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Distributional solution theory for linear DAEs

Stephan Trenn∗
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A solution theory for switched linear differential-algebraic equations (DAEs) is developed. To allow for non-smooth coordi-
nate transformation, the coefficients matrices may have distributional entries. Since also distributional solutions are considered
it is necessary to define a suitable multiplication for distribution. This is achieved by restricting the space of distributions to the
smaller space of piecewise-smooth distributions. Solution formulae for two special DAEs, distributional ordinary differential
equations (ODEs) and pure distributional DAEs, are given.
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1 Introduction

Differential algebraic equations (DAEs) are equations of the
form

Ex′ = Ax+ v,

where in general E and A are rectangular matrices. These
kind of equations arise for example when studying electrical
circuits, mechanical or chemical systems (see e.g. [1, I.1.3]),
in particular when these models are generated automatically.
In this note the standard assumptions for linear DAEs are
weakend in the following sense:

(i) The coefficient matrices E and A are time variant, but
not necessarily continuous, jumps are allowed.

(ii) The inhomogeneity v can exhibit jumps as well.

(iii) Inconsistent initial values are allowed.

The assumption (i) has its motivation in switched system,
which appear where structural changes may occur, e.g. when
some components of the system fail or when certain compo-
nents are switched on or off. For an overview on switched sys-
tems and for further motivation, see e.g. [2]. Possible switch-
ing in an input signal yields assumption (ii). If the complete
system is switched on at a certain time one cannot assume
that the initial value is consistent, this yields assumption (iii).
The aim of this note is to give first results of a solution theory
which can deal with the above assumptions or in other word a
solution theory for switched linear DAEs.

Distributional solutions for linear DAEs were considered
already in [3] or [4], mainly to deal with inconsistent initial
values. Hence a solution theory for switched linear DAEs
must encompass distributions as possible solutions. Distribu-
tional solutions are also unavoidable if one allows for jumps
in the inhomogeneity and no further assumptions on the “in-
dex” of the DAE is made (see e.g. [1, Remark 2.32]).

As long as the coefficient matricesE andA are constant (or
at least smooth) the step from classical solutions to distribu-
tional solutions is formally unproblematic because the prod-
ucts Ex′ and Ax are still well defined. However, if the coeffi-
cient matrices are not smooth anymore, the products Ex′ and

Ax are not defined because for distributions as originally in-
troduced by Schwartz [5] only the product with smooth func-
tions is defined. But there are even more obstacles for a dis-
tributional solutions theory for switched linear DAEs: For a
mathematical analysis it is often necessary to study “equiv-
alent” descriptions of a DAE. There are two obvious equiv-
alence transformations for DAEs: 1) multiplication of an in-
vertible matrix from the left, 2) coordinate change x = Tz for
some invertible matrix T . Applying these two transformations
yields a new “equivalent” DAE

SETz′ = (SAT − SET ′)z + Sv.

If E and A have jumps, then one may allow for jumps in S
and T , too. But then T ′ is only well defined in a distributional
sense.

Hence, a solution theory for switched DAEs should allow
for coefficient matrices with distributional entries.

But it is not possible to define a multiplication for arbitrary
distribution, this was already shown by Schwartz himself [5].

To resolve this problem only a subspace of distributions,
piecewise-smooth distributions, is considered. For piecewise-
smooth distributions it is possible to define a multiplica-
tion which 1) generalizes the multiplication of functions, 2)
is associative, and 3) obeys the product rule of differentia-
tion. However, this multiplication is not commutative any-
more. This allows to study distributional DAEs of the form
Ex′ = Ax + v where the variables x and v are piecewise-
smooth distributions and the coefficient matrices E and A
have piecewise-smoothly distributional entries.

There have been several other attempts to deal with distri-
butional solutions for DAEs. As already mentioned, [3] and
[4] introduced distributional solutions, but no general distri-
butional solution theory is introduced, problems like evalu-
ations of distributions at a certain point (which is needed to
speak of initial values) are not addressed. A first rigorous
distributional solution theory was given by Cobb in [6], he in-
troduced “piecewise continuous distributions” which encom-
pass piecewise-smooth distributions. However the space of
piecewise continuous distributions is not closed under differ-
entiation, and since Cobb seems to have overlooked this fact,
some of the results in [6] might need a reformulation. The
space of “impulsive smooth distributions” as defined in [7]
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is a subspace of piecewise-smooth distributions, where jumps
and Dirac impulses (and its derivatives) can only occur at time
t = 0. Piecewise-smooth distributions were used as an under-
lying solution space for time-invariant higher order Rosen-
brock systems in [8], “time-varying” topics like inconsistent
initial values and switched systems are not addressed.

