Untersuchungen zur tumorbibologischen Relevanz
von BMP-2 im Mammakarzinom

Dissertation zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Biologisch-Pharmazeutischen-Fakultät der
Friedrich-Schiller-Universität Jena

von Susanne Steinert
geboren am 02.06.1981 in Burgstädt
Gutachter:

1. Prof. Dr. K. Höffken
2. Prof. Dr. S. Reissmann
3. Prof. Dr. S. Wölfl

Tag der öffentlichen Verteidigung: 23.06.2008
Abkürzungen

ActR Activin Rezeptor
ALK Activin like Kinase
BAMBI BMP und Activin membrangebundener Inhibitor
BMP Bone Morphogenetic Protein, Knochenmorphogenesefaktor
BMPR Bone Morphogenetic Protein Rezeptor
bp Basenpaare, Einheit der DNA-Länge
cDNA complementary DNA
DAB 3,3´-Diaminobenzidin-tetrahydrochlorid
dATP Desoxyadenosintriphosphat
dCTP Desoxycytosintriphosphat
dGTP Desoxyguanidintriphosphat
DMEM Dulbecco´s Modified Eagle Medium
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
dNTP Desoxynukleosidtriphosphat
Dox Doxycyclin
dTT 1,4-Dithio-DL-threitol
dTTP Desoxthymidintriphosphat
ECL enhanced Chemiluminescence
EDTA Ethylendiamintetraessigsäure
EGFR Epidermal-Growth-Factor-Rezeptor
ER Östrogenrezeptor
FCS fötales Kälberserum
GDF growth and differentiation factor
GO Gene Ontology
IHC Immunhistochemie
ISR integrated stress response
JAK Januskinase
kb Kilobasenpaare, Einheit der DNA-Länge
kDa Kilodalton
LB-Medium Luria-Bertani-Medium
mA Milliampère, Einheit der Stromstärke
MAPK mitogen-activated protein kinase
mRNA messenger RNA, „Boten“-Ribonukleinsäure
nm Nanometer, Einheit der Wellenlänge
PAA Polyacrylamid
PAGE Polyacrylamidgelelektrophorese
PBS Phosphate buffered saline
PCR Polymerase Chain Reaction
PR Progesteronrezeptor
REM Remmele Score
RLU relative light units
RNA Ribonukleinsäure
RS Remmele Score
RT Raumtemperatur
rt-PCR Reverse Transkriptase Polymerase Chain Reaction
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS</td>
<td>Sodiumdodecylsulfat</td>
</tr>
<tr>
<td>Smad</td>
<td>Mother against decapentalegic</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TAE</td>
<td>Trisbase-Eisessig-EDTA-Puffer</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming Growth Factor Beta</td>
</tr>
<tr>
<td>UPR</td>
<td>unfolded protein response</td>
</tr>
<tr>
<td>V</td>
<td>Volt, Einheit der Stromspannung</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Zusammenfassung .. VII

Summary ... IX

1. Einleitung .. 1

1.1. Die TGF-β Superfamilie ... 1
1.2. Bone Morphogenetic Proteins (BMPs) .. 2
1.3. Signaltransduktion der BMPs ... 3
1.4. Regulation des BMP-Signalweges ... 5
1.5. Biologische Aktivitäten der BMPs ... 6
1.6. BMPs im Tumorgeschehen .. 9
1.7. BMPs im Mammakarzinom ... 10
1.8. Bone Morphogenetic Protein-2 (BMP-2) .. 11
1.9. Zielstellung der Arbeit ... 13

2. Methoden ... 14

2.1. Zellbiologische Methoden .. 14
2.1.1. Zelllinien .. 14
2.1.2. Zellkultivierung ... 14
2.1.3. Auftauen der Zellen ... 14
2.1.4. Passagieren der Zellen .. 15
2.1.5. Kryokonservierung der Zellen .. 15
2.1.6. Zellzahlbestimmung .. 15
2.2. Molekularbiologische Methoden ... 16
2.2.1. RNA-Isolierung .. 16
2.2.2. Konzentrationsbestimmung von Nukleinsäuren .. 16
2.2.3. Reverse Transkription ... 17
2.2.4. rt-PCR .. 18
2.2.5. Auftrennung der PCR-Produkte mittels Agarosegelelektrophorese 19
2.2.6. realtime-PCR ... 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.</td>
<td>cDNA Microarray</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>Inkubationsversuche</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>Probenpräparation und Hybridisierung</td>
<td>21</td>
</tr>
<tr>
<td>2.3.3.</td>
<td>Auswertung des Microarrays</td>
<td>22</td>
</tr>
<tr>
<td>2.4.</td>
<td>Das Tet-System</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1.</td>
<td>Herstellung des Responseplasmids</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1.1.</td>
<td>Ermittlung der Schnittstellen für die Umklonierung</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1.2.</td>
<td>Restriktionsverdau und Gelextraktion</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1.3.</td>
<td>Ligation</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1.4.</td>
<td>Transformation</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1.5.</td>
<td>Plasmidisolierung</td>
<td>26</td>
</tr>
<tr>
<td>2.4.1.6.</td>
<td>Differentieller Restriktionsverdau</td>
<td>26</td>
</tr>
<tr>
<td>2.4.1.7.</td>
<td>Sequenzierung</td>
<td>27</td>
</tr>
<tr>
<td>2.4.2.</td>
<td>Optimierung des Tet-Systems</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2.1.</td>
<td>Bestimmung der zytotoxischen Konzentration von Hygromycin</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2.2.</td>
<td>Ermittlung der optimalen Doxycyclin-Konzentration</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2.3.</td>
<td>Luciferase Reporter Assay</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3.</td>
<td>Transfektion des Response Vektors in MCF-7 Tet-On</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3.1.</td>
<td>Transiente Transfektion von MCF-7 Tet-On</td>
<td>30</td>
</tr>
<tr>
<td>2.4.3.2.</td>
<td>Etablierung stabil transfizierter Klone</td>
<td>30</td>
</tr>
<tr>
<td>2.4.4.</td>
<td>Analyse der stabil transfizierten Klone</td>
<td>31</td>
</tr>
<tr>
<td>2.5.</td>
<td>Immunhistochemie</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1.</td>
<td>Etablierung der BMP-2 Immunhistochemie</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1.1.</td>
<td>Die Avidin-Biotin-Komplex Methode</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1.2.</td>
<td>Durchführung der Immunhistochemie</td>
<td>32</td>
</tr>
<tr>
<td>2.5.2.</td>
<td>Multi Tissue Array</td>
<td>34</td>
</tr>
<tr>
<td>2.6.</td>
<td>Proteinanalytik mittels Western blot</td>
<td>35</td>
</tr>
<tr>
<td>2.6.1.</td>
<td>Proteinisolierung und Konzentrationsbestimmung</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2.</td>
<td>Auftrennung des Proteingemisches mittels SDS-Polyacrylamid-Gelelektrophorese</td>
<td>35</td>
</tr>
<tr>
<td>2.6.3.</td>
<td>Elektrotransfer und Immundetektion der Proteine</td>
<td>36</td>
</tr>
</tbody>
</table>
3. **Ergebnisse** .. 37

3.1. Expressionsanalysen zur zeitabhängigen Wirkung von BMP-2 ... 37
3.1.1. Generelle funktionelle Analyse der differenziell exprimierten Gene.. 37
3.1.2. Assoziation der differenziell exprimierten Gene mit Tumorigenese... 40
3.1.3. Verifizierung der Microarray-Daten mittels realtime-PCR .. 42
3.1.3.1. Validierung der Microarray-Daten in der Gruppe „Überexpression“ .. 42
3.1.3.2. Validierung der Microarray-Daten der Apoptose-assozierten Gene.. 43
3.1.4. Funktionelle Untersuchungen von PKR und seinem Substrat eIF2alpha... 48

3.2. Das Tet-System für eine induzierbare Genexpression .. 49
3.2.1. Herstellung und Charakterisierung des Response-Plasmids ... 50
3.2.2. Bestimmung der optimalen Doxycyclin-Konzentration .. 51
3.2.3. Transiente Transfektion .. 53
3.2.4. Stabile Transfektion .. 59

3.3. Immunhistochemische Untersuchung der BMP-2 Expression .. 63
3.3.1. Etablierung der BMP-2 Immunhistochemie .. 63
3.3.2. Multigewebearray „breast prognosis“ ... 66
3.3.2.1. Das Patientenkollektiv .. 66
3.3.2.2. Histopathologie und Klassifikation des Mammakarzinoms ... 66
3.3.2.3. Immunhistochemisch bestimmte Parameter ... 70
3.3.2.4. Statistische Überprüfung des Patientenkollektivs ... 71
3.3.2.5. Häufigkeit und Verteilung der BMP-2 Expression ... 72
3.3.2.6. Korrelationen von BMP-2 ... 74
3.3.2.7. Überlebensanalyse ... 78
3.3.2.8. BMP-2 – ein unabhängiger Prognosefaktor?! ... 79
3.3.3. Multitumor-Gewebearray .. 80
3.3.3.1. Quantitative Auswertung der BMP-Expression .. 81
3.3.3.2. Qualitative Auswertung der BMP-Expression .. 82

4. **Diskussion** .. 85
5. Literaturverzeichnis ... i
6. Tabellenverzeichnis .. xx
7. Abbildungsverzeichnis .. xxi
8. Material .. xxiv
9. Anhang ... xxxii
 Liste veränderter Gene
 Vektorkarten
 Sequenzen
 Korrelationen von BMP-2
 Cox-Regression
 Statistische Untersuchungen des Multitumor-Gewebearrays
 Lebenslauf
 Kongressbeiträge
 Publikationen
 Ehrenwörtliche Erklärung
 Danksagung
Zusammenfassung

Die immunhistochemischen Untersuchungen zeigten eine schwache bis mäßige Expression von BMP-2 in 60% der Gewebeproben von Brustkrebspatienten. Dabei war in gut differenzierten, kleinen Tumoren eine robuste BMP-2 Expression nachweisbar. Die BMP-2 Expression ist invers korreliert zum Östrogen-Rezeptorstatus (p = 0,001) und der Proliferation (p = 0,001). Eine positive Korrelation zeigt sich zum anti-apoptotischen Protein Bcl2 (p = 0,024) und zum Gehalt des Tumorsuppressors p53 (p < 0,000). Die Expression von BMP-2 ist positiv vergesellschaftet mit der Expression der Zellzyklusregulatoren Cyclin D1 (p = 0,001), p27 (p = 0,029) und p16 (p = 0,003), die den G1/S-Phase-Übergang des Zellzyklus hemmen. Weiterhin ist BMP-2 positiv mit der Expression des Wnt-Antagonisten SFRP1 korreliert, der als Tumorsuppressor eingestuft wird. BMP-2 positive Tumoren wiesen ein signifikant höheres Gesamtüberleben auf (p = 0,001). Darüber hinaus konnte die BMP-2 Expression als prognostisch unabhängiger Marker identifiziert werden. Eine Gruppierung der Proben nach klinischen und immunhistochemischen Aspekten zeigte, das besonders nodal-negative invasiv-duktale Mammakarzinome einen prognostischen Vorteil aufgrund der BMP-2 Expression haben. Mittels Multi-Tumor Gewebearrays konnten weitere BMP-2 exprimierende Gewebe und Tumorentitäten ermittelt werden.

Summary

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily of growth factors and important regulators of bone formation and during embryogenesis. BMPs, their receptors and signal transduction molecules could be detected in several tumors, e.g. breast cancer, indicating their importance in tumorigenesis. The aim of the present study was to investigate the relevance of BMP-2 in breast cancer. BMP-2 is well known as an inductor of endochondral bone formation. Now it is recognized as a multipurpose cytokine that influences the differentiation of various cell types. Crucial events in tumor development like invasion and migration, angiogenesis, apoptosis and proliferation are reported to be regulated by BMP-2. During tumor initiation and progression BMP-2 is supposed to act as a tumor suppressor as well as a tumor promotor. This contradiction might be due to the fact that almost all effects of BMP-2 are time limited and concentration dependent. Therefore we studied the influence of BMP-2 on the human breast cancer cell line MCF-7 in dependence of the duration of exposure time by global gene expression profiling. In order to study the connection of BMP-2 effects and exposure time in more detail, an inducible BMP-2 expression system was established based on the Tet-system. Finally the BMP-2 expression was determined in 52 breast cancer samples and a large patient cohort via immunohisto-chemistry. The results were tested for significant correlations to histopathological parameters and overall survival.

About 200 genes were found to be differentially expressed (defined as at least 2-fold up- or down-regulation) after short-time (“incubation”) or long-time exposure (“overexpression”). The sets of regulated genes showed only a 1% concordance. The functional interpretation of the affected biological processes indicate an involvement of the subset “incubation” predominantly in biological processes associated with metabolism in general. The long time-exposure to BMP-2 significantly influences biological processes linked to developmental processes. In both subsets tumor-associated processes like cell cycle, adhesion, apoptosis, migration and proliferation could be identified. The group of apoptosis-related genes was predominantly regulated after short-term application of BMP-2. These results could be confirmed for the majority of genes by realtime-PCR. The protein kinase R exhibited the most prominent BMP-2 dependant regulation. Further studies on the protein level showed activation of PKR followed by an enhanced phosphorylation of the PKR substrate eIF2alpha. These results indicate a novel association between BMP-2 and cellular stress response.
The immunohistochemical investigations demonstrated a weak to moderate expression of BMP-2 in 60% of the analyzed breast cancer specimen. Small, low-grade tumors exhibited a pronounced BMP-2 expression. The BMP-2 content showed an inverse correlation to the estrogen-receptor (p = 0.001) and to the proliferation (p = 0.001). The BMP-2 expression is positively correlated to the anti-apoptotic protein bcl2 (p = 0.024) and to the content of the tumor suppressor p53 (p < 0.000). The cell cycle regulators cyclin D1 (p = 0.001), p27 (p = 0.029) and p16 (p = 0.003), which inhibit the G1/S-phase transition, are significantly associated with BMP-2. In addition BMP-2 is positively correlated to the expression of SFRP1, a Wnt-antagonist which is supposed to be a tumor suppressor. The most prominent result was, that BMP-2 expressing tumors exhibited a significant increase in overall survival (p = 0.001). Moreover BMP-2 could be identified as an independent prognostic marker. Grouping of the specimen according to clinical and immunohistochemical aspects showed a prognostic benefit of patients with a higher BMP-2 level especially for nodal-negative invasive-ductal breast carcinomas. Further BMP-2 expressing tissues and tumor entities could be identified using multi tissue array technology.

In conclusion, it could be shown that the effects of BMP-2 are dependant on the duration of the treatment. BMP-2 affects all cellular processes which are expected to be important for tumorigenesis, e.g. apoptosis. Furthermore, BMP-2 could be identified as an independent prognostic marker for overall survival. Regarding these results, a dual role for BMP-2 in tumor development could be supposed.
1. Einleitung

1.1. Die TGF-β Superfamilie

Die Mitglieder der TGF-β Superfamilie von Wachstumsfaktoren sind strukturell verwandte, sezernierte Zytokine, die in verschiedenen Spezies von der Taufliege (Drosophila melanogaster) über den Krallenfrosch (Xenopus laevis) bis hin zum Menschen (Homo sapiens) zu finden sind. Diese evolutionäre Konservierung der Faktoren verdeutlicht ihre
1.2. Bone Morphogenetic Proteins (BMPs)

Die Bone Morphogenetic Proteins (BMPs, Knochenmorphogenesefaktoren) sind mit über 20 Mitgliedern die größte Subfamilie der TGF-β Wachstumsfaktoren (Chen et al., 2004). Sie erhielten ihren Namen aufgrund ihrer Fähigkeit nach ektoper Transplantation in Versuchstiere die Knochenbildung zu induzieren (Urist 1965). Die verantwortlichen Proteine waren damals noch nicht bekannt, aber im Laufe der Jahre bildete sich die Familie der BMPs heraus (Wozney et al., 1988, Luyten et al., 1989, Celeste et al., 1990).

Faltblatts ($\beta_1-\beta_8$) die Finger und die zentrale α-Helix (α_1) das Handende darstellen (Daopin et al., 1992).

Abb 1.1. Sekundärstruktur des BMP-2 Monomers (Scheuffler et al., 1999)

1.3. Signaltransduktion der BMPs

von Rezeptoren ergibt (Tab. 1.1.). Derzeit sind sieben humane Typ-I- (Activin like kinase (ALK) 1-7) und fünf humane Typ-II-Rezeptoren (ActR-II, ActR-IIB, BMPR-II, AMHR-II, TβR-II) identifiziert (Shimasaki et al. 2004).

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Typ-II-Rezeptor</th>
<th>Typ-I-Rezeptor</th>
<th>Smad</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP-2</td>
<td>BMPR-II</td>
<td>ALK-3 (BMPR-IA)</td>
<td>Smad 1/5/8</td>
<td>Yamaji et al., 1994</td>
</tr>
<tr>
<td>BMP-4</td>
<td>BMPR-II</td>
<td>ALK-6 (BMPR-IB)</td>
<td></td>
<td>Rosenzweig et al., 1995</td>
</tr>
<tr>
<td>GDF-5</td>
<td>ActR-II</td>
<td>ALK-3 (BMPR-IA)</td>
<td>Smad 1/5/8</td>
<td>Nishito et al., 1996</td>
</tr>
<tr>
<td></td>
<td>ActR-IIB</td>
<td>ALK-6 (BMPR-IB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP-6</td>
<td>BMPR-II</td>
<td>ALK-2 (ActR-IA)</td>
<td>Smad 1/5/8</td>
<td>Ebisawa et al., 1999</td>
</tr>
<tr>
<td>BMP-7</td>
<td>ActR-II</td>
<td>ALK-6 (BMPR-IB)</td>
<td></td>
<td>Macias-Silva et al., 1998</td>
</tr>
<tr>
<td></td>
<td>ActR-IIB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP-15</td>
<td>BMPR-II</td>
<td>ALK-6 (BMPR-IB)</td>
<td>Smad 1/5/8</td>
<td>Moore et al., 2003</td>
</tr>
<tr>
<td>GDF-9</td>
<td>BMPR-II</td>
<td>?</td>
<td>Smad 2</td>
<td>Vitt et al., 2002</td>
</tr>
<tr>
<td>MIS/AMH</td>
<td>AMHR-II</td>
<td>ALK-3 (BMPR-IA)</td>
<td>Smad 1/5/8</td>
<td>Gouédard et al., 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALK-6 (BMPR-IB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivin</td>
<td>ActR-II</td>
<td>ALK-4 (ActR-IB)</td>
<td>Smad 2/3</td>
<td>ten Dijke et al., 1994</td>
</tr>
<tr>
<td></td>
<td>ActR-IIB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF-β</td>
<td>TβR-II</td>
<td>ALK-1</td>
<td>Smad 2/3</td>
<td>Lin et al., 1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALK-5 (TβR-I)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.1. Beziehungen zwischen Liganden, Rezeptoren und Smads in der TGF-β Superfamili (nach Shimasaki et al., 2004)

Die intrazelluläre Signalweiterleitung wird über so genannte Smad-Moleküle vermittelt. Der aktivierte Typ-I-Rezeptor phosphoryliert die rezeptorregulierten Smads (R-Smad), die wiederum spezifische Affinitäten für die Mitglieder der TGF-β Superfamilie aufweisen (siehe Tab. 1.1.) (Miyazono et al., 2000). Die so aktivierten R-Smads bilden mit Smad 4, einem allgemeinen Bindungspartner (Co-Smad = common Smad) für R-Smads, einen Komplex und translozieren in den Zellkern (Lagna et al., 1996). Dort interagieren sie mit spezifischen Transkriptionsfaktoren und regulieren die Expression bestimmter Zielgene zelltypabhängig.
(Abb. 1.2.). Sowohl die Translokation in den Zellkern als auch der Export wird durch intrinsische Signaldomänen in den Smad-Proteinen reguliert (Xiao et al., 2001).

1.4. Regulation des BMP-Signalweges

Die Regulation und Modulation der BMP-Wirkung geschieht auf verschiedenen Ebenen des Signalweges. Vom Extrazellularraum über die Liganden-Rezeptor-Interaktion und die nachfolgenden Signalkaskade bis hin zum Zellkern können modifizierende Einflüsse auftreten (Abb. 1.2.).

Die extrazelluläre Regulation erfolgt vorrangig über BMP-bindende Proteine. Der Prototyp dieser spezifischen Proteine ist Noggin, das aufgrund seiner Funktion bei der korrekten Anlage der Körperachse in *Xenopus* Embryonen entdeckt wurde (Smith et al., 1992). Weitergehende Untersuchungen zeigten, dass Noggin über die Bindung an BMPs deren Wirkung inhibiert. Dieses Ergebnis konnte durch die Aufklärung der Kristallstruktur des BMP-7/Noggin-Komplexes untermauert werden, wobei zu erkennen war, dass Noggin die

Die intrazelluläre Signalkaskade kann durch inhibitorische Smads (I-Smads), wie Smad 6 und 7, moduliert werden. Dabei treten die I-Smads in einen kompetitiven Antagonismus mit den R-Smads am aktivierten Typ-I-Rezeptor (Imamura et al., 1997). Darüber hinaus ist Smad 6 in der Lage, die Komplexbildung zwischen Smad 1 und dem Co-Smad 4 zu inhibieren und damit das BMP-Signal zu hemmen (von Bubnoff und Cho, 2001).

Eine weitere Möglichkeit der Regulation ist die Kontrolle der Proteininstabilität der R-Smads. Mittels der E3 Ubiquitin Ligase SMURF-1 (Smad ubiquitination regulatory factor-1) werden die R-Smads ubiquitinyliert und somit für die Degradation im Proteasomen markiert (Zhu et al., 1999). Die Regulation der BMP-Wirkung im Zellkern erfolgt mittels einer Vielzahl von Coaktivatoren wie MSG1 und Corepressoren wie SIP-1 (Smad interacting protein 1), die entscheidend die Induktion bzw. Repression der Zielgene beeinflussen (Miyazono et al., 2003). Des Weiteren ist die Expression der BMPs, ihrer Rezeptoren und Inhibitoren ein wichtiger Regulationsmechanismus für die gewebespezifische Wirkung der BMPs.

1.5. Biologische Aktivitäten der BMPs

Die biologischen Aktivitäten der BMPs weisen eine große Diversität auf und sind bei weitem noch nicht im Detail verstanden. Ursprünglich wurden sie als potente Induktoren und

Der bereits beschriebene Einfluss der BMPs auf die endochondrale Knochenbildung und die osteoblastische Differenzierung wird durch BMP-6 gefördert (Gitelmann et al., 1994, Yamaguchi et al., 1996). Darüber hinaus zeigt BMP-6 eine antiproliferative Wirkung durch Hemmung der Zellteilung (Drozdoff et al., 1994).

Entwicklungsbiologisch betrachtet ist BMP-7 entscheidend an der Vermittlung von epidermal-mesodermalen Interaktionen während der Nieren- und Augenentwicklung beteiligt (Dudley et al., 1995, Godin et al., 1999). Auch im adulten Organismus ist BMP-7 für die korrekte Anlage der Niere notwendig, wobei es für die Stimulierung und Aufrechterhaltung der epithelialen Zellen von Bedeutung ist (Simon et al., 1999). Durch ein fein abgestimmtes Zusammenspiel und eine exakt lokalisierte Expression von BMP-7, BMP-2 und BMP-4 wird die erforderliche Apoptose im Mesoderm der Interdigitalen induziert, die für die Ausbildung der Finger erforderlich ist (Guha et al., 2002, Bastida et al., 2004).

1.6. BMPs im Tumorgeschehen

Expression die Tumorentwicklung in der Lunge (Dai et al., 2004), und ein Funktionsverlust von Smad4 wurde im Pankreaskarzinom gefunden (Hahn et al., 1996).

1.7. BMPs im Mammakarzinom

Einen potentiellen Beitrag zu diesem Gebiet leistet die Erforschung der Rolle der BMPs während der Tumorigenese und die Aufklärung zugrunde liegender Mechanismen, die als Ansatz für neue Therapien dienen können.

1.8. Bone Morphogenetic Protein-2 (BMP-2)

EINLEITUNG

1.9. Zielstellung der Arbeit

2. Kann ein Zusammenhang zwischen den veränderten Genen und Prozessen der Tumorigenese hergestellt werden und zeigen diese eine Abhängigkeit von der Expositsndauer von BMP-2?

2. Methoden

2.1. Zellbiologische Methoden

Für zellbiologische Experimente ist es von entscheidender Bedeutung stets auf absolute Keimfreiheit zu achten, um eine Kontamination der Zellen durch Mikroorganismen auszuschließen. Zu diesem Zwecke wurden alle Arbeiten unter sterilen Laminarboxen durchgeführt und alle verwendeten Geräte vor Gebrauch desinfiziert bzw. für 20 min bei 120°C autoklaviert. Die Kulturmedien lagen bereits steril vor und weitere benötigte Chemikalien und Lösungen wurden autoklaviert oder durch einen 0,2 µm-Filter steril filtriert.

2.1.1. Zelllinien

Als Modellsystem für die geplanten Experimente wurde die humane Mammakarzinomzelllinie MCF-7 verwendet (ATCC, Manassas, USA), eine Östrogenrezeptor-positive Zelllinie, die als adhäsente Monolayer wächst. Die stabil mit BMP-2 transfizierten MCF-7 (MCF-7/BMP-2) und die korrespondierende Kontrollzelllinie mit dem Leervektor pcDNA 3.1 (MCF-7/3.1) wurden in unserer Arbeitsgruppe hergestellt und liegen dementsprechend vor (Clement et al., 2005). Die für die induzierbare Überexpression benötigte Zelllinie MCF-7 Tet-On, die bereits mit dem Tet-On Vektor stabil transfiziert wurde, wurde bei der Firma BD Clontech erworben. Es erfolgte eine regelmäßige Testung auf Mycoplasmen.

2.1.2. Zellkultivierung

Alle zellbiologischen Arbeiten wurden an Sterilwerkbänken durchgeführt. Die Kultivierung der Zellen erfolgte bei konstant 37°C, 5% CO₂ und 95% Luftfeuchtigkeit in Brutschränken. Als Nährmedium diente Dulbecco’s Modified Eagle Medium (DMEM) supplementiert mit 10% fötalem Kälberserum (FCS). Für die Kultivierung der MCF-7 Tet-On wurde spezielles Serum verwendet, welches auf Verunreinigungen von Tetracyclin getestet wurde.

2.1.3. Auftauen der Zellen

Die konservierten Zellen wurden in Flüssigstickstoff bei -196°C in Kryoröhrchen aufbewahrt. Das Auftauen erfolgte in einem handwarmen Wasserbad. Die Zellsuspension wurde in 10 ml
DMEM + 10% FCS bei einer Zugabe von 1 ml/min aufgenommen und anschließend in einem 15 ml Falconröhrchen für 5 min bei 1000 U/min zentrifugiert, und der DMSO-haltige Überstand wurde verworfen. Das Zellpellet wurde in 7 ml frischem DMEM + 10% FCS aufgenommen und in eine 25 cm²-Zellkulturflasche überführt.

2.1.4. Passagieren der Zellen

2.1.5. Kryokonservierung der Zellen

Ein subkonfluent gewachsener Zellrasen wurde geerntet, und die Zellen in einer Konzentration von 2 x 10^6 Zellen/ml mit Einfriermedium versetzt (DMEM + 20% FCS+ 10% DMSO) und in Kryoröhrchen überführt. Nach einer Lagerung für 3-10 Tage bei -80°C wurden diese in flüssigem Stickstoff (-196°C) eingelagert.

2.1.6. Zellzahlbestimmung

Die Kryokonservierung, Inkubationsversuche und weitere Experimente machten eine genaue Zellzahlbestimmung notwendig, um definierte Versuchsbedingungen zu schaffen. Die Bestimmung der Zellzahl wurde am Beckmann Coulter Z1 vorgenommen. Die Zellen wurden geerntet, für 5 min bei 1000 U/min abzentrifugiert, der Überstand verworfen und die Zellen entsprechend der Pelletgröße in 2-10 ml Medium (Suspensionsvolumen) resuspendiert. 50 µl dieser Zellsuspension wurden mit 20 ml Isoton II versetzt und in der Zählkammer gemessen. Das Volumen, das zur Aussaat der benötigten Zellzahl erforderlich war, wurde mit folgender Formel berechnet:

\[
V_z = V_s \left(\frac{C_s - 1}{C_z} \right) \\
V_s = \text{Suspensionsvolumen} \\
C_z = \text{Zellkonzentration (ml}^{-1}) \\
C_v = \text{benötigte Zellkonzentration (ml}^{-1})
\]
2.2. Molekularbiologische Methoden

2.2.1. RNA-Isolierung

2.2.2. Konzentrationsbestimmung von Nukleinsäuren

\[A = \varepsilon \cdot c \cdot d \]

\(A = \) Absorption
\(\varepsilon = \) elementspezifischer Extinktionskoeffizient in m²/mol
\(c = \) Konzentration der Lösung in mol/m³
\(d = \) Schichtdicke der durchstrahlten Probe

1 µl der RNA-Lösung wurde für die Konzentrationsbestimmung auf die Messsonde pipettiert und die Messung gestartet. Die erhaltenen Konzentrationen wurden in µg/µl angegeben.

2.2.3. Reverse Transkription

Für weitergehende Untersuchungen wurde die für Degradation sensible RNA in die stabilere cDNA (complementary DNA) umgeschrieben. Für die Untersuchung des Expressionsniveaus ist hauptsächlich die mRNA von Interesse. Durch die Verwendung des Oligodesoxynukleotids Oligo-dT als Primer, der das mRNA spezifische 3’-Poly-Adenosin erkennt, wird vornehmlich mRNA in cDNA umgeschrieben. Mit Hilfe der Random Hexamerprimer, Hexanukleotide verschiedener Sequenz, werden unterschiedliche RNA-Abschnitte (mRNA, tRNA, rRNA) erkannt und es wird ein Pool verschiedener langer cDNA-Moleküle synthetisiert. Für eine effektive Umsetzung der mRNA wurde die retrovirale Reverse Transkriptase aus dem Moloney Leukemia Virus (MLV) eingesetzt. Zunächst wurde 1 µg der isolierten RNA auf ein Gesamtvolumen von 8,5 µl mit RNase-freiem Wasser verdünnt und für 5 min bei 65°C inkubi ert, um eventuelle Sekundärstrukturen zu reduzieren. Anschließend wurden 11,5 µl des folgenden Reaktionsgemisches zugegeben:

- 4 µl 5x M-MLV Reaktionspuffer
- 2 µl Dithiothreitol (DTT) (0,1 M)
- 1 µl Oligo-(dT)₁₅-Primer (0,2 mg/ml)
- 1 µl Random-Hexamerprimer (0,2 mg/ml)
- 1 µl dNTP-Mix (je 2,5 mM dATP, dCTP, dGTP, dTTP)
- 0,5 µl RNaseOUT™-Ribonuklease (40U/µl)
- 1 µl M-MLV Reverse Transkriptase (200U/µl)
Nach einer zehnminütigen Inkubation bei Raumtemperatur wurden die Proben für 60 min bei 37°C inkubiert. Abschließend wurde die Reverse Transkriptase für 8 min bei 95°C inaktiviert. Die Lagerung der synthetisierten cDNA erfolgte bei -20°C.

