the former word combination is unpredictable (from the point

of view of language generation) in the absence of knowledge about collocational rules.

Smadja (1993) distinguishes between three subtypes of collocations, viz. open

compound collocations (e.g. “stock market”, “ice cream”), phrasal collocations (e.g.

“take out”, “pump up”), and predicative collocations. Mainly the first and the third

type are focused on although the prominence of compound collocations are certainly a

result of both the language under investigation (i.e. English)5 and the textual domain

considered (i.e. stock reports).6

From the point of view of the linguistic grounding of Smadja’s (1993) approach to

collocation extraction, Smadja (1989) gives some information in that the most widely

used subclass of predicative collocations is claimed to be tied to Mel’čuk (1995b)

and Mel’čuk (1998)’s model of lexical functions, as described in subsubsection 2.1.1.1.

Moreover, by referring to the notions of collocational base and collocate, Smadja’s

conception of collocations bears a certain resemblance to phraseological conceptions

of collocations (see also subsubsection 2.1.1.1), however without explicitly mentioning

it. It is, however, interesting to note that, although Smadja (1989) invokes Mel’čuk’s

linguistic work on collocations, there is no reflection of it in the extraction procedure

proposed. For Smadja (1993), a collocation is considered as a syntagmatic word

association which is based on the part of speech of its component words and which is

characterized by a deviation to statistical standard values.

In concrete, Smadja’s collocation extraction procedure Xtract is composed of

two subprograms. After a collocational base has been manually selected, the program

Xconcord creates its concordances (on a sentence level) from the text corpus. After

tagging the concordances with their part of speech, the second subprogram Xstat first

removes all function words7, although only preliminarily. Then collocational bigram

5For example, the types of compounds that fall in this class would be closed compounds in German

(e.g. “Aktienmarkt”) and thus would not be the target of a collocation extraction procedure.
6Here, it can also be seen again that, in particular in the area of computational extraction ap-

proaches, sometimes there is a fine, almost indistinguishable line between the extraction of colloca-

tions, on the one hand, and extraction of terms, on the other hand. Thus, Smadja (1993)’s approach

and its focus on stock reports indiscriminatively tackles both the extraction of domain-specific terms

and general-language collocations.
7Whether or not a token is a function word is determined by its respective part of speech tag.
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candidates are generated by collecting directly and indirectly neighboring potential

collocates. For these Xstat computes an association strength score which to a certain

degree resembles the z-score (see subsection 3.3.2 for a description of its shortcomings)

and which determines whether or not the bigram candidate qualifies as a collocation.

Given that w1 is the potential collocational base and w2 is the potential collocate

co-occurring in the same sentence, this is done in the following way:

• The relative (signed) distances between w1 and w2 are computed and averaged

to the mean distance

• To measure how the individual offsets of collocate occurrences differ, the sample

deviation (i.e., the square root of the variance) of the mean distance is computed.

• An optional (and to be manually determined) smoothing factor may be applied.

The procedure retains those bigram candidates which lie above a manually defined

threshold value and thus a fixed list of collocation candidates is obtained. Finally, a

syntactic validation procedure, which relies on part of speech assignments, is applied

to this list in order to filter out syntactically invalid collocations. In this way, e.g.,

noun-adverb or preposition-adjective combinations are discarded from the collocation

set.

Contrary to most current approaches to both collocation and term extraction,

Smadja applies a linguistic filter after statistically computing lexical association

scores. In more recent approaches to collocation extraction linguistic preprocess-

ing typically precedes the computation of statistical association scores as this allows

for better control over linguistic structures to which the collocation or term iden-

tification procedure can be applied.8 Concerning its underlying linguistic notion of

collocations, Smadja’s approach is probably considerably more permissive than that

of other linguists or computational linguists. As already mentioned, although colloca-

tional concepts are cited in the form of Mel’čuk’s lexical functions and phraseologistic

terminology, many of the collocations found, if at all, may rather be classified as

fixed phrases (see their definition in subsubsection 2.1.4.2). Still, for the purpose of

8In addition, applying linguistic filtering beforehand may also better meet the statistical as-

sumptions made by many of the association measures applied to the tasks of collocation and term

extraction – see subsection 3.3.6 for a detailed discussion.
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Smadja (1993)’s application setting, viz. language generation, these types of word

combinations9 may certainly be useful to identify.

As for the quality of his extraction method, Smadja (1993) estimates the precision

at about 80% by judging the collocational status of items in various collocation list

output runs. Such an evaluation procedure, although common at that time, is prob-

lematic in various respects, as it only examines the top-ranked items in the output list

and thus the accuracy score obtained just superficially reflects the algorithm’s actual

performance (see also the discussion below in subsection 3.1.4). Since adequate evalu-

ation procedures for both term and collocation extraction should meet a well-defined

array of evaluation criteria, they will be discussed in greater detail in section 4.5.

3.1.3 Lin

The approach to collocation extraction from text corpora taken by the the work of

Dekang Lin is notably different from other approaches in that it scales up its lin-

guistic processing step to full-fledged dependency parsing and attempts to analyze

collocations from a semantic perspective. In particular, it attempts to sort out a

particular subclass of collocations, viz. those to which the linguistic property of non-

compositionality applies (for an extensive discussion of this property, see subsubsec-

tion 2.1.4.1). By parsing a 125-million word newspaper corpus (containing Wall Street

Journal and San Jose Mercury articles) by the dependency parser MiniPar (Lin, 1993;

1994), Lin (1998a) and Lin (1998b) assemble a lexical dependency database consisting

of dependency triples of the form (head type modifier) where head and modifier are

words in the input sentence and type is the type of the dependency relation. The

dependency types looked at were noun-verb and noun-adjective dependencies. This

way, about 80 million dependency relationships were collected from the parsed cor-

pus. The collocation database, then, was obtained by computing the log-likelihood

ratio10 of the respective frequency counts. All dependency triples above a manually

defined threshold for the log-likelihood value were considered a collocation and thus

a database of about 11 million “unique collocations” was obtained. Of each of these

9Examples given by Smadja include the following noun-adjective combinations: “narrow escape”,

“powerful car”, “strong protest”, etc.
10See subsection 3.3.3 below for a detailed description of this lexical association measure.
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dependency triples, Lin (1999) then computes the mutual information (MI) value.11

Here then, a second resource constructed and described by Lin (1997) comes into play,

viz. an automatically constructed corpus-based thesaurus consisting of 11,800 nouns,

3,600 verbs and 5,600 adjectives/adverbs. In order to determine whether a collocation

candidate is non-compositional or not, Lin (1999) makes use of the linguistic prop-

erty of non- or limited substitutability with respect to collocations (see subsubsection

2.1.4.1 for its description). In concrete, he determines the compositionality status of a

collocation candidate by comparing the mutual information values when substituting

one of the words with a similar word from the thesaurus. Non-compositionality is

assumed if such substitutions are not found in the collocation database or if their

mutual information values are significantly different from that of the original phrase.

Although appealing both with respect to methodology and research objectives,

Lin’s (1999) approach is not so much a procedure to automatically extract collocations

from natural language text (i.e., effectively separate them from the “non-collocations”)

but rather a method to fine-classify an already acquired and ranked set of colloca-

tions. As a matter of fact, the actual collocation extraction step is performed by

applying the log-likelihood statistical lexical association measure to the parsed set of

dependency triples. Not surprisingly then, the MI- and thesaurus-based method for

fine-classification mostly yields those types of collocations that would be classified as

idioms, in compliance to the collocation subtypes laid out in subsection 2.1.4.2, be-

cause these constitute the collocational subtype which is mostly non-compositional.12

Hence, the procedure proposed by Lin virtually begins where actual collocation ex-

traction methods, such as the ones described in subsections 3.1.1, 3.1.2, 3.1.4, and of

course the methodology proposed in this thesis, leave off.13

There are also some principled problems with the approach laid out by Lin (1998a),

Lin (1998b), and Lin (1999). First, concerning the evaluation of the set of non-

compositional collocations identified, Lin (1999) compared these to two manually

compiled idioms dictionaries, viz. the NTC’s English Idioms Dictionary (Spears &

Kirkpatrick, 1993) and the Longman Dictionary of English Idioms (Long & Summers,

11In order to be able to compute the mutual information (MI) value of a triple, Lin (1999) uses an

extension to MI proposed by Alshawi & Carter (1994). See subsection 3.3.4 for a detailed description

of this information-theoretic association measure.
12A look at the output lists given by Lin (1999) confirms this view.
13Consequently, Lin’s procedure would not be suited for identifying the other two subtypes of

collocations described in subsubsection 2.1.4.2, viz. support verb constructions and fixed phrases.
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1979). Against the former dictionary, precision and recall values of 15.7% and 13.7%,

respectively, were obtained, and against the latter one, these were 39.4% and 20.9%,

respectively. As Lin (1999) notes, these results are clearly insufficient and, in the

first place, not due to the identification methodology employed, but rather due to the

notorious incompleteness of manually compiled dictionaries (see also the discussion in

subsection 3.1.4 below). Moreover, the overlap in idioms between the two dictionaries

is quite low, reflecting the fact that different lexicographers may have quite different

opinions about which phrases are non-compositional idioms. Second, by exclusively

building on parser-derived dependency triples, Lin (1999) is only able to examine col-

location bigrams and, moreover, it is not clear how his method could be generalized to

larger collocation n-grams. Third, by far the greatest sort of barrage, however, which

distorted the evaluation of Lin’s procedure were systematic parser errors. Almost 10%

of the result set of presumably non-compositional idioms were in fact erroneous de-

pendency triples, produced by Minipar, which easily passed the mutual information

filter because of the procedure’s inability to find similar substitutes for their compo-

nent words in the collocation database. Besides this, Lin (1998b) already concedes

that in constructing the collocation database from dependency triples, already various

kinds of steps were taken to reduce the amount of parser errors. Firstly, only sentences

with no more than 25 words were fed into the parser, and secondly, only complete

parses were included, which reduced the amount of words in the parsed corpus to

about 25% of the original corpus size. Moreover, Lin (1998b) also reports on poor

local parse decisions (mainly due to an incomplete lexicon and/or ambiguous part of

speech assignments) which had to be dealt with. Based on the assumption that the

parser tends to generate correct dependency triples more often than incorrect ones, a

set of 30 correction rules was manually devised in order to correct potential parsing

errors.

The main points of the previous discussion lead to a clear caveat in using full syn-

tactic parsers in order to arrive at a candidate set of collocations. Hence, this seems

to suggest that such a collocation lexicon or database should rather be one of the in-

puts to full syntactic parsing – rather than being its output. This view is also widely

supported in the literature on parsing. Interestingly, this does not only hold for rule-

and lexicon-based parsers such as Minipar but also for statistical parsers. For exam-

ple, already Collins (1997) showed that the performance of statistical parsers can be

improved by using lexicalized probabilities which capture the collocational relation-
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ships between words. One of the current cutting-edge hybrid (i.e. both constituent

and dependency) parsers, viz. the Stanford Parser (Klein & Manning, 2003),

uses an integral lookup component to collocations listed in the English WordNet

lexical database (Miller, 1995).14 As a matter of fact, Lin’s (1999) version of Mini-

par also uses a WordNet collocation lookup component by treating entries found

there as single words. An unwanted side effect of this, however, is that the parser-

derived dependency triple collocation database is skewed in the first place because all

non-compositional WordNet collocations are not included in it at all.

3.1.4 Evert and Krenn

The previous three subsections have shown that there have been various statistical

and information-theoretic measures employed for the task of automatic collocation

extraction from natural language text. For example, we have seen the z-score being

employed by Berry-Rogghe (1973) and Smadja (1993) as well as the log-likelihood and

the MI values being employed by Lin (1999) and Lin (1998b). The natural question

which arises from this is which one out of the wide array of association measures

actually performs best for the task of collocation extraction.

There are several studies which attempt to compare two or more different associa-

tion measures as for their collocation extraction performance. For example, Dunning

(1993) directly compares the log-likelihood and χ2 measures whereas Church & Hanks

(1990) closely examine the MI measure and Church et al. (1991) are responsible for

the popularity of the t-test, which they had compared (and found superior) to the MI

measure. Being one of the first studies on collocation extraction for German, Breidt

(1993) evaluates the MI and t-test measures for the extraction of German noun-verb

collocations. Being only a preliminary study, it is based on a very small corpus and

a list of 16 verbs which are typically found in support verb constructions. However,

rather than comparing the different association measures, Breidt (1993) experiments

with various parameters, such as the corpus size and the methods for extracting the

word co-occurrences.

The criteria, however, according to which many collocation extraction studies pick

14This is noteworthy inasmuch that, besides the collocation component, both Collin’s (1997) and

(Klein & Manning, 2003)’s statistical parsers are absolutely lexicon-free, deriving all their parameters

from treebank annotations.
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out a particular measure (but not an alternative one) in order to arrive at their set of

collocations, very often remain obscure. This certainly has to do with the fact that the

settings in which various association measures have been evaluated tend to be rather

subjective and superficial. The typical evaluation procedure is usually as follows:

since most association measures output a ranked list of collocation candidates, the

author of a paper or, rather seldom though, a linguist or lexicographer examines the

top ranked candidates (which is typically referred to as an n-best list where n is the

number of top ranked hits) as to whether they constitute a true collocation (i.e. a hit)

or not. Since such an evaluation process is rather labor-intensive and cumbersome, n

is usually very small, ranging from 50 to at most several hundreds.15

By far the most extensive and detailed analysis, which performs a comprehensive

and comparative evaluation of different association measures on a common testing

ground, has been carried out by Evert & Krenn (2001), Krenn & Evert (2001), and

Evert (2005). One of the key findings in Evert & Krenn (2001) is that the widespread

modus vivendi of evaluating various association measures for collocation extraction

on heuristically determined n-best lists clearly leads to superficial judgments16 about

the measures to be examined and thus needs to be put on a more principled basis. In

particular, it is suggested to increasingly examine n-best samples, which allows the

plotting of standard precision and recall graphs for the whole candidate sets. For this

reason, this thesis will also adopt such a principled evaluation procedure, which will

be laid out in detail in section 4.5.17

Evert (2005) also works out in detail the mathematical and statistical properties of

a selection of widely used standard association measures and, in addition, also provides

theoretical support (i.e. from a mathematical and statistical perspective) for a widely

used practice in statistical NLP, in general, and in employing statistical association

15In their various experiments comparing association measures to each other, Manning & Schütze

(1999), Chapter 5, merely look at 20 candidates to arrive at conclusive statements about the presumed

advantages or disadvantages of the respective measure.
16Up to the work of Evert & Krenn (2001), almost all studies on collocation extraction, and also

term extraction, evaluated the goodness of their methods using the n-best approach.
17Although such an evaluation strategy may allow more objective and principled conclusions about

the quality of various association measures, the downside of it is that it is quite labor-intensive as it

needs a pre-selected candidate set of potential collocation candidates in which the actual collocations

are identified. Still, section 4.5 will outline why and how such an evaluation strategy needs to be

preferred and implemented.
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measures in, particular, viz. the use of cut-off thresholds to exclude low frequency

data (i.e. rare events) from statistical inference. With most researchers intuitively

suspecting that statistical inference from small amounts of data is problematic (to say

the least), Evert (2005) actually shows that reliable statistical inference is impossible

in principle for low-frequency data because quantization effects and highly skewed

distributions18 dominate over the random variation that statistical inference normally

takes into account.

Despite its mathematical and evaluative soundness, the work of Evert & Krenn

(2001), Krenn & Evert (2001) and Evert (2005) reveals clear shortcomings, which may

be exposed on several layers. The major shortcomings from a very general perspective

are due to the extreme focus on mathematics and statistics, as a result of which the

linguistics about collocations and their properties seems to have gotten lost. One

of the fallouts of this is the exclusive focus on bigram word co-occurrences. From a

mathematical and statistical perspective, such a procedure is entirely justified because

many lexical association measure (e.g. χ2 or log-likelihood) are only well-defined for

word pairs (see also subsection 3.3.5 below). From a linguistic perspective, however,

this is clearly insufficient since it is well-know that many collocations and also terms

are larger n-gram units (i.e. at least trigrams, if not quadgrams). In Evert & Krenn

(2001), the fact that several of the lexical association measures examined are not easily

extensible beyond statistical events of bigram co-occurrences is completely ignored.

Another aspect which curiously illustrates the over-emphasis on mathematics, on the

one hand, and the lack of emphasis on linguistics, on the other hand, are the findings

with respect to the question which lexical association measures actually perform best

in the task of collocation identification from German adjective-noun and preposition-

noun-verb combination. Thus, Evert & Krenn (2001) and Krenn & Evert (2001) report

that the best-performing measure is t-test and the second best performing one mere co-

occurrence frequency. According to Evert (2005), the former one is, from a theoretical

perspective, not applicable to co-occurrence frequency data.19 The applicability (and

sufficiency) of the latter one, a simple counting of co-occurrences, calls into question

why lexical co-occurrence data should be targeted with complex statistical machinery

in the first place. Thus, given Evert’s argumentation, one cannot but wonder whether

18In Evert (2005) this is shown for co-occurrence probabilities of pair types, which may be gener-

alized to any statistical inference mechanism.
19See subsection 3.3.2 for Evert’s (2005) arguments for this point.
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there is not more to collocation and term extraction measures than theoretically ill-

suited statistical tests or mere frequency of co-occurrence counting.

3.2 Approaches to Term Extraction

The clearest use case which distinguishes term extraction from collocation extraction

is stated by Daille (1994) who emphasizes that automatically extracting terms from

a domain-specific corpus is essential to reduce the time and labor needed to build a

terminology database for a specific subject domain. From a methodological point of

view, such a clarification might seem necessary as the vast majority of approaches

to term extraction use the same processing techniques, in terms of linguistic filtering

and association measures, as the approaches to collocation extraction described in the

previous section. One notable exception described in subsection 3.2.3 below is Frantzi

et al. (2000) which introduce an association measure that is geared at the extraction

of domain-specific terms. The approach by Justeson & Katz (1995) (subsection 3.2.1),

although seminal at establishing linguistic properties of terms, confines itself to ap-

plying frequency of co-occurrence as association measure. That this may not be such

a bad choice is corroborated by Daille (1994) and Daille (1996) (subsection 3.2.2)

who finds that there is no noticeable difference in extraction performance between

mere frequency counting and applying the information-theoretic mutual information

measure. Finally, the work by Jacquemin (2001) (subsection 3.2.4) places the task of

term extraction in the wider context of knowledge acquisition.

The evaluation practice for most studies on term extraction is actually as prob-

lematic as for collocation extraction in that typically domain experts are consulted,

who only inspect some top ranked number of a ranked output list returned by some

measure. Therefore, the work on collocation extraction by (Evert & Krenn, 2001;

Evert, 2005) which frames a sound evaluation setting is also pertinent to term ex-

traction. Still, an exception to this form of insufficient evaluation is (Daille, 1994;

1996) who evaluates her terminology extraction procedure against the entries in a

terminology database.
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3.2.1 Justeson and Katz

We have already laid out Justeson & Katz (1995)’s definitional work on the linguistic

properties of terms (see subsection 2.2.7), in which the property of recurrence (i.e. fre-

quency) and limited variability were identified as the key characteristics which distin-

guish terminological NPs from non-terminological ones. The latter property, limited

variability, although pertinent from a linguistic point of view and also acknowledged

in the large body of research on sublanguage analysis (see subsection 2.2.6), is how-

ever not granted an independent linguistic status (which may thus be independently

quantifiable) but is closely tied to the frequency of co-occurrence property. In fact,

Justeson & Katz (1995) explain a term’s higher frequency through its limited vari-

ability property and thus see no necessity to quantify this property separately. The

basic association measure underlying their term extraction algorithm is thus mere

frequency of co-occurrence counting, on which they impose a cut-off threshold of two

(f ≥ 2).20

On another dimension, Justeson & Katz (1995) have found that terminological

phrases are multi-word units of which the vast majority are bi- and trigrams. For

their experiments, they consequently restricted themselves to n-grams of this size.

The input texts to their terminology identification algorithm were linguistically pre-

processed by a part-of-speech filter.21 In order to identify potential term candidates,

the following part-of-speech regular expression pattern is applied:

• (Adj|Noun)+|((Adj|Noun)∗(Noun Prep)?(Adj|Noun)∗)Noun

From this regular expression pattern, Justeson & Katz (1995) manually sort out

what they call permissible patterns for bigrams and trigrams which reduces the set of

allowable part-of-speech sequences to the following two for bigrams and the following

five for trigrams:

• Adj Noun

Noun Noun
20This approach to term extraction is also taken by other researchers, e.g. (Damerau, 1993).
21The expression part-of-speech filter, used by Justeson & Katz (1995) themselves, is somewhat

misleading as to the actual linguistic processing because it is not a part-of-speech tagger. In fact,

they perform a dictionary lookup for each word and retrieve all possible parts of speech. Then, the

word is identified as a noun, adjective, or preposition, in that order of preference if any of these is

retrieved as a part of speech for the word; otherwise the whole candidate string is rejected.
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• Adj Adj Noun

Adj Noun Noun

Noun Adj Noun

Noun Noun Noun

Noun Prep Noun

Another restriction put on the permissible part-of-speech sequences concerns

prepositions for which they recommend that they be excluded.22 In particular, in

a preliminary run on various texts it is found that if prepositions are allowed, rel-

atively few of the candidates including them turn out to be valid terms, leading to

a decline in precision. On the other hand, the recall gains through the inclusion of

prepositions are so low that Justeson & Katz (1995) advise their exclusion from the

set of allowable part-of-speech patterns.23

In order to prevent non-desirable expressions to slip through their part-of-speech

and their frequency filter, Justeson & Katz (1995) cannot help themselves but advise

another heuristic concerning the exclusion of specific words. These may be verbs

interpretable as nouns (e.g. “go”, “see”, “do”, “can”) or general adjectives (e.g.

“following”, “normal”). It is admitted, however, that such a list of stop words may

not be applied blindly and that every domain may require different ones.24

Concerning the evaluation of their term extraction procedure, Justeson & Katz

(1995) only took three articles from three different domains (statistical pattern clas-

sification: 2300 words; lexical semantics: 6300 words; liquid chromatography: 14,900

words) and asked the authors of these texts to mark what they would consider the

technical terms in the articles. Against this “gold standard”, precision (called “qual-

ity”) and recall (called “coverage”) were evaluated. This evaluation procedure is

mainly justified with the observation that terminological dictionaries are either insuf-

ficient or non-existent for many subject fields,25 in particular for their domains under

22As a matter of fact, a good portion of this article reads as some kind of best practices manual

for devising term extraction algorithms.
23It is noted that domain-specific terms containing prepositions are typically expressions which

follow the noun preposition noun pattern, such as the statistical term “degrees of freedom” or the

legal term “freedom of speech”.
24Hence, it is admitted that the word “can” may not be removed when dealing with packaging or

waste management texts. Similarly, the adjective “normal” must not be excluded when domain of

interest is statistics (cf. the term “normal distribution”).
25This observation is similar to what has been observed with respect of the coverage of general-
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consideration. Although the method of evaluation pursued here would be regarded as

clearly insufficient from the perspective of current evaluation standards, one curious

finding was that with increasing text size, the precision dropped considerably, which

Justeson & Katz (1995) explain as an inherent property of their frequency-based al-

gorithm: being no longer stylistically obtrusive or inappropriate, longer texts would

again allow the repetition of non-terminological NPs.

3.2.2 Daille

Concerning both the linguistic preprocessing of a domain-specific corpus in order to

isolate potential term candidates and the subsequent deployment of lexical association

measures, Daille (1996) and Daille (1994), in a study on terminology extraction for

French terms from the telecommunications domain, proceed in a more sophisticated

manner than Justeson & Katz (1995).

For linguistic preprocessing, a statistical part-of-speech tagger (not filter) is used

although no indication is made as to the type of statistics employed (e.g. a Hidden

Markov Model). Other than Justeson & Katz (1995), Daille (1996) only focuses on

bigrams, which is justified by two reasons. First, as already pointed out in subsection

2.2.7, the majority of multi-word terms are actually bigrams and thus an effective

term extraction procedure is already bound to find a substantial amount of terms

among bigram candidates. Secondly, and probably more importantly, one of the lexi-

cal association measures employed in her study, viz. log-likelihood, is not well-defined

for n-grams of a size larger than two (see subsection 3.3.5 below) and thus the lin-

guistic scope of her approach contains an inherent limitation in the first place. The

other association measure employed, mutual information, is extensible to larger sized

n-grams.26 Ignoring words void of semantic contents (such as determiners and ad-

verbials), Daille (1996) only examines adjective-noun and noun-noun combinations,

which in French surface as noun-adjective and noun-preposition-noun patterns. The

candidate pairs (2,200 pairs) are obtained from two French corpora from the telecom-

munications domain which amount to about 800,000 words all together.

The research question which association methods to use in order to compute the

language collocation dictionaries (cf. (Lin, 1999) in subsection 3.1.3)
26In subsection 3.3.5, the trigram extension to the mutual information measure based on Lin

(1998b) and Alshawi & Carter (1994) is presented.



3.2 Approaches to Term Extraction 69

degree of termhood is tackled by applying and comparing three measures to the set

of bigram term candidates. Besides the “base statistics” of raw frequency counting,

mutual information (MI) (Church & Hanks, 1990) and the log-likelihood measure,

as it was first proposed by Dunning (1993), are also examined. In order to ar-

rive at a meaningful comparison of these measures, Daille (1996) attempts to put

the evaluation on a sounder basis than other studies, such as (Bourigault, 1995;

1992) but also Frantzi et al. (2000), which only have domain experts look at the

top outputs of their procedures. For this purpose, the entries of an expert terminol-

ogy database from the telecommunications domain are taken and matched against the

set of 2,200 candidate bigrams. The problem with the evaluation approach, however,

is that only bigram surface structures of the form noun-(preposition)-noun27 were

contained within the database term set. Hence, Daille (1996) only considered the

respective surface structure of her candidate set, from which 1,200 candidate terms

intersected with the database set. This means that 55% of the candidate bigrams are

actual terms, which is a comparatively high proportion for a candidate set, and thus

any conclusion derived about the quality of an association measure may have to be

handled with care. Although only precision was examined, the results obtained were

surprising, in particular for the author of the study, in that raw frequency counting

actually performed equally well as the best “genuine” statistical association score,

log-likelihood, which leads Daille (1996, p. 64) to the conclusion that frequency of

co-occurrence “undoubtedly characterizes terms”.28 On the other hand, the poor per-

formance of mutual information is explained with the linguistic preprocessing applied.

This, however, seems to be unreasonable because it is not clear why and how an as-

sociation measure like mutual information deteriorates when candidates are passed

through a linguistic filter, while, at the same time, no such effect is observed for

another association measure, viz. log-likelihood.

3.2.3 Frantzi and Ananiadou

A widely used measure to identify terms from domain-specific texts, C-value, has been

presented by Frantzi et al. (2000) and Nenadić et al. (2004). Like other methods

27The prepositions are ignored for computing the association scores because they only serve a

functional role in this construction, in particular for the French language.
28A similar conclusion is drawn by Dagan & Church (1995).
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proposed, the C-value measure proceeds in a two-staged manner in that, first, a set

of potential term candidates is obtained through linguistic filtering and, second, that

set is ranked according to the measure.

Linguistic processing is performed in three steps. First, the domain corpus is

part-of-speech tagged. As a second step, similar to Justeson & Katz (1995), a reg-

ular expression filter is applied only allowing certain part-of-speech sequences and

excluding potential function words, such as determiners or pronouns. In particular,

the following three patterns are applied:

1. Noun+Noun

2. (Adj|Noun)+Noun

3. ((Adj|Noun)+|((Adj|Noun)∗(Noun|Prep)?)(Adj|Noun)∗)Noun

The third pattern allows the inclusion of prepositions, which may lead to a higher

number of potential false positives, as is already noted by Justeson & Katz (1995) and

also mentioned by Frantzi et al. (2000). Another more idiosyncratic step in the lin-

guistic filtering process is the exclusion of words from a stoplist. For its compilation,

a sample (i.e. one tenth) of the corpus was examined and words with high frequen-

cies were included, in particular function words and general content words that are

not likely to appear in terms (e.g. adjectives such as “numerous”, “several”, “impor-

tant”). What Frantzi et al. (2000) themselves admit, however, that, apart from actual

function words, the inclusion of so-called “general content words” may be dangerous

because some of them may actually appear in terms (cf. the physics term example

“almost periodic function” from Justeson & Katz (1995) in subsection 3.2.1). For

this reason, it is suggested to adapt stop lists in domain-dependent manner, which,

however, is clearly a suboptimal solution.

The statistical measure for term extraction, C-value, which Frantzi et al. (2000)

introduce, is basically a frequency-based method and incorporates several types of

frequencies, which are then taken to compute a termhood score for a certain term

candidate:29

• The total frequency of occurrence of the candidate term in the corpus.

29The way this measure is formally defined will be presented in subsection 3.3.8 below.
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• The frequency of the candidate term as part of other longer candidate terms.

• The number of these longer candidate terms.

• The length of the candidate term (in number of words).

As a clear advantage, because it is mainly a frequency-defined measure, the C-

value is able to handle term candidates of length greater than two, unlike many of

the statistical association scores which are only well-defined for bigrams (see Daille

(1994) in subsection 3.2.2). A parameter considered for this purpose is the length

of the candidate string in terms of the number of words. Since longer n-grams are

less likely to appear a certain number of times in a corpus than shorter n-grams, the

candidate length parameter attempts to normalize this difference.

One major reason for not only using mere frequency of co-occurrence counting,

which has turned out to be successful as a term extraction measure in Daille (1994),

and what makes C-value different from it is the incorporation of nested terms, i.e. the

frequency of candidate terms as part of longer ones. Frantzi et al. (2000) motivate

this with the example term “soft contact lens”, which is a term in the domain of

ophthalmology. A method that just uses frequency would extract it given it appears

frequently enough in the corpus. Its substrings “soft contact”, which is not a term

on its own, and “contact lens”, which is a term on its own, however, would be also

extracted, so the argument, since they would have frequencies at least as high as

“soft contact lens”. The necessity for such a nested term approach, however, lies in

the linguistic filters employed. As is correctly noted, both “soft contact” and “soft

contact lens” would be identified by their linguistic filter 2 above, which then of course

requires some way of ruling out the former expression as a possible term candidate.

A different kind of linguistic preprocessing (e.g. by noun phrase chunking) may not

have yielded a non-term expression like “soft contact” in the first place, and thus the

necessity to incorporate the presence or absence of nested terms into a term extraction

measure may be decrepit.

In a further, but independent step, Frantzi et al. (2000) compute context infor-

mation by means of a measure (NC-value), which is obtained in two steps. From

the ranked term list generated by the C-value, context words (verbs, nouns, and

adjectives) within a specified window are extracted for the top n multi-word term

candidates (where the value of n and the size of the context window have to be man-

ually determined). For each of the context words, a weight is computed by taking
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the ratio of the number of terms the context words appears with and total number

of terms looked at. In this way the NC context value can be obtained for each can-

didate in the term list. What is noted by Frantzi et al. (2000), however, is that the

context information factor is not a term extraction measure per se but may be rather

applied in addition to (and thus must be viewed independently of) any such measure.

Hence, it may also be applied to term lists produced by association measures such

as frequency of co-occurrence, log-likelihood, mutual information, etc.30 The context

information factor is then added to the score produced by the C-value to calculate

the final association value. This, however, is done in a rather arbitrary way by as-

signing the weights of 0.8 and 0.2 to the C-value and the context factor, respectively,

which have been chosen manually after several experiments and comparisons of re-

sults. Hence, from the descriptions of Frantzi et al. (2000) it is not clear whether

these weights are e.g. general weights or whether they have to be determined for

every new domain separately. In computing the C-value, another arbitrarily set value

concerns the generation of the term list, into which only those term candidates are

included whose C-value lies above a predefined threshold. The incorporation of such

an additional threshold is rather obscure, given the fact that according to standard

practice in term extraction, Frantzi et al. (2000) already filter candidates by only

examining those above a certain frequency threshold (which amounts to four, in their

case).

The results obtained by applying both the C-value and the NC-value to a 1-

million word corpus of eye pathology medical records seem to indicate that they turn

out to be better compared to frequency of co-occurrence. The evaluation carried out,

however, exhibits several weaknesses. Lacking a reference terminology for the subject

domain examined (ophthalmology), Frantzi et al. (2000) report that they evaluated

the quality of their approach by having a domain expert scan the output list produced.

One problem with this is that only one expert seems to have been consulted and thus

the judgments as to what constitutes a term are not checked against the judgments

of a second domain expert – in short: some sort of inter-rater consistency (see also

subsections 4.5.1.3 and 4.5.2.3) is completely missing.31 As a second problem with the

30Moreover, several other suggestions have been made how to determine term context information,

e.g. by Grefenstette (1994) or Sager (1990).
31Frantzi et al. (2000) admit themselves that domain experts – being neither linguists nor termi-

nologists – may disagree on the notion of termhood. This, however, would make some sort inter-rater
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evaluation, it is not clear how the domain expert determines the true terms. Frantzi

et al. (2000, p.116) seem to indicate that this is done by the domain expert scanning

the list from the top to the bottom. This, however, is a clearly biased procedure

because the top portion of any (useful) term extraction output list contains a much

higher proportion of actual terms than e.g. the lower portion. Thus, scanning from

top to bottom will probably bias an evaluator’s judgment because it does not reflect

the random distribution of terms and non-terms in such a list if it were not ordered.

Hence, any judgement of a domain expert as for the true terms in a candidate set would

have to be done a priori any application of a term extraction method to that candidate

set (see also chapter 5 in Evert (2005) for why this is essential.) Furthermore, it is

not reported what proportion of the top of the output is examined (i.e. the size of n

of these top n candidates is not known). As a result of this approach to evaluating

and determining the true terms, it is not known what the proportion of actual terms

in the candidate set is, thus making it impossible to determine any exact recall values

for the term extraction procedures examined.

3.2.4 Jacquemin

The research by Christian Jacquemin on term extraction (Jacquemin et al., 1997;

Jacquemin, 1998; Jacquemin & Tzoukermann, 1999; Jacquemin, 2001) is actually far

more comprehensive than any of the other approaches to automatic term extraction

presented in this section. This is particularly the case as Jacquemin’s work is not only

focused on term extraction in the extraction sense of the word, but also encompasses

the whole NLP and knowledge acquisition framework in which term extraction is to

be located. In fact, Jacquemin (2001) puts the issue of computational terminology

in a wider context in that a distinction is made between term discovery, on the one

hand, and term deployment, on the other hand. On the term discovery side, then, a

distinction is drawn between term extraction (or acquisition) and term enrichment.

Term extraction is the task at hand when there is insufficient (or even no) termino-

logical data available for a particular technical domain. The input to this task are

subject-specific (sublanguage) domain text corpora and the output ranked lists of

terms ordered by decreasing degrees of termhood. It is also this kind of task in com-

putational terminology that this thesis focuses on. What is crucial for this endeavor,

consistency checking even more essential.
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as also pointed out by Jacquemin & Tzoukermann (1999) and Jacquemin (2001), is

the availability of a high-performance lexical association measure in order to arrive at

ranked output lists as optimal as possible.

The second issue in term discovery, term enrichment, as described by Jacquemin

(2001) and one of his work’s major foci, is the endowment of terminological data

with additional lexical material in the form of term variants. Term variants may be

conceived of as linguistic expressions which basically denote the same concept than

the preferred term but are expressed in a linguistically different way. One exam-

ple of this may be the widespread linguistic phenomena of acronyms of a lexical full

form.32 Another, more complex but less widespread form of term variation is typically

a different morpho-syntactic construction denoting the same term concept, such as

number agreement (e.g. language generator – language generators) or prepositional

phrase post modification (e.g. generator of languages).33 In Jacquemin & Tzouk-

ermann (1999)’s approach, recognition of term variation is performed by FASTR,

a highly complex unification-based grammar formalism inspired by Lexicalized Tree

Adjoining Grammar. The backbone of FASTR is a large set of hand-built (French)

term grammar meta-rules which are designed to generate term variants (from the

original terminological data) and attempt to find them in FASTR-processed text by

approximate rule-structure matching. In fact, later versions of FASTR (Jacquemin,

2001) even extend their variant recognition to the semantic layer (such as marking

“context-free language generation” as a semantic variant of “language generation”).

