Duale Optimierung der Darstellung heterologer Proteine in
Escherichia coli: Parallele und differenzielle Produktion von
Centromerproteinen des inneren humanen Kinetochors

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-
Schiller-Universität Jena

von Diplom Biochemiker Mario Kraft
geboren am 29. 11. 1978 in Weimar
Gutachter: Professor Dr. A. Brakhage (Universität Jena)
Professor Dr. S. Diekmann (Universität Jena)
Professor Dr. P. Neubauer (Universität Oulu)

Tag der Doktorenprüfung: 18. 06. 2007
Tag der Disputation: 24. 07. 2007
Abkürzungen .. V

1. Einleitung .. 1
1.1 Methoden der Funktionsanalyse von Proteinen ... 2
1.2 Strategien zur Darstellung eukaryotischer Proteine ... 4
1.3 Die bakterielle Stressantwort, induziert durch Anreicherung unlöslicher Proteine......... 7
1.4 Strategien der Optimierung der heterologen Proteinproduktion in E. coli 9
1.5 Der Kinetochor-Centromer-Komplex als ein zentraler Proteinkomplex 11
1.6 Ziel und Fragestellung der Arbeit .. 13

2. Materialien und Methoden ... 15
2.1 Materialien ... 15
2.1.1 Bakterienstämme und Plasmide .. 15
2.1.2 Verwendete Oligodesoxyribonukleotide ... 20
2.1.3 Spezielle Chemikalien ... 23
2.1.4 DNA- und Protein-Größenstandards ... 23
2.1.5 Verwendete Kits .. 24
2.1.6 Peptide, Proteine (Enzyme) und Antikörper ... 24
2.1.7 Chromatographiematerialien ... 24
2.1.8 Sonstige Materialien .. 24
2.1.9 Nährmedien und Antibiotika ... 24
2.1.10 Puffer und Lösungen ... 26
2.1.11 Spezielle Geräte ... 29
2.1.12 Computerprogramme ... 30
2.2 Methoden .. 31
2.2.1 Molekularbiologische Methoden .. 31
2.2.1.1 Kultivierung und Stammhaltung von E. coli .. 31
2.2.1.2 Isolation von Plasmid-DNA aus E. coli ... 31
2.2.1.3 DNA-Konzentrations- und Reinheitsbestimmung ... 31
2.2.1.4 Restriktion von Plasmid-DNA ... 32
2.2.1.5 Dephosphorylierung linearer DNA-Fragmente .. 32
2.2.1.6 Amplifikation spezifischer DNA-Segmente durch Polymerase-Kettenreaktion 32
2.2.1.7 Analytische und préparative Reinigung von DNA-Fragmenten durch Agarose-Gelelektrophorese ... 33
2.2.1.8 Extraktion von DNA-Fragmenten aus dem Agarosegel ... 33
2.2.1.9 n-Butanolfällung .. 33
2.2.1.10 Ligation von linearer DNA ... 34
2.2.1.11 Transformation von E. coli nach der CaCl₂-Methode ... 34
2.2.1.12 Transformation von E. coli durch Elektroporation .. 34
2.2.1.13 Gateway® Klonierung .. 35
2.2.2 Proteinchemische Methoden ... 35
 2.2.2.1 Proteinproduktion ... 35
 2.2.2.2 Zellaufschluss .. 36
 2.2.2.2.1 Zellaufschluss mittels Ultraschall ... 36
 2.2.2.2.2 Zellaufschluss durch Hochdruckhomogenisation 36
 2.2.2.3 Chromatographische Methoden ... 36
 2.2.2.3.1 Affinität-Metallchelatchromatographie (IMAC) 36
 2.2.2.3.2 Reinigung MBP-gekoppelter Proteine mittels Amylose 37
 2.2.2.4 Bestimmung der Proteinkonzentration nach Bradford 38
 2.2.2.5 Software-unterstützte Bestimmung der Proteinkonzentration 38
 2.2.2.6 SDS-Polyacrylamid-Gelektrophorese ... 38
 2.2.2.7 Western-Blot .. 39
 2.2.2.8 Immundetektion spezifischer Proteinen auf Blot-Membranen 39
 2.2.2.9 Spaltung von Fusionsproteinen durch TEV-Protease 39
2.2.3 Spektroskopische und Spektrometrische Methoden 40
 2.2.3.1 Durchlichtspektroskopie .. 40
 2.2.3.2 Fluoreszenzspektroskopie ... 40
 2.2.3.3 Fluoreszenz-Spektrometrie ... 40
 2.2.3.4 Lumineszenz-Spektrometrie .. 41
 2.2.3.5 On-line Lumineszenz-Spektrometrie .. 41

3. Ergebnisse ... 43
 3.1 Design eines Reportersystems zur Quantifizierung des zytoplasmatischen Stresses
 infolge von Proteinfehlfaltungen in Escherichia coli 43
 3.1.1 Auswahl der Promotoren zur Darstellung der Promotor-LucA Reporterfusionen 43
 3.1.2 Auswahl geeigneter Modellproteine zur Evaluierung der Reporterplasmide 46
 3.2 Kinetik der Induktion des σ^{32}-abhängigen Reportergens lucA 48
 3.3 Optimierung der Sensitivität der Reporterplasmide durch Fusion der σ^{32}-abhängigen ...
 Promotoren $ibpp$, $fxsp$ als Tandempromotor 51
 3.4 Evaluierung der Reporterplasmide durch zelluläre Akkumulation unlösender Proteine . 53
 3.5 Untersuchung zur Temperaturabhängigkeit der Induktion der Stressantwort 54
 3.6 On-line Detektion des Faltungsstresses während der Hochzeldichtefermentation 55
 3.7 Plasmidset zur differenziellen zytoplasmatischen Darstellung in E. coli 57
 3.7.1 Konzeption der Plasmiddiversität durch Kombinatorik verschiedener regulatorischer
 Elemente .. 57
 3.8 Evaluierung der dualen Expressionsplattform .. 60
 3.8.1 Paralleler Gentransfer durch Lambda-Rekombination 60
 3.8.2 Protease des Tobacco etch virus (TEV) als Target zur Evaluierung des dualen
 Expressionssystems .. 61
3.8.2.1 Assay zur in vivo Quantifizierung aktiver rekombinanter TEV-Protease 61
3.8.2.2 Akkumulation aktiver TEV-Protease in Abhängigkeit des Plasmids 65
3.9 Differenzielle Darstellung der Centromerproteine des inneren humanen Kinetochors 69
 3.9.1 Parallele Klonierung und Darstellung der Centromerproteine des inneren humanen Kinetochors in E. coli ... 69
 3.9.2 Scale-up Darstellung und analytische Reinigung ausgewählter CENP-Fusionen 72
 3.9.3 Fermentation und downstream-Processing zur Darstellung fusionierter bzw. nativer löslicher Centromerproteine ... 74
 3.9.4 Darstellung nativer Centromerproteine aus CENP-Fusionen 76

4. Diskussion ... 78
 4.1 Konzeption der Reporterplasmide ... 78
 4.2 Induktion des Luciferase-Reportergens lucA durch Produktion unlöslicher Proteine..... 80
 4.3 Senkung der Wachstumstemperatur resultiert in einer verminderten Induktion desLuciferase-Reportergens lucA .. 85
 4.4 Konzeption des Plasmidsets zur differenziellen Darstellung heterologer Proteine in E. coli ... 86
 4.5 Anreicherung aktiver TEV-Protease ist abhängig vom Plasmid 87
 4.6 Optimierung der Darstellung der Centromerproteine mittels der dualen Expressionsplattform... 89

5. Zusammenfassung und Ausblick .. 94

6. Referenzen .. IX

Wissenschaftliche Arbeiten .. XXIV

Selbständigkeitserklärung .. XXV

Lebenslauf ... XXVI

Thesenblatt .. XXVII

Danksagung ... XXIX
Abkürzungen

°C Grad Celsius
µg Mikrogramm
µl Mikroliter
µm Mikrometer
µM Mikromolar
A Adenin (bzgl. DNA)
A Ampere
a anti (bzgl. Antikörper)
Abb. Abbildung
α alpha
Amp Ampicillin
Amp' Ampicillin-Resistenz
ANA 5-Amino-2-Nitrobenzosäure
AS, aa Aminosäure
ATP Adenosintriphosphat
att attachment Region
BFM Biofeuchtmasse
bp Basenpaar(e)
BSA Rindererumalbumin
BTM Biotrockenmasse
C Cytosin (bzgl. DNA)
C lacp mit Mutation in CAP-site
C3 Cycle3
CAP catabolite activator protein
CcdB (control of cell-death) Protein B, proteinogener Gyraseinhibitor
CENP Centromerprotein
chrDNA chromosomale DNA
CLSM konfokales Laser-Scanning-Mikroskop
Cm Chloramphenicol
Cm' Chloramphenicol-Resistenz
CTU lacp mit Mutation in CAP-site, lacUV5-Mutation in der Pribnow-Schaller-Box und tac-Minus-35-Region
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU</td>
<td>lacp mit Mutation in CAP-site, lacUV5-Mutation</td>
</tr>
<tr>
<td>D</td>
<td>Dimension</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyldisulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleosid-Triphosphat</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Doppelstrang-DNA</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetat</td>
</tr>
<tr>
<td>et al.</td>
<td>et alteri (und andere)</td>
</tr>
<tr>
<td>F</td>
<td>Fraktion</td>
</tr>
<tr>
<td>FL</td>
<td>Fluoreszenz</td>
</tr>
<tr>
<td>fw</td>
<td>forward</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>G</td>
<td>Guanin (bzgl. DNA)</td>
</tr>
<tr>
<td>GFP</td>
<td>grün fluoreszierendes Protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion S-Transferase</td>
</tr>
<tr>
<td>H3</td>
<td>Histon 3</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>HIS, HIS₆</td>
<td>Polyhistindin (6x Histidin)</td>
</tr>
<tr>
<td>hok/sok</td>
<td>host killing/ supression of killing</td>
</tr>
<tr>
<td>HSP</td>
<td>Hitzeschockprotein</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin der Subklasse G</td>
</tr>
<tr>
<td>IMAC</td>
<td>Affinität-Metallchelatchromatographie</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thio-Galactopyranosid</td>
</tr>
<tr>
<td>k</td>
<td>Kilo</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasenpaar(e)</td>
</tr>
<tr>
<td>Kan</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>Kanr</td>
<td>Kanamycin-Resistenz</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>L</td>
<td>löslich (lösliche Fraktion)</td>
</tr>
<tr>
<td>lac</td>
<td>bzgl. β-Galactosidaseoperon</td>
</tr>
<tr>
<td>LAP</td>
<td>Luciferase-Assay-Puffer</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
</tr>
<tr>
<td>M</td>
<td>molare Masse</td>
</tr>
<tr>
<td>MBP</td>
<td>Maltose-Bindeprotein</td>
</tr>
<tr>
<td>MCA</td>
<td>(7-Methoxycoumarin-4-yl)-Acetyl</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickel(II)-Ionen komplexiert an Nitrilo-Tri-Ethansäure</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>nt</td>
<td>Nukleotid(e)</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>ori</td>
<td>origin of replication</td>
</tr>
<tr>
<td>p</td>
<td>Promotor</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgelektrophorese</td>
</tr>
<tr>
<td>PCR</td>
<td>„Polymerase Chain Reaction“, Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>pH</td>
<td>negativer dekadischer Logarithmus der Wasserstoffionenkonzentration</td>
</tr>
<tr>
<td>RET</td>
<td>Resonanz-Energietransfer</td>
</tr>
<tr>
<td>RLU</td>
<td>Relative Lumineszenz-Einheiten</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>rv</td>
<td>reverse</td>
</tr>
<tr>
<td>s, sek</td>
<td>Sekunde(n)</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>SD</td>
<td>Shine-Dalgarno (Shine-Dalgarnosequenz)</td>
</tr>
<tr>
<td>σ</td>
<td>Sigma (Sigma-Faktor)</td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-Dodecylsulfat</td>
</tr>
<tr>
<td>SUMO</td>
<td>Small Ubiquitin-related Modifier</td>
</tr>
<tr>
<td>T</td>
<td>Thymin (bzgl. DNA)</td>
</tr>
<tr>
<td>T7</td>
<td>bzgl. Bakteriophagen T7</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-Puffer</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TEV</td>
<td>Tobacco etch virus</td>
</tr>
<tr>
<td>TK</td>
<td>Transkription</td>
</tr>
<tr>
<td>TL</td>
<td>Translation</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>TRX</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>TY</td>
<td>Bactotryton-Hefeextrakt</td>
</tr>
<tr>
<td>U</td>
<td>unlöslich (unlösliche Fraktion)</td>
</tr>
<tr>
<td>uv</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>Var3</td>
<td>Variante 3</td>
</tr>
<tr>
<td>Vol</td>
<td>Volumen</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>w/v</td>
<td>Masse pro Volumen</td>
</tr>
<tr>
<td>wt</td>
<td>wildtyp</td>
</tr>
</tbody>
</table>

bzgl. Aminosäure (Einbuchstaben-Code)

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Aminosäure</th>
<th>Buchstabe</th>
<th>Aminosäure</th>
<th>Buchstabe</th>
<th>Aminosäure</th>
<th>Buchstabe</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alanin</td>
<td>D</td>
<td>Aspartat</td>
<td>E</td>
<td>Glutamat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Phenylalanin</td>
<td>G</td>
<td>Glycin</td>
<td>H</td>
<td>Histidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Isoleucin</td>
<td>K</td>
<td>Lysin</td>
<td>L</td>
<td>Leucin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Methionin</td>
<td>N</td>
<td>Asparagin</td>
<td>P</td>
<td>Prolin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Glutamin</td>
<td>S</td>
<td>Serin</td>
<td>T</td>
<td>Threonin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Valin</td>
<td>Y</td>
<td>Tyrosin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Einleitung

EINLEITUNG

1.1 Methoden der Funktionsanalyse von Proteinen

Dennoch zeigten vergangene Studien, dass es für das grundlegende Verständnis der Assemblierung, der Dynamik und Funktion multipler Proteinkomplexe notwendig ist, die Gesamtheit des Komplexes zu betrachten und nicht einzelne Proteine herauszugreifen.

1.2 Strategien zur Darstellung eukaryotischer Proteine

Trotz der Etablierung eines umfangreichen Methodenspektrums zur Funktionsuntersuchung von Proteinen ist es oftmals wesentlich diese als heterologe Proteine in geeigneten Systemen darzustellen. Dadurch ist es möglich einzelne, aber insbesondere Proteine aus Multiproteinkomplexen molekular zu charakterisieren, um u.a. die räumliche Struktur in atomarer Auflösung, die Funktion und deren Regulation bzw. die Struktur-Funktions-Beziehungen aufzuklären. Für die funktionelle Darstellung sog. rekombinanter Proteine, d.h. der Produktion humaner Proteine außerhalb der nativen Umgebung wurden verschiedene Wirte selektiert.

EINLEITUNG

Abb. 1: Elektronen-mikroskopische Aufnahme von *E. coli*. Das gram-negative Bakterium *E. coli* mit der typischen Kompartimentierung, bestehend aus dem umfangreichen Zytoplasma und dem periplasmatischen Raum, ausgebildet zwischen der äußeren und inneren Membran. Abbildung verändert nach: [Hobot et al., (1984); Bjornsti et al., (1985)].

Auf Grund dieser einfachen bakteriellen Kompartimentierung ist es prinzipiell möglich, rekombinante Proteine zytoplasmatisch als auch periplasmatisch zu lokalisieren.

Die relativ niedrige Toleranz gegenüber der Akkumulation solcher unlöslicher peri- aber auch zytoplasmatischer Aggregate ist oft verbunden mit niedrigen Zelldichten, erhöhten Zelllyseraten und somit niedrigeren Ausbeuten an funktionellen bzw. löslichen Proteinen.
Abb. 2: Anreicherung von inclusion bodies in *E. coli*. Elektronen-mikroskopische Aufnahmen der Anreicherung von inclusion bodies im Periplasma (A) und Zytoplasma (B) in *E. coli*. Abbildung verändert nach: [Betton und Hofnung, (1996)].

Spezifische Ursachen, die in der Wirtszelle Stressreaktionen auslösen, lassen sich prinzipiell in drei Klassen einteilen: (i) Veränderungen des Milieus in der Umgebung, (ii) Veränderungen des physiologischen Zustands der Wirtszelle, durch z.B. Nährstoff-Limitationen und (iii) Fehlfaltungen rekombinanter Proteine wie z.B. die Bildung von inclusion bodies.

Diese Reportergene wurden nicht nur zur Quantifizierung der Promotorstärke, Basalaktivität oder des Expressionslevels rekombinanter Proteine eingesetzt [Lissemore *et al*., (2000); Scholz *et al*., (2000)], sondern auch als Fusion mit entsprechenden Zielproteinen zur Bestimmung der Faltungseigenschaften der rekombinannten Fusion verwendet [Robben *et al*., (1993); Waldo *et al*., (1999); Drew *et al*., (2001); Wigley *et al*., (2001); Omoya *et al*., (2004)].
1.3 Die bakterielle Stressantwort, induziert durch Anreicherung unlöschlicher Proteine

Veränderung der Umweltbedingungen, des physiologischen Milieus, wie z.B. der Temperatur, des pH-Wertes oder der Osmolarität aber auch Proteinfehlfaltungen bzw. die Anreicherung großer Mengen an unlöschlichen Proteinen induzieren den klassischen Hitzeschock in *E. coli* [Parsell und Sauer, (1989); Kanemori *et al*., (1994)] (Abbildung 3).