2.2.4. rt-PCR

Der PCR-Ansatz für jede Reaktion (Gesamtvolumen 25 µl) bestand aus folgenden Komponenten:

- 1 µl cDNA-Matrice
- 2,5 µl 10x PCR-Puffer (enthält 15 mM MgCl₂)
- 1 µl Primergemisch aus sense und antisense-Primer (je 10 µM)
- 2 µl dNTP-Mix (je 2,3 mM dATP, dCTP, dGTP, dTTP)
- 0,2 µl Taq-DNA-Polymerase (5 U/µl)
- 18,3 µl Aqua dest.

Der Ansatz wurde gemischt und anschließend kurz abzentrifugiert. Die Reaktion wurde im Thermocycler Trio Thermoblock durchgeführt. Es wurde jeweils eine Negativkontrolle ohne

2.2.5. Auftrennung der PCR-Produkte mittels Agarosegelelektrophorese

2.2.6. realtime-PCR

handelt es sich um ein realtime-PCR System im 96 well-Format mit extrem hohen Temperiergeschwindigkeiten und kurzen Detektionszeiten.

Die Probenvorbereitung wurde in einem Kühlblock (4°C) durchgeführt. Die 96 well-PCR-Platte wurde auf diesem Block platziert und jeweils 1 µl der zu untersuchenden Probe bzw. des Standards in ein well pipettiert. Die Standards für beta-Aktin wurden in unserem Labor hergestellt und lagen dementsprechend vor. Zu den vorgelegten Proben wurden 19 µl Mastermix, bestehend aus folgenden Komponenten, zugegeben:

- 1 µl Primergemisch (sense und antisense, 1:1)
- 10 µl SYBR Green Mastermix ready-to-use
- 8 µl PCR-grade Wasser

2.3. cDNA Microarray

2.3.1. Inkubationsversuche

Um die Kurzzeiteffekte von BMP-2 zu untersuchen, wurden subkonfluent gewachsene MCF-7 nach 24 h Serumfreiheit für 4h mit 100 ng/ml rhBMP-2 (Dr. P. Hortschansky, HKI Jena) inkubiert. Eine serumfreie Kontrolle wurde mitgeführt. Die BMP-2 überexprimierende Zelllinie MCF-7/BMP-2 und die korrespondierende Kontrollzelllinie MCF-7/3.1 wurden für 24 h serumfrei kultiviert. Nach der Inkubation wurden die Zellen mit D-PBS gewaschen und die RNA mittels innuPREP RNA Mini Kit (siehe 2.2.1.) isoliert.
2.3.2. Probenpräparation und Hybridisierung

1. Erststrangsynthese (SuperScript Choice System)
 Hybridisierung der Primer
 - 5 µg Gesamt-RNA
 - 1 µl T7-(dT)$_{24}$-Primer (100µM)
 - 7 µl RNase-freies Wasser
 → Inkubation für 10 min bei 70°C
 → 5 min bei 0°C
 Synthese
 - Zugabe von 4µl 5x First Strand cDNA Buffer
 - 2 µl 0,1M DTT
 - 1 µl 10mM dNTP-Mix
 → Inkubation für 2 min bei 42°C
 - Zugabe von 1µl 200U/µl Superscript II
 → 1h bei 42°C

2. Zweitstrangsynthese
 zur synthetisierten cDNA werden folgende Komponenten zugegeben
 - 91µl H$_2$O
 - 30µl Second Strand Reaction Buffer
 - 3µl dNTP-Mix (10mM/Base)
 - 1µl DNA Ligase (10U/µl)
 - 4µl DNA Polymerase I (10U/µl)
 - 1µl RNase H (2U/µl)
 → Inkubation für 2h bei 16°C
 - 2µl T4 DNA-Polymerase (5U/µl)
 → 5 min bei 16°C
 - Reaktionsstop durch Zugabe von 10µl EDTA (0,5M)
Phenol/Chloroform-Extraktion und Ethanolfällung der hergestellten cDNA.

3. Synthese der Biotin-markierten cRNA (BioArray HighYield RNA Transcript Labeling Kit)

- 1µg cDNA
- 1µl Aqua dest.
- 2µl 10x HY Reaction Buffer
- 2µl 10x Biotin-Labeled Ribonucleotides
- 2µl 10x DTT
- 2µl 10x RNase Inhibitor Mix
- 1µl 20x T7 RNA Polymerase

→ Inkubation für 5h bei 37°C, halbstündig kurz mischen

2.3.3. Auswertung des Microarrays

2.4. Das Tet-System

In der vorliegenden Arbeit wurde eine bereits stabil mit dem pTet-On Vektor transfizierte MCF-7 Zelllinie verwendet (MCF-7 Tet-On).
2.4.1. Herstellung des Responseplasmids

Im ersten Schritt wurde BMP-2 in den Responsevektor eingebracht. Das Vollänge-BMP-2 lag einkloniert im Vektor pcDNA 3.1 vor.

2.4.1.1. Ermittlung der Schnittstellen für die Umklonierung

Als Responsevektor wurde pTRE2hyg ausgewählt, der alle notwendigen Elemente für eine Induktion mit dem Tet-System sowie eine Hygromycin-Resistenz für die Etablierung von stabilen Klonen trägt. Für die Umklonierung machte man sich die Eigenschaft von Restriktionsenzymen, Endonukleasen bakteriellen Ursprungs, zunutze, sequenzspezifische Schnittstellen zu erzeugen. Anhand der angegebenen Restriktionsenzym-Schnittstellen in der Multiple Cloning Site (MCS) des pTRE2hyg Vektors wurden korrespondierende Schnittstellen im pcDNA 3.1 Vektor mit Hilfe des Programms „webcutter“ gesucht, um das BMP-2 vollständig herauszuschneiden. Die Restriktionsendonuklease EcoRV erwies sich als geeignet für die Umklonierung, wobei glatte Schnittenden (blunt ends) entstehen.

2.4.1.2. Restriktionsverdau und Gelextraktion

Die Vektoren pTRE2hyg und pcDNA 3.1 wurden mit dem Restriktionsenzym EcoRV verdaut. Dabei wird pTRE2hyg linearisiert (5325 bp) und aus pcDNA 3.1 wird das BMP-2 herausgeschnitten (1272 bp). Die Reaktion erfolgte bei 37°C für 2h. Der Reaktionsansatz setzte sich wie folgt zusammen:

- 10µl Plasmid-DNA
- 3µl EcoRV
- 3µl Reaktionspuffer
- 14µl Wasser

Der Restriktionsverdau wurde mittels Agarosegelelektrophorese (siehe 2.2.5) analysiert und der linearisierte pTRE2hyg Vektor (5325 bp) und der BMP-2 Genabschnitt (1272 bp) wurden mit einem Skalpell exakt aus dem Gel geschnitten. Anschließend erfolgte die Gewinnung der DNA mittels des Gelextraktkits QIAEX® II. Diese Methode beruht auf der Fähigkeit von Nukleinsäuren in der Anwesenheit von chaotropen Salzen an Silicamaterial zu binden. Dazu wurden die Gelstücke mit 3 Volumen QX1 und 10µl QIAEX II versetzt und für 10 min schüttelnd bei 50°C inkubiert. Es folgte eine 30sekündige Zentrifugation, und der Überstand wurde vorsichtig entfernt. Das Pellet aus Silicabeads mit gebundener DNA wurde mit 500µl QX1 resuspendiert und nochmals für 30 Sekunden zentrifugiert. Es folgte ein zweimaliges

2.4.1.3. Ligation

\[
\text{Menge DNA [µg]} / \text{Größe der DNA [kb]} \times 3,04 = \text{Enden [pmol]}
\]

Auf Grundlage dieser Formel wurden die einzusetzenden Volumina ermittelt. Das Reaktionsgemisch setzte sich wie folgt zusammen:

- x µl Vektor
- x µl Insert
- 1 µl T4 DNA-Ligase (Invitrogen, Karlsruhe)
- 4 µl 5fach Ligationspuffer (Invitrogen, Karlsruhe)
- mit Aqua dest. auf 20 µl aufgefüllt

Es wurde eine Kontrolle ohne Insert mitgeführt, und der Ligationsansatz für 24 h bei 14°C inkubiert. Die hergestellten Plasmide wurden anschließend in E.coli transformiert und analysiert. Das hergestellte Konstrukt wird im Folgenden als pTRE2hyg + BMP-2 bezeichnet.

2.4.1.4. Transformation

Das Einschleusen von Fremd-DNA in E.coli und dessen stabile Weitergabe wird als Transformation bezeichnet. Da das Bakterium keine natürliche Fähigkeit (Kompetenz) zur Aufnahme von DNA besitzt, wurde dieser Zustand künstlich durch Behandlung mit Calciumchlorid hergestellt werden. Zu diesen kompetenten E.coli-Zellen wurden 2 µl des Ligationsansatzes zugesetzt und für 30 min auf Eis inkubiert. Dieser Schritt dient der Adhäsion der
DNA an die Zellmembran. Mit dem folgenden Hitzeschock (42°C für 30 sec) wurde die Zellmembran permeabilisiert und die DNA in die Zelle aufgenommen. Anschließend erfolgte ein Regenerationsschritt durch Inkubation der Zellen mit 250 µl SOC-Medium für 30 min bei 37°C im Schüttler. 50 µl der E.coli-Suspension wurden auf LB-Agarplatten mit Ampicillin ausplättet und über Nacht bei 37°C bebrütet. Am nächsten Tag wurden einzelne Kolonien ausgewählt und in eine 5 ml Schüttelkultur (5 µl LB-Medium + 5 µl Ampicillin [100µg/ml]) überführt und für 16 h bei 37°C im Schüttler bei 200 U/min kultiviert. Aus den gewonnenen Suspensionskulturen wurden anschließend die Plasmide isoliert.

2.4.1.5. Plasmidisolierung

Es wurden 2 ml der Übernachtkultur für 10 min bei 3500 U/min sedimentiert und der Überstand verworfen. Die Isolierung erfolgte mit dem QIAGEN Plasmid-Aufreinigungskit. Das Bakterienpellet wurde in 200 µl Puffer P1 resuspendiert, anschließend 200 µl Puffer P2 zugegeben, geschwenkt und für 1 min inkubiert (Lyse). Zur Neutralisation wurden 200 µl Puffer P3 zupipettiert, gemischt und 5 min bei Raumtemperatur (RT) stehen gelassen. Das Gemisch wurde für 10 min bei 13000 U/min abzentrifugiert und der Überstand mit der gelösten Plasmid-DNA in ein neues Reaktionsgefäß überführt. Für die Fällung wurde die Plasmidösung mit 600 µl Isopropanol versetzt und für 10 min bei RT inkubiert. Die DNA wurde durch eine Zentrifugation bei 10000 U/min für 10 min sedimentiert. Das Pellet wurde mit 70%igem Alkohol gewaschen, luftgetrocknet und in 50 µl Aqua dest. resuspendiert.

2.4.1.6. Differentieller Restriktionsverdau

Die isolierten Plasmide wurden auf den richtigen Einbau des Inserts untersucht. Zum einen erfolgte ein Verdau mit EcoRV um das einklonierte BMP-2 nachzuweisen. Des Weiteren

- 1 µl Plasmid
- 1 µl Restriktionsendonuklease
- 1 µl Restriktionsendonukleasepuffer
- 7 µl Aqua dest.

→ Inkubation für 2h bei 37°C

Die Analyse des Verdau erfolgte mittels Agarosegelelektrophorese (2.2.5.).

2.4.1.7. Sequenzierung

Die Sequenzierung erfolgte mit der Didesoxymethode (Kettenabbruchmethode) nach Sanger (Sanger et al., 1977). Die zu sequenzierende DNA wird als Matrize für eine PCR-Reaktion (siehe 2.2.4.) eingesetzt, wobei der Reaktion zusätzlich ein Gemisch Didesoxyribonukleotid (ddATP, ddCTP, ddGTP, ddTTP) zugefügt wird. Diese besitzen keine 3’-Hydroxygruppe, die für die Verknüpfung mit der Phosphatgruppe des nächsten Nukleotids essentiell ist, und somit kommt es zum Abbruch der Strangsynthese nach Einbau. In der Folge entstehen DNA-Fragmente unterschiedlicher Länge. In der vorliegenden Arbeit kamen fluoreszenzmarkierte ddNTPs zum Einsatz, wobei jedes der vier Nukleotide mit einem anderen Farbstoff gekoppelt wurde. Das Gemisch verschiedener DNA-Fragmente kann anschließend in einer Kapillargelelektrophorese analysiert werden. Diese Methode beruht auf dem bereits in Kapitel 2.2.5. beschriebenen Wanderungsverhalten im elektrischen Feld und findet im Gel in dünnen Kapillarrohren statt. Somit erfolgt eine Trennung nach der Größe der Fragmente, und zum anderen wird durch Laseranregung die Fluoreszenz der endständigen Nukleotide detektiert. Das Chromatogramm (Abfolge der detektierten Farbsignale) gibt direkt die Sequenz der Basen des sequenzierten DNA-Stranges wieder.

Für die Sequenzierung wurden Primer ausgewählt, die die mature BMP-2 Region flankieren (siehe Anhang). Die PCR-Reaktion (Reamplifikation) für die Sequenzierung wurde in sense
und antisense Richtung und unter der Verwendung des DTCS (Dye terminator cycle sequencing) Kits durchgeführt.

- 4 µl DNA (1:10 Vorverdünzung)
- 6 µl Primer/DTCS-Gemisch
 - 3 µl Sequ_2_A (sense Primer) + 6 µl DTCS
 oder
 - 3 µl Sequ_2_B (antisense Primer) + 6 µl DTCS
- 10 µl Aqua dest.

Das Reaktionsgemisch wurde für 5 min auf 96°C erhitzt und anschließend die PCR-Reaktion im Thermocycler Trio Thermoblock gestartet. Die Isolierung und Aufreinigung der DNA erfolgte mittels einer Ethanolfällung. Dazu wurde die fertige PCR-Reaktion mit 5 µl Stop-Lösung (2 µl Natriumacetat, 2 µl EDTA und 1 µl Glycerol) und 60 µl 90%igem, eiskaltem Ethanol versetzt und für 30 min bei 15000 U/min und 4°C zentrifugiert. Nach einem Waschschritt mit 70% Ethanol wurde das Pellet vakuumgetrocknet (SpeedVac) und in 30 µl SLS (Sample Loading Solution) resuspendiert. Die Proben wurden in den Sequenzierer CEQ 8000 überführt und mit Mineralöl überschichtet. Mittels der zugehörigen Software wurden die Sequenzierungsparameter eingestellt und die Analyse gestartet. Die erhaltene Sequenz wurde mit der Originalsequenz von BMP-2 abgeglichen.

2.4.2. Optimierung des Tet-Systems

Für die Etablierung und Verwendung des Tet-Systems waren einige Voruntersuchungen notwendig, die im Folgenden dargestellt werden.

2.4.2.1. Bestimmung der zytotoxischen Konzentration von Hygromycin

2.4.2.2. Ermittlung der optimalen Doxycyclin-Konzentration

Für die Induktion der Genexpression im Tet-On System wurde das Tetracyclin-Derivat Doxycyclin verwendet, welches eine längere Halbwertszeit (24h) besitzt. Die Bestimmung einer Dosis-Wirkungs-Kurve erfolgte mit der Kontrollzelllinie U2-OS Luc Tet-On, einer doppelt stabil transfizierten Osteosarkomzelllinie mit induzierbarer Luciferaseaktivität. Es wurden 5×10^4 Zellen pro well im 6-well Format ausgesät und verschiedene Konzentrationen Doxycyclin (0,01 ng/ml, 0,1 ng/ml, 1 ng/ml, 10 ng/ml, 100 ng/ml, 200 ng/ml, 400 ng/ml, 600 ng/ml, 800 ng/ml, 1 µg/ml) zugegeben. Nach 48 h wurde die Inkubation beendet und das Ansprechen auf die Induktion mit einem Luciferase Reporter Assay bestimmt.

2.4.2.3. Luciferase Reporter Assay

Die aus *Photinus pyralis* isolierte Luciferase katalysiert die oxidative Carboxylierung von Luciferin und ist eine Biolumineszenzreaktion mit der höchsten bekannten Effektivität. Aufgrund dieser Eigenschaft wird die Luciferase eingesetzt, um die Aktivität von Promotoren und somit die Regulation der Genexpression zu charakterisieren. In der Kontrollzelllinie U2-OS Luc Tet-On wurde das Luciferase-Gen downstream des Tetracyclin Response Elements (TRE) einkloniert und die Expression steht somit unter der Kontrolle des Tet-Systems. Durch die Zugabe von Doxycyclin wird die Expression der Luciferase induziert und das daraus resultierende Protein wird aufgrund seiner enzymatischen Aktivität mittels eines Luciferase Reporter Assay Kits nachgewiesen. Die mit Doxycyclin induzierten Zellen wurden zweimal mit PBS (ohne Ca$^{2+}$ und Mg$^{2+}$) gewaschen und mit 200 µl 1x Lysepuffer für 15-20 min bei RT inkubiert. Das Lysat wurde in ein Reaktionsgefäß überführt und Zelltrümmer bei 14000 U/min für 1 min abzentrifugiert. 20 µl des Zelllysats wurden in eine 96-well Platte pipettiert und jeweils 100 µl Substrat A und B, die ATP, Mg$^{2+}$, Coenzym-A (Co-A) und das Substrat Luciferin enthalten, wurden zugesetzt. Die Umsetzung von Luciferin durch die im Lysat enthaltene Luciferase wurde in einem Luminometer gemessen. Die Luciferase-Aktivität wird in relativen Lichteinheiten (relative light units, RLUs) angegeben.

2.4.3. Transfektion des Response Vektors in MCF-7 Tet-On

Die Transfektion – das Einbringen von DNA in eukaryotische Zellen – wurde mittels Nucleofektion durchgeführt. Bei dieser, von der Firma amaxa entwickelten Methode, handelt es sich um eine spezielle Form der Elektroporation. Im Gegensatz zur konventionellen Elektroporation, bei der nur ein Spannungsimpuls gegeben wird, werden bei der
Nucleofektion eine Reihe komplexer Spannungsmuster erzeugt. Durch diese Technik wird die DNA direkt in den Zellkern transloziert.

2.4.3.1. Transiente Transfektion von MCF-7 Tet-On

In analoger Weise erfolgte die transiente Transfektion von MCF-7 Tet-On und U2-OS Luc Tet-On mit pTRE2hyg + BMP-2, um die Induzierbarkeit des hergestellten Vektorkonstrukts zu testen. Von den Proben wurde RNA isoliert und eine rt-PCR hinsichtlich beta-Aktin (Housekeeping Gen) und BMP-2 durchgeführt.

2.4.3.2. Etablierung stabil transfizierter Klone

Für eine Induktion der BMP-2 Expression über einen längeren Zeitraum war es notwendig, stabil transfizierte Klone zu etablieren. Das Vorgehen bei der stabilen Transfektion entspricht dem unter 2.4.3.1 beschrieben. Jedoch fand das Programm P-20 für hohe Transfektions-effizienz und Langzeitexpression Verwendung. Die Zellen wurden für 1 Woche unter ständiger mikroskopischer Kontrolle und regelmäßigem Mediumwechsel kultiviert. Anschließend erfolgte die Selektion stabiler Klone mit 100 µg/ml Hygromycin für 2 Wochen. Nachfolgend wurden die Zellen vereinzelt, um definierte homogene Zellklone zu gewinnen. Dazu erfolgte die Aussaat von 1,5 Zellen pro Well im 96-well Format in 100 µl Medium.

2.4.4. Analyse der stabil transfizierten Klone

2.5. Immunhistochemie

2.5.1. Etablierung der BMP-2 Immunhistochemie

Die OP-Resektate der Mammakarzinome wurden freundlicherweise vom Institut für Pathologie Dr. med. habil. A. Schmidt in Bad Berka/Thüringen zur Verfügung gestellt. Mit ausgewählten Tumorproben von Mammakarzinom-Patienten wurde der BMP-2 Antikörper (N-14, sc-6895, Santa-Cruz) getestet und die immunhistochemische Methode etabliert.

2.5.1.1. Die Avidin-Biotin-Komplex Methode

Der immunhistochemische Nachweis wurde unter Verwendung der Avidin-Biotin-Komplex Methode durchgeführt. Dabei macht man sich die starke Affinität von Avidin zu Biotin (Hsu

2.5.1.2. Durchführung der Immunhistochemie

Anfertigung der Paraffinschnitte

Von den formalinfixierten, in Paraffin eingebetteten Tumorproben wurden jeweils mehrere Leerschnitte mit einer Stärke von 4 µm an einem Schlittenmikrotom angefertigt und auf adhäsive Objektträger (Super-Frost Plus) aufgezogen. Die Paraffinschnitte wurden über Nacht bei Raumtemperatur getrocknet.

Entparaffinieren und Rehydratisieren der Gewebeschnitte

Die Schnitte wurden auf einer 70°C warmen Heizplatte für einige Sekunden „angebacken“ und wieder getrocknet. Anschließend erfolgte die Entparaffinierung durch Xylol (1 x 10 min, 1 x 5 min) und die Rehydratisierung in einer absteigenden Alkoholreihe: 2 x 5 min in 99% Ethanol und 2 x 5 min 70% Ethanol. Anschließend wurden die Schnitte in PBS gespült.

Blocken der endogenen Peroxidase

Um die Hintergrundaktivität zu minimieren bzw. falsch positive Ergebnisse zu vermeiden, wurde die endogene Peroxidaseaktivität unterdrückt. Die Peroxidase nutzt H₂O₂ als Oxidationsmittel, um von einem Substrat (z.B. Glutathion, aromatische Amine) Wasserstoff darauf zu übertragen, wobei zwei Wassermoleküle entstehen. Die Gewebeproben wurden 30 min in 0,1% H₂O₂ inkubiert und anschließend dreimal mit PBS gewaschen.

Renaturierung/Herstellung der Antigenität

rückgängig gemacht werden, sodass die Antigenerkennung durch den Antikörper verbessert wird. Die Schnitte wurden in Citratpuffer (0,01 M, pH 6,0) für vier Minuten bei 720 W und weitere 12 min bei 400 W erhitzt. Die Abkühlung erfolgte langsam bei Raumtemperatur. Anschließend wurden die Proben in PBS gewaschen.

Blocken mit Normalserum

Antikörperinkubation

Für die Detektion von BMP-2 wurde der polyklonale Antikörper N-14 aus Ziege (Santa Cruz, sc-6895) verwendet, der ein Peptid nahe des N-Terminus erkennt. Dieser wurde 1:100 in Diluent-Puffer (siehe „Material) verdünnt und über Nacht (4°C) auf die Schnitte gegeben. Nach dreimaligem Waschen mit PBS erfolgte die Inkubation mit biotinyliertem Sekundärantikörper (Anti-Ziege-IgG) für 45 min bei RT. Ein weiterer Waschvorgang schloss sich an.

Nachweis mit der Avidin-Biotin-Komplex Methode

Für die Herstellung des Avidin-Biotin-Komplexes wurde der Vectastain Elite® ABC-Kit verwendet. 30 min vor der Verwendung wurden je 100 µl der Lösungen A, B und C in vorgelegtes PBS überführt und auf 5 ml mit PBS aufgefüllt. Die Schnitte wurden mit 100 µl dieser Lösung für 45 min bei RT inkubiert. Die Objektträger wurden anschließend aus den Cover-Plates genommen und nochmals mit PBS gewaschen. Das Substrat-Chromogen Reagenz wurde frisch hergestellt und die Schnitte damit überschichtet. Beim Einsetzen der ersten mikroskopisch sichtbaren Immunreaktivität wurde die Reaktion durch Spülen mit destilliertem Wasser abgestoppt.
Gegenfärbung und Entwässerung

Die Kerngegenfärbung erfolgte mit Hämalaun. Dazu wurden die Schnitte fünf Sekunden in der Farblösung geschwenkt und mit destilliertem Wasser gespült. Zuletzt erfolgte das Bläuen in Leitungswasser. Zur Entwässerung wurde eine aufsteigende Alkoholreihe (2 x 5 min in 70% Ethanol und 2 x 5 min in 99% Ethanol) und schließlich Xylol (2 x 10 min) genutzt. Die Objektträger wurden mit Kanadabalsam eingedeckelt und bei RT getrocknet.

Auswertung

Die Auswertung erfolgte mikroskopisch durch zwei unabhängige Pathologen. Die Immunreaktivität wurde mittels des Remmele Scores (RS) beurteilt, wobei sowohl der Prozentsatz der gefärbten Zellen, wie auch die Färbeintensität berücksichtigt wurden (Remmele und Stegner, 1987). Der Remmele Score berechnet sich wie folgt:

\[
\text{Farbintensität x Prozent positive Zellen} = \text{Remmele-Score (IRS-Immune Reactive Score)}
\]

<table>
<thead>
<tr>
<th>Farbintensität</th>
<th>Prozent positive Zellen</th>
<th>Remmele-Score (IRS-Immune Reactive Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = keine</td>
<td>0 = keine</td>
<td>Skala von 1-12</td>
</tr>
<tr>
<td>1 = schwach</td>
<td>1 = <10 %</td>
<td></td>
</tr>
<tr>
<td>2 = mäßig</td>
<td>2 = 10-50 %</td>
<td></td>
</tr>
<tr>
<td>3 = stark</td>
<td>3 = 51-80 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = >80 %</td>
<td></td>
</tr>
</tbody>
</table>

2.5.2. Multi Tissue Array

2.6. Proteinanalytik mittels Western blot

Zur Analyse veränderter Gene auf Proteinebene wurden die Proteine isoliert und in einer diskontinuierlichen Natriumdodecylsulfat-Polyacrylamidgelelektrophorese (SDS-PAGE) nach dem Molekulargewicht aufgetrennt. Anschließend wurde ein Westernblot (Towbin et al., 1979) durchgeführt, dazu wurden die Proteine für die Immunodetektion durch Elektrotransfer vom Polyacrylamidgel auf eine PVDF-Membran übertragen („geblottet“). Der Protein- nachweis erfolgte mit spezifischen Antikörpern (siehe „Material“).

2.6.1. Proteinisolierung und Konzentrationsbestimmung

2.6.2. Auftrennung des Proteingemisches mittels SDS-Polyacrylamid-Gelelektrophorese

Jeweils 50 µl der Proteinlösung wurden mit 15 µl Proteinladepuffer versetzt und für fünf Minuten bei 95°C inkubiert. Nach kurzem Abzentrifugieren wurden 30 µl der Proben auf ein 12%iges Polyacrylamidgel aufgetragen. Als Größenstandard dienten 5-10 µl des farbigen Rainbow-Markers und 5-10 µl des Santa-Cruz Markers. Die Elektrophorese erfolgte in Laufpuffer bei konstant 145V und 300 mA für 75 min.

2.6.3. Elektrotransfer und Immundetektion der Proteine

Die für die Immundetektion unspezifischen Bindungsstellen wurden anschließend mit 5% (w/v) Rinderserumalbumin in PBS-T für 1h bei Raumtemperatur abgeblockt. Die Membran wurde dreimal für 10 min mit PBS-T gewaschen und über Nacht bei 4°C mit dem primären Antikörper inkubiert (siehe Material). Nach erneutem dreimaligem Waschen der Membran erfolgte die Inkubation für 1h bei RT mit einem Peroxidase gekoppelten Sekundärantikörper, der gegen die Spezies gerichtet ist, aus der der Primärantikörper gewonnen wurde. Um die unspezifische Hintergrundfärbung zu minimieren wurden nochmals dreimal mit PBS-T gewaschen. Anschließend wurden 6 ml ECL-Lösung (Enhanced Chemolumineszenz) zu der Membran gegeben und die Detektion am LAS-3000 (Luminescent Image Analysis System) durchgeführt. Die Visualisierung der Antikörper-Antigen-Erkennung beruht auf der enzymatischen Aktivität der am Sekundärantikörper gekoppelten Peroxidase, die die Oxidation des Luminol (3-Amino-phthalhydrazid) zu 3-Aminophthalat katalysiert. Die bei dieser Reaktion entstehende Chemolumineszenz wurde detektiert.

Zum Zweck der Normalisierung wurde auf der gleichen Membran das Housekeeping Protein beta-Aktin nachgewiesen. Dazu erfolgte eine Rehybridisierung der Membran, um die gebundenen Antikörper wieder zu lösen. Es wurden 10 ml Rehybridisierungspuffer für 10-30 min bei 50°C zu der Membran gegeben. Nach gründlichem Waschen wurde erneut mit Rinderserumalbumin blockiert und die Prozedur, wie oben beschrieben, mit einem beta-Aktin Antikörper wiederholt.
3. Ergebnisse

3.1. Expressionsanalysen zur zeitabhängigen Wirkung von BMP-2

![Expressionprofile](image)

Abb.3.1. Darstellung der veränderten Gene in der jeweiligen Subgruppe unterteilt in hoch-(grün) und herunterregulierte (rot) Gene
MCF7/BMP2inc.4h v. MCF7/sf = Inkubation von MCF7 mit BMP-2 für 4h normalisiert gegen eine serumfreie MCF7-Kontrolle
MCF7/BMP2 v. MCF7/3.1 = BMP-2 überexprimierende MCF7 normalisiert gegen MCF7 mit Leervektor 3.1.

3.1.1. Generelle funktionelle Analyse der differentiell exprimierten Gene

Für weitere Vergleiche wurden die Gruppen differentiell exprimierter Gene mittels Gene Ontology (GO) analysiert. Das Gene Ontology Consortium bietet die Möglichkeit einer funktionellen Klassifizierung von Genen hinsichtlich biologischer Prozesse, in die sie involviert sind, der zellulären Komponente, in der sie lokalisiert sind und der molekularen

Eine weitere Auswertung wurde mit statistischen Methoden durchgeführt. Mittels des Fisher’s exact Tests wurden statistisch überrepräsentierte Prozesse im Vergleich zu der normalen Verteilung nach Gene Ontology für die Level 3-6 ermittelt. 298 (53%) biologische Prozesse waren entweder in einer oder in beiden Gruppen statistisch signifikant stärker vertreten. Für die weitere Betrachtung wurden alle biologischen Prozesse, die keine statistische Signifikanz und eine Häufigkeit kleiner 7% zeigten, ausgeschlossen. Des Weiteren wurden signifikante Unterschiede zwischen den beiden Gruppen mittels Fisher’s exact Test ermittelt. In der Gruppe „Inkubation“ zeigten sich dreimal mehr signifikant überrepräsentierte biologische Prozesse im Vergleich zur Gruppe „Überexpression“ (Abb. 3.2.).

3.1.2. Assoziation der differentiell exprimierten Gene mit Tumorigenes

Abb.3.3. Darstellung der tumorassozierten Prozesse auf Basis der funktionellen Klassifizierung mittels Gene Ontology für die Level 3-6 und Vergleich des prozentualen Anteils der veränderten Gene in den beiden Gruppen „Inkubation“ und „Überexpression“ im jeweiligen Prozess mit der Verteilung laut Gene Ontology

Prozess Apoptose, welcher eine entscheidende Rolle während der Tumorentstehung und –progression einnimmt (Abb. 3.4/3.5).

3.1.3. Verifizierung der Microarray-Daten mittels realtime-PCR

3.1.3.1. Validierung der Microarray Daten in der Gruppe „Überexpression“

Bei der funktionellen Analyse der veränderten Gene kristallisierten sich vor allem für die Gruppe „Inkubation“ signifikant veränderte Prozesse heraus. Diese wurden für weitergehende Untersuchungen ausgewählt (siehe 3.1.3.2.). Um für die Zuverlässigkeit der Microarray-Daten der BMP-2 überexprimierenden Zellen ebenfalls ein Gespür zu bekommen, wurden auf Grundlage einer ausführlichen Literaturrecherche eine Auswahl BMP-2 assoziierter Gene mittels realtime-PCR verifiziert.

