Packing edge-disjoint cycles in graphs and the cyclomatic number

Harant, Jochen; Rautenbach, Dieter; Regen, Friedrich; Recht, Peter

2008
Packing Edge-Disjoint Cycles in Graphs and the Cyclomatic Number

Jochen Harant1, Dieter Rautenbach1,3, Friedrich Regen1, and Peter Recht2

1 Institut f"{u}r Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: \{ jochen.harant, dieter.rautenbach, friedrich.regen \}@tu-ilmenau.de

2 Lehrstuhl f"{u}r Operations Research und Wirtschaftsinformatik, Universit"{a}t Dortmund, D-44227 Dortmund, Germany, email: peter.recht@tu-dortmund.de

3 Corresponding author

Abstract. For a graph G let $\mu(G)$ denote the cyclomatic number and let $\nu(G)$ denote the maximum number of edge-disjoint cycles of G. We prove that for every $k \geq 0$ there is a finite set $P(k)$ such that every 2-connected graph G for which $\mu(G) - \nu(G) = k$ arises by applying a simple extension rule to a graph in $P(k)$. Furthermore, we determine $P(k)$ for $k \leq 2$ exactly.

Keywords. graph; cycle; packing; cyclomatic number

1 Introduction

We consider finite and undirected graphs $G = (V_G, E_G)$ with vertex set V_G and edge set E_G which may contain multiple edges but no loops. We use standard terminology \cite{10} and only recall some basic notions. If an edge $e \in E_G$ has the two incident vertices u and v in V_G, then we write $e = uv$. The degree $d_G(u)$ in G of a vertex $u \in V_G$ is the number of edges $e \in E_G$ incident with u. A path in G of length $l \geq 0$ is a sequence $v_0e_1v_1e_2\ldots e_lv_l$ of distinct vertices $v_0, v_1, \ldots, v_l \in V_G$ and distinct edges $e_i = v_{i-1}v_i \in E_G$ for $1 \leq i \leq l$. A cycle in G of length $l \geq 2$ is a sequence $v_1e_2v_2\ldots e_lv_lv_1$ such that $v_1e_2v_2\ldots e_lv_l$ is a path of length $(l - 1)$ and $e_l = v_lv_1 \in E_G$. The subgraph induced by some set $U \subseteq V_G$ is denoted by $G[U]$. An ear of G is a path in G of length at least 1 such that all internal vertices have degree 2 in G. An ear of G is maximal, if it is not properly contained in another ear of G. If P is an ear of G and I is the set of internal vertices of P, then we say that G arises from $G' = (V_G \setminus I, E_G \setminus E_P)$ by adding the ear P and that G' arises from G by removing the ear P. Whitney \cite{10,13} proved that a graph of order at least 2 is 2-connected if and only if it has an ear decomposition, i.e. it arises from a chordless cycle by iteratively adding ears. A graph is a cactus graph, if all of its cycles are edge-disjoint which is equivalent to the fact that all of its blocks are cycles or edges.

The cyclomatic number of a graph G with $\kappa(G)$ components is

$$\mu(G) = |E_G| - |V_G| + \kappa(G).$$
A cycle packing \(C \) of order \(l \) is a set of \(l \) edge-disjoint cycles of \(G \). The maximum order of a cycle packing of \(G \) is denoted by

\[\nu(G). \]

A cycle packing of maximum order is called optimal. For a cycle packing \(C \), the set of edges contained in some cycle in \(C \) is denoted by

\[E_C. \]

Our research in the present paper is motivated by the well-known inequality

\[\nu(G) \leq \mu(G) \]

which holds for every graph \(G \). As our main result, we prove that for every fixed \(k \in \mathbb{N}_0 = \{0, 1, 2, \ldots\} \) there is a finite set \(\mathcal{P}(k) \) of graphs such that every 2-connected graph \(G \) for which

\[\mu(G) - \nu(G) = k \]

arises by applying a simple extension rule to one of the graphs in \(\mathcal{P}(k) \), i.e. there are essentially only finitely many configurations which cause \(\mu(G) \) and \(\nu(G) \) to deviate by \(k \). Furthermore, we determine \(\mathcal{P}(k) \) for \(k \leq 2 \) exactly.