There also have been numerous approaches to define a
multiplication for distributions (but not in the context of
DAEs). König [9] enlarged the space of distributions to de-
fine a multiplication, Fuchssteiner [10] introduced the space
of “almost bounded” distributions, see also [11], (which can
be identified with the space of piecewise-smooth distributions
of finite order) and he defined an associative multiplication
which ensures that the product rule for differentiation is ful-
filled. This non-commutative multiplication is identical to the
multiplication defined in this note for piecewise-smooth dis-
tributions, although the approach is very different. In [12] a
commutative but non-associative multiplication was defined
for another subspace of distributions. Finally there are sev-
eral textbooks on the topic of multiplications of distributions
[13, 14, 15].

Due to space limitation the proofs of the given results can-
not be included in this note.

2 Piecewise smooth distributions

Let C∞0 be the space of smooth1 functions f : R → R with
bounded support and let it be equipped with the topology
given in [16, IV.12], this function space is the space of test
functions. A distribution is a linear and continuous operator
D : C∞0 → R. The space of all distributions is denoted by
D. The space of locally integrable functions can injectively
embedded into the space of distributions, a locally integrable
function f is mapped to the distribution

fD : ϕ 7→
∫

R
fϕ.

The support of a distribution D is the complement of the
largest open set O ⊆ R for which D(ϕ) = 0 for all test
functions ϕ whose support is contained in O. The space of all
distributions whose support is contained in some set M ⊆ R
is denoted by DM . The distributional derivative dD

dt : D → D
is given by dD

dtD(ϕ) = −D(ϕ′), the term dD
dtD is often ab-

breviated as D′ and D(n) := ( dD
dt )

nD for n ∈ N. The Dirac
impulse δt at some time t ∈ R is given by δt(ϕ) = ϕ(t). It
is well known (e.g. [16, Satz 32.1]) that every distribution D
with point support, i.e. D ∈ D{t} for some t ∈ R, can be
written as

D =
n∑
i=0

αiδ
(i)
t , (1)

for some α0, . . . , αn ∈ R, n ∈ N.
Definition 2.1 A function f : R→ R is called piecewise-

smooth if, and only if, there exists an ordered set S =
{ si ∈ R | i ∈ Z } with limi→±∞ si = ±∞ and a family of
smooth functions { fi ∈ C∞ | i ∈ N } such that

f =
∑
i∈Z

1[si,si+1)fi,

where 1M : R → {0, 1} is the indicator function of the set
M ⊆ R.

A distribution D is called piecewise-smooth if, and only if,
there exists a piecewise-smooth function f , a locally finite set
T ⊆ R, and a family of distribution

{
Dt ∈ D{t} | t ∈ T

}
with point support such that

D = fD +
∑
t∈T

Dt. (2)

The regular part of D is Dreg := f and the impulse part of D
is D[·] :=

∑
t∈T Dt, hence D = (Dreg)D + D[·]. The space

of piecewise-smooth distributions is denoted by DpwC∞ .
The following list summarizes the important properties of

piecewise-smooth distributions:
Properties 2.2

(i) Point evaluation: Any piecewise-smooth distribution
D = fD +

∑
t∈T Dt ∈ DpwC∞ can be left and right

“evaluated” at any point t ∈ R by
D(t−) := f(t−) := lim

ε→0+
f(t− ε),

D(t+) := f(t+) = f(t),
Furthermore, the impulsive part at t is given by

D[t] :=

{
Dt, if t ∈ T,
0, otherwise.

(ii) Closed under differentiation and integration: The deriva-
tive of every piecewise-smooth distribution is again
piecewise-smooth. Furthermore, for every piecewise-
smooth distribution F and for every t0 ∈ R there exists
a unique piecewise-smooth distribution G =

∫
t0
F such

that G′ = F and G(t0−) = 0.

(iii) Multiplication: Let, for F ∈ DpwC∞ and t ∈ R,
δtF := F (t−)δt, F δt := F (t+)δt,

and, for n ∈ N,
δ
(n+1)
t F := (δ(n)

t F )′ − δ(n)
t F ′,

F δ
(n+1)
t := (Fδ(n)

t )′ − F ′δ(n)
t .

Now for G ∈ DpwC∞ , recalling (1) and (2), the product
of F and G is defined by

FG = (FregGreg)D + (Freg)DG[·] + F [·](Greg)D.

Note that this definition ensures that the product rule of
differentiation holds.

(iv) Restriction: The restriction of any piecewise-smooth dis-
tribution D ∈ DpwC∞ to an interval M = [a, b) ⊆ R is
given by

DM := (1M )DD,

in particular, using the representation (2),

DM = (fM )D +
∑
t∈T

1M (t)Dt,

where fM := 1Mf .