Abb. 3.6. Vergleich der Microarray-Daten und der Ergebnisse der realtime-PCR ausgewählter Gene für die Gruppe „Überexpression“, 3.1/BMP2 – BMP-2 überexprimierende MCF7 normalisiert gegen MCF7 mit Leervektor

Zusammenfassend kann festgestellt werden, dass die Microarray- und die realtime-PCR-Ergebnisse eine begrenzte Übereinstimmung zeigten (Abb. 3.6.). Für einige Gene (CD24, LIF und PPP1R3C) konnten die Resultate bestätigt werden, während sich für andere Gene (IGFBP5 und PRKCN) die Ergebnisse der verschiedenen Nachweismethoden nicht deckten. Dies lässt sich zum einen auf die unterschiedlichen Methoden zurückführen (siehe 3.1.3.2.). Im Falle des BMP-2 regulierten IGFBP5 sollten die Ergebnisse unter Berücksichtigung der Besonderheiten in der BMP-Wirkung betrachtet werden. So sind die BMP-Effekte in starkem Maße vom momentanen Zustand der Zelle und deren Umgebung abhängig und liefern eine mögliche Erklärung für die divergenten Ergebnisse.

3.1.3.2. Validierung der Microarray Daten der Apoptose-assoziierten Gene

Der vaskulare endotheliale Wachstumsfaktor (VEGF) spielt eine zentrale Rolle in der Angiogenese und darüber hinaus beeinflusst er verschiedene biologische Prozesse, unter anderem Apoptose, während der Tumorigenese (Mercurio et al., 2005). NCKAP1, ein NAK-assoziiertes Protein, bindet und aktiviert IKK-abhängige Kinasen und stimuliert dadurch den NF-κB Signalweg (Fujita et al., 2003). Diese Aktivierung führt zu einer Hemmung der TNFalpha induzierten Apoptose. Ein wichtiger Schritt in der Apoptose ist der Aufbau von so genannten Apoptosomen, einem Komplex spezifischer Adaptorproteine, die für die Aktivierung der Initiatorcaspasen essentiell sind. In diesen Prozess scheint das Protein CASP8AP involviert zu sein, wobei der genaue Mechanismus noch aufgeklärt werden muss (Shi, 2006). Die atypische Rho GTPase ARHT1 ist an der Regulation der mitochondrialen Homöostase beteiligt, wobei eine Aktivierung von ARHT1 zu einem Zusammenbruch des mitochondrialen Netzwerkes führt (Fransson et al., 2003). Über diesen Mechanismus wird vermutlich die Apoptose-induzierende Wirkung von ARHT1 vermittelt. Ein weiteres regulatorisches Protein der Apoptose ist FAIM (Fas apoptotic inhibitory molecule). Es entfaltet seine anti-apoptotische Wirkung über die Interaktion mit Fas, einem zentralen Molekül in der Aktivierung des extrinsischen Weges der Apoptose (Schneider et al., 1999). PAWR ist in der Lage in einer Reihe von Zellen und durch verschiedene Stimuli Apoptose zu induzieren (García-Cao et al., 2005) und wird als möglicher Tumorsuppressor betrachtet. Die Interferon-induzierbare Proteinkinase PKR wurde ursprünglich im Zusammenhang mit
antiviralen Effekten beschrieben, scheint darüber hinaus aber auch, mit dem Tumorgeschehen und Apoptose assoziiert zu sein (Jagus et al., 1999).

<table>
<thead>
<tr>
<th>Affymetrix-ID</th>
<th>BMP2 4h/SF</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>207783_x_at</td>
<td>0,14</td>
<td>TPT1</td>
<td>tumor protein, translationally-controlled 1</td>
</tr>
<tr>
<td>35150_at</td>
<td>0,37</td>
<td>TNFRSF5</td>
<td>tumor necrosis factor receptor superfamily, member 5</td>
</tr>
<tr>
<td>203187_at</td>
<td>0,41</td>
<td>DOCK1</td>
<td>dedicator of cytokinesis 1</td>
</tr>
<tr>
<td>201083_s_at</td>
<td>0,45</td>
<td>BCLAF1</td>
<td>Bcl-2-associated transcription factor</td>
</tr>
<tr>
<td>219072_at</td>
<td>0,47</td>
<td>BCL7C</td>
<td>B-cell CLL/lymphoma 7C</td>
</tr>
<tr>
<td>210314_x_at</td>
<td>0,50</td>
<td>TNFSF13</td>
<td>tumor necrosis factor (ligand) superfamily, member 13</td>
</tr>
<tr>
<td>210141_s_at</td>
<td>2,00</td>
<td>INHA</td>
<td>inhibin, alpha</td>
</tr>
<tr>
<td>202984_s_at</td>
<td>2,06</td>
<td>BAG5</td>
<td>BCL2-associated athanogene 5</td>
</tr>
<tr>
<td>201845_s_at</td>
<td>2,06</td>
<td>RYBP</td>
<td>RING1 and YY1 binding protein</td>
</tr>
<tr>
<td>210512_s_at</td>
<td>2,14</td>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>207738_s_at</td>
<td>2,18</td>
<td>NCKAP1</td>
<td>NCK-associated protein 1</td>
</tr>
<tr>
<td>222201_s_at</td>
<td>2,20</td>
<td>CASP8AP2</td>
<td>CASP8 associated protein 2</td>
</tr>
<tr>
<td>218323_at</td>
<td>2,24</td>
<td>ARHT1</td>
<td>ras homolog gene family, member T1</td>
</tr>
<tr>
<td>220643_s_at</td>
<td>2,27</td>
<td>FAIM</td>
<td>Fas apoptotic inhibitory molecule</td>
</tr>
<tr>
<td>208478_s_at</td>
<td>2,35</td>
<td>BAX</td>
<td>BCL2-associated X protein</td>
</tr>
<tr>
<td>201448_at</td>
<td>2,35</td>
<td>TIA1</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
</tr>
<tr>
<td>204005_s_at</td>
<td>2,87</td>
<td>PAWR</td>
<td>PRKC; apoptosis, WT1, regulator</td>
</tr>
<tr>
<td>204211_x_at</td>
<td>3,28</td>
<td>PKR</td>
<td>protein kinase, interferon-inducible</td>
</tr>
</tbody>
</table>

Tab. 3.1. Liste der veränderten, Apoptose-assoziierte Gene in der Gruppe „Inkubation“

Die Microarray-Daten ergaben 18 Gene, die infolge einer BMP-2 Inkubation differentiell exprimiert werden und im Zusammenhang mit Apoptose stehen: sechs herunterregulierte (TPT1, TNFRSF5, DOCK1, BCLAF1, BCL7C, TNFSF13) und 12 hochregulierte Gene (INHA, BAG5, RYBP, VEGF, NCKAP1, CASP8AP2, ARHT1, FAIM, BAX, TIA1, PAWR, PKR). Die Ergebnisse des Microarray-Experiments konnten für 10 Gene reproduziert werden (TPT1, DOCK1, BCLAF1, BCL7C, BAG5, VEGF, CASP8AP2, BAX, PAWR, PKR). Die Validierung dieser differentiell exprimierten Gene durch zwei verschiedene Nachweismethoden (Microarray und realtime-PCR) spricht für eine Regulation durch exogenes BMP-2 (Abb. 3.7.). Für die nicht verifizierten Gene (TNFRSF5, RYBP, NCKAP1, ARHT1, FAIM, TIA1) kann keine eindeutige Aussage getroffen werden, da die beiden Nachweismethoden auf verschiedenen Prinzipien beruhen. Bei der Microarray-Technologie werden die Gene durch Hybridisierung mit kurzen Oligonukleotiden nachgewiesen, und bei der realtime-PCR werden größere Genabschnitte mittels genspezifischen Primern amplifiziert. Obwohl die Primer auf

Abb. 3.7. Vergleich der Microarray- und realtime-PCR-Daten Apoptose-assoziierter Gene in der Gruppe „Inkubation“

Des Weiteren unterscheiden sich die beiden Methoden grundlegend in der Probenvorbereitung. Während bei der realtime-PCR die isolierte Gesamt-RNA in cDNA umgeschrieben und sofort der PCR-Reaktion zugeführt wird, erfolgen bei der Probenvorbereitung für die Microarray-Analyse noch weitere Schritte, die eine mögliche Fehlerquelle darstellen. Die durchgeführte Fragmentierung der cRNA beispielsweise kann zur Zerstörung spezifischer Erkennungssequenzen führen und somit die Detektion einiger Gene erschwert werden. Bei weitergehenden Untersuchungen (Taubert, 2007) mit diesen Apoptose-Genen und verschiedenen Konzentrationen von BMP-2 wurden die Daten eingehender analysiert. Dabei zeigte sich, dass die Veränderungen der Apoptose-assozierten Gene konzentrationsabhängig sind (Tab. 3.2.). Bei der Inkubation von MCF-7 mit 50 ng/ml BMP-2 konnte die veränderte
Expression von zehn Genen (TNFRSF5, INHA, BAG5, RYBP, VEGF, NCKAP, CASP8AP2, BAX, TIA1, PKR) aus dem Microarray-Datensatz „Apoptose“ bestätigt werden. Auch bei einer Konzentration von 100 ng/ml BMP-2 zeigte sich eine Bestätigung der Microarray-Daten bei 10 Genen, allerdings nicht in Übereinstimmung mit den Resultaten mit 50 ng/ml BMP-2.

Tab. 3.2. Vergleich der Microarray-Daten mit den Ergebnissen der realtime-PCR nach Inkubation mit unterschiedlichen BMP-2 Konzentrationen, rot: Herunterregulation, grün: Hochregulation

3.1.4. Funktionelle Untersuchungen von PKR und seinem Substrat eIF2alpha

Abb. 3.8. Westernblot-Analysen von PKR und der aktivierten, phosphorylierten Form p-PKR sowie seinem Substrat eIF2alpha und der phosphorylierten Form p-eIF2alpha zum Vergleich BMP-2 inkubierter MCF-7 (B) und serumfreier Kontrollen (SF) über einen Zeitraum von 24h

3.2. Das Tet-System für eine induzierbare Genexpression

3.2.1 Herstellung und Charakterisierung des Response-Plasmids

Abb. 3.9. Bild der Agarosegelektrophorese des EcoRV-Verdaus

Von ausgewählten Klonen wurden Übernachtkulturen angezüchtet und die Plasmide isoliert. Anschließend wurden die Klone auf den Einbau von BMP-2 untersucht. Dazu erfolgte ein Restriktionsverdau mit EcoRV (Abb. 3.10.). Plasmide, die ein Fragment der Größe 1272 bp (BMP-2) enthielten, wurden mittels eines differentiellen Restriktionsverdaus weitergehend analysiert.

Abb. 3.10. EcoRV-Verdau zur Analyse ausgewählter Klone auf Insertion von BMP-2
Da die ligierten Fragmente durch die Verwendung von EcoRV glatte („blunt“) Enden haben, kann der Einbau des BMP-2 in zwei Orientierungen erfolgen. Um die richtige Insertion von BMP-2 zu bestimmen, erfolgte ein Verdau mit BamHI. Dieses Enzym erzeugt in Abhängigkeit der Orientierung von BMP-2 verschiedene große Fragmente. Bei einem Einbau des BMP-2 in sense-Orientierung entstehen Fragmente von 1319 und 5278 bp Länge, während die antisense-Orientierung zu Bruchstücken von 6538 und 69 bp führt. Abbildung 3.11. zeigt das Bild einer Agarosegelelektrophorese des BamHI-Verdaus von zwei verschiedenen Klonen. Bei dem ersten Klon sind zwei Banden von ca. 1300 bp und reichlich 5000 bp zu sehen, was den Fragmenten für eine sense-Orientierung entspricht. Der zweite Klon zeigt nur eine Bande von über 6000 bp, was auf einen Einbau des BMP-2 in der antisense Richtung hinweist. Das zweite erwartete Fragment von 69 bp ist auf einem 1%igen Agarosegel nicht mehr nachweisbar. Der erste Klon trägt das BMP-2 in der richtigen Orientierung und wurde für weitergehende Untersuchungen verwendet.

Abb. 3.11. Differentieller Restriktionsverdau mit BamHI von identifizierten BMP-2 Klonen

3.2.2. Bestimmung der optimalen Doxycyclin-Konzentration

Für die Etablierung von stabil transfizierten Klonen wurde die Hygromycin-Resistenz des pTRE2hyg-Vektors genutzt. Die Bestimmung der optimalen Hygromycin-Konzentration erfolgte wie unter 2.4.2. beschrieben und ergab eine geeignete Konzentration von 100 µg/ml.
Anschließend erfolgte die Bestimmung der geeigneten Doxycyclin-Konzentration für eine optimale Induktion mit der Kontrollzelllinie U2-OS Luc Tet-On (siehe 2.4.2.). Dazu machte man sich die enzymatische Aktivität der Luciferase zunutze, die unter der Kontrolle des Tetracyclin Response Elements (TRE) steht. Die Bestimmung der Genexpression erfolgte somit indirekt über die enzymatische Umsetzung von Luciferin durch das gebildete Protein Luciferase.

Es zeigte sich ein konzentrationsabhängiger, exponentieller Anstieg der Luciferase-Aktivität, gemessen in relativen Lichteinheiten (RLU – relative light units) über den gesamten untersuchten Konzentrationsbereich von 0,01 ng/ml bis 1 µg/ml (Abb. 3.12.).

Abb. 3.12. Dosis-Wirkungs-Kurve von Doxycyclin bestimmt in U2-OS Luc Tet-On anhand der Luciferaseaktivität (angegeben in RLU)

Diese Ergebnisse bestätigen die Kontrolle der Luciferase-Expression durch den reversen Tetracyclin-kontrollierten Transaktivator (rtTA) in Anwesenheit von Doxycyclin, wobei mit steigender Doxycyclin-Konzentration die Menge an gebildetem Genprodukt (Luciferase) zunimmt. Berechnet man den Grad der Induktion des Tet-On Systems mit folgender Formel:

\[
x\text{-fache Induktion} = \frac{\text{+ Dox RLU}}{\text{- Dox RLU}}
\]

so zeigt sich ebenfalls ein exponentieller Anstieg in Abhängigkeit von der Doxycyclin-Konzentration (Abb. 3.13.).

Abb. 3.13. Bestimmung des Grades der Induktion der Luciferaseaktivität in U2-OS Luc Tet-On
Bereits die Zugabe von 0,1 ng/ml Doxycyclin bewirkt eine Verdoppelung der messbaren Luciferase-Aktivität. Diese wird bis zu einer Konzentration von 1 µg/ml Doxycyclin auf das fast 900fache gesteigert. Für weitere Experimente wurde eine Konzentration von 600 ng/ml Doxycyclin ausgewählt, da sich eine fast 500fache Induktion der Genexpression im Vergleich zur nicht induzierten Kontrolle zeigte.

3.2.3. Transiente Transfektion

Abb. 3.14. Bilder der transienten Transfektion von MCF-7 Tet-On mit eGFP
(A) Phasenkontrastaufnahme, (B) Fluoreszenzaufnahme, 40x

Bei den MCF-7 Tet-On Zellen waren ca. 50-60% der Zellen positiv bezüglich GFP, was mit der Effektivität der Transfektion gleichzusetzen ist (Abb.3.14.). Die Morphologie der MCF-7 Tet-On deutet darauf hin, dass die Transfektionsprozedur enormen Stress für die Zellen bedeutet, da sie nach 24 h immer noch abgerundet sind und sich nicht richtig auf der Zellkulturoberfläche ausbreiten.
Bei der Kontrollzelllinie U2-OS Luc Tet-On zeigte sich eine Transfektionseffizienz von über 70% (Abb. 3.15.). Anhand der Morphologie der Zellen ist zu erkennen, dass die U2-OS Luc Tet-On weniger sensitiv gegenüber der Nukleofektion sind. Die Zellen haben sich bereits wieder vollständig an die Zellkulturoberfläche geheftet und auch in der Fluoreszenzaufnahme ist deutlich eine zytoplasmatische Färbung des GFP zu erkennen. Der Zellkern erscheint dunkel und ungefärbt wohingegen bei den MCF-7 Tet-On nur eine diffuse Fluoreszenz zu sehen ist.

Abb. 3.15. Bilder der transienten Transfektion von U2-OS Luc Tet-On mit eGFP
(A) Phasenkontrastaufnahme, (B) Fluoreszenzaufnahme, 40x

ERGEBNISSE

Abb. 3.16. Bilder der Agarosegelelektrophoresen der durchgeführten rt-PCRs mit den transient transfizierten U2-OS Luc Tet-On Zellen

Dabei zeigt sich eine Abnahme der BMP-2 Expression über die Zeit, was darauf zurückzuführen ist, dass der Vektor nur temporär in die Zellen eingebracht wurde und eine Woche (168 h) nach der Transfektion von den Zellen bereits wieder eliminiert wurde. Des Weiteren ist zu erkennen, dass die BMP-2 Expression in der nicht transfizierten Probe (2) niedriger ist als in allen transfizierten Proben. Das lässt auf eine Hochregulation des BMP-2 infolge der Transfektionsprozedur schließen. Durch eine semiquantitative Auswertung der Bandenintensitäten mittels AIDA konnte das weiter untermauert werden. Über den ganzen untersuchten Zeitraum wiesen die mit Doxycyclin induzierten Proben eine höhere BMP-2 Expression (normalisiert gegen Aktin) auf als die nicht-induzierten Proben (Abb. 3.17.). Des Weiteren konnte die Abnahme der BMP-2 Expression über die Zeit bestätigt werden. Die maximale Induzierbarkeit (1,3fach) zeigte sich 24 h nach der Zugabe von Doxycyclin. Bei der Beurteilung dieser Daten ist zu berücksichtigen, dass infolge der Sättigung der PCR-Reaktion für BMP-2 die Bandenintensität sehr stark ist und der Höchstwert für eine Quantifizierung mit der Software überschritten wird. Somit ist von einem höheren Wert für das Maß der Induktion auszugehen.
Zur weiteren Kontrolle des Tet-Systems wurde der von dem pTet-On Vektor exprimierte reverse Tet-Repressor (rTetR) untersucht (Abb. 3.16.). Dieses Protein wird konstitutiv exprimiert, bindet in Anwesenheit von Doxycyclin an das Tetracyclin Response Element (TRE) und initiiert somit die Expression von nachgeschalteten Genen (z.B. BMP-2).

Die rTetR spezifische PCR zeigte für alle Proben eine gleich bleibende Expression des Gens. Somit konnte die konstitutive Expression dieses Gens und die Unabhängigkeit von der Zugabe von Doxycyclin nachgewiesen werden. Zusätzlich wurde als Voruntersuchung für die Etablierung stabiler Klone die Expression des Hygromycin-Resistenzgens untersucht (Abb. 3.16.). Auch hier zeigte sich eine gleich bleibende, Doxycyclin-unabhängige Expression, und die Hygromycin-Resistenz kann somit für die Selektion stabiler Klone genutzt werden.

Plasmids pTRE2hyg Luc zurückzuführen. Berechnet man den Grad der Induktion des Tet-On Systems mit folgender Formel:

\[
\text{x-fache Induktion} = \frac{+ \text{Dox RLU}}{- \text{Dox RLU}}
\]

so ist die Zeitabhängigkeit weniger stark ausgeprägt, da durch den Quotient die Werte der Luciferase-Aktivität für jeden Zeitpunkt gegen die Negativkontrolle (ohne Dox) normalisiert werden. Bis 72 h zeigt sich eine ca. 2fache Induktion der Luciferase-Genexpression mit einem Maximum von 2,2fach nach 48 h Induktion.

Abb. 3.18. Ergebnisse des Luciferase Assays von MCF-7+ pTRE-Luc
(A) absolute Werte der Luciferase-Aktivität
(B) Grad der Induktion

Zusammenfassend kann festgestellt werden, dass sowohl der konstruierte BMP-2 Vektor (pTRE2hyg + BMP-2) als auch die MCF-7 Tet-On Zellen die volle Funktion für die Anwendung im Tet-On System erfüllen. Im folgenden Schritt wurden diese beiden Komponenten zusammengeführt und getestet. In Analogie zu der Testung mit U2-OS Luc Tet-On wurde der Vektor pTRE2hyg + BMP-2 transient in die MCF-7 Tet-On eingebracht und

Abb. 3.19. Bilder der Agarosegelelektrophoresen der durchgeführten rt-PCRs mit den transient transfizierten MCF-7 Tet-On

Die Stärke der Banden deutet auf eine Sättigung der PCR-Reaktion hin und erschwert mitunter die genaue Interpretation der Ergebnisse, z.B. bei den Proben nach 72 h und 168 h Induktion. Bei dem Vergleich der untransfizierten MCF-7 Tet-On mit den nicht-induzierten transfizierten Zellen zeigte sich bereits ein Anstieg der BMP-2 Expression.

Abb. 3.20. Semiquantitative Auswertung der PCR-Reaktion der BMP-2 transfizierten MCF-7 Tet-On mit AIDA; BMP-2 Expression normalisiert gegen die Aktin-Expression für nicht-induizierte (ohne Dox) und induzierte (mit Dox) Proben und eine untransfizierte Kontrolle
Das deutet zum Einen auf eine Hintergrundexpression im nicht-induzierten System hin, und zum Anderen kann es infolge der Transfektion per se zu einer Hochregulation des BMP-2 gekommen sein, da bei der durchgeführten PCR nicht zwischen genomischen und vektorcodierten BMP-2 unterschieden werden kann. Diese Ergebnisse bestätigen die Funktionalität des Tet-Systems in den MCF-7 Tet-On Zellen und dem konstruierten pTRE2hyg + BMP-2 Vektor. Im nächsten Schritt erfolgte die Etablierung einer stabil mit pTRE2hyg + BMP-2 transfizierten MCF-7 Tet-On Zelllinie.

3.2.4. Stabile Transfektion

Für die genauere Untersuchung der zeitabhängigen Wirkung von BMP-2 war es notwendig, eine stabil transfizierte MCF-7 Tet-On Zelllinie herzustellen. Dazu wurde im ersten Schritt die Transfektionseffizienz für eine stabile Genexpression bestimmt. In Analogie zur transienten Transfektion wurden die Zellen mit einem eGFP Vektor unter Verwendung des Transfektionsprogramms für hohe Effizienz und Langzeitexpression transfiziert. Die Effektivität wurde wiederum mikroskopisch bestimmt (Abb. 3.21.).

Abb. 3.21. Bilder der stabilen Transfektion von MCF-7 Tet-On mit eGFP
 (A) Phasenkontrastaufnahme, (B) Fluoreszenzaufnahme, 40x

Der Vergleich der Phasenkontrast- und der Fluoreszenzaufnahme ergibt eine Transfektionseffizienz von circa 70%, wobei die Zellmortalität nach der stabilen Transfektion deutlich höher war als bei der transienten. Die bereits beobachteten Veränderungen der Zellmorphologie wurden abermals beobachtet.

Die Nukleofektion kann auch für die Etablierung stabiler Klone in den MCF-7 Tet-On Zellen mit hinreichender Effizienz verwendet werden. Im nächsten Schritt wurden der Kontrollvektor pTRE2hyg und der konstruierte Vektor pTRE2hyg + BMP-2 in die Zellen stabil eingebracht. Eine Probe ohne Zugabe von DNA wurde als Negativkontrolle ebenfalls

Abb. 3.22. Morphologie der MCF-7 Tet-on Zellen nach der Transfektion, 40x
 (A) Negativkontrolle (ohne DNA) (B) pTRE2hyg (C) pTRE2hyg + BMP-2

Abb. 3.23. Phasenkontrastaufnahmen während der Etablierung stabiler Klone, 40x
(A) heranwachsende Klone unter Selektionsdruck
(B) Morphologie eines Klones im 96-well Format
(C) etablierter Klon

Abb. 3.24. Bilder der Agarosegelelektrophorese der durchgeführten PCRs zur Analyse der stabilen Klone

quantitative Auswertung erfolgte anhand der Ct-Werte, welche die Zyklenzahl angeben, bei der die Fluoreszenz und somit die Menge des amplifizierten Gens erstmals signifikant die Hintergrund- Fluoreszenz überschreitet. Gleichzeitig markiert der Ct-Wert den Eintritt in die exponentielle Phase der Amplifikation, in der eine Quantifizierung möglich ist. Die Ct-Werte der BMP-2 spezifischen realtime-PCR wurden gegen beta-Aktin normalisiert, um die verschiedenen Ansätze vergleichbar zu machen. Die berechneten Quotienten dienten der Ermittlung von induzierbaren Klonen. Die so ausgewerteten Daten sind exemplarisch in Abb. 3.25. graphisch dargestellt. Bei Klon K21(l) konnte keine Veränderung der BMP-2 Expression zwischen induzierter und nicht-induzierter Probe festgestellt werden. Für die Klone K29 und K37 wurde ein geringerer Quotient für die induzierte Probe ermittelt, was gegen eine Induzierbarkeit der BMP-2 Expression in diesen Zellen spricht. Die Klone K7 und K26 hingegen zeigten eine höhere BMP-2 Expression in den induzierten Proben im Vergleich zu den nicht-induzierten, was sich durch eine Erhöhung des beta-Aktin/BMP-2 Quotienten ausdrückt. Bei diesen beiden Zellklonen kann von einer Induzierbarkeit der BMP-2 Expression durch das Tet-System ausgegangen werden.

Abb. 3.25. Auswertung der Ergebnisse der realtime-PCR für ausgewählte stabile Klone; BMP-2 Expression normalisiert gegen die Aktin-Expression für nicht-induzierte (ohne Dox) und induzierte (mit Dox) Proben

Dieses Experiment wurde zweimal unabhängig wiederholt und nur Klone, die in beiden Experimenten die gleichen Ergebnisse lieferten, wurden für weitergehende Untersuchungen ausgewählt. Von den circa 100 untersuchten Klonen konnten nach diesen verschiedenen Nachweismethoden fünf Klone (K3, K7, K26, K47 und K64) selektiert werden.

Zusammenfassend kann festgestellt werden, dass das Tet-System in der Mammakarzinom- zelllinie MCF-7 mit einer induzierbaren BMP-2 Expression etabliert und hinreichend analysiert werden konnte. Dementsprechend liegen stabil transfizierte Klone für weitere
Untersuchungen vor. Es zeigte sich jedoch, dass die BMP-2 Expression nur geringfügig induzierbar ist. Eine deutlich höhere Induktion konnte mit einer transienten Transfektion erreicht werden, so dass für weitergehende Experimente dieses System eventuell zu bevorzugen ist. Sowohl die transiente als auch die stabile induzierbare Überexpression von BMP-2 konnten etabliert werden und besitzen spezifische Vorteile. Für die Planung nachfolgender Experimente müssen diese berücksichtigt werden und die Auswahl hinsichtlich der jeweiligen experimentellen Fragestellung getroffen werden.

3.3. Immunhistochemische Untersuchung der BMP-2 Expression

3.3.1. Etablierung der BMP-2 Immunhistochemie

Im ersten Schritt erfolgte die Testung und Optimierung der BMP-2 spezifischen Immunhistochemie. Dazu wurden 52 Mammakarzinome untersucht, bei denen es sich um OP-Resektate aus den Jahren 1996 und 1997 handelt. Das unselektierte Patientengut stammte aus Routineuntersuchungen des Institutes für Pathologie in Bad Berka. An diesem Probenmaterial wurde zum einen die Methode (siehe 2.5.1.) für den BMP-2 spezifischen Antikörper (N-14, sc-6895, Santa-Cruz) optimiert und zum anderen die immunhistochemische Färbung und Verteilung

Abb. 3.26. Häufigkeiten der BMP-2 Expression auf Grundlage des Remmele Scores

Von den 52 untersuchten Proben wiesen 30 (58%) eine positive Immunreaktivität bezüglich BMP-2 auf. Betrachtet man die Stärke der Immunreaktivität anhand der Verteilung des Remmele Scores (Abb. 3.26.), so zeigt sich, dass 38,5% der Proben eine schwache Färbung zeigen (Remmele Score 1-2) und 19,2% eine mäßige bis starke (Remmele Score 4-9). Bewertet man nur die Gruppe der BMP-2 positiven Proben, so weisen zwei Drittel nur eine schwache Immunreaktivität auf. In Abb. 3.27. sind zwei Beispiele der immunhistochemischen BMP-2 Färbung gezeigt. Dabei ist auffällig, dass die BMP-2 spezifische Färbung sehr heterogen ist. Neben negativen Tumorarealen treten schwach gefärbte Bereiche, stark gefärbte Einzelzellen und mäßig bis stärk gefärbte Areale auf (Abb. 3.28.).

Abb. 3.27. Bilder der BMP-2 Immunhistochemie eines invasiv-duktalen Mammakarzinoms einer 70-jährigen Patientin, pT2N1MX, Vergrößerung 60x
(A) heterogene Verteilung der BMP-2 Expression
(B) mäßige BMP-2 Expression im Tumorareal und negatives Normalgewebe
Abb. 3.28. heterogene Verteilung der BMP-2 Immunreaktivität
(A) stark gefärbte Einzelzelle
(B) schwach positive Tumorbereiche
(C) mäßig gefärbte Tumorareale

Des Weiteren ist in Abb. 3.27.B der Unterschied der BMP-2 Expression zwischen Tumor- und Normalgewebe dargestellt. Während das gut differenzierte Normalgewebe negativ bezüglich BMP-2 ist, weisen die schlecht differenzierten Tumorareale eine BMP-2 Immunreaktivität auf.

Abb. 3.29. Verteilung der BMP-2 Expression, Vergößerung 60x
(A) schwach BMP-2 positive Milchdrüse und mäßig gefärbtes Tumorareal in einem invasiv-duktalen Mammakarzinom einer 57-jährigen Patientin, pT4N2MX
(B) BMP-2 Immunreaktivität einer Fettgewebsmetastase eines invasiv-duktalen Mammakarzinoms einer 70-jährigen Patientin, pT2N1MX

Zusammenfassend kann festgestellt werden, dass BMP-2 im Tumorgewebe der Brust nachweisbar ist. Dabei erscheint die BMP-2 Färbung sehr heterogen und ist zumeist schwach bis mäßig.
3.3.2. Multigewebearray „breast prognosis“

3.3.2.1. Das Patientenkollektiv

Das Patientenkollektiv bestand aus 2221 Frauen im Alter von 26 bis 101 Jahren bei Diagnose. Die Altersverteilung, gegliedert in zwölf Gruppen, ist in Abb. 3.30. dargestellt.

Abb. 3.30. Altersverteilung des Patientenkollektivs

3.3.2.2. Histopathologie und Klassifikation des Mammakarzinoms

Zu den untersuchten Tumorproben lag eine Vielzahl klinisch-pathologischer Parameter vor, die im Folgenden erläutert werden.