Although Jacquemin’s approach to term discovery may be described as very am-

bitious and comprehensive, the downside of it is that it exclusively relies on large

hand-built sets of grammar and term meta-rules which, in this case, are even only

confined to the French language. Moreover, as also Jacquemin (2001) himself ad-

mits, an approach in this vein tends to over-generate potential term variants and thus

also includes many false positives in the variant result sets. Thus, this may typically

also necessitate a lot of manual post-editing, in addition to the manual effort already

involved in grammar rule construction. Furthermore, Jacquemin’s (2001) notion of

semantic term variant appears to be very promiscuous as it basically allows any ad-

32For example, respective full form of the acronym “CFG” is “context-free grammar”.
33An additional reason why morpho-syntactic term variation takes such a prominent role in

Jacquemin’s work may also be due to the fact that it is primarily centered around the French

language, which is known to be morpho-syntactically much more productive than English.
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ditional lexical material to be included in a variant set, without, however, being able

to define the exact semantic relation between term and variant.34

The application setting of such a comprehensive approach to computational termi-

nology, however error-prone, may be sought in the domain of knowledge acquisition,

according to Jacquemin (2001). This is also the area where the aforementioned is-

sue of term deployment may be located. Thus, given a high-quality list of terms as

well as a set of their respective lexical, syntactic or even semantic variants, it is not

only possible to construct a terminological database, but also to semi-automatically

upgrade it with thesaurus-like relations between terms, such as taxonomic or even

further kinds of relations. On the one hand, this may serve as a more comprehensive

model of the subject domain under investigation and, on the other hand, it may also

help in the controlled indexing of document collections with index terms in order to

facilitate applications such as information retrieval.

3.3 Lexical Association Measures and their Appli-

cation

The previous two subsections have already anticipated that a large array of statistical

algorithms has been applied to the modelling and identification of co-occurrence or

collocational behavior of words. Long time dismayed by mainstream linguistics (and

hence also by computational linguistics), statistical approaches to NLP have expe-

rienced a surge starting from the mid-1990s, which is lasting up to today. Still, as

outlined in section 2.1.2, investigations into the probabilistic nature of language were

well-known via the British contextualist linguistic tradition.

A rather trivial example of the probabilistic properties of language is that some

words occur more frequently in language than others. An immediate consequence of

this is a correlation between the frequency of a word and its function. In almost all

word frequency lists across various language corpora, including those from different

genres and subdomains, the top ten to 30 words are quite similar. The majority of

the the top ten words will consist of so-called function words (such as determiners,

conjunctions, prepositions, etc.). These words share a common property in that they

34For example, Jacquemin (2001) denotes the expression “malignancy in orbital tumours” as a

semantic variant of “malignant tumour” without defining the relationship more exactly.
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form closed sets which are not as readily expansible as their meaning- and content-

bearing lexical counterparts, viz. content words. Still, in spite of their functional

character, function words form a constitutive part of collocations but not of terms, as

will be shown later on.

In this section, we will examine the statistical foundations of the most widely

used standard lexical association measures. These measures basically fall into three

camps for each of which we will look at the main representatives. The first kind

of association measures are the statistical ones, of which t-test (subsection 3.3.2)

and log-likelihood (subsection 3.3.3) are the most successful representatives. The

second class derives its theoretical foundations from information theory, with mutual

information (MI) and heuristic variants thereof being the popular representatives

(subsection 3.3.4). The last category is characterized by a property which the other

types of association measures also employ to various degrees and which plays a crucial

role in characterizing both collocations and terms (as already hinted at in the previous

two sections), i.e. frequency of co-occurrence (subsection 3.3.7). In its most basic

form, this may already be taken as an association measure itself quite successfully,

as it has been shown in various studies (see subsection 3.2.2 above). C-value (which

has already been introduced in subsection 3.2.3 above), a heuristically motivated

variant of frequency, will also be defined in subsection 3.3.8 below as it has become

one of the standard measures for the extraction of terms. In fact, while C-value is

basically only employed for the task of term extraction, the other kinds of association

measures have been employed for measuring both collocativity and termhood. At first,

however, we will review the basic statistical assumptions on which the vast majority

of these association measures rely (subsection 3.3.1). From this, it will become clear

that most of them suffer from considerable shortcomings as they rely on statistical

assumptions which are typically not borne out by natural language, although applying

linguistic filters beforehand alleviates some of these deficiencies (subsection 3.3.6).

One association measure – in fact log-likelihood as the statistically most sound one

(Evert, 2005) – even suffers from an additional “handicap” in that it is not well defined

for n-grams larger than size two (subsection 3.3.5), which is a decisive requirement

for any association measure for the extraction of collocations and terms.
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3.3.1 Statistical Foundations

In this subsection, we will introduce the statistics terminology relevant for describing

the lexical association measures employed in this thesis. A more fine-grained and

detailed description, in particular of the mathematical underpinnings, may be found in

Evert (2005), but also in Agresti (1990), Agresti (1992), Lehmann (1997), Wasserman

(2005) and Manning & Schütze (1999).

In terms of a statistical model, the goal of statistical analysis is to make inferences

about the model parameters from the observed data. The core of any statistical model

rests on the definition of a sampling distribution, which specifies the probability of

a particular observation (or group of observations) given some hypothesis about the

parameter values. Applied e.g. to the NLP task of collocation identification, one

such model parameter is the statistical association between two words whereas an

observation may be a contingency table (see below) which, in turn, may be derived

from the data in a natural language corpus representing the sampling distribution.

One important aspect is that, by the nature of statistical reasoning, the sampling

distribution must contain some element of randomness, which may however differ from

case to case. For example, one such element may be the arbitrary choice of a language

corpus (or a certain linguistic construction from it) from a (admittedly all too often

hypothetical) set of alternatives. Of course, the form and variability of such a kind

of sampling distribution for linguistic data depends on various factors, such as text

genres and types, subject matters, author styles etc. Another influence is of course the

amount of noise introduced (or deleted) e.g. by automatic linguistic preprocessing.

The influence of such linguistic factors is hard to account for by statistical means.

Thus, the sampling distribution is usually constructed in such way that a language

corpus can be interpreted as a random sample of a large hypothetical body of language

data, typically referred to as the population. Then, the model parameters describe

properties of the population and the random sample model enables inferences about

these properties from the observed data.

As a sort of pars pro toto for the numerously existing probability sampling distri-

butions, two distributions recurrently used for statistical NLP applications are the bi-

nomial distribution and the normal distribution. Being a discrete distribution (whose

variables can take on only discrete values), the binomial distribution is a discrete

probability distribution with two parameters: the number of successes in a sequence
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of n independent yes/no experiments, each of which yields success with probability p.

Manning & Schütze (1999, p.51) mention, as a prototypical example assuming such

a distribution, the task of finding out how commonly a verb is used transitively by

looking through a language corpus for instances of this verb and noting whether each

use is transitive or not. As a sort of continuous counterpart (i.e. a distribution whose

variables take on continuous values), the normal distribution (also called Gaussian

distribution, or more informally – the “bell curve”) is considered to be adequate for

modeling data in many domains. The parameters for this distribution are given by

the mean µ and the standard deviation σ.

In particular with respect to lexical association measures for collocation and term

extraction procedures, an accepted way to frame observations is by applying them

to a two-by-two contingency table representing the co-occurrence frequencies of word

pairs. From such a table, then, model parameters, such as the statistical association

between words, can be derived under the specifications of the sampling distribution.

That is, such a table is typically used to collect the observed frequencies of word

pair types thus yielding a four-way classification. By cross-summing the four cell

frequencies, the marginal frequencies can be computed.

V = v V 6= v

U = u O11 O12 = R1

U 6= u O21 O22 = R2

= C1 = C2 = N

Table 3.1: Observed and marginal frequencies

More formally, the observed and marginal frequency data for a word pair (u, v)

may be represented as follows in table 3.1 (adapted from Evert (2005)). The cell

counts of a contingency table are called the observed frequencies O11, O12, O21 and

O22. The sum of all four observed frequencies (the sample size N) is equal to the

total number of token pairs extracted from a corpus. The row totals of the observed

contingency table are R1 and R2, while C1 and C2 are the corresponding column
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totals. Sometimes. the row and column totals are denoted as marginal frequencies

(as they are written in the margins of the table), and O11 is sometimes called the joint

or observed co-occurrence frequency.

At the heart of determining statistical association lies the concept of testing for the

null hypothesis of statistical independence which indicates that there is no statistical

association (e.g. between the components of a word pair type). In particular, the

marginal frequencies are used to compute the expected frequencies (E11, E12, E21 and

E22) which indicate what the frequencies of the four cells would be under the null

hypothesis, i.e. if there would be no association between the components of a word

pair and thus the words would co-occur completely by chance. More formally, the

expected frequency data for a word pair (u, v) may be represented as follows in table

3.2.

V = v V 6= v

U = u E11 = R1C1

N
E12 = R1C2

N

U 6= u E21 = R2C1

N
E22 = R2C2

N

Table 3.2: Expected frequencies and their computation from marginal frequencies

Of course, the computation of lexical association scores for the task of identifying

collocations and terms from natural language text data is motivated by the assump-

tion that the scores provide extensive counter-evidence against the null hypothesis

for actual collocations and terms, i.e. that for them there is a higher than chance

occurrence. To illustrate this, actually observed, marginal and expected frequencies

in one such contingency table are given below for the German preposition-noun-verb

(PNV) collocation “zu Ende gehen” (to come to an end).35 These frequencies were

computed from a ten-million word corpus of German newspaper texts (see subsection

4.5.2 for a description of this resource and how it is used for the experiments in this

thesis). Just comparing the observed and expected frequencies in tables 3.3 and 3.4

35As can be seen, the notion of pair type does not necessarily imply a word bigram because

components of larger n-grams may be collapsed.



3.3 Lexical Association Measures and their Application 80

shows that, in this case, there actually seems to be a higher than chance occurrence

for this particular collocation, since O11 >> E11

V = gehen V 6= gehen

U = zuEnde 100 150 250

U 6= zuEnde 1,877 130,009 131,886

1,977 130,159 132,136

Table 3.3: Observed and marginal frequencies for a German PNV collocation.

V = gehen V 6= gehen

U = zuEnde 3.7 246.3

U 6= zuEnde 1,973.3 129,912.7

Table 3.4: Expected frequencies for the same German PNV collocation.

Almost all standard association measures compare the observed frequencies with

the expected frequencies under the null hypothesis in some manner and thus compute

a test statistic, which is typically referred to as the association score.36 The way this is

done is different from case to case. What they typically all have in common is that the

36Computing the test statistic (i.e., the association score) is typically enough for the purposes of

collocation or term identification. In actual statistical hypothesis testing, in particular with respect

to exact hypothesis tests, the purpose is to compute the significance or p-value of the observed data,

which can be interpreted as the amount of evidence provided by the observed data against the null

hypothesis. This may be done e.g. by summing over all contingency tables that provide at least as

much evidence against the null hypothesis as the observed table (see Agresti (1990)). It is needless

to say that computing exact p-values is computationally very expensive.
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score assigned to collocation and term candidates is used to rank them (typically in

descending order) and thus an explicit ordering according to the degree of (computed)

collocativity or termhood is yielded. In general there is a distinction between one-sided

and two-sided measures. This depends on whether a measure distinguishes between

positive and negative associations (which is the case for one-sided measures) or not

(which is the case for two-sided measures).37 Positive association denotes that parts

of a word pair co-occur more often than by chance (i.e. if they were independent), and

negative association indicates that they co-occur less often. From this, there follows

a correlation with the sidedness of a measure. In the case of one-sided measures, high

scores indicate a strong positive association whereas low scores (including negative

ones) denote that there is no indication for a positive association (which, however,

may mean that components are either independent or negatively associated). On

the other hand, for two-sided measures high scores are an indication of any kind

of strong association, be it positive or negative, whereas low scores (regardless of

the sign) denote (near-)independence. A two-sided measure whose scores are always

positive (such as the log-likelihood measure – see below) can be (and should be, for the

purpose of computing an association score to generate a ranked list) easily converted

into a one-sided measure by changing the sign of the association score. Evert (2005)

demonstrates that this may be done in cases when the observed frequency O11 is

smaller than its expected counterpart E11.
38

In the following we will outline the most relevant (because most successful) associ-

ation measures used in various studies for the task of collocation and term extraction.

In the case in which it is suitable, also alternative notations and formulas with dif-

ferent parameters (as e.g. used by Manning & Schütze (1999)) will be described, in

particular when they are necessary to motivate and derive an extension to n-grams

of size larger than two. Two of these measures, t-test and log-likelihood, belong to

the class of so-called asymptotic statistical hypothesis tests. The other association

37These notions are taken from the area of statistical hypothesis testing where they are also labeled

one-tailed or two-tailed. In general a test is called two-sided or two-tailed if the null hypothesis is

rejected for values of the test statistic falling into either tail of its sampling distribution curve, and

it is called one-sided or one-tailed if the null hypothesis is rejected only for values of the test statistic

falling into one specified tail of its sampling distribution curve – see Agresti (1990) and Evert (2005)

for detailed mathematical accounts.
38In such a case, O11 < E11 indicates that there is a negative association between the component

parts of word pair.
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measure widely used is mutual information (MI) which has to be counted to the class

of information-theoretic measures.

3.3.2 T-test

Before actually characterizing the t-test, a close relative of it has to be described, viz.

the z-score, which also has been used in collocation extraction studies (cf. (Berry-

Rogghe, 1973) in subsection 3.1.1). Although based on a discrete binomial distribu-

tion, the test statistic (see equation 3.1) converges to a standard normal one for large

sample sizes (i.e., large N).39

z-score :=
O11 − E11√

E11

(3.1)

A practical problem with the z-score is that its values may become very large

for low expected frequency E11 (due to its status as approximate variance in the

denominator), which yields highly overestimated scores for low frequency data. For

this purpose, Church et al. (1991) suggest using the t-test (also referred to as Student’s

t-test or t-score) which obtains the variance from the observed frequencies rather than

from the expected frequencies under the null hypothesis. The t-test, which is a one-

sided hypothesis test based on a normal distribution,40 may be formalized as follows

in terms of observed and expected frequencies (see also Evert (2005)):

t-test :=
O11 − E11√

O11

(3.2)

Evert (2005) argues at length that, from a theoretical perspective, the t-test is

not applicable to co-occurrence frequency data because, on the one hand, the null

hypothesis states that the sample is drawn from a normal distribution with mean E11

whereas, on the other hand, the variance is estimated directly from the sample (i.e.

39This approximation, however, is theoretically problematic (see Evert (2005)) but may be dealt

with by applying Yates’s continuity correction (Yates, 1934) which improves the approximation by

adapting the observed frequencies.
40In the strict sense, the t-test has a so-called t distribution which, however, approximates to a

normal distribution for large enough samples (i.e. for large N).
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from O11). So much the more surprising, however, is the fact that it performs quite

well in collocation and term extraction tasks (cf. (Evert & Krenn, 2001), (Krenn &

Evert, 2001), (Church et al., 1991) – and also in this thesis) and actually better than

theoretically more well-founded association measures such as log-likelihood or mutual

information.

By focusing on the notion of observed and expected means, Manning & Schütze

(1999) (adopting it from Church et al. (1991)) offer a different take on the t-test

statistic, which in practice is however numerically fully equivalent to the observed

and expected frequency notation.

t-test :=
x̄ − µ
√

s2

N

(3.3)

Here, x̄ denotes the observed mean and µ denotes the expected mean whereas s2

and N denote the sample variance and the sample size, respectively. According to

Manning & Schütze (1999), x̄ and µ may be computed in a straightforward way, viz.

by scaling the observed frequency and by scaling the expected frequency (under the

null hypothesis of independence) by the sample size N .41 For our previous example

(the German PNV collocation “zu Ende gehen”) outlined in tables 3.3 and 3.4, this

would yield the following:

x̄ = P (zu Ende gehen) =
freq(zu Ende gehen)

N
=

100

132136
≈ 0.0008 (3.4)

In Manning & Schütze (1999), the expected mean µ under the null hypothesis of

independence is computed scaling the raw frequencies of each word by the sample

size and multiplying them. According to this, the expected mean value for the co-

occurrence of “zu Ende gehen” would be the following:

µ = P (zu Ende)∗P (gehen) =
freq(zu Ende)

N
∗freq(gehen)

N
=

250

132136
∗ 1977

132136
≈ 0.00003

(3.5)

41This may also be interpreted as using maximum likelihood estimates to obtain probabilities from

a probability function.
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Because the standard deviation s2 is quite difficult to determine in practice, most

researchers using Church et al. (1991)’s take on the t-test (including Manning &

Schütze (1999)) approximate s2 by the sample mean x̄ (which is the observed frequency

scaled by the sample size). Plugging in the values into equation 3.3 yields a t-score

of approximately of 9.517, which in effect is the same as if we compute it according

to equation 3.2.

3.3.3 Log-Likelihood

A rather different kind of test statistic is given by the so-called log-likelihood (also

often referred to with the symbol G2), which is based on the asymptotic χ2 distribu-

tion. It is actually the fact that the underlying sampling distribution is not normal

but asymptotic that made Dunning (1993) vehemently promote the log-likelihood test

as the accurate test statistic for natural language data which may show highly skewed

distributions (in opposition to other test statistics which assume a normal sampling

distribution). Although the actual χ2 test (see Manning & Schütze (1999) for an

account) may be the better test for independence in mathematical statistics, Dunning

(1993) pointed out that the situation is different for natural language data (which

exhibits highly skewed contingency tables) and thus the log-likelihood test should be

preferred. In fact, Evert (2005) shows at great length through numerical simulation

that the log-likelihood statistic turns out to be the most accurate and convenient

measure for the significance of association because it best approximates the exact p-

values of Fisher’s exact test, which is considered to be the prototype of a truly exact

hypothesis test (Fisher, 1922).42

The actual log-likelihood test statistic derived by Dunning (1993) (and presented

in Manning & Schütze (1999)) is both awkward and unintuitive and thus we will

formalize it along the way suggested by (Evert, 2005), viz. by means of the observed

and expected frequencies of a 2 x 2 contingency table:43

2
∑

ij

Oij log
Oij

Eij

(3.6)

42Other test statistics only compute approximations of their p-values, which may only valid for

large enough samples.
43Below, the natural logarithm of the fraction is taken.
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It can be seen that, apart from the underlying sampling distribution, what makes

the log-likelihood different from the other test statistics considered here (and what

makes it similar to its χ2 relative) is that all cells of the contingency table are taken

into its computation. For the t-test, z-score and mutual information (see below) only

the observed and expected co-occurrence frequencies O11 and E11. are considered.

Another point of difference is the two-sidedness of the test statistic which means that

high scores may indicate either kind of strong association, be it positive or negative.

Fortunately, since the log-likelihood test only yields positive scores, this unpleasant

effect (i.e. at least for the task of collocation and term extraction resulting in a

ranked output list) may be reversed by converting it to a one-sided test. This is done

by changing the sign of the scores for candidates that exhibit a negative association,

which in the logic of 2 x 2 contingency tables are those for which the observed co-

occurrence frequency is smaller than the expected one, i.e. O11 < E11.

3.3.4 Mutual Information

An association measure motivated by information theory (Shannon, 1948; 1951; Fano,

1961; Cover & Thomas, 1991) is mutual information (MI) which is standardly (i.e.,

information-theoretically) defined as holding between two random variables. The

way, however, MI is used for the task of collocation and term extraction (Church

& Hanks, 1989; 1990; Church et al., 1991; Church, 1995; Daille, 1996; Manning &

Schütze, 1999) is rather different as mutual information is typically taken to hold

between two random variables instead of their values, as it is applied in NLP. In

concrete, this is referred to as pointwise mutual information (PMI) which measures

the overlap between two particular events x and y such that the ratio between their

observed joint probability P (X∩Y ) and their independent (i.e. expected) probability

P (X)P (Y ) is simply taken (and the binary logarithm is applied to make it conform

to information-theoretic requirements).

I(x, y) = log2
P (xy)

P (x)P (y)
(3.7)

In the notational language of observed and expected frequencies (Evert, 2005), MI

may be then formalized along the following lines:



3.3 Lexical Association Measures and their Application 86

MI = log2
O11

E11

(3.8)

One of the major problems observed with MI is, like in the case of the z-score, an

overestimation bias for low-frequency events, i.e. bigrams composed of low-frequency

words will receive a higher score than bigrams composed of high-frequency items

(Manning & Schütze, 1999), which is of course contrary to what a good association

measure should accomplish. For this reason, various more or less well-motivated

heuristic extensions have been proposed and used (e.g. Hodges et al. (1996)), most

of which attempt to increase the impact of the co-occurrence frequency, typically on

its numerator. For example, in order to increase the impact of co-occurrence for MI,

Daille (1994) experiments with various exponents in the numerator (i.e. MIk with

k = 2...10) and heuristically finds (and determines) k = 3 to yield the best result for

the task of term extraction (cf. also subsection 3.2.2).

MIDaille = log2
(O11)

3

E11

(3.9)

3.3.5 Extensions to Larger-Size N-Grams

Basing test statistics on a 2 x 2 contingency table, although theoretically the soundest

as well as the most intuitive and elegant way, may quickly come to the limits as soon

as the linguistic structure of collocations and terms goes beyond the well-defined scope

of word bigrams. Although Justeson & Katz (1995) note that roughly two thirds of

terms are two-word combinations, the other one third also needs to be accounted for.

In the case of collocations, the picture may look similar. Although no comparable

study in the vein of Justeson & Katz (1995) has been undertaken, a look at any

(English or German) collocation dictionary, e.g. (Dudenredaktion, 2002) or (Benson

et al., 1997) – however incomplete they may be (as noted e.g. by Lin (1999)) – reveals

that there are larger collocational units that go beyond word bigrams. Admittedly,

many multi-word (i.e. larger size n-gram) collocations may be collapsed to bigrams

(which is indeed a common practice exactly because of the necessity to work with

bigrams), such as in the case of German preposition-noun-verb collocations in which
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the preposition and the noun are collapsed into one unit (e.g. in Krenn & Evert (2001)

and also in this thesis). Still however, also NLP researchers working on the task of

collocation and term extraction are aware of the fact that the (linguistic) world (of

collocations and terms) does not only consist of bigrams.44 Therefore, there have been

extensions to association measures proposed, which however are mostly heuristically

motivated rather than theoretically well-founded.

There is one decisive criterion that an association measure must fulfill in order to

qualify for such a potential extensibility to larger-size n-grams, i.e., it must be possible

to define its test statistic alternatively to and independently of a 2 x 2 contingency

table. As a matter of fact, such an independent definition is only possible for those

measures which only consider the observed and the expected co-occurrence frequen-

cies, i.e. O11 and E11, because these parameters may also be computed from maximum

likelihood estimates yielding sample means and expected (distribution) means, i.e. x̄

and µ.

In this vein, computing x̄ for the t-test (see subsection 3.3.2 above) may be easily

extended to a trigram with the particular events a,b, and c (N again denotes the

sample size):

x̄ = P (abc) =
freq(abc)

N
(3.10)

Analogously, the same may be done for µ:

µ = P (a) ∗ P (b) ∗ P (c) =
freq(a)

N
∗ freq(b)

N
∗ freq(c)

N
(3.11)

Then, all that is left to do is to plug in these computations into the equation given

for the t-test (i.e. into equation 3.3). In a parallel vein, a trigram extension to the

MI association measure may proceed along the following lines:45

44Consider, for example, the more complex structural types of collocations such as preposition-

noun-noun-verb or noun-noun-verb, to name just a few.
45This trigram extension to the MI measure has actually been proposed by Alshawi & Carter

(1994) and Lin (1999) whereby Lin uses conditional instead of joint probabilities because the trigram

MI measure is run on dependency triple outputs (see subsection 3.1.3) for which of course the

independence assumption may not be motivated at all.
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MI3 = log2
P (abc)

P (a)P (b)P (c)
(3.12)

As can be also seen from the above two equations, these two association measures

may still be further extended to larger-size n-grams (e.g. to quad- or pentagrams).

The picture on extensibility looks quite different with respect to the log-likelihood

measure presented in subsection 3.3.3. As can be seen from equation 3.6, the computa-

tion of the log-likelihood test statistic is inherently tied to all four cells of a contingency

table. As a consequence, neither an extension based solely on sample and expected

means is possible nor is there any other well-defined way to compute the other cells.

Admittedly, one could attempt to collapse a trigram into a bigram but then the im-

mediate question arises which two of the three component parts should undergo this

procedure. Whereas it may be clear for the case of collocational preposition-noun-verb

combinations, it is completely obscure in the case of trigram (or even higher-order n-

gram) terms within noun phrases. Hence, it has to be concluded that the theoretically

most well-founded statistical association measure is not extensible beyond the bigram

scope in a well-defined way.46

3.3.6 Shortcomings and Linguistic Filtering

Besides the issue of (non-)extensibility of an association measure, the previous three

subsections have shown that, at least for the NLP tasks of collocation and term

extraction, there is no one-to-one correspondence between the statistical soundness

of an association measure, on the one hand, and a corresponding superior extraction

performance, on the other hand. This may be evidenced by the fact that, for example,

Evert & Krenn (2001) and Krenn & Evert (2001) (see subsection 3.1.4 above) report

that it is actually the t-test, next to co-occurrence frequency, which performs best

for the task of collocation extraction. In a similar vein, Daille (1996) reports that,

for the task of term extraction, co-occurrence frequency performs equally well to

log-likelihood, the theoretically most well-founded association measure (according to

Evert (2005)), and even better than the information-theoretic mutual information

measure (see subsection 3.2.2 above).

46The same holds e.g. for the χ2 measure (see Manning & Schütze (1999)) whose computation is

also tied to all four cells of a contingency table.
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These observations seem to point to a general problem with natural language text

as sample data both for statistical hypothesis testing and for information-content

measures. Going back and re-examining the statistical considerations outlined in

subsection 3.3.1 does indeed reveal some of the discrepancies between the assumptions

made by statistical and information-theoretic models, on the one hand, and their

correspondence in natural language text data, on the other hand. One fundamental

premise made is the independence of word combinations (or more formally: random

variables) as a default assumption, either with respect to a null hypothesis for the

case of statistical hypothesis tests or with respect to the mutual information content

for information-theoretic measures. This assumption is of course highly unrealistic for

natural language data, and at best a necessary idealization in lack of a better model.

Still, this property (or better: non-property) of natural language is of course known

to NLP researchers working on collocation and term extraction and hence there is one

major heuristic to at least approximate the independence assumption, viz. linguistic

filtering or (pre-)processing. Strictly speaking, a true violation of the independence

assumption for natural language data only occurs if unrestricted word sequences (in a

text) are considered (and assumed to be independent), i.e. word sequences where no

a priori linguistic structure is assumed. Of course, the actual probability of any such

word sequence is strongly affected by the fundamental structure of natural language

(be it e.g. grammatical or semantic or both) and thus is diametral to the notion that

any word may be associated with any other word in an unrestricted manner. Applying

a linguistic filter on natural language text data, such as a part-of-speech (POS) tagger,

a phrase chunker or even a syntactic parser (see e.g. the approaches described in

sections 3.1 and 3.2), creates a subset of collocation or term candidates to which

association measures may be applied. One major effect of creating such a subset is that

the independence assumption may be taken to be much more valid. This is because

if the universe of statistical possibilities is reduced to sequences where a preposition

and noun co-occur together with a verb, the null hypothesis that the co-occurrence

of this sequence is due to chance turns out to be a much more accurate assumption.

Hence, linguistic preprocessing is not only a mere structure-adding operation but also

helps to make natural language data more “statistics-ready” for lexical association

measures.

Another discrepancy between the assumptions made by statistical and

information-theoretic models and their correspondence in natural language text data
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is that most of the test statistics assume a normal distribution, or at least a distri-

bution which may not be assumed for natural language (e.g. the χ2 distribution for

the log-likelihood measure – see subsection 3.3.3). In this sense, the test statistics

introduced here so far may all be described as parametric.47

One of the main observations made about frequency distributions for natural lan-

guage is, however, that they tend to be highly skewed. The most prominent illustra-

tion of this may be given by the famous frequency distribution known as Zipf ’s law

(Zipf, 1935; 1949). By counting how often each word type occurs in a text corpus and

then listing them in the order of their occurrence frequency, the relationship between

between the frequency of a word f and its its position in the ranked order, i.e. its

rank r, may be determined. This “law” may be stated in the following way (adopted

from Manning & Schütze (1999)):

f ∝ 1

r
(3.13)

What this means is that there is a constant k such that f ∗ r = k. Hence, e.g.,

the 50th most common word in a corpus sample will occur with three times the

frequency of the 150th most common word. Still, despite its appearance, what Zipf

(1949) states as a “mathematical law” may be rather described as a roughly accurate

characterization of certain empirical facts about words. It is actually Mandelbrot

(1954) who achieves a closer fit to the empirical distribution of words by deriving a

more general (but similar) relationship between frequency and rank.

3.3.7 Frequency of Co-Occurrence

Given that there appear to be substantial discrepancies between the assumptions

made by test statistics-inspired lexical association measures and the actual properties

of natural language text, the question arises whether the most simple and obvious

lexical association measure – frequency of co-occurrence – may not provide a clear-

cut and performant manner to extract collocations and terms. Indeed, in particular for

many linguistic definitions of collocations (cf. the contextualist tradition outlined in

47To be more accurate, all test statistics that estimate population parameters are parametric in

that they assume that the distributions of their variables belong to established parameterized classes

of probability distributions.
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subsection 2.1.2,48 but also e.g. van der Wouden (1997)) and also linguistic definitions

for terms (cf. subsection 2.2.7 above), their descriptors often contain such terms

as “frequent co-occurrence”, “recurrent co-occurrence”, “habitual co-occurrence”, or

“typical co-occurrence”.

As a matter of fact, several studies on both collocation extraction (e.g. Evert &

Krenn (2001), Krenn & Evert (2001)) and on term extraction (e.g. Daille (1996))

have shown that the performance of frequency of co-occurrence is at least on par with

more complex statistical association measures, such as the t-test or log-likelihood.

Other ones, such as Justeson & Katz (1995) even solely rely on frequency counting to

extract terms from domain-specific texts.

Formally, by means of the notations used for 2 x 2 contingency tables, frequency

of co-occurrence (freq) may be rendered by the joint observed frequency.

freq = O11 (3.14)

Alternatively, with the help of the sample size N we may use maximum likelihood

estimates to obtain probabilities from a probability function, viz. the joint probability

for two events x and y.49

freq = P (xy) =
freq(xy)

N
(3.15)

In this way, it is of course also clear that frequency of co-occurrence is not restricted

to n-grams of a certain size (i.e. to bigrams).

3.3.8 C-value

The C-value measure, as described in subsection 3.2.3, is virtually a heuristically mo-

tivated modification of the frequency-based measure, which incorporates the presence

or absence of nested candidate terms as well as the length of the candidate string as

48The notion of frequency of co-occurrence with respect to collocations is pervasive in different

forms in the frequentist and empiricist tradition of British contextualism, e.g. in Firth (1957)’s

recurrence criterion and its extension in Halliday et al. (1965).
49This notation is also referred to as relative frequency (Manning & Schütze, 1999).
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additional parameters into its computation. Frantzi et al. (2000) formalize it for a

term candidate a in the following way:

C-value(a) =

{

log2|a| ∗ freq(a) if a is not nested

log2|a| ∗ (freq(a) − 1
P (Ta)

∑

b∈Ta
freq(b)) otherwise

Here, Ta is the set of extracted candidate terms that contain a, P (Ta) is the number

of these candidate terms. It is clear that the C-value is a measure on the frequency of

co-occurrence of candidate term a. The negative effect of a being a substring of other

longer candidate terms is caused by the negative sign in front of
∑

b∈Ta
freq(b). The

independence of a from these longer terms is yielded by P (Ta). Having P (Ta) as the

denominator of the negatively signed fraction reflects the fact that the greater this

number is, the bigger is its independence (and vice versa). In addition, the candidate

term length |a| is also factored into the computation of the C-value. The positive

effect of this candidate term length is restrained by applying the binary logarithm on

it.



Chapter 4

Linguistically Enhanced Statistics

To Measure Lexical Association

The last section 3.3 in the previous chapter has shown that standard statistical and

information-theoretic association measures possess certain properties in their under-

lying statistical assumptions which may turn out to be diametral to the properties of

natural language text data. Among these is the fact that many test statistics either

assume a normal distribution or distributions which do not reflect the highly skewed

distributional properties of natural language text. Another unrealistic assumption

made by virtually all test statistics, in order to be able to compute their association

scores, is the assumption that the co-occurrence (or combination) of one word with

another one, as a default at least, tends to be independent, and hence any statistical

evidence to the contrary of this independence assumption is taken to increase the as-

sociation strength between such words. This assumption may be at least corroborated

by employing some degree of linguistic filtering which creates a subset of collocation

or term candidates for which the adequacy of the independence assumption is more

appropriate.

With respect to this, it also has to be mentioned that there have been two asso-

ciation measures presented which fall outside the class of parametric test statistics

or information-theoretic measures which dominated section 3.3, viz. frequency of

co-occurrence (see subsection 3.3.7) and the C-value (see subsection 3.3.8), which

may be described as a heuristically modified version of frequency of co-occurrence.

There are actually two interesting observations which have to be pointed out for
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these two measures. First, unlike some test statistics, both association measures

are not confined to bigrams but may be easily applied to n-grams of any size, giv-

ing them a degree of extensibility which some other test statistics lack (e.g. log-

likelihood). Another finding, reported by several studies, is that the extraction per-

formance of frequency of co-occurrence, both for collocations (Evert & Krenn, 2001;

Krenn & Evert, 2001) and for terms (Daille, 1996), appears to be on par with statisti-

cal and information-theoretic measures. Such a kind of finding is interesting insomuch

as, if it may be empirically confirmed further, it could have the potential to call into

question the necessity to employ statistical or information-theoretic association mea-

sures in the first place. The reason for this is that frequency of co-occurrence counting

is of course computationally less expensive than applying numerically much more elab-

orated association measures, to which single types of various frequency counts and

estimations (e.g. observed and expected frequencies – see subsection 3.3.1) are only

the input to complex association score computations.

Considering the fact that statistical and information-theoretic lexical association

measures make assumptions which fall outside the properties of natural language and

considering the fact that there is some empirical evidence that they do not appear to

outperform mere frequency of co-occurrence counting in a substantial way, the ques-

tion arises whether there are procedures which are more suitable to the properties

of collocations and terms in order to measure their lexical association and which, in

this way, are able to deliver more substantial results in extracting them from text.

A way to phrase this question slightly differently would be: if standard statistical

assumptions and properties are not sufficient to measure lexical association for col-

locations and terms, are there any linguistic properties which may be more suitable

for these tasks? After all, in the linguistics and terminology literature, there have

been many accounts on various linguistic properties of collocations and terms pro-

posed (see the discussions in chapter 2 – in particular, sections 2.1 and 2.2 and the

the assessment in section 2.3). Hence, in this chapter we shall present two statistical

procedures which take into account linguistic properties of collocations and of terms

in order to measure their lexical association. In order to be able to soundly derive

these two procedures, we have to formulate both their statistical and their linguistic

requirements. On the statistical side, we have to make sure that we do not make any

assumptions which run contrary to the properties of natural language in general as

well as collocations and terms in particular. These requirements will be presented



4.1 Statistical Requirements 95

in section 4.1. On the linguistic side, we have to ensure that we utilize observable

properties which are suitable to formalization and quantification in a such manner

that they may be used as input parameters to statistical computations. We will see

that there are such properties and that their linguistic underpinnings may be traced

back to the lexical-collocational layer of Firth’s (1957) model of language presented

in section 2.1.2, in particular to its notion of syntagmatic and paradigmatic context.

These linguistic requirements will be presented in section 4.2.

From these two kinds of requirements we will present two new linguistically mo-

tivated approaches to statistically measure lexical association for collocations and for

terms. For the case of collocation extraction, we propose a lexical association measure

based on the linguistic property of limited syntagmatic modifiability (section 4.3) and

for the case of term extraction, we propose a lexical association measure based on

the linguistic property of limited paradigmatic modifiability (section 4.4). Lastly, in

section 4.5 we will also extensively lay out the requirements for constructing an ex-

tensive testing ground in order to thoroughly evaluate both measures, in particular in

comparison to the frequency-based, statistical and information-theoretic approaches

which have been proposed in the computational linguistic literature on collocation

and term extraction from natural language text.