The results which are most related to ours concern the minimum difference \(p(k) \) between the size \(|E_G| \) and the order \(|V_G| \) of a graph \(G \) which forces the existence of \(k \) edge-disjoint cycles, i.e.

\[p(k) = \min \{p \mid \nu(G) \geq k \forall G = (V_G, E_G) \text{ with } |E_G| - |V_G| \geq p \}. \]

There are several classical results concerning this parameter

\[
p(k) = \begin{cases}
0 & , k = 1 \\
4 & , k = 2 \quad [6] \\
10 & , k = 3 \quad [8] \\
18 & , k = 4 \quad [1, 14] \\
\Theta (k \log k) & \quad [6, 11, 12, 14].
\end{cases}
\]

Recently, algorithmic aspects of cycle packing problems have received considerable attention. While the problem to determine optimal cycle packings is APX-hard \([3, 4, 7, 9]\) and remains NP-hard even when restricted to Eulerian graphs of maximum degree 4 \([2]\), there are simple approximation algorithms \([3, 7]\).

In Section 2 we prove our main result about the finiteness of \(\mathcal{P}(k) \) and in Section 3 we determine \(\mathcal{P}(k) \) for \(k \leq 2 \) exactly.
2 Graphs G with $\mu(G) - \nu(G) = k$

In this section we study the graphs G for which $\mu(G)$ and $\nu(G)$ differ by some fixed k. It is well-known — and easy to see — that the graphs G with $\mu(G) - \nu(G) = 0$ are exactly the cactus graphs, i.e. their blocks are either edges or arise by possibly subdividing the edges of a cycle of length 2.

For $k \in \mathbb{N}_0$ let

$$G(k)$$

denote the set of 2-connected graphs G with $\mu(G) - \nu(G) = k$. In view of the above remark about cactus graphs, we obtain that $G \in G(0)$ if and only if G is a cycle or an edge. The next lemma implies that in order to characterize the graphs G with $\mu(G) - \nu(G) = k$, it suffices to characterize the 2-connected graphs with this property.

Lemma 1 Let $k \in \mathbb{N}_0$. If G is a graph with $\mu(G) - \nu(G) = k$ whose blocks B_1, B_2, \ldots, B_l satisfy $B_i \in G(k_i)$ for $1 \leq i \leq l$, then $k = k_1 + k_2 + \cdots + k_l$.

Proof: This follows immediately from the fact that every cycle of G is entirely contained in some block of G. \qed

In order to explain the simple extension rule mentioned in the introduction, we need some more notation.

An l-cycle-path is a cactus with at most 2 endblocks and exactly $l \in \mathbb{N}_0$ cycles.

An l-cycle-path-subgraph of a graph $G = (V_G, E_G)$ with attachment vertices u and v is an induced subgraph $H = (V_H, E_H)$ of G which is an l-cycle-path such that u and v are two distinct vertices of H for which $d_G(w) = d_H(w)$ for all $w \in V_H \setminus \{u, v\}$ and $H + uv = (V_H, E_H \cup \{uv\})$ is 2-connected, i.e. only the attachment vertices may have neighbours outside of V_H and, if H has more than one block, then the attachment vertices are two non-cutvertices from the two endblocks of H. Note that a 0-cycle-path-subgraph of G with attachment vertices u and v is an ear of G with endvertices u and v.

A graph $H = (V_H, E_H)$ is said to arise from a graph $G = (V_G, E_G)$ by replacing the edge $e = uv \in E_G$ with an l-cycle-path, if H has an l-cycle-path-subgraph $Q = (V_Q, E_Q)$ with attachment vertices u and v such that (cf. Figure 1)

$$V_G = V_H \setminus (V_Q \setminus \{u, v\})$$
$$E_G = (E_H \setminus E_Q) \cup \{e\}.$$
A graph H is said to extend a graph G, if there is an optimal cycle packing C of G such that H arises from G by replacing every edge $e \in E_C$ with a 0-cycle-path and replacing every edge $e \in E_G \setminus E_C$ with an l-cycle-path for some $l \in \mathbb{N}_0$. A graph H is said to be reduced, if there is no graph G different from H such that H extends G.