Abb. 3.31. Histologie der Mammakarzinome

Des Weiteren werden die Mammakarzinome histopathologisch in nicht-invasive und invasive Karzinome unterteilt. Zu den nicht-invasiven Karzinomen zählen die Carcinoma in situ (CIS) mit einer Häufigkeit von 15-20%. Auf dieser Grundlage ergibt sich folgende prozentuale Verteilung:

- Invasiv-duktale Karzinome: 70,3%
- Invasiv-lobuläre Karzinome: 13,9%
- Kribriforme Karzinome: 2,9%
- Medulläre Karzinome: 2,8%
- Mucinöses Karzinom: 2,9%
- Sonstige Histologien: 7,2%

An den Tumorresektaten wurde postoperativ die Tumorausdehnung (pT) und der Befall der regionären Lymphknoten (pN) auf Grundlage des pTNM-Systems erfasst. Für 1996 der Proben konnte die Größe des Primärtumors erfasst werden (Abb. 3.32.). 713 Karzinome (35,7%) wurden als pT1 beurteilt. Bei einer weiteren Unterteilung dieser Gruppe, fanden sich 7 pT1a, 97 pT1b und 598 pT1c. Bei 941 Patientinnen wurde eine pT2-Ausdehnung diagnostiziert, was einer relativen Häufigkeit von 47,1% entsprach. 117 Fälle befanden sich im pT3-Stadium (5,9%) und 225 (11,3%) wurden dem pT4-Stadium zugeordnet.

Abb. 3.32. Häufigkeitsverteilung der Tumorgröße nach der pTNM-Klassifikation

Die Untersuchung der regionären Lymphknoten und die daraus resultierende Klassifikation wurde bei 1692 Patientinnen durchgeführt (Abb. 3.33.). Dabei wurden 852 Proben (50,3%) als tumorfrei identifiziert und somit in das pN0-Stadium eingeordnet. 732 der Tumoren (43,3%) bildeten die Gruppe pN1 und 108 (6,4%) wurden dem pN2-Stadium zugeteilt.

Abb. 3.33. Häufigkeitsverteilung der Lymphknotenmetastasierung nach der pTNM-Klassifikation

Des Weiteren erfolgte eine Differenzierungseinstufung (Grading) des Tumors. Dabei werden Tubulusbildung, Kernpleomorphie und Mitoseraten zur Bildung eines Scores herangezogen. Auf Grundlage dieses Scores erfolgt die Definition und Graduierung des Malignitätsgrades des Tumors (Bässler 1998). Beim Grading der Mammakarzinome ergeben sich auf Basis dieses Systems die Gruppen BRE1 bis BRE3, also von gut über mäßig bis hin zum schlecht
bzw. undifferenzierten Karzinom. Auf Basis des histopathologischen Gradings ergab sich folgende Gruppierung: 482 der Tumoren (26,1%) wurde als BRE1 eingestuft, 603 waren schlecht differenziert und somit BRE3 (32,6%). Die größte Gruppe (762) war mäßig differenziert und wurde als BRE2 eingestuft (Abb. 3.34).

![Differenzierung der Tumoren, n = 1847](image)

Abb. 3.34. Häufigkeitsverteilung des Gradings

Zusätzlich zu den histopathologischen Parametern wurden routinemäßig der Hormonrezeptor-status und der Her2/neu-Status immunhistochemisch bestimmt. Der Östrogen- und Progesteronrezeptorstatus wurden nach dem Remmele-Score bewertet, wobei negative Tumoren einen Score von 0-2 aufweisen, schwach und mäßig positive Tumoren werden mit 3-8 bewertet und ein Score von 9-12 für stark positive Tumoren steht.

![Östrogenrezeptorstatus, n = 1723](image)

Abb. 3.35. Häufigkeiten der Östrogenrezeptor-Expression anhand des Remmele-Scores

Die Verteilung des Remmele-Scores für den Östrogenrezeptorstatus ist in Abb. 3.35. dargestellt. 459 (26,6%) der Tumoren waren negativ bezüglich des Östrogenrezeptors. Als positiv gelten Tumoren mit einem Remmele-Score größer 9, dies traf auf 431 (25%) der Tumoren zu.

Der Nachweis des Progesteronrezeptors konnte an 1714 Tumoren durchgeführt werden (Abb. 3.36.). Für die Therapieplanung und Prognoseabschätzung ist vor allem des Vorhandensein
des Progesteronrezeptors entscheidend, weniger die Expressionsstärke. In dem untersuchten
Patientenkollektiv waren 63,7% der Tumoren negativ bezüglich des Progesteronrezeptors.

Abb. 3.36. Häufigkeiten der Progesteronrezeptor-Expression anhand des Remmele-Scores
Die Beurteilung des Her2/neu-Status erfolgte auf Grundlage des DAKO-Scores, der von 0 bis
3+ reicht. Negative Tumoren werden mit 0 und 1+ bewertet, mäßig gefärbte Tumoren sind
DAKO 2+ und eine starke Färbung wird als DAKO 3+ eingestuft. Eine Bewertung mit 3+
steht für mindestens 10% komplett und stark gefärbte Zellen und ist das Kriterium für eine
Antikörpertherapie mit Herceptin®. In dem untersuchten Patientenkollektiv erfüllten 10,7%
(200) der Tumoren dieses Kriterium und 1460 (78,3%) der Tumoren waren negativ bezüglich
Her2/neu (Abb. 3.37.).

Abb. 3.37. Häufigkeiten der Her2/neu-Expression anhand des DAKO-Score

3.3.2.3. Immunhistochemisch bestimmte Parameter

Zusätzlich zu den klassischen histopathologischen und immunhistochemischen Parametern
wird kontinuierlich nach neuen Markern gesucht, die eine genauere Klassifikation der
Mammakarzinome ermöglichen. In der vorliegenden Arbeit soll der Zusammenhang von
BMP-2 mit klassischen Prognosefaktoren genauer untersucht werden. Um ein Protein auf

3.3.2.4. Statistische Überprüfung des Patientenkollektivs

Im ersten Schritt wurde überprüft, ob das Patientenkollektiv eine Normalverteilung aufweist. Dazu wurde die Korrelation von etablierten Prognosefaktoren mit dem Überleben anhand von Kaplan-Meier-Kurven bestimmt.

Das Überleben der untersuchten Patienten korreliert signifikant mit der Größe des Primärtumors: je kleiner der Tumor desto höher ist das Gesamtüberleben (Abb. 3.38.A). Des
Weiterhin zeigt das Patientenkollektiv die bereits beschriebenen Korrelationen des Überlebens mit folgenden Faktoren:

- Nodalstatus pN
- Grading
- Her2/neu-Status
- Proliferation

Abb. 3.38. Kaplan-Meier Überlebenskurve in Abhängigkeit etablierter Prognosefaktoren
(A) Größe des Primärtumors (pT)
(B) Nodalstatus (pN)
(C) Grading
(D) Proliferationsindex (Mitosen)

Mit diesen statistischen Analysen konnte nachgewiesen werden, dass es sich um ein normalverteiltes Patientenkollektiv handelt.

3.3.2.5. Häufigkeit und Verteilung der BMP-2 Expression

Der immunhistochemische Nachweis von BMP-2 der Multigewebearrays wurde wie bereits beschrieben (2.5.) durchgeführt. Die erste mikroskopische Begutachtung zeigte eine
Aufteilung der untersuchten Proben in vier Gruppen. Zum einen gab es BMP-2 negative Tumoren und zum Anderen BMP-2 positive, die in Proben mit schwacher, mäßiger und starker Immunreaktivität unterteilt werden konnten (Abb. 3.39.). Insgesamt waren 57% der Tumoren positiv bezüglich BMP-2.

Abb. 3.39. BMP-2 Immunhistochmie der Tumoren auf dem Multigewebearray „breast prognosis“, 20x
(A) negativer Tumor
(C) mäßige BMP-2 Expression
(B) schwache BMP-2 Expression
(D) starke BMP-2 Expression

Die BMP-2 spezifische Färbung wurde genauer anhand des Remmele Scores beurteilt. Die Verteilung dieser Bewertung ist in Abb. 3.40. dargestellt. Dabei zeigt sich, dass 38,5% der Proben eine schwache Positivität aufweisen (Remmele Score 1-2) und 19,3% eine mäßige bis starke Immunreaktivität (Remmele Score 3-9).

Abb. 3.40. Häufigkeiten der BMP-2 Expression anhand des Remmele Scores

Bei der Betrachtung der BMP-2 positiven Gruppe bilden die schwach positiven Tumoren eine Mehrheit von zwei Dritteln. Diese Ergebnisse bestätigen die bereits bei dem kleinen Patientenkollektiv beobachtete Verteilung der BMP-2 Immunreaktivität und deuten darauf hin, dass BMP-2 meist nur in geringem Maß exprimiert wird.
3.3.2.6. Korrelationen von BMP-2

Der Zusammenhang von BMP-2 mit den einzelnen prognostischen Faktoren wurde mit dem Chi-Quadrat-Test auf signifikante Beziehungen untersucht. Dabei wurde ein Signifikanzniveau von \(p = 0,05 \) definiert, d.h. bei einem Wert von \(p \leq 0,05 \) kann ein statistisch signifikanter Zusammenhang angenommen werden. Bei einem signifikanten Test wurde die Korrelation anhand des Spearman-Koeffizienten bestimmt, da die Daten auf einem ordinalen Messniveau beruhen. Dabei wurde eine Korrelation von 0 bis 0,2 als schwach, von 0,21 bis 0,7 als mäßig und von 0,71 bis 1 als stark bezeichnet. Die gleiche Einteilung galt auch für die negative Ausprägung.

Da bisher wenig über die Expression von BMP-2 in Tumoren bekannt ist, wurden die Ergebnisse der immunhistochemischen Untersuchungen unter verschiedenen Gesichtspunkten gruppiert. Zum einen erfolgte eine einfache Einteilung nach positiv und negativ, wobei alle Tumoren mit einem Remmele Score von 0 als negativ gewertet wurden und alle mit einem Score größer 0 als positiv (0 = negativ, 1 = positiv). Zum anderen wurde eine Gruppierung nach dem Remmele Score vorgenommen, die davon ausgeht, dass alle Proben mit einem Score von 0-2 als negativ zu betrachten sind und alle mit einem Score von 3-12 als positiv. Des Weiteren wurde eine Gliederung in negative Tumoren (RS: 0-2) und hochexprimierende (RS: 6-12) vorgenommen. In analoger Weise wurde mit den anderen immunhistochemisch ermittelten Parametern verfahren, so dass die Korrelationsanalysen unter Berücksichtigung des Expressionsniveaus durchgeführt wurden.

In die statistische Auswertung konnten 2007 Fälle einbezogen werden, bei denen eine Beurteilung der BMP-2 Expression möglich war. Dabei zeigte sich ein statistisch signifikanter Zusammenhang \((p = 0,031) \) mit der Größe des Primärtumors (pT), wobei pT1-Stadien einen höheren Anteil an BMP-2 positiven Tumoren aufweisen als pT4-Stadien (Tab. 3.3.).

\[
\begin{array}{ccc}
 & BMP-2 & \\
 & 0 & 1 & \text{Gesamt} \\
pT & 1 & 293 & 420 & 713 \\
 & 4 & 111 & 114 & 225 \\
\text{Gesamt} & 404 & 534 & 938 \\
\end{array}
\]

\(\chi^2 = 4,735, p = 0,031 \) \[r_s = -0,071, p = 0,033 \]

Tab. 3.3. Kreuztabelle BMP-2/pT, \(n = 938 \)
Diese Beziehung konnte auch durch den Rangkorrelationskoeffizienten nach Spearman (r_s) bestätigt werden, der einer schwach negativen Korrelation entsprach. Dieser Zusammenhang konnte auch bei der Betrachtung aller Tumoren ungleich pT4 gegen alle pT4-Stadien bestätigt werden (siehe Anhang). Im Chi-Quadrat-Test ($\chi^2 = 5,390, p = 0,022$) zeigte sich eine statistisch signifikante, schwach negative Korrelation.

Beim Vergleich von Östrogenrezeptor-negativen Tumoren mit der hochexprimierenden Gruppe besteht eine statistisch hoch-signifikante negative Korrelation zwischen der Expression von BMP-2 und dem Östrogenrezeptorstatus ($\chi^2 = 11,688, p = 0,001$). Dieser Zusammenhang kann laut Spearman-Korrelationskoeffizienten als stark negativ bezeichnet werden (Anhang).

Eine weitere Assoziation besteht zwischen der BMP-2 Expression und dem Grading der Tumoren. Dabei weisen gut differenzierte Tumoren (BRE1) eine statistisch signifikant höhere Zahl an BMP-2 positiven Tumoren auf als schlecht differenzierte Karzinome (BRE3) (Tab. 3.4.).

\[
\begin{array}{c|c|c|c}
\text{BMP-2} & 0 & 1 & \text{Gesamt} \\
\hline
\text{Grading} & & & \\
BRE1 & 193 & 289 & 482 \\
BRE2 & 311 & 451 & 762 \\
BRE3 & 284 & 319 & 603 \\
\hline
\text{Gesamt} & 788 & 1059 & 1847
\end{array}
\]

\[
\chi^2 = 7,268, p = 0,026 \\
r_s = -0,057, p = 0,014
\]

Tab. 3.4. Kreuztabelle BMP-2/Grading, n = 1847

Des Weiteren zeigte sich eine hoch-signifikante, schwach negative Korrelation ($\chi^2 = 13,332, p < 0,001, r_s = -0,075, p < 0,001$) mit der Proliferation, die anhand des Mitosestatus abgeschätzt wurde (Tab. 3.5.).

Außerdem gibt es eine Beziehung zwischen BMP-2 und der Histologie des Tumors, die an anderer Stelle genauer erläutert wird (siehe 3.3.2.7.). Mit den klassischen Prognosefaktoren Nodalstatus, Her2/neu- und Progesteronrezeptorstatus zeigte sich kein statistischer Zusammenhang.
Bei den immunhistochemisch bestimmten weiteren Parametern zeigte sich bis auf Calretinin mit allen eine statistisch signifikante Korrelation, die im Folgenden erläutert wird. Für Cyclin D1 und p16 zeigte sich ein Zusammenhang mit der BMP-2 Expression bei der Ja-/Nein-Einteilung. Das deutet darauf hin, dass bei diesen Molekülen eher das Vorhandensein als die Stärke der Expression von Bedeutung ist. Für Cyclin D1 zeigte sich eine hoch-signifikante, schwach positive Korrelation ($\chi^2 = 11,745, p < 0,001, r_s = 0,081, p < 0,001$) mit der BMP-2 Expression (Tab. 3.6.).

Das Vorhandensein von BMP-2 ist hoch signifikant und schwach positiv ($\chi^2 = 9,071, p = 0,003 r_s = 0,071, p = 0,003$) mit der Existenz von p16 vergesellschaftet (siehe Anhang). Für Bcl2, p27 und p53 ist die Expressionsstärke für die Korrelation mit BMP-2 entscheidend. BMP-2 positive Tumoren zeigen einen höheren Anteil einer starken Bcl2-Expression. Dabei wird ein Remmele Score größer sechs als Grenze für hochexprimierende Tumoren definiert. Die Beziehung zwischen der hohen Bcl2-Expression und BMP-2 ist statistisch signifikant und schwach positiv korreliert (Tab. 3.7.).

Für die Korrelation von BMP-2 mit p27 zeigte sich die gleiche Assoziation. Eine hohe BMP-2 Expression steht statistisch signifikant ($\chi^2 = 5,098, p = 0,029, r_s = 0,057, p = 0,024$) in Beziehung zu einer hohen p27-Expression (siehe Anhang). Dieser Zusammenhang erscheint
noch deutlicher, wenn man Tumoren mit einem Remmele Score von 0-4 zusammenfasst (p = 0,008).

<table>
<thead>
<tr>
<th>bcl2</th>
<th>0-2</th>
<th>1</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>145</td>
<td>160</td>
<td>305</td>
</tr>
<tr>
<td>6-12</td>
<td>546</td>
<td>805</td>
<td>1351</td>
</tr>
<tr>
<td>Gesamt</td>
<td>691</td>
<td>965</td>
<td>1656</td>
</tr>
</tbody>
</table>

\[\chi^2 = 5,197, p = 0,024 \]
\[r_s = 0,056, p = 0,023 \]

Tab. 3.7. Kreuztabelle BMP-2/Bcl2, n = 1656

Bei einer Einteilung von BMP-2 und p53 in positiv und negativ bezüglich des Remmele Scores zeigt sich eine hoch signifikante, schwach positive Korrelation (\(\chi^2 = 15,787, p < 0,000, \ r_s = 0,091, p < 0,000\)). Diese Assoziation bleibt bei einer Einteilung in negative und hochexprimierende Tumoren nach dem Remmele Score bestehen, was auf einen starken Zusammenhang zwischen BMP-2 und p53 hindeutet (siehe Anhang).

Eine weitere statistisch hoch-signifikante Beziehung besteht zwischen BMP-2 und SFRP1, welche sich bei allen beschriebenen Gruppierungen bestätigen lässt. In Tab. 3.8. ist die Korrelationsanalyse von BMP-2 und SFRP1 bei einer Ja-/Nein-Einteilung exemplarisch dargestellt. Der Chi-Quadrat-Test ergab eine hoch-signifikante, schwach positive Beziehung (\(\chi^2 = 18,641, p < 0,000, \ r_s = 0,100, p < 0,000\)). Da diese Korrelation bei allen Gruppierungen signifikant war, ist von einem bedeutenden Zusammenhang zwischen BMP-2 und SFRP1 auszugehen.

<table>
<thead>
<tr>
<th>SFRP1</th>
<th>0</th>
<th>1</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>623</td>
<td>747</td>
<td>1370</td>
</tr>
<tr>
<td>1</td>
<td>172</td>
<td>329</td>
<td>501</td>
</tr>
<tr>
<td>Gesamt</td>
<td>795</td>
<td>1076</td>
<td>1871</td>
</tr>
</tbody>
</table>

\[\chi^2 = 18,641, p < 0,000 \]
\[r_s = 0,100, p < 0,000 \]

Tab. 3.8. Kreuztabelle BMP-2/SFRP1, n = 1871
3.3.2.7. Überlebensanalyse

Abb. 3.41. Kaplan-Meier-Überlebensanalyse in Abhängigkeit der BMP-2 Expression

Die 5-Jahres Überlebensrate lag für BMP-2 exprimierende Tumoren bei 78% gegenüber 72,4% bei den negativen Tumoren. Dieser Unterschied erwies sich als statistisch signifikant (p = 0,004).

Wie bereits erwähnt, besteht ein Zusammenhang zwischen der BMP-2 Expression und der Histologie des Tumors. Dieser wurde mittels des Chi-Quadrat-Tests ermittelt ($\chi^2 = 12,235$, p = 0,032). Da es zwischen den verschiedenen histologischen Diagnosen keine direkte Verbindung gibt, die mit der BMP-2 Expression in Beziehung gesetzt werden könnte, erfolgte eine Gruppierung der Patienten nach der Tumorhistologie. Anschließend wurden für jede

<table>
<thead>
<tr>
<th>A</th>
<th>Kaplan-Meier-Überlebensanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>cribriformes Karzinom</td>
<td>-</td>
</tr>
<tr>
<td>ductales Karzinom</td>
<td>0,006</td>
</tr>
<tr>
<td>lobuläres Karzinom</td>
<td>0,019</td>
</tr>
<tr>
<td>medulläres Karzinom</td>
<td>-</td>
</tr>
<tr>
<td>mucinöses Karzinom</td>
<td>-</td>
</tr>
<tr>
<td>sonstige Histologien</td>
<td>-</td>
</tr>
<tr>
<td>alle Histologien</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Tab. 3.9 Zusammenstellung der Kaplan-Meier-Überlebensanalysen bezüglich BMP-2
A – in Abhängigkeit der Histologie
B- nur duktal-invasive Karzinome bezüglich des Nodalstatus

Weitere Gruppierungen nach klinischen Gesichtspunkten zeigten, dass die BMP-2 Expression in allen nodal-negativen Tumoren signifikant mit dem Überleben korreliert ist (p = 0,025). BMP-2 fördert das Überleben in allen Östrogenrezeptor-positiven Tumoren (p = 0,004) und Her2/neu-negative Tumoren (p = 0,001) profitieren ebenfalls von der BMP-2 Expression. Diese Daten deuten daraufhin, dass die BMP-2 Expression in prognostisch günstigen Tumoren einen weiteren Beitrag zum Überleben leistet.

3.3.2.8. BMP-2 – ein unabhängiger Prognosefaktor?!

Hazard Ratios als Maß für die Stärke des Zusammenhangs berechnen. Diese so genannte multivariate Analyse wurde unter der Berücksichtigung folgender Faktoren durchgeführt:

- Tumorgröße \(pT \)
- Nodalstatus \(pN \)
- Grading
- Mitosen
- BMP-2

3.3.3. Multitumor-Gewebearray

3.3.3.1. Quantitative Auswertung der BMP-Expression

Bei der quantitativen Auswertung wurden die Proben in positive und negative eingeteilt, wobei der Remmele Score nicht berücksichtigt wurde. Im ersten Schritt wurde der Prozentsatz positiver Proben im Vergleich zur Gesamtzahl bzw. zur Anzahl der Normalgewebs- bzw. Tumorgewebsproben bestimmt. Die Ergebnisse dieser Auswertung sind in Abb. 3.42.A dargestellt. Dabei zeigte sich das 13,8% der Proben positiv bezüglich BMP-2 sind und die Normalgewebsproben (24%) im Vergleich zu den Tumorproben (13,6%) einen signifikant höheren Anteil an Positiven aufweisen. Als nächstes wurde die Verteilung der BMP-Expression auf die verschiedenen Gewebetypen untersucht. Auf dem Gewebarray befinden sich 162 unterschiedliche Gewebe, bestehend aus 30 Normalgeweben, 131 Tumorgeweben und einer Kontrollsektion. Dabei wurden Gewebe mit positiven Proben ins Verhältnis zur Gesamtzahl der Gewebe gesetzt. Daraus ergab sich die in Abb. 3.42.B gezeigte Verteilung. 68,8% der Gewebe waren positiv für BMP-2, wobei die Tumorgewebe (73,3%) im Vergleich zu den Normalgeweben (46,6%) einen höheren Anteil an BMP-2 positiven Geweben aufwiesen. Zusammenfassend kann festgestellt werden, dass BMP-2 in Tumorgeweben häufiger exprimiert wird als in den Normalgeweben. Dieser Unterschied erwies als signifikant.

Abb. 3.42. Quantitative Auswertung der BMP-2 Expression bezogen auf die Probenanzahl (A) und auf die Anzahl der Gewebe (B)

Die Ergebnisse der Signifikanzanalyse (siehe Anhang) der verschiedenen Gruppierungen wurden verglichen und nur signifikante Unterschiede, die sich mit beiden Einteilungen bestätigen ließen, wurden als valide betrachtet. Mit diesem Verfahren konnten Tumorentitäten ermittelt werden, die einen statistisch signifikanten Unterschied positiver Proben zwischen Tumor- und Normalgewebe aufweisen und für eingehende Untersuchungen interessant erscheinen. Im speziellen handelt es sich dabei um Tumoren des Kolon, des Magens, der Leber und des Pankras.

3.3.3.2. Qualitative Auswertung der BMP-Expression

Mit den bisherigen Analysen lassen sich nur Aussagen über das Vorhandensein von BMP-2 treffen, aber es ist keine Beurteilung der Expressionsstärke möglich. Für eine qualitative Auswertung der BMP-Expression wurde der Remmele Score verwendet. Mit diesen Gruppenscores wurde für das jeweilige Gewebe ein Mittelwert mit Standardabweichung als Maß der durchschnittlichen Expressionsstärke des jeweiligen BMPs ermittelt.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Remmele Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1-2</td>
</tr>
<tr>
<td>2</td>
<td>3-6</td>
</tr>
<tr>
<td>3</td>
<td>8-12</td>
</tr>
</tbody>
</table>

Tab. 3.10. Gruppierung der BMP-Expression nach dem Remmele Score

Der Vergleich dieser Mittelwerte ermöglicht eine Aussage über die Höhe der BMP-2 Expression im jeweiligen Gewebe. Aufgrund der Auswertung dieser Daten wurde eine
Rangliste der BMP-2 exprimierenden Gewebe erstellt (Abb. 3.42.). Insgesamt zeigte sich, dass die verschiedensten Tumor- und Normalgewebe eine starke BMP-Expression aufwiesen.

Abb. 3.43. TOP10 der BMP-2 exprimierenden Gewebe

In Anknüpfung an die quantitative Auswertung wurden anschließend die Expressionsstärken zwischen Normal- und Tumorgewebe verglichen. Anhand einer graphischen Auswertung konnte eine Gruppierung vorgenommen werden in Tumorentitäten, bei denen die BMP-2 Expression im Tumor höher ist als im Normalgewebe und Entitäten, bei denen der Tumor eine schwächer Immunreaktivität aufweist (Tab. 3.11.).

Vergleicht man nun diese Ergebnisse mit der quantitativen Auswertung, so kristallisieren sich Tumorentitäten heraus, die sowohl häufig und stark exprimiert werden als auch einen signifikanten Unterschied zwischen Tumor- und Normalgewebe aufweisen. Für BMP-2 sind das Kolon, Magen, Leber und Pancreas.

<table>
<thead>
<tr>
<th></th>
<th>NG>TG</th>
<th>TG>NG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervix</td>
<td>Dünndarm</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>Haut</td>
<td></td>
</tr>
<tr>
<td>Gallenblase</td>
<td>Mundöhle</td>
<td></td>
</tr>
<tr>
<td>Magen</td>
<td>Niere</td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td>Oesophagus</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>Ovar</td>
<td></td>
</tr>
<tr>
<td>Penis</td>
<td>Schilddrüse</td>
<td></td>
</tr>
<tr>
<td>Prostata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.11. Vergleich der BMP-2 Expressionsstärke zwischen Tumor- (TG) und Normalgewebe (NG)

Zusammenfassend lässt sich feststellen, dass mittels des verwendeten Multitumor-Gewebearrays und der durchgeführten Analyse ein Überblick über die Ausprägung und die mögliche Relevanz der BMP-2 Expression in verschiedenen Tumorentitäten gewonnen

- 83 -

Eine Beziehung zwischen BMP-2 und dem Malignitätsgrad (Grading) wurde bereits in der vorliegenden Arbeit bei dem Gewebearray „breast prognosis“ gefunden. Es zeigte sich ebenfalls eine signifikante Abnahme der BMP-2 Expression mit fortschreitender Malignität.

![Abbildung 3.44. Zusammenhang zwischen der BMP-2 Expressionsstärke und der Tumorprogression](image-url)
4. Diskussion

werden, dass die differentielle Spezifizierung von olfaktorischen und Linsenplakoden aus Vorläuferzellen von der BMP-Expositionsduer abhängig ist (Sjödal et al., 2007).

Auffallend ist, dass viele der überrepräsentierten biologischen Prozesse eine Beteiligung an der Tumorigenese zeigen, wie Zelladhäsion, zelluläre Entwicklungsprozesse, Tod, Zellzyklus und Zellproliferation.

Langzeitinkubation mit BMP-2 vornehmlich Prozesse wie Entwicklung und Morphogenese beeinflusst.

Die Herunterregulation von PPP1R3C konnte ebenfalls mittels realtime-PCR bestätigt werden. Diese inhibitorische Untereinheit der Proteinphosphatase 1 (PP1) ist in die Regulation zahlreicher zellulärer Funktionen involviert (Doherty et al., 1996). Dabei moduliert es die reversible Proteinphosphorylierung durch PP1 und deren Substratspezifität. Die Veränderungen in der Expression von PPP1R3C und dessen Beteiligung an unterschiedlichen Signalwegen ist eine mögliche Erklärung für die verschiedenen biologischen Prozesse, die infolge einer BMP-2 Überexpression angesprochen werden.

- 88 -
(Kretzschmar et al., 1997). Dieser Zusammenhang könnte ein wichtiger Schlüssel für die Aufklärung der vielfältigen BMP-Wirkung sein.

fein abgestimmtes System von Aktivatoren, Inhibitoren und Modulatoren handelt und Abweichungen stets im Gesamtkontext betrachtet werden müssen.

Ein weiterer Aspekt ist die Einteilung der veränderten Gene in pro- und anti-apoptotisch. Für

wenn man der enormen, durch einen Microarray produzierten, Datenmenge gerecht werden will.

Die dargelegten Assoziationen von BMP-2 mit diesen untersuchten Faktoren deuten zum einen auf einem Zusammenhang von BMP-2 mit dem Überleben der Zellen hin, der möglicherweise durch einen Proliferationsstillstand vermittelt wird. Zum anderen weisen die

In der vorliegenden Arbeit konnten neue Aspekte zur tumoriologischen Relevanz von BMP-2 im Mammakarzinom gewonnen werden. Die generierten Daten geben neue Einsichten in die BMP-2 Wirkung sowohl aus molekularbiologischer als auch aus klinischer Sicht. Der globale experimentelle Ansatz zur zeitabhängigen Wirkung von BMP-2 und der Expression in Mammakarzinomen führte zu vielfältigen Ergebnissen und einem breiten Spektrum neuer Ansätze für weitergehende Untersuchungen.