4.1 Statistical Requirements

The statistical requirements which have to be put forth in order to formulate linguisti-

cally motivated statistical measures for lexical association have to take several aspects

into account. As we have already elaborated on previously, it is essential that such

an association does not make any assumptions that run contrary to the properties of

natural language text data (subsection 4.1.1). Furthermore, extensibility to n-grams

of size larger than two has to be granted (subsection 4.1.2). Co-occurrence frequency

as a factor needs to be included as it has surfaced prominently in the discussions on

the linguistic properties of collocations and terms throughout this thesis (subsection

4.1.3). Finally, a lexical association measure is inherently bound to computing some

sort of association score which in turn yields a ranked output on (collocation or term)

candidate sets. In subsection 4.1.4, we will explain both the prequisites and the effects

of such a ranking property.
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4.1.1 Avoidance of Non-Linguistic Assumptions

One major flaw of the standard statistical and information-theoretic association mea-

sures is that they make certain assumptions about the distributional properties of

their natural language sample data (e.g. that it is normally distributed) which may

not be warranted in the light of the highly skewed nature of natural language distri-

butions. Thus, one crucial requirement is that a linguistically motivated association

measure be non-parametric. In a strict statistical sense, non-parametric statistical

models differ from parametric ones in that the structure of the model is not specified

in advance but is instead determined from the data. The term “non-parametric” is

not intended to indicate that such models completely lack parameters but that the

number and nature of the parameters are flexible and not fixed in advance. Here,

we do not interpret non-parametricity in a strict statistical sense such that we would

formulate a non-parametric (or distribution-free) inferential statistical method as a

mathematical procedure for statistical hypothesis testing. Rather, we define it in a

broader and more procedural manner such that a linguistically motivated statistical

association measure needs to refrain from making any assumptions on the distribu-

tional properties of the (language) sample. In addition, such a measure also needs

to avoid any sort of statistical hypothesis testing because this, as a default, always

computes lexical association scores with respect to some linguistically unrealistic as-

sumption about the null hypothesis, which, in this case, is the independence of word

combinations.

There is one qualification which has to be made with respect to the desired exclu-

sion of a linguistically unrealistic assumption about the independence of word com-

binations. As already laid out in subsection 3.3.6, this assumption may be at least

approximated by applying linguistic filters (e.g., in the form of part-of-speech taggers

and/or phrase chunkers) which, in turn, generate a subset of candidates for which

the independence assumption may be taken to be much more valid. Still, the neces-

sity of linguistic preprocessing may also clearly be motivated by the mere fact that

both collocations and terms, by default, do (unquestionably) possess linguistic struc-

ture. Thus, collocations may be manifested, e.g., as preposition-noun-verb, noun-verb

combinations etc. whereas terms are typically manifested within noun phrases (see

subsection 2.2.7). Hence, it is already for this syntactic reason – and thus independent

of any statistical considerations about independence assumptions – that some form of
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linguistic preprocessing of collocation and term candidates needs to be applied.

4.1.2 Extensibility of Size

Another essential requirement for a linguistically motivated statistical association

measure is that it be able to extract n-grams of sizes larger than two. We have already

seen that only statistical association measures which exclusively take into account the

observed and the expected co-occurrence frequencies are capable of being extended

to larger-size n-grams (such as the t-test – see subsection 3.3.5). On the other hand,

the mathematically most well-founded statistical association measure, log-likelihood,

is not extensible beyond the bigram scope in a well-defined way and is thus – besides

the problematic statistical assumptions being made – even less suitable with respect

to the requirements for a linguistically adequate association measure. It should be

mentioned here that extensibility beyond the bigram scope is particularly important

with respect to the extraction of domain-specific terms. As examined by Justeson &

Katz (1995) (subsection 2.2.7), approximately one third of multi-word terms are larger

than bigrams (i.e. mostly trigrams and (a smaller amount of) quadgrams). A term

extraction measure which is not capable of recognizing such larger-sized units would

certainly miss a substantial proportion of terms in a text collection. With respect

to general-language collocations, although it is in principle equally desirable to have

an extensible measure, their syntactic surface manifestation is of course not merely

confined to noun phrases (like it is almost exclusively the case for terms) but a wider

variety of syntactic patterns. Related to this is another particular difference between

domain-specific terms and general-language collocations: whereas it is safe to leave

out stop words or stop POS tags (such as determiners, quantifiers, pronouns) for the

recognition of terminological noun phrases (and thus from considerations about the

length or size of terms), such function words may be integral parts of collocational ex-

pressions.1 Therefore, for these reasons the concept of “size of a collocation” is much

harder to define in linguistic theory and hence of course even harder to determine in

NLP practice.

1For example, consider the English collocational support verb construction “to come to an end”,

which contains an indefinite article.
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4.1.3 The Frequency Of Co-Occurrence Factor

Several subsections in the last chapter have introduced statistical and information-

theoretic lexical association measures of salient computational complexity, such

as the t-test (see subsection 3.3.2), log-likelihood (see subsection 3.3.3) and mu-

tual information (see subsection 3.3.4). At the same time, however, we have

also noticed that frequency of co-occurrence (see subsection 3.3.7) may turn out

as a viable and computationally less expensive alternative. This is corroborated

by the fact that several studies (Evert & Krenn, 2001; Krenn & Evert, 2001;

Daille, 1994) reported that the performance of frequency co-occurrence is at least

on a par with other statistical association measures, for the task of collocation and

term extraction (see subsections 3.2.2 and 3.1.4). Moreover, in addition to some of its

statistical counterparts, co-occurrence frequency counting has no restrictions as for

the size or length of the collocation or term candidates considered. This is one of the

major reasons, why Frantzi et al. (2000)’s C-value introduced in subsection 3.3.8 is

mainly defined as a heuristic modification of frequency of co-occurrence counting, viz.

to provide a length-independent measure for the extraction of terms.

Hence, for these reasons, a linguistically motivated statistical measure of lexical as-

sociation (and in fact any measure of lexical association) needs to factor in (observed)

frequency of co-occurrence, at least to some degree. And in fact, already all statistical

and information-theoretic measures fulfill this requirement in various ways through

incorporation of the observed joint frequency O11, as can be witnessed in their formal

representations in the notational language of 2 x 2 contingency tables presented in

section 3.3. The potential of co-occurrence frequency is also corroborated by linguistic

research on collocations, in particular in the vein of British (Neo-)Firthian contextual-

ism (also referred to as the frequentist or empiricist tradition2 – see subsection 2.1.2),

in which it is most prominently expressed in Firth’s (1957) recurrence criterion.

4.1.4 Output Ranking

In subsection 3.3.1, we extensively discussed the statistical foundations of statistical,

information-theoretic and frequency-based lexical association measures. One charac-

teristic which they all have in common is the computation of some sort of association

score from their input parameters. From a statistical perspective, such a score – at

2Notice the term “frequentist” in the descriptor of this linguistic research tradition.
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least for the statistical association measures – is an indication to which degree the

null hypothesis of independence may be rejected or not.3 Since its premise is a set of

collocation and term candidates which are derived by some form of linguistic filtering,

the computation of such an association score for each candidate has a major effect on

the output of collocation or term extraction procedures in that an explicit ranking of

the candidates may be carried out, resulting in a ranked output list.

From a linguistic perspective, such a ranking is not as far off as it might ap-

pear at first sight. On the contrary, it may well be interpreted as the assign-

ment of different degrees of collocativity (to collocation candidates) or termhood

(to term candidates). This, in turn, makes sense in the light of the fact how

the linguistic status of an expression being a collocation or a term is perceived by

humans. As a matter of fact, terminologists, for example, do not always agree

on whether a given expression constitutes a term or not. This observation has

been stated both by (theoretical) terminologists (Wüster, 1979; Cabré Castellv́ı,

2003) and by researchers on automatic term extraction (Frantzi et al., 2000;

Daille, 1994) independently. From the terminological side, such dissense is reflected

by the fact that typically a large body (committee) of domain experts (see also sub-

section 2.2.1) convenes periodically to decide on inclusions of new entries into major

terminological resources, such as e.g. the Unified Medical Language System (UMLS)4

(see subsection 4.5.3.3 for a description of it). In a similar vein, for a human to judge

whether a given linguistic expression (e.g. a preposition-noun-verb combination) con-

stitutes a collocation or not may be not as straightforward to decide as it may appear

at first glance, and hence, there are various degrees of inconsistencies regarding such a

judgement – depending on the type of linguistic classification asked for. We will return

to this issue in subsection 4.5.2.3 where we introduce and explain our experimental

test collection for collocation extraction.

Coming full circle again to the issue of assigning association scores to collocation

and term candidates, their resulting ranking thus indicates the confidence with which

an extraction procedure (in particular, the underlying lexical association measure)

3In exact statistical hypothesis testing, it would rather be the resulting p-value which provides

the actual counter-evidence against the null hypothesis. For the purpose of collocation and term

identification in natural language text, this additional (cost-intensive) computational step is not

essential (see subsection 3.3.1).
4http://www.umlsinfo.nlm.nih.gov
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determines whether or not and to what degree a given candidate actually constitutes

a collocation or term.

In an ideal system, then, the output of an association score-based ranking proce-

dure would naturally be such that the following two conditions are met:

• The true collocations or terms (i.e., the targets) are ranked in the upper portion

of the output list.

• The non-collocations or non-terms (i.e., the non-targets) are ranked in the lower

part of the output list.

From such a ranked output list, then, the performance quality of an association

measure may be determined in different ways – depending on the size and completeness

of the output list – ranging from merely counting the targets among the top n ranked

candidates (with n ranging from 50 to several hundreds) to applying sophisticated

performance evaluation metrics which are well established in the information retrieval

community, viz. precision and recall. One major advantage of the fact that the

output of lexical association measures typically transforms a set of collocation and

term candidates into a ranked output list is that it makes the performance quality

of these measures easily comparable to each other. Thus, the requirement for a

linguistically enhanced association measure to produce such a ranked output may not

only be motivated from a linguistic perspective (i.e., different degrees of termhood

or collocativity) but also from a comparative evaluation perspective. The issues and

concerns with respect to a suitable evaluation platform for lexical association measures

for the tasks of collocation and term extraction will be discussed extensively in section

4.5.

4.2 Linguistic Requirements

If we want to formulate the requirements for a linguistically motivated statistical as-

sociation measure, we have to step back and recapitulate those linguistic properties

of collocations and terms which have the potential to serve as observable properties

suitable to formalization and quantification in such a manner that they may be used

as input parameters to statistical computations. For both collocations and terms,

linguistic properties have been identified on the syntactic and on the semantic level
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which distinguish them from other linguistic expressions (see section 2.3 above). Be-

cause of several reasons to be laid out below, in this thesis, we will focus on the

linguistic property of limited modifiability found on the syntactic layer, which holds

for both collocations and terms from a different perspective for each. What makes

this property especially suitable is the fact that it can be aggregated within an explicit

linguistic frame of reference, viz. the collocational (or lexical) layer of Firth’s (1957)

model of language description, which will be be recapitulated in the next subsection

4.2.1. Subsection 4.2.2 then will lay out the linguistic requirements which the property

of limited modifiability has to meet, in particular why it is within the syntagmatic

context (in Firth’s model) in which it has to isolated, in order to be suitable for the

task of collocation extraction. In addition, we also discuss potential alternative lin-

guistic properties and give reasons why they are not as well suited for a linguistically

motivated association measure for extracting collocations. In a similar vein, subsec-

tion 4.2.3 will establish the corresponding requirements which the property of limited

modifiability has to meet to be incorporated into a linguistically enhanced statistical

association measure for the task of extracting terms. Again, we will substantiate in

detail why for terms it is the paradigmatic context (in Firth’s model) in which this

property has to be located.

4.2.1 Firth as Linguistic Frame of Reference

The model of language description laid out by Firth (1957), and in particular its

lexical-collocational layer, – see subsubsection 2.1.2.2 above – must of course not be

confused with a formal or even mathematical model of language (as e.g. Harris (1968)

attempts to formulate). It is rather an attempt to formulate a linguistic context as

a frame of reference for isolated words (or sentences), and from a current linguistic

perspective, it may certainly be seen as a simplification of linguistic context structure.5

Still, the lexical-collocational layer of Firth’s model (repeated for convenience in figure

4.1) may be taken as an appropriate linguistic frame of reference in which the linguistic

property of limited modifiability may be neatly configured, both for collocations and

for terms.

As can be seen, the main feature of Firth’s lexical-collocational layer is the di-

5It should be noted, however, that simplification, in particular when combined with abstraction,

is a legitimate step in building a model.
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Syntagmatic Context / Structure

word 1 word 2 word 3 word ... word n

Paradigmatic Context / System

word 1.1

word 1.2

word 1.m

...

word 2.1

word 2.2

word 2.m

...

word 3.1

word 3.2

word 3.m

...

word ...1

word ...2

word ...m

...

word n.1

word n.2

word n.m

...

system 1 system 2 system 3 system ... system n

Figure 4.1: The lexical-collocational layer of Firth’s model of language description.

vision into a syntagmatic and a paradigmatic context of text words. In particular,

the syntagmatic structure of a text results from a sequence of (subsequent) words

whereas the paradigmatic structure is derived by their empirically determined possi-

ble substitutions. Although Firth points out that collocations are word occurrences

in the syntagmatic context constituted of two or more words, it remains unclear how

their boundaries are determined within a text. This problem, however, can be easily

overcome by allowing for some syntactic preprocessing which provides the linguistic

structure (e.g. part of speech and/or phrasal elements) from which the boundaries

for collocations and terms may be determined.6 This approach is not only in line

6Not filtering collocation or term candidates by some form of linguistic preprocessing is not so

unusual as it might appear at first sight. As already described in subsection 3.1.2, Smadja (1993)
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with common linguistic understanding in that every form of a linguistic expression

does have some form of underlying syntactic structure, but it is also compliant with

Firth’s model of language description which actually consists of four descriptive layers

(see subsection 2.1.2.1) and in which the lexical-collocational layer is on top of the

syntactic one.

As we will see in the following subsections, Firth’s lexical-collocational layer pro-

vides an appropriate linguistc frame of reference to formalize the notion of limited

modifiability for both collocations and terms in the syntagmatic and the paradig-

matic context, respectively. This, in turn, will also enable us to emphasize the fact

there are linguistic differences between collocations and terms because, after all, col-

locations may be better defined as general-language constructs surfacing in a variety

of syntactic constructions whereas terms rather fall into the class of domain-specific

sublanguage constructs and are confined to noun phrases (see also the discussion in

subsection 2.3 above). Such differences are inherently ignored by the statistical and

information-theoretic association measures which have been most widely used for the

extraction of collocations and texts from natural texts (see section 3.3).

4.2.2 Linguistic Requirements for Collocations

For collocations, the syntactic property of non- or limited modifiability has been

orginally framed within the lexicographic approach to collocations (Benson, 1989),

and is picked up by Manning & Schütze (1999) in describing the linguistic charac-

teristics of collocations for a computational linguistics audience. On a coarse-grained

level, this property states that many collocations cannot be freely modified by addi-

tional lexical material (see subsection 2.1.4 above). On such a level, this remains a

very blurry definition which is not further laid out (or even formalized) by Manning &

Schütze (1999) or by Benson (1989). In order to arrive at a more precise formulation

(which will be introduced in section 4.3 below), we have to first identify where to

locate modifiability on the syntactic level for collocations. Typically the notion of

“additional lexical material” may be best placed on the phrasal level on which we de-

fine a phrase consisting of a head and a set of potential modifiers (i.e., the additional

lexical material). Hence, the head of a noun phrase (NP) is typically a noun, the head

first attempts to identify a set of collocation candidates from (linguistically) unfiltered text and only

then submits them to a linguistic filter (i.e. a POS tagger) as a sort of syntactic validation procedure.
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of a verb phrase (VP) a verb, etc. Modifiers may fall under a wide range of part of

speech patterns, ranging from adjectives and adverbs to determiners and numbers, to

name just the most canonical ones. Because collocations may syntactically surface

as a possible combination of all of these phrases, a first necessary step is to identify

phrasal patterns for collocations. In most studies (see section 3.1), this is done by

filtering out certain POS patterns (e.g. preposition-noun-verb). At the phrasal level,

however, such patterns should be defined in a slightly more coarse-grained way, e.g.

as prepositional-phrase (PP)-verb (or preposition-NP-verb) patterns.7 Then, modifi-

cation with additional lexical material may be defined as the addition of such material

in front of the head of a phrase, e.g. the kinds of determiners and/or adjectives placed

in front of a noun. Crucially, an addition operation (of lexical material) may also be

described as a syntagmatic operation in the syntagmatic context, with help of the

linguistic model laid out by Firth (1957). Then, if the linguistic property states that

modifiability of collocations is not given or rather limited, we may term this property

as Limited Syntagmatic Modifiability – or in short: LSM. We will derive this linguistic

property formally in subsection 4.3.1 below.

At this point, the question may be raised whether the two other linguistic prop-

erties of collocations previously outlined in subsection 2.1.4,8 non- or limited com-

positionality and non- or limited substitutability, may not be equally (or even more)

suitable to be included into a linguistically motivated statistical association mea-

sure. The main difference between LSM and non- or limited compositionality is that,

whereas LSM is clearly a syntactic property, non- or limited compositionality is clearly

a semantic property. The problem with the latter one is that it does not equally hold

for collocations in general but is rather prominent in one specific subtype, viz. id-

iomatic phrases (see the discussion in subsubsection 2.1.4.2). The other two subtypes

of collocations, i.e. support verb constructions and fixed phrases, are characterized

by their varying degrees of and contributions to semantic compositionality between

their lexical constituent parts. Hence, deriving an observable quantification of such

a property would actually first require to generate a high-quality set of collocation

candidates which then may be further classified into various subtypes. This, however,

7In a similar vein, NP-verb patterns or adjective-phrase (AdjP)-noun patterns may be filtered

out.
8Besides frequency of co-occurrence, of course, which is already taken for granted to play an

important role.



4.2 Linguistic Requirements 105

is exactly the approach taken by Lin (1999) and Lin (1998b) (as described in detail

in subsection 3.1.3 above) who first compute such a set of candidates by applying the

log-likelihood association measure to them (see subsection 3.3.3) and, then, in order to

arrive at a more fine-grained classification, attempt to identify the non-compositional

phrases among them. It is also Lin who actually incorporates the other linguistic

property, i.e. non- or limited substitutability, into the semantic classification of collo-

cation candidates, namely by testing whether their component parts are substitutable

with (near-)synonymous words from a thesaurus. Thus, it can be seen that non- or

limited compositionality and substitutability are more or less two sides of the same

(semantic) coin. Another reason in favor of a syntactic property (instead of a se-

mantic one) as an integral part of a linguistically motivated association measure to

generate collocation candidates is that, from a canonical perspective on the different

linguistic layers, syntactic processing typically feeds into semantic interpretation, and

thus including a syntactic property appears to be the more natural option.

4.2.3 Linguistic Requirements for Terms

In formulating a linguistically motivated statistical association measure for the task

of term extraction, the question at what linguistic level – e.g. syntactic or semantic –

such a suitable quantifiable property should be determined may follow along the same

lines as in the case of collocation. Although they may exhibit a fair amount of se-

mantic compositionality, in a certain respect, terms in a terminological system denote

semantically distinct and atomic entities.9 Such a semantic observation, however, is a

difficult property to formalize, in particular for an association measure whose task is

to distinguish terms from non-terms. Hence, such an endeavor may be rather again

pursued on the syntactic level, even so much the more as we have already discussed

the linguistic properties of terms which may be capitalized on for formulating such

an association measure.

A good starting point to isolate such a property is given by theoretical terminolo-

gists who have loosened the strict division to linguistics. In particular Cabré Castellv́ı

(2003) (see subsection 2.2.2) postulates several linguistic properties of terminological

units and also states that such terminological units are more constrained with re-

9For example, in such terminological resources as the biomedical Umls (see subsection 4.5.3.3)

each term has its own unique identifier.
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spect to their syntactic structure. Unfortunately, no further explanations, let alone

linguistic examples, are given. This line of reasoning, however, is further refined from

the sublanguage perspective (as described in detail in subsection 2.2.7). In particular

Harris (1988), in collecting evidence for his assumption that the correlation between

differences in structure and differences in information is stronger in sublanguages, re-

ported that there are less varied patterns of substring combinability in sublanguage.10

If Harris’ observations on restricted combinability is meant to hold for sublanguage

in general, it must of course also be assumed as a linguistic property of terms (as

sublanguage constructs) in particular.

Justeson & Katz (1995), (one of the few) NLP researchers working on term ex-

traction (see subsection 2.2.7) who are also concerned with the linguistic properties of

terms, find that the property of repetition (i.e. frequency of co-occurrence) of terms

is a quite pervasive phenomenon in text. They attribute this to yet another linguistic

property of terms, viz. lack of variation among the component parts of terms, es-

pecially (adjectival) modifiers.11 In their corpus and dictionary study, they look at

two variation operations, namely deletion and substitution of modifiers, and basically

conclude that either operation leads either to a reference to a different term or to a

non-term (i.e. a common non-specific noun phrase). For this reason, terms in general

refrain from such operations. Hence, a closer look at these two variation (or modifi-

cation) operations may be helpful to isolate a formalizable and quantifiable linguistic

property to derive a linguistically motivated statistical association measure for the

task of distinguishing terms from non-terms. If we consider the deletion operation on

modifiers, the first issue to notice is that this is an operation whose result may yield

another term which may exhibit some sort of taxonomic (e.g. is-a) relationship to the

original one. For example, taking the already mentioned term “hydraulic oil filter”

from the mechanical engineering domain, an omission of “hydraulic” yields the term

“oil filter” which may be seen taxonomically as a more general class term. Devis-

ing and applying a procedure for finding such semantically interesting taxonomic (or

other) relationships, however, is something that should rather be applied to an already

10It should be recalled that Harris worked on string grammars consisting of symbols to better be

able to derive mathematical properties of (sub)language use.
11As already mentioned in 2.2.7, Justeson & Katz (1995) exclude determiners (articles and quanti-

fiers) from the class of NP modifiers because, first, they are applicable to almost any NP and, second,

because they tend to indicate discourse pragmatics rather than lexical semantics.
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existing set of terms. Another aspect which should be considered is that such an dele-

tion operation may also yield a non-specific common noun phrase (i.e. a non-term).

For example, the noun phrase “side effect” is a term entry in the 2004 edition of the

Umls biomedical terminology resource (Umls, 2004). Deleting the nominal modifier

“side” yields the highly general, semantically ambiguous and ubiquitous (non-term)

noun “effect”.12 Hence, for our task of devising an association measure which is con-

cerned with distinguishing terms from non-terms among a set of linguistic expressions

(i.e. noun phrases), the (modifier) deletion operation may entail too many seman-

tic ramifications, which are difficult to control as potential parameters and thus also

difficult to quantify statistically.

Therefore, it may be worthwhile to see whether the other modification operation

adduced by Justeson & Katz (1995), substitution, would not offer a more elegant

solution to our task of deriving a linguistically motivated statistical association mea-

sure for term extraction. An important aspect about the substitution operation is

that it may again be well motivated within Firth’s model of language description

(see subsection 4.2.1 above) in which empirically determined possible substitutions

of words define the paradigmatic structure of the lexical-collocational layer. Thus,

because terms in general are not prone to such modifications, we may name such a

property limited paradigmatic modifiability or in short: LPM. In order to arrive at

a more precise formulation (which will be introduced in section 4.4 below), we have

to first identify where to locate LPM on the syntactic level for terms. In contrast to

collocations which are syntactically much more diverse, we have already previously

elaborated that the most natural (because pervasive) syntactic structure in which

terms surface is the noun phrase (NP). This also has the pleasant side effect that,

because we focus on NPs from the outset (which may be the output of linguistic pre-

processing by means of a phrase chunker), we do not have to concern ourselves with

(manually) finding and generating possible part of speech patterns (typically nouns

and adjectives) in which terms may be manifested, as many other studies have done

before (such as Justeson & Katz (1995), Daille (1996) or Frantzi et al. (2000)).13

12In particular, of course, if such deletion operations are performed on bigram modifiers, they yield

highly ambiguous and ubiquitous nouns. Bigrams, however, constitute the structural type of terms

with the highest proportion in any domain (see subsection 2.2.7).
13This is also relevant because there are subject fields, such as the biomedical domain, in which

not only the typical parts of speech noun and adjective may components of terms but also various

other ones such as numbers and symbols, which may lead to an inflation of possible POS patterns
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Another aspect with respect to empirically determined possible substitutions in the

paradigmatic context is that this should not be restricted to the set of modifiers of

the head noun of an NP (as e.g. Justeson & Katz (1995) do in their manual corpus

and dictionary analysis) – for a number of reasons. First, determining the head of an

NP is by no means an easy task but requires more elaborate linguistic analysis, such

as syntactic parsing, which is inherently more error-prone and thus less suitable to be

ported to different domains as e.g. more shallow linguistic processing such as phrase

chunking.14 Second, also heads of NPs, be they terminological NPs or not, may un-

dergo substitution. For example, in our example term from the engineering domain,

“hydraulic oil filter”, it is possible to substitute the nominal head “filter” with the

noun “pump”, yielding the valid terminological expression “hydraulic oil pump”.

4.3 Limited Syntagmatic Modifiability for

Collocation Extraction

In this section, we will define the linguistically enhanced statistical association mea-

sure for collocation extraction (or to put it differently: for distinguishing collocations

from non-collocations). Given the analysis in subsection 4.2.2, we have found that the

linguistic property of Limited Syntagmatic Modifiability (LSM) suits best to be both

formalized and statistically implemented. In line with this analysis, we will proceed

by locating LSM on the phrasal level, tied to specific part of speech (POS) patterns

which may serve as the syntactic surface manifestation of potential collocations. In

this thesis, our target syntactic structure are preposition-noun-verb (PNV) triples in

the German language. In particular, it is the noun phrase (NP), of which the noun N

of the PNV triple is the head, which serves as the phrasal unit in which to locate po-

tential syntagmatic attachments in the form of additional lexical material. However,

we will define the association measure based on LSM in such a way that it will be

generalizable across a variety of syntactic target structures for collocations (subsec-

tion 4.3.1). In addition, we will also illustrate the effect that an association measure

based on LSM has both on collocations and non-collocations, compared to frequency

to be specified.
14For example, consider the biomedical term “diabetes mellitus type 1” in which simply stating a

head rule which takes the rightmost noun (i.e. “type”) would yield a wrong analysis.
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of co-occurrence counting (subsection 4.3.2).

4.3.1 Defining Limited Syntagmatic Modifiability

We define LSM as the linguistically motivated statistical association measure for a

generic collocational syntactic target structure POS. Of this, we take a particular

phrasal head pHead and the associated additional lexical material, termed the syn-

tagmatic attachment. Let n be the number of distinct syntagmatic attachments of

a particular POS tuple with a selected phrasal head (POStuple,pHead). The probabil-

ity P of a particular syntagmatic attachment attachk, k = [1, n], is described by its

frequency freq scaled by the sum of all syntagmatic attachment frequencies.

P(POStuple,pHead,attachk
) :=

freq(POStuple,pHead,attachk
)

∑n

i=1 freq(POStuple,pHead,attachi
)

(4.1)

with
∑n

i=1 freq(POStuple,pHead,attachi
) = freq(POStuple,pHead). It should be noted that

the zero attachment of the POS tuple, i.e., the one for which no syntagmatic attach-

ments occur is also included in this set.

With this, we describe Limited Syntagmatic Modifiability LSM of a POS tuple

by its most probable syntagmatic attachment:

LSM(POStuple,pHead) := arg max P(POStuple,pHead,attachk
), k = [1, n] (4.2)

At this point, it should be mentioned that, if necessary, more than one phrasal

head pHead may be selected and used to determine its LSM. This may be the case

when dealing with a syntactic target structure POS which contains more than one

phrasal unit. For example, given a target structure such as noun-preposition-noun-

verb (NPNV, i.e. a verb associated with a noun phrase and a prepositional phrase),

two phrasal heads (i.e. the two nouns) may be selected. We will incorporate this

aspect into our final measure COLL-LSM below.

To adhere to the requirements postulated above with respect to a linguistically

motivated statistical association measure, some factor regarding frequency of co-

occurrence has to be taken into account (see subsection 4.1.3) Thus, besides LSM,
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we take the relative co-occurrence frequency for a specific POS tuple P(POStuple),

with m being the number of POS tuple candidate types:

P(POStuple) :=
freq(POStuple)

∑m

j=1 freq(POStuplej
)

(4.3)

The final linguistically motivated statistical association measure for a generic collo-

cational syntactic target structure is defined in such a way that it takes into account

that more than one phrasal head may be selected to determine LSM, by comput-

ing the product. Then, with co-occurrence frequency, we have everything to define

COLL-LSM:

COLL-LSM(POStuple) :=

|pHead|
∏

i=1

LSM(POStuple,pHeadi
) × P(POStuple) (4.4)

In this thesis, our collocational syntactic target structure are preposition-verb-

noun (PNV) triples in the German language. As the syntactically most natural phrasal

head candidate, we take the (rightmost)15 noun N of the noun phrase (NP) to deter-

mine its LSM. Thus, with n being the number of distinct syntagmatic attachments of

a PNV triple with the phrasal head N (PNVtriple,N), the probability of a particular

syntagmatic attachment attachk, k = [1, n] is as follows:

P(PNVtriple,N,attachk
) =

freq(PNVtriple,N,attachk
)

∑n

i=1 freq(PNVtriple,N,attachi
)

(4.5)

Analogous to equation 4.2, the LSM of a PNV triple is defined by its most

probable syntagmatic attachment:

LSM(PNVtriple,N) = arg max P(PNVtriple,N,attachk
), k = [1, n] (4.6)

15Here, in line with subsection 4.2.2, we assume the output of a phrase chunker to determine noun

phrases.
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Because we only consider one phrasal head for its LSM, the final measure – with

frequency as the second factor – is defined as:

COLL-LSMPNV (PNVtriple) = LSM(PNVtriple,N) × P(PNVtriple) (4.7)

For expository purposes, we will label the final linguistically motivated statistical

association measure for collocations as LSM for the remainder of this thesis.

4.3.2 Illustrating Limited Syntagmatic Modifiability

In this subsection, we will illustrate the effects that the linguistically motivated sta-

tistical association measure LSM has both on collocations and non-collocations. Fur-

thermore, also the effect on a particular type of collocation, support verb constructions

(see subsubsection 2.1.4.2), is examined. We will exemplify this with the help of our

114-million-word German language newspaper corpus (which we will describe in de-

tail in subsection 4.5.2.1). For this purpose, we will take a closer look at two PNV

triples which both occur with a frequency of 84 in the corpus, the collocation “an

Land ziehen” (to reel in) and the non-collocation “in Aktien investieren” (to invest

in stocks). To be more exact, according to the three major subtypes of collocations

distinguished in subsubsection 2.1.4.2, the expression “an Land ziehen” may be clas-

sified as an idiomatic phrase.16 Table 4.1 below lists the syntagmatic attachments for

both PNV triples together with their occurrence frequencies.

As can be seen, the idiomatic expression only contains one syntagmatic attach-

ment, viz. the zero attachment (which on the surface is identical to the PNV triple),

which is also its most frequently occurring syntagmatic attachement (84 times). The

non-collocational PNV triple, on the other hand, possesses numerous syntagmatic

attachments (35 to be exact – not all of them are listed in Table 4.1 due to space

limitations), with its most frequent syntagmatic attachment occurring 38 times. If we

computed the LSM for both PNV triples according to equation 4.6, it would be obvi-

ous that the collocation would receive a much higher score than the non-collocation.

16See subsection 4.5.2.3 on how the gold-standard classification of the PNV triples into collocations

and non-collocations is achieved.
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PNV Triple {Syntagmatic Attachment} + Phrasal Head Frequency

‘an Land ziehen’ { } + Land 84

‘to reel in’

‘in Aktien investieren’ { } + Aktien 38

‘to invest in stocks’ { deutsche } Aktien 6

{ europäische } + Aktien 5

{ amerikanische } + Aktien 4

{ polnische } + Aktien 1

{ malaysische } + Aktien 1

{ viele } + Aktien 1

{ vielversprechende } + Aktien 1

{ türkische } + Aktien 1

{ russische } + Aktien 1

{ israelische } + Aktien 1

{ wertorientierte } + Aktien 1

{ zukunftsträchtige } + Aktien 1

{ unterbewertete } + Aktien 1

{ überbewertete } + Aktien 1

{ entsprechende } + Aktien 1

{ erfolgreiche } + Aktien 1

{ entsprechend erfolgreiche } + Aktien 1

{ die entspechenden } + Aktien 1

{ mehrere } + Aktien 1

{ einzelne } + Aktien 1

{ die } + Aktien 1

{ diese } + Aktien 1

. . . . . .

Table 4.1: Collocational and non-collocational PNV Triples with Associated Syntagmatic

Attachments

The previous example about the rather strict limited (in fact non-) syntagmatic

modifiability for the idiomatic phrase may raise the question to what extent collo-

cations may actually be syntagmatically modified at all. At least linguistic intuition

would tell that some degree of syntagmatic modifiability should be possible. Hence,
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we examine another collocation, “unter Druck geraten” (to get under pressure), which

occurs 443 times in our corpus. The difference with the previous collocational expres-

sion is that this one may typically be classified as a support verb construction, ac-

cording to the collocational subtypes laid out in subsubsetion 2.1.4.2. Table 4.2 below

lists the syntagmatic attachments for this PNV triple together with their occurrence

frequencies.

PNV Triple {Syntagmatic Attachment} + Phrasal Head Frequency

‘unter Druck geraten’ { } + Druck 395

‘to get under pressure’ { starken } + Druck 5

{ erheblichen } + Druck 5

{ massiven } + Druck 4

{ starken politischen } + Druck 2

{ zunehmenden } + Druck 2

{ verstärkten } + Druck 2

{ schweren } + Druck 2

{ erheblichen } + Druck 2

{ schweren politischen } + Druck 1

. . . . . .

Table 4.2: Support Verb Construction PNV Triple with Associated Syntagmatic Attach-

ments

As can be seen, the support verb construction PNV triple does indeed possess some

degree of syntagmatic modifiability. This is interesting insomuch as collocation ex-

traction, of course, may not only be viewed as a goal by itself, but may also be utilized

to create collocation lexicons for both language processing and generation (Smadja &

McKeown, 1990). From this perspective, the LSM measure may actually yield quite a

valuable by-product for the development of lexicons or collocational knowledge bases,

viz. a list of possible lexical modifications associated with a particular collocational

entry candidate. From a lexical-semantic viewpoint, then, a collocation may be de-

scribed by the lexical semantic word classes used for modification.17 As can be seen

in Table 4.2, for the PNV triple “unter Druck geraten” (to get under pressure), the

17Of course, lexical material is always at least partially dependent on the text genre and register

in question.
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phrasal head noun “Druck” (pressure) appears to be modified by a certain semantic

class of adjectives, such as “stark” (strong), “massiv” (massive), “schwer” (heavy),

“erheblich” (considerable).

From the previous exemplary illustrations on the LSM property of German PNV

triple collocations and non-collocations, one may wonder whether LSM, besides being

a linguistically motivated statistical association measure to distinguish collocations

from non-collocations, may also serve as a predictor on the subtype of a collocational

expression (i.e. whether the expression is an idiomatic phrase or not). We will address

and evaluate both questions in subsection 5.1.3 below.

4.4 Limited Paradigmatic Modifiability for Term

Extraction

In this section, we will define the linguistically motivated statistical association mea-

sure for term extraction (i.e., for distinguishing terms from non-terms) and, given the

analysis in subsection 4.2.3, we have found that the linguistic property of Limited

Paradigmatic Modifiability (LPM) suits best to be both formalized and statistically

implemented. In line with the linguistic requirements derived in subsection 4.2.3, we

will proceed by defining LPM on the syntactic level of the noun phrase (NP) because

it has been shown to be the most natural and pervasive syntactic structure for the sur-

face manifestation of terms (subsection 4.4.1). In doing so, we will ensure that LPM

will be generalizable and applicable to NP n-grams of all sizes although in practice

only n-grams up to size four are relevant (see Justeson & Katz (1995)). In addition,

we will also illustrate the effect that an association measure based on LPM has both

on terms and non-terms, compared to frequency of co-occurrence counting (subsection

4.4.2).

4.4.1 Defining Limited Paradigmatic Modifiability

The linguistic property that distinguishes terms from non-terms, the limited paradig-

matic modifiability (LPM) of multi-word terminological units, serves as the basis for

our measure of termhood. In line with the our linguistic Firthian frame of reference

(see subsection 4.2.1) LPM considers the modifiability of the paradigmatic context

for a particular word token within a potential terminological expression. In this way,
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an n-gram multi-word expression word1...wordn within a noun phrase may be viewed

as containing n word token slots in which each of the slots is filled by a particular

word token. For example, in our trigram term example from the mechanics domain,

“hydraulic oil filter”, slot 1 is filled by the word “hydraulic”, slot 2 by “oil” and slot

3 by “filter”. Since the paradigmatic modifiability of such an n-gram is supposed to

be limited for terms, the most natural way to define LPM is by the probability with

which one or more such slots cannot be filled by other word tokens, i.e., the tendency

not to let other words appear in particular slots. Since with higher-order n-grams

one has to take into account the various combinatory possibilities to fill such slots, a

procedure needs to adopted which yields such combinatory constellations. The lin-

guistically most natural way is to employ the standard combinatory formula (Rosen,

1999) – without repetitions to avoid duplicate patterns. Thus, for an n-gram (of size

n) to select k slots (i.e., in an unordered selection) may be defined in the following

way.