Die bakterielle Stressantwort verursacht durch die Akkumulation von *inclusion bodies*, aber auch anderer Formen unlöschlicher Proteine resultiert in der Aktivierung spezifischer Sigma (σ)-Faktoren. Der Hauptregulator des zytoplasmatischen Hitzeschocknetzwerkes in *E. coli* ist σ^{32} (*RpoH*), der als Promotor-spezifische Untereinheit des Holoenzymes der RNA-Polymerase Eσ^{32} fungiert [Neidhardt und VanBogelen, (1981); Yamamori und Yura, (1982); Grossman *et al*., (1984); Straus *et al*., (1987a); Erickson *et al*., (1987)], bzw. σ^{24} (=σ^{E}, RpoE), für die periplasmatische Stressantwort [Mecsas *et al*., (1993)].

Befindet sich die Zelle im Normalzustand wird der zytoplasmatische Stressfaktor σ^{32} durch die Hitzeschockproteine DnaK und DnaJ durch Komplexierung maskiert und somit die Bildung des bakteriellen Transkriptionsapparates, bestehend aus $\alpha_2\beta\beta'\sigma^{32}$, inhibiert [Straus et al., (1987b); Bukau, (1993)]. Unter diesen Bedingungen werden σ^{32}-abhängige Gene nicht transkribiert [Straus et al., (1997b); Gamer et al., (1992, 1996); Liberek et al., (1992); Liberek und Georgopoulos, (1993); Blaszczyk et al., (1995); Tatsuta et al., (2000)]. Die Freisetzung von σ^{32} vom DnaK/J-GrpE-Komplex infolge der Darstellung unlöslicher Proteine führt zur Erhöhung der Transkriptionslevels σ^{32}-abhängiger Gene [Grossman et al., (1984, 1987); Landick et al., (1984); Cowing et al., (1985)].

Tab. 1: Sigma32-abhängige Gene

<table>
<thead>
<tr>
<th>Klassifizierung</th>
<th>Gen</th>
<th>Funktion</th>
<th>RNA-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLA</td>
</tr>
<tr>
<td>HSP</td>
<td>ibpA</td>
<td>Chaperon</td>
<td>-1,5</td>
</tr>
<tr>
<td></td>
<td>ibpB</td>
<td>Chaperon</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>yrfH</td>
<td>Ribosom-assozi. HSP</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>fxsA</td>
<td>suppr. F-Ausschluss</td>
<td>-3,8</td>
</tr>
<tr>
<td></td>
<td>dnaK</td>
<td>Chaperon</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>clpB</td>
<td>Protease</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>mopA</td>
<td>Chaperon</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>lon</td>
<td>Protease</td>
<td>-1,0</td>
</tr>
<tr>
<td></td>
<td>rrmJ</td>
<td>rRNA-Methylase</td>
<td>-1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
</tr>
</tbody>
</table>

1.4 Strategien der Optimierung der heterologen Proteinproduktion in *E. coli*

EINLEITUNG

Abb. 4: Strategien zur differenziellen Darstellung heterologer Proteine in *E. coli*.

Auf Grund der Fülle an zur Verfügung stehenden Plasmiden für die Darstellung rekombinanter Proteine ist es für den Experimentator schwierig, ein *Target*-spezifisches Plasmid zu selektieren. Allzu oft handelt es sich bei der Selektion eines Protein-spezifischen Plasmids um einen langwierigen, schrittweisen, zeit- und kostenintensiven Prozess.

1.5 Der Kinetochor-Centromer-Komplex als ein zentraler Proteinkomplex

Am centromeren Heterochromatin, bestehend aus hochrepetetiven Tandem-Sequenzen, den sog. α-Satelliten-DNA Sequenzen, die zwischen den Spezies in ihrer Länge, Wiederholung und Sequenz relativ unkonservert sind [Choo KHA, (1997); Wiens und Sorger, (1998)]
bilden sich durch eine schrittweise Akkumulation konstitutiver bzw. transitorischer Proteine die zwei Schichten des Kinetochors aus [Meluh und Koshland, (1997)]. Dabei untergliedert sich das Kinetochor in die innere und äußere Kinetochorplatte (Abbildung 5A).

Das innere Kinetochor wird aus den sechs Centromerproteinen (CENP) CENP-A, -B, -C, -H, -I und hMis12 aufgebaut, die, wie in Abbildung 5B dargestellt, am centromeren Chromatin hierarchisch assemblieren [Choo KHA, (1997); Craig et al., (1999); Choo KH, (2000)] und als Basis für den äußeren Komplex, bestehend u.a. aus den Proteinen CENP-F, Bub1, 3 und Mad1-3, der in Abwesenheit von Mikrotubulifasern von einer fibrösen Korona umgeben ist, dient [Rieder und Alexander, (1990)].

Im Gegensatz dazu wurde die Zusammensetzung und der Aufbau des humanen Kinetochor-Centromer-Komplexes erst in den vergangenen Jahren aufgeklärt, wobei die Rolle und Funktion einzelner Proteine des Kinetochors bzw. deren Zusammenspiel untereinander, die Dynamik dieser CENP während des Zellzyklus, speziell in der Mitose, und deren Regulierung im Vergleich zu *S. cerevisiae* auf molekularer Ebene relativ unverstanden sind.

1.6 Ziel und Fragestellung der Arbeit

In der Postgenom-Ära ist die Aufklärung der Funktion einzelner Proteine bzw. komplexer Proteinstrukturen von grundlegender Bedeutung für das Verständnis molekularer Regulationsmechanismen zellulärer Signalwege und insbesondere in der Pathogenese vieler Krankheiten. Auf Grund der limitierten Anzahl an Genen ist die funktionelle Komplexität bestimmt durch die funktionelle Diversität einzelner Proteine in multiplen Komplexen bzw. deren Funktion in Multiproteinkomplexen.

Entscheidend für die Aufklärung der Funktion bzw. der räumlichen Struktur einzelner Proteine von Multiproteinkomplexen aber auch für die Entwicklung neuer Therapeutika und diagnostischer Verfahren ist die funktionelle Darstellung dieser nativen Proteine unter Verwendung geeigneter Expressionssysteme.

Das Löslichkeitsverhalten der am Ribosom naszierenden Peptidkette bzw. des vollständig synthetisierten Proteins im Zytoplasma von *E. coli* wird durch dessen individuelle Eigenschaften bestimmt, lässt sich aber wesentlich durch eine differenzielle Darstellung, vermittelt durch den Einsatz verschiedener regulatorischer Faktoren der Expression und Translation wie der Promotorstärke und SD-Sequenz aber auch durch Fusion des Zielgens mit Löslichkeits-vermittelnden Proteinen, beeinflussen. Auf Grund stark differenzierter Eigenschaften der zu produzierten Proteine kann jeder der aufgeführten Faktoren einen entscheidenden Beitrag bei der Optimierung der löslichen, zytoplasmatischen Darstellung rekombinanter Proteine in *E. coli* leisten. Dennoch ist es aber ohne weiteres nicht möglich, eine optimierte Expressionsstrategie eines Targets auf ein anderes Protein zu übertragen. Das bedeutet, dass die funktionelle Darstellung häufig einer aufwändigen, schrittweisen und somit langwierigen Optimierungsstrategie bedarf.
Um die Funktion einzelner Proteine, bzw. Proteindomänen von Multiproteinkomplexen wie z.B. dem Kinetochor zu untersuchen, ist es notwendig mehr als 40 verschiedene Proteine z.B. in *E. coli* rekombinant darzustellen. Dazu bedarf es Strategien, die eine parallelisierte Verfahrenstechnik und einen Hochdurchsatz (*high-throughput screening*) ermöglichen.

Aus diesem Grund ist es von besonderer Bedeutung auf allen Ebenen der heterologen Darstellung d.h. nicht nur in der Fermentation, sondern auch im Bereich der Klonierung effektive und parallelisierte Verfahren einzusetzen und miteinander zu kombinieren. Um komplexe heterologe Proteine löslich in *E. coli* darzustellen, soll basierend auf der Gateway® Klonierungs-Technologie ein hochdiverses Set an Plasmiden für die differenzielle Darstellung generiert und etabliert werden. Um eine Selektion geeigneter Plasmide bzgl. einer löslichen Produktion zu ermöglichen, bzw. um unmittelbar während der Fermentation Einfluss auf die heterologe Darstellung zu nehmen, soll basierend auf der nativen Stressantwort von *E. coli* ein spezifisches und sensitives Reportersystem generiert und etabliert werden. Mit diesem soll es ermöglicht werden den zytoplasmatischen Stress infolge von Aggregationen unlöslicher rekombinanter Proteine in *E. coli* nachzuweisen. Dabei sollen verschiedene σ³²-abhängige Promotoren, die in der zytoplasmatischen Hitzeschockantwort infolge der Akkumulation unlöslicher Proteine in *E. coli* aktiviert werden mit dem Luciferasegen der nordamerikanischen Feuerfliege (*Photinus pyralis*) fusioniert und mit geeigneten Modellproteinen definierter Faltungseigenschaften validiert und für eine effektive und parallelisierte Anwendung optimiert werden.

2. Materialien und Methoden

2.1 Materialien

2.1.1 Bakterienstämme und Plasmide

Die in dieser Arbeit verwendeten Stämme sind apathogene Derivate von *E. coli* K12 bzw. *E. coli* B und sind wie alle verwendeten Plasmide in der Tabelle 2 zusammengefasst.

Tab. 2: verwendete Bakterienstämme und Plasmide

<table>
<thead>
<tr>
<th>Stamm/ Plasmid</th>
<th>Genotyp*/ Charakteristika</th>
<th>Referenz/ Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB3.1</td>
<td>F- gyrA462 endA1 D(srl-recA) mcrB mrr hsdS20(rB-, mB-) supE44 ara-14 galK2 lacY1 proA2 rpsL20(Smr) xyl-5 lambda- leu mtl-1</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>DH5α</td>
<td>F- phi80lacZΔM15 Δ(lacZYA-argF)U169 deoR recA endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 lambda-</td>
<td>Hanahan, (1983)</td>
</tr>
<tr>
<td>BL21</td>
<td>F-, ompT, hsdS[rβ-mβ-], dcm, gal, tonA</td>
<td>Novagen, Darmstadt</td>
</tr>
<tr>
<td>pDest15</td>
<td>rekombinationsplasmid, trägt ccdB-Gen, Kan^r</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pDONR201</td>
<td>rekombinationsplasmid, trägt ccdB-Gen, Kan^r</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pUC19</td>
<td>Klonierungsplasmid, Amp^r</td>
<td>New England Biolabs, Frankfurt</td>
</tr>
<tr>
<td>pMal-p2X</td>
<td>Plasmid zur Darstellung von MBP-Fusionsproteinen, New England Biolabs, Frankfurt</td>
<td></td>
</tr>
<tr>
<td>pMK3c-gfp</td>
<td>tac-Promoter-vermittelte GFPc3-Produktion, Kan^r</td>
<td>Gumpert et al., (2002)</td>
</tr>
<tr>
<td>pGex_wtGFP</td>
<td>wildtyp GFP (wtGFP), Amp^r</td>
<td>Dr. M. Roth (HKI-Jena)</td>
</tr>
<tr>
<td>pMK_wtGFP</td>
<td>tac-Promoter-vermittelte wtGFP-Produktion, Kan^r</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMK_GSTTEV</td>
<td>Expressionsplasmid von TEV als GST-Fusion, Kan^r</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMK_MBPTEV</td>
<td>Expressionsplasmid von TEV als MBP-Fusion, Kan^r</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMK_MalE</td>
<td>Expressionsplasmid von wtMalE, Kan^r</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pMK_MalE31</td>
<td>Expressionsplasmid von MalE31, Kan^r</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pGex_TEV</td>
<td>Plasmid zur Amplifikation der Protease des Tobacco etch virus (TEV), Amp^r</td>
<td>Dr. B. Hock, Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>pET-32a(+)</td>
<td>Plasmid zur Amplifikation von Thioredoxin, Amp^r</td>
<td>Novagen, Darmstadt</td>
</tr>
<tr>
<td>pGex-3T</td>
<td>Plasmid zur Amplifikation der Glutathion S-Transferase, Amp^r</td>
<td>Amersham Pharmacia, Uppsala, Schweden</td>
</tr>
<tr>
<td>pET20Sumo</td>
<td>Plasmid zur Amplifikation des Small Ubiquitin-related Modifier (SUMO), Cm^r</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>ptopoCENPAfull</td>
<td>Plasmid zur Amplifikation von CENP-A; Kan^r</td>
<td>Prof. Dr. S. Diekmann, FLI-Jena</td>
</tr>
<tr>
<td>ptopoCENPCfull</td>
<td>Plasmid zur Amplifikation von CENP-C, Kan^r</td>
<td>Prof. Dr. S. Diekmann, FLI-Jena</td>
</tr>
<tr>
<td>Plasmid</td>
<td>Charakteristika</td>
<td>Referenz/ Herkunft</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ptopoCENPH</td>
<td>Plasmid zur Amplifikation von CENP-H, Kan'</td>
<td>Prof. Dr. S. Diekmann, FLI-Jena</td>
</tr>
<tr>
<td>ptopoCENPI</td>
<td>Plasmid zur Amplifikation von CENP-I, Kan'</td>
<td>Prof. Dr. S. Diekmann, FLI-Jena</td>
</tr>
<tr>
<td>ptopohMis12</td>
<td>Plasmid zur Amplifikation von hMis12, Kan'</td>
<td>Prof. Dr. S. Diekmann, FLI-Jena</td>
</tr>
<tr>
<td>pEntr_TEV</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und das Gen der TEV-Protease, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-Af</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-A<sub>first14</sub>, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-Cf</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-C<sub>first171</sub>, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-Cl</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-C<sub>last124</sub>, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-H</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-H, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-If</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-I<sub>first401</sub>, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_CENP-II</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und CENP-I<sub>last431</sub>, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEntr_hMis12</td>
<td>Rekombinationsplasmid, trägt ccd/B-Gen und hMis12, Kan'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pCT7_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, C-Promotor, T7-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCUT7_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CU-Promotor, T7-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCTUT7_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CTU-Promotor, T7-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pClac_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, C-Promotor, lac-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCUlac_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CU-Promotor, lac-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCTUlac_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CTU-Promotor, lac-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCVar_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, C-Promotor, Var-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCUVar_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CU-Promotor, Var-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCTUVar_mE</td>
<td>pAK100-Derivat, Plasmid zur periplasmatischen Darstellung, CTU-Promotor, Var-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), Kraft et al., (2007)</td>
</tr>
<tr>
<td>pCT7_His<sup>+</sup></td>
<td>pAK100-Derivat, His-Fusion-Darstellung, C-Promotor, T7-SD-Sequenz, Cm'</td>
<td>Kреббер <i>et al.</i>, (1997), diese Arbeit</td>
</tr>
<tr>
<td>Plasmid</td>
<td>Charakteristika</td>
<td>Referenz/ Herkunft</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>pClac_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCVar_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUT7_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUlac_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUVar_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUT7_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUlac_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUVar_His</td>
<td>pAK100-Derivat, His-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCT7_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pClac_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCVar_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUT7_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUlac_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCUVar_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CU-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUT7_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUlac_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCTUVar_GST</td>
<td>pAK100-Derivat, GST-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>CTU-Promotor, Var-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCT7_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, T7-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pClac_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td></td>
<td>C-Promotor, lac-SD-Sequenz, Cmr</td>
<td></td>
</tr>
<tr>
<td>pCVar_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung,</td>
<td>Krebber et al., (1997),</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 2: verwendete Bakterienstämme und Plasmide

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Charakteristika</th>
<th>Referenz/ Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCUT7_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CU-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUlac_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CU-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUVar_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CU-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCTUT7_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CTU-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUlac_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CTU-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUVar_MBP</td>
<td>pAK100-Derivat, MBP-Fusion-Darstellung, CTU-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCT7_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, C-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pClac_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, C-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCVar_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, C-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUT7_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CU-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUlac_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CU-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUVar_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CU-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCTUT7_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CTU-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUlac_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CTU-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUVar_Sumo</td>
<td>pAK100-Derivat, Sumo-Fusion-Darstellung, CTU-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCT7_Trx</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, C-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pClac_Trx</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, C-Promotor, lac-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCVar_Trx</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, C-Promotor, Var-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
<tr>
<td>pCUT7_Trx</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CU-Promotor, T7-SD-Sequenz, Cm<sup>f</sup></td>
<td>Krebber et al., (1997),</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 2: verwendete Bakterienstämme und Plasmide