5. Literaturverzeichnis

Influence of LIF and BMP-2 on differentiation and development of glial cells in primary cultures of embryonic rat cerebral hemisphere
J Neurosci Res. 79(5):608-615

A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7
Breast Cancer Res Treat 103: 239-246

FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes
Bioinformatics. 20(4):578-580

Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation
Cell Stress Chaperones. 7(2):213-221

Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer
Biochem Biophys Res Commun. 210(3):670-677

Arnold SF, Tims E, McGrath BE (1999)
Identification of Bone Morphogenetic Proteins and their Receptors in Human Breast Cancer Cell Lines: Importance of BMP2
Cytokine, Vol. 11, No. 12: 1031-1037

Attisano L und Wrana JL (2002)
Signal transduction by the TGF-beta superfamily
Science 296(5573):1646-47

A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate
Spine. 28(12):1219-24

Bässler R (1998)
Histopathologie und aktuelle Klassifikation des Mammakarzinoms
Onkologe 4: 878-895

Levels of Gli3 repressor correlate with Bmp4 expression and apoptosis during limb development
Bone morphogenetic protein signaling and growth suppression in colon cancer
Am J Physiol Gastrointest Liver Physiol. 291(1):G135-145

The translationally controlled tumour protein (TCTP).
Int J Biochem Cell Biol. 36(3):379-385

Børresen-Dale AL (2003)
TP53 and breast cancer
Hum Mutat. 21(3):292-300

De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation

Bradford MM (1976)
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
Anal Biochem 72: 248-254

Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2
Spine. 27(21):2396-2408

Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone
Proc Natl Acad Sci USU 87(24): 9843-9847

Chang-Claude J (1997)
Genetische Disposition bei Krebserkrankungen von Frauen
Forum der Deutschen Krebsgesellschaft e.V., Omnimed Verlagsgesellschaft 12(8): 595-597

Chen D, Zhao M, Mundy GR (2004)
Bone Morphogenetic Proteins
Growth Factors 22(4): 233-241

In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene
Biochem Biophys Res Commun. 298(1):121-127

Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)
Bone morphogenetic protein 2 in the early development of Xenopus laevis
Mech Dev. 52(2-3):357-370

Bone morphogenetic protein 2 (BMP-2) induces sequential changes of Id gene expression in the breast cancer cell line MCF-7
J Cancer Res Clin Oncol. 126(5):271-279

Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells
Int J Oncol. 27(2):401-407

Clement JH, Sänger J, Höffken K (1999)
Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor
Int J Cancer. 1999 Jan 18;80(2):250-256

Cook SD (1999)
Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites
Orthopedics. 22(7):669-671

Cunningham NS, Paralkar V, Reddi AH (1992)
Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression
Proc Natl Acad Sci U S A. 89(24):11740-11744

Bone morphogenetic protein 3B silencing in non-small-cell lung cancer
Oncogene. 23(20):3521-3529

Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development
Development 115(2):573-585

Daopin S, Piez KA, Ogawa Y, Davies DR (1992)
Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily
Science 257(5068):369-373

Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells
Exp Cell Res. 313(5):1033-1044
Bone morphogenetic protein-4 inhibits heat-induced apoptosis by modulating MAPK pathways in human colon cancer HCT116 cells
Cancer Lett 256(2):207-217

Doherty MJ, Young PR, Cohen PT (1996)
Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1
FEBS Lett. 399(3):339-343

Drozdoff V, Wall NA, Pledger WJ (1994)
Expression and growth inhibitory effect of decapentaplegic Vg-related protein 6: evidence for a regulatory role in keratinocyte differentiation
Proc Natl Acad Sci U S A. 91(12):5528-5532

A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye
Genes Dev. 9(22):2795-2807

Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation
J Cell Sci. 112 (Pt 20):3519-3527

BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells
J Cell Biochem. 87(3):305-312

Förch P und Valcárcel J (2001)
Molecular mechanisms of gene expression regulation by the apoptosis-promoting protein TIA-1
Apoptosis 6(6):463-468

The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing
Mol Cell. 6(5):1089-1098

Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis
J Biol Chem. 278(8):6495-6502

Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions
Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling
Mol Cell Biol. 23(21):7780-7793

Bone morphogenetic protein-2 inhibits the synthesis of insulin-like growth factor-binding protein-5 in bone cell cultures
Endocrinology 136(6):2397-2403

BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos

Tumour-suppression activity of the proapoptotic regulator Par4
EMBO Rep. 6(6):577-583

Bone morphogenetic proteins and their antagonists.
Rev Endocr Metab Disord. 7(1-2):51-65

Bone morphogenetic protein-2 induces cyclin kinase inhibitor p21 and hypophosphorylation of retinoblastoma protein in estradiol-treated MCF-7 human breast cancer cells
Biochim Biophys Acta. 1497(2):186-196

Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo
J Cell Biol. 126(6):1595-1609

Godin RE, Robertson EJ, Dudley AT (1999)
Role of BMP family members during kidney development
Int J Dev Biol. 43(5):405-411

Gossen M und Bujard H (1992)
Tight control of gene expression in mammalian cells by tetracycline responsive promotors
Proc Natl Acad Sci USA 89: 5547-5551

Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type II receptor
J Biol Chem. 275(36):27973-27978
LITERATURVERZEICHNIS

Griner EM und Kazanietz MG (2007)
Protein kinase C and other diacylglycerol effectors in cancer
Nat Rev Cancer. 7(4):281-294

Structural basis of BMP signalling inhibition by the cystine knot protein Noggin
Nature 420(6916):636-642

In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb
Dev Biol. 249(1):108-120

DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1
Science 271(5247):350-353

BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect
Nat Med 9(8):1033-8

Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon
Gastroenterology. 126(1):111-121

Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ, Mundy GR (1994)
Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells
Prostate. 24(4):204-211

PKCν, a new member of the protein kinase C family, composes a fourth subfamily with PKCμ
Biochim Biophys Acta. 1450(1):99-106

First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer
J Pathol. 206(3):366-376

Hillen W und Berens C (1994)
Mechanisms underlying expression of Tn10-encoded tetracycline resistance
Annual. Rev. Microbiol. 48: 345-369
Hogan, BLM (1996)
Bone morphogenetic proteins: multifunctional regulators of vertebrate development
Genes & Development 10: 1580-1594

Hoodless PA und Wrana JL (1998)
Mechanism and function of signaling by the TGF beta superfamily

The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities
Mol Cell. 1(5):673-683

Bone morphogenetic proteins in melanoma: angel or devil?
Cancer Metastasis Rev. 24(2):251-263

Hsu SM, Raine L et al. (1981)
Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC und unlabeled antibody (PAP)procedures
J Histochem Cytochem 29(4): 577-580

Growth regulation of human prostate cancer cells by bone morphogenetic protein-2
Cancer Res. 57(22):5022-5027

Smad6 inhibits signalling by the TGF-beta superfamily
Nature 389(6651):622-626

Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo
Growth Factors Vol. 13: 291-300

Cross-talk between bone morphogenetic protein 2 and leukemia inhibitory factor through ERK 1/2 and Smad1 in protection against doxorubicin-induced injury of cardiomyocytes
J Mol Cell Cardiol. 40(2):224-233

Jagus R, Joshi B, Barber GN (1999)
PKR, apoptosis and cancer

Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies
Spine. 27(23):2654-2661
Osteogenic protein-1 (OP-1) expression and processing in Chinese hamster ovary cells: isolation of a soluble complex containing the mature and pro-domains of OP-1
Growth Factors 11: 215-225

Tissue microarray technology for high-throughput molecular profiling of cancer
Hum Mol Genet. 10(7):657-662

Dysregulation of the BMP-4 signaling pathway in fibrodysplasia ossificans progressiva
Ann N Y Acad Sci. 1068:54-65

Karzenowski D, Potter DW, Padidam M (2005)
Inducible control of transgene expression with ecdysone receptor: gene switches with high sensitivity, robust expression, and reduced size
Biotechniques. 39(2):191-192

The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2
Biochem Biophys Res Commun. 172(1):295-9

Katoh M (2007)
Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis
Stem Cell Rev. 3(1):30-38

Katoh M und Terada M (1996)
Overexpression of bone morphogenetic protein (BMP)-4 mRNA in gastric cancer cell lines of poorly differentiated type
J Gastroenterol. 31(1):137-139

Kaufmann SH und Gores GJ (2000)
Apoptosis in cancer: cause and cure
Bioessays. 22(11):1007-1017

Bone morphogenetic protein (BMP)-2 induces apoptosis in human myeloma cells
Leuk Lymphoma. 43(3):635-639

Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3
Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose
J Biochem Biophys Meth 10: 203-209

Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells
Oncogene. 23(46):7651-7659

Restoration of bone morphogenetic protein receptor type II expression leads to a decreased rate of tumor growth in bladder transitional cell carcinoma cell line TSU-Pr1
Cancer Res. 2004 64(20):7355-7360

Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea
Invest Ophthalmol Vis Sci. 40(7):1364-1372

Kinchen JM und Ravichandran KS (2007)
Journey to the grave: signaling events regulating removal of apoptotic cells
J Cell Sci. 120(Pt 13):2143-2149

Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo
Gastroenterology. 116(5):1202-1216

Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors
Int J Oncol. 25(3):641-649

Kodach LL, Bleuming SA, Peppelenbosch MP, Hommes DW, van den Brink GR, Hardwick JC (2007)
The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway
Gastroenterology 133(4):1272-1281

Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity
Mech Dev. 33(3):191-199

Kretzschmar M, Doody J, Massagué (1997)
Opposing BMP und EGF signalling pathways converge on the TGF-β family mediator Smad1
Nature Vol. 389: 618-622
Clinical application of osteoinductive implants in craniofacial surgery
Mund Kiefer Gesichtschir. 2 Suppl 1:S32-36

Significance of inhibin in reproductive pathophysiology and current clinical applications
Reprod Biomed Online. 10(6):786-812

Expression of bone morphogenetic proteins in salivary pleomorphic adenomas
Virchows Arch. 432(3):247-253

Comparison of ectopic osteoinduction in vivo by recombinant human BMP-2 and recombinant Xenopus BMP-4/7 heterodimer
Biochem Biophys Res Commun. 239(2):575-579

p53 and breast cancer, an update
Endocr Relat Cancer. 13(2):293-325

Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways
Nature 383(6603):832-836

Bone morphogenetic protein-2 stimulates angiogenesis in developing tumors
Mol Cancer Res. 2(3):141-149

Expression of bone morphogenetic proteins in human lung carcinomas
Ann Thorac Surg. 80(3):1028-1032

The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells
Carcinogenesis Vol. 24 No. 9: 1445-1454

Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase
Cell 68(4):775-785

Threshold-specific requirements for Bmp4 in mandibular development
Dev Biol. 283(2):282-293
Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH (1989)
Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation
Journal of Biological Chemistry 264: 13377-13380

Ma L, Lu MF, Schwartz RJ, Martin JF (2005)
Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning
Development. 132(24):5601-5611

Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2
J Biol Chem. 273(40):25628-36

Massague J (1998)
TGF-β signal transduction
Annu. Rev. Biochem. 67: 753-791

Massague J (2000)
How cells read TGF-β signals

Mercurio AM, Lipscomb EA, Bachelder RE (2005)
Non-angiogenic functions of VEGF in breast cancer
J Mammary Gland Biol Neoplasia. 10(4):283-290

Mills AA (2005)
p53: link to the past, bridge to the future
Genes Dev. 19(18):2091-2099

Regulation of TGF-beta signaling and its roles in progression of tumors
Cancer Sci. 94(3):230-234

TGF-beta signaling by Smad proteins
Adv Immunol. 75:115-157

Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm
PLoS Biol. 4(10):e313

Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells
J Biol Chem. 278(1):304-310
Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model
Cancer Res 67(21):10304-10308

Muraoka-Cook RS, Dumont N, Arteaga CL (2005)
Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression.
Clin Cancer Res. 11(2 Pt 2):937s-43s

p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells
Exp Cell Res. 250(2):351-363

Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines
Biochem Biophys Res Commun 307(1):206-213

Astrocyte differentiation mediated by LIF in cooperation with BMP2

A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages
Dev Biol. 232(2):372-387

Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5
J Biol Chem. 271(35):21345-21352

Silencing of TGF-beta signalling by the pseudoreceptor BAMBI
Nature 401(6752):480-485

CD40 activation as potential tool in malignant neoplasms
Tumori 88(5):361-366

Down regulation of bcl2 expression in invasive ductal carcinomas is both estrogen- and progesterone-receptor dependent and associated with poor prognostic factors
Pathol Oncol Res. 8(1):26-30
A mouse cerberus/Dan-related gene family
Dev Biol. 209(1):98-110

Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development
Development 122: 2729-2737

Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4
Cell 86(4):589-598

Breast cancer stem cells: an overview
Eur J Cancer. 42(9):1219-1224

Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells
Cancer Res 63(2):277-281

Expression of bone morphogenetic protein 2 in breast cancer cells inhibits hypoxic cell death
Int J Oncol 26(6):1465-1470

Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis
J Cancer Res Clin Oncol. 131(11):741-750

Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma
Int J Cancer. 83(1):38-44

Reed JC (1998)
Bcl-2 family proteins
Oncogene. 17(25):3225-3236

Remmel W und Stegner HE (1987)
Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue
Pathologe. 8(3):138-140

Ron D und Walter P (2007)
Signal integration in the endoplasmic reticulum unfolded protein response
Nat Rev Mol Cell Biol. 8(7):519-529

The calcium-binding protein calretinin-22k is detectable in the serum and specific cells of
cancer patients
Anticancer Res. 18(5B):3661-3667

Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer

Shi Y (2006)
Mechanical aspects of apoptosome assembly
Curr Opin Cell Biol. 18(6):677-684

Shi Y und Massague J (2003)
Mechanisms of TGF-beta signaling from cell membrane to the nucleus
Cell 113(6):685-700

The bone morphogenetic protein system in mammalian reproduction
Endocrine Reviews 25(1): 72-101

Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney
Am J Physiol. 276(3 Pt 2):F382-389

Time of exposure to BMP signals plays a key role in the specification of the olfactory and
lens placodes ex vivo
Dev Cell. 13(1):141-149

Smith WC und Harland RM (1992)
Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in
Xenopus embryos
Cell 70(5):829-840

Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated
stromal cells and can promote tumor cell proliferation
Proc Natl Acad Sci U S A 103(40):14842-14847

Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition
Science. 284(5411):156-159

BMP-2 reguliert das Migrationsverhalten von Mammakarzinomzellen in vitro
BIOspektrum 11: 470-471
Taubert, I (2007)
BMP-2 reguliert die Expression Apoptose-assoziierter Gene
Diplomarbeit

Regulation of cell proliferation by Smad proteins
J Cell Physiol 191(1): 1-16

(1994)
Characterization of type I receptors for transforming growth factor-beta and activin
Science 264(5155):101-104

Gene Ontology: tool for the unification of biology
Nature Genetics Vol25: 25-29

Thériault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW (2007)
BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells
Carcinogenesis. 28(6):1153-1162

Regulation of organogenesis. Common molecular mechanisms regulating the development of
teeth and other organs

Thomadaki H, Talieri M, Scorilas A (2007)
Prognostic value of the apoptosis related genes BCL2 and BCL2L12 in breast cancer

Luyten FP (1997)
Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1
Nat Genet. 17(1):58-64

Improved osseointegration of titanium implants after surface coating with polymers in a
rabbit model
Orthopade. 34(11):1112, 1114-7

Towbin H, Staehelin T, Gordon J (1979)
Electrophoretic transfer of proteins from polyacrylamid gels to nitrocellulose sheets:
procedure and some applications
Proc Natl Aced Sci USA 76: 4350-4354

Regulation of Msx genes by a Bmp gradient is essential for neural crest specification
Development 130(26):6441-6452
Translationally controlled tumor protein is a target of tumor reversion
Proc Natl Acad Sci U S A 101(43):15364-15369

Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1
Proc Natl Acad Sci U S A 99(23):14976-14981

Urist MR (1965)
Bone formation by autoinduction
Science 150(698): 893-899

Varga AC und Wrana JL (2005)
The disparate role of BMP in stem cell biology
Oncogene. 24(37):5713-5721

Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9
Biol Reprod. 67(2):473-480

von Bubnoff A und Cho KWY (2001)
Intracellular BMP signalling regulation in vertebrates: pathway or network?
Developmental Biology 239: 1-14

Wagner TU (2007)
Bone morphogenetic protein signaling in stem cells--one signal, many consequences

Wan M und Cao X (2004)
BMP signaling in skeletal development
Biochem Biophys Res Commun. 328(3):651-657

Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells
Growth Factors. 9(1):57-71

Coping with stress: eIF2 kinases and translational control
Biochem Soc Trans. 34(Pt 1):7-11

Inhibin is an antagonist of bone morphogenetic protein signaling
J Biol Chem. 278(10):7934-7941

Wikesjö UM, Huang YH, Polimeni G, Qahash M (2007)
Bone morphogenetic proteins: a realistic alternative to bone grafting for alveolar reconstruction
BMP-2 gene expression and effects on human vascular smooth muscle cells
J Vasc Res.;36(2):120-125

Williams BR (1999)
PKR; a sentinel kinase for cellular stress
Oncogene. 18(45):6112-6120

Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell
proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast
J Pathol. 194(1):35-42

Wozney JM (1989)
Bone morphogenetic proteins
Progress in Growth Factor Research 1: 267-280

Wozney JM (2002)
Overview of bone morphogenetic proteins
Spine. 27(16 Suppl 1):S2-8

Wang EA (1988)
Novel regulators of bone formation: molecular clones and activities
Science 242: 1528-1534

Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an
activin receptor complex

Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear
export signals
J Biol Chem. 276(42):39404-39410

Bone morphogenetic protein type IB receptor is progressively expressed in malignant glioma
tumours
British Journal of Cancer Vol. 73: 624-629

Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V,
Yoshiki S (1996)
Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6
Biochem Biophys Res Commun. 220(2):366-371
A mammalian serine/threonine kinase receptor specifically binds BMP-2 and BMP-4
Biochem Biophys Res Commun. 205(3):1944-1951

Yamamoto Y und Oelgeschläger M (2004)
Regulation of bone morphogenetic proteins in early embryonic development
Naturwissenschaften 91(11):519-34

Younes A und Kadin ME (2003)
Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy
J Clin Oncol 21(18):3526-3534

The death effector domain-associated factor plays distinct regulatory roles in the nucleus and cytoplasm
J Biol Chem. 276(34):31945-31952

A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation
Nature 400(6745):687-693
6. Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tab. 1.1.</th>
<th>Tabellenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab. 1.2.</td>
<td>Beziehungen zwischen Liganden, Rezeptoren und Smads in der TGF-β Superfamilie (nach Shimasaki et al., 2004)................................. 4</td>
</tr>
<tr>
<td>Tab. 3.1.</td>
<td>Liste der veränderten, Apoptose-assoziierte Gene in der Gruppe „Inkubation“... 45</td>
</tr>
<tr>
<td>Tab. 3.2.</td>
<td>Vergleich der Microarray-Daten mit den Ergebnissen der realtime-PCR nach Inkubation mit unterschiedlichen BMP-2 Konzentrationen.......... 47</td>
</tr>
<tr>
<td>Tab. 3.3.</td>
<td>Kreuztabelle BMP-2/pT, n = 938.. 74</td>
</tr>
<tr>
<td>Tab. 3.4.</td>
<td>Kreuztabelle BMP-2/Grading, n = 1847.. 75</td>
</tr>
<tr>
<td>Tab. 3.5.</td>
<td>Kreuztabelle BMP-2/Mitosen, n = 1847.. 76</td>
</tr>
<tr>
<td>Tab. 3.6.</td>
<td>Kreuztabelle BMP-2/Cyclin D1, n = 1801... 76</td>
</tr>
<tr>
<td>Tab. 3.7.</td>
<td>Kreuztabelle BMP-2/Bcl2, n = 1656... 77</td>
</tr>
<tr>
<td>Tab. 3.8.</td>
<td>Kreuztabelle BMP-2/SFRP1, n = 1871.. 77</td>
</tr>
<tr>
<td>Tab. 3.10.</td>
<td>Gruppierung der BMP-Expression nach dem Remmele Score....................... 82</td>
</tr>
<tr>
<td>Tab. 3.11.</td>
<td>Vergleich der BMP-2 Expressionsstärke zwischen Tumor- (TG) und Normalgewebe (NG)... 83</td>
</tr>
</tbody>
</table>
7. Abbildungsverzeichnis

Abb. 1.1. Sekundärstruktur des BMP-2 Monomers (Scheuffler et al., 1999) 3
Abb. 1.2. Signaltransduktion der BMPs (Shimasaki et al., 2004) 5
Abb. 3.1. Darstellung der veränderten Gene in der jeweiligen Subgruppe unterteilt in hoch-(grün) und herunterregulierte (rot) Gene 37
Abb. 3.2. Ergebnisse der funktionellen Analyse nach Gene Ontology (Level 3) 39
Abb. 3.3. Darstellung der tumorassoziierten Prozesse auf Basis der funktionellen Klassifizierung mittels Gene Ontology für die Level 3-6 und Vergleich des prozentualen Anteils der veränderten Gene in den beiden Gruppen „Inkubation“ und „Überexpression“ im jeweiligen Prozess mit der Verteilung laut Gene Ontology 40
Abb. 3.4. Stammbaum des biologischen Prozesses Apoptose laut Gene Ontology 41
Abb. 3.5. Darstellung des prozentualen Anteils der veränderten Gene in den Gruppen „Inkubation“ und „Überexpression“ im Vergleich zu Gene Ontology für die Apoptose-assoziierten Prozesse laut Stammbaum für die Level 3-8 41
Abb. 3.6. Vergleich der Microarray-Daten und der Ergebnisse der realtime-PCR ausgewählter Gene für die Gruppe „Überexpression“ 42
Abb. 3.7. Vergleich der Microarray- und realtime-PCR-Daten Apoptose-assoziierter Gene in der Gruppe „Inkubation“ 46
Abb. 3.8. Westernblot-Analysen von PKR und der aktivierten, phosphorylierten Form p-PKR sowie seinem Substrat eIF2alpha und der phosphorylierten Form p-eIF2alpha zum Vergleich BMP-2 inkubierter MCF-7 (B) und serumfreier Kontrollen (SF) über einen Zeitraum von 24h 49
Abb. 3.9. Bild der Agarosegelektrophorese des EcoRV-Verdaus 50
Abb. 3.10. EcoRV-Verdau zur Analyse ausgewählter Klone auf Insertion von BMP-2 50
Abb. 3.11. Differentieller Restriktionsverdau mit BamHI von identifizierten BMP-2 Klonen 51
Abb. 3.12. Dosis-Wirkungs-Kurve von Doxycyclin bestimmt in U2-OS Luc Tet-On anhand der Luciferaseaktivität (angegeben in RLU) 52
Abb. 3.13. Bestimmung des Grades der Induktion der Luciferaseaktivität in U2-OS Luc Tet-On 52
Abb. 3.15. Bilder der transienten Transfektion von U2-OS Luc Tet-On mit eGFP....... 54
Abb. 3.16. Bilder der Agarosegelelektrophorese der durchgeführten rt-PCRs mit den transient transfizierten U2-OS Luc Tet-On Zellen... 55
Abb. 3.17. Semiquantitative Auswertung der PCR-Reaktion der BMP-2 transfizierten U2-OS Luc Tet-On mit AIDA... 56
Abb. 3.18. Ergebnisse des Luciferase Assays von MCF-7+ pTRE-Luc......................... 57
Abb. 3.19. Bilder der Agarosegelelektrophorese der durchgeführten rt-PCRs mit den transient transfizierten MCF-7 Tet-On... 58
Abb. 3.20. Semiquantitative Auswertung der PCR-Reaktion der BMP-2 transfizierten MCF-7 Tet-On mit AIDA.. 58
Abb. 3.21. Bilder der stabilen Transfektion von MCF-7 Tet-On mit eGFP............... 59
Abb. 3.22. Morphologie der MCF-7 Tet-on Zellen nach der Transfektion................ 60
Abb. 3.23. Phasenkontrastaufnahmen während der Etablierung stabiler Klon............. 61
Abb. 3.24. Bilder der Agarosegelelektrophorese der durchgeführten PCRs zur Analyse der stabilen Klone.. 61
Abb. 3.25. Auswertung der Ergebnisse der realtime-PCR für ausgewählte stabile Klone.. 62
Abb. 3.26. Häufigkeiten der BMP-2 Expression auf Grundlage des Remmele Scores 64
Abb. 3.27. Bilder der BMP-2 Immunhistochemie eines invasiv-duktalen Mamma- karzinoms einer 70-jährigen Patientin, pT2N1MX, Vergrößerung 60x............ 64
Abb. 3.28. heterogene Verteilung der BMP-2 Immunreaktivität.. 65
Abb. 3.29. Verteilung der BMP-2 Expression, Vergößerung 60x.............................. 65
Abb. 3.30. Altersverteilung des Patientenkollektivs... 66
Abb. 3.31. Histologie der Mammakarzinome... 67
Abb. 3.32. Häufigkeitsverteilung der Tumorgröße nach der pTNM-Klassifikation...... 68
Abb. 3.33. Häufigkeitsverteilung der Lymphknotenmetastasierung nach der pTNM- Klassifikation... 68
Abb. 3.34. Häufigkeitsverteilung des Gradings.. 69
Abb. 3.35. Häufigkeiten der Östrogenrezeptor-Expression anhand des Remmele- Scores... 69
Abb. 3.36. Häufigkeiten der Progesteronrezeptor-Expression anhand des Remmele- Scores... 70
Abb. 3.37. Häufigkeiten der Her2/neu-Expression anhand des DAKO-Score............. 70
Abb. 3.38. Kaplan-Meier Überlebenskurve in Abhängigkeit etablierter Prognosefaktoren ... 72
Abb. 3.39. BMP-2 Immunhistochemie der Tumoren auf dem Multigewebearray „breast prognosis“ .. 73
Abb. 3.40. Häufigkeiten der BMP-2 Expression anhand des Remmele Scores 73
Abb. 3.41. Kaplan-Meier-Überlebensanalyse in Abhängigkeit der BMP-2 Expression 78
Abb. 3.42. Quantitative Auswertung der BMP-2 Expression bezogen auf die Probenanzahl (A) und auf die Anzahl der Gewebe (B) .. 81
Abb. 3.43. TOP10 der BMP-2 exprimierenden Gewebe ... 83
Abb. 3.44. Zusammenhang zwischen der BMP-2 Expressionsstärke und der Tumorprogression .. 84
8. Material

8.1. Zusammensetzung von Puffern und Lösungen

1x TAE
40 mM Tris-Acetat
1 mM EDTA, pH 8,5

5x M-MLV Reaktionspuffer
(Invitrogen, Karlsruhe)
250 mM Tris-HCl, pH 8,3
375 mM KCl
15 mM MgCl$_2$

10x PCR-Puffer (QIAGEN, Hilden)
enthält 15 mM MgCl$_2$

Citratpuffer
0,01 M, pH 6,0

Diluent-Puffer
1% Rinderserumalbumin (γ-globulinfrei)
0,05 M Tris/HCl
0,1% Tween
1 mg/ml Natriumazid

Dithiothreitol (DTT)-Lösung für cDNA-Synthese
0,1M

DNA-Ladungspuffer
10 mM Tris-HCl, pH 8,0
1 mM Na$_2$-EDTA
0,1% (w/v) SDS
30% (v/v) Glycerin
0,005% (w/v) Bromphenolblau

Einfriermedium für Zellen
80% DMEM
20% FCS
10% DMSO (Dimethylsulfoxid)

Laufpuffer für SDS-PAGE
25 mM Trisbase
0,19 M Glycin
1% (w/v) SDS

LB-Agarplatten
400 ml LB-Medium
6,5 g Agar-Agar
400 µl Ampicillin

LB-Medium (Luria-Bertani-Medium)
10 g Bacto-Trypton
5g Bacto-Yeastextrakt
10 g NaCl
→ mit Aqua dest.auf 1 l aufgefüllt
Autoklavieren
PBS für IHC
- 0,05 M, pH 7,5
- 17 g NaCl
- 0,4 g KH₂PO₄
- 4 g Na₂HPO₄ x 2 H₂O mit Aqua dest. auf 2 l

PBS-T
- 0,025% (v/v) Tween-20
- 1x D-PBS

Proteinladenpuffer
- 65 mM Tris-HCl, pH 6,8
- 0,01% (w/v) Bromphenolblau
- 5% (v/v) Mercaptoethanol
- 10% (v/v) Glycerol
- 2% (w/v) Natriumdodecylsulfat

Proteinlysepuffer
- 20 mM HEPES, pH 7,5
- 150 mM NaCl
- 10 mM EDTA, pH 8,0
- 2 mM EGTA, pH 8,0
- 1% (v/v) Triton-X-100
- 10 mM Na₃P₂O₇
- 50 mM NaF
- 2 mM Na₃VO₄ (0,1M, 15 min bei 95°C)

Proteaseinhibitoren:
- 10 µg/ml Aprotinin
- 1 µM Pepstatin
- 10 µM Leupeptin
- 500 µg/ml PefaBloc

Rehydridisierungspuffer
- 100 mM Mercaptoethanol
- 2% (w/v) SDS
- 6,25 mM Tris-HCl, pH 8,0

Substrat-Chromogen-Reagenz
- 1,5 µmol/l DAB
- 10 mmol/l H₂O₂
- 0,05 M PBS, pH 7,5

Transferpuffer
- 25 mM Tris
- 0,19 M Glycin
- 20% Methanol
- 0,037% (w/v) SDS

8.2. Chemikalien

1 kb Längenstandard: Invitrogen, Karlsruhe
Agar-Agar: Roth, Karlsruhe
Agarose: Invitrogen, Karlsruhe
Ampicillin: Sigma, München
Bacto-Trypton BD, Heidelberg
Bacto-Yeastextrakt BD, Heidelberg
Bradford-Reagenz Sigma, München
Bromphenolblau Sigma, München
Chloroform Roth, Karlsruhe
DAB (3,3’-Diaminobenzidin-tetrahydrochlorid) Sigma, München
Dithiothreitol (DTT) Invitrogen, Karlsruhe
DMSO Sigma, München
dNTP-Mix (je 2,5 mM dATP, dCTP, dGTP, dTTP) NEB, Ipswich/GB
EDTA (Ethylendiamintetraacatat) J.T. Baker, Griesheim
Ethanol Roth, Karlsruhe
Ethidiumbromid Sigma, München
Glycerol Roth, Karlsruhe
Hämalaun Roth, Karlsruhe
Isopropanol Roth, Karlsruhe
Isoton II Beckmann Coulter, Krefeld
Kanadabalsam Laborchemie, Apolda
KH$_2$PO$_4$ Merck, Darmstadt
Mercaptoethanol Sigma, München
Methanol Roth, Karlsruhe
Na$_2$HPO$_4$ x 2 H$_2$O Roth, Karlsruhe
Natriumacetat Sigma, München
Natriumazid Sigma, München
Natriumchlorid (NaCl) Roth, Karlsruhe
Oligo-(dT)$_{15}$-Primer (0,2 mg/ml) Roche, Mannheim
PCR-grade Wassser Roche, Mannheim
Phenol Roth, Karlsruhe
Rainbow-Marker BioRad, München
Random-Hexamerprimer (0,2 mg/ml) Fermentas, St. Leon-Rot
Rinderserumalbumin (BSA) Sigma, München
RNaseOUT™-Ribonuklease(40U/µ) Invitrogen, Karlsruhe
Cruz-Marker™ MW Standards Santa Cruz, Heidelberg
SDS (Natriumdodecylsulfat) Sigma, München
Trisbase Sigma, München
Tris-HCl Roth, Karlsruhe
Triton-X-100 Sigma, München
Tween-20 Sigma, München
Wasserstoffperoxid (H$_2$O$_2$) Roth, Karlsruhe
Xylol Roth, Karlsruhe
Zitronensäure Sigma, München
EGTA Sigma, München
Na$_4$P$_2$O$_7$ ICN, Eschwege
NaF Sigma, München
Na$_3$VO$_4$ Sigma, München
Aprotinin Roche, Mannheim
Pepstatin Roche, Mannheim
Leupeptin Roche, Mannheim
PefaBloc Roche, Mannheim
Natriumchlorid (NaCl) Sigma, München
8.3. Chemikalien für Zellkultur

- Doxycyclin: BD Clontech, Heidelberg
- Dulbecco’s Modified Eagle Medium (DMEM): Invitrogen, Karlsruhe
- Dulbecco’s phosphatgepufferte Kochsalzlösung (D-PBS): Invitrogen, Karlsruhe
- Fötales Kälberserum (FCS) 10% (v/v): Biochrom Seromed, Berlin
- Hygromycin: BD, Heidelberg
- Tet-System approved FCS (USDA) 10% (v/v): BD Clontech, Heidelberg
- Trypsin-EDTA (0,25% Trypsin, 1mM EDTA): Invitrogen, Karlsruhe

8.4. verwendete Kits

- Affymetrix Array HG-U133A: Affymetrix, Santa Clara/USA
- BioArray HighYield RNA Transcript Labeling Kit: Enzo Life Science, Farmington/USA
- DTCS (Dye terminator cycle sequencing) Kits: Beckmann Coulter, Krefeld
- ECL-Kit (Enhanced Chemolumineszenz): Amersham Bioscience, Freiburg
- Gelextraktionskit QIAEX® II: QIAGEN, Hilden
- innuPREP RNA Mini Kit: AnalytikJena, Jena
- One Shot TOP 10F´ (chemically competent E.coli): Invitrogen, Karlsruhe
- Luciferase Reporter Assay Kit: BD Clontech, Heidelberg
- Nucleofektionskit V: amaxa, Köln
- QIAGEN Plasmid-Aufreinigungskit: QIAGEN, Hilden
- realtime kit: Roche, Mannheim
- SuperScript Choice System: Invitrogen, Karlsruhe
- Vectastein Elite® ABC-Kit: Vector Laborities, Inc., Burlinghame/USA