C(n, k) =
n!

k!(n − k)!
(4.8)

As depicted in table 4.3 below, for n = 3 (a word trigram) and k = 1 and k = 2

slots, there are three possible selections for each k, and for k = 3 slots, there is one

possible selection. In this way, k can be thought of as a placeholder for any possible

word token and its frequency which fills this position.

k slots possible selections for trigram

k = 1 k1 word2 word3

word1 k2 word3

word1 word2 k3

k = 2 k1 k2 word3

k1 word2 k3

word1 k2 k3

k = 3 k1 k2 k3

Table 4.3: Possible selections for k = 1, k = 2 and k = 3 for a trigram noun phrase

In order to arrive at the computation of the LPM for a particular n-gram noun

phrase, one intermediate computation needs to be done, i.e. for a particular k (1 ≤
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k ≤ n; n = length of n-gram), the frequency of each possible selection, sel, needs to

be determined. Because this frequency is at least as high as the n-gram frequency,

the paradigmatic modifiability for a particular selection sel may be defined by the

n-gram’s frequency scaled against the frequency of sel which, in turn, results in a

well-defined probability value (i.e. between 0 and 1). Thus, with |sel| being the

number of distinct possible selections for a particular k, the limited paradigmatic

modifiability of possible k-selections, lpmk-sel, of an n-gram can be derived as the

product of all the k-selection modifiabilities:

lpmk-sel(n-gram) :=

|sel|
∏

i=1

f(n-gram)

f(seli, n-gram)
(4.9)

As a last step, in order to derive the limited paradigmatic modifiability, LPM , of

an n-gram, the product over all its k-selection modifiabilities needs to be computed.

LPM(n-gram) :=
n

∏

k=1

lpmk-sel(n-gram) (4.10)

It is important to note with respect to LPM that setting the upper limit of k to n

(which is the size of an n-gram and thus n = 3 for trigrams) actually has the pleasant

side effect of including frequency of co-occurrence in our termhood measure. In this

case, the only possible selection k1k2k3 (see also table 4.3 above) as the denominator

of equation (4.9) is equivalent to summing up the frequencies of all trigram term

candidates. Hence, it is ensured that we adhere to the requirements postulated above

with respect to a linguistically motivated statistical association measure, viz. that

some factor regarding frequency of co-occurrence has to be taken into account (see

subsection 4.1.3).

An additional point to be noticed about LPM is that it is a combinatorics-based

algorithm. Although it is well-known that such algorithms in general do possess a

high degree of time-consuming computational complexity (Rosen, 1999), this is of no

practical relevance for our task of term extraction. As already pointed out at various

occasions in this thesis, Justeson & Katz (1995)’s analysis revealed that only a small

minority (i.e. less than 6%) of terms are actually contained within n-grams equal or

larger than size four (see subsection 2.2.7)18 and thus complexity considerations do

not turn out to be a point of practical concern.

18Furthermore, of course, the larger an n-gram becomes, the sparser its occurrence in natural

language text is.



4.4 Limited Paradigmatic Modifiability for Term Extraction 117

4.4.2 Illustrating Limited Paradigmatic Modifiability

In this section, we will illustrate the effects that our linguistically motivated statistical

term association measure LPM has on both terms and non-terms. For this purpose,

we will look at the corpus data that we use for our term extraction experiments, i.e.

a 100-million word English corpus from the biomedical subdomain of Hematopoietic

Stem Cell Transplantation and Immunology, which was downloaded from the world’s

largest bibliographic database for biomedicine, Medline. The assembly and linguistic

processing of this corpus will be described in detail in subsection 4.5.3.1.

In tables 4.4 and 4.5, we exemplarily computed the LPM scores both for the

trigram term “open reading frame”19 and for the trigram non-term “t cell response”.

For our illustrative purposes to show the effects of LPM, we computed separate scores

for the lower ks, k = 1, 2 (i.e. lpm1 and lpm2), as well as for the complete LPM, i.e. for

k = 1, 2, 3, which thus incorporates the frequency of co-occurrence of a term candidate.

As can be seen in the two tables, a lower frequency for a particular k-selection induces a

more limited paradigmatic modifiability for that k-selection which in turn is expressed

as a higher probability for lpmk-sel (i.e. the product of all particular k-selections

under consideration, as shown in equation 4.9 above), and vice versa of course. As

table 4.4 shows, the term “open reading frame” has a much higher LPM value for

k = 1, 2 (0.11) than the non-term “t cell response” (0.000008) shown in table 4.5.

Evidently, this is due to the fact that the non-term allows a much higher number of

different paradigmatic substitutions at its k-slot positions than the term does. Also,

incorporating and computing the complete LPM value for k = 1, 2, 3, which includes

frequency of co-occurrence, does not change the fact that the term gets a much higer

LPM score (0.00002) than the non-term (0.000000002).

These LPM scores have the desirable effect that in the respective output list rank

(of 28,000 ranked term candidates here), the term “open reading frame” is placed

on a high rank (rank 56) whereas the non-term “t cell response” gets assigned to a

much lower rank, i.e. rank 1000. If, on the other hand, only the frequencies of both

expressions would be considered, the two tables reveal that the non-term occurs over

17 times more often in the biomedical text corpus than the term. Accordingly, a

19This term denotes the portion of an organism’s genome which contains a sequence of bases that

could potentially encode a protein. Subsubection 4.5.3.3 describes in detail how the actual terms are

distinguished from non-terms in our experiments.
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n-gram freq LPM (k=1,2) LPM (k=1,2,3)

“open reading frame” 153 0.11 0.00002

k slots possible selections sel freq lpmk-sel

k = 1 k1 reading frame 213 0.72

open k2 frame 153 1.0

open reading k3 155 0.99

lpm1 =0.71

k = 2 k1 k2 frame 257 0.6

k1 reading k3 221 0.69

open k2 k3 429 0.36

lpm2 =0.15

k = 3 k1 k2 k3 960,538 0.0002

lpm3 =0.0002

Table 4.4: LPM and k-selection modifiabilities for k = 1 and k = 2 for the trigram term

“open reading frame”

n-gram freq LPM (k=1,2) LPM (k=1,2,3)

“t cell response” 2,335 0.000008 0.00000002

k slots possible selections sel freq lpmk-sel

k = 1 k1 cell response 2,993 0.8

t k2 response 2,490 0.94

t cell k3 21,960 0.11

lpm1 =0.08

k = 2 k1 k2 response 38,215 0.06

k1 cell k3 110,718 0.02

t k2 k3 26,703 0.09

lpm2 =0.0001

k = 3 k1 k2 k3 960,538 0.002

lpm3 =0.002

Table 4.5: LPM and k-selection modifiabilities for k = 1 and k = 2 for the trigram

non-term “t cell response”
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ranking based on mere frequency of co-occurrence would rank the non-term “t cell

response” very high on rank 19 whereas it would place the term “open reading frame”

quite low on rank 787 on the output list. In fact, even lower-frequency trigrams gain

a prominent ranking if they exhibit a more limited paradigmatic modifiability. For

example, the trigram term “porphyria cutanea tarda” is ranked on position 28 by

LPM, although its co-occurrence frequency is only 48 (which results in rank 3291

on the frequency-based output list). Despite its lower frequency, this term is judged

as being relevant for the domain under consideration.20 Of course, as is evidenced in

tables 4.4 and 4.5, it should be noted that the termhood scores (and the corresponding

list ranks) computed by LPM also include the k = 3 selection and, hence, take into

account a reasonable amount of frequency load. As can be seen from the previous

ranking examples, however, this factor does not override the limited paradigmatic

modifiability factors of the lower-order ks (i.e. k = 1, 2).

On the other hand, LPM will also demote true terms in their ranking, if their

paradigmatic modifiability is less limited. This is particularly the case if one or more

of the word tokens of a particular term often occur in the same k-slot of other equal-

length n-grams. For example, the trigram term “bone marrow cell” occurs 1757 times

in our corpus and is thus ranked quite high (position 18) by frequency. LPM, however,

ranks this term on position 583 because the word token “cell” also occurs in many

other trigrams at this position and thus leads to a less limited paradigmatic modifia-

bility. Still, as laid out extensively in subsection 4.2.3, the underlying assumption of

the LPM approach is that such a case is more an exception than the rule and that

terms are linguistically more frozen than non-terms and are thus not as prone to such

modifications as non-terms are, which is exactly the intuition behind our association

measure of limited paradigmatic modifiability.

4.5 Evaluation Setting

In the previous two sections, we have motivated and defined two linguistically inspired

statistical association measures both for collocation extraction (limited syntagmatic

modifiability – LSM) and for term extraction (limited paradigmatic modifiability –

LPM). While any methodological innovation needs to be put on a theoretically and

20It denotes a group of related disorders, all of which arise from a deficient activity of the heme

synthetic enzyme uroporphyrinogen decarboxylase (URO-D) in the liver.
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definitionally sound basis, this alone would not be worth much if we were not able

to evaluate its performance against other comparable standard methods and actually

find that the method under consideration outperforms its standard competitors to a

substantial degree – thus making the whole enterprise worth while in the first place.

Therefore, in this section we will construct a comprehensive evaluation setting

in which we are able to compare both our linguistic association measures with the

standard statistical and information-theoretic measures described in section 3.3. For

this purpose, we will first establish the general requirements for such an evaluation

setting in subsection 4.5.1 where we focus on several necessary prerequisites, viz.

the assembly of an appropriate text corpus, the linguistic processing to obtain valid

extraction candidates, the procedures to classify these candidates as to whether they

are (non-)collocations or (non-)terms and – at the heart – appropriate evaluation

metrics which allow for a comprehensive and multi-faceted view on the performance

of the different association measures under scrutiny. After having laid out these

general requirements, we explain in detail how we have implemented the respective

evaluation setting for the task of collocation extraction (subsection 4.5.2) and for the

task of term extraction (subsection 4.5.3).

4.5.1 General Requirements for Evaluation

In this subsection, we will outline the general steps which are necessary in order

to arrive at an appropriate evaluation setting, independent of the fact whether we

deal with collocation extraction or with term extraction. First, we will highlight the

considerations which need to be taken into account in assembling a suitable text corpus

for the respective extraction task (subsubsection 4.5.1.1). Then, we focus on how to

obtain extraction candidates from syntactic target structures by performing some form

of linguistic preprocessing on the text corpus (subsubsection 4.5.1.2). Subsequently,

we need to worry about how to classify the target candidates as (non-)collocations or

(non-)terms and thus arrive at an appropriate gold standard which makes performance

evaluation possible in the first place (subsubsection 4.5.1.3). Subsubsections 4.5.1.4

and 4.5.1.6 will focus on the heart of any performance evaluation enterprise – the

performance evaluation metrics – which we will motivate both from a quantitative

and a qualitative perspective. Good evaluation practice also requires the construction

of appropriate baselines as well as testing whether the results obtained are statistically

significant (subsubsection 4.5.1.5).
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4.5.1.1 Assembling the Text Corpus

The first step that needs to be done in creating an appropriate testing and evaluation

setting both for collocation and term extraction measures is to assemble a suitable

text corpus on which the extraction procedures may be run. Besides addressing

the question in which language the texts of the corpus should be written, a key

consideration has to be centered around the domain(s) and/or genres of the text

collection. Because collocations may most appropriately be considered as linguistic

expressions which are most pervasive in general language (see section 2.1 and 2.3), a

text corpus needs to be assembled which may be considered representative for general

language. This, of course, is by no means a straightforward task because “general

language” as such is rather a fuzzy notion and may be almost regarded as broad-

faceted as the notion of language itself consisting of numerous genres and registers.

Hence, a necessary step is to find a kind of text corpus provider of text sources which

may at least partially fulfill the claim of covering general language (see subsubsection

4.5.2.1 below).

The task of assembling an appropriate text corpus for evaluating different term

extraction procedures may be considered as a comparatively easier enterprise. Be-

cause terms are considered as linguistic expressions which are typically confined to

a particular subject domain and sublanguage (cf. section 2.2), the key consideration

here is to choose a subject domain with a suitable corpus repository. One require-

ment that a corpus repository should fulfill, both for general-language collocations

and domain-specific terms, is that it is large enough so that reliable statistics may be

computed from it (see subsection 4.5.2.1). At the same time, however, it should also

be possible to vary (i.e. increase or decrease) the corpus size substantially and still

have the lexical association measures under scrutiny produce the same result patterns.

This is to ensure that their observed empirical properties and respective differences

are not mainly due to corpus size. For this reason, we will perform all experiments

and evaluations, both for collocation and for term extraction, on two substantially

different corpus sizes (see subsections 4.5.2.2 and 4.5.3.2 below).

4.5.1.2 Extracting and Counting the Candidates

Once an appropriate text corpus has been assembled, the next step is to acquire a set

of collocation and term candidates on which the respective extraction procedures may
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be run. We have laid out in detail (cf. section 4.2) that both collocation and term

candidates may be best obtained by performing some form of linguistic preprocessing

on the text corpus. Through this, an appropriate syntactic target structure may be

selected which is in line with the linguistic observation that both collocations and

terms are typically manifested in certain syntactic surface structures. In addition,

linguistic filtering also considerably eases the violations which natural language as

sample data typically causes on the statistical distribution and independence assump-

tions on word combinations (see subsections 3.3.6 and 4.1.1). Although this is not so

much a concern for both our linguistically motivated statistical association measures,

it is essential for the standard parametric association measures which crucially rely

on these assumptions. Because one of the objectives of this thesis is to extensively

compare standard and linguistic association measures, applying linguistic filters to

acquire collocation and term candidates makes such a comparison possible in the first

place because it grants the standard measures “equal opportunity” with respect to

their non-parametric competitors LSM and LPM.

Another question which has to be raised in this respect deals with the sort of lin-

guistic preprocessing which may be deemed appropriate to obtain a set of candidates,

in particular considering the fact that collocations may surface in a variety of syntactic

constructions (cf. subsection 4.2.2). Although the most elaborate form of syntactic

analysis, full syntactic parsing, has been attempted for the task of acquiring a set

of collocation candidates (Lin, 1998a; 1999), it has rather proven to be a persistent

source of errors which had to be corrected in a time-consuming manner. Thus, the

cost-benefit ratio of parser deployment may not be regarded as justified (see the discus-

sion in subsection 3.1.3), in particular considering the fact that collocation dictionaries

should rather be the input than the output of full syntactic parsing (Collins, 1997;

Klein & Manning, 2003). For these reasons, most studies employ some form of shal-

low syntactic analysis to isolate their collocation candidate target structures, either by

POS tagging (e.g. (Dunning, 1993)) or phrase chunking (e.g. (Evert & Krenn, 2001;

Krenn & Evert, 2001)). Similar arguments may be put forth in the case of acquiring

a set of term candidates from a text corpus. Here, however, the use of a shallow

preprocessor is additionally corroborated by the linguistic fact that domain-specific

terms are typically manifested within noun phrases (cf. the discussion in subsections

2.2.7 and 4.2.3). Hence, all that is at most needed is the deployment of a (noun

phrase) phrase chunker, or even only the specification of appropriate NP-specific POS
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patterns to filter the output of a POS tagger.

Because the identification of collocations and terms from a set of candidates relies

on association measures employing some form of statistical computations, the candi-

dates (and possibly their component parts – depending on the association measure)

need to be counted after their linguistic isolation. While this may rather be consid-

ered as a straightforward procedure, a question immediately to be raised is whether

all candidates identified and counted should be included or only those above a certain

frequency threshold. Virtually all studies both on collocation and on term extrac-

tion (e.g. (Smadja, 1993; Dunning, 1993; Daille, 1996; Lin, 1999; Frantzi et al., 2000;

Evert & Krenn, 2001)) specify some frequency cut-off threshold. Such thresholds are

all based on the widely held assumption that low-frequency data may be considered

as noise whose inclusion in the sample data may distort sound statistical estima-

tions. The frequency cut-offs typically employed are freq ≥ 5 or more and it is Evert

(2005) who also provides mathematical evidence that, indeed, probability estimates

and p-values for frequency data below this threshold are distorted in unpredictable

ways due to quantization effects and erratic population shapes (see subsection 3.1.4

above). Hence, a necessary condition is that any approach to the definition and imple-

mentation of lexical association measures, either linguistically motivated or standard,

needs to specify a frequency cut-off threshold. Evert (2005) also points out that the

cut-off frequency of five is just the minimum threshold below which no candidates

should be considered. Higher frequency thresholds are of course possible, in particu-

lar if the overall corpus size and thus the size of the candidate set is very large. For

example, in our case of setting up an appropriate evaluation framework for collocation

and term extraction below, the specification of such thresholds also needs to be guided

by practical concerns in order to avoid unrealistically large candidate sets.

4.5.1.3 Classification of the Targets

A crucial question which any approach to collocation and term extraction needs

to address is the evaluation of the performance quality of the extraction meth-

ods employed. Because virtually all statistical and information-theoretic lexical

association measures output an ordered ranked list of candidates (see subsection

4.1.4), many studies, either on collocation extraction (Manning & Schütze, 1999;

Dunning, 1993) or on term extraction (Frantzi et al., 2000; Collier et al., 2002),
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evaluate the goodness of their algorithms by having the ranked output examined

by a domain expert, in the case of term extraction, or by a lexicographer, in the

case of collocation extraction (Smadja, 1993), and thus identify the actual collo-

cations or actual terms (i.e., the targets) among the ranked candidates.21 There

are several problems with such an approach. Because such an evaluation proce-

dure is rather labor-intensive and time-costly, the actual number of ranked can-

didates examined, let us call it n, is typically very small, ranging from 50 up

to several hundreds ( e.g. in (Manning & Schütze, 1999; Frantzi et al., 2000;

Dunning, 1993)) although the size of the output list is much larger. This, in turn,

leads to very superficial judgments about the quality of the association measures ex-

amined, in particular because it only allows the calculation of a cursory accuracy

score. Another problem besides the paucity of the output candidates examined is

that, because the evaluation is performed on the ranked candidates with a substantial

proportion of targets already placed in the upper portion of the list,22 the raters are

already biased by the high density of actual collocations or terms that they encounter.

For these reasons, Evert & Krenn (2001) and Evert (2005) recommend that human

judges identify the actual collocations or terms in the complete unordered (i.e. un-

ranked) candidate set obtained by linguistic filtering (see the previous subsubsection

4.5.1.2) before any lexical association measure is applied. In doing so, it is possible to

calculate and plot the whole array of standard quantitative performance evaluation

metrics (see the next subsubsection 4.5.1.4), thus allowing for a much more principled

and reliable evaluation on the complete candidate set and not just a cursory portion

of it.

At this point one may wonder whether using a collocation or term dictionary as

a gold standard against which the actual target collocations or terms in a candidate

set may be identified would not be a more feasible (and less costly) procedure for

evaluating association measures than relying on human judgments. With respect the

availability of such resources for general-language collocations, we have already seen

that they are notoriously incomplete and deficient (Lin, 1999; 1998b), even for well-

documented languages such as English. For this reason, if the goal is to carry out a

reliable and thorough evaluation of extraction procedures for the task of collocation

21Sometimes, it is even the authors of a study themselves who examine the output of their extrac-

tion methods, e.g. Manning & Schütze (1999).
22That is, if the association measures examined are any good this is most probably the case.
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extraction, it is virtually impossible to avoid consulting human judges in order to have

a set of collocation candidates classified according to the targets in it. This, however,

also implies another time-costly but necessary task, viz. assuring some form of quality

control that the classification judgments performed by humans contain a sufficient

amount of stability and reliability. This is typically determined by measuring the

agreement between different human judges (or termed differently: annotators) in some

way, which is typically referred to as inter-annotator agreement. In subsubsection

4.5.2.3, we will describe extensively how we implemented this sort of quality control

for our collocational candidate set of German PNV triples.

In the case of evaluating term extraction procedures, the prospect on the (time-

saving) availability of comprehensive domain-specific terminological resources does

not look as bleak as in the case of such resources for general-language collocations.

For example, the work by Daille (1994) and Daille (1996) bases the evaluation of

the association measures examined (see subsection 3.2.2 above) on the entries of a

terminology database from the telecommunications domain – with the major caveat

issued, however, that the resource lacks completeness. Fortunately, the picture looks

different in the biomedical domain which this thesis focuses on. As a matter of

fact, it hosts one of the most extensive and carefully curated terminological resources

which has evolved over the years, is constantly updated and reflects community-wide

consensus achieved by expert committees, viz. the Umls Metathesaurus (Bodenreider,

2004).23 We will describe extensively in subsubsection 4.5.3.3 how we will exploit this

resource as a gold standard to construct an appropriate evaluation setting for term

extraction.

4.5.1.4 Quantitative Performance Evaluation

Given the evaluation setting described in the previous subsubsection – in which the

actual collocations or terms are identified in the complete unordered (i.e. unranked)

candidate set obtained by linguistic filtering before any lexical association measure is

applied – we may use the whole array of standard quantitative performance evaluation

metrics, such as precision, recall, F-score, and fallout, which have been proposed and

are standard practice in information retrieval (Baeza-Yates & Ribeiro-Neto, 1999;

Rijsbergen, 1979; Manning & Schütze, 1999). For this purpose, however, we first

23http://umlsinfo.nlm.nih.gov
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need to clarify the context in which these evaluation metrics must be placed in order

to be able to evaluate lexical association measures (LAM). Thus, a (collocation or

term) candidate set may be thought of as containing a set of target (i.e. actual)

collocations or terms. An association measures then selects a set of candidates that

it considers to be collocations or terms. This situation may be depicted in a 2 x 2

contingency table, such as table 4.6.

LAM target not target

selected true positive false positive

not selected false negative true negative

Table 4.6: Context of quantitative performance evaluation.

The instances labeled as true positive (TP) and true negative (TN) are those

that an association measure correctly selects. The wrongly selected instances are

labeled as false positive (FP) whereas the cases that are failed to be selected are

considered false negative (FN). Hence, we are now in position to define precision as

an evaluation metric for the proportion of selected items that an association measure

correctly identified as (target) collocation or terms:

precision :=
TP

TP + FP
(4.11)

Conversely, recall may be defined proportion of target collocation or terms that

an association measure selected:

recall :=
TP

TP + FN
(4.12)

If overall performance is to be evaluated, a typical metric to use is the weighted

harmonic mean of precision and recall, the balanced F-score:
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F -score :=
2 ∗ (precision ∗ recall)

precision + recall
(4.13)

Typically, this performance evaluation metric is only considered useful if a dis-

tinctive comparison between precision and recall is not considered insightful for the

evaluation task at hand. Thus, F-score does not need to be applied if, for example,

single precision and recall evaluations are more telling, which is typically the case for

extraction tasks like the ones focused on here (Evert, 2005).

An evaluation metric less frequently used (Manning & Schütze, 1999) is fallout,

which is defined as the proportion of non-targets that are erroneously selected:

fallout :=
FP

FP + TN
(4.14)

Fallout is mainly used as an evaluation metric of how difficult it is to construct

a system (or in our case: to devise an association measure) that produces few false

positives. In our case of selecting target collocations or terms from a set of candidates,

such an evaluation metric may actually be informative because the number of non-

targets is generally quite large (see subsubsections 4.5.2.3 and 4.5.3.3 below), thus

making it almost inevitable that there will be misclassifications. Typically, however,

fallout is not used by itself but in connection with recall to set up so-called receiver

operating characteristic (ROC) curves, as pointed by Manning & Schütze (1999).

These show how different proportions of false positives (i.e. the fallout) influence the

true positive rate (i.e. the recall).

Because collocation or term candidate sets obtained by means of linguistic filtering

may typically turn out to be quite large (see also our own experiments in subsubsec-

tions 4.5.2.2 and 4.5.3.2 below), it may be helpful to consider association measure

performance after a certain proportion of the ranked output list has been scanned.

In this manner, for example, a selective recall value may indicate what proportion of

the target collocations or terms a lexicographer or domain expert would already have

considered if a collocation or term extraction system presented such a ranked list to

him or her. For this reason, Evert & Krenn (2001) suggest to incrementally calculate

performance metrics by dynamically considering n highest ranked samples. i.e. in-

cremental portions of the ranked output list, until the complete candidate output list
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has been examined. Thus, in putting the evaluation of lexical association measures

into such a well-founded framework, a sound comparison from different perspectives

may be carried out between our linguistically motivated association measures, on the

one hand, and the standard statistical and information-theoretic ones, on the other

hand.

4.5.1.5 Baselines and Significance

In a comprehensive evaluation setting, it is essential to establish a baseline which

indicates the lower bound of system performance. For lexical association measures,

such a lower bound baseline with respect to the precision evaluation metric may be

best defined as the percentage of (collocation or term) targets in the candidate set.

Such a procedure may then be interpreted as the likelihood of finding a target by

randomly picking from the candidate set. Establishing such a lower baseline as the

only one, however, entails that every lexical association measure which outperforms

it must be regarded as a potentially useful measure of collocativity or termhood. For

this reason, we also postulate a more challenging (but still easy to implement) baseline

which has shown to be quite competitive with respect to statistical and information-

theoretic association measures, viz. frequency of co-occurrence (see subsection 3.3.7).

This is contrary to other studies which regard it as an association measure among

others (Evert & Krenn, 2001; Krenn & Evert, 2001; Daille, 1996). Conversely to

establishing a lower bound baseline, it is also possible to define an upper limit for

lexical association measure performance (Evert, 2005). Such an optimal association

measure would rank all targets at the top of the output list and thus entirely fulfill

the requirements postulated in subsection 4.1.4 for an ideal system.

It may be the case that in comparing association measures (or systems in gen-

eral) by means of precision and recall values and graphs, the observed differences are

rather small thus raising the question whether they are existent at all or merely due

to chance.24 Therefore, it may be necessary to test whether the differences observed

in evaluation results are statistically significant. For testing such differences between

association measures, it may be best to do so on the basis of incremental portions of

the ranked output list. A more difficult question is which one out of the wide range

24The reasons for such chance differences may be manifold, e.g., choice of the text corpus, noise

due to linguistic filtering, unreliability of human judgments or incompleteness of (terminological)

resources, to name just a few.
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of significance tests may be best applied. For example, Krenn & Evert (2001) use

Pearson’s chi-squared test but note at the same time that this test assumes indepen-

dent samples which is strictly speaking not admissible for the comparison of different

(association-measure derived) rankings performed on the same (collocation or term)

candidate set. Hence, it is more advisable to use the McNemar test (Sachs, 1984;

McNemar, 1947) which is a special non-parametric version of the chi-squared test and

may thus also be applied to dependent samples. In concrete, employing McNemar

as a significance test of differences between two lexical association measures (LAM)

may be depicted by means of the 2 x 2 contingency table in Table 4.7. The values of

the cells may then be computed by taking a certain portion of the ranked output list,

which of course may be done incrementally.

LAM1 target LAM1 non-target

LAM2 target a b

LAM2 non-target c d

Table 4.7: The McNemar significance test of differences for comparing two lexical associa-

tion measures (LAMs).

The actual test statistic is then given by the following equation:

χ2 =
(|b − c| − 1)2

b + c
(4.15)

The factor −1 marks Yates’ discontinuity correction (Yates, 1934) which, however,

only needs to be applied in the case of small samples, i.e. approximately b + c < 30.

When taking a closer look at the McNemar test, a striking observation is that the cases

when the two association measures agree contribute no information to the decision

whether the differences are significant or not. In fact, it is the only cases when the

two association measures disagree, i.e. b and c, which contribute to this significance

test. In all our experiments in the next chapter, we will apply the McNemar test for

a (very strict) confidence interval of 99%.
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4.5.1.6 Qualitative Performance Evaluation

The methods of performance evaluation outlined in the previous two subsections (i.e.

precision, recall, F-score, fallout and ROC in subsubsection 4.5.1.4 and the McNemar

significance test in subsubsection 4.5.1.5) may be roughly characterized as examin-

ing the differences between different association measures from a mainly quantitative

perspective. For the sake of a truly comprehensive evaluation and comparison of

our linguistically motivated association measures LSM and LPM with respect to the

standard measures, it may be also informative to provide some sort of qualitative

performance evaluation. For devising such a qualitative performance evaluation for

lexical association measures, it may be helpful to recall that in subsection 3.3.7, we

have outlined how frequency of co-occurrence may be used as an easily implementable

measure. As previously pointed out, several studies (e.g., Daille (1996), Evert & Krenn

(2001)) have already reported on quite competitive evaluation results of this associ-

ation measure with respect to statistical and information-theoretic ones. It is also

for this reason that we have defined frequency of co-occurrence as a second more

challenging baseline (see the previous subsection 4.5.1.5).

It is therefore reasonable to postulate that a qualitative performance evaluation

should target the differences between frequency of co-occurrence, on the one hand,

and the lexical association measure under consideration, on the other hand. In de-

vising an appropriate set of qualitative criteria we take up the two conditions laid

out in subsection 4.1.4 which state that an ideal association measure should rank the

targets from the candidate set in the upper portion of the output list and, conversely,

the non-targets in the lower portion. Then, the following four qualitative achieve-

ment objectives for a lexical association measure may be formulated with respect to

frequency of co-occurrence:

1. Keep the targets25 in the upper portion.

2. Keep the non-targets in the lower portion.

3. Demote the non-targets from the upper portion.

4. Promote the targets from the lower portion.

25Which were ranked by frequency of co-occurrence.
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In subsection 5.1.2 and in subsection 5.2.2 in the next chapter, we will examine for

collocation extraction and for term extraction, respectively, how these four criteria

may be taken to compare the different rankings assigned by a certain association

measure and by frequency of co-occurrence. It should be noted that the first two

qualitative criteria are more static whereas the last two may be more described as

dynamic. For this purpose, it is best to choose the middle rank as a mark to divide a

ranked output list into an upper portion and a lower portion. Then the targets and

non-targets assigned to these portions by frequency may be examined and quantified,

according to the four criteria, to what degree the other association measures changed

these rankings (or not).

4.5.2 Evaluation Setting for Collocation Extraction

In this subsection, we will describe the evaluation setting for the task of collocation

extraction with respect to German-language preposition-noun-verb (PNV) combina-

tions. First, we will describe how we assemble a balanced general-language text cor-

pus (subsubsection 4.5.2.1) as well as the morphological and syntactic analyzers with

which we preprocess this corpus linguistically in order to obtain the syntactic target

structure (subsubsection 4.5.2.2). Finally, we explain in detail how we classified the

target PNV candidates into collocations and non-collocations by relying on human

linguistic judgments. In particular, we also focus on how quality control was carried

out with respect to the reliability of these judgments – in order to ensure a sound and

valid gold standard for our performance evaluations (subsubsection 4.5.2.3).

4.5.2.1 Text Corpus and Linguistic Filtering

As laid out in subsection 4.5.1.1 above, collocations are typically to be considered

as general language expressions and, consequently, an ideal text corpus should be as

representative as possible for general language. For the (British) English language

and as a pars pro toto of such a text corpus, the British National Corpus (BNC)26

(Leech, 1992; 1993) is a 100 million word collection of samples of written and spoken

language from a wide range of sources, designed to represent a wide cross-section of

British English from the later part of the 20th century, both spoken and written.

The written part of the BNC (90%) includes, for example, extracts from regional

26http://www.natcorp.ox.ac.uk
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and national newspapers, specialist periodicals and journals for all ages and interests,

academic books and popular fiction, published and unpublished letters and memo-

randa, school and university essays, among many other kinds of text. The spoken

part (10%) includes a large amount of unscripted informal conversation, recorded

by volunteers selected from different age, region and social classes in a demographi-

cally balanced way, together with spoken language collected in all kinds of different

contexts, ranging from formal business or government meetings to radio shows and

phone-ins. Unfortunately, such a representative (and freely available) corpus does not

exist for the German language, which is the focus for collocation extraction in this

thesis . Although the COSMAS corpus27 (Stickel, 1994) may be considered as a large

electronic text collection for the German language, it is mainly composed of newspa-

per text material28 and, in addition, only accessible via a web service or a desktop

client program.

For these reasons, we decided to assemble our own German text corpus by down-

loading 114 million words of text material from the online archive of the German

newspaper Die Welt29 ranging in years from 1996 to 2001. In order to ensure as

much genre diversity and textual representativeness as possible, we included articles

from all textual categories offered, i.e., politics, business and economy, finance, sports,

culture and society, science and research, information technology, travel, lifestyle and

cars. Then, this text collection was linguistically processed by applying a POS tagger

and a phrase chunker to it. The POS tagger used was the Hidden-Markov-Model

(HMM) based TNT tagger (Brants, 2000) which was trained on the German NEGRA

corpus (Skut et al., 1997), which consists of 355,096 tokens (20,602 sentences) of syn-

tactically annotated newspaper text material. The part of speech tagset used for this

annotation is the STTS tagset (Thielen & Schiller, 1996) which may be considered as

the standard tagset for the German language. Phrase chunking, in particular iden-

tifying noun phrases (NPs) and prepositional phrases (PPs), was then performed by

implementing a set of cascaded finite state (regular expression) chunk rules based on

(STTS) part of speech sequences, along the lines suggested by Abney (1991) and Ab-

ney (1996). Finally, in order to normalize morphological variation of the component

parts of the the PNV triple collocational target structure (and thus eliminate poten-

27http://www.ids-mannheim.de/cosmas2
28See http://www.ids-mannheim.de/cosmas2/referenz/korpora.html
29http://www.welt.de/archiv
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tial noise for counting), all main verbs and common nouns were lemmatized to their

base form by a morphological analyzer for German (Lezius et al., 1998).

4.5.2.2 Target Structure and Candidate Sets

From the linguistically preprocessed text output (see the previous subsection 4.5.2.1),

preposition-NP-verb patterns were automatically selected in the following way: tak-

ing a particular preposition as a fixed point, the immediately following NP30 was

selected together with either the preceding or the following main verb. From such

preposition-NP-verb combinations, we extracted and counted both the various heads,

in terms of Preposition-N oun-V erb (PNV) triples as our collocational syntactic tar-

get structure, and all the associated syntagmatic attachments, i.e., here any additional

lexical material which also occurs in the noun phrase, such as articles, adjectives, ad-

verbs, cardinals, etc. The extraction (and counting) of the associated syntagmatic

attachments is of course essential to our linguistically motivated statistical associa-

tion measure LSM described in section 4.3 above.

As we have already pointed out in subsubsection 4.5.1.2 above, it is necessary to

specify a frequency cut-off threshold thus limiting the number of candidates to be

included in the candidate set. In the case of collocation extraction, the setting of such

a threshold also needs to be guided by practical concerns because the targets (i.e.

the actual collocations) need to be manually identified (i.e. by human annotators)

in the complete collocational candidate set in order to ensure a sound and reliable

evaluation (see the discussions in subsubsections 4.5.1.3 and 4.5.1.4). Therefore, in

order to obtain a candidate set whose human classification is practically feasible at

all in time and effort, we set the frequency threshold to f > 9 and only included

PNV triples above this cut-off threshold from our 114-million-word German newspaper

corpus in our collocational candidate set. Table 4.8 contains the frequency distribution

of both PNV triple tokens (i.e., all single-instance linguistic expressions) and types

(i.e., distinct linguistic expressions), both with and without the frequency threshold

applied.

As can be seen, there is a huge decrease in numbers of the PNV triple tokens and

types if a frequency threshold is applied. In particular, the distinct PNV triple types

30Thus, the NP is of course taken to be the phrasal unit from which we isolate our phrasal head

N for our PNV triples, as established in the definition of the LSM association measure in subsection

4.3.1.
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frequency PNV triples

candidate tokens candidate types

all 1,663,296 1,159,133

f > 9 279,350 8,644

Table 4.8: Frequency distribution of PNV triple tokens and types for our 100-million-word

German newspaper corpus

which in effect constitute the collocational candidate set amount to 8,644, which is a

feasible size in terms of human annotation time and effort.

