52. IWK
Internationales Wissenschaftliches Kolloquium
International Scientific Colloquium

PROCEEDINGS
10 - 13 September 2007

FACULTY OF
COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

Session 6 - Environmental Systems: Management and Optimisation
Session 7 - New Methods and Technologies for Medicine and Biology
Session 8 - Embedded System Design and Application
Session 9 - Image Processing, Image Analysis and Computer Vision
Session 10 - Mobile Communications
Session 11 - Education in Computer Science and Automation
Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system’s performance.

- New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” technical systems and processes, in environmental systems or medical and bioengineering applications.

- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.

- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.

- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.

- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets Automation” are addressed by this colloquium at the Technische Universität Ilmenau.

All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

Professor Peter Scharff
Rector, TU Ilmenau

Professor Christoph Ament
Head of Organisation
CONTENTS

6 Environmental Systems: Management and Optimisation

T. Bernard, H. Linke, O. Krol
A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System

S. Röll, S. Hopfgarten, P. Li
A groundwater model for the area Darkhan in Kharaa river Th. Bernard, H. Linke, O. Krol basin

A. Khatanbaatar Altantuul
The need designing integrated urban water management in cities of Mongolia

T. Rauschenbach, T. Pfützenreuter, Z. Tong
Model based water allocation decision support system for Beijing

T. Pfützenreuter, T. Rauschenbach
Surface Water Modelling with the Simulation Library ILM-River

D. Karimanzira, M. Jacobi
Modelling yearly residential water demand using neural networks

Th. Westerhoff, B. Scharaw
Model based management of the drinking water supply system of city Darkhan in Mongolia

N. Buyankhishig, N. Batsukh
Pumping well optimiation in the Shivee-Ovoo coal mine Mongolia

S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll
Data Management for Automated Life Science Applications

N. B. Chang, A. Gonzalez
A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety

P. Hamolka, I. Vrublevsky, V. Parkoun, V. Sokol
New Film Temperature And Moisture Microsensors for Environmental Control Systems

N. Buyankhishig, M. Masumoto, M. Aley
Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia
M. Jacobi, D. Karimanzira
Demand Forecasting of Water Usage based on Kalman Filtering

7 New Methods and Technologies for Medicine and Biology

J. Meier, R. Bock, L. G. Nyúl, G. Michelson
Eye Fundus Image Processing System for Automated Glaucoma Classification

L. Hellrung, M. Trost
Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera

M. Hamsch, C. H. Igney, M. Vauhkonen
A Magnetic Induction Tomography System for Stroke Classification and Diagnosis

T. Neumuth, A. Pretschner, O. Burgert
Surgical Workflow Monitoring with Generic Data Interfaces

Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method

S. Toepfer, S. Zellmer, D. Driesch, D. Woetz, R. Guthke, R. Gebhardt, M. Pfaff
A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue

J. C. Ferreira, A. A. Fernandes, A. D. Santos
Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology

H. T. Shandiz, E. Zahedi
Noninvasive Method in Diabetic Detection by Analyzing PPG Signals

S. V. Drobot, I. S. Asayanok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy
Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to Ionizing Radiation and Chemical Agents in Vitro

8 Embedded System Design and Application

B. Däne
Modeling and Realization of DMA Based Serial Communication for a Multi Processor System
M. Müller, A. Pacholik, W. Fengler
Tool Support for Formal System Verification
137

A. Pretschner, J. Alder, Ch. Meissner
A Contribution to the Design of Embedded Control Systems
143

R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee
Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams
147

A. Jutmann
On LFSR Polynomial Calculation for Test Time Reduction
153

M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß
Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle
159

9 Image Processing, Image Analysis and Computer Vision

J. Meyer, R. Espiritu, J. Earthman
Virtual Bone Density Measurement for Dental Implants
167

F. Erfurth, W.-D. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler
Spectral Imaging Technology for Microarray Scanners
173

T. Langner, D. Kollhoff
Farbbasierte Druckbildinspektion an Rundkörpern
179

C. Lucht, F. Gaßmann, R. Jahn
Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess
185

H.-W. Lahmann, M. Stöckmann
Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing
191

A. Melitzki, G. Stanke, F. Weekend
Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlasertriangulation - am Beispiel von PKW-Stabilisatoren
197

F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth
3D contour detection by means of a multi camera system
203
M. Brandner
Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

H. Lettenbauer, D. Weiss
X-ray image acquisition, processing and evaluation for CT-based dimensional metrology

K. Sickel, V. Daum, J. Hornegger
Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids

S. Husung, G. Höhne, C. Weber
Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes

N. Schuster
Measurement with subpixel-accuracy: Requirements and reality

P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee
Position- and colour-accurate probing of edges in colour images with subpixel resolution