8.5. Enzyme

- BamHI: Invitrogen, Karlsruhe
- EcoRV: Invitrogen, Karlsruhe
- M-MLV Reverse Transkriptase (200U/µl): Invitrogen, Karlsruhe
- T4 DNA Ligase: Invitrogen, Karlsruhe
- Taq-DNA-Polymerase (5 U/µl): QIAGEN, Hilden

8.6. Verbrauchsmaterialien

- 0,2 µm Sterilfilter: Millipore, Schwalbach
- 6-, 12-,24-, 48, 96-well Platten: Greiner, Frickenhausen
- 96-well PCR-Platten: Eppendorf, Hamburg
- CapStrips: Eppendorf, Hamburg
- Falconrörchen (15 ml, 50 ml): BD Falcon, Heidelberg
- Filterpapiere für Western blot: Bio-Rad, München
- Folien für PCR: Eppendorf, Hamburg
- Kryorörchen: Greiner, Frickenhausen
MATERIAL

PVDF-Membran
Objekträger Super-Frost Plus
Polyacrylamidgele
Reaktionsgefäße (0,5 ml, 1,5 ml, 2ml)
serologische Pipetten
Zellkulturschalen (25 cm², 75 cm²)

Bio-Rad, München
Menzel, Braunschweig
Bio-Rad, München
Eppendorf, Hamburg
Greiner, Frickenhausen
Greiner, Frickenhausen

8.7. Laborgeräte

Bakterienschüttler GFL-3031
Beckmann Coulter Z1
Brutschränke
Fluidics Station
Gelapparatur
Geldokumentation Gel Jet Imager
HeatSealer
Laminarboxen
LAS-3000 (Luminescent Image Analysis System)
Luminometer LUMIStar
Mastercycler® ep realplex
Mikroarray-Chip-Lesegerät,
Gene Chip Instrument System
Mikroskop Axiovert 25
NanoDrop-1000

hilab, Düsseldorf
Beckmann Coulter, Krefeld
Heraeus, Hanau
Affymetrix, Santa Clara/USA
Bio-Rad, München
Intas, Göttingen
Eppendorf, Hamburg
Heraeus, Hanau
Fujifilm, Düsseldorf
BMG Labtech, Offenburg
Eppendorf, Hamburg
Affymetrix, Santa Clara/USA

Carl Zeiss, Jena
NanoDrop Technologies,
Wilmington/USA
amaxa, Köln
PFM, Köln
Eppendorf, Hamburg
Bio-Rad, München
Beckmann Coulter, Krefeld
Savant, Ramsey/USA
Biometra, Göttingen
Eppendorf, Hamburg
Eppendorf, Hamburg
Eppendorf, Hamburg
Shandon, Frankfurt
Eppendorf, Hamburg
8.8. Primer

Sequenzen der verwendeten Primer

<table>
<thead>
<tr>
<th>Primername</th>
<th>Länge PCR-Produkt</th>
<th>Annealing-Temp.</th>
<th>Primersequenzen (s – sense, a – antisense)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARHT1</td>
<td>230 bp</td>
<td>60°C</td>
<td>s: AAGCAATTAGCAGAGGCCGT TA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: AACACTTGGTGACACATGCAG</td>
</tr>
<tr>
<td>BAG5</td>
<td>228 bp</td>
<td>60°C</td>
<td>s: AAGGCCTGATTGGTCCTTACC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: TGCTGGTCTTTATCCCTTCC</td>
</tr>
<tr>
<td>BAX</td>
<td>148 bp</td>
<td>60°C</td>
<td>s: TTCATCCAGGATCGAGCAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: TCCTCTGCAAGCTCCATGT TA</td>
</tr>
<tr>
<td>BCL7C</td>
<td>257 bp</td>
<td>61°C</td>
<td>s: CCTCTCATCCTGCTGGATCTTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: TCTGGAACAGGCTCCTCT</td>
</tr>
<tr>
<td>beta-Aktin</td>
<td>712 bp</td>
<td>60,5°C</td>
<td>s: CGG GAA ATC GTG GTG GAC AT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GAA CTT TGG GGG ATG CTC GC</td>
</tr>
<tr>
<td>BMP-2</td>
<td>671 bp</td>
<td>60°C</td>
<td>s: TCATAAAAACCTGCAACAGCCACATCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GCTGTACTAGCGACACCCCCAC</td>
</tr>
<tr>
<td>BTF</td>
<td>160 bp</td>
<td>60°C</td>
<td>s: CTCTTCTTCTCTGTTTGTCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: TCAAAAATCAGTCAACCTACGA</td>
</tr>
<tr>
<td>CASP8AP2</td>
<td>289 bp</td>
<td>60°C</td>
<td>s: CCAAAATGAAAGCAACAGTG A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GCTAGGCAAGCGCTTTATG</td>
</tr>
<tr>
<td>CD24</td>
<td>151 bp</td>
<td>60°C</td>
<td>s: AAGGTTGGAGCAAAACACACACC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: AGCTTTTTTCTCTGCCCACA</td>
</tr>
<tr>
<td>DOCK1</td>
<td>298 bp</td>
<td>60°C</td>
<td>s: CTCTGATTTTCCTCCTGCATA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: ATCATTTGGTGACGCTTATT</td>
</tr>
<tr>
<td>FAIM</td>
<td>260 bp</td>
<td>60°C</td>
<td>s: TCCAGAGATGGCAAGTTAATG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GGTCCATATCTTATTTGTCCTTTG</td>
</tr>
<tr>
<td>IGFBP5</td>
<td>190 bp</td>
<td>58°C</td>
<td>s: TAGCCCACTGGATAGCACA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GGAGAGAACAGAGTATGATGTAGA</td>
</tr>
<tr>
<td>LIF</td>
<td>184 bp</td>
<td>59°C</td>
<td>s: TCTCCGCGCCCTTATTTAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: GCTTCAACCACACACACAT</td>
</tr>
<tr>
<td>NCKAP1</td>
<td>217 bp</td>
<td>60°C</td>
<td>s: TGGATGTGCTTTCTGTGATG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: ACAGGGCAACCATGGAAGTTA</td>
</tr>
<tr>
<td>PAWR</td>
<td>219 bp</td>
<td>59°C</td>
<td>s: TTCTCATGGTGCAATACATTAAAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a: AACGGCTGACTTTAAAACCAT</td>
</tr>
<tr>
<td>Gene</td>
<td>Length (bp)</td>
<td>Temperature (°C)</td>
<td>Forward Primer (5'→3')</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>PKR</td>
<td>260</td>
<td>60°C</td>
<td>GCCACCCACCCAACTAATTT</td>
</tr>
<tr>
<td>PPP1R3C</td>
<td>231</td>
<td>59°C</td>
<td>CCATCCCTTGCCCTATTTTTC</td>
</tr>
<tr>
<td>PRKCN</td>
<td>151</td>
<td>59°C</td>
<td>TTTTCCCTGTGATAGAGGATGA</td>
</tr>
<tr>
<td>pTet_neo</td>
<td>164</td>
<td>56°C</td>
<td>GCTCTTCGTCAGATCATCC</td>
</tr>
<tr>
<td>pTet-On</td>
<td>163</td>
<td>54°C</td>
<td>ACCTTGTTATATGCACACTCAG</td>
</tr>
<tr>
<td>pTRE_hyg</td>
<td>199</td>
<td>54°C</td>
<td>ACATTGGGGAGCCGAAATC</td>
</tr>
<tr>
<td>RYBP</td>
<td>239</td>
<td>60°C</td>
<td>TTTGCCAGAAAGACGACTT</td>
</tr>
<tr>
<td>Sequenzierungs-primer</td>
<td></td>
<td></td>
<td>CGGGGATCCCTCTAGTCAGC</td>
</tr>
<tr>
<td>TIA1</td>
<td>215</td>
<td>60°C</td>
<td>CGTGCCCAGTCTGATCTTTA</td>
</tr>
<tr>
<td>TNFRSF5</td>
<td>300</td>
<td>60°C</td>
<td>TACGAGTGAGGCCTGAGAGA</td>
</tr>
<tr>
<td>TPT1</td>
<td>203</td>
<td>60°C</td>
<td>ATGAATCCAGATGGGAGATG</td>
</tr>
<tr>
<td>VEGF</td>
<td>168</td>
<td>57°C</td>
<td>TCTCCCTGATCGGTGACAGT</td>
</tr>
</tbody>
</table>
8.9. Antikörper

8.9.1. Primäre Antikörper

<table>
<thead>
<tr>
<th>Antikörper (Proteingröße)</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta-Aktin (43 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>goat polyclonal antibody (I-19, sc-1616)</td>
<td></td>
</tr>
<tr>
<td>BMP-2 (18 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>goat polyclonal antibody (N-14, sc-6895)</td>
<td></td>
</tr>
<tr>
<td>eIF2alpha (36 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>rabbit polyclonal antibody (FL-315, sc-11386)</td>
<td></td>
</tr>
<tr>
<td>p-eIF2alpha (36 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>(Ser 52): goat polyclonal antibody (sc-12412)</td>
<td></td>
</tr>
<tr>
<td>PKR (68 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>rabbit polyclonal antibody (N-18, sc-709)</td>
<td></td>
</tr>
<tr>
<td>p-PKR (68 kDa)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>(Thr 451): goat polyclonal antibody (sc-16815)</td>
<td></td>
</tr>
</tbody>
</table>

8.9.2. Sekundäre Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>donkey anti-goat IgG-HRP (sc-2020)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
<tr>
<td>goat anti-rabbit IgG-HRP (sc-2004)</td>
<td>Santa Cruz Biotechnologie, Heidelberg</td>
</tr>
</tbody>
</table>
9. Anhang

9.1. Liste veränderter Gene

9.1.1. Liste veränderter Gene in der Gruppe „Inkubation“

Veränderte Gene aus 4h Inkubation von MCF-7 mit BMP-2 gegen serumfrei
- die Gene müssen auf beiden Arrays eindeutig meß- und quantifizierbar sein
- Grenzwert: 2-fach verändert; gleiche Spot-Loci müssen Tendenz bestätigen

<table>
<thead>
<tr>
<th>Affymetrix-ID</th>
<th>BMP2 4h/SF</th>
<th>Gensymbol</th>
<th>Name des Gens</th>
</tr>
</thead>
<tbody>
<tr>
<td>221798_x_at</td>
<td>0,11</td>
<td>RPS2</td>
<td>ribosomal protein S2</td>
</tr>
<tr>
<td>207783_x_at</td>
<td>0,14</td>
<td>TPT1</td>
<td>tumor protein, translationally-controlled 1</td>
</tr>
<tr>
<td>203416_at</td>
<td>0,21</td>
<td>CD53</td>
<td>CD53 antigen</td>
</tr>
<tr>
<td>211339_s_at</td>
<td>0,27</td>
<td>ITK</td>
<td>IL2-inducible T-cell kinase</td>
</tr>
<tr>
<td>207865_s_at</td>
<td>0,30</td>
<td>BMP8B</td>
<td>bone morphogenetic protein 8b (osteogenic protein 2)</td>
</tr>
<tr>
<td>203735_x_at</td>
<td>0,36</td>
<td>PPFIBP1</td>
<td>PTPRF interacting protein, binding protein 1 (liprin beta 1)</td>
</tr>
<tr>
<td>203412_at</td>
<td>0,36</td>
<td>LZTR1</td>
<td>leucine-zipper-like transcriptional regulator, 1</td>
</tr>
<tr>
<td>204509_at</td>
<td>0,36</td>
<td>FLJ20151</td>
<td>hypothetical protein FLJ20151</td>
</tr>
<tr>
<td>221881_s_at</td>
<td>0,36</td>
<td>CLIC4</td>
<td>chloride intracellular channel 4</td>
</tr>
<tr>
<td>35150_at</td>
<td>0,37</td>
<td>TNFRSF5</td>
<td>tumor necrosis factor receptor superfamily, member 5</td>
</tr>
<tr>
<td>214594_x_at</td>
<td>0,37</td>
<td>AT8B1</td>
<td>ATPase, Class I, type 8B, member 1</td>
</tr>
<tr>
<td>218196_at</td>
<td>0,38</td>
<td>OSTM1</td>
<td>osteopetrosis associated transmembrane protein 1</td>
</tr>
<tr>
<td>206353_at</td>
<td>0,38</td>
<td>COX6A2</td>
<td>cytochrome c oxidase subunit Via polypeptide 2</td>
</tr>
<tr>
<td>218342_s_at</td>
<td>0,39</td>
<td>KIAA1815</td>
<td>KIAA1815</td>
</tr>
<tr>
<td>220173_at</td>
<td>0,39</td>
<td>C14orf45</td>
<td>chromosome 14 open reading frame 45</td>
</tr>
<tr>
<td>221155_x_at</td>
<td>0,39</td>
<td>PRO1496</td>
<td>hypothetical protein PRO1496</td>
</tr>
<tr>
<td>207684_at</td>
<td>0,40</td>
<td>TBX6</td>
<td>T-box 6</td>
</tr>
<tr>
<td>208523_x_at</td>
<td>0,41</td>
<td>HIST1H2BI</td>
<td>histone H1, H2bi</td>
</tr>
<tr>
<td>213897_s_at</td>
<td>0,41</td>
<td>MRPL23</td>
<td>mitochondrial ribosomal protein L23</td>
</tr>
<tr>
<td>202140_s_at</td>
<td>0,41</td>
<td>CLK3</td>
<td>CDC-like kinase 3</td>
</tr>
<tr>
<td>203187_at</td>
<td>0,41</td>
<td>DOCK1</td>
<td>dedicator of cytokinesis 1</td>
</tr>
<tr>
<td>200814_at</td>
<td>0,42</td>
<td>PSME1</td>
<td>proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)</td>
</tr>
<tr>
<td>208410_x_at</td>
<td>0,42</td>
<td>AMELX</td>
<td>amelogenin (amelogenesis imperfecta 1, X-linked)</td>
</tr>
<tr>
<td>206900_x_at</td>
<td>0,42</td>
<td>LOC114977</td>
<td>hypothetical protein BC014148</td>
</tr>
<tr>
<td>220368_s_at</td>
<td>0,42</td>
<td>KIAA2010</td>
<td>KIAA2010</td>
</tr>
<tr>
<td>48117_at</td>
<td>0,43</td>
<td>LOC112869</td>
<td>hypothetical protein BC011981</td>
</tr>
<tr>
<td>220366_at</td>
<td>0,43</td>
<td>ELSPBP1</td>
<td>epididymal sperm binding protein 1</td>
</tr>
<tr>
<td>206134_at</td>
<td>0,43</td>
<td>ADAMDEC1</td>
<td>ADAM-like, decysin 1</td>
</tr>
<tr>
<td>207159_x_at</td>
<td>0,43</td>
<td>MECT1</td>
<td>mucoepidermoid carcinoma translocated 1</td>
</tr>
<tr>
<td>207318_s_at</td>
<td>0,43</td>
<td>CDC2L5</td>
<td>cell division cycle 2-like 5 (cholinesterase-related cell division controller)</td>
</tr>
<tr>
<td>218291_at</td>
<td>0,45</td>
<td>MAPBPIP</td>
<td>mitogen-activated protein-binding protein-interacting protein</td>
</tr>
<tr>
<td>217164_at</td>
<td>0,45</td>
<td>TIA1</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
</tr>
<tr>
<td>220032_at</td>
<td>0,45</td>
<td>FLJ21986</td>
<td>hypothetical protein FLJ21986</td>
</tr>
<tr>
<td>201083_s_at</td>
<td>0,45</td>
<td>BTF</td>
<td>Bcl-2-associated transcription factor</td>
</tr>
<tr>
<td>211504_x_at</td>
<td>0,46</td>
<td>ROCK2</td>
<td>Rho-associated, coiled-coil containing protein kinase 2</td>
</tr>
<tr>
<td>216680_s_at</td>
<td>0,46</td>
<td>EPHB4</td>
<td>EphB4</td>
</tr>
<tr>
<td>218737_at</td>
<td>0,46</td>
<td>SBNO1</td>
<td>sno, strawberry notch homolog 1 (Drosophila)</td>
</tr>
<tr>
<td>202251_at</td>
<td>0,46</td>
<td>PRPF3</td>
<td>PRP3 pre-mRNA processing factor 3 homolog (yeast)</td>
</tr>
<tr>
<td>Entrez Gene ID</td>
<td>Expression Level</td>
<td>Gene Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>211114_x_at</td>
<td>0.46</td>
<td>SIP1</td>
<td>survival of motor neuron protein interacting protein 1</td>
</tr>
<tr>
<td>219072_at</td>
<td>0.47</td>
<td>BCL7C</td>
<td>B-cell CLL/lymphoma 7C</td>
</tr>
<tr>
<td>221196_x_at</td>
<td>0.47</td>
<td>C6.1A</td>
<td>c6.1A</td>
</tr>
<tr>
<td>213149_at</td>
<td>0.47</td>
<td>DLAT</td>
<td>dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase complex)</td>
</tr>
<tr>
<td>201310_s_at</td>
<td>0.47</td>
<td>C5orf13</td>
<td>chromosome 5 open reading frame 13</td>
</tr>
<tr>
<td>205016_at</td>
<td>0.48</td>
<td>TGFA</td>
<td>transforming growth factor, alpha</td>
</tr>
<tr>
<td>212350_at</td>
<td>0.48</td>
<td>TBC1D1</td>
<td>TBC1 (tre-2/USP6, BUB2, cdc16) domain family, member 1</td>
</tr>
<tr>
<td>202995_s_at</td>
<td>0.48</td>
<td>FBLN1</td>
<td>fibulin 1</td>
</tr>
<tr>
<td>204490_s_at</td>
<td>0.48</td>
<td>CD44</td>
<td>CD44 antigen (homing function and Indian blood group system)</td>
</tr>
<tr>
<td>204985_s_at</td>
<td>0.48</td>
<td>MGC2650</td>
<td>hypothetical protein MGC2650</td>
</tr>
<tr>
<td>210651_s_at</td>
<td>0.48</td>
<td>EPHB2</td>
<td>EphB2</td>
</tr>
<tr>
<td>219535_at</td>
<td>0.49</td>
<td>HUNK</td>
<td>hormonally upregulated Neu-associated kinase</td>
</tr>
<tr>
<td>214847_s_at</td>
<td>0.49</td>
<td>C6orf9</td>
<td>chromosome 6 open reading frame 9</td>
</tr>
<tr>
<td>214421_x_at</td>
<td>0.49</td>
<td>CYP2C9</td>
<td>cytochrome P450, family 2, subfamily C, polypeptide 9</td>
</tr>
<tr>
<td>221729_at</td>
<td>0.49</td>
<td>COL5A2</td>
<td>collagen, type V, alpha 2</td>
</tr>
<tr>
<td>212119_at</td>
<td>0.49</td>
<td>ARHQ</td>
<td>ras homolog gene family, member Q</td>
</tr>
<tr>
<td>202648_at</td>
<td>0.49</td>
<td>RPS19</td>
<td>ribosomal protein S19</td>
</tr>
<tr>
<td>211696_x_at</td>
<td>0.49</td>
<td>HBB</td>
<td>hemoglobin, beta // hemoglobin, beta</td>
</tr>
<tr>
<td>203514_at</td>
<td>0.49</td>
<td>MAP3K3</td>
<td>mitogen-activated protein kinase kinase kinase 3</td>
</tr>
<tr>
<td>214017_s_at</td>
<td>0.49</td>
<td>DHX34</td>
<td>DEAH (Asp-Glu-Ala-His) box polypeptide 34</td>
</tr>
<tr>
<td>220202_s_at</td>
<td>0.49</td>
<td>MNAB</td>
<td>membrane-associated nucleic acid binding protein</td>
</tr>
<tr>
<td>212109_at</td>
<td>0.49</td>
<td>C16orf34</td>
<td>chromosome 16 open reading frame 34</td>
</tr>
<tr>
<td>204145_at</td>
<td>0.49</td>
<td>FRG1</td>
<td>FSHD region gene 1</td>
</tr>
<tr>
<td>206108_s_at</td>
<td>0.49</td>
<td>SFRS6</td>
<td>splicing factor, arginine/serine-rich 6</td>
</tr>
<tr>
<td>210314_x_at</td>
<td>0.50</td>
<td>TNFSF13</td>
<td>tumor necrosis factor (ligand) superfamily, member 13</td>
</tr>
<tr>
<td>203433_s_at</td>
<td>0.50</td>
<td>MTHFS</td>
<td>5,10-methylenetetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-ligase)</td>
</tr>
<tr>
<td>214946_x_at</td>
<td>0.50</td>
<td>FLJ10824</td>
<td>hypothetical protein FLJ10824</td>
</tr>
<tr>
<td>204788_s_at</td>
<td>0.50</td>
<td>PPOX</td>
<td>protoporphyrinogen oxidase</td>
</tr>
<tr>
<td>200793_s_at</td>
<td>0.50</td>
<td>ACO2</td>
<td>aconitase 2, mitochondrial</td>
</tr>
<tr>
<td>209259_s_at</td>
<td>2.00</td>
<td>CSPG6</td>
<td>chondroitin sulfate proteoglycan 6 (bamacan)</td>
</tr>
<tr>
<td>221012_s_at</td>
<td>2.00</td>
<td>TRIM8</td>
<td>tripartite motif-containing 8 // tripartite motif-containing 8</td>
</tr>
<tr>
<td>203983_at</td>
<td>2.00</td>
<td>TSNAX</td>
<td>translin-associated factor X</td>
</tr>
<tr>
<td>203097_s_at</td>
<td>2.00</td>
<td>PDZGEF1</td>
<td>PDZ domain containing guanine nucleotide exchange factor (GEF) 1</td>
</tr>
<tr>
<td>221652_s_at</td>
<td>2.00</td>
<td>FLJ10637</td>
<td>hypothetical protein FLJ10637</td>
</tr>
<tr>
<td>220422_at</td>
<td>2.00</td>
<td>UBQLN3</td>
<td>ubiquilin 3</td>
</tr>
<tr>
<td>202439_s_at</td>
<td>2.00</td>
<td>IDS</td>
<td>iduronate 2-sulfatase (Hunter syndrome)</td>
</tr>
<tr>
<td>218877_s_at</td>
<td>2.00</td>
<td>C6orf75</td>
<td>chromosome 6 open reading frame 75</td>
</tr>
<tr>
<td>210141_s_at</td>
<td>2.00</td>
<td>INHA</td>
<td>inhibin, alpha</td>
</tr>
<tr>
<td>213549_at</td>
<td>2.01</td>
<td>SLC18A2</td>
<td>solute carrier family 18 (vesicular monoamine), member 2</td>
</tr>
<tr>
<td>212847_at</td>
<td>2.01</td>
<td>nexilin</td>
<td>likely ortholog of rat F-act binding protein nexilin</td>
</tr>
<tr>
<td>209963_s_at</td>
<td>2.02</td>
<td>EPOR</td>
<td>erythropoietin receptor</td>
</tr>
<tr>
<td>208882_s_at</td>
<td>2.03</td>
<td>DD5</td>
<td>progestin induced protein</td>
</tr>
<tr>
<td>213056_at</td>
<td>2.04</td>
<td>GRSP1</td>
<td>GRP1-binding protein GRSP1</td>
</tr>
<tr>
<td>213025_at</td>
<td>2.04</td>
<td>FLJ20274</td>
<td>hypothetical protein FLJ20274</td>
</tr>
<tr>
<td>209903_s_at</td>
<td>2.05</td>
<td>ATR</td>
<td>ataxia telangiectasia and Rad3 related</td>
</tr>
<tr>
<td>202984_s_at</td>
<td>2.06</td>
<td>BAG5</td>
<td>BCL2-associated athanogene 5</td>
</tr>
<tr>
<td>201845_s_at</td>
<td>2.06</td>
<td>RYBP</td>
<td>RING1 and YY1 binding protein</td>
</tr>
<tr>
<td>209750_at</td>
<td>2.06</td>
<td>NR1D2</td>
<td>nuclear receptor subfamily 1, group D, member 2</td>
</tr>
<tr>
<td>221104_s_at</td>
<td>2.06</td>
<td>NIPSNAP3B</td>
<td>nipsnap homolog 3B (C. elegans)</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Reference</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>204076_at</td>
<td>2.07</td>
<td>LYSAL1 lysosomal apyrase-like 1 (ectonucleoside triphosphate diposphohydrolase 4)</td>
<td></td>
</tr>
<tr>
<td>218344_s_at</td>
<td>2.08</td>
<td>FLJ10876 hypothetical protein FLJ10876</td>
<td></td>
</tr>
<tr>
<td>218404_at</td>
<td>2.08</td>
<td>SNX10 sorting nexin 10</td>
<td></td>
</tr>
<tr>
<td>47560_at</td>
<td>2.08</td>
<td>LPHN1 latrophilin 1</td>
<td></td>
</tr>
<tr>
<td>202855_s_at</td>
<td>2.08</td>
<td>SLC16A3 solute carrier family 16 (monocarboxylic acid transporters), member 3</td>
<td></td>
</tr>
<tr>
<td>202850_at</td>
<td>2.09</td>
<td>ABCD3 ATP-binding cassette, sub-family D (ALD), member 3</td>
<td></td>
</tr>
<tr>
<td>202181_at</td>
<td>2.10</td>
<td>KIAA0247 KIAA0247</td>
<td></td>
</tr>
<tr>
<td>214093_s_at</td>
<td>2.10</td>
<td>FUBP1 far upstream element (FUSE) binding protein 1</td>
<td></td>
</tr>
<tr>
<td>212476_at</td>
<td>2.10</td>
<td>CENTB2 centaurin, beta 2</td>
<td></td>
</tr>
<tr>
<td>209152_s_at</td>
<td>2.11</td>
<td>TCF3 transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)</td>
<td></td>
</tr>
<tr>
<td>209430_at</td>
<td>2.11</td>
<td>BTAFl BTAFl RNA polymerase II, B-TFIID transcription factor-associated, 170kDa (Mot1 homolog, S. cerevisiae)</td>
<td></td>
</tr>
<tr>
<td>213701_at</td>
<td>2.12</td>
<td>DKFZp434N2030 hypothetical protein DKFZp434N2030</td>
<td></td>
</tr>
<tr>
<td>203845_at</td>
<td>2.12</td>
<td>PCAF p300/CBP-associated factor</td>
<td></td>
</tr>
<tr>
<td>212566_at</td>
<td>2.13</td>
<td>MAP4 microtubule-associated protein 4</td>
<td></td>
</tr>
<tr>
<td>210512_s_at</td>
<td>2.14</td>
<td>VEGF vascular endothelial growth factor</td>
<td></td>
</tr>
<tr>
<td>212499_s_at</td>
<td>2.14</td>
<td>C14orf32 chromosome 14 open reading frame 32</td>
<td></td>
</tr>
<tr>
<td>214658_at</td>
<td>2.15</td>
<td>CGI-109 CGI-109 protein</td>
<td></td>
</tr>
<tr>
<td>204054_at</td>
<td>2.15</td>
<td>PTEN phosphatase and tensin homolog (mutated in multiple advanced cancers 1)</td>
<td></td>
</tr>
<tr>
<td>201153_s_at</td>
<td>2.16</td>
<td>MBNL1 muscleblind-like (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>1053_at</td>
<td>2.16</td>
<td>RFC2 replication factor C (activator 1) 2, 40kDa</td>
<td></td>
</tr>
<tr>
<td>213017_s_at</td>
<td>2.17</td>
<td>ABHD3 abhydrolase domain containing 3</td>
<td></td>
</tr>
<tr>
<td>201713_s_at</td>
<td>2.17</td>
<td>RANBP2 RAN binding protein 2</td>
<td></td>
</tr>
<tr>
<td>217678_at</td>
<td>2.18</td>
<td>SLC7A11 solute carrier family 7, (cationic amino acid transporter, y+ system) member 11</td>
<td></td>
</tr>
<tr>
<td>207738_s_at</td>
<td>2.18</td>
<td>NCKAP1 NCK-associated protein 1</td>
<td></td>
</tr>
<tr>
<td>213070_at</td>
<td>2.18</td>
<td>PIK3C2A phosphoinositide-3-kinase, class 2, alpha polypeptide</td>
<td></td>
</tr>
<tr>
<td>201816_s_at</td>
<td>2.18</td>
<td>GBAS glioblastoma amplified sequence</td>
<td></td>
</tr>
<tr>
<td>204190_at</td>
<td>2.19</td>
<td>D13S106E highly charged protein</td>
<td></td>
</tr>
<tr>
<td>204165_at</td>
<td>2.19</td>
<td>WASF1 WAS protein family, member 1</td>
<td></td>
</tr>
<tr>
<td>212867_at</td>
<td>2.19</td>
<td>NCOA2 nuclear receptor coactivator 2</td>
<td></td>
</tr>
<tr>
<td>214077_x_at</td>
<td>2.19</td>
<td>MEIS3 Meis1, myeloid ecotropic viral integration site 1 homolog 3 (mouse)</td>
<td></td>
</tr>
<tr>
<td>209628_at</td>
<td>2.19</td>
<td>NXT2 nuclear transport factor 2-like export factor 2</td>
<td></td>
</tr>
<tr>
<td>218598_at</td>
<td>2.20</td>
<td>FLJ11785 Rad50-interacting protein 1</td>
<td></td>
</tr>
<tr>
<td>222201_s_at</td>
<td>2.20</td>
<td>CASP8AP2 CASP8 associated protein 2</td>
<td></td>
</tr>
<tr>
<td>215245_x_at</td>
<td>2.21</td>
<td>FMR1 fragile X mental retardation 1</td>
<td></td>
</tr>
<tr>
<td>218304_s_at</td>
<td>2.22</td>
<td>OSBPL11 oxysterol binding protein-like 11</td>
<td></td>
</tr>
<tr>
<td>218236_s_at</td>
<td>2.23</td>
<td>PRKCN protein kinase C, nu</td>
<td></td>
</tr>
<tr>
<td>204314_s_at</td>
<td>2.23</td>
<td>CREB1 cAMP responsive element binding protein 1</td>
<td></td>
</tr>
<tr>
<td>221561_at</td>
<td>2.23</td>
<td>SOAT1 sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1</td>
<td></td>
</tr>
<tr>
<td>208021_s_at</td>
<td>2.24</td>
<td>RFC1 replication factor C (activator 1) 1, 145kDa // replication factor C (activator 1) 1, 145kDa</td>
<td></td>
</tr>
<tr>
<td>218323_at</td>
<td>2.24</td>
<td>ARHT1 ras homolog gene family, member T1</td>
<td></td>
</tr>
<tr>
<td>209896_s_at</td>
<td>2.24</td>
<td>PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)</td>
<td></td>
</tr>
<tr>
<td>221845_s_at</td>
<td>2.24</td>
<td>SKD3 suppressor of potassium transport defect 3</td>
<td></td>
</tr>
<tr>
<td>203216_s_at</td>
<td>2.24</td>
<td>MYO6 myosin VI</td>
<td></td>
</tr>
</tbody>
</table>