As we have laid out in subsection 4.5.1.1 above, in order to ensure that the observed

empirical properties and respective differences of lexical association measures are not

mainly due to corpus size, we will also run our experiments and evaluations on a

substantially different corpus size. For this purpose, we reduce the size of our German

newspaper corpus to about 10% of its original size, thus yielding 10 million word

tokens. Table 4.9 shows the respective frequency distribution in terms of PNV triple

tokens and types.

frequency PNV triples

candidate tokens candidate types

all 132,136 117,062

f > 4 12,529 1,035

Table 4.9: Frequency distribution of PNV triple tokens and types for 10 million words of

German newspaper corpus

As can be seen, we have set the frequency cut-off threshold to f > 4 which is in

line with the requirements for a minimum threshold advocated by Evert (2005) (see
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subsection 4.5.1.2). From this, a collocational candidate set amounting to 1,035 PNV

triples was obtained. These PNV triples are of course a proper subset of the 8,644

which were obtained from the 114-million-word corpus.

4.5.2.3 Classification of Candidate Set and Quality Control

In order to manually identify the actual target collocations for our gold standard, we

took the collocational candidate set derived from the 100-million-word corpus (i.e.,

the 8,644 PNV triples) and divided it into three roughly equal-sized portions. Each

of them was then given to a human annotator whose task it was to mark the true

collocations in the set. All annotators were native speakers of German and graduate

students of linguistics. They were given an annotation manual, in which the guidelines

included the linguistic properties described in subsubsection 2.1.4.1 and a description

of the three collocational classes and how they may be distinguished from free word

combinations, as outlined in subsubsection 2.1.4.2. The manual31 is given in Appendix

A at the end of this thesis. Besides the coarse-grained classification of whether a PNV

triple candidate was a true collocation or not, the annotators also had to do a three-

category fine-grained classification of the collocational targets they identified, i.e. they

had to decide whether the collocation was an idiomatic phrase (category 1), a support

verb construction or a narrow collocation (category 2), or a fixed phrase (category

3), according to the collocational subtypes established in subsubsection 2.1.4.1. Table

4.10 gives an overview of the proportion of actual PNV triple collocations identified

and the subproportions of the three collocational categories in both our large-sized

(114 million words) and our small-sized (10 million words) German newspaper corpus.

As can be seen, the proportion of actual collocations in the small-sized corpus

amounts to over one third and is thus substantially higher than in the large-sized

corpus in which it only reaches a little bit less than 14%. In terms of absolute numbers,

increasing the corpus over ten times (i.e. from 10 million words to 114 million words)

increases the number of candidates over eight times (from 1,035 to 8,644), but only

triples the number of actual collocations (from 335 to 1,180). One effect that this is

due to is certainly the frequency cut-off threshold of four, which however is already

set as low as possible (see subsection 4.5.1.2).

We have substantiated in subsection 4.5.1.3 that in the case of human annotation

31The guidelines, of course, had to be written in German.



4.5 Evaluation Setting 136

100 million words 10 million words

PNV triple candidates 8,644 1,035

actual collocations 1,180 (13.7%) 355 (34.3%)

idiomatic phrases 700 (59.3%) 185 (52.1%)

support verb constructions /

narrow collocations 355 (30.1%) 141 (39.7%)

fixed phrases 125 (10.6%) 29 (8.2%)

Table 4.10: Proportion of actual PNV triple collocations and sub proportions of the three

collocational categories.

there needs to be some form of quality control which ensures the reliability of the

judgments. This way of measuring the agreement between different human judges

is referred to as inter-annotator agreement. For this purpose, we randomly selected

800 out of the 8,644 collocation candidates and gave them to each annotator for both

coarse-grained and fine-grained classification. Agreement, then, may be calculated

simply by the absolute agreement rate or, statistically more sophisticated, by Cohen’s

Kappa coefficient (Cohen, 1960; Carletta, 1996; Kim & Tsujii, 2006). The absolute

agreement rate P (a) is simply the number of times the annotators agree scaled by the

number of items to annotate.

P (a) =
# items annotator agree on

# items to annotate
(4.16)

In addition to the absolute agreement P (a), the Kappa coefficient κ also takes into

account the expected chance agreement P (e), as given in equation 4.17.

κ =
P (a) − P (e)

1 − P (e)
(4.17)

The κ value obtained from this computation may range between -1 and 1. Negative
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κ indicates that the absolute agreement is less than chance agreement and positive

κ indicates a higher than chance agreement. Having established a kind of bench-

mark, Landis & Koch (1977) discriminate the ranges of the κ values with designated

strengths of agreement, as outlined in table 4.11

κ value Strength of Agreement

< 0 Poor

0.0 - 0.2 Slight

0.21 - 0.4 Fair

0.41 - 0.6 Moderate

0.61 - 0.8 Substantial

0.81 - 1.0 Almost Perfect

Table 4.11: Ranges of the Kappa coefficient and designated strengths of agreement

For the calculation of the expected chance agreement P (e) on a binary classifica-

tion task, it is most convenient to establish 2 x 2 contingency tables of observed and

expected frequencies along the lines proposed in subsection 3.3.1. We illustrate the

observed coarse-grained classifications (i.e., whether a given candidate is a collocation

or not) by means of the judgments of two of our linguistic annotators, designated

Annotator 1 and Annotator 2, on the 800 randomly selected collocation candidates,

given in table 4.12.

Annotator 1

collocation not collocation Total

collocation 79 16 95Annotator 2

not collocation 30 675 705

Total 109 691 800

Table 4.12: Observed coarse-grained collocation classifications by two annotators
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We can get the observed absolute agreement rate P (a) by adding up the first cell

(where both classify the candidates as collocations) and the fourth cell (where both

classify the candidates as non-collocations) of the 2 x 2 table (i.e., 79 + 675 = 754)

and scaling it by the number of items to classify (i.e., 800). This yields an absolute

agreement rate of 0.94. Now, the expected chance agreement P (e) may be obtained

by computing the expected frequencies of these two cells (as described in table 3.2

in subsection 3.3.1) and again scaling the value by 800. Observed and expected

agreement values may now be plugged into equation 4.17, resulting in a κ value of

0.74 which indicates substantial agreement according to table 4.11 above.

# Candidates P (a) κ value

Annotator 1 and 2 800 0.94 0.74

Annotator 2 and 3 800 0.97 0.86

Annotator 1 and 3 800 0.93 0.68

Average 800 0.95 0.76

Table 4.13: Overview of agreement rates and Kappa values for coarse-grained classi-

fication.

# Candidates P (a) κ value

Annotator 1 and 2 79 0.82 0.65

Annotator 2 and 3 78 0.90 0.79

Annotator 1 and 3 69 0.83 0.66

Average 75.3 0.85 0.7

Table 4.14: Overview of agreement rates and Kappa values for fine-grained classification.

In the case of calculating the κ agreement for the fine-grained classification of

collocational candidates (i.e. deciding to which of the three categories an actual collo-

cation belongs to), we may of course only consider those candidates which are actual

collocations and on which two annotators agree on their status of being collocations.

Because the κ statistics is set up to depend on binary decisions, we calculated the fine-
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grained agreements as to whether the annotators decided whether or not an actual

collocation was an idiomatic phrase or not. Tables 4.13 and 4.14 give an overview of

the absolute agreement rates and κ values thus obtained, both for the coarse-grained

and the fine-grained classification, respectively

As can be seen from the two tables, with respect to the coarse-grained classifica-

tion of collocational candidates, all inter-annotator agreements show a high degree of

absolute agreement, averaging to 0.95, and a substantial degree of κ agreement, aver-

aging to 0.76. As for the fine-grained classification of actual collocations, the absolute

agreement rates are less (with an average of 0.85), reflecting the fact that this task

is obviously linguistically much more difficult and intricate. Still, the κ agreement,

averaging to 0.7, is still indicative of a substantial degree of agreement, even for this

challenging task.

4.5.3 Evaluation Setting for Term Extraction

Because terms may be considered as linguistic expressions which are typically con-

fined to a particular subject domain and sublanguage (cf. section 2.2), in general,

the task evaluating different term extraction procedures boils down to choosing such

a domain. A key consideration here is to select a subject domain with a large enough

text corpus repository in order to compute reliable statistics from it and, ideally, with

an already existing and sufficiently comprehensive terminological resource which may

serve to automatically classify the term candidate set. Fortunately, the biomedical

domain fulfills both of these requirements and, for this reason, it was chosen as the

subject domain of choice for this thesis. Thus, in this subsection, we will describe the

assembly and linguistic processing of the particular biomedical subdomain text corpus

(subsubsection 4.5.3.1), the syntactic target structures from which we obtained our

term candidate sets (subsubsection 4.5.3.2), as well as the corresponding biomedical

terminological resource for the automatic gold-standard classification of these candi-

date sets (subsubsection 4.5.3.3).

4.5.3.1 Text Corpus and Linguistic Filtering

The biomedical literature database from which we collect our domain-specific text

collection is Medline. This bibliographic repository, which as of February 2007 con-

tains 16 million abstracts from approximately 5,000 selected publications covering
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biomedicine and health from 1950 to the present, is hosted by the U.S. National Li-

brary of Medicine (NLM)32 and searchable via the PubMed Entrez system.33 The

field of biomedicine, of course, encompasses a large amount of subdomains and special

topics, all of which focus on biological, medical, clinical, pharmaceutical aspects, to

name just a few. Therefore, for this thesis, we focus on the subdomain of Hematopoi-

etic Stem Cell Transplantation (HSCT) and Immunology, which lies at the interface

between genomic/proteomic research, on the one hand, and medical/clinical applica-

tion, on the other hand.34 In order to isolate this subdomain from the Medline text

collection, we make use of NLM’s controlled indexing vocabulary, the Medical Sub-

ject Headings (MeSH)35 which contains approximately 20,000 terms used to manually

add metadata descriptors to Medline abstracts. In order to target the right texts,

we selected 35 MeSH terms describing HSCT and Immunology.36 Then we queried

Medline with these indexing terms, setting the publication date range from 1990

to 2006.37 Because manual indexing consistency for Medline has been reported to

be very poor (Funk & Reid, 1983), the MeSH terms were OR-ed in order to ensure

a subdomain coverage of abstracts as complete as possible.38 Then, by running this

query, we downloaded approximately 400,000 abstracts form Medline amounting to

100 million words of text material.

This text collection was then linguistically processed by applying a POS tagger

and a phrase chunker to it. In particular, we employed the Genia tagger (version 3.0)

for this purpose, which performs part-of-speech tagging and phrase chunking for En-

glish biomedical text at state-of-the-art performance levels (Tsuruoka & Tsujii, 2005).

Because the syntactic target structure for terms are noun phrases, we performed two

additional linguistic processing operations on them. First, we filtered out a number

32http://www.nlm.nih.gov/
33http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
34HSCT is used for a variety of malignant and nonmalignant disorders to replace a defective host

marrow or immune system with a normal donor marrow and immune system.
35http://www.nlm.nih.gov/mesh/
36The MeSH index terms were selected in consultation with a domain expert and are listed in

Appendix B.
37Typically, publications prior to 1990 are considered outdated for fast-changing subdomains, such

as molecular biology.
38Also, analogous to our experimental setting for collocations (see subsection 4.5.2.2), the text

corpus needs to be large enough to be reduceable to 10% of its original size in order to run our

experiments and evaluations on different corpus sizes.
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of stop words from the noun phrases in order to reduce the amount of noise. In order

to ensure that no potential content words be filtered out, we determined these stop

words by their part of speech tag (such as determiners, pronouns, measure symbols

etc.)39 instead of using a stop word list, as is traditionally done. It should be noted

that stop words, unlike in the case of collocations, do not function as integral parts

of terminological expressions and thus filtering them out is actually a preprocessing

step widely employed by other term extraction studies as well (Frantzi et al., 2000;

Daille, 1996; Jacquemin, 2001). The second additional processing step concerns the

morphological normalization of term candidates, which has shown to be beneficial for

term extraction (Nenadić et al., 2004). For this purpose, we normalized the nominal

head of each noun phrase (typically the rightmost noun in English) to its base form

via the full-form Umls Specialist Lexicon (Browne et al., 1998), a large repository

of both general-language and domain-specific biomedical vocabulary.

4.5.3.2 Target Structures and Candidate Sets

From our linguistically processed corpus, we extracted the noun phrases and counted

their occurrence frequencies. In order to obtain term candidate sets which are ample

to have LPM scores computed from (see subsubsection 4.4.1 above), we categorized

the noun phrases according to their length. In line with the observations put forth by

Justeson & Katz (1995), we restricted ourselves to NPs of length 2 (bigrams), length

3 (trigrams) and length 4 (quadgrams) because these are the constructions where the

vast majority of terms are typically manifested (see subsection 2.2.7 above).

As we have already pointed out in subsubsection 4.5.1.2 and done for collocations in

subsubsection 4.5.2.2, a frequency cut-off threshold needs to be specified thus limiting

the number of candidates to be included in the candidate set. Although in the case of

classifying the term candidate sets (i.e. identifying the actual terms in them), we do

not have to rely on manual classification (as will be explained in subsubsection 4.5.3.3

below), setting the frequency cut-off to the lowest possible value f > 4 may not be a

good idea either, in particular not for our large 100-million word text corpus (see table

4.15). Because term candidate sets which have been ranked by a lexical association

measure are in practice still the input for manual post-inspection by a domain expert,

39The same effect is achieved if, instead of filtering out stop POS tags from a noun phrase, only

NP-specific POS patterns are specified as a linguistic filter (Justeson & Katz, 1995; Frantzi et al.,

2000).
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n-gram length cut-off NP term candidates

tokens types

no cut-off 5,795,447 1,111,248

bigrams f > 9 3,991,566 66,669

no cut-off 2,963,186 1,620,696

trigrams f > 7 960,538 28,499

no cut-off 1,590,591 1,284,759

quadgrams f > 5 207,661 9,859

Table 4.15: Frequency distribution for n-gram noun phrase term candidate tokens and

types for the 100-million-word Medline text corpus

it is advisable to have the frequency cut-off threshold set higher in order to avoid too

large ranked output lists. For these reasons, we set the thresholds for the bi-, tri-,

and quadgram term candidates to f > 9, f > 7 and f > 5, respectively. As can be

seen from table 4.15, even setting the thresholds to these higher levels still yields very

large candidate sets, in particular for the bigram candidates. Hence, for such a large

corpus, the thresholds may be even set higher in practice.

On the other hand, it is well advisable to set the frequency cut-off to the lowest

possible value with respect to our smaller 10-million word text corpus, as can be seen

from table 4.16. In particular in the case of quadgrams, the number of candidate

types only amounts to 912. This data sparsity, as we will see in section 5.2 below,

will have some effect on the performance evaluation.

The fact that the number of observation types drops sharply with increasing n-

gram size is, of course, a well-known property observed in the area of language mod-

eling, e.g. for speech recognition (Jurafsky & Martin, 2000), and thus may yield data

sparsity which may turn out to be problematic especially for smaller-sized language

corpora.
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n-gram cut-off NP term candidates

length tokens types

no cut-off 615,415 206,009

bigrams f > 4 357,174 19,001

no cut-off 315,071 215,203

trigrams f > 4 73,320 4,721

no cut-off 167,396 146,803

quadgrams f > 4 13,009 912

Table 4.16: Frequency distribution for n-gram noun phrase term candidate tokens and

types for the 10-million-word Medline text corpus

4.5.3.3 Classification of Candidate Sets

The vast majority of term extraction studies evaluates the goodness of their extraction

procedures by having their ranked output examined by domain experts who identify

the true positives among the ranked candidates. Similar to various studies on collo-

cation extraction, typically only the top n candidates on the ranked output list are

considered in such an evaluation procedure, with n being rather small ranging from 50

to several hundreds (see subsubsection 4.5.1.3 above). There are also several problems

with such an approach for the term extraction evaluation. First, very often only one

such expert is consulted and, hence, inter-annotator agreement cannot be determined

(as, e.g., in the studies of Frantzi et al. (2000) or Collier et al. (2002)). Furthermore,

what constitutes a relevant term for a particular domain may be rather difficult to

decide – even for domain experts – when judges are just exposed to a list of candidates

without any further context information. Thus, rather than relying on ad hoc human

judgments in identifying the target terms in a candidate set, as an alternative we

may take already existing terminological resources into account, in particular if they

have evolved over many years and usually reflect community-wide consensus achieved

by expert committees. With these considerations in mind, the biomedical domain is

an ideal test bed for evaluating the goodness of term extraction methods because it
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hosts one of the most extensive and most carefully curated terminological resources,

viz. the Umls Metathesaurus (Bodenreider, 2004). Therefore it is possible to take

the mere existence of a term in the Umls as the decision criterion whether or not a

candidate term is also recognized as a biomedical term relevant for our subdomain of

HSCT and Immunology.

Accordingly, for the purpose of evaluating the quantitative and qualitative perfor-

mance of our LPM measure against the standard association measures in recognizing

multi-word terms from the biomedical literature, we assign every word bigram, tri-

gram, and quadgram in our candidate sets (see tables 4.15 and 4.16 above) the status

of being an actual term, if it is found in the 2006 edition of the Umls Metathe-

saurus (Umls, 2006). In this respect, it is essential that we exclude Umls vocabular-

ies which are not deemed relevant for HSCT and Immunology. Such vocabularies may

include, among others, nursing and health care billing terms and codes. Appendix

B of this thesis lists the complete list of Umls source vocabularies included in our

experiments. Thus, in this respect, the word trigram “open reading frame” (from our

illustration of LPM in subsection 4.4.2) above is listed as a term in one of the Umls

vocabularies considered,40 whereas “t cell response” is not listed anywhere.

100 million words 10 million words

bigram candidates 66,669 19,001

actual terms 14,054 (21.1%) 5,487 (28.9%)

trigram candidates 28,499 4,721

actual terms 3,459 (12.1%) 1,108 (23.5%)

quadgram candidates 9,859 912

actual terms 890 (9.0%) 204 (22.4%)

Table 4.17: Proportion of actual terms among the bigram, trigram and quadgram term

candidates in the large and small corpus.

40Actually, it is listed both in MeSH and the Gene Ontology (GO) (Gene Ontology Consortium,

2006).
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Table 4.17 gives an overview of the different n-gram candidates and their propor-

tions of actual terms determined in this way, both for the large 100-million-word and

the small 10-million-word Medline corpus. Similar to what has been determined

for the proportion of actual collocations (see subsubsection 4.5.2.3 above), the small

corpus also exhibits a substantially higher number of actual targets. Again, the effect

responsible for this may be sought in the frequency cut-off of four, which, however,

is already set as low as possible. In case of the large corpus, the situation looks a

bit different: as can be seen, not only does the number of candidate types drop with

increasing n-gram length but also the proportion of actual terms. In fact, their pro-

portion drops more sharply than can actually be seen from the above data because

the various cut-off thresholds have a leveling effect.



Chapter 5

Experimental Results

In this chapter, we will report on the experimental results obtained for both the

collocation extraction and the term extraction tasks as it was outlined in their eval-

uation settings described in subsections 4.5.2 and 4.5.3 above. In particular, we will

examine – in section 5.1 for collocation extraction and in section 5.2 for term extrac-

tion – whether and to what degree the linguistically motivated statistical association

measures LSM and LPM perform better than their standard counterparts. We will

illuminate these issues from various aspects, relying on the quantitative and quali-

tative performance metrics introduced in subsection 4.5.1.4 and 4.5.1.6, respectively.

Another aspect we focus on is that we run our performance metrics both on the large

and on the small text corpora which we assembled and preprocessed linguistically.

While the reason for doing so is to ensure that the observed empirical results and

differences are not mainly due to corpus size, this aspect also has some practical rele-

vance. Whereas the availability of large general-language text corpora is typically not

a problem for the collocation extraction task, there are certainly subject domains for

which the amount of electronically available text resources is not as abundant as for

the biomedical domain. Finally, section 5.3 offers a comprehensive overall assessment

of our experimental results and summarizes the commonalities and differences between

our linguistically motivated association measures, with respect to the collocation and

the term extraction tasks as well as with respect to the comparative performance

evaluations against the standard statistical and information-theoretic measures.
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5.1 Experimental Results for Collocation Extrac-

tion

In this section, we will present and examine the evaluation results for our performance

experiments conducted for the task of collocation extraction from German newspaper

text. For this purpose, we will compare our linguistically motivated statistical asso-

ciation measure LSM to the array of standard statistical and information-theoretic

association measures presented in section 3.3, viz. t-test, frequency of co-occurrence,1

log-likelihood and pointwise mutual information (PMI). We also experimented with

Daille (1994)’s variants of PMI (see subsection 3.3.4) but did not find any substantial

difference and thus excluded them from our discussion – also for the sake of main-

taining clarity and not overloading the presentation of our results with non-telling

association measure variants.

For both our quantitative and our qualitative results (see subsections 5.1.1 and

5.1.2), we present the performance metric data in form of tables and figures, in order

to allow different views and perspectives on the results. As for the qualitative results,

in particular with respect to the four qualitative criteria, we refrain from visualizing

them for all association measures – due to severe “clarity of presentation” concerns –

and instead limit ourselves to some illustrative samples. Finally, subsection 5.1.3 also

describes the results for the question to what degree there is a marked difference with

respect to the linguistic LSM property, both between collocations and non-collocations

and among the different types of collocations.

5.1.1 Quantitative Results

We will carry out quantitative performance evaluation for the PNV triple collocation

candidates extracted both from our large 114 million word and our small 10 million

word German newspaper language corpus. As laid out in subsubsection 4.5.1.4, this

kind of evaluation is performed by incrementally examining increasing portions of the

ranked output list returned by each of the five association measures examined. For

this purpose, we evaluate their performance in terms of precision, recall, F-score, and

ROC in a series of four experiments (subsubsection 5.1.1.1). For evaluating precision,

1For the sake of brevity, we will label frequency of co-occurrence with frequency when discussing

our experimental results.
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it is possible to determine a lower baseline or bound by determining the proportion

of targets in the candidate set. Another much more challenging baseline, which also

fits for the other performance metrics (i.e. recall, F-score, and ROC), is the actual

easy-to-implement frequency measure. Conversely, the performance of the various

association measures is also compared against an optimal measure which gives a sort

of upper bound for the collocation extraction task. Finally, employing the McNemar

test, we also compare the ranked outputs of various association measures and test

whether the differences are statistically significant (subsubsection 5.1.1.2).

5.1.1.1 Results on Performance Metrics

In the first series of quantitative experiments, we incrementally measured the per-

formance of the various association scores in terms of their precision. For our large

corpus, the results are visualized in figure 5.1 whereas the corresponding scores are

given in the upper part of table 5.1 at incremental intervals of 10 percentage points

of the ranked output list. As can be seen from both views on the results, the lin-

guistically motivated LSM association measure holds a constant advantage over the

next placed frequency measure, starting from 10 points at 1% of the ranked output

list (≈ 86 candidates) and gradually decreasing. Whereas the precision values for

frequency and t-test cluster together, log-likelihood is below and PMI actually even

underperforms the baseline.
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Figure 5.1: Collocation precision on 114

million word corpus
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Ranked Precision scores (8,644 PNV triple candidates; 1,180 targets

list upper fre- log base-

portion bound LSM quency t-test likelihood PMI line

1% 1.00 0.84 0.74 0.74 0.71 0.18 0.14

10% 1.00 0.51 0.46 0.46 0.40 0.12 0.14

20% 0.68 0.39 0.34 0.34 0.31 0.10 0.14

30% 0.44 0.30 0.27 0.27 0.25 0.10 0.14

40% 0.34 0.27 0.24 0.23 0.21 0.10 0.14

Ranked Precision scores (1,035 PNV triple candidates; 355 targets

list upper fre- log base-

portion bound LSM quency t-test likelihood PMI line

1% 1.00 1.00 0.82 0.82 0.82 0.36 0.34

10% 1.00 0.79 0.62 0.62 0.63 0.23 0.34

20% 1.00 0.70 0.57 0.57 0.54 0.17 0.34

30% 1.00 0.63 0.55 0.53 0.44 0.23 0.34

40% 0.86 0.58 0.48 0.46 0.40 0.24 0.34

Table 5.1: Precision scores of association measures for collocation extraction on the 114

million word (upper table) and 10 million word (lower table) German newspaper corpus.

The precision score results for our smaller 10 million word corpus are given in

the lower part of table 5.1 and the corresponding visualization is shown in figure 5.2.

As can be clearly seen, the advantage of LSM with respect to the statistical and

information-theoretic association measures is much more pronounced. At 1% of the

ranked output list (≈ 11 candidates), LSM runs almost 20 points higher than the

next placed measures frequency, t-test and log-likelihood. In fact, its performance is

optimal, as can be seen from the comparison with the upper bound limit. Although the

advantage becomes smaller with increasing output portions, the lead still runs about

11 points at the 60% portion. At later portions again, all the measures converge toward

the lower baseline, which here runs 20 points higher than for the large corpus (0.34

versus 0.14). In general, it is interesting to note that after 20% (≈ 207 candidates) to

30% (≈ 311 candidates) of the output scanned, the precision scores for frequency and

t-test may be grouped together followed by log-likelihood, as can be also seen in the
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plotted precision graphs. This tendency, although less pronounced, is also observable

on the large corpus (see figure 5.1 and the upper table 5.1 above). In a similar

vein than for the large corpus, it is again the PMI measure which underperforms the

baseline, here even more substantially.

In a second series of quantitative experiments, we incrementally measured the

performance of the various association measures in terms of their recall, again both

for our large and for our small corpus. Because recall measures the proportion of

selected targets at a certain point in the ranked output list, it has a particularly

practical relevance because the output lists produced by various association measures

are typically post-examined by a human. Hence, the earlier a large proportion of

targets is returned, the more efficient an association method may be considered.
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Figure 5.3: Collocation recall on 114 mil-

lion word corpus
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Figure 5.4: Collocation recall on 10 mil-

lion word corpus

The recall results of the 114 million word corpus are visualized in figure 5.3 and

the corresponding scores are given in the upper part of table 5.2, again at incremental

intervals of 10 percentage points of the ranked output list. As can be seen from the

plot, our linguistically motivated LSM association measure again has a clear advan-

tage compared to the standard statistical and information-theoretic measures. This

advantage is most pronounced at the 60% portion of the ranked list where LSM ex-

hibits a 10-point higher recall than the second-placed frequency measure. But, as can

be seen both from the plot and recall scores, this clear advantage already prevails at

much lower portions of the output. When examining 20% (≈ 1729 candidates), 30%

(≈ 2593 candidates) and 40% (≈ 3458 candidates), LSM already identifies almost
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60%, 70% and 80% of all targets. In order to return 90% of all targets, LSM only

needs to scan 55% of the output (≈ 4754) whereas frequency needs to examine 75%

(≈ 6483) and t-test 85% (≈ 7347) to reach such a high level of recall. In addition,

a similar pattern like the one observed in the lower part of table 5.1 and figure 5.2

for the precision results on the small corpus appears in that the scores (and thus the

curves) for frequency and t-test cluster together, indicating these measures perform

similarly. Whereas log-likelihood runs below these two, the information-theoretic PMI

again severely underperforms compared to all the other association measures.

Ranked Recall scores (8,644 PNV triple candidates; 1,180 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

20% 1.00 0.56 0.50 0.50 0.46 0.14

30% 1.00 0.69 0.62 0.61 0.57 0.22

40% 1.00 0.79 0.70 0.69 0.63 0.30

50% 1.00 0.86 0.77 0.75 0.68 0.37

60% 1.00 0.93 0.83 0.80 0.73 0.47

70% 1.00 0.96 0.88 0.85 0.81 0.61

80% 1.00 0.98 0.92 0.89 0.86 0.77

90% 1.00 1.00 0.96 0.93 0.92 0.90

Ranked Recall scores (1,035 PNV triple candidates; 355 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

20% 0.58 0.41 0.33 0.34 0.31 0.10

30% 0.90 0.57 0.49 0.48 0.40 0.21

40% 1.00 0.68 0.56 0.54 0.46 0.28

50% 1.00 0.79 0.64 0.63 0.54 0.40

60% 1.00 0.87 0.72 0.70 0.63 0.49

70% 1.00 0.96 0.80 0.79 0.71 0.65

80% 1.00 0.98 0.88 0.85 0.81 0.79

90% 1.00 0.99 0.94 0.92 0.92 0.92

Table 5.2: Recall scores of association measures for collocation extraction on the 114 million

word (upper table) and 10 million word (lower table) German newspaper corpus.
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The recall scores for our smaller 10 million word corpus are given in the lower part

of table 5.2 and the corresponding plot visualization is shown in figure 5.4. Similar

to the large corpus, frequency and t-test may be grouped together followed by log-

likelihood, while PMI again performs substantially worse. Compared to the second

best frequency measure, the point advantage of LSM is even much more pronounced

for the smaller corpus than for the larger one and reaches its peak with 16 points (0.96

vs. 0.8 recall) at the 70% portion (≈ 725 candidates). Similar to the large corpus,

LSM needs to scan a much smaller portion of the ranked output list (62% – ≈ 642

candidates) in order to reach 0.9 recall than the next placed frequency and t-test with

83% (≈ 859) and 88% (≈ 911), respectively. As already observed with respect to the

precision and recall scores above, it can be also seen here that, with respect to the

upper bound optimum, there is still room for substantial improvement.

The third series of quantitative experiments combines both the precision and recall

scores into the balanced F-score, the results of which are given in figure 5.5 and the

upper table 5.3 for our large corpus. As can be seen, besides PMI, all association

measures reach the peak F-score already at an early portion of the ranked output list,

i.e. at around 15% (≈ 1383 candidates). Naturally, the order of performance at this

portion reflects the singular precision and recall scores, with LSM performing best

(0.46 F-score) followed by frequency (0.41) and t-test (0.4) and then log-likelihood

(around 0.37).
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Figure 5.5: Collocation F-score on 114

million word corpus
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Ranked F-scores (8,644 PNV triple candidates; 1,180 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

10% 0.85 0.43 0.39 0.39 0.34 0.10

20% 0.81 0.46 0.41 0.40 0.37 0.11

30% 0.61 0.42 0.38 0.37 0.35 0.13

40% 0.51 0.40 0.35 0.35 0.32 0.15

50% 0.43 0.37 0.33 0.32 0.29 0.16

60% 0.37 0.34 0.31 0.30 0.27 0.18

70% 0.33 0.31 0.29 0.28 0.26 0.20

80% 0.29 0.29 0.27 0.26 0.25 0.22

Ranked F-scores (1,035 PNV triple candidates; 355 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

10% 0.45 0.36 0.28 0.28 0.29 0.10

20% 0.74 0.52 0.42 0.42 0.40 0.13

30% 0.95 0.60 0.52 0.50 0.42 0.22

40% 0.92 0.62 0.51 0.50 0.43 0.26

50% 0.81 0.64 0.52 0.51 0.44 0.33

60% 0.73 0.63 0.53 0.51 0.45 0.36

70% 0.66 0.63 0.53 0.52 0.47 0.43

80% 0.60 0.59 0.53 0.51 0.49 0.47

Table 5.3: F-scores of association measures for collocation extraction on the 114 million

word (upper table) and 10 million word (lower table) German newspaper corpus.

Comparing the F-score results of the large corpus to those of the small corpus

(see lower part of table 5.3) shows that, in case of the latter one, all the association

measures reach their peak at a much later portion (at around 65% and more [i.e.

after ≈ 673 candidates] of the output list scanned) and the corresponding F-scores

are much higher. Whereas LSM reaches a peak F-score of around 0.65, frequency

attains its 0.54 peak at the same portion as LSM but the t-test arrives at its peak of

0.53 F-score only at the 73% portion (after ≈ 756 candidates). Whereas these three
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measures decrease in F-scores after reaching their peaks, log-likelihood gradually rises

almost until the very end of the output list is reached. Again, PMI underperforms all

other measures considerably.

There is an obvious reason why the F-score peaks are much higher in the case of

the small corpus. Because the proportion of targets (i.e. actual collocations) is much

higher for the 10 million word corpus (34.3%) than for the 114 million word corpus

(13.7%), the higher ratio of selected non-targets depresses the precision values for

the large corpus much more noticeably, which, in turn, has an effect on the balanced

F-score. This is very nicely visualized both in plot 5.6 and plot 5.5 in which it can

be seen that the optimal upper bound F-score is only reached at the 34% portion for

the small corpus whereas this is already the case at 14% portion for the large corpus.2

In other words, because an optimal upper bound selects all targets to the top of the

output list, this idealized status is reached much earlier for the large corpus than for

the small one.
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Figure 5.7: Collocation ROC curve on

114 million word corpus
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Figure 5.8: Collocation ROC curve on

10 million word corpus

Finally, the fourth series of quantitative experiments computes the fallout scores

and plots these against the recall scores into ROC curves. When examining the fallout

scores of the various association measures, as given in the upper part of table 5.4, the

high proportion of non-targets among the 8,644 PNV triple candidates from the large

corpus is reflected.

2Contrary to what the plots might suggest, an optimal F-score of 1.0 is actually never reached.
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Ranked Fallout scores (8,644 PNV triple candidates; 1,180 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

10% 0.00 0.06 0.06 0.06 0.07 0.10

20% 0.07 0.14 0.15 0.15 0.16 0.21

30% 0.20 0.24 0.26 0.26 0.27 0.32

40% 0.31 0.34 0.35 0.35 0.36 0.42

50% 0.42 0.44 0.46 0.46 0.47 0.52

60% 0.54 0.55 0.56 0.57 0.58 0.62

70% 0.65 0.66 0.67 0.68 0.68 0.71

80% 0.77 0.77 0.78 0.79 0.79 0.81

Ranked Fallout scores (1,035 PNV triple candidates; 355 targets

list upper fre- log

portion bound LSM quency t-test likelihood PMI

10% 0.00 0.03 0.06 0.06 0.06 0.12

20% 0.00 0.09 0.13 0.13 0.14 0.25

30% 0.00 0.17 0.21 0.22 0.26 0.36

40% 0.09 0.26 0.32 0.33 0.37 0.46

50% 0.24 0.35 0.43 0.43 0.48 0.55

60% 0.39 0.46 0.54 0.55 0.59 0.66

70% 0.54 0.56 0.65 0.65 0.69 0.73

80% 0.70 0.70 0.76 0.78 0.79 0.81

Table 5.4: Fallout scores of association measures for collocation extraction on the 114

million word (upper table) and 10 million word (lower table) German newspaper corpus.

As can be seen, there is no big difference in the fallout scores (i.e. the rate of

non-targets selected) among the various association measures examined at increasing

portions of the ranked output list.3 In fact, after a third of the output, there is not even

a big difference between the optimal upper limit and the other association measures.

Hence, only looking at the mere fallout scores is not very informative and for this

reason (see subsection 4.5.1.4), fallout is typically plotted against recall thus yielding

the so-called receiver operation characteristic (ROC) curve, which is visualized in

figure 5.7 for the large corpus. As can be seen, the effect of the superior recall scores of

3Of course, the PMI measure is an exception falling out of the line again and illustrating its poor

performance by higher fallout scores.
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LSM compared to the other association measures (as previously outlined in figure 5.3

and the upper table 5.2) come to full effect here, as LSM follows the left-hand border

and then the top border of the ROC space much more closely than its competitors.

Looking at the ROC curves for the small 10 million word corpus shown in figure

5.8, a similar picture is depicted with LSM again following the left border of the ROC

space much more closely and its competitors even falling more behind. If we look at

the actual fallout scores from the lower table 5.4, however, it can be seen that the

higher proportion of targets has its effects on the various fallout rates in that there

is again a noticeable difference between the top-performing LSM measure, on the one

hand, and the next placed frequency and t-test and log-likelihood measures, on the

other hand. In any case, these results show that for the small corpus, the fallout scores

have an effect on the actual ROC curve whereas for the large corpus, the differences

among the association measures are almost exclusively driven by the recall scores.

5.1.1.2 Results on Significance Testing

The main reason for applying significance testing to the results of quantitative per-

formance evaluations, such as the ones we have done in the previous subsubsection,

is that it may be the case that in comparing association measures (or systems in

general), the observed differences are rather small thus raising the question whether

they are existent at all or merely due to chance (see subsection 4.5.1.5). Although the

results reported above already point towards a clear advantage of the linguistically

motivated LSM measure, we will corroborate these findings by applying the McNemar

test as a significance test of differences to incremental portion measure points of the

ranked output list, both on the large and on the small corpus, as laid out in subsection

4.5.1.5. For this purpose, we selected 100 measure points in the ranked list, one after

each increment of one percent, and then applied the two-tailed test for a (very strict)

confidence interval of 99%. In particular, we tested the significance of differences

between LSM and the two next best performing association measures, frequency and

t-test. For the large and the small corpus, the results at 10-point increments are given

in table 5.5.