For $k \in \mathbb{N}_0$ let
\[P(k) \]
denote the set of reduced graphs in $G(k)$. Note that $P(0)$ contains exactly two elements, an edge and a cycle of length 2. It is instructive to verify that for $k \geq 1$ a graph in $P(k)$ contains neither vertices of degree at most 2 nor l-cycle-path-subgraphs for $l \geq 2$.

The next lemma summarizes some important properties of the above extension notion.

Lemma 2 If $G_0 \in G(k)$, G_1 extends G_0, and G_2 extends G_1, then
- (i) $G_1 \in G(k)$,
- (ii) G_2 extends G_0, and
- (iii) every graph in $G(k)$ extends a graph in $P(k)$.

Proof: Let C_0 be an optimal cycle packing of G_0 such that G_1 arises from G_0 by replacing every edge $e \in E_{G_0}$ with an l_e-cycle-path L_e with $l_e = 0$ for $e \in E_{C_0}$. Let C_1' denote the set of the
\[\sum_{e \in E_{G_0}} l_e \]
edge-disjoint cycles contained in the l_e-cycle-paths L_e for $e \in E_{G_0}$.

Clearly,
\[\mu(G_1) = \mu(G_0) + |C_1'|. \]

Since the set of cycles in G_1 which are subdivisions of the cycles in C_0 together with the cycles in C_1' form a cycle packing of G_1, we obtain $\nu(G_1) \geq \nu(G_0) + |C_1'|$.

Let C_1 be an optimal cycle packing of G_1 such that G_2 arises from G_1 by replacing every edge $f \in E_{G_1}$ with an h_f-cycle-path H_f with $h_f = 0$ for $f \in E_{C_1}$ and such that subject to this condition
\[|C_1' \cap C_1| \]
is largest possible.

If E_1' is an arbitrary set of edges which contains exactly one edge from each cycle in C_1', then removing the $|C_1'|$ edges in E_1' from G_1 can delete at most $|C_1'|$ cycles in C_1, which implies $\nu(G_0) \geq \nu(G_1) - |C_1'|$.

In view of the above, this implies that
\[\nu(G_1) = \nu(G_0) + |C_1'| \] (1)
and hence (i).
Furthermore, this implies that every edge contained in a cycle in C'_1 belongs to E_{C_1} and edges contained in different cycles in C'_1 are contained in different cycles in C_1. (Otherwise there would be a choice for E'_1 such that removing the edges in E'_1 would only delete at most $|C'_1| - 1$ cycles, which implies the contradiction $\nu(G_0) \geq \nu(G_1) - |C'_1| + 1$.)

If follows that, if $l_e \geq 2$ for some $e \in E_{G_0}$, then C_1 necessarily contains the l_e edge-disjoint cycles contained in the l_e-cycle-path L_e.

Furthermore, if $l_e = 1$ for some $e \in E_{G_0}$ and C_1 does not contain the unique cycle C_e contained in the 1-cycle-path L_e, then there are exactly two cycles C'_e and C''_e in C_1 which contain E_{C_e}. Since $(E_{C'_e} \cup E_{C''_e}) \setminus E_{C_e}$ contains the edge set of a cycle C''''_e,

$$\tilde{C}_1 = (C_1 \setminus \{C'_e, C''_e\}) \cup \{C_e, C''''_e\}$$

is an optimal cycle packing of G_1 such that $E_{\tilde{C}_1} \subseteq E_{C_1}$ and

$$|C'_1 \cap \tilde{C}_1| > |C'_1 \cap C_1|$$

which is a contradiction to the choice of C_1.

Hence $C'_1 \subseteq C_1$. By (1), the cycles in $C_1 \setminus C'_1$ are the subdivisions of the cycles in an optimal cycle packing C'_0 of G_0. Clearly, $l_e > 0$ implies $e \notin E_{C'_0}$. Since $h_f > 0$ for some $f \in E_{G_1} \setminus E_{C_1}$ implies that f is a bridge of an l_e-cycle-path L_e with $e \notin E_{C'_e}$, it follows that G_2 extends G_0, i.e. (ii) holds.