- XXXIV -
<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Gene Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>218197_s_at</td>
<td>OXR1</td>
<td>oxidation resistance 1</td>
</tr>
<tr>
<td>214835_s_at</td>
<td>SUCLG2</td>
<td>succinate-CoA ligase, GDP-forming, beta subunit</td>
</tr>
<tr>
<td>218820_at</td>
<td>C14orf132</td>
<td>chromosome 14 open reading frame 132</td>
</tr>
<tr>
<td>208184_s_at</td>
<td>TMEM1</td>
<td>transmembrane protein 1</td>
</tr>
<tr>
<td>220643_s_at</td>
<td>FAIM</td>
<td>Fas apoptotic inhibitory molecule</td>
</tr>
<tr>
<td>213297_at</td>
<td>NOLA2</td>
<td>nucleolar protein family A, member 2 (H/ACA small nucleolar RNP)</td>
</tr>
<tr>
<td>201541_s_at</td>
<td>ZNHIT1</td>
<td>zinc finger, HIT domain containing 1</td>
</tr>
<tr>
<td>218588_s_at</td>
<td>C5orf3</td>
<td>chromosome 5 open reading frame 3</td>
</tr>
<tr>
<td>211379_x_at</td>
<td>B3GALT3</td>
<td>UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 3</td>
</tr>
<tr>
<td>208673_s_at</td>
<td>SF3R5</td>
<td>splicing factor, arginine/serine-rich 3</td>
</tr>
<tr>
<td>203956_at</td>
<td>ZCWCC1</td>
<td>zinc finger, CW-type with coiled-coil domain 1</td>
</tr>
<tr>
<td>206653_at</td>
<td>RPC32</td>
<td>polymerase (RNA) III (DNA directed) (32kD)</td>
</tr>
<tr>
<td>217501_at</td>
<td>CIAO1</td>
<td>WD40 protein CIAO1</td>
</tr>
<tr>
<td>203403_s_at</td>
<td>RNF6</td>
<td>ring finger protein (C3H2C3 type) 6</td>
</tr>
<tr>
<td>207798_s_at</td>
<td>A2LP</td>
<td>ataxin 2 related protein</td>
</tr>
<tr>
<td>211038_s_at</td>
<td>MGC12760</td>
<td>hypothetical protein MGC12760</td>
</tr>
<tr>
<td>219960_s_at</td>
<td>UCHL5</td>
<td>ubiquitin carboxyl-terminal hydrolase L5</td>
</tr>
<tr>
<td>213578_at</td>
<td>BMPR1A</td>
<td>bone morphogenetic protein receptor, type IA</td>
</tr>
<tr>
<td>212726_at</td>
<td>PHF2</td>
<td>PHD finger protein 2</td>
</tr>
<tr>
<td>208478_s_at</td>
<td>BAX</td>
<td>BCL2-associated X protein</td>
</tr>
<tr>
<td>201448_at</td>
<td>TIA1</td>
<td>TIA1 cytotoxic granule-associated RNA binding protein</td>
</tr>
<tr>
<td>215735_s_at</td>
<td>TSC2</td>
<td>tuberous sclerosis 2</td>
</tr>
<tr>
<td>213956_at</td>
<td>CAP350</td>
<td>centrosome-associated protein 350</td>
</tr>
<tr>
<td>201382_at</td>
<td>SIP</td>
<td>Siah-interacting protein</td>
</tr>
<tr>
<td>213624_at</td>
<td>SMPDL3A</td>
<td>sphingomyelin phosphodiesterase, acid-like 3A</td>
</tr>
<tr>
<td>202502_at</td>
<td>ACADM</td>
<td>acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain</td>
</tr>
<tr>
<td>203044_at</td>
<td>CHSY1</td>
<td>carbohydrate (chondroitin) synthase 1</td>
</tr>
<tr>
<td>218694_at</td>
<td>ALEX1</td>
<td>ALEX1 protein</td>
</tr>
<tr>
<td>203898_at</td>
<td>RCP9</td>
<td>calcitonin gene-related peptide-receptor component protein</td>
</tr>
<tr>
<td>218397_at</td>
<td>FANCL</td>
<td>Fanconi anemia, complementation group L</td>
</tr>
<tr>
<td>213374_x_at</td>
<td>HIBCH</td>
<td>3-hydroxyisobutyryl-Coenzyme A hydrolase</td>
</tr>
<tr>
<td>207986_x_at</td>
<td>CYB561</td>
<td>cytochrome b-561</td>
</tr>
<tr>
<td>209635_at</td>
<td>API1S1</td>
<td>adaptor-related protein complex 1, sigma 1 subunit</td>
</tr>
<tr>
<td>202114_at</td>
<td>SNX2</td>
<td>sorting nexin 2</td>
</tr>
<tr>
<td>202784_s_at</td>
<td>NNT</td>
<td>nicotinamide nucleotide transhydrogenase</td>
</tr>
<tr>
<td>218713_at</td>
<td>NARG2</td>
<td>NMDA receptor-regulated gene 2</td>
</tr>
<tr>
<td>218166_s_at</td>
<td>HBXAP</td>
<td>hepatitis B virus x associated protein</td>
</tr>
<tr>
<td>204113_at</td>
<td>CUGBP1</td>
<td>CUG triplet repeat, RNA binding protein 1</td>
</tr>
<tr>
<td>203775_at</td>
<td>SLC25A13</td>
<td>solute carrier family 25, member 13 (citrin)</td>
</tr>
<tr>
<td>221899_at</td>
<td>CG0005</td>
<td>hypothetical protein from BCRA2 region</td>
</tr>
<tr>
<td>213307_at</td>
<td>SHANK2</td>
<td>SH3 and multiple ankyrin repeat domains 2</td>
</tr>
<tr>
<td>202146_at</td>
<td>IFRD1</td>
<td>interferon-related developmental regulator 1</td>
</tr>
<tr>
<td>219177_at</td>
<td>BRIX</td>
<td>BRIX</td>
</tr>
<tr>
<td>209600_s_at</td>
<td>ACOX1</td>
<td>acyl-Coenzyme A oxidase 1, palmitoyl</td>
</tr>
<tr>
<td>207430_s_at</td>
<td>MSMB</td>
<td>microseminoprotein, beta-</td>
</tr>
<tr>
<td>212148_at</td>
<td>PBX1</td>
<td>pre-B-cell leukemia transcription factor 1</td>
</tr>
<tr>
<td>213705_at</td>
<td>MAT2A</td>
<td>methionine adenosyltransferase II, alpha</td>
</tr>
<tr>
<td>218712_at</td>
<td>FLJ20508</td>
<td>hypothetical protein FLJ20508</td>
</tr>
<tr>
<td>213795_s_at</td>
<td>PTPRA</td>
<td>protein tyrosine phosphatase, receptor type, A</td>
</tr>
<tr>
<td>204120_s_at</td>
<td>ADK</td>
<td>adenosine kinase</td>
</tr>
<tr>
<td>207405_s_at</td>
<td>RAD17</td>
<td>RAD17 homolog (S. pombe)</td>
</tr>
</tbody>
</table>
Anhang

- xxxvi -

211764_s_at 2,72 UBE2D1 ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast)
219156_at 2,75 SYNJ2BP synaptotagmin 2 binding protein
205251_at 2,77 PER2 period homolog 2 (Drosophila)
201027_s_at 2,79 IF2 translation initiation factor IF2
218212_s_at 2,84 MOCS2 molybdenum cofactor synthesis 2
210946_at 2,87 PPAP2A phosphatidic acid phosphatase type 2A
204005_s_at 2,87 PAWR PRKC, apoptosis, WT1, regulator
204291_at 2,91 KIAA0335 KIAA0335 gene product
213483_at 2,93 KIAA0073 KIAA0073 protein
213526_s_at 3,05 F25965 protein F25965
220305_at 3,12 KIAA1271 KIAA1271 protein
219540_at 3,13 ZNF267 zinc finger protein 267
218774_at 3,24 DCPS mRNA decapping enzyme
221761_at 3,25 ADSS adenylsuccinate synthase
204211_x_at 3,28 PRKR protein kinase, interferon-inducible double stranded RNA dependent
201304_at 3,29 NDUFA5 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa
210111_s_at 3,31 KIAA0265 KIAA0265 protein
204333_s_at 3,39 AGA aspartylglucosaminidase
201218_at 3,49 CTBP2 C-terminal binding protein 2
220703_at 3,59 HT009 uncharacterized hypothalamus protein HT009
213743_at 3,64 CCNT2 cyclin T2
212255_s_at 3,80 ATP2C1 ATPase, Ca++ transporting, type 2C, member 1
215050_x_at 4,40 MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2
211698_at 5,08 CRI CREBBP/EP300 inhibitory protein 1
52285_f_at 5,18 FLJ12542 hypothetical protein FLJ12542

9.1.2. Liste veränderter Gene in der Gruppe „Überexpression“

Veränderte Gene aus v3.1 (Leervektor) MCF-7 gegen BMP-2 überexprimierende (vBMP-2) MCF-7
- die Gene müssen auf beiden Arrays eindeutig mess- und quantifizierbar sein
- Grenzwert: 2-fach verändert; gleiche Spot-Loci müssen Tendenz bestätigen

<table>
<thead>
<tr>
<th>Affymetrix-ID</th>
<th>vBMP2/v3.1</th>
<th>Gensymbol</th>
<th>Gene Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>209813_x_at</td>
<td>0,01</td>
<td>TRGV9</td>
<td>T cell receptor gamma variable 9</td>
</tr>
<tr>
<td>207302_at</td>
<td>0,03</td>
<td>SGCG</td>
<td>sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein)</td>
</tr>
<tr>
<td>215806_x_at</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211144_x_at</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216920_s_at</td>
<td>0,06</td>
<td>TRG@</td>
<td>T cell receptor gamma locus</td>
</tr>
<tr>
<td>202664_at</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202663_at</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202665_s_at</td>
<td>0,49</td>
<td>WASPIP</td>
<td>Wiskott–Aldrich syndrome protein interacting protein</td>
</tr>
<tr>
<td>205498_at</td>
<td>0,07</td>
<td>GHR</td>
<td>growth hormone receptor</td>
</tr>
<tr>
<td>202391_at</td>
<td>0,09</td>
<td>BASP1</td>
<td>brain abundant, membrane attached signal protein 1</td>
</tr>
<tr>
<td>203638_s_at</td>
<td>0,10</td>
<td>FGFR2</td>
<td>fibroblast growth factor receptor 2 (bacteria-expressed kinase, keratinocyte growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer syndrome, Jackson-Weiss syndrome)</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Expression</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>57588_at</td>
<td>0,14</td>
<td>SLC24A3 solute carrier family 24 (sodium/potassium/calcium exchanger), member 3</td>
<td></td>
</tr>
<tr>
<td>201718_s_at</td>
<td>0,15</td>
<td>EPB41L2 erythrocyte membrane protein band 4.1-like 2</td>
<td></td>
</tr>
<tr>
<td>204041_at</td>
<td>0,15</td>
<td>MAOB monoamine oxidase B</td>
<td></td>
</tr>
<tr>
<td>204597_x_at</td>
<td>0,15</td>
<td>STC1 stanniocalcin 1</td>
<td></td>
</tr>
<tr>
<td>204595_s_at</td>
<td>0,24</td>
<td>CLCA2 chloride channel, calcium activated, family member 2</td>
<td></td>
</tr>
<tr>
<td>205870_at</td>
<td>0,20</td>
<td>BDKRB2 bradykinin receptor B2</td>
<td></td>
</tr>
<tr>
<td>214953_s_at</td>
<td>0,21</td>
<td>APP amyloid beta (A4) precursor protein (protease nexin-II, Alzheimer disease)</td>
<td></td>
</tr>
<tr>
<td>206002_at</td>
<td>0,22</td>
<td>CMKOR1 chemokine orphan receptor 1</td>
<td></td>
</tr>
<tr>
<td>206440_at</td>
<td>0,21</td>
<td>LIM7A lin-7 homolog A (C. elegans)</td>
<td></td>
</tr>
<tr>
<td>204971_at</td>
<td>0,22</td>
<td>CSTA cystatin A (stefin A)</td>
<td></td>
</tr>
<tr>
<td>202376_at</td>
<td>0,23</td>
<td>SERPINA3 serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3</td>
<td></td>
</tr>
<tr>
<td>221024_s_at</td>
<td>0,23</td>
<td>SLC2A10 solute carrier family 2 (facilitated glucose transporter), member 10</td>
<td></td>
</tr>
<tr>
<td>202575_at</td>
<td>0,24</td>
<td>CRABP2 cellular retinoic acid binding protein 2</td>
<td></td>
</tr>
<tr>
<td>206463_s_at</td>
<td>0,24</td>
<td>ACACB acetyl-Coenzyme A carboxylase beta</td>
<td></td>
</tr>
<tr>
<td>207716_at</td>
<td>0,27</td>
<td>KRTHA8 keratin, hair, acidic, 8</td>
<td></td>
</tr>
<tr>
<td>222108_at</td>
<td>0,28</td>
<td>AMIGO2 amphoterin induced gene 2</td>
<td></td>
</tr>
<tr>
<td>200982_s_at</td>
<td>0,28</td>
<td>ANXA6 annexin A6</td>
<td></td>
</tr>
<tr>
<td>208963_x_at</td>
<td>0,28</td>
<td>FADS1 fatty acid desaturase 1</td>
<td></td>
</tr>
<tr>
<td>205066_s_at</td>
<td>0,29</td>
<td>ENPP1 ectonucleotide pyrophosphatase/phosphodiesterase 1</td>
<td></td>
</tr>
<tr>
<td>221766_s_at</td>
<td>0,31</td>
<td>C6orf37 chromosome 6 open reading frame 37</td>
<td></td>
</tr>
<tr>
<td>201825_s_at</td>
<td>0,32</td>
<td>ABCA12 ATP-binding cassette, sub-family A (ABC1), member 12</td>
<td></td>
</tr>
<tr>
<td>201826_s_at</td>
<td>0,36</td>
<td>CGI-49 CGI-49 protein</td>
<td></td>
</tr>
<tr>
<td>213316_at</td>
<td>0,34</td>
<td>--- Homo sapiens mRNA; cDNA DKFZp586L0120 (from clone DKFZp586L0120)</td>
<td></td>
</tr>
<tr>
<td>209357_at</td>
<td>0,34</td>
<td>CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2</td>
<td></td>
</tr>
<tr>
<td>211712_s_at</td>
<td>0,35</td>
<td>ANXA9 annexin A9</td>
<td></td>
</tr>
<tr>
<td>ProbeID</td>
<td>Log2 FC</td>
<td>Gene Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>204237_at</td>
<td>0.35</td>
<td>CED-6</td>
<td>PTB domain adaptor protein CED-6</td>
</tr>
<tr>
<td>204235_s_at</td>
<td>0.39</td>
<td>EPHA3</td>
<td>EphA3</td>
</tr>
<tr>
<td>206070_s_at</td>
<td>0.35</td>
<td>BAG3</td>
<td>BCL2-associated athanogene 3</td>
</tr>
<tr>
<td>217911_s_at</td>
<td>0.37</td>
<td>BCD101</td>
<td>beta-carotene 15, 15'-dioxygen</td>
</tr>
<tr>
<td>220087_at</td>
<td>0.37</td>
<td>L1CAM</td>
<td>L1 cell adhesion molecule (hydrocephalus, stenosis of aqueduct of Sylvius 1, MASA (mental retardation, aphasia, shuffling gait and adducted thumbs) syndrome, spastic paraplegia 1)</td>
</tr>
<tr>
<td>203372_s_at</td>
<td>0.37</td>
<td>SOCS2</td>
<td>suppressor of cytokine signaling 2</td>
</tr>
<tr>
<td>203373_at</td>
<td>0.50</td>
<td>CBX5</td>
<td>chromobox homolog 5 (HP1 alpha homolog, Drosophila)</td>
</tr>
<tr>
<td>205590_at</td>
<td>0.38</td>
<td>RASGRP1</td>
<td>RAS guanyl releasing protein 1 (calcium and DAG-regulated)</td>
</tr>
<tr>
<td>46665_at</td>
<td>0.38</td>
<td>SEMA4C</td>
<td>sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4C</td>
</tr>
<tr>
<td>201641_at</td>
<td>0.39</td>
<td>BST2</td>
<td>bone marrow stromal cell antigen 2</td>
</tr>
<tr>
<td>203060_s_at</td>
<td>0.39</td>
<td>PAPSS2</td>
<td>3′-phosphoadenosine 5′-phosphosulfate synthase 2</td>
</tr>
<tr>
<td>202236_s_at</td>
<td>0.39</td>
<td>SLC16A1</td>
<td>solute carrier family 16 (monocarboxylic acid transporters), member 1</td>
</tr>
<tr>
<td>218309_at</td>
<td>0.40</td>
<td>CaMKIINalpha</td>
<td>calcium/calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>201662_s_at</td>
<td>0.40</td>
<td>FACIL3</td>
<td>fatty-acid-Coenzyme A ligase, long-chain 3</td>
</tr>
<tr>
<td>212046_x_at</td>
<td>0.40</td>
<td>MAPK3</td>
<td>mitogen-activated protein kinase 3</td>
</tr>
<tr>
<td>201670_s_at</td>
<td>0.40</td>
<td>MARCKS</td>
<td>myristoylated alanine-rich protein kinase C substrate</td>
</tr>
<tr>
<td>209092_s_at</td>
<td>0.41</td>
<td>CGI-150</td>
<td>CGI-150 protein</td>
</tr>
<tr>
<td>209083_at</td>
<td>0.41</td>
<td>CORO1A</td>
<td>coronin, actin binding protein, 1A</td>
</tr>
<tr>
<td>208962_s_at</td>
<td>0.41</td>
<td>FADS1</td>
<td>fatty acid desaturase 1</td>
</tr>
<tr>
<td>202718_at</td>
<td>0.41</td>
<td>IGFBP2</td>
<td>insulin-like growth factor binding protein 2, 36kDa</td>
</tr>
<tr>
<td>212364_at</td>
<td>0.42</td>
<td>MYO1B</td>
<td>myosin IB</td>
</tr>
<tr>
<td>213110_s_at</td>
<td>0.43</td>
<td>COL4A5</td>
<td>collagen, type IV, alpha 5 (Alport syndrome)</td>
</tr>
<tr>
<td>204194_at</td>
<td>0.43</td>
<td>BACH1</td>
<td>BTB and CNC homology 1, basic leucine zipper transcription factor 1</td>
</tr>
<tr>
<td>210299_s_at</td>
<td>0.43</td>
<td>FHL1</td>
<td>four and a half LIM domains 1</td>
</tr>
<tr>
<td>201669_s_at</td>
<td>0.43</td>
<td>MARCKS</td>
<td>myristoylated alanine-rich protein kinase C substrate</td>
</tr>
<tr>
<td>210317_s_at</td>
<td>0.43</td>
<td>YWHAED</td>
<td>tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, epsilon polypeptide</td>
</tr>
<tr>
<td>209735_at</td>
<td>0.44</td>
<td>ABCG2</td>
<td>ATP-binding cassette, sub-family G (WHITE), member 2</td>
</tr>
<tr>
<td>208792_s_at</td>
<td>0.44</td>
<td>clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, testosterone-repressed prostate message 2, apolipoprotein J)</td>
<td></td>
</tr>
<tr>
<td>208791_at</td>
<td>0.44</td>
<td>CLU</td>
<td>apolipoprotein J</td>
</tr>
<tr>
<td>209398_at</td>
<td>0.44</td>
<td>HIST1H1C</td>
<td>histone 1, H1c</td>
</tr>
<tr>
<td>209298_s_at</td>
<td>0.44</td>
<td>ITSN1</td>
<td>intersectin 1 (SH3 domain protein)</td>
</tr>
<tr>
<td>210731_s_at</td>
<td>0.44</td>
<td>LGALS8</td>
<td>lectin, galactoside-binding, soluble, 8 (galectin 8)</td>
</tr>
<tr>
<td>218303_x_at</td>
<td>0.44</td>
<td>LOC51315</td>
<td>hypothetical protein LOC51315</td>
</tr>
<tr>
<td>212646_at</td>
<td>0.44</td>
<td>RAFTLIN</td>
<td>raft-linking protein</td>
</tr>
<tr>
<td>214960_at</td>
<td>0.45</td>
<td>API5</td>
<td>apoptosis inhibitor 5</td>
</tr>
<tr>
<td>266_s_at</td>
<td>0.45</td>
<td>CD24</td>
<td>CD24 antigen (small cell lung carcinoma cluster 4 antigen)</td>
</tr>
<tr>
<td>208650_s_at</td>
<td>0.45</td>
<td>EGFL5</td>
<td>EGF-like-domain, multiple 5</td>
</tr>
<tr>
<td>212830_at</td>
<td>0.45</td>
<td>F-LANa</td>
<td>carcinoma related gene</td>
</tr>
<tr>
<td>202605_at</td>
<td>0.45</td>
<td>GUSB</td>
<td>glucuronidase, beta</td>
</tr>
<tr>
<td>212614_at</td>
<td>0.45</td>
<td>MRF2</td>
<td>modulator recognition factor 2</td>
</tr>
<tr>
<td>213302_at</td>
<td>0.45</td>
<td>PFAS</td>
<td>phosphoribosylformylglycinamidine synthase (FGAR amidotransferase)</td>
</tr>
<tr>
<td>204688_at</td>
<td>0.45</td>
<td>SGCE</td>
<td>sarcoglycan, epsilon</td>
</tr>
<tr>
<td>209459_s_at</td>
<td>0.46</td>
<td>ABAT</td>
<td>4-aminobutyrate aminotransferase</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Ratio</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>219768_at</td>
<td>0.46</td>
<td>B7-H4 immune costimulatory protein B7-H4</td>
<td></td>
</tr>
<tr>
<td>212952_at</td>
<td>0.46</td>
<td>CALR calreticulin</td>
<td></td>
</tr>
<tr>
<td>220999_s_at</td>
<td>0.46</td>
<td>CYFIP2 cytoplasmic FMR1 interacting protein 2</td>
<td></td>
</tr>
<tr>
<td>203464_s_at</td>
<td>0.46</td>
<td>EPN2 epsin 2</td>
<td></td>
</tr>
<tr>
<td>210028_s_at</td>
<td>0.46</td>
<td>ORC3L origin recognition complex, subunit 3-like (yeast)</td>
<td></td>
</tr>
<tr>
<td>203910_at</td>
<td>0.46</td>
<td>PARG1 PTPL1-associated Rhogap 1</td>
<td></td>
</tr>
<tr>
<td>203845_at</td>
<td>0.46</td>
<td>PCAF p300/CBP-associated factor</td>
<td></td>
</tr>
<tr>
<td>204542_at</td>
<td>0.46</td>
<td>STHM sialyltransferase</td>
<td></td>
</tr>
<tr>
<td>208831_x_at</td>
<td>0.46</td>
<td>SUP67H suppressor of Ty 6 homolog (S. cerevisiae)</td>
<td></td>
</tr>
<tr>
<td>221641_s_at</td>
<td>0.47</td>
<td>ACATE2 likely ortholog of mouse acyl-Coenzyme A thioesterase 2, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>218701_at</td>
<td>0.47</td>
<td>CGI-83 lactamase, beta 2</td>
<td></td>
</tr>
<tr>
<td>219615_s_at</td>
<td>0.47</td>
<td>KCNK5 potassium channel, subfamily K, member 5</td>
<td></td>
</tr>
<tr>
<td>204790_at</td>
<td>0.47</td>
<td>MADH7 MAD, mothers against decapentaplegic homolog 7 (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>206116_s_at</td>
<td>0.45</td>
<td>TPM1 tropomyosin 1 (alpha)</td>
<td></td>
</tr>
<tr>
<td>210986_s_at</td>
<td>0.47</td>
<td>ALDH4A1 aldehyde dehydrogenase 4 family, member A1</td>
<td></td>
</tr>
<tr>
<td>203722_at</td>
<td>0.48</td>
<td>C6orf96 chromosome 6 open reading frame 96</td>
<td></td>
</tr>
<tr>
<td>220329_s_at</td>
<td>0.48</td>
<td>CCT8 chaperonin containing TCP1, subunit 8 (theta)</td>
<td></td>
</tr>
<tr>
<td>202257_s_at</td>
<td>0.48</td>
<td>CD2BP2 CD2 antigen (cytoplasmic tail) binding protein 2</td>
<td></td>
</tr>
<tr>
<td>209602_s_at</td>
<td>0.48</td>
<td>CRAT carnitine acetyltransferase</td>
<td></td>
</tr>
<tr>
<td>209603_at</td>
<td>0.49</td>
<td>GATA3 GATA binding protein 3</td>
<td></td>
</tr>
<tr>
<td>212445_s_at</td>
<td>0.48</td>
<td>NEDD4L neural precursor cell expressed, developmentally down-regulated 4-like</td>
<td></td>
</tr>
<tr>
<td>202375_at</td>
<td>0.48</td>
<td>SEC24D SEC24 related gene family, member D (S. cerevisiae)</td>
<td></td>
</tr>
<tr>
<td>214033_at</td>
<td>0.49</td>
<td>ABCC6 ATP-binding cassette, sub-family C (CFTR/MRP), member 6</td>
<td></td>
</tr>
<tr>
<td>219063_at</td>
<td>0.49</td>
<td>C1orf35 chromosome 1 open reading frame 35</td>
<td></td>
</tr>
<tr>
<td>220176_at</td>
<td>0.49</td>
<td>C1orf127 chromosome 14 open reading frame 127</td>
<td></td>
</tr>
<tr>
<td>209522_s_at</td>
<td>0.49</td>
<td>CRAT carnitine acetyltransferase</td>
<td></td>
</tr>
<tr>
<td>219767_s_at</td>
<td>0.49</td>
<td>CRYZL1 crystallin, zeta (quinone reductase)-like 1</td>
<td></td>
</tr>
<tr>
<td>218819_at</td>
<td>0.49</td>
<td>DDX26 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26</td>
<td></td>
</tr>
<tr>
<td>218871_x_at</td>
<td>0.49</td>
<td>GALNACT-2 chondroitin sulfate GalNAcT-2</td>
<td></td>
</tr>
<tr>
<td>204078_at</td>
<td>0.49</td>
<td>SC65 synaptosomal complex protein SC65</td>
<td></td>
</tr>
<tr>
<td>205993_s_at</td>
<td>0.49</td>
<td>TBX2 T-box 2</td>
<td></td>
</tr>
<tr>
<td>203085_s_at</td>
<td>0.49</td>
<td>TGFBI transforming growth factor, beta 1 (Camurati-Engelmann disease)</td>
<td></td>
</tr>
<tr>
<td>211760_s_at</td>
<td>0.49</td>
<td>VAMP4 vesicle-associated membrane protein 4</td>
<td></td>
</tr>
<tr>
<td>209885_at</td>
<td>0.50</td>
<td>ARHD ras homolog gene family, member D</td>
<td></td>
</tr>
<tr>
<td>213746_s_at</td>
<td>0.50</td>
<td>FLNA filamin A, alpha (actin binding protein 280)</td>
<td></td>
</tr>
<tr>
<td>212675_s_at</td>
<td>0.50</td>
<td>KIAA0582 protein</td>
<td></td>
</tr>
<tr>
<td>218558_s_at</td>
<td>0.50</td>
<td>MRPL39 mitochondrial ribosomal protein L39</td>
<td></td>
</tr>
<tr>
<td>213448_at</td>
<td>0.50</td>
<td>MUX1 metaxin 1</td>
<td></td>
</tr>
<tr>
<td>218386_x_at</td>
<td>0.50</td>
<td>USP16 ubiquitin specific protease 16</td>
<td></td>
</tr>
<tr>
<td>209016_s_at</td>
<td>2.00</td>
<td>KRT7 keratin 7</td>
<td></td>
</tr>
<tr>
<td>201411_s_at</td>
<td>2.04</td>
<td>PLEKH2 pleckstrin homology domain containing, family B (evecctins) member 2</td>
<td></td>
</tr>
<tr>
<td>204567_s_at</td>
<td>2.05</td>
<td>ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1</td>
<td></td>
</tr>
<tr>
<td>206023_at</td>
<td>2.05</td>
<td>NMU neuromedin U</td>
<td></td>
</tr>
<tr>
<td>201921_at</td>
<td>2.06</td>
<td>GNG10 guanine nucleotide binding protein (G protein), gamma 10</td>
<td></td>
</tr>
<tr>
<td>78047_s_at</td>
<td>2.07</td>
<td>MMP24 matrix metalloproteinase 24 (membrane-inserted)</td>
<td></td>
</tr>
<tr>
<td>49679_s_at</td>
<td>2.31</td>
<td>SC4MOL sterol-C4-methyl oxidase-like</td>
<td></td>
</tr>
<tr>
<td>218793_s_at</td>
<td>2.10</td>
<td>SCML1 sex comb on midleg-like 1 (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>Gene ID</td>
<td>Value</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>201289_at</td>
<td>2,12</td>
<td>CYR61 cysteine-rich, angiogenic inducer, 61</td>
<td></td>
</tr>
<tr>
<td>207223_s_at</td>
<td>2,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214698_at</td>
<td>2,46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214697_s_at</td>
<td>2,71</td>
<td>ROD1 ROD1 regulator of differentiation 1 (S. pombe)</td>
<td></td>
</tr>
<tr>
<td>203192_at</td>
<td>2,14</td>
<td>ABCB6 ATP-binding cassette, sub-family B (MDR/TAP), member 6</td>
<td></td>
</tr>
<tr>
<td>205719_s_at</td>
<td>2,14</td>
<td>PAH phenylalanine hydroxylase</td>
<td></td>
</tr>
<tr>
<td>209307_at</td>
<td>2,15</td>
<td>SWAP70 SWAP-70 protein</td>
<td></td>
</tr>
<tr>
<td>216594_x_at</td>
<td>2,16</td>
<td>aldo-keto reductase family 1, member C1 (dihydromediol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)</td>
<td></td>
</tr>
<tr>
<td>204151_x_at</td>
<td>2,23</td>
<td>AKR1C1</td>
<td></td>
</tr>
<tr>
<td>200796_s_at</td>
<td>2,16</td>
<td>MCL1 myeloid cell leukemia sequence 1 (BCL2-related)</td>
<td></td>
</tr>
<tr>
<td>213261_at</td>
<td>2,17</td>
<td>KIAA0342 gene product</td>
<td></td>
</tr>
<tr>
<td>214337_at</td>
<td>2,18</td>
<td>COPA coatamer protein complex, subunit alpha</td>
<td></td>
</tr>
<tr>
<td>203426_s_at</td>
<td>2,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203425_s_at</td>
<td>2,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211958_at</td>
<td>2,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211959_at</td>
<td>3,97</td>
<td>IGFBP5 insulin-like growth factor binding protein 5</td>
<td></td>
</tr>
<tr>
<td>219347_at</td>
<td>2,20</td>
<td>NUDT15 nudix (nucleoside diphosphate linked moiety X)-type motif 15</td>
<td></td>
</tr>
<tr>
<td>209988_s_at</td>
<td>2,21</td>
<td>ASCLI1 achaete-scute complex-like 1 (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>208056_s_at</td>
<td>2,23</td>
<td>CBFA2T3 core-binding factor,运转 domain, alpha subunit 2; translocated to 3</td>
<td></td>
</tr>
<tr>
<td>36830_at</td>
<td>2,24</td>
<td>MIPEP mitochondrial intermediate peptidase</td>
<td></td>
</tr>
<tr>
<td>202737_s_at</td>
<td>2,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202736_s_at</td>
<td>3,15</td>
<td>LSM4 LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)</td>
<td></td>
</tr>
<tr>
<td>215489_x_at</td>
<td>2,26</td>
<td>HOMER3 homer homolog 3 (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>212788_x_at</td>
<td>2,28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213187_x_at</td>
<td>2,53</td>
<td>FTL ferritin, light polypeptide</td>
<td></td>
</tr>
<tr>
<td>204908_s_at</td>
<td>2,29</td>
<td>BCL3 B-cell CLymphoma 3</td>
<td></td>
</tr>
<tr>
<td>219522_at</td>
<td>2,29</td>
<td>FJX1 four jointed box 1 (Drosophila)</td>
<td></td>
</tr>
<tr>
<td>201694_s_at</td>
<td>2,30</td>
<td>EGR1 early growth response 1</td>
<td></td>
</tr>
<tr>
<td>205110_s_at</td>
<td>2,30</td>
<td>FGFI3 fibroblast growth factor 13</td>
<td></td>
</tr>
<tr>
<td>206106_at</td>
<td>2,30</td>
<td>MAPK12 mitogen-activated protein kinase 12</td>
<td></td>
</tr>
<tr>
<td>205062_x_at</td>
<td>2,30</td>
<td>RBBP1 retinoblastoma binding protein 1</td>
<td></td>
</tr>
<tr>
<td>201510_at</td>
<td>2,31</td>
<td>ELF3 E74-like factor 3 (ets domain transcription factor, epithelial-specific)</td>
<td></td>
</tr>
<tr>
<td>212325_at</td>
<td>2,33</td>
<td>KIAA1102 protein</td>
<td></td>
</tr>
<tr>
<td>202719_s_at</td>
<td>2,34</td>
<td>TES testis derived transcript (3 LIM domains)</td>
<td></td>
</tr>
<tr>
<td>203610_s_at</td>
<td>2,39</td>
<td>TRIM38 tripartite motif-containing 38</td>
<td></td>
</tr>
<tr>
<td>204351_at</td>
<td>2,41</td>
<td>S100P S100 calcium binding protein P</td>
<td></td>
</tr>
<tr>
<td>202437_s_at</td>
<td>2,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202436_s_at</td>
<td>2,71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202435_s_at</td>
<td>2,95</td>
<td>CYP1B1 cytochrome P450, family 1, subfamily B, polypeptide 1</td>
<td></td>
</tr>
<tr>
<td>219115_s_at</td>
<td>2,43</td>
<td>IL20RA interleukin 20 receptor, alpha</td>
<td></td>
</tr>
<tr>
<td>203665_at</td>
<td>2,45</td>
<td>HMOXI heme oxygenase (decycling) 1</td>
<td></td>
</tr>
<tr>
<td>201506_at</td>
<td>2,46</td>
<td>TGFBI transforming growth factor, beta-induced, 68kDa</td>
<td></td>
</tr>
<tr>
<td>209587_at</td>
<td>2,47</td>
<td>PITX1 paired-like homeodomain transcription factor 1</td>
<td></td>
</tr>
<tr>
<td>219737_s_at</td>
<td>2,51</td>
<td>--- Homo sapiens transcribed sequence with strong similarity to protein ref:NP_065136.1 (H.sapiens) protocadherin 9 precursor; cadherin superfamily protein VR4-11 [Homo sapiens]</td>
<td></td>
</tr>
<tr>
<td>208885_at</td>
<td>2,57</td>
<td>LCP1 lymphocyte cytosolic protein 1 (L-plastin)</td>
<td></td>
</tr>
<tr>
<td>205380_at</td>
<td>2,59</td>
<td>PDZK1 PDZ domain containing 1</td>
<td></td>
</tr>
<tr>
<td>207761_s_at</td>
<td>2,73</td>
<td>DKFZP586A0522 DKFZP586A0522 protein</td>
<td></td>
</tr>
<tr>
<td>218236_s_at</td>
<td>2,79</td>
<td>PRKCN protein kinase C, nu</td>
<td></td>
</tr>
<tr>
<td>204623_at</td>
<td>2,79</td>
<td>TFF3 trefoil factor 3 (intestinal)</td>
<td></td>
</tr>
<tr>
<td>Gene ID</td>
<td>Log2 Fold Change</td>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>220414_at</td>
<td>2.87</td>
<td>CALML5 calmodulin-like 5</td>
<td></td>
</tr>
<tr>
<td>205266_at</td>
<td>2.97</td>
<td>LIF leukemia inhibitory factor (cholinergic differentiation factor)</td>
<td></td>
</tr>
<tr>
<td>202096_s_at</td>
<td>3.08</td>
<td>BZRP benzodiazapine receptor (peripheral)</td>
<td></td>
</tr>
<tr>
<td>212599_at</td>
<td>3.13</td>
<td>AUTS2 autism susceptibility candidate 2</td>
<td></td>
</tr>
<tr>
<td>214590_s_at</td>
<td>3.20</td>
<td>UBE2D1 ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast)</td>
<td></td>
</tr>
<tr>
<td>204995_at</td>
<td>3.30</td>
<td>CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35)</td>
<td></td>
</tr>
<tr>
<td>201141_at</td>
<td>3.35</td>
<td>GPNMB glycoprotein (transmembrane) nmb</td>
<td></td>
</tr>
<tr>
<td>211657_at</td>
<td>3.36</td>
<td>CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific cross reacting antigen)</td>
<td></td>
</tr>
<tr>
<td>36711_at</td>
<td>3.62</td>
<td>MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian)</td>
<td></td>
</tr>
<tr>
<td>201752_s_at</td>
<td>3.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201753_s_at</td>
<td>5.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205882_x_at</td>
<td>5.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201034_at</td>
<td>13.08</td>
<td>ADD3 adducin 3 (gamma)</td>
<td></td>
</tr>
<tr>
<td>221577_x_at</td>
<td>4.06</td>
<td>PLAB prostate differentiation factor</td>
<td></td>
</tr>
<tr>
<td>203453_at</td>
<td>4.29</td>
<td>SCNN1A sodium channel, nonvoltage-gated 1 alpha /// sodium channel,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nonvoltage-gated 1 alpha</td>
<td></td>
</tr>
<tr>
<td>203757_s_at</td>
<td>4.50</td>
<td>CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specific cross reacting antigen)</td>
<td></td>
</tr>
<tr>
<td>209309_at</td>
<td>4.93</td>
<td>AZGP1 alpha-2-glycoprotein 1, zinc</td>
<td></td>
</tr>
<tr>
<td>215625_at</td>
<td>5.30</td>
<td>--- Homo sapiens cDNA FLJ10586 fis, clone NT2RP2003986</td>
<td></td>
</tr>
<tr>
<td>204948_s_at</td>
<td>6.58</td>
<td>FST follistatin</td>
<td></td>
</tr>
<tr>
<td>216623_x_at</td>
<td>8.07</td>
<td>TNRC9 trinucleotide repeat containing 9</td>
<td></td>
</tr>
<tr>
<td>214774_x_at</td>
<td>9.25</td>
<td>TNRC9 trinucleotide repeat containing 9</td>
<td></td>
</tr>
<tr>
<td>212531_at</td>
<td>9.76</td>
<td>LCN2 lipocalin 2 (oncogene 24p3)</td>
<td></td>
</tr>
<tr>
<td>217771_at</td>
<td>13.36</td>
<td>GOLPH2 golgi phosphoprotein 2</td>
<td></td>
</tr>
<tr>
<td>219795_at</td>
<td>17.03</td>
<td>SLC6A14 solute carrier family 6 (neurotransmitter transporter), member 14</td>
<td></td>
</tr>
<tr>
<td>205290_s_at</td>
<td>21.20</td>
<td>BMP2 bone morphogenetic protein 2</td>
<td></td>
</tr>
<tr>
<td>205749_at</td>
<td>21.34</td>
<td>CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1</td>
<td></td>
</tr>
<tr>
<td>201215_at</td>
<td>28.63</td>
<td>PLS3 plastin 3 (T isoform)</td>
<td></td>
</tr>
<tr>
<td>217728_at</td>
<td>30.70</td>
<td>S100A6 S100 calcium binding protein A6 (calcyclin)</td>
<td></td>
</tr>
</tbody>
</table>
9.2. Vektorkarten