As can be seen from the number of significant differences, the clear advantage that

LSM exhibited in comparison to its competitors on all the quantitative performance

metrics translates right into the results for the McNemar test, both for the large and
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# of Large corpus: Small Corpus:

measure # of significant differences # of significant differences

points comparing LSM with comparing LSM with

considered frequency t-test frequency t-test

10 9 9 6 6

20 19 19 16 16

30 29 29 27 26

40 39 39 36 36

50 49 49 46 46

60 59 59 56 56

70 69 69 66 66

80 79 79 76 76

90 89 89 86 86

100 95 97 90 90

Table 5.5: Collocation extraction: significance testing of differences using the two-tailed

McNemar test at 99% confidence interval on the large and the small corpus

the small corpus. In both cases, at measure point 10 the small corpus exhibits less

points of differences than the big one (4 points less differences versus 1 point less),

both comparing LSM to frequency and to t-test. But then, until measure point 90,

this ratio is completely kept and it is not until the last measure point 100 that again a

comparatively small amount of significant differences is taken away in all cases. This,

of course, is not astonishing because as can be seen in the figures from the previous

subsection, the various association measure performance curves converge near the end

of the ranked output list for virtually all performance metrics.

5.1.2 Qualitative Results

In subsubsection 4.5.1.6, we have formulated four achievement objectives for the qual-

itative performance evaluation of lexical association measures and took frequency of

co-occurrence as as a sort of baseline against which a particular association measure

should re-rank (or not) the targets and non-targets of the candidate set. Accordingly,

the four objectives may be taken to be two static criteria (subsubsection 5.1.2.1) and

two dynamic criteria (subsubsection 5.1.2.2). As explained, we choose the middle
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rank as a mark to divide a ranked output list into an upper portion and a lower

portion. Then the targets and non-targets assigned to these portions by frequency

may be examined and quantified, according to the four criteria, to what degree the

other association measures changed these rankings or not. In order to better quantify

the degrees of movement, we partitioned both the upper and the lower portions into

three further subportions. Of course, frequency is quite a competitive baseline, given

its quantitative performance shown in the previous section.

5.1.2.1 Results on the Static Criteria

The first two criteria examine how static an association measure is in that a qualita-

tively superior association measure should at least keep the status quo with respect

to frequency. In this respect, criterion 1 examines whether a measure is able to keep

the targets (i.e. the true collocations) in the upper portion. The first part of table

5.6 shows this for the large corpus.

AM upper portion (ranks 1 - 4322) lower portion (ranks 4323 - 8644)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 545 (60.2%) 216 (23.9%) 144 (15.9%) 0 0 0

t-test 540 (59.7%) 198 (21.9%) 115 (12.7%) 9 (1.0%) 12 (1.3%) 12 (1.3%)

905 logL 482 (53.3%) 168 (18.6%) 81 (9.0%) 69 (7.6%) 45 (5.0%) 60 (6.6%)

Ts PMI 103 (11.4%) 96 (10.6%) 136 (15.0%) 176 (19.4%) 240 (26.5%) 154 (17.0%)

LSM 606 (67.0%) 237 (26.2%) 35 (3.9%) 10 (1.1%) 12 (1.3%) 5 (0.6%)

Crit. 2 freq 0 0 0 1326 (32.8%) 1357 (33.5%) 1365 (33.7%)

t-test 0 0 362 (8.9%) 1247 (30.8%) 1323 (32.7%) 1116 (27.6%)

4048 logL 4 (0.1%) 366 (9.0%) 818 (20.2%) 952 (23.5%) 968 (23.9%) 940 (23.2%)

NTs PMI 820 (20.3%) 725 (17.9%) 687 (16.9%) 581 (14.4%) 589 (14.6%) 646 (16.0%)

LSM 0 41 (1.0%) 877 (21.7%) 1163 (28.7%) 977 (24.1%) 990 (24.5%)

Table 5.6: Results on the two static criteria for upper-portion targets (Ts) and lower-portion

non-targets (NTs) on the large corpus.

Compared to the frequency baseline, none of the association measures is able to

keep all their targets in the upper portion; rather, they tend to demote some of them

to the lower subportions, in quite different degrees, however. Log-likelihood demotes

a higher percentage down to the lower subportions than LSM and t-test. By far the

biggest proportion is demoted by PMI which almost demotes two thirds (63%) of the
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targets. Hence, the reason for its severe underperformance regarding the quantitative

performance metrics in the last subsections already becomes evident at this point.

The frequency baseline places 60.2% of the targets into the first upper subportion

and 24% into the second one. Only LSM is able to even improve on this by placing

67% of the targets into the first upper subportion and 26.2% into the second one.

The second part of table 5.6 gives the results for criterion 2, i.e. keeping the non-

targets in their lower portion place. As can be seen, none of the association measures

considered is able to achieve this goal completely whereby some again perform better

than others. The best performance is delivered by t-test which only places 8.9% of its

lower-portion non-targets into the third upper subportion whereas LSM already moves

more non-targets upwards (22.%). Still, log-likelihood performs worse and by far the

most non-targets are promoted by PMI which actually places 55% of its lower-portion

non-targets into the upper subportions.

AM upper portion (ranks 1 - 517) lower portion (ranks 518 - 1035)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 95 (41.9%) 86 (37.9%) 46 (20.3%) 0 0 0

t-test 101 (44.5%) 76 (33.5%) 34 (15.0%) 19 (8.4%) 3 (1.3%) 3 (1.3%)

227 logL 93 (41.0%) 45 (19.8%) 20 (8.8%) 30 (13.2%) 21 (9.3%) 18 (7.9%)

Ts PMI 7 (3.1%) 41 (18.1%) 38 (16.7%) 46 (20.3%) 58 (25.6%) 37 (16.3%)

LSM 122 (53.7%) 88 (38.8%) 11 (4.8%) 0 5 (2.2%) 1 (0.4%)

Crit. 2 freq 0 0 0 138 (35.5%) 132 (33.9%) 119 (30.1%)

t-test 0 0 39 (10.0%) 110 (28.3%) 132 (33.9%) 108 (27.8%)

389 logL 0 42 (10.8%) 98 (25.2%) 80 (20.6%) 84 (21.6%) 85 (21.9%)

NTs PMI 102 (26.2%) 71 (18.3%) 62 (15.9%) 51 (13.1%) 51 (13.1%) 52 (13,4%)

LSM 0 0 80 (20.6%) 102 (26.2%) 94 (24.2%) 113 (29.0%)

Table 5.7: Results on the two static criteria for upper-portion targets (Ts) and lower-portion

non-targets (NTs) on the small corpus.

For our small corpus, the result scores given in table 5.7 for the two static criteria

show quite similar patterns. Concerning criterion 1, LSM is again best at keeping the

targets in the upper portion of the ranked output followed by t-test. As is the case for

the large corpus, log-likelihood performs similar and already loses a higher proportion

of its targets to the lower subportions. By far the worst performance is again delivered

by PMI which demotes 62.2% of the targets to the lower three subportions. Unlike
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all other association measures and in line with the large corpus results, LSM is again

able to even increase the rate of targets in the third upper subportion by almost 12

points compared to the frequency baseline (from 41.9% to 53.7%).

With respect to criterion 2, in a similar vein to the large corpus, t-test keeps the

most non-targets in the lower portion of ranked output (90%) followed by LSM which

keeps 79.4%. Next again comes log-likelihood which is able to keep roughly one third

of their non-targets in the lower portion (36%). PMI again shows the same poor

performance as on the large corpus.

5.1.2.2 Results on the Dynamic Criteria

The third and fourth criteria examine how dynamic an association measure is in that

a qualitatively superior association measure should change and improve the rankings

with respect to frequency. In this respect, criterion 3 examines whether an association

measure is able to demote the non-targets (i.e. the non-collocations) from the upper

to the lower portion. Table 5.8 shows the results for this on the large corpus.

AM upper portion (ranks 1 - 4322) lower portion (ranks 4323 - 8644)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 896 (26.2%) 1225 (35.9%) 1296 (37.9%) 0 0 0

t-test 901 (26.4%) 1243 (36.4%) 932 (27.3%) 95 (2.8%) 47 (1.4%) 199 (5.8%)

3417 logL 953 (27.9%) 871 (25.5%) 510 (14.9%) 376 (11.0%) 343 (10.0%) 364 (10.7%)

NTs PMI 471 (13.8%) 590 (17.3%) 592 (17.3%) 635 (18.6%) 549 (16.1%) 580 (17.0%)

LSM 835 (24.4%) 1150 (33.7%) 342 (10.0%) 218 (6.4%) 378 (11.1%) 494 (14.5%)

Table 5.8: Results on the dynamic qualitative criteria 3 for upper-portion non-targets (NTs)

on the large corpus.

As can be seen, LSM demotes one third (32%) of all its upper-portion non-targets

to the lower three subportions, slightly more than log-likelihood with 31.7%. The

least degree of re-ranking is performed by t-test which actually keeps 90% of the non-

targets in the upper three subportions. PMI actually demotes half of the non-targets

into the lower portion but this is of course also what it does on the two static criteria.

A visualized view on the degree of these re-rankings is offered by the scatterplots

in figure 5.9 in which the rankings of the upper portion non-targets of frequency are

plotted against their ranking in the other association scores. Here it can be seen that,
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in terms of the rank subportions considered, the t-test non-targets are concentrated

along the same line as frequency non-targets, with only a few being able to break

this line and get demoted to a lower subportion. It is interesting to note that LSM

demotes the non-targets in quite a structured way, aligning them on distinct lower

subportion ranking layers. It also interesting both in the case of LSM of t-test, some

upper-portion non-targets are even promoted (instead of demoted) compared to their

frequency ranking.
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Figure 5.9: Qualitative criterion 3: non-targets moved from upper to lower portion (Left: LSM

rank compared to frequency rank. Right: t-test rank compared to frequency rank).

The results for the second dynamic criterion (criterion 4 – promoting the lower

portion targets into the upper portion of the ranked output compared to frequency) are

given for the large corpus in table 5.9. As can be seen, LSM is able to promote 56.2%

of the lower-portion targets into the second and third upper subportion. What’s more,

also in the first lower subportion a high proportion of targets (30.2%) is concentrated

whereas the last two lower subportion only show relatively small amounts of targets.

Hence, it is this promotion of lower-portion targets into the upper and middle ranks

that seems to trigger the 90% recall that LSM achieves already after scanning only

55% of the ranked output list (see table 5.2 and figure 5.3 in subsubsection 5.1.1.1

above). Again, PMI’s behavior for this criterion is as already previously observed for

the other criteria.
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AM upper portion (ranks 1 - 4322) lower portion (ranks 4323 - 8644)

Crit. 4 freq 0 0 0 113 (41.2%) 85 (31.0%) 76 (27.7%)

t-test 0 0 31 (11.3%) 88 (32.1%) 59 (21.5%) 96 (35.0%)

274 logL 2 (0.7%) 36 (13.1%) 31 (11.3%) 42 (15.3%) 85 (31.0%) 78 (28.5%)

Ts PMI 48 (17.5%) 30 (10.9%) 25 (9.1%) 47 (17.2%) 64 (23.4%) 60 (21.9%)

LSM 0 10 (3.6%) 144 (52.6%) 84 (30.7%) 27 (9.9%) 9 (3.3%)

Table 5.9: Results on the dynamic qualitative criteria 4 for lower-portion targets (Ts) on

the large corpus.

The results for criterion 4 are again also given from a visual perspective in figure

5.10. Regarding the t-test measure, it can be seen in the right scatterplot that is only

very modestly successful in meeting this criterion. This, however, appears to be in

line with its results on the three other criteria as t-test changes the frequency rankings

the least. Also, LSM’s promotion of lower-portion targets and their concentration in

the upper middle ranks is nicely illustrated in the left plot.
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Figure 5.10: Qualitative criterion 4: targets moved from lower to upper portion (Left: LSM rank

compared to frequency rank. Right: t-test rank compared to frequency rank).

Last, we examine table 5.10 which shows the results on the two dynamic criteria

for the small corpus. For criterion 3 (moving the upper-portion non-targets to the

lower portion compared to the frequency baseline), the results exhibit similar patterns
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as for the large corpus shown in table 5.8 above. But in particular LSM is even more

successful by actually demoting 45.5% of the non-targets to the lower subportions.

Log-likelihood manages to demote a small amount more compared to the large cor-

pus and t-test, again, is the association measure which stays the most in line with

frequency.

AM upper portion (ranks 1 - 517) lower portion (ranks 518 - 1035)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 77 (26.6%) 87 (30.0%) 126 (43.3%) 0 0 0

t-test 71 (24.5%) 97 (33.4%) 87 (30.0%) 13 (4.5%) 4 (1.4%) 18 (6.2%)

290 logL 79 (27.2%) 76 (26.2%) 32 (11.0%) 42 (14.5%) 24 (8.3%) 37 (12.8%)

NTs PMI 41 (14.1%) 48 (16.6%) 50 (17.2%) 53 (18.3%) 37 (12.6%) 61 (21.0%)

LSM 50 (17.2%) 85 (29.3%) 23 (7.9%) 14 (4.8%) 62 (21.4%) 56 (19.3%)

Crit. 4 freq 0 0 0 52 (40.6%) 41 (32.0%) 35 (27.3%)

t-test 0 0 12 (9.4%) 38 (29.7%) 34 (26.6%) 44 (34.4%)

128 logL 0 10 (7.8%) 22 (17.2%) 19 (14.8%) 44 (34.4%) 33 (25.8%)

Ts PMI 23 (18.0%) 27 (21.1%) 21 (16.4%) 22 (17.2%) 13 (10.2%) 22 (17.2%)

LSM 3 (2.3%) 12 (9.4%) 55 (43.0%) 58 (45.3%) 0 0

Table 5.10: Results on the two dynamic qualitative criteria for upper-portion non-targets

(NTs) and lower-portion targets (Ts) on the small corpus.

Also for criterion 4 (promoting the lower-portion targets to the upper portion), the

results on the small corpus exhibit notable similarities to those on the large corpus

from table 5.9 above. Again LSM is able to promote over one half (54.7%) of the

targets into the upper three subportions and again the majority is placed in the third

upper subportion (43%). At the same time, a big chunk (45.3%) is placed in the

first lower subportion and the last two lower subportions actually do not contain any

targets any more at all. This again appears to be responsible for LSM obtaining a 0.9

recall after scanning 60% of the ranked output list, as shown in table 5.2 and figure

5.4 in subsection 5.1.1.1 above. Also the statistical (t-test and log-likelihood) and

information-theoretic (PMI) association measures show comparable results patterns

as on the large corpus.
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5.1.3 Limited Syntagmatic Modifiability Revisited

The previous subsections showed that a measure for collocation discovery which takes

into account the linguistic property of limited syntagmatic modifiability fares sig-

nificantly better than linguistically not so founded, purely statistical or information-

theoretic measures. Although the LSM property has been stated in linguistic research

on collocations (see section 2.1 above), it has not yet been empirically evaluated. Thus,

we ran an experiment which took both the PNV triples classified as collocations and

the PNV triples classified as non-collocations from our large corpus and counted the

numbers of distinct syntagmatic attachments. From this data, we set up a distribution

of collocational and non-collocational PNV triples in which the distributional ranking

criterion was the number of distinct syntagmatic attachments, which is visualized in

figure 5.11.
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Figure 5.11: Distribution of syntagmatic attachments for collocations and non-collocations.

The x- and y-axes are log-scaled to improve visibility.

As figure 5.11 reveals, the proportion of collocational PNV triples with only one

distinct syntagmatic attachment4 almost covers half of all collocational PNV triples

(49%). In contrast, the proportion for non-collocational PNV triples with one dis-

tinct syntagmatic attachment is only half as high (24%). In addition, with each

4In fact, this is actually the zero attachment (see subsection 4.3.1 on the definition of LSM) of

the PNV triple, i.e. the one for which no syntagmatic attachment occurs in the first place.



5.1 Experimental Results for Collocation Extraction 166

additional syntagmatic attachment, the collocational proportion curve declines more

steeply than its non-collocational counterpart. Moreover, the collocational propor-

tion curve already ends with 54 distinct attachments, whereas the non-collocational

proportion curve leads up to as much as 520 distinct attachments.
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Figure 5.12: Distribution of syntagmatic attachments for the three collocation categories.

The x- and y-axes are log-scaled.

It may be also illuminative to examine whether there is any difference in limited

syntagmatic modifiability between the three categories of collocations examined in

this thesis, i.e. between idioms, support verb constructions/narrow collocations, and

fixed phrases. In particular, there appear to be common linguistic perceptions that, as

Manning & Schütze (1999, p. 184) claim, limited syntagmatic modifiability (or as they

call it: limited or non-modifiability) is especially true for frozen expressions like idioms.

In order to investigate whether this is actually the case, we set up a distribution for

the three categories of collocational PNV triples in which the distributional ranking

criterion was again the number of distinct syntagmatic attachments. The results of

this are visualized in figure 5.12.

As can be seen, the notion that idioms exhibit the strongest degree of limited

syntagmatic modifiability is not supported by the above analysis. In fact, all three

collocational categories have a proportion of almost 50% of their PNV triples which
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only possess one distinct syntagmatic attachment.5 The three curves for the collo-

cational categories then decline in a similar degree although the idioms curve shows

more fluctuation and even extends to 54 distinct supplements (which however may

well have to do with the fact that idioms form the largest group of all collocations – see

subsection 4.5.2.3). In any case, these results corroborate our linguistic assumptions

that LSM is an association measure for collocation extraction that best distinguishes

collocations from non-collocations but not between different subtypes of collocations.

5.2 Experimental Results for Term Extraction

In this section, we will present and examine the evaluation results for our performance

experiments conducted for the task of term extraction from English-(sub)language

text from the biomedical subdomain of Hematopoietic Stem Cell Transplantation and

Immunology. For this purpose, we compared our linguistically motivated statistical

association measure LPM to the standard statistical and information-theoretic associ-

ation measures presented in section 3.3, viz. t-test, frequency, log-likelihood, C-value

and PMI. Similar to our experiments for collocation extraction described in the pre-

vious section, we excluded Daille (1994)’s PMI variants as their results did not add

any further insights. Because we conducted our experiments on bigram, trigram, and

quadgram term candidates (see subsubsection 4.5.3.2 above), the log-likelihood asso-

ciation measure could only be utilized on the bigram data as it is not well-defined for

larger-sized n-grams (see subsection 3.3.5 above). For both our quantitative and our

qualitative results (see subsections 5.2.1 and 5.2.2), we present the performance metric

data in form of tables and figures, in order to allow different views and perspectives

on the results. Again, concerning the qualitative results, in particular with respect to

the four qualitative criteria, due to clarity of presentation concerns, we refrain from

visualizing them for all association measures and instead limit ourselves to illustrative

samples.

5.2.1 Quantitative Results

The quantitative performance evaluation will be carried out on our bigram, trigram

and quadgram term candidate sets, both for our large 100 million word and our

5Note that this is again the zero attachment.
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small 10 million word biomedical Medline corpus. Analogous to our experiments for

collocation extraction (see subsection 5.1.1 above) and as laid out in subsubsection

4.5.1.4, this kind of evaluation is performed by incrementally examining increasing

portions of the ranked output list returned by each of the five (for bigrams) / four

(for tri- and quadgrams) association measures examined. Again, we evaluate their

performance in terms of precision, recall, and ROC in a series of three experiments

(subsubsection 5.2.1.1), but we refrain from presenting results for the F-score, as single

precision and recall evaluations are equally telling. Finally, employing the McNemar

test, we compare the ranked outputs of various association measures and test whether

the differences are statistically significant (subsubsection 5.2.1.2).

5.2.1.1 Results on Performance Metrics

Analogous to our experiments for collocation extraction (see subsubsection 5.1.1.1

above), in the first series of quantitative experiments, we incrementally measured

the performance of the various association scores in terms of their precision, for all

term candidate n-gram sizes considered. For bigrams, the results are visualized in

figure 5.13 for the large Medline corpus and in figure 5.14 for the small one. The

corresponding scores are given in table 5.11 at incremental intervals of 10 percentage

points of the ranked output list. Considering precision scores is only informative at

the upper portions6 of the ranked output list because of their incremental convergence

towards the baseline for all association measures considered.

As can be seen from both views on the results, the linguistically motivated LPM

association measure holds a constant advantage over the next placed measures which

all tend to cluster around the same curve areas and scores. Both for the large corpus

and the small one, the difference between LPM and the second-placed t-test starts

out with 20 points at one percent of the output list considered (i.e. after ≈ 667 and

190 candidates, respectively) and goes down to 3 to 5 points after 30% of the list are

considered. It is actually interesting to note that, unlike in the case of collocation

extraction, it is the t-test which runs slightly better than the frequency measure.

Frequency, log-likelihood and C-value perform almost identically.

Another difference may be noticed with respect to the information-theoretic PMI

6In our case up to 30%, i.e. ≈ 20,000 candidates on the large corpus and ≈ 5,700 candidates on

the small one.
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Figure 5.13: Bigram term precision on

100 million word corpus
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Figure 5.14: Bigram term precision on

10 million word corpus

Ranked Precision scores (66,669 NP bigram term candidates; 14,054 targets)

list upper fre- log base-

portion bound LPM quency t-test likelihood C-value PMI line

1% 1.00 0.81 0.60 0.62 0.60 0.60 0.58 0.21

10% 1.00 0.53 0.41 0.42 0.41 0.41 0.43 0.21

20% 1.00 0.43 0.34 0.35 0.34 0.34 0.35 0.21

30% 0.68 0.36 0.30 0.31 0.31 0.30 0.32 0.21

Ranked Precision scores (19,001 NP bigram term candidates; 5,478 targets)

list upper fre- log base-

portion bound LPM quency t-test likelihood C-value PMI line

1% 1.00 0.87 0.68 0.68 0.69 0.68 0.47 0.29

10% 1.00 0.62 0.52 0.54 0.53 0.52 0.48 0.29

20% 1.00 0.52 0.46 0.46 0.45 0.46 0.42 0.29

30% 0.93 0.45 0.41 0.42 0.42 0.41 0.38 0.29

Table 5.11: Bigram precision scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.

measure. Whereas PMI exhibited an almost erratic behavior on the collocation ex-

traction task, it runs in line with the other association measures – at least on the

large corpus, it exhibits a noticeably weaker performance than its competitors on the

small corpus.
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Figure 5.15: Trigram precision on 100

million word corpus
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Figure 5.16: Trigram precision 10 mil-

lion word corpus

The superiority of the linguistically motivated LPM measure can also be witnessed

with respect to the performance in precision for trigram term candidates, as shown

in figures 5.15 and 5.16 as well as in precision scores in table 5.12.

Ranked Precision scores (28,499 NP trigram term candidates; 3,459 targets)

list upper fre- base-

portion bound LPM quency t-test C-value PMI line

1% 1.00 0.67 0.57 0.58 0.57 0.25 0.12

10% 1.00 0.40 0.31 0.31 0.31 0.21 0.12

20% 0.61 0.31 0.24 0.24 0.24 0.19 0.12

30% 0.39 0.25 0.21 0.21 0.21 0.18 0.12

Ranked Precision scores (4,721 NP trigram term candidates; 1,108 targets)

list upper fre- base-

portion bound LPM quency t-test C-value PMI line

1% 1.00 0.81 0.77 0.77 0.77 0.27 0.23

10% 1.00 0.57 0.51 0.51 0.51 0.31 0.23

20% 1.00 0.49 0.43 0.44 0.43 0.30 0.23

30% 0.76 0.43 0.37 0.38 0.36 0.28 0.23

Table 5.12: Trigram precision scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.
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LPM’s advantage with respect to the second-placed t-test starts out with 9 points

on the large corpus but only with 4 points on the small one. Whereas this advantage

reduces to 4 points on the large corpus at 30% of the output list considered, it even

slightly increases on the small one. Another observation to be made is that PMI

looses its ability to keep up with the other measures. Both on the large and the small

corpus, it runs substantially lower and closer to the baseline, a pattern which has been

similar in the case of our experiments for the collocation extraction task.
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Figure 5.17: Quadgram term precision

on 100 million words
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Figure 5.18: Quadgram term precision

on 10 million words

The largest n-gram size considered in this study (and relevant for term extraction

at all) are quadgrams, whose precision performance is visualized in figures 5.17 and

5.18 along with the corresponding scores up to the 30% portion on ranked output list

in table 5.13. Considering 1% of the quadgram list on the large corpus (after ≈ 99

candidates), t-test, C-value and log-likelihood actually lead by 6 points over LPM.

At this moment at least, we have no explanation why LPM performs worse than its

standard competitors at this portion of the output list. Still, after 10% of the list have

been considered, the result pattern has been reversed: it is now LPM which leads by

5 points over t-test.

Concerning the precision performance on the small corpus, it is again LPM

which consistently runs above the other standard term extraction measures. The

information-theoretic PMI measure, on the other hand, appears to have reached a

similarly low performance as for collocation extraction, almost running parallel to

the baseline. In between LPM and PMI, t-test, frequency and C-value obtain very
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Ranked Precision scores (9,859 NP quadgram term candidates; 890 targets)

list upper fre- base-

portion bound LPM quency t-test C-value PMI line

1% 1.00 0.47 0.53 0.53 0.53 0.09 0.09

10% 0.90 0.30 0.24 0.25 0.25 0.12 0.09

20% 0.45 0.23 0.19 0.20 0.19 0.12 0.09

30% 0.29 0.20 0.16 0.17 0.16 0.12 0.09

Ranked Precision scores (912 NP quadgram term candidates; 204 targets)

list upper fre- base-

portion bound LPM quency t-test C-value PMI line

1% 1.00 0.80 0.70 0.70 0.70 0.10 0.22

10% 1.00 0.55 0.51 0.51 0.51 0.27 0.22

20% 1.00 0.45 0.37 0.38 0.37 0.25 0.22

30% 0.72 0.41 0.34 0.36 0.34 0.25 0.22

Table 5.13: Quadgram precision scores of association measures for term extraction on the

100 million word (upper table) and 10 million word (lower table) Medline corpus.

similar precision scores. As can be seen from the results for all n-gram sizes and anal-

ogous to collocation extraction, compared to the ideal optimum, there is still room

for improvement.

In the second series of quantitative experiments, we incrementally measured the

performance of the various term extraction measures in terms of their recall, again

both for our large and for our small corpus. Because recall measures the proportion

of selected targets at a certain point in the ranked output list, it has a particularly

practical relevance because the output lists produced by various association measures

are typically post-examined by a human. For this reason, it is the in middle portions

of the ranked output list where recall is most telling because, first, the earlier a

large proportion of targets is returned the more efficient an association method may

be considered, and second, toward the end of a ranked output list all association

measures naturally approach the recall of 1.0 anyway.

For bigram term extraction, the recall results of the large 100 million and the

small 10 million word corpus are visualized in figures 5.19 and 5.20, respectively,

while the corresponding scores are given in table 5.14, again at incremental intervals

of 10 percentage points of the ranked output list.
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Figure 5.19: Bigram term recall on 100

million words
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Figure 5.20: Bigram term recall on 10

million words

Ranked Recall scores (66,669 NP bigram term candidates; 14,054 targets)

list upper fre- log

portion bound LPM quency t-test likelihood C-value PMI

30% 1.00 0.53 0.44 0.46 0.45 0.44 0.46

40% 1.00 0.62 0.53 0.56 0.54 0.53 0.55

50% 1.00 0.70 0.63 0.66 0.64 0.63 0.63

60% 1.00 0.77 0.72 0.74 0.73 0.72 0.71

70% 1.00 0.83 0.79 0.82 0.80 0.79 0.79

Ranked Recall scores (19,001 NP bigram term candidates; 5,478 targets)

list upper fre- log

portion bound LPM quency t-test likelihood C-value PMI

30% 1.00 0.49 0.44 0.45 0.45 0.44 0.41

40% 1.00 0.58 0.53 0.54 0.53 0.52 0.51

50% 1.00 0.67 0.62 0.64 0.63 0.62 0.60

60% 1.00 0.75 0.71 0.73 0.72 0.70 0.68

70% 1.00 0.81 0.79 0.82 0.81 0.78 0.76

Table 5.14: Bigram recall scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.

As can be seen from the plots and the corresponding scores, LPM maintains a

consistent advantage in recall compared to the other measures – both on the large

and the small corpus although the lead is bigger on the former one. After 40% of the
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output list considered on the large corpus, while LPM already scores a recall of 0.62,

the second-placed t-test runs substantially below at 0.56. On both corpora, the recall

curves start to converge after 50% of the list have been examined.

As can be seen from the recall scores in table 5.14, t-test noticeably fares better

than frequency, a tendency which already has been observed with respect to the pre-

cision performance and stays in contrast to results obtained for collocation extraction.

Similarly, while PMI breaks even with C-value and log-likelihood on the large corpus,

its starts running below these on the small one.

With respect to the recall results for trigrams, as presented in figures 5.21 and

5.22 as well as in table 5.15, it can be seen that LPM even fares better compared

to its competitors than was the case for bigrams. On the large corpus, it leads the

second-placed t-test by approximately 10 points up to the 70% portion. This has the

effect that, in order to obtain a 0.8 recall, LPM only has to consider 49% of the ranked

list whereas the second-placed t-test already has to scan up to the 64% portion. In

a similar vein, in order to obtain a 0.9 recall, LPM only has to look at 66% of the

ranked output list whereas t-test has scan up to the 78% portion and both frequency

and C-value even up to the 84% portion.
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Figure 5.21: Trigram term recall on 100

million words
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Figure 5.22: Trigram term recall on 10

million words

On the small corpus, as shown in the lower table 5.15, LPM’s advantage to t-test

in recall scores runs about 7 to 8 points up to the 70% portion of the output list.

This still has the effect that, in order to obtain a 0.8 recall, LPM only has to scan

56% of the list while t-test has to consider 65% and both frequency and C-value even
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Ranked Recall scores (28,499 NP trigram term candidates; 3,459 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 1.00 0.65 0.53 0.54 0.53 0.46

40% 1.00 0.73 0.61 0.63 0.61 0.56

50% 1.00 0.81 0.69 0.71 0.69 0.66

60% 1.00 0.87 0.76 0.78 0.76 0.74

70% 1.00 0.91 0.83 0.85 0.82 0.81

Ranked Recall scores (4,721 NP trigram term candidates; 1,108 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 1.00 0.57 0.49 0.50 0.48 0.38

40% 1.00 0.66 0.57 0.58 0.57 0.49

50% 1.00 0.75 0.65 0.67 0.65 0.59

60% 1.00 0.83 0.73 0.76 0.73 0.69

70% 1.00 0.89 0.81 0.82 0.79 0.78

Table 5.15: Trigram recall scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.

73%. Similarly, LPM obtains the 0.9 recall threshold already at the 71% portion while

t-test needs to go up to the 79% portion; C-value and frequency even need to crawl

up to the 87% portion. In addition, on the large corpus and, in particular, on the

small corpus, it can be seen that the information-theoretic PMI measure substantially

underperforms the other measures in terms of its recall capacity.

Concerning the recall performance on quadgrams, as given in figures 5.23 and 5.24

as well as in table 5.16, it may be seen that LPM also substantially outperforms the

other association measures in the critical middle portions of the ranked output list.

From the 30% to the 60% portion on the large corpus, LPM leads t-test in the range

of 8 to 12 points. This means that in order to obtain a 0.7 recall, LPM only needs

to scan 33% of the ranked list whereas t-test needs to go as far as 48%. Likewise,

in order to reach 0.8 recall, LPM needs to scan 14 percentage points less of ranked

output compared to t-test, viz. 44% compared to 58%.

Taking the same portion range (30% to 60%) on the small corpus, LPM’s lead

compared to t-test runs between 8 points (at the 40% and at the 60% portion) and 4
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Figure 5.23: Quadgram term recall on

100 million words
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Figure 5.24: Quadgram term recall on

10 million words

Ranked Recall scores (9,859 NP quadgram term candidates; 890 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 1.00 0.67 0.55 0.58 0.55 0.41

40% 1.00 0.77 0.64 0.65 0.63 0.52

50% 1.00 0.84 0.71 0.73 0.70 0.65

60% 1.00 0.90 0.79 0.82 0.78 0.76

70% 1.00 0.94 0.85 0.89 0.85 0.85

Ranked Recall scores (912 NP quadgram term candidates; 204 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 1.00 0.57 0.47 0.50 0.47 0.35

40% 1.00 0.67 0.55 0.59 0.55 0.46

50% 1.00 0.75 0.68 0.71 0.67 0.59

60% 1.00 0.85 0.74 0.77 0.73 0.69

70% 1.00 0.89 0.82 0.85 0.81 0.81

Table 5.16: Quadgram recall scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.

points (at the 50% portion). For obtaining a 0.7 recall, LPM needs to consider 44% of

the output while t-test needs to go further up to 50%. Likewise LPM reaches the 0.8

recall threshold after 56% of the output and t-test does so after 63%. Still, as it was
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the case for precision performance of quadgrams on the small corpus described above,

the curves indicate some fluctuations which appear to due to the small candidate set.

Again, both on the large and the small corpus, PMI substantially runs below the other

measures.
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Figure 5.25: Bigram term ROC on 100

million words
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Figure 5.26: Bigram term ROC on 10

million words

When examining the fallout scores of the various association measures on bigrams,

as given in table 5.17, it can be seen that there is no big difference in the fallout scores

(i.e. the rate of non-targets selected) among the various association measures exam-

ined at increasing portions of the ranked output list. Hence, only looking at the mere

fallout scores is not very informative and for this reason (see subsubsection 4.5.1.4

and also the results on collocation extraction in subsubsection 5.1.1.1), fallout is typi-

cally plotted against recall thus yielding the so-called receiver operation characteristic

(ROC) curve, which is visualized in figures 5.25 and 5.26 for the large and the small

corpus, respectively. As can be seen, the effect of the superior recall scores of LPM

compared to the other association (as previously outlined in figures 5.19 and 5.20 as

well as table 5.14) come to effect here, as LPM follows the left-hand border and then

the top border of the ROC space more closely than its competitors.

This effect is still much more pronounced when looking at the the ROC curves for

the trigram extraction task. As can be seen in figures 5.27 and 5.28, the LPM ROC

curve follows the left-hand border and then the top border of the ROC space much

more closely than its competitors – exhibiting a substantial area difference to the

second-placed t-test. In a similar vein, the ROC curves for the quadgram extraction

task (see figures 5.29 and 5.28) show a comparable pattern, although the fluctuations
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Ranked Fallout scores (66,669 NP bigram term candidates; 14,054 targets)

list upper fre- log

portion bound LPM quency t-test likelihood C-value PMI

30% 0.13 0.25 0.27 0.27 0.27 0.27 0.27

40% 0.24 0.34 0.36 0.36 0.36 0.36 0.36

50% 0.37 0.45 0.47 0.46 0.46 0.47 0.46

60% 0.49 0.55 0.57 0.56 0.57 0.57 0.57

70% 0.62 0.66 0.68 0.67 0.67 0.68 0.68

Ranked Fallout scores (19,001 NP bigram term candidates; 5,478 targets)

list upper fre- log

portion bound LPM quency t-test likelihood C-value PMI

30% 0.03 0.24 0.26 0.25 0.25 0.26 0.27

40% 0.16 0.33 0.35 0.34 0.35 0.35 0.36

50% 0.30 0.43 0.45 0.44 0.45 0.45 0.46

60% 0.44 0.54 0.56 0.55 0.55 0.56 0.57

70% 0.58 0.65 0.66 0.65 0.66 0.67 0.67

Table 5.17: Bigram fallout scores of association measures for term extraction on the 100

million word (upper table) and 10 million word (lower table) Medline corpus.

on the small corpus show the same behavior as in the other quantitative performance

results above.
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Figure 5.27: Trigram term ROC on 100

million words
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Figure 5.28: Trigram term ROC on 10

million words
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Figure 5.29: Quadgram term ROC on

100 million words
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Figure 5.30: Quadgram term ROC on 10

million words

Ranked Fallout scores (28,499 NP trigram term candidates; 3,459 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 0.21 0.26 0.28 0.28 0.28 0.29

40% 0.32 0.35 0.37 0.37 0.37 0.38

50% 0.43 0.46 0.47 0.47 0.47 0.48

60% 0.54 0.56 0.58 0.57 0.58 0.58

70% 0.66 0.67 0.68 0.68 0.68 0.68

Ranked Fallout scores (4,721 NP trigram term candidates; 1,108 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 0.10 0.23 0.26 0.25 0.26 0.29

40% 0.22 0.32 0.35 0.34 0.35 0.37

50% 0.35 0.42 0.45 0.45 0.46 0.47

60% 0.48 0.53 0.56 0.55 0.56 0.57

70% 0.61 0.64 0.67 0.66 0.67 0.68

Table 5.18: Trigram fallout scores of association measures for term extraction on the 100 million

word (upper table) and 10 million word (lower table) Medline corpus.