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Charakteristika</th>
<th>Referenz/ Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCUlac_Trx⁺</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CU-Promotor, lac-SD-Sequenz, Cm⁺</td>
<td>Krebber et al., (1997), diese Arbeit</td>
</tr>
<tr>
<td>pCUVar_Trx⁺</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CU-Promotor, Var-SD-Sequenz, Cm⁺</td>
<td>Krebber et al., (1997), diese Arbeit</td>
</tr>
<tr>
<td>pCTUT7_TrX⁺</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CTU-Promotor, T7-SD-Sequenz, Cm⁺</td>
<td>Krebber et al., (1997), diese Arbeit</td>
</tr>
<tr>
<td>pCTUulac_Trx⁺</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CTU-Promotor, lac-SD-Sequenz, Cm⁺</td>
<td>Krebber et al., (1997), diese Arbeit</td>
</tr>
<tr>
<td>pCTUVar_Trx⁺</td>
<td>pAK100-Derivat, Trx-Fusion-Darstellung, CTU-Promotor, Var-SD-Sequenz, Cm⁺</td>
<td>Krebber et al., (1997), diese Arbeit</td>
</tr>
<tr>
<td>pSP-luc⁺</td>
<td>kodiert für die Firefly Luciferase, Amp⁺</td>
<td>Promega, Mannheim</td>
</tr>
<tr>
<td>pUC_ibpAB</td>
<td>pUC19-Derivat mit ibpAB-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pUC_ibpT7LucA</td>
<td>pUC19-Derivat mit ibpAB-Promotor-LucA-Fusion, SD-T7-Sequenz, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pUC_fxsAlucA</td>
<td>pUC19-Derivat mit fxsA-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pUC_clpPlucA</td>
<td>pUC19-Derivat mit clpP-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pUC_ibpfxsLucA</td>
<td>pUC19-Derivat mit ibpAB-fxsA-Tandem-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pUC_ifT7LucA</td>
<td>pUC19-Derivat ibpAB-fxsA-Tandem-Promotor, T7-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pibpAB_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit ibpAB-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pfxsA_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit fxsA-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pclpP_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit clpP-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pibpABT7_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit ibpAB-Promotor, T7-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pibpfxs_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit ibpAB-fxsA-Tandem-Promotor, lac-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pibpfxsT7_lucA</td>
<td>Reporterplasmid, pOU61-Derivat mit ibpAB-fxsA-Tandem-Promotor, T7-SD, Amp⁺</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>

⁺ jeweils mit dem Gen der: TEV-Protease, CENP-A_{first45}, CENP-C_{first171}, CENP-C_{last124}, CENP-H, CENP-I_{first401}, CENP-I_{last131} und hMis12
2.1.2 Verwendete Oligodesoxyribonukleotide

Die in Tabelle 3 aufgelisteten unmodifizierten Oligonukleotide wurden von MWG-Biotech (Ebersberg) bzw. Biomers (Ulm) in einer Syntheserate von 50 pmol bzw. 20 pmol bereitgestellt.

Tab. 3: verwendete Oligodesoxyribonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung als Primer zur Amplifikation der Stresspromotoren</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw_ibpAB</td>
<td>5´-ACTAGCCGGAATTCGACCCATAAAACTGCAAATTTTTTTACATCGTAGCCGATGAGGACGCCCTGATGTTGGCATGTCAGGCG-3´</td>
</tr>
<tr>
<td>rv_ibpAB</td>
<td>5´-CTTACGGGAAGCTTGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
<tr>
<td>rv_ibpABT7</td>
<td>5´-CTTACGGGAAGCTTGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
<tr>
<td>fw_fxsA</td>
<td>5´-CTAGCCGGAATTCGCTGCAAATTTTTTTACATCGTAGCCGATGAGGACGCCCTGATGTTGGCATGTCAGGCG-3´</td>
</tr>
<tr>
<td>rv_fxsA</td>
<td>5´-CTTACGGGAAGCTTGCGGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
<tr>
<td>fw_clpB</td>
<td>5´-ATATATATGAAATTCGAGTTTACCTCAATATTTTTTTTTACATCGTAGCCGATGAGGACGCCCTGATGTTGGCATGTCAGGCG-3´</td>
</tr>
<tr>
<td>rv_clpB</td>
<td>5´-ATATATATGAAATTCGAGTTTACCTCAATATTTTTTTTTACATCGTAGCCGATGAGGACGCCCTGATGTTGGCATGTCAGGCG-3´</td>
</tr>
<tr>
<td>rv_ibpAB(-SD)</td>
<td>5´-CTTACGGGAAAGCTTGCGGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
<tr>
<td>rv_ibpfxsT7_1</td>
<td>5´-CTTACGGGAAAGCTTGCGGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
<tr>
<td>rv_ibpfxsT7_2</td>
<td>5´-CTTACGGGAAAGCTTGCGGATCTCTCTAGAGCGGCGCCATGCTGTTTCTCAGGCAAGACAGGTCAGGTAGCCAGAACCCCATCAGGCG-3´</td>
</tr>
</tbody>
</table>

Oligonukleotide als Primer zur Amplifikation der Modellproteine

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw_MalE31_1</td>
<td>5´-ATATATATGAAATTCGAGTTTACCTCAATATTTTTTTTTACATCGTAGCCGATGAGGACGCCCTGATGTTGGCATGTCAGGCG-3´</td>
</tr>
<tr>
<td>fw_MalE31_2</td>
<td>5´-GATAAAAAGCTTATAACCGGCTGCGCTGAGGTCAGGTAAGAAATTCGAGGAGAAAATTCGAGGAGGTAAGAAATTCGAGGAGGTAAGAAATTCGAGGAG-3´</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 3: verwendete Oligodesoxyribonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>rv_MalE31</td>
<td>5´-ATATATATAAGCGAATTCTTATCACCATGGTTTGGTGATACGAGTCTGCGTCTTCAGGGCC-3´</td>
</tr>
<tr>
<td>fw_attB1Tev_1</td>
<td>5´-GTCATTATTGAGCAATAGTAATCTGATGCGCACAACATCTGGATTATGGTATGGTATGGGACAAAAAAAAACGGCTTTCATGAGAAGGCTTTCATGGGATCCCTTCATCATTACAAACAAGCTTGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1Tev_2</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCATGAGAAGGCTTTCATGGGATCCCTTCATCATTACAAACAAGCTTGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2Tev_1</td>
<td>5´-CATTCATGAGATTGCGCTTTCCTTCTTAATGGGACTGAAAGGCTCTTCAGGTTTCACCATGAAAACTTTATGGCCCCC-3´</td>
</tr>
<tr>
<td>rv_attB2Tev_2</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCATGAGAAGGCTTTCATGGGATCCCTTCATCATTACAAACAAGCTTGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_wtGFP</td>
<td>5´-GCACACTACTGTTGAAACTACCTG-3´</td>
</tr>
<tr>
<td>rv-wtGFP</td>
<td>5´-GCGACCCGCACGCCATCGTGGG-3´</td>
</tr>
<tr>
<td>fw_NdeGST</td>
<td>5´-GCGAGCTCATGTCCTACTAAGTTTGATTGAGTGTCGGTCCAC-3´</td>
</tr>
<tr>
<td>rv_NcoGST</td>
<td>5´-GTAAGCGCCATGTTTGGAGATGTTGTCGTCGCCAC-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-(Afirst)</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-(Afirst)</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-Cfirst171</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-Cfirst171</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-Clast</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-Clast</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-(Ifirst)</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-(Ifirst)</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-Ilast</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-Ilast</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>fw_attB1CENP-H</td>
<td>5´-GGGGACAAGGTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
<tr>
<td>rv_attB2CENP-H</td>
<td>5´-GGGGACCACTTTTGTACAAAAAAGCAGGCTTTCGAAACCCTGTATTTTCA GGGCATGAGGAGCAGCCCCGCCCTGATGTCGTAATGACGAATGAACTG-3´</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 3: verwendete Oligodesoxyribonukleotide

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw_attB1hMis12</td>
<td>5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAAACCTGTATTTTCAGCAGCGAGCGGAAGTTGC-3’</td>
</tr>
<tr>
<td>rv_attB2hMis12</td>
<td>5’-GGGGACCACCTTTTGTAACAGAAAGCTGGGTTGCTTAAGATATTTTTCAGCTCGGGTTTCG-3’</td>
</tr>
</tbody>
</table>

Oligonukleotide als Primer zur Amplifikation der tags

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw_HisRK</td>
<td>5’-GGCAGTTCCATATGCACTACATACATACATACATACAGCGAGCGGTCAGCGCTCTAGCACAGCAAGGTTGCA-3’</td>
</tr>
<tr>
<td>rv_RK</td>
<td>5’-AGCTTGCCAGCACGCTTTTGCAAGAACAGCTGGAACAGCGGAGCGTACGGCCAGGATGAGTCG-3’</td>
</tr>
<tr>
<td>fw_HisMBP</td>
<td>5’-GGCAGTTCCATATGCACTACATACATACATACATACAGCGACAGCGGAAGTTGTCAGG-3’</td>
</tr>
<tr>
<td>rv_MBP</td>
<td>5’-AGCTCGTAGAGCTCCATGGCCAGGCCAGCCCTTTTGAGGATGAGTCGACGCCTTCAGG-3’</td>
</tr>
<tr>
<td>fw_HisGST</td>
<td>5’-GGCAGTTCCATATGCACTACATACATACATACATACAGCGGTAAGCGCGCTCTTCAGG-3’</td>
</tr>
<tr>
<td>rv_GST</td>
<td>5’-AGCTCGTAGAGCTCCATGGCCAGGCCAGCCCTTTTGAGGATGAGTCGACGCCTTCAGG-3’</td>
</tr>
<tr>
<td>fw_HisTrx</td>
<td>5’-GGCAGTTCCATATGCACTACATACATACATACATACAGCGGTAAGCGCGCTCTTCAGG-3’</td>
</tr>
<tr>
<td>rv_Trx</td>
<td>5’-AGCTCGTAGAGCTCCATGGCCAGGCCAGCCCTTTTGAGGATGAGTCGACGCCTTCAGG-3’</td>
</tr>
<tr>
<td>fw_HisSumo</td>
<td>5’-GCAGCGACGTCATATGCACTACATACATACATACATACAGCGGTAAGCGCGCTCTTCAGG-3’</td>
</tr>
<tr>
<td>rv_Sumo</td>
<td>5’-AGCTCGTAGAGCTCCATGGCCAGGCCAGCCCTTTTGAGGATGAGTCGACGCCTTCAGG-3’</td>
</tr>
</tbody>
</table>

Oligonukleotide als Primer zur Sequenzierung

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw_DONR201</td>
<td>5’-CGCTAGCATGGATCTCGGG-3’</td>
</tr>
<tr>
<td>rv_DONR201</td>
<td>5’-GAGCTGCAGCTGGGATGCG-3’</td>
</tr>
<tr>
<td>fwMBP</td>
<td>5’-TACTGCGGTACGTACGCGG-3’</td>
</tr>
<tr>
<td>rvMK</td>
<td>5’-GCAAGCTGCAGCGGTAACACG-3’</td>
</tr>
<tr>
<td>fwGST</td>
<td>5’-ATAGCATGGCTTTCGAGCGC-3’</td>
</tr>
<tr>
<td>rv_NdeRK</td>
<td>5’-CACAGCTTGGTCTGTAAGCGG-3’</td>
</tr>
<tr>
<td>pUC_EcoR</td>
<td>5’-CGATTAAGTTGGTACGCGCC-3’</td>
</tr>
<tr>
<td>fw_if</td>
<td>5’-CTATTACGCGGTGGCGCA-3’</td>
</tr>
<tr>
<td>M13 uni (-43)</td>
<td>5’-AGGTTTTTTTCCAGTCACGCGT-3’</td>
</tr>
</tbody>
</table>

*alle Sequenzierungen wurden bei der Firma MWG-Biotec AG (Ebersberg) durchgeführt
2.1.3 Spezielle Chemikalien

1,4-Dithiothreitol (DTT) (Roth, Karlsruhe, Deutschland)
Adenosin-5’-triphosphat (ATP), Dinatriumsalz (Sigma, Steinheim, Deutschland)
Ampicillin (Roth, Karlsruhe, Deutschland)
Bacto-Trypton (Roth, Karlsruhe, Deutschland)
Bacto-Yeast Extrakt (Roth, Karlsruhe, Deutschland)
BCIP/NBT (Pierce Rockford IL, USA)
Bromphenolblau S (Serva, Heidelberg, Deutschland)
Chloramphenicol (Roth, Karlsruhe, Deutschland)
Coomassie Brilliant-Blue G-250 (Serva, Heidelberg, Deutschland)
Coomassie Protein Assay Reagenz (Pierce, Rockford IL, USA)
D-Luciferin (Synchem Laborgemeinschaft, Felsberg/Altenburg, Deutschland)
Ethidiumbromid (Sigma, St. Louis, USA)
Imidazol (Merck, Darmstadt)
Isopropyl-β-D-thio-Galactopyranosid (IPTG) (Roth, Karlsruhe, Deutschland)
Kanamycin (Roth, Karlsruhe, Deutschland)
Mercaptoethanol (Merck, Darmstadt)
SeaKem Agarose (Cambrex Bio Science Rockland Inc., Rockland ME, USA)

Weitere verwendete Chemikalien wurden von der Firma Merck (Darmstadt) oder Roth (Karlsruhe) bezogen.

2.1.4 DNA- und Protein-Größenstandards

![DNA- und Protein-Größenstandards](image)

Abb. 6: DNA-und Protein-Größenstandards. (A) 100 bp Marker (2 % Agarose) (MBI Fermentas, St. Leon-Rot) und (B) Proteingelmarker SeeBlue® Plus2 (Invitrogen, Karlsruhe)
2.1.5 Verwendete Kits

QIAprep Spin Miniprep-Kit (Qiagen, Hilden, Deutschland)
QIAquick, Gel Extraction-Kit (Qiagen, Hilden, Deutschland)
BP-Rekombinations-Kit (Invitrogen, Karlsruhe, Deutschland)
LR-Rekombinations-Kit (Invitrogen, Karlsruhe, Deutschland)

2.1.6 Peptide, Proteine (Enzyme) und Antikörper

Restriktionsenzyme, DNA-Polymerasen und T4-DNA-Ligase wurden sofern nicht anders gekennzeichnet von der New England Biolabs (Frankfurt, Deutschland) verwendet.
Albumin aus Rinderserum (Roth, Karlsruhe, Deutschland)
TEV-Protease Substrat, ANA-QS-MCA (JPT Peptide Technologies, Berlin)
monoklonaler IgG-Antikörper gegen PentaHistidin aus Maus (Qiagen, Hilden, Deutschland)
AP-gekoppelter anti-mouse IgG Sekundärantikörper (Rockland Immunochemicals, Inc., Gilbertsville; PA, USA)

2.1.7 Chromatographiematerialien

Ni-NTA-Superflow (Qiagen, Hilden, Deutschland)
Amylose-Resin (New England Biolabs, Frankfurt, Deutschland)

2.1.8 Sonstige Materialien

Einmalküvetten (Zefa, München, Deutschland)
Filterpapier (Whatman, Maidstone, England)
Nitrocellulose-Membran (Schleicher und Schuell, Dassel, Deutschland)
SDS-Polyacrylamidfertiggele (10-20 % Tricine) (Invitrogen, Karlsruhe, Deutschland)

2.1.9 Nährmedien und Antibiotika

Puffer und Lösungen wurden mit bidestilliertem Wasser hergestellt. Lösungen, Puffer und Medien für Arbeiten mit Bakterien wurden direkt nach ihrer Herstellung autoklaviert oder sterilfiltriert. Die Lagerung erfolgte im Kühlraum bei 4 °C.
Medium zur Kultivierung von *E. coli*

LB (Luria Bertani) Medium:
- 10 g Trypton
- 5 g Hefeextrakt
- 5 g NaCl
- H$_2$O auf 1,0 l
 (pH 7,0)
 (+1,5 % Agar für Platten oder Schrägröhrchen)

2TY-Medium:
- 16 g Trypton
- 10 g Hefeextrakt
- 5 g NaCl
- H$_2$O auf 1,0 l
 (pH 7,0)

Minimalsalzmedium:
- 8,6 g Na$_2$HPO$_4$ x 2H$_2$O
 (für Vorkultur)
- 3,0 g KH$_2$PO$_4$
- 0,5 g NaCl
- 1,0 g NH$_4$Cl
- 60 mg Eisencitrat

 Spurenelemente (Stammlösung (SL) je 0,1 ml/l)
- EDTA (SL: 84 g/l)
- CoCl$_2$ x 6H$_2$O (SL: 25 g/l)
- MnCl$_2$ x 4H$_2$O (SL: 150 g/l)
- CuCl$_2$ x 4H$_2$O (SL: 150 g/l)
- H$_3$BO$_3$ (SL: 30 g/l)
- Na$_2$MoO$_4$ x 2H$_2$O (SL: 25 g/l)
- Zn-Acetat x 2H$_2$O (SL: 160 g/l)

 weitere Zusätze
- 10,0 g Glukose
- 0,6 g MgSO$_4$ x 7H$_2$O
- H$_2$O auf 1,0 l

Mineralsalzmedium:
- 2,0 g Na$_2$HPO$_4$ x 2H$_2$O
 (für Fermentation)
- 8,3 g KH$_2$PO$_4$
2,1 g Zitronensäure
80 mg Eisencitrat
Spurenelemente (Stammlösung (SL) je 1 ml/l)
EDTA (SL: 84 g/l)
CoCl₂ x 6H₂O (SL: 25 g/l)
MnCl₂ x 4H₂O (SL: 150 g/l)
CuCl₂ x 4H₂O (SL: 150 g/l)
H₃BO₃ (SL: 30 g/l)
Na₂MoO₄ x 2H₂O (SL: 25 g/l)
Zn-Acetat x 2H₂O (SL: 160 g/l)
weitere Zusätze
25,0 g Glukose
0,6 g MgSO₄ x 7 H₂O
H₂O auf 1,0 l
(pH 6,75)

zur Selektion wurden folgende Antibiotika eingesetzt:
Ampicillin 100 μg/ml
Chloramphenicol 30 μg/ml
Kanamycin 15 μg/ml