By definition, for every graph $H \in \mathcal{G}(k)$ there is a graph $G \in \mathcal{P}(k)$ such that H arises from G by a finite sequence of extensions. Applying (ii) in an inductive argument implies that H extends G and (iii) follows. This completes the proof. \(\square\)

We proceed to our main result.

Theorem 3 The set $\mathcal{P}(k)$ is finite for every $k \in \mathbb{N}_0$.

Proof: We will prove the result by induction on k.

Since $|\mathcal{P}(0)| = 2$, we may assume that $k \geq 1$.

We will argue that every graph in $\mathcal{P}(k)$ arises from some graph in $\mathcal{P}(k-1)$ by applying a subset of a finite set of operations. Since, by induction, $\mathcal{P}(k-1)$ is finite, this clearly implies that $\mathcal{P}(k)$ is finite.

Let $H \in \mathcal{P}(k)$.

If a graph H^- arises by removing an ear from H, then

$$\nu(H) - 1 \leq \nu(H^-) \leq \nu(H) \quad \text{and} \quad \mu(H^-) = \mu(H) - 1,$$

i.e. $H^- \in \mathcal{G}(k-1)$ or $H^- \in \mathcal{G}(k)$. Therefore, an ear decomposition of H yields a sequence of 2-connected graphs

$$G_0, G_1, \ldots, G_l$$

such that

- $G_l = H$,

5
\begin{itemize}
 \item G_i arises by adding the ear P_i to G_{i-1} for $1 \leq i \leq l$,
 \item $\nu(G_0) = \nu(G_1)$ and
 \item $\nu(G_{i-1}) = \nu(G_i) - 1$ for $2 \leq i \leq l$.
\end{itemize}

We assume that the sequence is chosen to be shortest possible, i.e. l is minimum.

Note that $G_0 \in \mathcal{G}(k-1)$ and $G_i \in \mathcal{G}(k)$ for $1 \leq i \leq l$.

By Lemma 2 (iii), G_0 extends some graph $G \in \mathcal{P}(k-1)$.

Let C_l be an optimal cycle packing of $H = G_l$.

Since for $l \geq 2$ we have $\nu(G_{l-1}) = \nu(G_l) - 1$ and removing the ear P_l from G_l can only affect one cycle from C_l, the ear P_l is contained in a unique cycle $C_l \in C_l$ and

\[C_{l-1} := C_l \setminus \{C_l\} \]

is an optimal cycle packing of G_{l-1}. Iterating this argument, we obtain that for $i = l, (l-1), (l-2), \ldots, 2$, the ear P_i is contained in a unique cycle $C_i \in C_i \subseteq C_l$

and that

\[C_{i-1} := C_i \setminus \{C_i, C_{i+1}, \ldots, C_l\} \]

is an optimal cycle packing of G_{i-1}. Note that this argument does not apply to $i = 1$, because $\nu(G_0) = \nu(G_1)$.

Since each of the ears in

\[\mathcal{E} = \{P_2, P_3, \ldots, P_l\} \]

is contained in a unique different cycle in C_l, no internal vertex of any P_i is contained in any P_j for $2 \leq i \leq l$ and $1 \leq j \leq l$ with $i \neq j$. Since H is reduced and hence has no vertex of degree 2, this implies that the ears in \mathcal{E} all have length 1, i.e. they are all edges.

Let $P = v_0e_1v_1e_2v_2\ldots erv_r$

be a maximal ear of G_1. Since G_1 is 2-connected and $k \geq 1$, the endvertices v_0 and v_r of P are of degree at least 3. Let

\[I = \{v_1, v_2, \ldots, v_{r-1}\} \]

be the set of internal vertices of P.
The next claim is obvious.

Claim A If an ear P_i for $2 \leq i \leq l$ has exactly one endvertex in I, then C_i contains either the edge e_1 or the edge e_r. Therefore, at most two ears in \mathcal{E} have exactly one endvertex in I.