Inspecting the corresponding fallout scores for trigrams and quadgrams in tables

5.18 and 5.19 again shows that their impact on the ROC curves is less than that of the

recall scores given above. On the large corpus, although LPM reveals a consistently
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Ranked Fallout scores (9,859 NP quadgram term candidates; 890 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 0.24 0.27 0.29 0.28 0.29 0.30

40% 0.34 0.36 0.38 0.38 0.38 0.39

50% 0.45 0.47 0.48 0.48 0.48 0.49

60% 0.56 0.57 0.58 0.58 0.58 0.58

70% 0.67 0.68 0.69 0.68 0.69 0.69

Ranked Fallout scores (912 NP quadgram term candidates; 204 targets)

list upper fre-

portion bound LPM quency t-test C-value PMI

30% 0.11 0.24 0.26 0.26 0.26 0.30

40% 0.23 0.32 0.36 0.34 0.36 0.38

50% 0.36 0.43 0.45 0.44 0.45 0.47

60% 0.49 0.53 0.56 0.55 0.56 0.57

70% 0.61 0.65 0.67 0.66 0.67 0.67

Table 5.19: Quadgram fallout scores of association measures for term extraction on the 100 million

word (upper table) and 10 million word (lower table) Medline corpus.

lower fallout rate than its competitors, the difference to the second-placed t-test runs

around 2 points. As was shown for the recall scores in tables 5.15 and 5.16 above,

LPM’s lead amounts to up to 10 points for the corresponding portions of the ranked

output list. On the small corpus, both the trigram and quadgram fallout scores show

a slightly bigger difference of 3 points, but still, it is the corresponding recall scores

which cause the LPM ROC curves to cover more of the available ROC space.

5.2.1.2 Results on Significance Testing

Although the observed differences for the results on the quantitative performance

evaluation (see the last subsubsection 5.2.1.1) are substantial with respect to LPM’s

superiority, and thus there is reason to believe that they are not merely due to chance

(see subsection 4.5.1.5), we will corroborate these findings by applying McNemar as

a significance test of differences to incremental portion measure points of the ranked

output list, both on the large and on the small corpus for all n-gram sizes. Analogously

to our experiments for collocation extraction (see subsubsection 5.1.1.2), we selected
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100 measure points in the ranked list, one after each increment of one percent, and then

used the two-tailed test for a (very strict) confidence interval of 99%. In particular, we

tested the significance of differences between LPM and the two next best performing

association measures, t-test and frequency.

For bigrams, the results at 10-point increments are given in table 5.20 both for

the large and the small corpus.

# of Large corpus: Small Corpus:

measure # of significant differences # of significant differences

points comparing LPM with comparing LPM with

considered frequency t-test frequency t-test

10 10 10 10 10

20 20 20 20 20

30 30 30 30 30

40 40 40 40 40

50 50 50 50 50

60 60 60 60 60

70 70 70 70 67

80 80 76 80 70

90 90 85 85 75

100 92 94 85 80

Table 5.20: Bigram term extraction: significance testing of differences using the two-tailed

McNemar test at 99% confidence interval on the large and the small Medline corpus

As can be seen from the number of significant differences, the clear advantage that

LPM exhibited in comparison to its competitors on all the quantitative performance

metrics translates right into the results for the McNemar test. Up to measure point

70 (on the large corpus) and measure point 60 (on the small corpus), all differences

are significant, and only then some differences to the second-placed t-test turn out to

be not significant any more. As can be seen from the higher number of significant

differences to LPM at later measure points, the weaker performance of frequency

compared to t-test on the performance evaluations is also corroborated here.

As for the McNemar results on the trigram extraction task (see table 5.21), up

to measure point 90 all the differences but one up are significant for LPM on the

large corpus, both with respect to t-test and frequency. Curiously, on the small

corpus the first 10 measure points show (almost) no significant differences, which
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# of Large corpus: Small Corpus:

measure # of significant differences # of significant differences

points comparing LPM with comparing LPM with

considered frequency t-test frequency t-test

10 9 9 1 0

20 19 19 11 10

30 29 29 21 20

40 39 39 31 30

50 49 49 41 40

60 59 59 51 50

70 69 69 61 60

80 79 79 71 70

90 89 89 81 75

100 97 89 87 75

Table 5.21: Trigram term extraction: significance testing of differences using the two-tailed

McNemar test at 99% confidence interval on the large and the small Medline corpus

seems to indicate that during the first 10% of the ranked output list the three measures

considered do not rank their term candidates in a significantly different way – a fact

that at least partially also seems to be reflected in the trigram performance results

given in figure 5.16 and the lower part of table 5.12. Then, however, all the consecutive

measures points up to 80 are significantly different, thus reflecting LPM’s superiority

in performance at the crucial portions of the ranked output list.

As for the McNemar results on the quadgram extraction task (see table 5.21), the

first 10 measures points show 6 significant differences for LPM on the large corpus.

This corresponds most visibly to the precision performance results shown in figure

5.17 and the upper table 5.13 in which it may be seen that LPM starts out weakly

in comparison to t-test and frequency. Then, however, all measure points up to 80

show significant differences and thus corroborate the performance advantage of LPM

on the decisive middle portions of the ranked output list.

The picture looks rather different on the small corpus. Comparing LPM with t-

test, all together only 13 of the 100 measure points are significantly different. This

means that the visible performance advantages of LPM on quadgrams shown in the

previous subsubsection are not borne out by statistical significance testing. This is in

line with the already made observations that due to the substantially smaller size of
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# of Large corpus: Small Corpus:

measure # of significant differences # of significant differences

points comparing LPM with comparing LPM with

considered frequency t-test frequency t-test

10 6 6 0 0

20 16 16 0 0

30 26 26 10 2

40 36 36 20 9

50 46 46 29 9

60 56 56 37 10

70 66 66 47 13

80 76 76 57 13

90 86 78 67 13

100 93 78 73 13

Table 5.22: Quadgram term extraction: significance testing of differences using the two-

tailed McNemar test at 99% confidence interval on the large and the small Medline corpus

the quadgram candidate set for the small corpus (i.e. only 912 term candidates) the

results are rather brittle and difficult to interpret.

5.2.2 Qualitative Results

In section 4.5.1.6, we have formulated four achievement objectives (i.e. two static ones

and two dynamic ones) for qualitative performance evaluation of lexical association

measures and took frequency of co-occurrence as as a sort of baseline against which a

particular association measure should re-rank (or not) the targets and non-targets of

the candidate set. These four objectives are divided into two static criteria (subsubsec-

tion 5.2.2.1) and two dynamic criteria (subsubsection 5.2.2.2). Similar to the results

reported for collocation extraction in subsection 5.1.2, we choose the middle rank as

a mark to divide a ranked output list into an upper portion and a lower portion and

partitioned these into three further subportions each. Then, again, the targets and

non-targets assigned to these portions by frequency will be examined and quantified,

according to the four criteria, to what degree the other association measures changed

these rankings or not.
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5.2.2.1 Results on the static criteria

The first two criteria examine how static an association measure is in that a qualita-

tively superior measure should at least keep the status quo with respect to frequency.

In this respect, criterion 1 examines whether an association measure is able to keep

the targets (i.e. the true terms) in the upper portion, whereas criterion 2 checks to

which degree a measure is able to keep the non-targets in their lower portion place

AM upper portion (ranks 1 - 33,334) lower portion (ranks 33,335 - 66,669)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 3951 (44.8%) 2619 (29.7%) 2254 (25.5%) 0 0 0

t-test 4079 (46.2%) 2768 (31.4%) 1272 (14.4%) 145 (1.6%) 86 (1.0%) 474 (5.4%)

8824 logL 3950 (44.8%) 2674 (30.3%) 1868 (21.2%) 158 (1.8%) 47 (0.5%) 127 (1.4%)

Ts C-value 3940 (44.7%) 2611 (29.6%) 2177 (24.7%) 96 (1.1%) 0 0

PMI 2346 (26.6%) 1755 (19.9%) 1407 (15.9%) 1257 (14.2%) 1155 (13.1%) 904 (10.2%)

LPM 3967 (45.0%) 1981 (22.5%) 1188 (13.5%) 825 (9.3%) 548 (6.2%) 315 (3.6%)

Crit. 2 freq 0 0 0 9132 (32.5%) 9390 (33.5%) 9583 (34.0%)

t-test 0 0 3537 (12.6%) 8254 (29.4%) 8970 (31.9%) 7344 (26.1%)

28105 logL 205 (0.7%) 201 (0.7%) 1367 (4.9%) 8182 (29.1%) 9093 (32.4%) 9057 (32.2%)

NTs C-value 0 0 340 (1.2%) 8834 (31.4%) 9389 (33.4%) 9542 (34.0%)

PMI 4365 (15.5%) 4605 (16.4%) 4686 (16.4%) 4372 (15.6%) 4637 (16.5%) 5440 (19.4%)

LPM 1499 (5.3%) 2906 (10.3%) 3862 (13.7%) 5201 (18.5%) 6501 (23.1%) 8136 (29.0%)

Table 5.23: Results on the two static qualitative criteria for bigram term extraction

on the large Medline corpus.

Table 5.23 shows the results for the two criteria for bigram extraction on the

large Medline corpus. As can be seen for criteria 1, t-test, log-likelihood, and, in

particular, C-value only demote few of their targets to the lower portion, although t-

test places 5.4% of its targets to the lowest subportion. LPM, on the other hand, places

a bigger chunk of its targets (9.3%, 6.2% and 3.5%) to the lower three subportions.

In a pattern reminiscent for the collocation extraction task, PMI demotes the highest

number of targets (37.5%) to the lower three subportions, compared to frequency.

Concerning the other static criterion 2, it is again the case that none of the as-

sociation measures is able to achieve this goal completely whereby some measures

fare better than others. Again, t-test, log-likelihood and C-value are best able to

fulfill this criterion although t-test still places 12.6% of its non-targets into the third
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upper subportion. Conversely to the first criterion above, PMI is least able to meet

this criterion and puts the biggest proportion of its lower-portion non-targets out of

place, with almost half (48.3%) promoted to the upper three subportions. Although

LPM, by only keeping 70% of its non-targets in the lower portion, is less able to fulfill

this criterion than the frequency-like behaving measures t-test, log-likelihood, and

C-value, it still does so considerably better than PMI.

AM upper portion (ranks 1 - 9,500) lower portion (ranks 9,501 - 19,001)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 1500 (44.0%) 1050 (30.8%) 858 (25.2%) 0 0 0

t-test 1534 (45.0%) 1096 (32.2%) 508 (14.9%) 89 (2.6%) 24 (0.7%) 157 (4.6%)

3408 logL 1509 (44.3%) 1077 (31.6%) 705 (20.7%) 69 (2.0%) 11 (0.3%) 37 (1.1%)

Ts C-value 1523 (44.7%) 1038 (30.5%) 812 (23.8%) 35 (1.0%) 0 0

PMI 723 (21.2%) 633 (18.6%) 592 (17.4%) 516 (15.1%) 486 (14.3%) 458 (13.4%)

LPM 1344 (39.4%) 733 (21.5%) 530 (15.6%) 380 (11.2%) 281 (8.2%) 140 (4.1%)

Crit. 2 freq 0 0 0 2380 (32.1%) 2492 (33.6%) 2550 (34.0%)

t-test 0 0 796 (10.7%) 2115 (29.3%) 2423 (32.6%) 2088 (28.1%)

7422 logL 12 (0.2%) 21 (0.3%) 368 (5.0%) 2048 (27.6%) 2426 (32.7%) 2547 (34.3%)

NTs C-value 0 0 88 (1.2%) 1905 (25.7%) 1999 (26.9%) 3430 (42.2%)

PMI 980 (13.2%) 1002 (13.5%) 969 (13.1%) 1242 (16.7%) 1236 (16.7%) 1993 (26.9%)

LPM 492 (6.6%) 868 (11.7%) 1011 (13.6%) 1360 (18.3%) 1594 (21.5%) 2097 (28.3%)

Table 5.24: Results on the two static qualitative criteria for bigram term extraction

on the small Medline corpus.

Looking at the two static criteria for bigrams on the small Medline corpus, table

5.24 shows a quite similar picture. Of the three frequency-like behaving measures C-

value, log-likelihood and C-value, it is t-test which still demotes most of its targets to

the lower portion whereas log-likelihood and, even more, C-value keep them in their

respective upper portions. PMI again falls out of line by demoting 43% of its upper-

portion targets to the lower three subportions while LPM is able to fulfill criterion

1 to a much higher degree. Conversely for criterion 2, although LPM is not able to

keep as many of its non-targets in their lower-portion place as t-test, log-likelihood

and C-value, this deplacement is not substantial compared to the one PMI causes to

its lower-portion non-targets.

For the trigram term extraction task on the large corpus, table 5.25 shows that for

criterion 1 t-test and C-value are hardly distinguishable from frequency. Also LPM



5.2 Experimental Results for Term Extraction 186

demotes fewer targets to the lower subportions than in the bigram case described

above. Only PMI, demoting 36% of its targets to one of the lower three subportions,

underperforms in a similar pattern already observed before. One notable result about

LPM is that it is even to promote more targets into the first upper portion compared

to frequency (55% vs. 51.2%, respectively).

AM upper portion (ranks 1 - 14,249) lower portion (ranks 14,250 - 28,499)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 1223 (51.2%) 1025 (42.9%) 140 (5.9%) 0 0 0

t-test 1244 (52.1%) 1049 (43.9%) 74 (3.1%) 10 (0.4%) 2 (0.1%) 9 (0.4%)

2388 C-value 1214 (50.8%) 1013 (42.4%) 144 (6.0%) 17 (0.7%) 0 0

Ts PMI 579 (24.2%) 838 (35.1%) 123 (5.2%) 315 (13.2%) 304 (12.7%) 229 (9.6%)

LPM 1314 (55.0%) 702 (29.4%) 79 (3.3%) 166 (6.9%) 92 (3.8%) 35 (1.5%)

Crit. 2 freq 0 0 0 4340 (32.9%) 4401 (33.4%) 4438 (33.7%)

t-test 0 0 581 (4.4%) 4000 (30.4%) 4329 (32.8%) 4269 (32.4%)

13179 C-value 0 0 115 (0.9%) 4235 (32.1%) 4435 (33.7%) 4394 (33.3%)

NTs PMI 2349 (17.8%) 3622 (27.5%) 701 (5.3%) 2216 (16.8%) 2171 (16.5%) 2120 (16.1%)

LPM 897 (6.8%) 2863 (21.7%) 679 (5.1%) 2348 (17.8%) 2808 (21.3%) 3584 (27.2%)

Table 5.25: Results on the two static qualitative criteria for trigram term extraction

on the large Medline corpus.

With respect to criterion 2, the lower part of table 5.25 exhibits that LPM places

a high proportion of non-targets to the second upper portion (21.7%), compared to

the same criterion for the bigram extraction task. That t-test and especially C-value

exhibit similar characteristics to frequency is corroborated by the observation that no

non-targets get promoted to the first two upper subportions.

On the small corpus, the results for the two static criteria fall into the same

patterns as on the large corpus. For the first criterion given in the upper part of table

5.26, LPM again demotes less trigram targets to the lower three subportions that it

was the case for the bigram task and again, the linguistically motivated association

is even able to promote a higher proportion of targets into the top upper subportion.

T-test and C-value hardly change the target rankings of frequency while PMI demotes

41% of its upper-portion targets to the lower portion.

Like it was the case for the trigram term extraction on the large corpus, the result

patterns for the second static criterion on the small corpus (in the lower part of table
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AM upper portion (ranks ranks 1 - 2,360) lower portion (ranks 2,361 - 4,721)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 343 (47.5%) 219 (30.3%) 160 (22.2%) 0 0 0

t-test 361 (50.0%) 221 (30.6%) 124 (17.2%) 10 (1.4%) 1 (0.1%) 5 (0.7%)

722 C-value 340 (47.1%) 219 (30.3%) 152 (21.1%) 9 (1.2%) 0 2 (0.2%)

Ts PMI 125 (17.3%) 123 (17.0%) 140 (19.4%) 122 (18.9%) 142 (19.7%) 70 (9.7%)

LPM 342 (47.4%) 159 (22.0%) 92 (12.7%) 68 (9.4%) 51 (7.1%) 10 (1.4%)

Crit. 2 freq 0 0 0 633 (32.1%) 676 (34.2%) 668 (33.8%)

t-test 0 0 93 (4.7%) 580 (29.4%) 637 (32.3%) 665 (33.6%)

1975 C-value 0 0 36 (1.8%) 621 (31.4%) 658 (33.3%) 660 (33.4%)

NTs PMI 382 (19.3%) 339 (17.2%) 332 (16.8%) 318 (16.1%) 268 (13.6%) 336 (17.0%)

LPM 143 (7.2%) 253 (12.8%) 300 (15.2%) 361 (18.3%) 388 (19.6%) 530 (26.8%)

Table 5.26: Results on the two static qualitative criteria for trigram term extraction

on the small Medline corpus.

5.26) show that t-test and C-value fulfill this criterion well in that they do not promote

any non-targets into the upper two subportions and only very few into the third upper

subportion. LPM, on the other hand, places a substantial number of non-targets into

the upper three subportions (39.2% all together). This, however, is again topped

by PMI which even promotes 53.3% of its lower-portion non-targets into the upper

portions.

AM upper portion (ranks 1 - 4,929) lower portion (ranks 4,930 - 9,859)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 331 (52.4%) 186 (29.4%) 115 (18.2%) 0 0 0

t-test 341 (53.9%) 188 (29.7%) 100 (15.8%) 3 (0.5%) 0 0

632 C-value 331 (52.4%) 186 (29.4%) 109 (17.2%) 5 (0.8%) 1 (0.2%) 0

Ts PMI 115 (18.2%) 129 (20.4%) 127 (20.1%) 127 (20.1%) 85 (13.4%) 49 (7.8%)

LPM 343 (54.3%) 146 (23.1%) 72 (11.4%) 51 (8.1%) 13 (2.0%) 7 (1.1%)

Crit. 2 freq 0 0 0 1583 (33.9%) 1558 (33.3%) 1531 (32.8%)

t-test 0 0 183 (3.9%) 1401 (30.0%) 1539 (32.9%) 1549 (33.2%)

4672 C-value 0 0 58 (1.2%) 1487 (31.8%) 1551 (33.2%) 1576 (33.7%)

NTs PMI 931 (19.9%) 817 (17.5%) 752 (16.1%) 737 (15.8%) 717 (15.3%) 718 (15.4%)

LPM 449 (9.6%) 632 (13.5%) 747 (16.0%) 776 (16.6%) 916 (19.6%) 1153 (24.7%)

Table 5.27: Results on the two static qualitative criteria for quadgram term extraction

on the large Medline corpus.
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Finally, the results for the two static criteria with respect to quadgram term ex-

traction on the large corpus are given in table 5.27. Concerning criterion 1, both t-test

and C-value demote very few of their targets to the lower portion (0.5% and 1%, re-

spectively) and also LPM places a smaller proportion of its upper-portion targets into

the lower three subportion (11.1%) than it was the case for the bi- and trigram extrac-

tion task. PMI, on the hand, remains faithful to its pattern of demoting a large chunk

(41.3%) to the lower portions. LPM and, to a lesser extent, t-test also augment the

proportion of targets in their top upper subportion by 1.9% and 1.5%, respectively,

compared to the frequency proportion of 52.4%.

The results for the second criterion are given in the lower part of table 5.27. Also

here, similar qualitative result patterns surface compared to the other two n-gram

term extraction tables: Whereas t-test and C-value meet the criterion to a very large

extent by only promoting a very small margin of its lower-portion non-targets to the

third upper subportion, PMI violates the criterion in an enormous way since it moves

53.6% of them upwards. LPM again lies in between these two extremes.

AM upper portion (ranks 1 - 456) lower portion (ranks 457 - 912)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 1 freq 61 (44.2%) 41 (29.7%) 36 (26.1%) 0 0 0

t-test 65 (47.1%) 39 (28.3%) 34 (24.6%) 0 0 0

138 C-value 60 (43.5%) 39 (28.3%) 37 (26.8%) 2 (1.4%) 0 0

Ts PMI 19 (13.8%) 26 (18.8%) 31 (22.5%) 29 (21.0%) 22 (15.9%) 11 (8.0%)

LPM 58 (42.0%) 40 (29.0%) 17 (12.3%) 13 (9.4%) 10 (7.2%) 0

Crit. 2 freq 0 0 0 129 (33.0%) 131 (33.7%) 130 (33.3%)

t-test 0 0 23 (5.9%) 117 (30.0%) 122 (31.3%) 128 (32.8%)

390 C-value 0 0 6 (1.5%) 127 (32.6%) 128 (32.8%) 129 (33.1%)

NTs PMI 87 (22.3%) 69 (17.7%) 57 (14.6%) 55 (14.1%) 59 (15.1%) 63 (16.2%)

LPM 37 (9.5%) 50 (12.8%) 66 (16.9%) 64 (16.4%) 77 (19.7%) 96 (24.6%)

Table 5.28: Results on the two static qualitative criteria for quadgram term extraction

on the small Medline corpus

Finally, the results for the two static criteria on the small corpus, given in table

5.28, confirm all the already observed result patterns. Despite this fact, these partic-

ular results have to interpreted with care. Because the quantitative results described

in previous two subsections had shown that, due to the relatively small size of the
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candidate set,7 these results are more brittle and thus less reliable than those for

the n-gram term extraction cases for which a larger amount of candidate set data is

available.

5.2.2.2 Results on the dynamic criteria

The third and fourth criteria examine how dynamic an association measure is in that

a qualitatively superior measure should change and improve the rankings with respect

to frequency. In this respect, criterion 3 examines whether an association measure is

able to demote the non-targets (i.e. the non-terms) from the upper to the lower three

subportions while criterion 2 determines to which degree a measure is able to promote

targets (i.e. actual terms) from the lower to the upper subportions.

Table 5.29 gives the results for the bigram term extraction on the large Med-

line corpus. As can be seen with respect to criterion 3, the measure which least

changes the frequency ranking is C-value, which only demotes 1.3% of the upper-

portion non-targets into the first lower subportion. Log-likelihood demotes a slightly

higher proportion of non-targets (7.8%); t-test doubles this proportion by already

demoting 16% of the non-targets, in particular it demotes 10% of them to the third

lower subportion. LPM, however, by far performs much better in meeting this cri-

terion than t-test as it demotes 38% of the upper-portion non-targets to the lower

three subportions. It is PMI again which, like in the case of the two static criteria

described above, appears to shuffle things around and places 56% of the non-targets

into the lower three subportions.

The results for the other dynamic criterion 4, the ability to promote lower-portion

targets to the upper subportions, are given in the lower part of table 5.29. As can be

seen, also here it is the C-value measure which is the most conservative and retains

the frequency ranking to an enormous extent as it is only able to place 1.2% of the

targets to the third upper subportion. The t-test measure is at least able to promote

21.1% of the targets to the third upper subportion (but not any further upwards)

whereas log-likelihood only manages to do so with 7.6%. LPM, on the other hand,

is able to substantially meet this criterion by placing over half of the targets (51.4%)

into the upper three subportions, with the largest chunk (20.8%) landing in the top

7It should be recalled that the small size of the candidates set is due to fixed frequency cut-off

threshold c ≥ 5 – (see subsection 4.5.3.2).
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AM upper portion (ranks 1 - 33,334) lower portion (ranks 33,335 - 66,669)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 7160 (29.2%) 8492 (34.6%) 8858 (36.1%) 0 0 0

t-test 7031 (28.7%) 8343 (34.0%) 5206 (21.2%) 949 (3.9%) 525 (2.1%) 2456 (10.0%)

24510 logL 6923 (28.2%) 8208 (33.5%) 7477 (30.5%) 923 (3.8%) 309 (1.3%) 670 (2.7%)

NTs C-value 7164 (29.2%) 8496 (34.7%) 8533 (34.8%) 317 (1.3%) 0 0

PMI 2635 (10.8%) 3808 (15.5%) 4304 (17.6%) 4866 (19.9%) 4783 (19.5%) 4114 (16.8%)

LPM 4557 (18.6%) 5451 (22.2%) 5211 (21.3%) 4316 (17.6%) 3249 (13.3%) 1726 (7.0%)

Crit. 4 freq 0 0 0 1979 (37.8%) 1721 (32.9%) 1530 (29.3%)

t-test 0 0 1098 (21.1%) 1763 (33.7%) 1530 (29.2%) 839 (16.0%)

5230 logL 26 (0.5%) 24 (0.4%) 399 (7.6%) 1846 (35.3%) 1658 (31.7%) 1277 (24.4%)

Ts C-value 0 0 62 (1.2%) 1862 (35.6%) 1719 (32.9%) 1587 (30.3%)

PMI 1755 (33.6%) 937 (17.9%) 713 (13.6%) 615 (11.8%) 533 (10.2%) 677 (12.9%)

LPM 1088 (20.8%) 774 (14.8%) 850 (16.3%) 770 (14.7%) 813 (15.5%) 935 (17.9%)

Table 5.29: Results on the two dynamic qualitative criteria for bigram term extraction on

the large Medline corpus.

subportion. Only PMI places an even larger proportion of targets into the upper

subportions (65.1%).

The analogous results for the two dynamic criteria on the small corpus are given

table in 5.30. Similar to the results on the large corpus, t-test manages to place

approximately twice as many upper-portion non-targets than log-likelihood to the

lower subportions, i.e. 15.2% vs. 7.8%, respectively. LPM again fulfills the criterion

to a considerable degree as it is able to demote as much as 43.2% of the non-targets.

As almost expected, this is still topped by PMI with 59%, although it appears again

that this is merely characteristic of PMI’s tendency towards indiscriminate shuffling,

as already previously observed.

With regard to criterion 4, C-value even remains more conservative in that only

0.3% of the lower-portion bigram targets are promoted to the third upper subportion.

In fact, in the lower subportions C-value even demotes the targets, compared to

frequency, in such a way that its lowest subportion exhibits a higher proportion of

them than that of frequency (40.7% for C-value vs. 37.8% for frequency). T-test again

manages to place one fifth (19.2%) of its lower-portion targets to the into the third

upper subportion, more than twice as much than log-likelihood with 8.8% (and 9.1%

altogether). LPM is again able to promote more than half of lower-portion targets to
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AM upper portion (ranks 1 - 9,500) lower portion (ranks 9,501 - 19,001)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 1665 (27.3%) 2117 (34.8%) 2310 (37.9%) 0 0 0

t-test 1631 (26.8%) 2071 (34.0%) 1464 (24.0%) 307 (5.0%) 79 (1.3%) 540 (8.9%)

6092 logL 1639 (26.9%) 2063 (33.9%) 1911 (31.4%) 298 (4.9%) 63 (1.0%) 118 (1.9%)

NTs C-value 1624 (26.7%) 2209 (36.3%) 2156 (35.4%) 103 (1.7%) 0 0

PMI 595 (9.8%) 859 (14.1%) 1037 (17.0%) 1210 (19.7%) 1248 (20.5%) 1143 (18.8%)

LPM 925 (15.2%) 1239 (20.3%) 1297 (21.3%) 1120 (18.4%) 967 (15.9%) 544 (8.9%)

Crit. 4 freq 0 0 0 617 (29.7%) 675 (32.5%) 787 (37.8%)

t-test 0 0 400 (19.2%) 655 (31.5%) 641 (30.8%) 383 (18.4%)

2079 logL 3 (0.1%) 4 (0.2%) 183 (8.8%) 750 (36.0%) 666 (32.0%) 473 (22.8%)

Ts C-value 0 0 7 (0.3%) 589 (28.3%) 637 (30.6%) 846 (40.7%)

PMI 378 (18.2%) 488 (23.5%) 273 (13.1%) 286 (13.8%) 326 (15.7%) 328 (15.8%)

LPM 405 (19.5%) 327 (15.7%) 329 (15.8%) 307 (14.8%) 325 (15.6%) 386 (18.6%)

Table 5.30: Results on the two dynamic qualitative criteria for bigram term extraction

on the small Medline corpus.

the upper three subportions (51%) and PMI’s tendency to reshuffling is exhibited by

doing so with even 54.8%.

For trigram term extraction on the large corpus, the qualitative results with respect

to criterion 3 are shown in the upper part of table 5.31. It is again C-value whose

distribution patterns of non-targets are most identical to those of frequency in that it

is only able to promote 0.8% of them to the third upper subportion. Although t-test

is a bit more successful in doing so with 5.4%, it underperforms with respect to this

criterion compared to the bigram case in which it was able to promote up to 16% of

the lower-portion targets. LPM is again very successful in promoting these targets,

viz. 40.9% altogether, and so is PMI with 54.9%, at least on the surface.

For t-test and LPM, a view from another angle on this criterion is offered by the

scatterplots in figures 5.31 and 5.32, in which the rankings of the upper-portion non-

targets of frequency are plotted against their ranking in t-test and LPM, respectively.

Here it can be seen that, in terms of the rank subportions considered, the t-test non-

targets are concentrated along the same line as the frequency non-targets, with only a

few being able to break this line and get demoted to a lower subportion. On the other

hand, LPM completely breaks the original frequency ranking pattern and scatters the

upper portion non-targets in the two possible directions, but with the vast majority
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AM upper portion (ranks 1 - 14,249) lower portion (ranks 14,250 - 28,499)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 3525 (29.7%) 4064 (34.3%) 4272 (36.0%) 0 0 0

t-test 3504 (29.5%) 4040 (34.1%) 3685 (31.1%) 307 (2.6%) 78 (0.7%) 247 (2.1%)

11861 C-value 3534 (29.8%) 4068 (34.3%) 4159 (35.1%) 99 (0.8%) 1 (<0.1%) 0

NTs PMI 1446 (12.2%) 1806 (15.2%) 2027 (17.1%) 2101 (17.1%) 2160 (18.2%) 2321 (19.6%)

LPM 2283 (19.2%) 2369 (19.9%) 2358 (19.8%) 2081 (17.6%) 1748 (14.7%) 1022 (8.6%)

Crit. 4 freq 0 0 0 409 (38.2%) 349 (32.6%) 313 (29.2%)

t-test 0 0 72 (6.7%) 432 (40.3%) 342 (31.9%) 225 (21.0%)

1071 C-value 0 0 2 (0.2%) 398 (37.2%) 314 (29.3%) 357 (33.3%)

Ts PMI 370 (34.5%) 219 (20.4%) 161 (15.0%) 118 (11.0%) 114 (10.6%) 89 (8.3%)

LPM 255 (23.8%) 233 (21.8%) 216 (20.2%) 153 (14.3%) 104 (9.7%) 110 (10.3%)

Table 5.31: Results on the two dynamic qualitative criteria for trigram term extraction

on the large Medline corpus.

of them getting demoted to a lower rank than in frequency.8

The results shown in the lower part of table 5.31 again reveal that t-test performs

worse with respect to criterion 4 for trigram extraction than for bigram extraction.

Whereas it is able to place 21.1% of the bigram lower-portion targets into the third

upper subportion (see table 5.29), it only manages to do so with 6.7% in the trigram

case. The staggered grouping of lower-portion t-test targets (visualized in the right-

hand scatterplot in figure 5.33) actually indicates that there are certain plateaus

beyond which the targets cannot get promoted. C-value basically retains the frequency

rankings as it only places 2 lower-portion targets into the third upper subportion

(0.2%). LPM meets this criterion to an even more substantial degree than it has

done for bigrams as it places 65.8% of its lower-portion trigram targets into the three

top portions. The respective scatterplot in figure 5.34 additionally shows that this

upward movement of targets, like the downward movement of targets in figure 5.32, is

bidirectional – but with the vast majority of them getting promoted to a higher rank

8Because these scatterplots serve as an illustrative purpose, due to space limitations we restrict

ourselves to showing them for the trigrams and for the best-performing association measure, LPM, as

well for as the second best-performing one, t-test. Furthermore, the result patterns for both bigrams

and quadgrams are very similar and thus additional scatterplots may just clutter the page without

purpose. In fact, apart from the dot density (due to more or fewer terms/non-terms) the respective

bigram and quadgram scatterplots are almost indistinguishable from the trigram plots.
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Figure 5.31: Criterion 3 for t-test trigrams

on large corpus.
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Figure 5.32: Criterion 3 for LPM trigrams

on large corpus.
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Figure 5.33: Criterion 4 for t-test trigrams

on large corpus.
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Figure 5.34: Criterion 4 for LPM trigrams

on large corpus.

than in frequency.

For trigram term extraction on the small corpus, the qualitative results with re-

spect to criterion 3 are shown in the upper part of table 5.32. T-test is only able to

demote 7.1% of its upper-portion non-targets, which is less than half of the propor-

tion it achieves for the bigram term extraction case. On the other hand, LPM even

performs better by demoting about 50% of the upper-portion non-targets to the lower

three subportions – an increase of over 10 points compared to bigram term extraction.
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As already was previously the case, C-value and PMI lie at the two extremes, with

C-value basically maintaining the frequency status-quo and PMI shuffling 61.4% of

the non-targets downward.

AM upper portion (ranks 1 - 2,360) lower portion (ranks 2,361 - 4,721)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 443 (27.0%) 568 (34.7%) 627 (38.3%) 0 0 0

t-test 424 (25.9%) 566 (34.6%) 531 (32.4%) 55 (3.4%) 9 (0.5%) 53 (3.2%)

1638 C-value 445 (27.2%) 568 (34.7%) 594 (36.3%) 29 (1.8%) 1 (<0.1%) 1 (<0.1%)

NTs PMI 159 (9.7%) 236 (14.4%) 236 (14.4%) 301 (18.4%) 332 (20.2%) 374 (22.8%)

LPM 235 (14.3%) 282 (17.2%) 313 (19.1%) 296 (18.1%) 300 (18.3%) 212 (12.9%)

Crit. 4 freq 0 0 0 153 (39.6%) 111 (28.8%) 122 (31.6%)

t-test 0 0 40 (10.4%) 141 (36.5%) 140 (36.3%) 65 (16.8%)

386 C-value 0 0 4 (1.0%) 150 (38.9%) 131 (33.9%) 101 (26.2%)

Ts PMI 79 (20.5%) 72 (18.7%) 66 (17.1%) 58 (15.0%) 49 (12.7%) 62 (16.1%)

LPM 65 (16.8%) 93 (24.1%) 83 (21.5%) 61 (15.8%) 48 (12.4%) 36 (9.3%)

Table 5.32: Results on the two dynamic qualitative criteria for trigram term extraction

on the small Medline corpus.

The results shown in the lower part of table 5.32 again reveal that C-value lies at

the lower end with respect to criterion 4 for trigram extraction on the small corpus,

with only being able to promote a tiny 1% of its lower-portion targets to the third

upper subportion. Although t-test is able to promote 10.4% of its lower-portion targets

to the third upper subportion, this constitutes only half of the amount achieved in

the bigram extraction case. Surprisingly, LPM here even performs best in fulfilling

this criterion by promoting 62.4% of its targets. PMI, on the other hand, is only able

to do so with 56.3%.

Table 5.33 gives the results on the dynamic criteria for the quadgram term extrac-

tion on the large Medline corpus. As can be seen with respect to criterion 3, the

measure which again least changes the frequency ranking is C-value, which only de-

motes 1.1% of the upper-portion non-targets into the first lower subportion and 0.1%

into the middle lower subportion. Also here, t-test is less able to demote non-targets

to the lower subportions (4.6%) than it is for bigram extraction (16% – see table

5.29). LPM, on the other hand, manages to demote even more here (45.5%) than for

bigram extraction (38%) whereas PMI’s demotion rate basically remains unchanged

with 56.6%.
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AM upper portion (ranks 1 - 4,929) lower portion (ranks 4,930 - 9,859)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 1312 (30.5%) 1457 (33.9%) 1528 (35.6%) 0 0 0

t-test 1300 (30.2%) 1456 (33.9%) 1341 (31.2%) 121 (2.8%) 21 (0.5%) 58 (1.3%)

4297 C-value 1310 (30.5%) 1458 (33.9%) 1477 (34.4%) 49 (1.1%) 3 (0.1%) 0

NTs PMI 550 (12.8%) 614 (14.3%) 702 (16.3%) 753 (17.5%) 833 (19.4%) 845 (19.7%)

LPM 778 (18.1%) 797 (18.5%) 776 (18.1%) 785 (18.3%) 694 (16.2%) 467 (10.9%)

Crit. 4 freq 0 0 0 112 (43.4%) 86 (33.3%) 60 (23.3%)

t-test 0 0 20 (7.8%) 117 (45.3%) 84 (32.6%) 37 (14.3%)

258 C-value 0 0 0 101 (39.1%) 89 (34.5%) 68 (26.4%)

Ts PMI 85 (32.9%) 61 (23.6%) 44 (17.1%) 28 (10.9%) 25 (9.7%) 15 (5.8%)

LPM 72 (27.9%) 69 (26.7%) 48 (18.6%) 31 (12.0%) 21 (8.1%) 17 (6.6%)

Table 5.33: Results on the two dynamic qualitative criteria for quadgram term extraction

on the large Medline corpus.