2.1.10 Puffer und Lösungen

Puffer für Molekularbiologische Methoden
TAE (10x):
400 mM Tris
200 mM Ethansäure
10 mM EDTA
(pH 7,6)

Ethidiumbromid-Stammlösung: 10 mg Ethidiumbromid in 1 ml H₂O
DNA-Auftragspuffer (10x): 50 % Glyzerol
0,25 % Bromphenolblau
0,25 % Xylenxyanblau
(gelöst in 1x TAE-Puffer (pH 8,0))
Agarose-Lösung: 0,5-2,0 g Agarose /100 ml 1x TAE-Puffer

Puffer für Proteinchemische Methoden

Laemmli Auftragspuffer (5x): 10 % (w/v) SDS
50 % (w/v) Glyzerol
300 mM Tris
0,05 % (w/v) Bromphenolblau
5 % (w/v) β-Mercaptoethanol

Coomassie-Gelfärbung: 2 g Brilliant Blue R250
450 ml Ethanol
100 ml Ethansäure
H₂O auf 1,0 l

Entfärbler: 100 ml Ethansäure
200 ml Methanol
H₂O auf 1,0 l

Western-Blot-Puffer: 0,2 M Glycin
25 mM Tris
20 % v/v Methanol
H₂O auf 2,5 l

TBS (10x): 1,5 M NaCl
0,5 M Tris
10 mM CaCl₂
(pH 7,4)

Luciferase-Assay-Puffer (LAP): 25 mM Tricin
[Woods, (1991)] 15 mM MgCl₂
5 mM ATP
7 mM Mercaptoethanol
0,5 mg BSA/ml
(pH 7,8)
+ 100 µl Luciferin (SL: 4 g/l D-Luciferin (Na-Salz))
MATERIALIEN UND METHODEN

TEV-Assay-Puffer (20x):
1 M Tris-HCl
0,5 M NaCl
10 mM EDTA
(pH 8,0)

TEV-Storage Puffer:
50 mM Tris-HCl
1 mM EDTA
5 mM DTT
50 % (v/v) Glycerol
0,1 % (w/v) Triton® X-100
(pH 7,5)

Fluoreszenz-Assay-Puffer:
50 mM Tris-HCl
10 mM CaCl₂
(pH 8,0)

IMAC-Puffer A (Resuspensions-, Wasch- und Equilibrierungspuffer):
200 mM NaCl
50 mM Tris-HCl
10 mM Imidazol
(pH 8,0)

IMAC-Puffer B (Elutionspuffer):
Puffer A
250 mM Imidazol

Puffer für Amylose-Reinigung (Equilibrierungspuffer):
200 mM NaCl
50 mM Tris-HCl
(pH 8,0)

Amylose-Elutionspuffer:
200 mM NaCl
50 mM Tris-HCl
10 mM Maltose
(pH 8,0)
weitere Puffer:

SOB:
- 2,0 % Bactotrypton
- 0,5 % Hefeextrakt
- 10 mM NaCl
- 2,5 mM KCl
- 10 mM MgCl₂
- 10 mM MgSO₄

SOC: SOB + 20 mM Glukose

Transformations-Puffer:
- 10 ml 1 M Morpholinethansulfonsäure
- 100 mM RbCl
- 600 mM MnCl₂ x 4 H₂O
- 10 mM CaCl₂ x 2 H₂O
- 3 mM Hexamincobalt-III-Chlorid
- H₂O auf 1,0 l
 (pH 6,2)

DTT:
- 2,25 M DTT in 40 mM K-Acetat oder Na-Acetat
 (pH 6,0)

2.1.11 Spezielle Geräte

Absorptions-Fluoreszenz- und Lumineszenzspektrometer:
FluoOptima Reader (BMG Labtech, Offenburg)
Durchflussphotometer (Jenway Inc., Princeton; NJ USA)
Absorptionsphotometer (Amersham Biosciences, Uppsala, Schweden)

Online-Lumineszenzspektrometer:
on-line Durchfluss-Lumineszenzspektrometer LEO (Wallac, Freiburg, Deutschland)

Fermentationssystem:
Six-Fors (Infors HT, Bottmingen, Schweiz),
Biostat B (Braun Biotech Int., Melsungen, Deutschland)

Chromatographieanlage:
ÄktaExplorer (Amersham Pharmacia, Uppsala, Schweden)
Weitere Geräte:
Fluoreszenzmikroskop JenaVal (Carl-Zeiss, Jena, Deutschland)
Konfokales Laser-Scanning Mikroskop (Carl-Zeiss, Jena, Deutschland)
Ultraschallaufschlussgerät (Labsonic B. Braun, Biotech International, Deutschland)
Hochdruckhomogenisator EmulsiFlex-C5 (Avestin, Canada)

2.1.12 Computerprogramme

Adobe Photoshop 7.0 (Adobe Systems, San Jose, USA)
AxioVision 4.2 (Carl-Zeiss, Jena, Deutschland)
CloneManager 7, Version 7.03 (Scientific and Educational Software, Cary, NC, USA)
Dasylab-Software (DASYTEC, Mönchengladbach, Deutschland)
LSM 5 Image Browser (Carl Zeiss, Jena, Deutschland)
Microsoft Office XP (Microsoft, Unterschleißheim, Deutschland)
Phoretix 1D, Version 3.0 (Nonlinear Inc.Durham; NC, USA)
ProtParam Tools ExPasy (http://expasy.org)
Scannsoftware Epson
2.2 Methoden

2.2.1 Molekularbiologische Methoden

2.2.1.1 Kultivierung und Stammhaltung von *E. coli*

Die langfristige Aufbewahrung von *E. coli* erfolgte mittels Glyzerolkulturen, die durch Zusatz von 100 % Glyzerol im Verhältnis von 1:1 zu einer logarithmisch wachsenden Kultur hergestellt wurden. Die Lagerung der Glyzerolkonserven erfolgte bei -80 °C.

2.2.1.2 Isolation von Plasmid-DNA aus *E. coli*

Die Präparation hochreiner Plasmid-DNA aus *E. coli* zum Einsatz in Restriktionsansätzen, Rekombination, PCR und Transformation erfolgte aus 5 ml Übernachtkulturen unter Verwendung des Qiaprep, Spin Miniprep-Kits (Qiagen, Hilden) nach Angaben des Herstellers.

2.2.1.3 DNA-Konzentrations- und Reinheitsbestimmung

Die Konzentration bzw. der Reinigungsgrad der gereinigten Plasmid-DNA bzw. PCR-Fragmenten wurde für den weiteren Einsatz in Rekombinationsansätzen spektroskopisch bei 260 nm und 280 nm bestimmt. Die DNA-Konzentration wurde durch folgende Formel ermittelt: \(dsDNA = \text{OD}_{260nm} \times 50 \, \mu g/ml \), während der Quotient aus \(\text{OD}_{260}/\text{OD}_{280} = 1,8 \) einer reinen DNA-Probe entspricht.
2.2.1.4 Restriktion von Plasmid-DNA

Die Hydrolyse zirkulärer DNA aber auch von PCR-Fragmenten erfolgte unter Verwendung von Restriktionsendonukleasen der Firma New England Biolabs (Frankfurt) und wurde nach Angaben des Herstellers unter den entsprechenden Bedingungen (Temperatur, Puffer) durchgeführt.

2.2.1.5 Dephosphorylierung linearer DNA-Fragmente

2.2.1.6 Amplifikation spezifischer DNA-Segmente durch Polymerase-Kettenreaktion

Reaktionsansatz: 10 µl 10x PCR-Puffer
2 µl 2,5 mM Mg²⁺-Stammlösung
10 µl dNTP-Mix (2,5 mM je dNTP)
10 µl forward und reverse Primer (10 pmol)
5 µl Template-DNA (ca.100 ng/µl)
2 µl DNA-Polymerase
51 µl steriles H₂O auf 100 µl

Die Reaktionen erfolgten im PCR-Block nach folgendem Protokoll:

Standard-Protokoll: 1. 5 min 95 °C
2. 30 s 95 °C Denaturierung
3. 30 s °C Annealing (theoretische Annealing-Temperatur minus 2 °C)
4. 1 min/kb 72 °C Primer-Extension
5. Schritt 2-4 : 20-25 Zyklen
6. 4 °C

Die Darstellung der σ³²-abhängigen Promotoren erfolgte durch Primer-Assemblierung und Primer-Extension unter Verwendung eines gesonderten Protokolls. Dabei wurden je 30 µl
Primerresuspension (jeweils 10 pmol forward und reverse Primer) in der Reaktion eingesetzt und mit folgendem Programm: [5 min 95 °C, 30 s 95 °C (Denaturierung), 30 s (Annealing, theoretische Annealing-Temperatur minus 2 °C), 1 min 72 °C (Primer-Extension), 4 °C] assembliert.

2.2.1.7 Analytische und präparative Reinigung von DNA-Fragmenten durch Agarose-Gelelektrophorese

Die Auftrennung der DNA aus Restriktions- und PCR-Ansätzen erfolgte mittels der Elektrophorese in horizontalen Agarosegelen. Dabei wurden in Abhängigkeit der aufzutrennenden DNA-Größen 0,75-2,0 % (m/v) Agarosegеле verwendet. Vor dem Auftragen wurden die Proben mit 1/5 Vol. 5x Stopp-Lösung versetzt. Die aufgetragene Probenmenge richtete sich nach DNA-Größe und -Konzentration und betrug 5-20 µl für analytische Gele bzw. 50-200 µl für präparative Gele. Die Präparation der Agarosegеле und die elektrophoretische Auftrennung erfolgten in 1x TAE-Puffer, bei 80-120 V. Durch Zugabe von Ethidiumbromid vor Erstarren der Agaroselösung konnte die DNA im Gel mittels eines UV-Transilluminators nachgewiesen werden.

2.2.1.8 Extraktion von DNA-Fragmenten aus dem Agarosegel

Unter dem UV-Transilluminator wurden entsprechende DNA-Fragmente aus dem präparativen Agarosegel geschnitten und mittels des QIAquick, Gel Extraction-Kits (Qiagen, Hilden) nach Angaben des Herstellers gereinigt.

2.2.1.9 n-Butanolfällung

Um für die Sequenzierung bzw. Elektroporation eine höchstmögliche Reinheit der Plasmid-DNA zu gewährleisten, wurde die DNA mittels n-Butanol gefällt. Dazu wurden 50 µl Plasmid-DNA mit 1 ml n-Butanol versetzt, die Lösung durch Vortexen homogenisiert und durch 30-minütiges Zentrifugieren bei Raumtemperatur gefällt. Der Überstand wurde verworfen und das DNA-Pellet mit 75 % Ethanol gewaschen und anschließend getrocknet.
2.2.1.10 Ligation von linearer DNA

2.2.1.11 Transformation von *E. coli* nach der CaCl₂-Methode

A) Herstellung chemisch-kompetenter *E. coli* Zellen. Kompetente Bakterienzellen besitzen die Fähigkeit, Fremd-DNA effizient aufzunehmen. Dazu wurden die Zellen mit hochkonzentrierten Salzlösungen behandelt, so dass die Plasmamembran der Zellen unter bestimmten Bedingungen für die DNA-Aufnahme durchlässig wurde [Mandel und Higa, (1970)]. Dazu wurden 50 ml SOB-Medium mit 1 ml einer Vorkultur angeimpft und bis zu einer OD₅₅₀ von 0,5-0,8 bei 26 °C kultiviert. Die Zellen wurden 10 min auf Eis inkubiert und danach 15 Minuten bei 2000 rpm, 4 °C zentrifugiert und das Pellet nach Abnahme des Überstandes in 10 ml Transformations-Puffer resuspendiert und gewaschen. Nach erneuter Zentrifugation der Bakterien Suspension wurde das Sediment in 4 ml Transformations-Puffer aufgenommen und mit je 140 µl DMSO, 5 min, 140 µl DTT, 10 min, und nochmals mit 140 µl DMSO, 5 min, bei 4 °C inkubiert. 200 µl chemisch kompetente Zellen wurden in 50 µl 50 % Glycerol zu Aliquoten von 250 µl abgefüllt und bei -80 °C gelagert.

B) Die Transformation erfolgte mittels der Hitzeschockmethode nach Sambrook [Sambrook *et al*., (1989)]. Dazu wurde eine Aliquot chemisch-kompetenter Zellen auf Eis aufgetaut und mit der Plasmid-DNA (z.B. Ligationsansatz) versetzt und 10 Minuten auf Eis inkubiert. Danach erfolgte ein Hitzeschock bei 42 °C für 90 Sekunden, gefolgt mit einer 5-minütigen Inkubation auf Eis. Der Ansatz wurde anschließend mit 750 µl SOC-Medium versetzt und bis zur Ausplattierung auf Selektionsplatten für weitere 45 Minuten bei 37 °C inkubiert.

2.2.1.12 Transformation von *E. coli* durch Elektroporation

A) Die Herstellung elektrokompetenter *E. coli* Zellen erfolgte nach der Methode von Dower [Dower *et al*., (1988)]. 400 ml 2TY-Medium wurden mit einer Übernacht-Vorkultur beimpft und bei 37 °C, 200 rpm bis zu einer OD₅₅₀ von 0,8 kultiviert. Die Zellen wurden nach Abkühlung auf Eis bei 4 °C, 4000 rpm für 10 Minuten sedimentiert und das Zellpellet viermal
mit je 20 ml eiskaltem H₂O bzw. 10 %igem (m/v) Glyzerol resuspendiert und gewaschen. Anschließend wurden die Pellets vereinigt und in 10 ml 10 %igem Glyzerol (m/v) resuspendiert und die Zellen letztmalig sedimentiert (4 °C, 4000 rpm, 15 min) und in 500 µl 10 %igem Glyzerol (m/v) aufgenommen. Die elektrokompetenten Zellen wurden zu je 70 µl aliquotiert und bei -80 °C gelagert.

B) Die Elektroporation ist im Vergleich zur chemischen Transformation eine effizientere Methode, die speziell bei der Transformation großer Plasmide (> 10 kb) geeignet ist. Zur Elektroporation wurde ein Aliquot kompetenter Zellen mit MiniPrep DNA oder gefällter DNA aus Ligationsansätzen versetzt und 5 Minuten auf Eis inkubiert. Die Zellen wurden in Küvetten pipettiert und die DNA durch einen Impuls bei 1700 V mittels eines Elektroporators der Firma Biorad (München) transformiert. Nach dem Impuls wurden die Zellen mit 1 ml SOC-Medium aus der Küvette gespült und für 1 h bei 37 °C inkubiert und 50 µl des Transformationsansatzes auf Selektionsagar plattiert.

2.2.1.13 Gateway® Klonierung

2.2.2 Proteinchemische Methoden

2.2.2.1 Proteinproduktion

Die Darstellung heterologer Proteine in *E. coli* BL21 erfolgte im LB-Medium, 2TY-Medium bzw. Minimalsalzmedium, mit den entsprechenden Zusätzen, sofern nicht anders vermerkt bei 26 °C. Ausgehend von Übernachtkulturen wurden die Hauptkulturen mit einer OD₅₅₀ von 0,1-0,2 inokuliert. Ab einer optischen Dichte von 0,5±0,2 erfolgte die Induktion der Proteinproduktion durch Zugabe von IPTG (Isopropyl-β-D-thio-Galactopyranosid, 1 mM Endkonzentration) für 4 h sofern nicht anders vermerkt.
Die Hochzelldichtefermentation erfolgte als Glukose-Fed-batch-Fermentation im Minimalsalzmedium im 400 ml Fermentationssystem der Firma Infors (Bottmingen, Schweiz). Mit Vorkulturen, die sich in der logarithmischen Wachstumsphase befanden erfolgte die Inokulation der Fermentationskultur mit einer OD$_{550}$ von 0,2. Im Bereich der optischen Dichte zwischen 50-80 erfolgte die Induktion der Proteinproduktion unter Zugabe von IPTG mit einer Endkonzentration von 1 mM. Gleichzeitig wurde ein Glukose-Feeding gestartet, mit einem konstanten Fluss von 30 ml/h Feeding-Lösung, (1 g/l Glukose in Minimalsalzmedium) für vier Stunden.