The multiplication 2.2(iii) might be called Fuchssteiner
multiplication because Fuchssteiner introduced a similar mul-
tiplication in [10], see also [11], although his approach is dif-
ferent to the one presented here. Fuchssteiner showed that this
multiplication is in some sense unique.

1 Throughout this note “smooth” means arbitrarily often differentiable.
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3 Distributional DAEs

3.1 Preliminaries

Consider the distributional DAE

Ex′ = Ax+ v, (3)

where E,A ∈ (DpwC∞)m×n, n,m ∈ N, are matrices with
piecewise-smoothly distributional entries, v ∈ (DpwC∞)m is
a piecewise-smoothly distributional inhomogeneity and x ∈
(DpwC∞)n is a vector with piecewise-smoothly distributional
entries. It is an open question how to characterize the “solv-
ability” of the DAE (3), even the definition of “solvability” is
not obvious.
For this reason only two special cases are studied, namely the
ODE case

x′ = Ax+ v,

and the so called pure DAE case

Nx′ = x+ v,

where the regular part Nreg is a strictly lower triangular ma-
trix.

These two special cases are motivated by the well known
characterization of regularity of classical DAEs with constant
or analytical coefficient: classical DAEs are regular, if and
only if, there exists a decoupling of the DAE into an ODE and
a pure DAE subsystem, this decoupling is called Weierstraß
normal form, see e.g. [1, Thm. 2.7] (constant coefficients) and
[17] (analytical coefficients). Furthermore, the property of
regularity is strongly connected to a certain concept of “solv-
ability”, hence for classical DAEs the solutions of the ODE
case and of the pure DAE case already characterize the solu-
tions of all “solvable” DAEs.

Invertibility of a matrix with piecewise-smoothly distribu-
tional entries is needed in the following and is also of general
interest. The next lemma gives a sufficient and necessary con-
dition for the invertibility of a matrix with entries in DpwC∞ .

Lemma 3.1 Let E ∈ (DpwC∞)n×n. Then E is invertible
in (DpwC∞)n×n, n ∈ N, if, and only if, Ereg is invertible in
(C∞pw)n×n. If E is invertible, its inverse is given by

E−1 = (E−1
reg )D + (E−1

reg )DE[·](E−1
reg )D.

This subsection finishes with a definition of an inconsistent
initial value problem (IIVP), due to space limitation it is not
possible to give more details on IIVPs.

Definition 3.2 (IIVP) Consider a distributional DAE (3)
and a given past trajectory xpast with support in (−∞, t0) ⊆ R
then x is the solution of the IIVP (3), x(−∞,t0) = xpast if, and
only if, x is a solution of

Eivpx
′ = Aivpx+ vivp,

where Eivp := E[t0,∞), Aivp := I(−∞,t0) + A[t0,∞), and
vivp := −xpast + v[t0,∞).

3.2 Main results for the ODE case

In this subsection the special distributional DAE (a distribu-
tional ODE)

x′ = Ax+ v (4)

with A ∈ (DpwC∞)n×n, n ∈ N, and v ∈ (DpwC∞)n is consid-
ered. The first result characterizes the solution of the homo-
geneous distributional ODE (4).

Theorem 3.3 Consider (4) with v = 0. For any t0 ∈ R
for which A[·](−∞,t0) = 0 there exists a matrix Φt0 ∈
(DpwC∞)n×n with Φt0(t0−) = I such that x ∈ (DpwC∞)n

is a solution of (4) if, and only if,
x = Φt0x0

for some x0 ∈ Rn.
The matrix Φt0 is given by

Φt0 = lim
i→∞

Φt0,i

where
Φt0,0 := φ(·, t0)D

and, for i ∈ N,

Φt0,i+1 := φ(·, t0)D

(
I +

∫
t0

φ(·, t0)−1
D A[·]Φt0,i

)
,

here φ(·, t0) is the transition matrix of the classical ODE
ẋ = Aregx.

At first glance it seems that the given formula for the tran-
sition matrix Φt0 is not of much practical use, however a prac-
tical calculation is possible:

Proposition 3.4 Consider the homogeneous distributional
ODE (4) with v = 0. Assume A[·](−∞,t0) = 0 for some
t0 ∈ R and let Φt0,i, i ∈ N, be given as in Theorem 3.3. Then
for all t ∈ R there exists N ∈ N such that, for all i ≥ N ,

(Φt0,i)(−∞,t) = (Φt0,N )(−∞,t).
Furthermore, if there exists t ∈ R such that A[·][t,∞) = 0,
then there exists N ∈ N such that

Φt0,N+1 = Φt0,N
and, in particular,

Φt0 = Φt0,N .
The next theorem characterizes the solutions of the dis-

tributional ODE (4) with an arbitrary inhomogeneity v ∈
(DpwC∞)n.