As regards criterion 4 for quadgram extraction, the results shown in the lower part

of table 5.33 even indicate that C-value is not able at all to promote any of the lower-

portion targets into the upper portion. Like for the trigram case, t-test is less able to

meet this requirement than for bigrams and only promotes 7.8% of the targets. LPM,

on the other hand again, manages to promote a record 73.2% of the lower-portion

targets into the upper portions – the relative majority of these (27.9%) into the top

upper subportion – and thus is on par with the promotion rate of PMI (73.6%).

Finally, for the quadgram extraction task on the small corpus, whose observed

brittleness is due the small size of the candidate set, the quantitative results for the

two dynamic criteria are given in table 5.34. As concerns criterion 3, t-test manages

to demote 9.1% of the upper-portion non-targets to the lower subportions whereas C-

value’s ranking again remains almost unchanged with only 1.6% of non-targets getting

demoted. Both LPM’s and PMI’s demotion rate (52.8% and 66.6%) for non-targets

is higher for this case than for lower-size n-grams.

For criterion 4 presented in the lower portion of table 5.34, the results for C-value

and t-test pretty much fall in line with previous ones. Like for the quadgram extraction

on the large corpus, C-value is not able to promote any target to the upper portion

while t-test does so with 9.1%. Whereas LPM, as expected, promotes 57.6% of its

lower-portion-targets to the upper subportions, the results for PMI fall somewhat out
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AM upper portion (ranks 1 - 456) lower portion (ranks 457 - 912)

0-16.7% 16.7-33.3% 33.3-50% 50-66.7% 66.7-83.3% 83.3-100%

Crit. 3 freq 91 (28.6%) 111 (34.9%) 116 (30.7%) 0 0 0

t-test 86 (27.0%) 113 (36.5%) 90 (28.3%) 8 (2.5%) 6 (1.9%) 15 (4.7%)

318 C-value 92 (28.9%) 112 (35.2%) 109 (34.3%) 5 (1.6%) 0 0

NTs PMI 21 (6.6%) 39 (12.3%) 46 (14.5%) 66 (20.7%) 61 (19.2%) 85 (26.7%)

LPM 47 (14.8%) 50 (15.7%) 53 (16.7%) 62 (19.5%) 57 (17.9%) 49 (15.4%)

Crit. 4 freq 0 0 0 23 (34.8%) 21 (31.8%) 22 (33.3%)

t-test 0 0 6 (9.1%) 27 (40.9%) 24 (36.4%) 9 (13.6%)

66 C-value 0 0 0 17 (25.8%) 19 (28.8%) 30 (45.5%)

Ts PMI 8 (12.1%) 9 (13.6%) 8 (12.1%) 15 (22.7%) 12 (18.2%) 14 (21.2%)

LPM 10 (15.2%) 12 (18.2%) 16 (24.2%) 13 (19.7%) 8 (12.1%) 7 (10.6%)

Table 5.34: Results on the two dynamic qualitative criteria for quadgram term ex-

traction on the small Medline corpus

of line as it promotes the smallest proportion of targets (37.8%), compared to its other

results for this criterion. But as already mentioned before, the results reported on this

candidate set have to be interpreted with care as they may be rather inconclusive.

5.3 Assessment of Experimental Results

Both the quantitative and the qualitative performance evaluations for PNV triple

collocation extraction on German general-language newspaper text data have shown

that the linguistically motivated association measure LSM outperforms the standard

frequency, statistical and information-theoretic association measures (frequency, t-

test, log-likelihood, and PMI) by large margins in every respect. With regard to the

quantitative performance evaluation, LSM outperforms its competitors on a variety of

established performance measures, such as the precision, recall, and receiver operating

curve (ROC) metrics. In addition, this advantage is not due to chance, as it has been

shown by applying McNemar as a significance test of differences to the ranked output

lists. We have also examined performance from a qualitative perspective. For this

purpose, we examined the rankings output by a certain association measure against

those given by frequency of co-occurrence. The degree to which an association measure

is able to retain or change the rankings of its targets and non-targets is taken to be
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a sort of challenging baseline against which the superiority of an association measure

may be determined from a qualitative perspective. The results obtained here also

clearly indicate that LSM is the only association measure which exhibits superior

qualitative characteristics.

The general observations of LSM’s quantitative and qualitative superiority hold

both when tested on a large corpus sample of 114 million words and on a smaller

one of 10 million words and thus are independent of corpus size. Interestingly, the

advantage of LSM is even more marked when applied on the small corpus. This may

have to do with the fact that on the large corpus a higher candidate frequency plays

a bigger role as an ingredient to the other association measures which all have some

sort of frequency factor (i.e. O11 – see subsection 3.3.1) in their computation. This is

most evidenced for the almost erratic behavior of PMI which severly underperforms

all other measures and even runs below the precision baseline.

Our performance evaluations also have clearly shown that frequency of co-

occurrence is quite a competitive association measure for collocation extraction –

a finding which is in line with previous studies (see sections 3.1 and 3.2). Indeed,

frequency of co-occurrence performs as the second best association measure for collo-

cation extraction but however turns out to only have a slight advantage compared to

t-test. That t-test performs so similar to frequency may be neatly explained by the

fact that it actually behaves most similar to frequency: as shown for the qualitative

evaluation it actually changes the frequency rankings the least compared to all other

association measures considered.

Another reason why LSM performs so much better may be given by the qualitative

evaluation results which shows that LSM, by promoting its lower-portion targets to

the upper portion (in particular, the third upper subportion), yields a big recall boost

compared to all other association measures. This is of course also of substantial

practical relevance: a measure which returns most actual collocations earlier than

others is advantageous as humans (e.g. lexicographers) may want to post-process such

a ranked output list. In addition, what may also add to this superior recall is the

fact LSM is best at keeping its targets in the upper portion (compared to frequency).

Indeed, it is the only measure that is actually able to outperform frequency at all.

Whereas we have shown in section 4.3 why LSM may be regarded as a conceptu-

ally sound linguistic property of collocations, subsection 5.1.3 has empirically demon-

strated that collocations actually do posses limited syntagmatic modifiability com-
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pared to non-collocations. From a linguistic point of view, it is interesting to note

that, contrary to linguistic perceptions, this property equally holds for all three sub-

categories of collocations alike, i.e. for idioms, for support verb constructions/narrow

collocations and for fixed phrases.

In a similar vein to our experimental results for collocation extraction, the quanti-

tative and qualitative performance evaluations conducted for term extraction on the

English-(sub)language biomedical subdomain of Hematopoietic Stem Cell Transplan-

tation and Immunology have shown that a linguistically motivated term extraction

measure, LPM, is also able to clearly outperform the same standard statistical and

information-theoretic measures (t-test, log-likelihood, PMI) as well as frequency of

co-occurrence and the frequency-based C-value measure by substantial margins in al-

most every respect. Again, we conducted the quantitative performance evaluation on

the precision, recall, and ROC performance metrics and tested for the significance

of differences using McNemar. Although the quantitative result effects are superfi-

cially very similar for the experiments on collocation and term extraction in that in

both cases the linguistically motivated measures evidently outrank their competitors,

certain differences in the term extraction case may nevertheless be observed. For

once, it is noticeable that for term extraction it is t-test, and not frequency of co-

occurrence like for collocation extraction, which runs as the second-best performing

association measure. A reason for this may be sought in the qualitative evaluation in

which for the dynamic criteria t-test manages to do more favorable re-rankings while

at the same time being able to keep its items in place for the static criteria. In fact,

also log-likelihood seems to be running partly better than frequency of co-occurrence

even though the advantage is admittedly rather small. Moreover, as we have already

pointed out on several occasions, because log-likelihood is inherently only applicable

on bigram data, it is not a serious candidate measure for practical collocation and

term extraction tasks. As for the only association measure actually devised for term

extraction, C-value, the qualitative evaluation results clearly show that it is the most

conservative of all measures in that all its rankings basically fall in line with those of

frequency of co-occurrence.

As far as the the information-theoretic PMI measure is concerned, it is actually

interesting to note that for bigram term extraction on the large corpus it performs

on par with the other standard association measures. It is only on the small corpora

and with increasing n-gram length that its performance scores deteriorate. A look
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at the qualitative performance results actually reveals that, in comparison to the

collocation extraction task, the ranking patterns for targets and non-targets are not

really different as PMI exhibits a strong tendency to reshuffling in both cases. Rather,

what seems to be the determining factor here is that PMI does not appear to be able

to handle smaller-sized candidate sets well in that the negative effects of massively

reshuffling items appear to become stronger. Whereas PMI yields its best results on

bigram term extraction, it is interesting to note that this is also by far the biggest

candidate set with 66,669 term candidate types. As the sizes of both the candidate

sets for the small corpora and for the larger-sized n-grams shrink substantially, so

does PMI’s ability to keep up with the other association measures.

On the quantitative side of the evaluation, there are virtually no differences be-

tween the linguistically motivated association measures for collocation extraction

(LSM) and for term extraction (LPM) as both clearly outperform their standard

competitors. Still, a look at the results from the qualitative perspective reveals some

differences. Although the results for the static criteria show that although LSM per-

forms a modest degree of re-rankings on upper-portion targets and on lower-portion

non-targets, this effect is much more pronounced for LPM for criterion 2 (promoting

lower-portion non-targets) while it visible but less pronounced for criterion 1 (demot-

ing upper-portion targets).9 However, with regard to the results on the dynamic cri-

teria, even though both measures manage to demote their upper-portion non-targets

and promote their lower-portion targets to a considerable extent, LPM does so to a

much more substantial degree and thus remedies any possible negative effects from

the static criteria.

Finally, a note is in order concerning the somewhat distinct nature of the results

for the extraction of quadgrams on the small corpus. Whereas in this case the quali-

tative results essentially fall in line with those for the other settings considered, it is

the quantitative results which, although showing a distinct advantage for LPM on the

standard performance metrics, do not turn out to be statistically significant in terms

9As was already pointed out in subsection 4.4.2, LPM will demote true terms in their ranking, if

their paradigmatic modifiability is less limited, which seems to the case if one or more of the word

tokens of a particular term often occur in the same k-slot of other equal-length n-grams, as it it the

case with the word token “cell” in the third slot of the trigram term “bone marrow cell”. Likewise,

of course, it will promote items classified as non-terms if their paradigmatic modifiability is limited.

But this behavior is greatly outweighed by appropriate re-rankings done on lower-portion targets

and upper-portion non-targets.
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of the McNemar test.10 A look at the size of the candidate set reveals that, given a

frequency cut-off threshold of five, it only amounts to 912 quadgram term candidates.

Given the comparatively long n-gram size and given the smaller size of the corpus,

however, this small amount of candidate terms is not unusual but rather presents a

well-known phenomenon from other NLP domains such as language modeling (Juraf-

sky & Martin, 2000). For LSM, on the contrary, small sized candidate sets still lead

to statistically significant performance differences (see subsubsection 5.1.1.2 above),

although the candidate set here only amounts to 1035 collocation candidates on the

small 10 million word corpus. What these differences between the two linguistically

enhanced assocation measures seem to indicate, then, is that LSM for collocation

extraction is more resistant to small candidate sets than LPM for term extraction.

For term extraction, one final note is in order about n-gram term candidates of

size n > 4. As has already been described in subsection 2.2.7, Justeson & Katz (1995)

found in their study that only 6% of all terms were quadgrams in the first place.

Hence, employing more or less sophisticated association measures to the extraction

of pentagrams (or even larger-sized n-grams) may not be worth while and the use of

frequency of co-occurrence instead may just be a cheaper and equally viable solution.

For all smaller-sized n-grams, however, the use of the linguistically enhanced statis-

tical method LPM is certainly advantageous and preferable, given a reasonably sized

candidate set.

10Although it is certainly desirable in terms of scientific rigor, it should also be noted that we

applied the McNemar test for a very strict confidence interval of 99%, whereas many other studies

make do with a 95% confidence interval.



Chapter 6

Conclusions and Outlook

The research presented in this thesis has shed new light on how computational ap-

proaches should address the extraction of collocations and terms from natural lan-

guage text corpora. We started out our enterprise with one of the most famous

slogans of 20th century linguistics – Firth (1957)’s “You shall know a word by the

company it keeps!”. With the insights gained from this work, we might want to add

the phrase “. . . in its syntagmatic and paradigmatic context”. And in fact, we have

seen that the linguistic research literature on collocations and terms has provided

us with some crucial insights about the characteristic properties of collocations and

terms.1 Firstly, they have enabled us to isolate one particular linguistic property

shared by both kinds of linguistic expressions, viz. limited modifiability. Secondly,

they have provided us with an appropriate linguistic frame to structure this property,

viz. the lexical-collocational layer of Firth’s (1957) model of language description,

in particular its syntagmatic and paradigmatic contexts. That this embodiment is

necessary has been extensively shown because, after all, collocations and terms are

different linguistic entities that surface in different linguistic contexts, both syntac-

tically and pragmatically. From the syntactic perspective, it has become clear that

while collocations may manifest themselves in a variety of syntactic constructions,

the surface manifestation of terms is basically limited to noun phrases. In addition,

the fact that collocation and term candidates may be filtered out from pre-definable

linguistic structures has also clearly underscored the necessity for linguistic prepro-

1This also includes, to a certain extent at least, the non-linguistic research literature on terms

and terminology – cf. section 2.2.
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cessing of text corpora. From a pragmatic perspective, we have demonstrated that

collocations may be best conceived of as general-language constructions whereas terms

are relevant in subject-specific sublanguage domains.

From these linguistic findings, we were then able to structure the property of

limited modifiability in such a way that we could forge it in to observable, formaliz-

able and quantifiable terms in order to serve as linguistic parameters for two distinct

statistical computations measuring lexical association in a language- and domain-

independent manner. In order to compute the degree of collocaticity of a colloca-

tion candidate, limited syntagmatic modifiability (LSM) incorporates the tendency

of collocations to limit the number of potential syntagmatic attachments, while, in

order to determine the degree of termhood on a term candidate, limited paradigmatic

modifiability (LPM) incorporates the tendency of terms to limit the number of po-

tential paradigmatic substitutions. One notable feature of both lexical association

measures is that, besides utilizing limited modifiability, they also exploit frequency of

co-occurrence as another linguistically prominent property of both collocations and

terms. Frequency of co-occurrence is in fact the one linguistic attribute from the

British contextualist linguistic tradition that has greatly influenced the use of various

standard statistical and information-theoretic association measures (or test statistics)

for collocation and term extraction approaches in the first place, as they basically ex-

ploit this information in different forms in their statistical computations. In fact, our

review of the research literature on computational approaches to collocation and term

extraction has actually shown that frequency of co-occurrence fares competitively well

against the more complex statistical association measures.

While we were able to put our newly devised lexical association measures on a

theoretically and definitionally sound base, we also had to validate that our whole

endeavor would fulfill our assumptions, i.e. that linguistically more informed lexical

association measures would outperform their standard competitors to a substantial

degree – thus making the whole enterprise worthwhile in the first place. For this

purpose, we established a comprehensive comparative performance evaluation set-

ting, which not only ran a wide array of standard quantitative performance metrics,

but also applied a new qualitative performance evaluation metric that compared the

output rankings of an association measure to frequency of co-occurrence as a chal-

lenging baseline. For collocation extraction, the evaluation setting was on German-

language preposition-noun-verb collocation candidates and for term extraction it was
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on English-language noun phrase term candidates from the biomedical subdomain

of immunology. Both the quantitative and the qualitative performance evaluations

showed that our assumptions were correct. For the tasks of collocation and term

extraction from text corpora, the linguistically motivated association measures LSM

and LPM outperformed their standard frequency-based, statistical and information-

theoretic lexical association measures by large margins in every respect.

The research presented in this thesis may, of course, be built upon in various

further research directions. Although this work corroborates the essential assumption

held by many other researchers (e.g. Evert (2005), Jacquemin (2001), and others),

viz. that the crucial backbone of any approach to collocation and term extraction is a

high-performance lexical association measure, it is expansible in many different ways

which have already been hinted at in this work. For the task of collocation extraction,

a logical next step would be to transfer the LSM approach to other types of syntactic

constructions which may harbor potential collocation candidates, such as noun-verb or

noun-noun-verb constructions. Whether or not an equally comprehensive (and labor-

intensive) evaluation as presented here is necessary remains to be seen insomuch as our

research results clearly show that LSM is a superior lexical measure for collocativity

and, thus, is applicable to any linguistic construction involving phrasal elements as the

place to locate syntagmatic attachments. Given this, the acquired sets of collocations

may be put in a lexical database2 in which the entries may be enriched with additional

kinds of information. On the one hand, it may be possible to utilize syntagmatic

attachments in such a way as to associate particular collocation entries with possible

lexico-semantic modifications, along the lines already outlined in subsection 4.3.2.

On the other hand, the acquired set of collocations may also be further classified

into collocational subclasses using a similar approach as suggested by Lin (1999).3

Finally, such a collocation database may also be used as input to syntactic parsers and

semantic interpreters in order to prevent them from performing superfluous syntactic

assignments or semantic interpretations.

As for the extraction of terms, a logical extension to the LPM-based approach to

compute the termhood of term candidates would be to place it in the wider context

2This is particularly relevant, as it has been shown time and again that existing collocational

lexicons are incomplete (Evert & Krenn, 2001; Lin, 1998b).
3Being in need of a thesaurus-like lexicon, the German-language Open Office thesaurus (www.

openthesaurus.de) may serve as an appropriate resource for this task.
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of computational terminology, as e.g. outlined by Jacquemin (2001). One issue is

certainly that, once a sound basis of terminological data has been acquired by LPM,

it is necessary to enrich the respective terms with potential variants. While associ-

ating acronyms with their respective full forms is a comparatively easy task in this

respect, a more challenging task is to harvest syntactic variants which still denote

the same term concept.4 An approach such as the one taken by Jacquemin’s (2001)

FASTR formalism, in which a large set of term-specific grammar rules is devised and

implemented in a complex feature unification-based formalism, would most likely not

only be too laborious and costly, but also be more error-prone and substantially over-

shoot the target by rendering too many false positives that would need post-editing,

as conceded by Jacquemin (2001) himself. Thus, employing a shallower approach to

syntactic term variant recognition (e.g. by applying a phrase chunker, some form of

stemming and string edit distance matching) would most likely be not only equally

viable but also more feasible in terms of effort to invest. Once such an enriched termi-

nological database has been set up, a potential next step could be to associate terms to

each other through semantic relations, such as taxonomic relations, in order to create

a thesaurus-like structure. Here again, various approaches are conceivable, ranging

from full-fledged complex unification formalism in the line of Jacquemin (2001) to

shallower procedures based on deleted noun phrase modifiers.5

Finally, it should be recalled again that, despite all the promising lines of fur-

ther research, the crux of the whole enterprise of term and collocation extraction still

remains a high-quality lexical association measure. On the one hand, there are tech-

nical domains and subject fields which either only possess insufficient terminological

resources or even lack them completely. In this sense, not every subject domain is as

blessed as the biomedical field with the Umls resource.6 In a similar vein, colloca-

tional lexicons have shown to be notoriously underspecified. On the other hand, even

if resources like the Umls are on hand for a particular domain, the nature of natural

language, i.e. its creativity and productivity, guarantees that new collocations and

new terms are constantly being coined.

4It should be recalled that the linguistic preprocessing applied in this work already accounts for

morphological variation.
5In this way, it would e.g. be possible to establish a taxonomic link between “stem cell” and

“hematopoietic stem cell”.
6In fact, the Umls resource is probably unique both in terms of its size and dimension.
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Summary

The research presented in this thesis substantiates, defines and evaluates two new

linguistically motivated statistical association measures in a language- and domain-

independent manner, limited syntagmatic modifiability (LSM) for collocation extrac-

tion, and limited paradigmatic modifiability (LPM) for term extraction. The task

they are designed for – computing lexical association scores to determine the degree

of collocativity and termhood of collocation and term candidates – is the crucial back-

bone of any approach to collocation and term extraction and, thus, resembles a wide

variety of standard frequency-based, statistical and information-theoretic association

measures put forth in the computational linguistics research literature. What distin-

guishes LSM and LPM is that their defining parameters are based on actual linguistic

properties of the targeted linguistic constructions, viz. collocations and terms.

The central linguistic property which is isolated in the linguistic research literature

and which is shared by collocations and terms is denoted by the notion of limited mod-

ifiability. This property is parameterized in such a way as to account for the obvious

linguistic differences between collocations and terms in that collocations are typically

manifested in general language and surface in a variety of syntactic constructions,

while terms are typically confined to noun phrases manifested in domain-specific sub-

language. Limited modifiability is embedded within an appropriate linguistic frame

of reference – the lexical-collocational layer of Firth (1957)’s contextualist model of

language description. With the help of this model, the linguistic differences are real-

ized as limited syntagmatic modifiability, in the case of collocations, and as limited

paradigmatic modifiability, in the case of terms. The respective linguistically en-
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hanced lexical association measures exploit these properties as observable and quan-

tifiable parameters to their statistical computations in that LSM incorporates the

tendency of collocations to limit the number of potential syntagmatic attachments

whereas LPM incorporates the tendency of terms to limit the number of potential

paradigmatic substitutions. Frequency of co-occurrence is another prominent linguis-

tic property incorporated into both linguistic association measures and is the only

linguistic property also exploited by other standard frequency-based, statistical and

information-theoretic association measures for collocation and term extraction.

In order to compare the linguistically enhanced lexical association measures LSM

and LPM against their standard competitors, a comprehensive performance evaluation

setting is established – for collocation extraction on German-language preposition-

noun-word collocation candidates and for term extraction on English-language noun

phrase term candidates from a biomedical subdomain. In this setting, a wide array

of standard quantitative performance metrics is applied as well as, in addition, a new

qualitative performance evaluation metric which compares the output rankings of an

association measure to the challenging baseline of frequency of co-occurrence. All

experimental results show that LSM and LPM outperform the other frequency-based,

statistical and information-theoretic lexical association measures by large margins in

every aspect of performance evaluation considered. Thus, lexical association measures

which base their statistical computations on linguistic parameters instead of standard

statistical ones not only exhibit conceptual but also empirical superiority.
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Collocation Classification Manual

This appendix contains the annotation manual given to the three human annotators

(graduate students of German linguistics) for their classification task of German PNV

triples. These guidelines, which are written in German, include the linguistic prop-

erties described in subsubsection 2.1.4.1 and a description of the three collocational

classes and how they may be distinguished from free word combinations, as outlined

in subsubsection 2.1.4.2.

A.1 Definitionen aus der einschlägigen Literatur

“Kollokationen: eine Sequenz aus zwei oder mehreren Wörtern, welche die Eigenschaft

einer syntaktischen und semantischen Einheit hat. Ihre exakte und eindeutige Bedeu-

tung kann nicht direkt aus der Bedeutung ihrer Komponenten abgeleitet werden.”

“Kollokationen bezeichnen charakteristische, häufig auftretende Wortgruppen. Weit-

gefasst, subsumieren sie voll idiomatisierte Wendungen (‘am Herzen liegen’), Funk-

tionsverbgefüge (‘zur Verfügung stellen’) und semantisch transparente Gruppen

(’Zähne putzen’).”

“Kollokationen sind (meist) Paare von lexikalischen Zeichen, die durch häufiges

Kovorkommen (innerhalb einer Phrase) eine halbfeste Verbindung eingehen. Die

lexikalischen Zeichen werden in ihrer eigentlichen, d.h. im Wörterbuch kodierten

Bedeutung verwendet. Die Gesamtbedeutung der Gruppe ist keine direkte Funktion

der Einzelbedeutungen. Die Verbindung ist so fest, dass Quasi-Synonyme als Alter-
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nativen für eines der Elemente merkwürdig klingen. Eine Variante der Kollokationen

sind die Funktionsverbgefüge, die aus einem sehr allgemeinen Verb und einem die

eigentliche Bedeutung tragenden, in einer PP eingebetteten Nomen bestehen.”

“Kollokationen bestehen aus einer Basis (’Antrag’, ’Haar’) und einem Kollokator

(’stellen’, ’schütter’).”

”Funktionsverben (wie ’bringen’, ’kommen’, ’finden’, ’stehen’, ’nehmen’ u.a.) sind eine

Teilmenge der Verben, die in bestimmten Kontexten ihre lexikalische Bedeutung als

Vollverb fast ganz verloren haben. Die Hauptbedeutung in solch einem Funktionsver-

bgefüge wird von einem Substantiv, einer Präpositionalphrase oder einem Adjektiv

getragen.”

in Frage stellen – hinterfragen

instand setzen – reparieren

zu Grunde richten – zerstören

zur Schau stellen – zeigen

Rechnung tragen – berücksichtigen

auf den Weg machen – losgehen

Abschied nehmen – sich verabschieden

Funktionsverb und Ergänzung bilden den Satzrahmen.

Er machte sich sofort nach dem Essen auf den Weg.

A.2 Unsere Richtlinien für die Verwendung des

Begriffs ‘Kollokation’

Wir werden den Begriff ‘Kollokation’ in einem weitgefassten Sinn verwenden.

Obwohl wir uns bei dieser Studie nur mit (P)räposition-(N)ominalgruppe-(V)erb-

Verbindungen beschäftigen, gelten die drei hier aufgeführten Kollokationsklassen auch

für andere Kombinationen. Um die drei Klassen von einander unterscheiden zu

können, werden wir die Bestandteile (Präposition-Nominalgruppe auf der einen Seite,

Verb auf der anderen Seite) unter ihrer naiven lexikalischen Grundbedeutung

(NLG) betrachten.
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1. Idiomatische Phrasen (“am Herzen liegen”). Betrachtet man die NLGs von

“liegen” und “am Herzen” und ‘komponiert’ die beiden zusammen, so erkennt

man schnell, dass keine der beiden semantisch transparent in die Komposition

mit einfließt. Die Bedeutung des Ganzen ist figurativ/metaphorisch zu sehen.

Weitere Beispiele:

• auf die Schippe nehmen

• mit einem blauen Auge davonkommen

• auf dem falschen Fuß erwischen

2. Enge Kollokationen bzw. Funktionsverbgefüge (“zur Kenntnis nehmen”,

“in Ordnung bringen”). Bei diesen Kombinationen ist wenigstens eine Kompo-

nente transparent, d.h. ihre NLG trägt zur Gesamtbedeutung bei: daher bildet

sie normalerweise den “semantischen Kern” oder die Basis des Ausdrucks. Im

Beispiel sind die NLGs von “Kenntnis” und “Ordnung” die semantischen Kerne.

Weitere Beispiele:

• zur Verfügung stehen

• in Frage stellen

• in den Hintergrund treten

• aus eigener Tasche bezahlen

3. Feste Wendungen (“im Koma liegen”). Die Bedeutung dieser Kombinatio-

nen ist semantisch viel transparenter als die vorigen Beispiele. Das heißt, es

ist erkennbar wie die NLGs der einzelnen Komponenten zur Gesamtbedeutung

beitragen. Allerdings tun sie das nicht vollständig: man hat das Gefühl, dass

dies noch keine freien, willkürlichen Wortkombinationen sind und dass die PNV-

Wörter (d.h. alle Komponenten) ‘irgendwie’ zusammengehören. Man vergleiche

“im Koma liegen” (feste Wendung) mit “auf der Strasse liegen” (keine feste

Wendung). Weiter Beispiele:

• ums Überleben kämpfen

• in die Hand drücken

• auf der Brust tragen
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Bis jetzt sind Kollokationen nur positiv definiert worden (d.h., was sie sein können),

aber es ist auch notwendig, ein paar negative Kriterien zu bestimmen (d.h. was sind

Eigenschaften, die Kollokationen normalerweise nicht besitzen).

• Nicht- oder limitierte Kompositionalität. Die Bedeutung einer Kollokation

kann nicht direkt aus der Bedeutung ihrer Komponenten abgeleitet werden.

Vieles dazu ist schon oben gesagt worden.

• Nicht- bzw. limitierte Ersetzbarkeit. Die Komponenten einer Kolloka-

tion können nicht oder nur schwer durch gleiche oder ähnliche Wörter ersetzt

werden. So kann man “zur Last legen” nicht durch “zur Last stellen/setzen”

oder zum “zum Gewicht legen” ersetzen (man beachte auch, dass sich hierbei

die Präposition von “zur” nach “zum” geändert hat – auch illegal!). Aber man

kann z.B. “um 20 Prozent steigen” zu “auf 20 Prozent klettern” oder zu “um

30 Prozent steigen” ändern. Daher ist dies keine Kollokation!

• Nicht- oder limitierte Modifizierbarkeit. Viele Kollokationen sind nicht

frei oder nur schwer modifizierbar: “zur Kasse bitten”, aber nicht “zur

vollen/mit Geld gefüllten/leeren Kasse bitten”.

Es ist klar, dass sehr selten alle diese Kriterien zutreffen. Daher muss dies bei der

Klassifizierung genau abgewogen werden. Man kann aber ziemlich sicher sein, dass,

wenn keines der Kriterien zutrifft, man es nicht mit einer Kollokation zu tun hat.

Daher stehen im Kontrast zu diesen drei Klassen freie, willkürliche Wortkombina-

tionen (“auf der Strasse gehen”, “sich unter dem Bett verstecken”), die nicht als

Kollokation klassifiziert werden.

A.3 Details zur Klassifizierung

Die Klassifizierung der (P)räposition-(N)ominalphrase-(V)erb Kombinationen ist in

einem Excel-Spreadsheet vorzunehmen. Es gibt drei Spalten für die Klassifizierung:

• Grobklassifizierung: Ist der Ausdruck eine Kollokation im weitgefassten Sinn

von 1., 2., oder 3. oben? Wenn ja: 1; wenn nein: 0.
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• Feinklassifizierung: Wenn es eine Kollokation ist, welche der 3 Klassen von

oben trifft am ehesten zu (1., 2., oder 3.)? Wenn es keine ist, wieder eine 0

geben.

• Ambiguitäts-Klassifizierung: Manche PNV-Verbindungen haben – je nach

Kontext – eine kollokative oder eine wörtliche, NLG-artige Bedeutung. Kann

der Ausdruck beides sein? Wenn ja: 1, wenn nein: 0.

Beispiel: “aus dem Feld schlagen”;

kollokative Bedeutung: einen Gegner/Widersacher/Konkurrent beseiti-

gen/besiegen.

wörtliche Bedeutung: den Ball (z.B. beim Fußball) aus dem Feld schlagen.

Weitere Beispiele: “im Abseits stehen”; “auf die Nase fallen”

• Duden-Klassifizierung: Findet sich dieser Ausdruck im Duden Band 11, Re-

dewendungen? Wenn ja: 1; wenn nein 0;

Ein paar weitere Hinweise zur Klassifizierung:

• Die PNV-Kombinationen wurden automatisch aus einem großen Textkorpus ex-

trahiert. Das bedeutet, dass es auch einige ungrammatische bzw. ‘nicht richtig’-

klingende Kombinationen gibt. Bitte diese mit 0 markieren.

• Manchmal sind die PNV-Kombinationen eigentlich Teil einer größeren Kolloka-

tion (z.B. “mit einer Klappe schlagen” → “zwei Fliegen mit einer Klappe schla-

gen”; “in den Ring werfen” → “den Hut in den Ring werfen”). Diese auch mit

0 markieren, da es ja nicht die komplette Kollokation ist.

• Achtung vor festen (P)räposition-(V)erb Kombinationen! So ist z.B. bei

“um Geld gehen” eine feste Verbindung zu finden – nämlich “gehen um”

(es geht um . . . ). Aber dies ist keine PNV- sondern ‘nur’ eine PV-

Kollokationen/Verbindung. d.h. nur zwei der drei Komponenten gehören

zusammen. Deswegen mit 0 markieren!

Andere Beispiele: “sich auf das Spiel konzentrieren”, “um seinen Job ban-

gen”
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• Ein gute Strategie, um bei schwierigen Kandidaten zur richtigen Klassifizierung

zu gelangen (außer die schon genannten Richtlinien oben), ist, die Kombination

in einen Kontext einzubinden, d.h. einen oder mehrere Sätze damit zu pro-

duzieren, auch mit verschiedenen Wortstellungen; oder versuchen, einen Wörter-

bucheintrag zu ‘imitieren’.

– Beispiel: “am Herzen liegen” – “Diese Uhr lag mir sehr am Herzen”; “jmdm

etw am Herzen liegen”

– Wichtig!!! Internet: Die Kombination in Google in Anführungszeichen

eintippen. Auch mit Wildcards (*) probieren. Es werden eine Menge von

Kontexte zurückgegeben.

Tipp: dies ist eine wertvolle Strategie! Deshalb beim Klassifizieren unbed-

ingt online sein!
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MeSH Terms and UMLS Source

Vocabularies

This appendix itemizes the MeSH index terms that were used to obtain our biomed-

ical text corpus (section B.1). It also lists the Umls source vocabularies selected to

classify our term candidate sets (section B.2).

B.1 MeSH Terms

The following MeSH index terms describe the domain of Hematopoietic Stem Cell

Transplantation and Immunology and were chosen in consultation with a domain

expert. They were used to query Medline and download approximately 400,000

abstracts, which amounted to 100 million words of text material (see subsubsection

4.5.3.1).

• Haplotypes

• Immunoglobulins

• Antibodies

• Histocompatibility Antigens

• Antigens

• Leukocytes

• Bone Marrow Cells
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• Antibody-Producing Cells

• Antigen-Presenting Cells

• Alleles

• Antigenic Variation

• Cytokines

• Cytokine Receptors

• Bone Marrow Transplantation

• Graft vs Host Disease

• Graft vs Host Reaction

• Graft vs Leukemia Effect

• Graft vs Tumor Effect

• Host vs Graft Reaction

• Hematologic Neoplasms

• Hematopoietic Stem Cell Transplantation

• Hematopoietic Stem Cells

• Histocompatibility

• Histocompatibility Testing

• Immunosuppression

• Leukemia

• Major Histocompatibility Complex

• Minor Histocompatibility Antigens

• Minor Histocompatibility Loci

• Genetic Variation

• Stem Cell Transplantation

• Transplantation Conditioning

• Transplantation Immunology

• Heterologous Transplantation
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B.2 UMLS Source Vocabularies

This section contains the list of Umls source vocabularies included in our experiments,

which are deemed to contain relevant terms for the domain of Hematopoietic Stem Cell

Transplantation and Immunology. Umls vocabularies were excluded either if they are

basically subsumed by other ones (e.g. the diagnosis vocabulary ICD-9 is subsumed by

ICD-10) or if they are completely unrelated to the domain under consideration (e.g.

the numerous vocabularies on health care, nursing, billing codes, dental medicine,

psychology, and consumer health). We included an additional terminology in this set

which is not included in the 2006 edition of the Umls but which is highly relevant for

our domain, viz. the Obo Cell Ontology.1

The term candidates in our term candidate sets were assigned the status of being

an actual term if they were found in any of these vocabularies it (see subsubsection

4.5.3.3).

• ICD-10: International Statistical Classification of Diseases and Related Health

Problems: 10th Revision

• SNOMED-CT: Systematized Nomenclature of Medicine - Clinical Terms

• MESH-2005: Medical Subject Headings, 2005 Edition

• OMIN: Online Mendelian Inheritance in Man

• NCI-2005: NCI Thesaurus, 2005 Edition

• UWDA: University of Washington Digital Anatomist

• GO-2005: Gene Ontology

• NCBI-2005: NCBI Taxonomy

• HL7: Health Level Seven Vocabulary

1http://obofoundry.org/cgi-bin/detail.cgi?id=cell
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Daille, Béatrice (1994). Approche mixte pour l’extraction automatique de terminologie

: statistiques lexicales et filtres linguistiques, (Ph.D. thesis). Université Paris 7.
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Deutsche. In Helmut Feldweg & Erhard W. Hinrichs (Eds.), Lexikon und Text.

Wiederverwendbare Methoden und Ressourcen zur linguistischen Erschließung

des Deutschen, Vol. 73, Lexicographica Series Maior, pp. 193–204. Tübingen:
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