2.2.2.2 Zellaufschluss

2.2.2.2.1 Zellaufschluss mittels Ultraschall

Die Separierung der löslichen bzw. unlöslichen Proteinfraktion erfolgte mittels Ultraschall. Dazu wurde die optische Dichte der Kultur bei 550 nm bestimmt und das entsprechende Volumen an Kultur durch Zentrifugation sedimentiert (4 °C, 5000 rpm, 5 min) und in 5 ml eiskaltem TBS-Puffer resuspendiert. Der Aufschluss erfolgte bei 4 °C, durch eine zweimalige, einminütige Ultraschallbehandlung (Impulsdauer: 0,5 s).

2.2.2.2.2 Zellaufschluss durch Hochdruckhomogenisation

2.2.2.3 Chromatographische Methoden

2.2.2.3.1 Affinität-Metallchelatchromatographie (IMAC)

Histidin besitzt eine hohe Affinität zu zweiwertigen Übergangsmetallen wie z.B. Ni$^{2+}$ oder Mn$^{2+}$, und kann deshalb als Oligo-Histidin-Peptid, am N- oder C-Terminus des Zielproteins integriert werden, um dieses aus einem Gemisch aus vielen Proteinen durch Bindung an immobilisierte Metallionen spezifisch zureinigen.

Die Reinigung von rekombinanten Proteinen mit HIS (HIS$_6$)-tag erfolgte mittels einer Ni$^{2+}$-gekoppelten Matrix. Dazu wurden die Zellen pelletiert, in eiskaltem Aufschlusspuffer
resuspendiert (1 ml/g Biofeuchtmasse) und mittels Ultraschall oder Hochdruckhomogenisation aufgeschlossen. Die Zelltrümmer wurden durch 30-minütiges Zentrifugieren bei 5000 rpm sedimentiert und der lösliche Überstand vorsichtig dekandiert und der pH-Wert mit 2 M Tris auf 8,0 eingestellt.

Nach Equilibrierung des Trägermaterials wurde die Proteinlösung mit dem Trägermaterial (0,2 ml/ml Lysat) versetzt und das Gemisch in eine 5 ml Durchtropfsäule (Qiagen, Hilden) gegeben. Unspezifisch gebundene Proteine wurden mit 10 % Puffer B von der Matrix gewaschen und das Zielprotein mit 2x 250 µl 100 % Puffer B vom Trägermaterial eluiert. Aliquote der Elution wurden für die anschließende Bestimmung der Proteinkonzentration und für die elektrophoretische Reinigung mittels SDS-PAGE entnommen.

2.2.2.3.2 Reinigung MBP-gekoppelter Proteine mittels Amylose

2.2.2.4 Bestimmung der Proteinkonzentration nach Bradford

2.2.2.5 Software-unterstützte Bestimmung der Proteinkonzentration

2.2.2.6 SDS-Polyacrylamid-Gelelektrophorese

Aliquote der Kulturen gleicher optischer Dichte oder Aliquote der Reinigungsfraktionen wurden mit 6-fach SDS-Laufpuffer versetzt, durch 10-minütiges Erhitzen bei 70 °C
denaturiert und in vertikalen SDS-Polyacrylamidfertiggelen (Invitrogen, Karlsruhe) bei 180 V für ca. 45 Minuten nach deren molekularen Masse aufgetrennt.
Nach der Elektrophorese wurden die Gele in Coomassie-Färbelösung gefärbt und anschließend mit Entfärbelösung entfärbt. Zur Dokumentation wurden die Gele eingescannt und für die spätere Aufbewahrung getrocknet.

2.2.2.7 Western-Blot

Aufgetrennte Proteine mittels der SDS-PAGE wurden auf Nitrocellulose-Membranen nach dem "Semi-dry"-Verfahren transferiert [Kyhse-Andersen, (1984)]. Auf ein Filterpapier (Whatman, England), wurde die Nitrocellulose-Membran (Schleicher und Schuell, Dassel), das betreffende Gel und ein weiteres Filterpapier, jeweils getränkt in Western-Blot-Puffer gelegt. Anschließend wurden die Proteine im elektrischen Feld aus dem Gel auf die Membran transferiert (42 min, 12 V, ca. 2 mA/cm²).

2.2.2.8 Immundetektion spezifischer Proteine auf Blot-Membranen

Zum immunochemischen Nachweis einzelner Proteine wurden freie Protein-Bindestellen auf der Nitrocellulose-Membran durch Inkubation mit 10 ml Blocklösung (TBS-Puffer mit 5 % (w/v) Milchpulver) für 1 h besetzt. Anschließend wurde die Membran in 5 ml Antikörperlösung (monoklonaler IgG PentaHis-Antikörper aus Maus, 1:4000) für 1 h inkubiert und danach die Membran dreimal mit je 10 ml TBS-Puffer gewaschen. Danach wurde die Membran 1 h mit 5 ml einer Lösung eines Alkalische-Phosphatase-konjugierten, gegen den ersten Antikörper gerichteten zweiten Antikörper (1:2000 in TBS-Puffer verdünnt) inkubiert. Danach wurde der Blot dreimal mit 10 ml TBS-Puffer gewaschen und das Zielprotein durch Zugabe des Phosphatasesubstrates (NBT/BCIP, Pierce Rockford IL, USA) nachgewiesen. Nach Auftreten der spezifischen Färbung wurde die Reaktion durch Waschen mit bidestilliertem Wasser gestoppt und die Membran getrocknet.

2.2.2.9 Spaltung von Fusionsproteinen durch TEV-Protease

Die Darstellung nativer Centromerproteine erfolgte durch gerichtete Hydrolyse mittels der Protease des *Tobacco etch virus* (TEV) im integrierten Spaltmotiv, zwischen dem Fusionspartner und dem Zielprotein. Die Proteolyse erfolgte in 500 µl Ansätzen, in dem das gereinigte Fusionsprotein in einem Verhältnis von 250:1 mit TEV-Protease versetzt wurde. Die Spaltung erfolgte im TEV-Protease-Puffer für 3 Stunden bei 30 °C.
2.2.3 Spektroskopische und Spektrometrische Methoden

2.2.3.1 Durchlichtspektroskopie

Die Untersuchung der Löslichkeitseigenschaften selektierter Modellproteine erfolgte mittels des Mikroskops JenaVal (Carl Zeiss, Jena). Als Objektiv wurde ein GF Planachromat Phv, HI 100x/1,25 ∞/0,17-A verwendet. Die Bilder wurden mit der AxioCam MRc5 dokumentiert, im JPEG-Format gespeichert und mittels der Software AxioVision 4.2 (Carl Zeiss, Jena) bearbeitet.

2.2.3.2 Fluoreszenzspektroskopie

2.2.3.3 Fluoreszenz-Spektrometrie

Die Untersuchung der Akkumulation beider GFP-Varianten erfolgte im Fluoreszenz-Reader FluoOptima Reader (BMG Labtech, Offenburg). Dazu wurden Aliquote der Expressionskulturen zentrifugiert und die Zellen in 200 µl Fluoreszenz-Assay-Puffer
resuspendiert. Die GFP-Detektion erfolgte in Mikrotiterplatten nach Anregung (365 nm) bei 520 nm.

2.2.3.4 Lumineszenz-Spektrometrie

2.2.3.5 On-line Lumineszenz-Spektrometrie

Die on-line Lumineszenzmessung erfolgte während der Fermentation im 400 ml Fermentationsystem (Infors HT, Bottmingen, Schweiz), das mittels eines Bypasses eine kontinuierliche Probennahme ermöglicht. Die Fermenterprobe wurde mit physiologischer Kochsalzlösung (0,9 %) 1:2 verdünnt und mittels eines Durchflussphotometers (Jenway Inc.,
Princeton; NJ USA) die aktuelle optische Dichte bei 550 nm bestimmt. Unter Verwendung der Dasylab-Software (DASYTEC, Mönchengladbach) und Computer-unterstützter Pumpen (Ismatec, Wertheim) wurde die vorverdünnte Fermenterprobe auf eine konstante OD$_{550}$ von 1,0 eingestellt. Die, auf eine konstante OD eingestellte Probe wurde mit Luciferase-Assay-Puffer (LAP) im Verhältnis von 1:1 vermischt, und die Lumineszenz in einem on-line Durchflussluminometer LEO (Wallac, Freiburg) detektiert.
3. Ergebnisse

3.1 Design eines Reportersystems zur Quantifizierung des zytoplasmatischen Stresses infolge von Proteinfehlfaltungen in Escherichia coli

3.1.1 Auswahl der Promotoren zur Darstellung der Promotor-LucA Reporterfusionen

Um eine vergleichbare Translationseffizienz der mRNA der Reporterfusionen zu ermöglichen, wurden die nativen Shine-Dalgarnosequenzen (SD-Sequenz), die die Translation der mRNA der Hitzeschockgene regulieren, durch die SD-Sequenz des nativen β-Galactosidaseoperons (SDβgal) ersetzt. Die Sequenzen der verwendeten LucA-Fusionen sind in Abbildung 7B zusammengefasst.
Abb. 7: Sequenzen der verwendeten Promotoren zur Konstruktion von Reporterplasmiden. (A) Native Basenabfolge der ausgewählten σ^{32}-abhängigen Promotoren (ibpABp, fxsAp und clpBp). Die Promotor-typischen Regionen wie: "-35", "-10" (Pribnow-Schaller-Box) und "+1" (Transkriptionsstart), die SD-Sequenz (unterstrichen) und die darauf folgenden Strukturgene sind hervorgehoben. Die Positionen unterhalb des Transkriptionsstartpunktes sind die Positionen relativ zum Start des ersten Gens. (B) Übersicht der konstruierten Reporter-Einheiten aus Fusion σ^{32}-abhängiger Promotoren mit dem Luciferase-Reportergen lucA. Die Promotoren der Gene des σ^{32}-Regulons wurden mit der SD-Sequenz des β-Galactosidaseoperons und mit dem Luciferasegen, das als Reportergen fungiert fusioniert.
ERGEBNISSE

Die Darstellung der Promotorsequenzen erfolgte durch Assemblierung und 3'-Extension zweier Oligonukleotide mittels komplementärer Sequenzen im 3'-Bereich (Abbildung 8). Durch die Primer wurden entsprechende Klonierungs-relevante Schnittstellen am 5'-Bereich (EcoRI) bzw. am 3'-Bereich (MCS, bestehend aus: NcoI, NotI, XbaI, BamHI, HindIII) des Promotors integriert. Die Primer zur Darstellung der Promotoren sind in deren Basenabfolge in der Tabelle 3 dargestellt.

![Abb. 8: Darstellung der Promotoren durch Primer-Assemblierung- und Extension.](image)

Nach Primer-Assemblierung- und 3'-Extension wurden die doppelsträngigen DNA-Fragmente über die Restriktionsschnittstellen EcoRI und HindIII in pUC19 kloniert, sequenziert und über NcoI und XbaI wurde das Luciferasegen aus pSP-luc+ (Promega, Mannheim) in die pUC19-Derivate integriert. Die vollständigen Promotor-Luciferase-Reportereinheiten wurden zur Darstellung der finalen Reporterplasmide (pibplucA, pfxslucA und pclplucA) über die Restriktionsendonukleasen EcoRI und BamHI in pOlbi, einem pOU61-Derivat kloniert (Abbildung 9). pOU61, bzw. pOlbi sind Hitze-induzierbare runaway-replication Plasmide, deren Plasmidkopienzahl mittels des modifizierten R1 origins auf eine Kopie pro Zelle streng reguliert ist.

![Abb. 9: Klonierungsschema zur Darstellung der Reporterplasmide.](image)

3.1.2 Auswahl geeigneter Modellproteine zur Evaluierung der Reporterplasmide

Zur Evaluierung der Reporterplasmide hinsichtlich Spezifität und Sensitivität wurden sowohl heterologe als auch wirtseigene Proteine mit charakteristischen Faltungseigenschaften verwendet und lac-Promotor-vermittelt in E. coli dargestellt. Für eine bessere Vergleichbarkeit zwischen den verwendeten Modellproteinen, wurden jeweils drei Proteinpaare ausgewählt. Jedes Proteinpaar beinhaltet ein Protein, das vermehrt als lösliches Protein in E. coli dargestellt wird, und ein Protein, mit ähnlichen physiko-chemischen Eigenschaften, das wiederum zur Unlöslichkeit bei Synthese in E. coli neigt.

Zwei Varianten des Maltose-Bindeproteins (MBP, MalE), wie die native und lösliche Form und dessen Faltungs-defiziente Variante MalE31, die durch zwei Punktmutationen G32D und I33P aus der Wildtyp-Variante hervor ging, wurden zur Evaluierung der Reporterplasmide verwendet. Weitere selektierte Proteine zur Evaluierung der Reporterplasmide waren zwei Varianten des grün fluoreszierenden Proteins (GFP) aus A. victoria. Dabei wurde das in E. coli unlösliche native GFP (wtGFP) und die, für die lösliche Produktion in E. coli optimierte Cycle3-Mutante des GFPs (GFPc3, GFPuv) ausgewählt. Weitere Proteine waren zwei Fusionen der Protease des Tobacco etch virus (TEV), jeweils fusioniert mit dem Maltose-Bindeprotein (MBPTEV) und mit der Glutathion S-Transferase (GSTTEV), wobei die Fusion mit dem MBP im Vergleich zur GST-Fusion eine erhöhte Darstellung der TEV-Protease als lösliches Protein in E. coli ermöglicht. Die Punktmutationen, die in den jeweiligen Modellproteinen zu den charakteristischen Löslichkeitseigenschaften führen, sind in der Abbildung 10 dargestellt.

Die Gene der Modellproteine wurden mittels PCR (Primer, Tabelle 3) amplifiziert und in das Plasmid pMK31_GFPc3 zur lac-Promotor-vermittelten Expression über entsprechende Schnittstellen integriert. Die Plasmide zur Darstellung der Modellproteine in E. coli sind in der Abbildung 11 dargestellt.

3.2 Kinetik der Induktion des σ^{32}-abhängigen Reportergens lucA

umgesetzt wird. Die Lichtemission wurde im Lumineszenz-Reader (FluoOptima) verfolgt, und wurde auf eine Kultur mit einer optischen Dichte bei einer Wellenlänge von 550 nm von 1,0 normiert (relative Lumineszenzeinheiten, RLU).

Dazu wurde parallel eine SDS-PAGE mit Proben, bekannter Konzentrationen des gereinigten, nativen und löslichen Maltose-Bindeproteins (MalE) angefertigt und durch Korrelation der Proteinkonzentration mit den Bandenintensitäten eine Eichkurve erstellt (Abbildung 13A).

Unter Verwendung dieser Eichkurve erfolgte die Bestimmung der Akkumulation des zellulären MalE31 in der unlöslichen Proteinfraktion. Aus Aliquoten der Kultivierung, die zu verschiedenen Zeitpunkten bzgl. der Zugabe des Induktors IPTG (t_0) entnommen wurden, erfolgte die Analyse der Anreicherung unlöslicher Proteine mittels der SDS-PAGE.

Die Ergebnisse in Abbildung 13 zeigten eine deutliche Korrelation zwischen zunehmender Akkumulation an unlöslchem MalE31 in *E. coli* und der Aktivierung/Transkription des Luciferase-Reporterogens *lucA* unter Kontrolle der Stress-abhängigen Promotoren *ibpABp*,

3.3 Optimierung der Sensitivität der Reporterplasmide durch Fusion der σ32-abhängigen Promotoren ibpp, fxs als Tandempromotor

Auf Grund der geringen Sensitivität von ca. 100-200 RLU wurden zwei Optimierungswege beschritten. Dies war zum einen die Substitution der Shine-Dalgarnosequenz des β-Galactosidaseoperons im Reporterplasmid pibplucA gegen die effizientere SD-Sequenz des Gen10 des Bakteriophagen T7 (g10T7) SD_{T7}. Diese Optimierung diente hauptsächlich dazu, den Messbereich der Lumineszenz durch eine erhöhte Translationsrate gebildeter mRNA_{LucA} zu erhöhen.