Claim B No ear P_i for $2 \leq i \leq l$ has its two endvertices in I.

Proof of Claim B: For contradiction, we assume that the index i with $2 \leq i \leq l$ is minimum such that P_i has the endvertices $v_x, v_y \in I$ for $1 \leq x < y \leq r-1$. Since $\nu(G_{i-1}) = \nu(G_i) - 1$, the cycle C_i is formed by P_i and the subpath P'' of P between v_x and v_y. This implies that no internal vertex of P' is an endvertex of an ear $P_j \in \mathcal{E} \setminus \{P_i\}$. Hence P_i is an ear of H and C_i is a 1-cycle-path-subgraph of H.

Let H' arise from H by removing the ear P_i. If $\nu(H') = \nu(H)$, we may choose $\tilde{G}_0 = H'$, $\tilde{P}_1 = P_i$ and $\tilde{G}_1 = H$ contradicting the choice of the sequence G_0, G_1, \ldots, G_l as shortest possible. Hence $\nu(H') = \nu(H) - 1$. This implies that H' has an optimal cycle packing not using the edges of P'' and H is not reduced, which is a contradiction. □

Claim C G_1 does not contain a 2-cycle-path-subgraph.

Proof of Claim C: For contradiction, we assume that Q is a 2-cycle-path-subgraph of G_1 with attachment vertices u and v. We may assume that $d_Q(u), d_Q(v) \geq 2$, i.e. that the 2 cycles C' and C'' of Q are the endblocks of Q.

Clearly, for every optimal cycle packing \mathcal{C}'_1 of G_1, we have $E_{C'} \cup E_{C''} \subseteq E_{\mathcal{C}_1}$. This implies that $E_{C'} \cup E_{C''} \subseteq E_{C_1}$ and, by Claims A and B, no ear in \mathcal{E} has an endvertex in $V_Q \setminus \{u, v\}$. Hence Q is also a 2-cycle-path-subgraph of H and H is not reduced, which is a contradiction. □

Since G_1 arises by adding the ear P_1 to G_0, Claim C implies that G_0 does not contain an s-cycle-path-subgraph for $s \geq 6$. Since every s-cycle-path-subgraph for $s \leq 5$ yields at most $2 \cdot 5 + 6 = 16$ maximal ears, this implies that the number of maximal ears of G_0 is at most $16|E_G|$ and hence the number of maximal ears of G_1 is at most $16|E_G| + 3$.

Since H is reduced and hence has no vertex of degree 2, Claim A implies that no maximal ear of G_1 has more than 2 internal vertices. This implies that the order $|V_{G_1}|$ and size $|E_{G_1}|$ of G_1 is bounded in terms of the size $|E_G|$ of G.

Since all ears in \mathcal{E} are edges between vertices of G_1, the number of ears in \mathcal{E} with different endvertices is bounded in terms of $|V_{G_1}|$, i.e. it is bounded in terms of $|E_G|$.

Furthermore, since the ears in \mathcal{E} all lie in different edge-disjoint cycles, the number of ears in \mathcal{E} which have the same endvertices is bounded by the size $|E_{G_1}|$ of G_1, i.e. it is bounded in terms of $|E_G|$.

Altogether, G_1 arises from G by applying a subset of a set of operations whose cardinality is bounded in terms of $|E_G|$, and H arises from G_1 by applying a subset of a set of operations whose cardinality is also bounded in terms of $|E_G|$.
This completes the proof. □

The reader should note that the proof of Theorem 3 yields a — rather inefficient — algorithm which for \(k \geq 1 \) allows to derive \(\mathcal{P}(k) \) from \(\mathcal{P}(k-1) \) and has a running time which is bounded in terms of \(|\mathcal{P}(k-1)|\) and the maximum size of graphs in \(\mathcal{P}(k-1) \). Therefore, for every fixed \(k \), we can — in principle — determine \(\mathcal{P}(k) \) in finite time.

We finish this section with another algorithmic consequence of Theorem 3.