Theorem 3.5 Consider (4). For every t0 ∈ R for
which A[·](−∞,t0) = 0, there exists a linear mapping Ψt0 :
(DpwC∞)n → (DpwC∞)n with the property Ψt0(v)(t0−) = 0
such that x ∈ (DpwC∞)n is a solution of (4) with any
v ∈ (DpwC∞)n if, and only if,

x = Φt0x0 + Ψt0(v), (5)
where x0 ∈ Rn and Φt0 is the matrix from Theorem 3.3.
The linear mapping Ψt0 is given by

v 7→ Ψt0(v) = lim
i→∞

Ψt0,i(v),

where
Ψt0,0 :(DpwC∞)n → (DpwC∞)n,

v 7→ φ(·, t0)D

∫
t0

φ(·, t0)−1
D v

and, for i ∈ N,
Ψt0,i+1 : (DpwC∞)n → (DpwC∞)n,

v 7→ φ(·, t0)D

∫
t0

φ(·, t0)−1
D (v +A[·]Ψt0,i(v)) ,

here φ(·, t0) is the transition matrix of the classical ODE
ẋ = Aregx.
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It is now possible the conclude the following statement for
initial value problems for distributional ODEs.

Corollary 3.6 Every initial value problem (4), x(t0−) =
x0 ∈ Rn, with t0 ∈ R such that A[·](−∞,t0) = 0 has a unique
solution given by (5).

One might see no essential difference between the solution
theory of classical ODEs and distributional DAEs, but con-
sider the following example:

Example 3.7 All solution of x′ = −δ0x are given by

x = 1(−∞,0)x0, x0 ∈ R.
Note that every solution x fulfils x[0,∞) = 0. This is not
possible for classical ODEs; for those the set of all solutions
evaluated at any time fills the whole state space. Furthermore,
it is obvious that the initial value problem x(t0−) = x0 for
t0 > 0 is in general not solvable. Again, this is in strong con-
trast to classical ODEs, where every initial value problem is
solvable.

The reason for this difference is that the distributional tran-
sition matrix Φt0 as defined in Theorem 3.3 is in general not
invertible.

3.3 Main results for the pure DAE case

In this subsection consider the pure DAE

Nx′ = x+ v, (6)

where N ∈ (DpwC∞)n×n is such that Nreg is a strictly lower
triangular matrix. The key “ingredient” for the solution theory
for pure DAEs is the following result:

Lemma 3.8 Let N ∈ (DpwC∞)n×n, n ∈ N, be such that
Nreg is a strictly lower triangular matrix and consider the lin-
ear operator

N dD
dt :(DpwC∞)n → (DpwC∞)n,

x 7→
(
N dD

dt

)
(x) = Nx′

and define the power
(
N dD

dt

)i
: (DpwC∞)n → (DpwC∞)n,

i ∈ N, of this operator by(
N dD

dt

)0
= id := x 7→ x

and (
N dD

dt

)i+1
(x) = N

((
N dD

dt

)i(x)
)′
.

Then N dD
dt is nilpotent, i.e. there exists ν ∈ N such that

(N dD
dt )

ν = 0.
It is now very simple to characterize all solutions of the

pure DAE (6), because the pure DAE can be rewritten as a
linear operator equation

(N dD
dt − I)(x) = v,

and since by Lemma 3.8 the operator N dD
dt is nilpotent it is

easy to see that the operator (N dD
dt − I) : (DpwC∞)n →

(DpwC∞)n is bijective with inverse operator

(N dD
dt − I)−1 = −

ν−1∑
i=0

(N dD
dt )

i,

where ν ∈ N is such that (N dD
dt )

ν = 0. This already yields
the following theorem.

Theorem 3.9 The pure DAE (6) is uniquely solvable and
its solution is given by

x = −
ν−1∑
i=0

(N dD
dt )

i(v),

where ν ∈ N is such that (N dD
dt )

ν = 0. In particular the
homogeneous pure DAE has only the trivial solution.

Although this results looks very similar to the results for
classical pure DAEs, there is a difference: ν can be bigger
than n. This implies that more than n − 1 derivatives of v
can influence the result. This is illustrated in the following
example.

Example 3.10 Consider the pure DAE(
0 δ
1 0

)
x′ = x+ v,

where δ := δ0. The solution is given by

x = −v−
(

0 δ
1 δ′

)
v′−

(
δ 0
δ′ δ

)
v′′−

(
0 0
δ 0

)
v′′′
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[3] G. C. Verghese, B. C. Lévy, and T. Kailath, IEEE Trans. Aut.
Contr. AC-26(4), 811–831 (1981).

[4] S. L. Campbell, Singular Systems of Differential Equations II
(Pitman, New York, 1982).
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