Zur Optimierung der Sensitivität der Reporterplasmide wurden des Weiteren die Promotoren der Hitzeschockproteine IbpA(B) und FxsA in einem Tandempromotor fusioniert. Dabei wurde der fxsA-Promotor stromabwärts an den ibpAB-Promotor, mit einem Linkerbereich von 85 nt, gefolgt von der SD_{lac} bzw. SD_{T7} (Abbildung 14) gekoppelt. Die Darstellung der beiden Tandempromotoren (ihpfxs, ihpfxsT7) und ibpT7 erfolgte analog Punkt 3.1.1 durch Primer-Assemblierung und -Extension mit den entsprechenden Oligodesoxynukleotiden aus Tabelle 3 und ist in Abbildung 14 dargestellt.
Abb. 14: Design und Konstruktion der Tandempromotoren (pibpfxsLucA, pibpfxsT7LucA) und pibpT7LucA. Die Konstruktion der Promotoren erfolgte über Primer-Assemblierung und -Extension entsprechender Oligonukleotide. Die Tandempromotoren beinhalten zwei unabhängige σ32-Binderegionen, verknüpft durch eine Spacerregion von 85 nt. Die differenzielle Translation erfolgte mittels der Shine-Dalgarnosequenz des Laktose-Operons (SD_{lac}) bzw. des Gen10 des Bakteriophagen T7 (SD_{T7}).
3.4 Evaluierung der Reporterplasmide durch zelluläre Akkumulation unlöslicher Proteine

Abb. 15: Induktion des lucA-Reportergens bei Produktion löslicher und unlöslicher Proteine. Alle selektierten Proteine wurden durch Zugabe von IPTG in E. coli dargestellt und die Lumineszenz durch Aktivierung aller σ32-abhängigen Reporterfusionen (1 pibplucA, 2 pfxslucA, 3 pclplucA, 4 pibpT7lucA, 5 pibpfxslucA, 6 pibpfxsT7lucA) nach 4 Stunden Induktion (weiße Balken) detektiert (A). Zusätzlich dargestellt ist der Einfluss der SD-Substitution (SDT7 gegen SDlac, 1 pibplucA vs. 4 pibpT7lucA, bzw. 5 pibpfxslucA vs. 6 pibpfxsT7lucA) bzw. die Fusion zweier Promotoren als Tandempromotor (1 pibplucA, 3 pfxslucA vs. 5 pibpfxslucA) auf die Lumineszenzaktivität durch Vergleich der Lumineszenznachnahme zwischen induzierter (weißer Balken) und uninduzierter Probe (schwarzer Balken) (B).
Die dargestellten Lumineszenzmesswerte zeigten, dass die Darstellung unlösslicher Proteine wie MalE31, wtGFP und GSTTEV bei allen Reporterplasmiden zu einer signifikanten Erhöhung der Induktion des Luciferase-Reportergens führte. Im Vergleich dazu, zeigten Zellen, die vermehrt die lösliche Form anreicherten, lediglich eine basale Luciferaseaktivität. Die Detektion des zytoplasmatischen Stresses unter Verwendung der Tandempromotoren, und insbesondere des Reporterplasmids pibpfxsT7lucA zeigten dagegen eine besonders hohe Sensitivität. Wie in Abbildung 15 dargestellt führte die Quantifizierung des zytoplasmatischen Stresses mittels des Tandempromoters ibpfxsT7lucA zu einer deutlichen Sensitivitätssteigerung, wobei eine Erhöhung der detektieren Lumineszenz um den Faktor 1,5-3,5 im Vergleich zu den anderen Reporterplasmiden erzielt werden konnte. Die Substitution der SD-Sequenz hatte keinen Einfluss auf den Faktor zwischen induzierter und uninduzierter Probe. Auf Grund der erhöhten Translationseffizienz der mRNA_{lucA} führte diese jedoch zu einer Steigerung des totalen Lumineszenzsignals um den Faktor drei. Die Detektion des Faltungsstresses unter Verwendung des Reporterplasmids pibpfxsT7lucA führte auf Grund besserer Regulation durch die native Stressantwort und durch verbesserte Translation transkribierter Reporter-mRNA im Vergleich zu allen anderen Reporterplasmiden zur höchsten Spezifität und Sensitivität bei Produktion aller unlösslichen Proteine.

3.5 Untersuchung zur Temperaturabhängigkeit der Induktion der Stressantwort

3.6 On-line Detektion des Faltungsstresses während der Hochzelldichtefermentation

Ein direkter Nachweis der Proteinfaltungs- und Faltungsstresses während der Fermentation im Schüttelkolben aber insbesondere im Bioreaktor ist essentiell,
ERGEBNISSE

Da dadurch ein direkter Einfluss auf die Darstellung rekombinanter Proteine genommen werden kann.

Aus diesem Grund wurde eine Methode etabliert, die ermöglicht, den Stress infolge der Anreicherung unlösender Proteine während der Hochzelldichtefermentation zu quantifizieren (Abbildung 17A). In der Hochzelldichtefermentation wurden die Zielproteine wtGFP und GFPc3 in einem 400 ml Fermentationssystem der Firma Infors (Bottmingen, Schweiz) rekombinant in \textit{E. coli} dargestellt. Die Darstellung der beiden GFP-Varianten im M9-Minimalmedium ermöglichte eine Korrelation der unlösslichen Proteinmenge, quantifiziert durch die Lumineszenzaktivität mit dem Anteil an löslich produziertem Protein, der durch Fluoreszenzmessung detektiert wurde (Abbildung 17B).

![Diagramm A](image1)

![Diagramm B](image2)

Abb. 17: Schematische Darstellung der Versuchsanordnung für die on-line Bestimmung der Luciferaseaktivität während der Fermentation. (A) Über einen Bypass erfolgte eine kontinuierliche Fermenterprobenentnahme, die mit physiologischer Kochsalzlösung vorverdünnt und mittels eines Durchflussphotometers und Software-unterstützt auf eine konstante OD$_{550}$ von 1,0 eingestellt wurde. Diese Probe wurde mit Luciferase-Assay-Puffer im Verhältnis von 1:1 vermischt, und die Lumineszenz in einem on-line Durchflussluminometer detektiert. (B) Die enzymatischen Aktivitäten Fluoreszenz (grün) bzw. Lumineszenz (rot) diente zur Bestimmung des löslichen bzw. des unlösslichen Proteinanteils bzw. der Detektion des Faltungsstress bei Synthese der GFP-Varianten (wtGFP, GFPc3).
Mit Hilfe des in Abbildung 17A dargestellten Detektionssystems ist es möglich die bakterielle Stressantwort infolge der Anreicherung von unlöslichen Proteinen in *E. coli* in einem Intervall von 90 Sekunden zu analysieren. Die dargestellten Ergebnisse zeigten einen 6-fachen Anstieg der zytoplasmatischen Lumineszenzaktivität bei Darstellung des nativen GFP, während die Synthese der, für die bakterielle Darstellung optimierten GFP-Variante (GFPC3) lediglich zu einem Anstieg der Lumineszenz um den Faktor 2 führte. Im Vergleich dazu erhöhte sich im Verlauf der Kultivierung von GFPC3 die Fluoreszenz um den Faktor drei, als bei Darstellung der GFP-Wildtypvariante.

3.7 Plasmidset zur differenziellen zytoplasmatischen Darstellung in *E. coli*

3.7.1 Konzeption der Plasmiddiversität durch Kombinatorik verschiedener regulatorischer Elemente

Die Darstellung heterologer Proteine in *Escherichia coli* wird durch eine Reihe von Parametern, die in die verschiedensten Ebenen der Proteinbiosynthese eingreifen, beeinflusst. Auf Ebene der Expression sind dies wesentlich die Transkription und Translation. Während die Menge an mRNA des Zielproteins wesentlich durch die Plasmidkopienzahl und durch die Stärke des verwendeten Promotors beeinflusst wird, ist ein entscheidender Faktor der Translation die Shine-Dalgarnosequenz. Eine weitere Strategie zur Optimierung des Löslichkeitsverhaltens der Peptidkette ist u.a. die Fusion des Zielgens mit einem Löslichkeits-vermittelnden Protein.

Das in dieser Arbeit generierte Plasmidset besteht aus 45 verschiedenen Plasmiden, wobei die Diversität dieses Sets durch den variablen Einsatz der drei wesentlichsten Elemente der rekombinanten Proteinproduktion in *E. coli* erzielt wurde. Zum einen wurden drei verschieden starke Promotoren, basierend auf dem nativen lac-Promotor des β-Galactosidaseoperons, drei, in ihrer Translationseffizienz unterschiedliche Shine-Dalgarnosequenzen und fünf verschiedene Fusionspartner eingesetzt, die wie in einem Baukastenprinzip miteinander kombiniert wurden.

Basis zur Konstruktion des Plasmidsets waren neun Destinationplasmide, pAK100-Derivate, mit den Kombinationen aus den drei Promotoren („C“, „CU“ und „CTU“) und den drei SD-Sequenzen (SDT7, SDbac und SDb_A) [Kraft et al., (2007)]. Die Komplettierung der Plasmide erfolgte durch Integration der N-terminalen tags (HIS, Glutathion S-Transferase (GST), Maltose-Bindeprotein (MBP), *Small Ubiquitin-related Modifier* (SUMO) und Thioredoxin (TRX)), die durch PCR aus entsprechenden Plasmiden amplifiziert und über die
Schnittstellen NdeI und NheI in die neun Destinationplasmide integriert wurden. Zur Realisierung der Aufarbeitung/Reinigung der rekombinanten Produkte über Affinität-Metallchelatchromatographie (IMAC) befindet sich am N-Terminus jedes tags ein Polyhistidin (HIS6).

Eine Übersicht der Grundstruktur aller konstruierten Plasmide des Sets und der variabel eingesetzten Elemente der rekombinanten Proteinbiosynthese, wie die verwendeten Promotoren, SD-Sequenzen und Fusionsproteine sind in deren Basenabfolge in Abbildung 18, und die daraus resultierende Plasmidvielfalt in Abbildung 19 dargestellt.

Die Nomenklatur der konstruierten Plasmide ergibt sich aus der Kombination der einzelnen verwendeten regulatorischen Elemente und ist in Abbildung 19 dargestellt.

3.8 Evaluierung der dualen Expressionsplattform

3.8.1 Paralleler Gentransfer durch Lambda-Rekombination

Die Integration der Rekombinationskassette, flankiert von den attachment (att) Regionen, attR1/2 ermöglicht einen schnellen und effizienten Gentransfer zwischen multiplen Plasmiden unter Verwendung der Gateway® Klonierungs-Technologie.

3.8.2 Protease des *Tobacco etch virus* (TEV) als *Target* zur Evaluierung des dualen Expressionssystems

3.8.2.1 Assay zur *in vivo* Quantifizierung aktiver rekombinanter TEV-Protease

Mittels der Primer fw_attB1Tev_1/2 und rv_attB2Tev_1/2 (Tabelle 3) wurde durch eine Zweistufen-PCR die katalytische Domäne der nativen TEV-Protease (aa 189-424), flankiert mit den attachment-Regionen attB1 und attB2 angereichert. Unter Verwendung der BP-Reaktion erfolgte die Generierung des Entry-Plasmids pEntr_TEV durch Integration des Gens der TEV-Protease in das Plasmid pDONR201. Zur Limitierung der Autoinaktivierung der TEV-Protease wurde gesteuert durch diese Oligonukleotide der Serinrest der P1′-Position der nativen Autoinaktivierungsregion der TEV-Protease durch Valin ersetzt (FM\xe2\x80\x93SK → FM\xe2\x80\x93VK). Zusätzlich wurde das Arginin-Tandemtriplett R59R50 dem Codon-Usage von E. coli angepasst (AGAAGA → CGTCGT). Mittels der LR-Rekombinationsreaktion zwischen pEntr_TEV und allen konstruierten Destinationplasmiden wurden parallel 45 verschiedene Plasmide zur differenziellen Darstellung rekombinanter TEV-Protease generiert.

Um eine Vergleichbarkeit der Proben untereinander zu ermöglichen, wurde zusätzlich der Einfluss des Fusionsproteins am N-Terminus der TEV-Protease auf die proteolytische Aktivität des Gesamtproteins untersucht. Ausgehend von der Regressionsgeraden der TEV-Protease-Eichkurve (Abbildung 22B) wurden die spezifischen Aktivitäten der weiteren TEV-Proteasefusionen (GST, MBP, SUMO und TRX) im Vergleich zu der HISTEV-Proteasefusion ermittelt. Dazu wurden alle Fusionen in E. coli rekombinant dargestellt, über IMAC gereinigt (Abbildung 23A) und gleiche Massen an TEV-Protease (1,0 µg) zur Umsetzung des Fluoreszenzsubstrats eingesetzt (Abbildung 23B). Zusätzlich in Abbildung 24 dargestellt ist die Applikation dieses Assays zur in vivo Quantifizierung aktiver rekombinanter HISTEV-Protease.

Abb. 23: Proteolytische Spaltung von ANA-QS-MCA durch alle TEV-Proteasefusionen. (A) Reinigung der fünf TEV-Proteasefusionen mittels IMAC und (B) linearer Bereich der Umsetzungskinetik der Spaltung des Fluoreszenzpeptids prozessiert durch alle Fusionen der TEV-Protease.
Abb. 24: *In vivo* Quantifizierung akkumulierter TEV-Protease in *E. coli*. Die Umsetzung des Fluoreszenzsubstrates ANA-QS-MCA erfolgte mittels der HISTEV-Proteasefusion in intakten *E. coli*-Zellen (Kreis) im Vergleich zur Negativkontrolle (ohne Induktion (Dreieck)).

Anhand des Anstiegs der Regressionsgeraden (z.B. für MBPTEV, $y = 3384x + 6705$) wurden die theoretischen Konzentrationen eingesetzter TEV-Protease mittels der Gleichung der Eichgeraden ([TEV] = 0,00993x + 0,00139, mit $y = 1/\Delta F [s]$) bestimmt. Folgende spezifische Aktivitätsfaktoren wurden ermittelt:

<table>
<thead>
<tr>
<th>TEV-Fusion</th>
<th>aus Regression</th>
<th>mTEV$_{ber.}$ in µg</th>
<th>mTEV$_{eingesetz}$ in µg</th>
<th>Faktor (=A/B)</th>
<th>spezifische Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTEV</td>
<td>4492</td>
<td>1,039</td>
<td>1,000</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td>GSTTEV</td>
<td>3484</td>
<td>0,888</td>
<td>1,000</td>
<td>1,13</td>
<td></td>
</tr>
<tr>
<td>MBPTEV</td>
<td>3384</td>
<td>0,872</td>
<td>1,000</td>
<td>1,15</td>
<td></td>
</tr>
<tr>
<td>SUMOTEV</td>
<td>6827</td>
<td>1,345</td>
<td>1,000</td>
<td>0,74</td>
<td></td>
</tr>
<tr>
<td>TRXTEV</td>
<td>1170</td>
<td>0,453</td>
<td>1,000</td>
<td>2,21</td>
<td></td>
</tr>
</tbody>
</table>

Aus der Tabelle 4 geht hervor, dass die proteolytische Aktivität der Gesamtfusion vom N-terminalen *tag* abhängig ist. So wiesen die Fusionen der TEV-Protease mit dem Maltose-Bindeprotein, der Glutathion S-Transferase bzw. Thioredoxin eine Hydrolyseaktivität des Gesamtfusion im Vergleich zur Fusion mit dem HIS-*tag* auf, die um 10 % bzw. um die Hälfte reduziert. Während die SumoTEV-Fusion die höchste spezifische Aktivität aller verwendeten Fusionen aufwies. Die ermittelten spezifischen Aktivitäten bzw. die Spezifitätsfaktoren der TEV-Proteasefusionen mit GST, MBP, SUMO und TRX im Vergleich zur HIS-Fusion wurden bei der Quantifizierung des Gehalts an aktiver TEV-Protease durch Umsetzung des Fluoreszenzpeptids hinsichtlich der Vergleichbarkeit der einzelnen Fusionen berücksichtigt.
3.8.2.2 Akkumulation aktiver TEV-Protease in Abhängigkeit des Plasmids

Abb. 25: Anreicherung aktiver TEV-Protease in Abhängigkeit der differenziellen Darstellung. Die TEV-Protease wurde differenziell in den konstruierten Plasmiden dargestellt und der Anteil aktiver und löslicher Protease durch Umsetzung des Quench-Peptids bestimmt. Die Quantifizierung der Menge an aktiver TEV-Protease erfolgte anhand der Fluoreszenzänderung im linearen Bereich der Kinetik, unter Berücksichtigung der spezifischen Aktivität der verschiedenen Fusionen und ist auf eine Biotrockenmasse (BTM) von 1,0 g normiert dargestellt (A). Die Quantifizierung der Induktion des Luciferasegens \(\text{luc} \) durch die native Stressantwort infolge der Anreicherung unlöslicher TEV-Protease erfolgte durch Zugabe von D-Luciferin. Dessen Umsetzung wurde mittels Lumineszenzspektrometer kinetisch verfolgt. Die dargestellten Lumineszenzeinheiten (RLU) repräsentieren den Mittelwert der Plateauphase der D-Luciferinumsetzung (20.-25. Minute) und sind auf eine \(\text{OD}_{550} \) von 1,0 normiert. Als weiße Balken dargestellt sind die beiden detektierten enzymatischen Aktivitäten im Vergleich zur uninduzierten Probe (schwarzer Balken), als Mittelwert von drei unabhängigen Kultivierungen.

Die beiden enzymatischen Aktivitäten, dargestellt in Abbildung 25 wurden bzgl. der TEV-Proteaseaktivität auf eine Biotrockenmasse (BTM) von 1,0 g (1 ml einer Kultur mit \(\text{OD}_{550} \) von 5,0 = 1,0 mg BTM) bzw. der Luciferaseaktivität auf eine Kultur mit einer optischen Dichte \(\text{OD}_{550} \) von 1,0 normiert.