Let \(k \in \mathbb{N}_0 \) be fixed and let \(G \) be a fixed graph in \(\mathcal{P}(k) \).

For a given 2-connected graph \(H \) as input, we can decide in polynomial time whether \(H \) extends \(G \). The simplest argument implying this might be to consider all injective mappings of \(V_G \) to \(V_H \) and check whether the edges of \(G \) can be suitable replaced by cycle-paths in order to obtain \(H \). This can clearly be done in polynomial time.

Therefore, in view of Lemma 1 and Theorem 3, for a given graph \(H \) as input, we can decide in polynomial time whether \(\mu(H) - \nu(H) = k \). Furthermore, in view of the proof of Lemma 2, we can also efficiently construct an optimal cycle packing of \(H \) — even all of them — in this case.

3 \(\mathcal{P}(1) \) and \(\mathcal{P}(2) \)

In this section we illustrate Theorem 3 and determine \(\mathcal{P}(1) \) and \(\mathcal{P}(2) \) explicitly.

The following lemma captures a straightforward yet important observation which was essentially also used by the proof of Theorem 3.

Lemma 4 Let \(k \geq 1 \).

(i) Every graph \(H \in \mathcal{P}(k) \) arises by adding an edge to a graph \(G \) such that either \(\nu(G) = \nu(H) \) and \(G \) extends a graph in \(\mathcal{P}(k-1) \), or \(\nu(G) = \nu(H) - 1 \) and \(G \) extends a graph in \(\mathcal{P}(k) \).

(ii) Let \(Q \subseteq \mathcal{P}(k) \).

If every graph \(H \in \mathcal{P}(k) \) which arises by adding an edge to a graph \(G \) such that either \(\nu(G) = \nu(H) \) and \(G \) extends a graph in \(\mathcal{P}(k-1) \), or \(\nu(G) = \nu(H) - 1 \) and \(G \) extends a graph in \(Q \), also belongs to \(Q \), then \(Q = \mathcal{P}(k) \).

Proof: (i) Let \(H \in \mathcal{P}(k) \) and let \(P \) be the last ear in some ear decomposition of \(H \).

Since \(H \) is reduced, \(P \) has length 1, i.e. it is an edge. Let \(G \) arise by removing \(P \) from \(H \).

Clearly, \(\mu(G) = \mu(H) - 1 \) while \(\nu(G) = \nu(H) \) or \(\nu(G) = \nu(H) - 1 \).

By the definition of \(\mathcal{P}(k) \), \(\nu(G) = \nu(H) \) implies that \(G \) extends a graph in \(\mathcal{P}(k-1) \) and \(\nu(G) = \nu(H) - 1 \) implies that \(G \) extends a graph in \(\mathcal{P}(k) \).

(ii) Let \(H \in \mathcal{P}(k) \).
Iteratively deleting edges as in (i) and reducing the constructed graphs, we obtain a sequence \(G_0, G_1, \ldots, G_l \) such that \(G_0 \in \mathcal{P}(k-1) \), \(G_i \in \mathcal{P}(k) \) for \(1 \leq i \leq l \), \(G_i \) contains an edge \(e_i \) such that \(G_i - e_i \) extends \(G_{i-1} \) for \(1 \leq i \leq l \) and \(G_l = H \).

Since \(G_{i-1} \) has less edges than \(G_i \) for \(1 \leq i \leq l \), the sequence is finite.

Inductively applying the hypothesis, we obtain that \(G_i \in \mathcal{Q} \) for \(1 \leq i \leq l \), i.e. \(H \in \mathcal{Q} \) which implies \(\mathcal{Q} = \mathcal{P}(k) \). □

Note that Lemma 4 (ii) yields a criterion to check whether some subset \(\mathcal{Q} \) of \(\mathcal{P}(k) \) already contains all of \(\mathcal{P}(k) \). Therefore, the proofs of the following two results reduce to tedious yet straightforward case analysis. The following result is in fact equivalent to a result in [5].

Theorem 5 \(\mathcal{P}(1) = \{ K^3_2 \} \) where \(K^3_2 \) is the unique graph with two vertices and three parallel edges (cf. Figure 2).