E. Sparrer, T. Machleidt, R. Nestler, K.-H. Franke, M. Niebelschütz
Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice

T. Machleidt, D. Kapusi, T. Langner, K.-H. Franke
Application of nonlinear equalization for characterizing AFM tip shape

D. Kapusi, T. Machleidt, R. Jahn, K.-H. Franke
Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

R. Burdick, T. Lorenz, K. Bobey
Characteristics of High Power LEDs and one example application in with-light-interferometry

T. Koch, K.-H. Franke
Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder

T. Riedel, C. Thiel, C. Schmullius
A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data

B. Waske, V. Heinzel, M. Braun, G. Menz
Classification of SAR and Multispectral Imagery using Support Vector Machines
<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Heinzel, J. Franke, G. Menz</td>
<td>287</td>
</tr>
<tr>
<td>Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions</td>
<td></td>
</tr>
<tr>
<td>I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas</td>
<td>293</td>
</tr>
<tr>
<td>An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production</td>
<td></td>
</tr>
<tr>
<td>D. Hofmann, G. Linss</td>
<td>297</td>
</tr>
<tr>
<td>Application of Innovative Image Sensors for Quality Control</td>
<td></td>
</tr>
<tr>
<td>A. Jablonski, K. Kohrt, M. Böhm</td>
<td>303</td>
</tr>
<tr>
<td>Automatic quality grading of raw leather hides</td>
<td></td>
</tr>
<tr>
<td>M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß</td>
<td>309</td>
</tr>
<tr>
<td>Uncompressed digital image data transfer for measurement techniques using a two wire signal line</td>
<td></td>
</tr>
<tr>
<td>R. Blaschek, B. Meffert</td>
<td>315</td>
</tr>
<tr>
<td>Feature point matching for stereo image processing using nonlinear filters</td>
<td></td>
</tr>
<tr>
<td>A. Mitsiukhin, V. Pachynin, E. Petrovskaya</td>
<td>321</td>
</tr>
<tr>
<td>Hartley Discrete Transform Image Coding</td>
<td></td>
</tr>
<tr>
<td>S. Hellbach, B. Lau, J. P. Eggert, E. Körner, H.-M. Groß</td>
<td>327</td>
</tr>
<tr>
<td>Multi-Cue Motion Segmentation</td>
<td></td>
</tr>
<tr>
<td>R. R. Alavi, K. Brieß</td>
<td>333</td>
</tr>
<tr>
<td>Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System</td>
<td></td>
</tr>
<tr>
<td>S. Bauer, T. Döring, F. Meysel, R. Reulke</td>
<td>341</td>
</tr>
<tr>
<td>Traffic Surveillance using Video Image Detection Systems</td>
<td></td>
</tr>
<tr>
<td>M. A-Megeed Salem, B. Meffert</td>
<td>347</td>
</tr>
<tr>
<td>Wavelet-based Image Segmentation for Traffic Monitoring Systems</td>
<td></td>
</tr>
<tr>
<td>E. Einhorn, C. Schröter, H.-J. Böhme, H.-M. Groß</td>
<td>353</td>
</tr>
<tr>
<td>A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection</td>
<td></td>
</tr>
<tr>
<td>U. Knauer, R. Stein, B. Meffert</td>
<td>359</td>
</tr>
<tr>
<td>Detection of opened honeybee brood cells at an early stage</td>
<td></td>
</tr>
</tbody>
</table>
10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel
Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks

N. Z.-Khan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel
Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks

N. Z.-Khan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer
Network Management of Future Access Networks

St. Schmidt, H. Kärst, A. Mitschele-Thiel
Towards cost-effective Area-wide Wi-Fi Provisioning

A. Yousef, M. A. A. Kalil
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks

M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel
Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks

M. Ritzmann
Scientific visualisation on mobile devices with limited resources

R. Brecht, A. Kraus, H. Krömker
Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen

N. A. Tam
RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links

Ch. Kellner, A. Mitschele-Thiel, A. Diab
Performance Evaluation of MIFA, HMIP and HAWAII

A. Diab, A. Mitschele-Thiel
MIFAv6: A Fast and Smooth Mobility Protocol for IPv6

A. Diab, A. Mitschele-Thiel
CAMP: A New Tool to Analyse Mobility Management Protocols
11 Education in Computer Science and Automation

S. Bräunig, H.-U. Seidel
Learning Signal and Pattern Recognition with Virtual Instruments

St. Lambeck
Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System

R. Pittschellis
Automatisierungstechnische Ausbildung an Gymnasien

A. Diab, H.-D. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel
MAeLE: A Metadata-Driven Adaptive e-Learning Environment

V. Zöppig, O. Radler, M. Beier, T. Ströhla
Modular smart systems for motion control teaching

N. Pranke, K. Froitzheim
The Media Internet Streaming Toolbox

A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva
An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences

N. Tsyrelchuk, E. Ruchaevskaia
Innovational pedagogical technologies and the Information educational medium in the training of the specialists

Ch. Noack, S. Schwintek, Ch. Ament
Design of a modular mechanical demonstration system for control engineering lectures
A. Diab, H-D. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel

MAeLE: A Metadata Driven Adaptive eLearning Environment

ABSTRACT

The topic eLearning is taking on an increasingly important role in the discussion about modern teaching and learning methods. New technologies and in particular the Internet open many new opportunities, however in many cases these have not yet been exhausted. For example the management of large amounts of information and the provision of eLearning show that many demands remain to be met. Designing and Implementing of adaptive eLearning environments is a major point of interest. Currently, many learning environments offer little or no support for adaptivity. This is especially regrettable for personalize the content. In this paper we present a new SCORM compatible Metadata Driven Adaptive eLearning Environment (MAeLE). MAeLE is a framework for personalized adaptive eLearning. The adaptivity depends on the user characteristics and on adaptation metadata, which describe the contents and define how the adaptivity events should take place. The contents themselves do not contain any sequence logic or metadata. MAeLE generates a personalized course with adequate navigation and strategy at run time. A main advantage of MAeLE is its flexibility, extensibility and compatibility to SCORM standard.

I- INTRODUCTION

E-learning was identified as one of the very important areas in the last few years. New technologies and in particular the Internet open many new opportunities, however in many cases these have not yet been exhausted. Using the new technologies can improve the knowledge transfer itself. However, in order to be able to cover the problematic areas that can not be covered by these technologies [1] or the problematic areas of the learner himself like weaknesses and even disabilities of learners, eLearning contents should be personalized and adapted to the learner.
There are two main directions for improving the adaptivity in eLearning [2]. The first one is the learner-centric approach, while the other approach aims to improve the authoring facilities. The first approach describes how the learning contents can be adapted according to the learner’s requirements. These requirements can be for example the goals of the user, previous knowledge or a preferred learning style. The data concerning to the preferences of the user and the events resulting from the user’s behaviour are stored in the user model. These data can be gathered by explicit user inputs, observing their behavior and by tracking the user’s progress [2].

The second approach can be made by providing a more comfortable environment for creating, linking and reusing learning materials. The platforms, currently used in universities, provide a good support for student administration, progress tracking and editing tools for authors. However, the support for individualization and adaptivity is still to be developed [2].

The paper is organized as follows: In section (II) the well known adaptive eLearning environments are discussed. MAeLE will be presented in details in section (III). After that, we conclude with the main results and the future work in section (IV).

II- RELATED WORK

The Sharable Content Object Reference Model (SCORM) [3], is a well known model for eLearning environments. It has get a great acceptance in different fields of eLearning. However, the adaptation abilities of SCORM are very restricted and focused only on allowing the defining of several organizations for the same course and defining of sequencing information, which allows determining a set of rules to select the next activity to be shown. [4] tries to enhance SCORM with adaptivity. Adaptivity on two levels is proposed. The first is adaptivity at the activity level, while the second is adaptivity at the Sharable Content Object (SCO) level. Adaptivity at the activity level depends mainly on a set of sub-activities related to each other according to pre-defined adaptation rules. Adaptivity at the SCO level depends on self-adaptive SCOs. It is mentioned that the SCOs should be able to show different behaviors according to the user’s characteristics. Trnkova et. al. [2] present and implement an e-learning environment called Adaptive Learning Environment (ALE). It integrates an intelligent tutoring system, a computer instruction management system and a set of cooperative tools. This generic environment can produce individualized courseware for students, based on their current state of knowledge, their preferences and learning styles according to the chosen learning
strategy. The authors can create contents using pre-defined templates. These templates combine several content elements with different pedagogical functions, e.g. introduction, definition...etc. Metadata are added to each content element too. The user model records the “interaction history”, “tested knowledge”, and the “user’s readiness”, which results from comparing the learner object pre-requests with the “interaction history” of the user.

Leidig [5] presents a learning environment called L³ (life-long learning). L³ is a learning platform combining the functionality of a traditional Learning Management System (LMS) with the power of a Content Management System (CMS). L³ defines four types of containers of the course materials, namely learning networks, learning objects, instructional elements and tests. Instructional elements represent the actual learning contents. Many instructional elements are combined in a learning object. Learning paths are defined in each course depending on the relations between the elements and their content type. L³ defines two categories of strategies, macro and micro strategy. Macro strategies are responsible for defining the order of the higher-level elements, while micro strategies cover the order of the instructional elements.