Die TEV-Proteaseaktivität in allen 45 verschiedenen Expressionskulturen zeigte einen Zusammenhang zwischen der Anreicherung aktiver und löslicher TEV-Protease im Zytosol von \(E. \text{coli} \) in Abhängigkeit vom Syntheselevel, bestimmt durch die Stärke des verwendeten Promotors bzw. SD-Sequenz. Des Weiteren hatte die Wahl des N-terminalen Fusionspartners einen wesentlichen Einfluss auf die Anreicherung löslicher TEV-Protease. Lediglich die Fusion der TEV-Protease mit der Glutathion S-Transferase (GST), Thioredoxin (TRX) und insbesondere die Fusion mit dem Maltose-Bindeprotein (MBP) führt im Vergleich zur HIS-Fusion, bzw. der Fusion der TEV-Protease mit dem SUMO-\(\text{tag} \) zu einer erhöhten Anreicherung aktiver Protease. Wie in der Abbildung 25 dargestellt, resultiert die Darstellung der HIS-Fusion unabhängig von der Wahl des Promotors bzw. SD-Sequenz zum niedrigsten zytoplasmatischen Level an aktiver TEV-Protease, aber gleichzeitig zu einer erhöhten
Lumineszenzdetektion infolge der Anreicherung dieser Fusion in der unlöslichen Form. Vergleicht man die detektierte Lumineszenz, infolge erhöhter LucA-Synthese, dirigiert durch die σ^{32}-abhängige Stressantwort bzw. dem ihpfxsT7-Tandempromotor mit der quantifizierten Menge aktiver TEV-Protease, so resultiert die niedrige TEV-Proteaseaktivität, wesentlich aus einer erhöhten Akkumulation an unlöslichem rekombinantem Protein. Die Korrelation zwischen erhöhtem Fehlfaltungs- und geringerem Level löslicher TEV-Protease ist insbesondere bei der Fusion mit dem HIS- bzw. SUMO-tag, unabhängig von der Wahl der regulatorischen Elemente nachzuweisen. Die Darstellung der Korrelation zwischen der Anreicherung aktiver TEV-Protease bzw. erhöhtem Faltungsstress in Abhängigkeit vom verwendeten Plasmid sind für ausgewählte Proben in Abbildung 26 dargestellt.

Abb. 26: Korrelation der Akkumulation aktiver TEV-Protease in Abhängigkeit des Plasmids. Zusammenhang zwischen Wahl des Promotors (A), der SD-Sequenz (B) und des Fusionsproteins (C) auf die Anreicherung aktiver TEV-Protease bzw. des Faltungsstresses am Beispiel ausgewählter Proben. Dargestellt bei beiden Aktivitäten ist der Quotient zwischen der induzierten und uninduzierten Probe. Die Anreicherung der TEV-Protease in Abhängigkeit des tags wurde zusätzlich durch Umsetzung des Substratpeptids ANA-QS-MCA in drei Proben fluorescence-mikroskopisch nachgewiesen, wobei die emittierte Fluoreszenz in rot pseudo-coloriert (obere Reihe), bzw. die Position der *E. coli* Zellen in der unteren Reihe dargestellt ist (D).
3.9 Differenzielle Darstellung der Centromerproteine des inneren humanen Kinetochors

Die Centromerproteine (CENP) des inneren humanen Kinetochors sind hochkomplexe Proteine, die zum Teil in kleinere funktionelle Subdomänen, die essentielle Funktionen wie z.B. die Interaktion mit spezifischen DNA-Sequenzen oder Protein-Proteininteraktionen der CENP untereinander oder anderer Proteine steuern, unterteilt werden können.

Abb. 27: Darstellung der zur Produktion in *E. coli* selektierten Centromerproteine des inneren Kinetochors des Menschen.

3.9.1 Parallele Klonierung und Darstellung der Centromerproteine des inneren humanen Kinetochors in *E. coli*

Die Gene der humanen Kinetochorproteine wurden zur Konstruktion der Entry-Plasmide mittels PCR (Tabelle 3) aus entsprechenden Plasmiden amplifiziert. Zur Darstellung nativer Centromerproteine, wurden durch die Oligonukleotide das Spaltmotiv der TEV-Protease

3.9.2 Scale-up Darstellung und analytische Reinigung ausgewählter CENP-Fusionen

Das Screening der löslichen Darstellung der rekombinanten Kinetochorproteine erfolgte in einer parallelisierten Reinigung der Fusionsproteine mittels der Affinität-Metallchelatchromatographie (IMAC). Dazu wurden im scale-up Verfahren alle sieben Centromerproteine, jeweils fusioniert mit zwei verschiedenen Fusionsproteinen, in *E. coli* BL21, in 400 ml 2TY-Medium bei 26 °C und 200 rpm dargestellt. Die sedimentierte
Biofeuchtmasse der Schüttelkulturen (ca. 7,5 g) wurde in IMAC-Aufschlusspuffer resuspendiert (10 ml Puffer/g BFM), mittels Hochdruckhomogenisator aufgeschlossen und die lösliche Proteinfraktion durch Zentrifugation von den unlöslichen Zellbestandteilen separiert. Der Zellextrakt wurde mit equilibriertem Ni-NTA-Trägermaterial (5 % v/v) versetzt und die Suspension in Durchtropfsäulen gegeben. Die Elution spezifisch gebundener Fusionsproteine erfolgte nach zweimaligen Waschen mit 2-Säulenvolumen an Waschpuffer durch Zugabe von 0,5 ml IMAC-Elutionspuffer (Aufschlusspuffer + 250 mM Imidazol). Die Analyse der löslichen Darstellung der rekombinanten Kinetochorproteine als Volllängenproteine oder als Abbruchfragmente erfolgte mittels der analytischen SDS-Polyacrylamidgelektrophorese und ist in Abbildung 29 dargestellt.

3.9.3 Fermentation und downstream-Processing zur Darstellung fusionierter bzw. nativer löslicher Centromerproteine

Mittels der Reinigung an Ni-NTA und/ oder Amylose-Trägermaterial wurden folgende Mengen an Kinetochorproteinen aus je 25 g Zellpellets (ca. 5 g Biotrockenmasse) ermittelt: MBP_CENP-Afirst45 (19 mg), CENP-Cfirst171 (65 mg), MBP_CENP-Clast124 (163 mg) und MBP_CENP-H (109 mg).
3.9.4 Darstellung nativer Centromerproteine aus CENP-Fusionen

Die Reinigung der Spaltansätze zur Darstellung der nativen Zielproteine ist in der Abbildung 33 zusammengefasst.
Die Centromerproteine des inneren humanen Kinetochors wurden entweder als Volllängenproteine (CENP-H, hMis12) oder unterteilt in einzelne Subdomänen (CENP-A\textsubscript{first45}, CENP-C\textsubscript{first171}, CENP-C\textsubscript{last124}, CENP-I\textsubscript{first431} und CENP-I\textsubscript{last401}) in \textit{Escherichia coli} als lösliches Protein dargestellt. Die Optimierung der löslichen Darstellung erfolgte dabei anhand einer alternativen, dualen Expressionsplattform, die eine differenzielle Darstellung der Centromerproteine als Fusion mit verschiedenen Fusionspartnern ermöglicht. Die Optimierung der rekombinanten Produktion erfolgte durch Detektion des Faltungsstresses infolge der Anreicherung unlöslicher Centromerproteine in \textit{E. coli}. Alle sieben verschiedenen Kinetochorproteine wurden in jeweils zehn verschiedenen Plasmiden unter Kontrolle von zwei verschieden effizienten Promotoren vom Mikrotitermaßstab, und einzelne ausgewählte Proteine bis hin zum Fermentationsmaßstab dargestellt. Alle Proteine wurden als Fusion mit verschiedenen Fusionspartnern Affinitäts-chromatographisch gereinigt, im scale-up Verfahren ausgewählte Centromerproteine in verschiedenen Fermentationsmaßstäben als lösliches Protein dargestellt, über verschiedene Prozeduren gereinigt und durch Hydrolyse des N-terminalen Fusionspartner mittels der TEV-Protease als natives Protein dargestellt. Durch Hydrolyse der selektierten CENP-Fusionen mittels der TEV-Protease und durch Affinitätschromatographie wurden die Centromerproteine CENP-A\textsubscript{first45}, CENP-C\textsubscript{last124} und CENP-H als natives Protein prozessiert und für deren Applikation in weiteren molekularbiologischen Fragestellungen in folgenden Proteinmengen gereinigt: CENP-A\textsubscript{first45} (0,8 mg), CENP-C\textsubscript{last124} (24 mg) und CENP-H (41 mg).

Abb. 33: Prozessierung der MBP_CENP-Fusionen durch Hydrolyse mittels TEV-Protease. Die Separierung der Kinetochorproteine vom Fusionspartner MBP erfolgte ausgehend von den Elutionsfraktionen der Amylose-Reinigung durch spezifische Proteolyse der TEV-Protease am integrierten Spaltmotiv (ENLYFQ\textsubscript{G}). Die Trennung der nativen CENP von nicht prozessierten Fusionsproteinen, dem Maltose-Bindeprotein und der TEV-Protease erfolgte Affinitäts-chromatographisch an immobilisierten Ni2+-Ionen und wurde durch die SDS-PAGE analysiert (S, Proteinstandard; 1, Fusionsprotein; 2, Spaltansatz; 3, Durchlauf; 4, Elution).
4. Diskussion

4.1 Konzeption der Reporterplasmide

Die differenzielle Darstellung heterologer Proteine ist ein notwendiger Schritt bei der Funktionsaufklärung komplexer Proteine, aber auch gleichzeitig eine große Herausforderung in der Postgenom-Ära.

Das gram-negative Bakterium E. coli neigt häufig dazu dargestellte Proteine in unlösliche Proteinformen u.a. inclusion bodies anzureichern.

Auf Grund der niedrigen Toleranz gegenüber Akkumulationen von nicht bzw. falsch gefalteten Proteinen im Zytoplasma wie auch Periplasma, entwickelten die Zellen zum einen biologische Sensoren, um geringste Mengen an Fehlfaltungen wahrzunehmen und zum anderen Strategien und Mechanismen um effizient und schnell darauf reagieren zu können.

Die optimierte Darstellung heterologer Proteine in E. coli setzt deshalb ein ausgewogenes Verhältnis zwischen einer effizienten Darstellung und den physiologischen Erfordernissen der Wirtszelle voraus.

Auf Grund einer besseren Vergleichbarkeit der generierten Reportereinheiten wurden die nativen Shine-Dalgarnosequenzen der selektierten Hitzeschockproteine durch die SD-Sequenz des β-Galactosidaseoperons (SDlac) substituiert.

4.2 Induktion des Luciferase-Reportergens lucA durch Produktion unlöslicher Proteine

rekombinant dargestellt wurden, konnten keine derartigen Strukturen nachgewiesen werden. Im Vergleich zu der Wildtyp-GFP-Variante konnte bei Synthese vom GFPC3 eine homogene Fluoreszenz nachgewiesen werden.

des mRNA Levels erfolgte. In dieser Arbeit wurde der Faltungsstress mittels der enzymatischen Aktivität eines, durch die Stressantwort gebildetes Reporterprotein quantifiziert.

Bildung weiterer Proteinaggregate [Thomas und Baneyx, (2000); Motohashi et al., (1999); Zolkiewski, (1999); Carrio und Villaverde, (2003); Mogk et al., (2003)].

Durch Substitution der SD-Sequenz SD_{lac} in der Reportereinheit ibplucA durch die SD-Sequenz des Gen10 des Bakteriophagen T7 (SD_{T7}) bzw. durch Fusion zweier Promotoren des σ^{32}-Regulons als Tandempromotor wurde untersucht, inwiefern die Stressantwort infolge der Anreicherung unlösender Proteine noch effizienter und sensitiver detektiert werden kann.

Für diese Fragestellung wurden drei weitere Reporterplasmide generiert. Zum einen pibpT7luc und zum anderen zwei Reportereinheiten, bestehend aus dem Tandempromotor (ibpfxs), generiert durch Fusion der Promotoren der Hsp IbpA und IbpB mit dem Promotor fxsAp. Um die durch die Stressantwort, bzw. durch RpoH gebildete mRNA_{lucA} noch effizienter in die Proteinform (LucA) zu überführen, wurden die beiden SD-Sequenzen SD_{lac}, bzw. SD_{T7} an den Tandempromotor gekoppelt.

demnach wesentlich auf das Löslichkeitsverhalten der unlöslichen Modellproteine zurückzuführen. Die dargestellten Ergebnisse zeigten, dass dieses System eine spezifische und gleichfalls sensitive Quantifizierung der Anreicherung fehlgefaßter Proteine ermöglicht. So wurde nachgewiesen, dass die Zellen, in denen die höchste Anreicherung unlöslicher Proteine vorlag, auch die höchste Lumineszenzaktivität nachgewiesen werden konnte. Zellen, die MalE31 bzw. wtGFP in Form unlöslicher Aggregate zytoplasmatisch anreicherten, wiesen die höchsten Lumineszenzwerte auf. Kulturen die das total lösliche MBP, bzw. das, für die Darstellung in E. coli optimierte GFP (GFPc3) synthetisierten [Crameri et al., (1996)] zeigten lediglich Basalaktivität.

Des Weiteren konnte gezeigt werden, dass die Wahl des Fusionspartners ein wesentlicher Faktor ist, der zu einer verbesserten Löslichkeit des Fusionsproteins beträgt. So wurde bei Darstellung der TEV-Protease, als Fusion mit dem Maltose-Bindeprotein eine wesentlich geringere Lumineszenzaktivität, bzw. eine erhöhte Anreicherung der Fusionsproteine in der löslichen Proteinfraktion durch die SDS-PAGE nachgewiesen. Im Vergleich zur Fusion der TEV-Protease mit der Glutathion S-Transferase konnte für die MBPTEV-Protease eine verbesserte Faltung bzw. lösliche Synthese aktiver TEV-Protease nachgewiesen werden [Kapust und Waugh, (1999)].

Vergleicht man die ermittelten Lumineszenzwerte bei Verwendung der Reporterplasmide pibplucA bzw. pibpfxslucA mit denen der Reporterplasmide pibpT7lucA bzw. pibpfxsT7lucA, so führte die Verwendung der effizienteren SD-Sequenz (SD_{T7}) zu einer 3-5-fachen Steigerung des Lumineszenzsignals [110 (wtGFP, pibplucA) vs. 490 (wtGFP, pibpT7lucA), oder 210 (GSTTEV, pibpfxslucA) vs. 630 (GSTTEV, pibpfxsT7lucA)]. Im Vergleich dazu zeigte diese Optimierungsstrategie keine signifikante Erhöhung des Faktors zwischen induzierter und uninduzierter Probe [6,3 (MalE31, pibplucA) vs. 6,4 (MalE31, pibpT7lucA), oder 8,9 (MalE31, pibpfxslucA) vs. 8,9 (MalE31, pibpfxsT7lucA)]. Der Grund hierfür liegt darin, das die gebildete Reporter-mRNA (mRNA_{lucA}) durch die Translations-effizientere SD-Sequenz SD_{T7} vermehrt in die Proteinform umgewandelt wird. Die Verwendung einer effizienteren SD-Sequenz hatte aber keinen Einfluss auf die Bildung der mRNA. Hier wiederum wird der Vorteil der Verwendung der Tandempromotoren deutlich. So zeigten Dehio et al. (1998) dass die Fusion des tac Promoters, stromaufwärts des lac-Promotor des β-Galactosidaseoperons (lacZp) als Tandem (taclacp) eine höhere Transkriptionseffizienz aufwies als die jeweiligen Einzelpromotoren.

Die Fusion von zwei σ^{32}-abhängigen Promotoren, und dem Vorhandensein von zwei σ^{32}-Bindestellen, führte zu einer signifikanten Erhöhung der Sensitivität des Reportersystems
DISKUSSION

und zu einem durchschnittlichen Anstieg der Lumineszenzaktivität um den Faktor zwei, bei Produktion aller unlöschlichen Proteine. Des Weiteren konnte ein 1,5-fach höherer Faktor zwischen induzierter und uninduzierter Probe nachgewiesen werden.

Der Nachweis der Akkumulation unlöschlicher Proteine durch die Induktion des Luciferasegens lucA erfolgte nicht nur aus Proben von Kultivierungen in Deep-Well-Platten, oder Schüttelkolben sondern auch während der Hochzelldichtefermentation im M9-Minimalmedium. Durch Generierung eines on-line Detektionsmoduls, unter Verwendung eines Durchflussluminometers wurde die Lumineszenz infolge der Synthese der beiden Varianten des grün fluoreszierenden Proteins wtGFP und GFPc3 direkt aus dem Bioreaktor bestimmt. Der Vergleich beider gemessenen Aktivitäten (Fluoreszenz und Lumineszenz) diente der Korrelation der Anreicherung an löslichem, aktivem bzw. unlöschlichem, inaktivem GFP. Die erhaltenen Daten bestätigten die Deep-Well-Kultivierung und zeigten, dass die Produktion des nativen GFP im Vergleich zur Cycle3-Mutante (GFPc3) zur Anreicherung geringer Mengen an löslichen Proteinen aber vermehrt zur Bildung von inclusion bodies oder anderer unlöschlicher Proteinformenten führte.

4.3 Senkung der Wachstumstemperatur resultiert in einer verminderten Induktion des Luciferase-Reportergens lucA

Ein wesentliches Kriterium, das zu einem höheren Anteil an korrekt gefaltetem Zielprotein führen kann, und aus ökonomischen Gründen im Produktionsmaßstab eine wesentliche Rolle spielt, ist die Senkung der Kultivierungstemperatur.