pTet-On Plasmid

![Diagram of pTet-On Plasmid]

pTRE2hyg

![Diagram of pTRE2hyg]

- xlii -
9.3. Sequenzen

9.3.1. Sequenz des pTRE2hyg + BMP-2 Konstrukttes

CTCGAGTTTACCACTCCCTATCAGTGATAGAGAAAAGTGAAAGTCGAGT
ACGTAGCT pTRE2hyg-Sequenz
GATAATC EcoRV-Schnittstelle (Vektor)
GATAATC EcoRV-Schnittstelle (Insert)

.....GGAGGTC......
.....ATGGTGGC......
.....CGGGGATC......

translatierter BMP2-Bereich
Präfer für Sequenzierung

ANHANG
9.3.2. Ergebnisse Sequenzierung

pTRE2hyg + BMP-2 Forward-Primer (1)

AAAACGCAGACCCATATTGNCCGTCCGCTGAANTGCTGACGACTGTGCTGAGA
TTACCAGANGTGCACTGATAGCCGGGACCAGCTGCTTTCTTAGACTGCTGCT
GCTTCCCTGGTGTCCTCTGGGCTGCTGCTGCTTCCCTGGGACTGCTGCTGCCCCCC
CAGGAAGGTTCGCGGCGGCGGCGAGTTCGAGTTGCGGCTGCTCAGCATGTCGGC
CTGAAACAGAGACCAACACTGCAACTGGAATTTCCGGTGAGAGACTTTTTGGCACCC
AGGTTGGTGAAATCAA

pTRE2hyg + BMP-2 Forward-Primer (2)

AAAACGCAGACCAATATTCCGCTCGCTAAGTCTGTACGACGATCTCTNGTTAGA
TTACCAGANGTGCACTGATAGCCGGGACCAGCTGCTTTCTTAGACTGCTGCTGCCCCCC
CAGGAAGGTTCGCGGCGGCGGCGAGTTCGAGTTGCGGCTGCTCAGCATGTCGGC
CTGAAACAGAGACCAACACTGCAACTGGAATTTCCGGTGAGAGACTTTTTGGCACCC
AGGTTGGTGAAATCAA

pTRE2hyg + BMP-2 Reverse-Primer (1)

CTCCGACGAACATCGGGGGTCCCCACACACTTTCTCGAACCCTCTACNGCTCTAG
AGATATCCCCGGATCTCAGTACTAAGCCACCCCCACACCTCTCCCCACACCC
ATGTCTGTAGATTCTCTCCCCATATACAGTTTCCCTGGTCTTGGGCTTGACGTTTTCT
GTGGAGAGGTCTGCTGATTTTCCATGATGTGACCAGCTGTGTTCATCTTGCAAGC
CGAGGAGGTATTACACTACCTGACAGAGCTGCTGCTTTCTCCGAACAGAGATGCAAGA
TGCTTTAGGAAACAAATAGCAGTTTCCATCACCCGAATATAATTTGAAATACCA
AAACCTGCAACAGCCACTCGAATTTCCCGTGACAGACTTTTTGGACACAGGGTGGT
ATCAGAAAA
9.4. Korrelationen von BMP-2

1. Korrelation von BMP-2 mit der Tumorgröße

<table>
<thead>
<tr>
<th>pT</th>
<th>BMP-2</th>
<th>0</th>
<th>1</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td></td>
<td>730</td>
<td>1041</td>
<td>1771</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>111</td>
<td>114</td>
<td>225</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>841</td>
<td>1155</td>
<td>1996</td>
</tr>
</tbody>
</table>

χ² = 5,390, p = 0,022

r_s = -0,052, p = 0,020

Abb. Kreuztabelle, BMP-2/pT, n = 938

2. Korrelation von BMP-2 mit dem Östrogenrezeptorstatus

<table>
<thead>
<tr>
<th>ER</th>
<th>BMP-2</th>
<th>0-2</th>
<th>3-12</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>357</td>
<td>102</td>
<td>459</td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td>374</td>
<td>58</td>
<td>432</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>731</td>
<td>160</td>
<td>891</td>
</tr>
</tbody>
</table>

χ² = 11,688, p < 0,001

r_s = -0,115, p < 0,001

Abb. Kreuztabelle BMP-2/Östrogenrezeptor (ER), n = 891
3. Korrelation von BMP-2 mit p16

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>p16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>323</td>
<td>359</td>
<td>682</td>
</tr>
<tr>
<td>1</td>
<td>456</td>
<td>680</td>
<td>1136</td>
</tr>
<tr>
<td>Gesamt</td>
<td>779</td>
<td>1039</td>
<td>1818</td>
</tr>
</tbody>
</table>

Abb. Kreuztabelle BMP-2/p16, $n = 1818$

$\chi^2 = 9,071, \ p = 0,003$

$r_s = 0,071, \ p = 0,003$

4. Korrelation von BMP-2 mit p27

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>p27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>101</td>
<td>110</td>
<td>211</td>
</tr>
<tr>
<td>6-12</td>
<td>549</td>
<td>835</td>
<td>1384</td>
</tr>
<tr>
<td>Gesamt</td>
<td>650</td>
<td>945</td>
<td>1595</td>
</tr>
</tbody>
</table>

Abb. Kreuztabelle BMP-2/p27, $n = 1595$

$\chi^2 = 5,098, \ p = 0,029$

$r_s = 0,057, \ p = 0,024$

5. Korrelation von BMP-2 mit p53

<table>
<thead>
<tr>
<th></th>
<th>0-2</th>
<th>3-12</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>p53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>1235</td>
<td>252</td>
<td>1487</td>
</tr>
<tr>
<td>3-12</td>
<td>305</td>
<td>105</td>
<td>410</td>
</tr>
<tr>
<td>Gesamt</td>
<td>1540</td>
<td>357</td>
<td>1897</td>
</tr>
</tbody>
</table>

Abb: Kreuztabelle BMP-2/p53, $n = 1879$

$\chi^2 = 15,787, \ p < 0,000$

$r_s = 0,091, \ p < 0,000$
9.5. Cox-Regression

Auswertung der Fallverarbeitung

<table>
<thead>
<tr>
<th>Für Analyse verfügbar Fällen</th>
<th>Ereignis</th>
<th>N</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zensiert</td>
<td></td>
<td>460</td>
<td>22,9%</td>
</tr>
<tr>
<td>Insgesamt</td>
<td></td>
<td>1068</td>
<td>53,2%</td>
</tr>
<tr>
<td>Nicht verwendete Fälle</td>
<td>Werten</td>
<td>1528</td>
<td>76,1%</td>
</tr>
<tr>
<td>Fällen mit fehlenden Werten</td>
<td></td>
<td>480</td>
<td>23,9%</td>
</tr>
<tr>
<td>Fällen mit negativer Zeit</td>
<td></td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Zensierte Fälle vor dem frühesten Ereignis in einer Schicht</td>
<td></td>
<td>0</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Insgesamt: 2008 Fälle, 100,0%.

a. Abhängige Variable: months surv

Codierungen für kategoriale Variablen

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Häufigkeit</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTb</td>
<td>553</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>734</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pNb</td>
<td>765</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>664</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BREgradeb</td>
<td>404</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>619</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>505</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BMP24YN</td>
<td>645</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>883</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitosesb</td>
<td>815</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>271</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>442</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a. Die Variable (0,1) wurde umkodiert. Die Koeffizienten stimmen daher nicht mit den Koeffizienten für die Indikatorkodierung (0,1) überein.
b. Kodierung für Indikatorparameter
c. Kategorie-Variable: pT
d. Kategorie-Variable: pN
e. Kategorie-Variable: BREgrade (BRE grade)
f. Kategorie-Variable: BMP24YN (BMP2-4 Y/N)
g. Kategorie-Variable: mitoses
Block 0: Anfangsblock
Omnibus-Tests der Modellkoeffizienten

<table>
<thead>
<tr>
<th>Schritt</th>
<th>-2 Log-Likelihood</th>
<th>Änderung vorangegangenen Schritt</th>
<th>Änderung vorangegangenen Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>5963,947</td>
<td>425,720</td>
<td>10,000</td>
</tr>
<tr>
<td>2b</td>
<td>5964,109</td>
<td>425,551</td>
<td>10,000</td>
</tr>
</tbody>
</table>

a. Variable(n) eingegeben in Schritt Nr. 1: pT pN BREgrade mitoses BMP24YN
b. Variable entfernt in Schritt Nr. 2: mitoses
d. Beginnen mit Block-Nr. 1. Methode = Rückwärts schrittweise (Wald)

细微变量在等式

<table>
<thead>
<tr>
<th>Schritt</th>
<th>B</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Signifikanz</th>
<th>Exp(B)</th>
<th>95,0% Konfidenzinterv. für Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1(1)</td>
<td>-.737</td>
<td>.157</td>
<td>22,253</td>
<td>3</td>
<td>.000</td>
<td>.478</td>
<td>.352</td>
</tr>
<tr>
<td>P1(2)</td>
<td>-.423</td>
<td>.134</td>
<td>9,944</td>
<td>1</td>
<td>.002</td>
<td>.655</td>
<td>.503</td>
</tr>
<tr>
<td>P1(3)</td>
<td>-.427</td>
<td>.191</td>
<td>4,993</td>
<td>1</td>
<td>.025</td>
<td>.652</td>
<td>.449</td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2(2)</td>
<td>-.892</td>
<td>.140</td>
<td>40,909</td>
<td>1</td>
<td>.000</td>
<td>.410</td>
<td>.312</td>
</tr>
<tr>
<td>BREgrade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREgrade(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREgrade(2)</td>
<td>-.673</td>
<td>.175</td>
<td>14,821</td>
<td>1</td>
<td>.000</td>
<td>.510</td>
<td>.362</td>
</tr>
<tr>
<td>mitoses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitoses(1)</td>
<td>-.081</td>
<td>.202</td>
<td>.162</td>
<td>1</td>
<td>.687</td>
<td>.922</td>
<td>.620</td>
</tr>
<tr>
<td>mitoses(2)</td>
<td>-.029</td>
<td>.144</td>
<td>.041</td>
<td>1</td>
<td>.840</td>
<td>.971</td>
<td>.732</td>
</tr>
<tr>
<td>BMP24YN</td>
<td>.193</td>
<td>.094</td>
<td>4,220</td>
<td>1</td>
<td>.040</td>
<td>1,213</td>
<td>1,009</td>
</tr>
</tbody>
</table>

Schritt 2

P1								
P1(1)								
P1(2)	-.423	.134	9,991	1	.002	.655	.504	.851
P1(3)	-.432	.190	5,159	1	.023	.649	.447	.943
P2								
P2(1)								
P2(2)	-.890	.139	40,798	1	.000	.411	.313	.540
BREgrade								
BREgrade(1)								
BREgrade(2)	-.730	.104	49,074	1	.000	.482	.393	.591
BMP24YN	.194	.094	4,267	1	.039	1,214	1,010	1,459
Variablen nicht in der Gleichung

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Score</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,163</td>
<td>2</td>
<td>.922</td>
</tr>
<tr>
<td>mitoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mitoses(1)</td>
<td>.122</td>
<td>1</td>
<td>.727</td>
</tr>
<tr>
<td>mitoses(2)</td>
<td>.000</td>
<td>1</td>
<td>.982</td>
</tr>
</tbody>
</table>

a. Chi-Quadrat-Residuen = 1,163 bei 2 df Sig. = .922

Kovariaten-Mittelwerte

<table>
<thead>
<tr>
<th>Kovariaten</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT(1)</td>
<td>.362</td>
</tr>
<tr>
<td>pT(2)</td>
<td>.480</td>
</tr>
<tr>
<td>pT(3)</td>
<td>.060</td>
</tr>
<tr>
<td>pN(1)</td>
<td>.501</td>
</tr>
<tr>
<td>pN(2)</td>
<td>.435</td>
</tr>
<tr>
<td>BREgrade(1)</td>
<td>.264</td>
</tr>
<tr>
<td>BREgrade(2)</td>
<td>.405</td>
</tr>
<tr>
<td>mitoses(1)</td>
<td>.533</td>
</tr>
<tr>
<td>mitoses(2)</td>
<td>.177</td>
</tr>
<tr>
<td>BMP24YN</td>
<td>.422</td>
</tr>
</tbody>
</table>

9.6. Statistische Untersuchungen des Multitumor-Gewebearrays

Ergebnisse des Fisher Exact Tests bei einem quantitativen Vergleich von Tumor- und Normalgewebe

<table>
<thead>
<tr>
<th>Gewebe</th>
<th>Signifikanz Ja/Nein</th>
<th>Signifikanz REM (0-2/3-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix uteri, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervix uteri, Adenokarzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Cervix uteri, CIS, CIN III, 1A1, 1B1</td>
<td>0,324</td>
<td>0,174</td>
</tr>
<tr>
<td>Cervix uteri, Plattenepithelzellkarzinom</td>
<td>0,277</td>
<td>0,100</td>
</tr>
<tr>
<td>Gallenblase, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallenblase, Adenokarzinom</td>
<td>0,028</td>
<td>0,053</td>
</tr>
<tr>
<td>Colon, normale Mucosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colon, Adenom, leichte Dysplasie</td>
<td>0,002</td>
<td>0,004</td>
</tr>
<tr>
<td>Colon, Adenom, mässige Dysplasie</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Colon, Adenom, schwere Dysplasie</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Colon, Karzinom</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>Magen Antrum, normale Mucosa</td>
<td>X/0,001</td>
<td>X/0,001</td>
</tr>
<tr>
<td>Magen Corpus, normale Mucosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magen, diffuses Adenokarzinom</td>
<td>X/0,1</td>
<td>X/0,100</td>
</tr>
<tr>
<td>Magen, gemischtes Adenokarzinom</td>
<td>1/0,003</td>
<td>X/0,000</td>
</tr>
<tr>
<td>Ileum, normale Mucosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dünn darm, Adenokarzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>endometroides Stroma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrium, endometroides Adenokarzinom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Endometrium, seröses Adenokarzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Endometrium, Proliferation</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Endometrium, Sekretion</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnblase, normales Urothel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harnblase, kleinzelliges Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Harnblase, nichtinvasives Urothelkarzinom, pTa</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Organ / Gewebe</td>
<td>Diagnose / Tumor</td>
<td>Häufigkeit</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Harnblase, invasives Urothelkarzinom, pT2-4</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Harnblase, sarkomatoides Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Harnblase, Plattenepithelkarzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Harnblase, Adenokarzinom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Harnblase, invertiertes Papillom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haut, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haut, Basiliom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Haut, Spinaliom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Haut, Naevuszellnaevus</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Haut, malignes Melanom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Haut, Merkelzelliarkarinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>benigner Hauttumor</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Dermatofibroma protuberans</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Glomustumor</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Hoden, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoden, andere Tumoren</td>
<td>0,110</td>
<td>0,357</td>
</tr>
<tr>
<td>Hoden, nicht seminomatöses Karzinom</td>
<td>0,093</td>
<td>0,181</td>
</tr>
<tr>
<td>Hoden, Seminom</td>
<td>0,259</td>
<td>0,091</td>
</tr>
<tr>
<td>Hoden, Teratom</td>
<td>0,182</td>
<td>0,455</td>
</tr>
<tr>
<td>Leber, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatozelluläres Karzinom</td>
<td>0,028</td>
<td>0,005</td>
</tr>
<tr>
<td>Lymphknoten, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CML</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>lymphoepithelialer Tumor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hodgkin Lymphom, gemischtzellig</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Hodgkin Lymphom, nodulär sklerosierend</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non Hodgkin Lymphom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MALT Lymphom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamma, apokrines Karzinom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, duktales Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, kribriformes Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, lobuläres Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, medulläres Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Mamma, muszinöses Karzinom</td>
<td>0,104</td>
<td>0,539</td>
</tr>
<tr>
<td>Mamma, Phylloides Tumor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, stromales Sarkom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mamma, tubuläres Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Mundhöhle, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mundhöhle, Plattenepithelkarzinom</td>
<td>0,578</td>
<td>1,000</td>
</tr>
<tr>
<td>Nebenschilddrüse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebenschilddrüse, Adenom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Nebenschilddrüse, Karzinom</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Niere, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niere, Onkozytom</td>
<td>0,560</td>
<td>X</td>
</tr>
<tr>
<td>Niere, klarzelliges Karzinom</td>
<td>0,196</td>
<td>1,000</td>
</tr>
<tr>
<td>Niere, papilläres Karzinom</td>
<td>0,616</td>
<td>1,000</td>
</tr>
<tr>
<td>Niere, chromophobes Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Angiomyolipom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Oesophagus, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Oesophagus, Plattenepithelkarzinom/Adenokarzinom/kleinzelliges Karzinom</td>
<td>0,639</td>
<td>0,495</td>
</tr>
<tr>
<td>Ovar, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovar, Brenner Tumor</td>
<td>0,258</td>
<td>0,505</td>
</tr>
<tr>
<td>Ovar, endometroides Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Ovar, muzinöses Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Ovar, seltene Tumoren</td>
<td>0,444</td>
<td>X</td>
</tr>
<tr>
<td>Ovar, seröses Karzinom</td>
<td>0,571</td>
<td>1,000</td>
</tr>
<tr>
<td>Pancreas, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreas, Adenokarzinom</td>
<td>0,038</td>
<td>0,018</td>
</tr>
<tr>
<td>Parotis, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parotis, Azinuszellkarzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Parotis, gemischtzelliges Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Parotis, karzinoider Tumor</td>
<td>0,385</td>
<td>X</td>
</tr>
<tr>
<td>Parotis, mucoepidermoides Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Penis, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penis, Karzinom</td>
<td>0,211</td>
<td>1,000</td>
</tr>
<tr>
<td>Prostata, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostata, hormonrefraktäres Karzinom</td>
<td>1,000</td>
<td>0,395</td>
</tr>
<tr>
<td>Prostata, nicht behandeltes Karzinom</td>
<td>1,000</td>
<td>0,161</td>
</tr>
<tr>
<td>Schilddrüse, Normalgewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schilddrüse, Adenom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Schilddrüse, anaplastisches Adenom</td>
<td>1,000</td>
<td>X</td>
</tr>
<tr>
<td>Schilddrüse, folliculäres Karzinom</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Schilddrüse, medulläres Adenom</td>
<td>0,061</td>
<td>1,000</td>
</tr>
<tr>
<td>Schilddrüse, papilläres Karzinom</td>
<td>1,000</td>
<td>X</td>
</tr>
</tbody>
</table>
Lebenslauf

Persönliche Daten

Name: Steinert
Vorname: Susanne
Anschrift: Georg-Weerth-Str. 20, 07749 Jena
Telefon: 03641/527830
E-Mail: Susanne.Steinert@med.uni-jena.de
Geburtsdatum: 02.06.1981
Geburtsort: Burgstädt
Familienstand: ledig
Staatsangehörigkeit: deutsch

Schulbildung

09/1988-07/1992 allgemeinbildende polytechnische Oberschule
„Geschwister-Scholl“, Limbach-Oberfrohna
08/1992-02/1999 Albert-Schweitzer-Gymnasium, Limbach-Oberfrohna
02/1999-07/1999 Europäisches Gymnasium Waldenburg
07/1999 Schulabschluss: Allgemeine Hochschulreife

Hochschulbildung

10/1999-05/2004 Studium der Biochemie an der Friedrich-Schiller-Universität Jena
08/2001 Vordiplom Biochemie

05/2004 Diplom Biochemie

Doktorarbeit

06/2004-02/2008 Promotionsarbeit „Untersuchungen zur tumorbiologische Relevanz von BMP-2 im Mammakarzinom“

Nebentätigkeit

07/2002-02/2003 Studentische Hilfskraft am Hans-Knöll-Institut, Jena

Sonstige Kenntnisse

EDV Anwendungsorientierte Kenntnisse im Umgang mit Microsoft Word, PowerPoint und Excel sowie SPSS

Sprache gute Sprachkenntnisse in Englisch

Jena, den 25.02.2008
Kongressbeiträge

Pietraszczyk M, Steinert S, Hortschansky P, Wölfl S, Höffken K, Clement JH
Analysis of the biological activity of bone morphogenetic proteins with an improved 96-well plate assay
DKGL, Jena 2005

Steinert S, Pusch L, Kroll T, Hortschansky P, Knoth S, Wölfl S, Höffken K, Clement JH
Comparison of chronic and single application of bone morphogenetic protein 2 (BMP2) by expression profiling
29. Jahrestagung der Deutschen Gesellschaft für Zellbiologie (DGZ), Braunschweig, 29.03.-01.04.2006

Steinert S, Pusch L, Kroll T, Hortschansky P, Knoth S, Wölfl S, Höffken K, Clement JH
Comparison of chronic and single application of bone morphogenetic protein 2 (BMP2) by expression profiling (aktualisiert)
6th International Conference on Bone Morphogenetic Proteins, Dubrovnik, 11.-15.10.2006

Mangner N, Sänger J, Steinert S, Schwalbe M, Schmidt A, Clement JH
Expression of BMP3 ist positively correlated to the progesterone receptor level in breast cancer
6th International Conference on Bone Morphogenetic Proteins, Dubrovnik, 11.-15.10.2006

Steinert S, Pusch L, Kroll T, Hortschansky P, Knoth S, Wölfl S, Höffken K, Clement JH
Single dose application of BMP-2 and overexpression of BMP-2 affect different sets of genes involved in tumorigenesis
10th Joint Meeting of the Signal Transduction Society, Weimar, 02.-04.11.2006

Steinert S, Sänger J, Schmidt A, Hartmann A, Höffken K, Clement JH
BMP-2 ist ein günstiger prognostischer Marker beim nodal-negativen invasiv-duktalen Mammakarzinom
52. Tagung „Thüringer Internisten“, Jena, 09.-10.11.2007
Dieser Kongressbeitrag wurde mit dem Posterpreis für Grundlagenforschung der Gesellschaft für Innere Medizin Thüringens e.V. ausgezeichnet.
Publikationen

BMP-2 reguliert das Migrationsverhalten von Mammakarzinomzellen \textit{in vitro}
BIOspektrum 11: 470-471

Differential expression of cancer related genes by single and permanent exposure to bone morphogenetic protein 2 (BMP-2)
J Cancer Res Clin Oncol [akzeptiert]
Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität bekannt ist, ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben: Dr. Joachim Clement, Dr. Jörg Sänger,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe,

dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena, den 25.02.2008

Susanne Steinert
Danksagung

Ich danke Herrn Prof. Dr. K. Höffken für die Bereitstellung des Themas und die hervorragenden Möglichkeiten zur Bearbeitung im Onkologischen Forschungslabor.

Mein besonderer Dank gilt Dr. J.H. Clement für die hervorragende Unterstützung, seine stete Bereitschaft entstandene Fragen zu beantworten und für viele anregende wissenschaftliche Diskussionen. Ein besonderes Dankeschön auch für die immerwährende Förderung und „Rückendeckung“, die mir Kraft und Ansporn für das Gelingen dieser Arbeit gegeben haben.

Mein Dank gilt Dr. habil. A. Schmidt und Dr. J. Sänger für die Bereitstellung der Tumorproben und für die ausgezeichneten Möglichkeiten zur Durchführung der Immunhistochemien und eine tolle Arbeitsatmosphäre.

Ich danke dem ganzen Team vom Onko-Labor für die freundliche Aufnahme und die Hilfe bei der Bewältigung der kleinen und großen Probleme des Laboralltags. Die gegenseitige Unterstützung und der stete Vorrat an Kuchen und Schokolade haben mir die Promotionszeit versüsst!!!

Ich möchte mich herzlichst bei meinen Prinzen und Prinzessinnen bedanken: Buhn, Franzi, Falko, Hutzel, Claudia, Holger, Krafti und Marc. Ihr habt mein Leid geteilt und meine Freude verdoppelt und mir durch die eine oder andere Ablenkung neue Kraft gegeben!