Proof: It is easy to verify that \(K^3_2 \in \mathcal{P}(1) \).

Note that the only graphs extending graphs in \(\mathcal{P}(0) \) are cycle-paths. This easily implies that, if \(H \in \mathcal{P}(1) \) arises by adding an edge to a graph \(G \) with \(\nu(G) = \nu(H) \) such that \(G \) extends a graph in \(\mathcal{P}(0) \), then \(H = K^3_2 \).

Furthermore, if \(H \in \mathcal{P}(1) \) arises by adding an edge to a graph \(G \) with \(\nu(G) = \nu(H) - 1 \) and \(G \) extends \(K^3_2 \), then \(H \) extends \(K^3_2 \). Since \(H \) is reduced, we obtain \(H = K^3_2 \).

By Lemma 4 (ii), the proof is complete. □

![Figure 2](image)

Figure 2 \(\mathcal{P}(1) = \{ K^3_2 \} \).

We say that the graphs which arise from one of the two graphs \(G_1 \) or \(G_2 \) in Figure 3 by contracting a subset of the edges indicated by dashed lines are *generated from* \(G_1 \) or \(G_2 \), respectively.

![Figure 3](image)

Figure 3 The graphs \(G_1, G_2 \in \mathcal{P}(2) \).

Theorem 6 \(\mathcal{P}(2) \) consists of \(K_4 \) and all graphs which are generated from \(G_1 \) or \(G_2 \).
Proof: It is easy to verify that K_4 and all graphs which are generated from G_1 or G_2 belong to $\mathcal{P}(2)$.

Let $H \in \mathcal{P}(2)$.

We consider different cases.

Case 1 H arises by adding an edge uv to a graph G with $\nu(G) = \nu(H) = 1$ such that G extends K_2^3.

In this case G is a subdivision of K_2^3.

Since $\nu(H) = 1$, the vertices u and v are not contained in a common maximal ear of G. This implies that $H = K_4$.

Case 2 H arises by adding an edge uv to a graph G with $\nu(G) = \nu(H) \geq 2$ such that G extends K_2^3.

In this case G has a unique optimal cycle packing \mathcal{C}.

- If $d_G(u) = d_G(v) = 2$ and u and v lie on a maximal ear contained in a cycle in \mathcal{C}, then $H = G_2$.
- If $d_G(u) = d_G(v) = 2$ and u and v lie in different maximal ears contained in one cycle in \mathcal{C}, then H extends K_4. Since $H \neq K_4$, H is not reduced which is a contradiction.
- If $d_G(u) = d_G(v) = 2$ and u and v lie in different cycles in \mathcal{C}, then H is generated from G_1.
- If $d_G(u) \geq 3$, $d_G(v) = 2$ and v lies in a cycle in \mathcal{C}, then H extends K_4. Since $H \neq K_4$, H is not reduced which is a contradiction.

In all remaining subcases, H is generated from G_2.

Case 3 H arises by adding an edge uv to a graph G with $\nu(G) = \nu(H) - 1$ such that G extends K_4.

Let v_1, v_2, v_3, v_4 denote the vertices of K_4. We may assume that G arises by replacing the edges $v_i v_j$ with $l_{i,j}$-cycle-paths $Q_{i,j}$.

Since H is reduced and $\nu(G) = \nu(H) - 1$, the vertices u and v are not both contained in one of the cycle-paths $Q_{i,j}$ and we obtain that H is generated from G_1.

Case 4 H arises by adding an edge uv to a graph G with $\nu(G) = \nu(H) - 1$ such that G extends a graph generated from G_1.

It is easy to verify that $\nu(G) = \nu(H) - 1$ implies that H is generated from G_1.

Case 5 H arises by adding an edge uv to a graph G with $\nu(G) = \nu(H) - 1$ such that G extends a graph generated from G_2.

It is easy to verify that $\nu(G) = \nu(H) - 1$ implies that H is generated from K_4 or G_2.

By Lemma 4 (ii), the proof is complete. □
References