Erhöhte Wachstumstemperaturen führen zur Bildung einer Reihe von wirtsseigenen Stressproteinen, zur Ausbildung von Proteinaggregaten, die die Reinigung und den Ertrag an Zielproteinen u.a. auch durch erhöhte Proteolyseaktivität minimieren können [Schein, (1989); Hockney, (1994)].

4.4 Konzeption des Plasmidsets zur differenziellen Darstellung heterologer Proteine in *E. coli*

Dies wurde realisiert durch die Integration von drei unterschiedlichen Promotoren, Shine-Dalgarnosequenzen und fünf verschiedenen Fusionspartnern. Die drei verwendeten Promotoren basieren auf den, durch Zugabe von IPTG oder Laktose induzierbaren *lac*-Promotor des β-Galactosidaseoperons. Durch gezielte Punktmutationen in der Bindestelle des CAP-Proteins (*Catabolite Activator Protein*), der Minus-35-Box („-35“) und Pribnow-Schaller-Box (Minus-10-Box, „-10“) wurden diese Promotoren selektiv in deren Transkriptionseffizienz verändert. Die Translationseffizienz wurde durch drei verschiedene SD-Sequenzen, der SD-Sequenz des β-Galactosidaseoperons (*SD*_{lac}), des Gen10 des Bakteriophagen T7 (*SD*_{T7}) und durch eine synthetische SD-Sequenz (*SD*_{Var}) [Min et al. [1988]) reguliert. Auf Grund des essentiellen Einflusses des N-terminalen Fusionspartners auf

Im Hinblick auf eine effiziente Klonierung einer Vielzahl heterologer Gene in einem parallelisierten Hochdurchsatzverfahren wurde eine modifizierte Rekombinationskassette der Gateway® Technologie in dieses Plasmidset implementiert. Diese Rekombinationskassette ermöglicht unabhängig von unikalen Restriktionsschnittstellen, die Integration jedes beliebigen Gens durch die doppelorts-spezifische Rekombination, auf Basis des Bakteriophagen Lambda.

4.5 Anreicherung aktiver TEV-Protease ist abhängig vom Plasmid

aktiver TEV-Protease, aber insbesondere zu erhöhtem zytoplasmatischem Faltungsstress. Die Darstellung der TEV-Proteasefusionen unter Kontrolle von lac_CUp und SDlac führten im Durchschnitt zur höchsten Anreicherung aktiver Proteine.

Die Darstellung der TEV-Protease, unter Kontrolle des schwächsten Promotors lac_Cp und der SD-Sequenz SD_{17} wurde zur Verifizierung der spektrometrisch erhobenen Daten mittels eines konfokalen Laser-Scanning Mikroskop (CLSM) fluoreszenz-mikroskopisch untersucht. Zellen, in denen die TEV-Protease als Fusion mit MBP dargestellt wurde, zeigten eine homogene Fluoreszenz bzw. homogene Verteilung synthetisierter TEV-Protease im Vergleich zu Zellen, die GSTTEV bzw. die TEV-Protease als Fusion mit SUMO darstellten. In diesen Zellen konnten lediglich vereinzelte Aktivitätszentren nachgewiesen werden. Durch die schichtweise Aufnahme in Z-Richtung konnten diese als granuläre Strukturen verifiziert werden.

Vergleicht man die beiden gemessenen Aktivitäten innerhalb der 45 Expressionskulturen, so konnte gezeigt werden, dass es mit dieser dualen Expressionsplattform prinziell möglich ist, das Plasmid schnell und effizient zu selektieren, das eine verbesserte Anreicherung an löslichem Zielprotein, unter Berücksichtigung mehrerer Parameter der zytoplasmatischen Proteinproduktion in E. coli ermöglicht.

4.6 Optimierung der Darstellung der Centromerproteine mittels der dualen Expressionsplattform

Basierend auf diesen Daten, wurde CENP-C in eine N- und C-terminale Subdomäne (CENP-C first171 und CENP-C last124) geteilt. Auf Grund der limitierten Darstellung großer Moleküle in E. coli (>100 kDa) und der konzentrierten Lokalisation von Autoepitopen in diesen Proteinabschnitten erfolgte so die Darstellung von CENP-C nicht als Volllängenprotein, sondern unterteilt in eine N- bzw. C-terminale Subdomäne.

Während CENP-I in zwei, sich überlappende Proteinhälften (CENP-I first401, CENP-I last431) geteilt wurde, wurden die Kinetochorproteine CENP-H und hMis12 als Volllängenproteine in E. coli rekombinant dargestellt.

Alle Centromerproteine bzw. deren Subdomänen wurden jeweils unter Kontrolle der beiden Promotoren lac_CUp und lac_CTuP und der SD-Sequenz SD lac, fusioniert mit allen ausgewählten Fusionspartnern in E. coli dargestellt. Um eine Separierung des Fusionspartners
und des Linkerbereichs vom Zielprotein zu ermöglichen, wurde zusätzlich das Spaltmotto der TEV-Protease integriert.

Fusion mit TRX bzw. dem HIS_hMis12 eine signifikant erhöhte Anreicherungen an löslichem Protein realisiert werden.

Anhand der Lumineszenzaktivitäten und des Anteils an rekombinanatem Protein in der löslichen Proteinfraktion erfolgte die Selektion geeigneter Plasmide für die scale-up Darstellung der Kinetochorproteine.

Dabei wurden die Centromerproteine, jeweils mit zwei Fusionspartnern in 400 ml Schüttelkolben und ausgewählte Proteine im fünf Liter Fermenter dargestellt und gereinigt. Anhand eines zweistufigen Reinigungsprotokolls mittels der Trägermaterialien Ni-NTA und Amylose wurden die Proteine CENP-A\textsubscript{first45}, CENP-C\textsubscript{last124} und CENP-H, als Fusion mit dem Maltose-Bindeprotein mit einem hohen Reinheitsgrad gereinigt. Aus jeweils 25 g Biofeuchtmasse aus den fünf Liter Fermentationen konnten z.B. 163 mg an CENP-C\textsubscript{last124} gereinigt werden.

Durch Hydrolyse der drei MBP-Fusionsproteine mittels der TEV-Protease und anschließender Affinität-Metallechelatchromatographie wurden alle drei Zielproteine als natives Protein dargestellt. Während CENP-A\textsubscript{first45} und CENP-H fast vollständig von nicht prozessierten Fusionsproteinen isoliert werden konnte, war dies bei CENP-C\textsubscript{last124} nicht der Fall. Eine mögliche Ursache könnten Protein-Proteinwechselwirkungen zwischen MBP und der C-terminalen CENP-C-Subdomäne sein, die eine Separierung beider Proteine verhindert [Hayashi et al., (2000)].

Die Daten, aus der differenziellen Darstellung jedes der sieben Centromerproteine in den zehn verschiedenen Plasmiden zeigte, dass es im Hinblick auf eine lösliche Darstellung in großen Ausbeuten nicht zweckmäßig ist eine gefundenene Produktionsstrategie ohne weiteres auf ein anderes Protein, auf Grund unterschiedlicher Eigenschaften der Proteine zu überführen. Um dabei jedes Protein löslich in \textit{E. coli} zu produzieren ist es notwendig immer wieder die Parameter, die die lösliche Darstellung beeinflussen, für jedes Protein individuell zu ermitteln. Letztendlich war es möglich alle Centromerproteine, fusioniert mit jeweils zwei unterschiedlichen Fusionspartnern löslich zu produzieren und zu reinigen. Jeweils vier Centromerproteine wurden im scale-up Verfahren produziert, präparativ gereinigt und durch
Spaltung des Fusionspartners als native Proteine für weitere Anwendungen in der Grundlagenforschung bereitgestellt.
5. Zusammenfassung und Ausblick

Nach dem Abschluss der Sequenzierung der Genome vielfältiger Modellorganismen steht nun die Aufklärung der Funktion und Regulation der Genprodukte im Mittelpunkt der angewandten Forschung, aber insbesondere auch in der aktuellen Grundlagenforschung. Auf Grund des hohen Bedarfs an nativen heterologen Proteinen in der Entwicklung neuer Therapeutika, diagnostischer Verfahren aber auch in der Aufklärung deren Funktionen, Struktur, deren Zusammenwirken in den lebenden Zellen ist es erforderlich Expressionssysteme zur Verfügung zustellen um die meist komplexen Proteine effizient und funktionell in einem Hochdurchsatzverfahren, parallelisiert darzustellen.

In dieser Arbeit wurde basierend auf der nativen Stressantwort infolge der Anreicherung unlösender Proteine im Zytoplasma von *Escherichia coli* ein modernes Reportersystem generiert und etabliert.

Durch Auswahl geeigneter vollständig, oder partiell löslicher bzw. unlöschlicher Modellproteine konnte gezeigt werden, dass die Darstellung und Anreicherung unlöschlicher Proteine zu einer signifikanten und spezifischen Induktion des Luciferase-Reportergens führt. Im Vergleich dazu resultierte der Transkriptions- und Translationsstress bzw. die Anreicherung löslicher Proteine in keiner wesentlich erhöhten Induktion des Reportergens.

Da eine Vielzahl von Parametern das Syntheselvel bzw. die lösliche Darstellung beeinflussen, wurde ein hoch diverses Plasmidset, zur differenziellen Darstellung heterologer Proteine in *E. coli* konstruiert. Durch variablen Einsatz verschiedener Elemente der drei wichtigsten Ebenen der löslichen Proteinbiosynthese: Transkription, Translation und Faltung ist es möglich ein Zielprotein in 45 verschiedenen Plasmiden differenziell darzustellen. Das
ZUSAMMENFASSUNG UND AUSBlick

Mittels der C3-Typ Protease des Tobacco etch virus erfolgte die Evaluierung dieser dualen Expressionsplattform. Es konnte gezeigt werden, dass die differenzielle Darstellung der TEV-Protease in den 45 verschiedenen Plasmiden in einem Hochdurchsatzverfahren zu signifikant unterschiedlichen Ausbeuten an löschlichem, biologisch aktivem Protein, und insbesondere zu deutlich unterschiedlichen Stresslevel in den Zellen führt.

Mittels dieses dualen Expressionssystems wurden die Proteine des inneren humanen Kinetochors, differenziell in Form fünf verschiedener Fusionen in E. coli dargestellt bzw. in deren löschlichen Darstellung optimiert. Dabei wurden die Centromerproteine von der Mikrotiterplatte bis hin zum fünf Liter Fermenter synthetisiert, effektiv gereinigt und durch gezielte Hydrolyse des Fusionspartners mittel der TEV-Protease am integrierten TEV-Proteasespaltmotiv als native Centromerproteine dargestellt.

Referenzen

DeMarco V, Stier G, Blandin S, DeMarco A, (2004). The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochem Biophys Res Commun. 322, 766-771

Fox JD, Kapust RB, Waugh DS, (2001). Single amino acid substitutions on the surface of *Escherichia coli* maltose-binding protein can have a profound impact on the solubility of fusion proteins. *Protein Sci.* 10, 622–630

Kapust RB, Waugh DS, (1999). *Escherichia coli* maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. *Protein Sci.* **8**, 1668-1674

hybridomas and spleen cell repertoires employing a reengineered phage display system. *J Immunol Methods.* **201**, 35-55

Rieder CL, Alexander SP, (1990). Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 110, 81-95

Sachdev D, Chirgwin JM, (1998). Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr Purif. 12, 122-132

Wissenschaftliche Veröffentlichungen und Poster

Wissenschaftliche Veröffentlichungen:

Kraft M. (2003). Paralleles *in vivo* Monitoring der DegP-Promotor vermittelten Luciferaseaktivität zur Optimierung der periplasmatischen Proteinfaltung in *Escherichia coli*. Biochemie (Diplom), Friedrich-Schiller-Universität Universität Jena

Posterpräsentation:

Selbständigkeitserklärung

Hiermit erkläre ich, dass mir die geltende Promotionsordnung der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena bekannt ist, ich die vorliegende Dissertation selbst angefertigt habe und alle benutzten Hilfsmittel, persönlichen Mitteilungen und benutzten Quellen angegeben habe.

Alle Personen, die mich bei Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben, habe ich benannt.

Ich erkläre, dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe und das Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Lebenslauf

Persönliche Daten
Name: Kraft
Vorname: Mario
Anschrift: Moskauer Straße 67
D-99427 Weimar-Weststadt
Geburtsdatum: 29. 11. 1978
Geburtsort: Weimar
Staatsangehörigkeit: deutsch
Familienstand: ledig

Schulausbildung
09/1990 - 06/1997 Besuch des Hoffmann-von-Fallersleben Gymnasiums, Weimar
06/1997 Erwerb der Allgemeinen Hochschulreife (Abiturgesamtnote: 1,4)

Wehr- oder Zivildienst
08/1997 – 08/1998 Zivildienst am St. Elisabeth Pflegeheim, Weimar

Berufsausbildung/Akademische Ausbildung
10/1998 - 05/2003 Studium der Biochemie und Molekularbiologie an der Friedrich-Schiller-Universität Jena
Diplomarbeit angefertigt am Hans-Knöll-Institut (HKI) für Naturstoff-Forschung e.V., Jena
Betreuer: Professor Wolfgang A. Knorre, Dr. Uwe Horn
05/2003 Erwerb des Diploms (Diplomprädikat: 1,2)
07/2003 - Promotion zum Erwerb des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut, Jena
Betreuer: Professor Dr. Axel Brakhage

Für die funktionelle Charakterisierung sowie der Entwicklung neuer Therapeutika und Diagnostika besteht ein steigender Bedarf an nativen Proteinen. Da die Löslichkeitseigenschaften, aber insbesondere die funktionelle Darstellung von rekombinanten Proteinen durch eine Vielzahl von Faktoren beeinflusst werden, ist es nicht möglich allgemein gültige Expressionsstrategien zu entwickeln.

Dadurch ist es notwendig parallele (high-throughput) und differenzielle Expressionstechnologien zu entwickeln. Um eine in vivo Optimierung direkt am Fermenter zu ermöglichen, bestand ein wesentliches Ziel der Arbeit in der Entwicklung einer dualen Expressionsplattform, die diesen Anforderungen gerecht wird.

1. Die Darstellung heterologer Proteine in *Escherichia coli* führt häufig zur Anreicherung an unlöslichen und nicht funktionellen Zielproteinen.

2. Die Akkumulation unlöschlicher Proteine in *E. coli* führt zur Induktion einer „heat shock-like response“, die in der Aktivierung des zytoplasmatischen Stressregulators Sigma 32 (RpoH, σ^{32}) und der Expression σ^{32}-abhängiger Gene resultiert.

Die Dissertation „Duale Optimierung der Darstellung heterologer Proteine in *Escherichia coli*: Parallele und differenzielle Produktion von Centromerproteinen des inneren humanen Kinetochors“ vorgelegt von Diplom Biochemiker Mario Kraft
4. Die Synthese von Faltungs-defizienten Modellproteinen, wie der Variante des Maltose-Bindeproteins MalE31, des nativen green fluorescent protein (wtGFP) und der Fusion der Protease des Tobacco etch virus mit der Glutathion S-Transferase (GSTTEV) resultiert in einer signifikanten Expression des Luciferase-Reporter-gens. Im Vergleich dazu führt die Darstellung der löslichen Modellproteine (MalE, GFPc3 und MBPTEV) zu keiner Erhöhung der σ^{32}-vermittelten Transkription von lucA.

5. Die Fusion des σ^{32}-abhängigen Promotors der zwei Hitzeschockproteine IbpA und IbpB mit dem Luciferase-Reporter-gen resultiert in der höchsten Transkriptionsrate von lucA.

Danksagung

Diese Seite möchte ich nutzen, um mich bei all denjenigen zu Bedanken, die mich während meiner Doktorarbeit unterstützt haben.

Mein erster Dank gilt allen Mitarbeitern des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut Jena, speziell der Abteilungen BioTechnikum, Molekulare und angewandte Mikrobiologie (MAM) und Infektionsbiologie (IB), für die herzliche Aufnahme, der mir entgegen gebrachten Unterstützung und des angenehmen Arbeitsklimas.

Besonderen Dank widme ich meinem Doktorvater Professor Dr. Axel Brakhage und Dr. Uwe Horn zum einen für die Bereitstellung thematischer, finanzieller Hilfen, Ideen und anregenden Diskussionen, und zum anderen für die hervorragende Betreuung während der Doktorarbeit.

Ganz besonderer Dank gilt im großen Maße Sylke Fricke, Silke Steinbach, Gisela Sudermann, Uwe Knüpfer und Rolf Wenderoth für die reichliche Unterstützung im Labor. Vielen Dank Dr. Gerhard Wieland und Dörte Radke für die Unterstützung bzgl. der CLSM und der kinetischen Auswertungen.

Erwähnen möchte ich auch Ines Ackermann, Jeannette Schmaler, Elisabeth Zentgraf, Sven Güttich, Gernot Habicht, Florian Richter und Martin Siegemund, die so manchen tristen Alltag auffrischten.

Ich bedanke mich bei allen Kooperationspartnern, die mir mit der großzügigen Bereitstellung von Materialien, Literatur und hilfreichen Tipps zur Seite standen.

Diese Arbeit wurde thematisch bereitgestellt und finanziell unterstützt durch die Merck KGaA Darmstadt, Deutschland.