Conlan [6] proposes a multi-model metadata driven approach for adaptivity. This approach enhances the eLearning contents with metadata to support adaptivity. This approach separates the content and the sequencing logic into two models namely content and narrative model. The content model contains metadata description of a piece of learning content with a reference to this learning content, while the narrative model stands for the adaptive logic. The adaptivity engine uses these metadata and produces depending on the user model a personalized course at run-time.

III- MAeLE: A METADATA DRIVEN ADAPTIVE ELEARNING ENVIRONMENT

a) Objectives and requirements of MAeLE

Similar to [6], in order to overcome the shortcomings of the other adaptive eLearning environments, the developed environment should deliver adequate eLearning experience to the learner. Of course, the pedagogical aspects should be taken into account. The developed environment should provide different adaptive effects based on different sets of models. Additionally, it should be extensible and accept new adaptive models and rules. The contents, built in this environment, should be reusable in other eLearning systems. Presentation and navigation adaptivity should be kept separate. This
helps to ensure the reusability. Adaptivity metadata should be added to the contents, navigation methods and strategies. New navigation methods and strategies should be added simply to the environment. A main requirement of the system is that it should react dynamically to any changes in the user’s behavior and change the whole or a part of the course. The behavior of the adaptive eLearning environment should be easy configurable through adequate parameters. An important requirement is that the developed eLearning environment should be compatible with SCORM model.

b) Structure of MAeLE

MAeLE extends the functionality of a traditional LMS through developing an adaptivity framework. The main structure of MAeLE is plotted in figure 1.

The user model is used to characterize the user, mainly depending on the current state of knowledge, preferences, learning styles, goal of the course...etc. Some user parameters are entered by the user himself. Some others are obtained through tracking the user’s behavior during the use of the system. Keeping the user model in a separate block simplifies the extending of it and even enables the use of a new user model.

It highly recommended that the content should be reusable. Therefore, the eLearning contents should not contain any sequence logic or metadata. The eLearning contents are saved in small meaningful learning objects, referred to assets in SCORM model. The metadata for each asset are written in a separate database, called “Metadata” in figure 1. These metadata describe the content and contains adaptive data, which will be used to build / alter the adaptive course. A reference to the adequate strategy should exist in these metadata, if the asset is only suitable for one or more strategies.

Metadata about the supported eLearning strategies and navigation methods are recorded in separate databases, called “Dedactical Strategies” and “Navigation” in figure 1. These metadata contain a description of the strategies / navigation methods and a pointer to the actual implementation of strategies / navigation methods. This enables adding new strategies and / or new navigation methods simply to the system without the need to change the code of other parts of MAeLE.

The adaptation engine is the main component of MAeLE, its task is to determine the structure of the course, depending on the user’s characters and on the metadata. In other words, it has to define the adequate eLearning contents as well as the adequate strategy and navigation method for a certain user. The adaptation is relayed on some adaptivity rules. In order to make MAeLE flexible and extensible with respect to new
adaptivity rules, these rules are recorded in a separate database, called “Rules” in figure 1. In this way new adaptation rules can be added easily to the system. The adaptation engine should read only the adaptation metadata and the adaptation rules and generate thereafter the structure of the desired course.

![Figure 1: Structure of MAeLE](image)

The output of the adaptation engine is a set of parameters, which defines accurately the desired contents, the adequate strategy and the suitable navigation method. These parameters are fed in the content generator, which in turn generates the required course and build the defined navigation.

At run time, the system records the behavior of the user, e.g., which links has been visited, which kind of eLearning content is preferred…etc. The user’s behavior can be tracked using other technologies, e.g., eye tracking [7]. This may change the user’s characters on run-time. MAeLE reacts dynamically on such changes and re-generates the whole or a part of the course. In addition to this, the system may propose changing or altering some rules, depending on the obtained experience. These changes should be performed however by an administrator to ensure that the system stays controllable.
In this paper we have presented a new metadata driven adaptive eLearning environment (MAeLE). The proposed environment extends the functionality of a traditional LMS through an adaptivity framework. MAeLE generates personalized eLearning courses with an adequate navigation and strategy at run time. The adaptivity in MAeLE depends on the user’s characteristics and on adequate metadata. The separation between contents and sequence logic or metadata enables the reusability of the contents, which is a main requirement of an eLearning environment. The proposed framework is flexible and extendable. New rules, strategies, navigation methods and contents can be simply added to the environment. The main advantage of MAeLE is its compatibility with SCORM. This enables it to be integrated in current LMSs.

References:

Authors:
Dipl.-Ing Ali Diab
Dr.-Ing. Heinz-Dietrich Wuttke
Dr.-Ing. Karsten Henke
Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel
Michael Ruhwedel
TU-Ilmenau, Faculty for Informatic and Automation, Gustav-Kirchhoff-Str. 1, P.O.B. 10 0565 98693, Ilmenau
Phone: +49 3677 69 2821
Fax: +49 3677 69 1220
E-mail: {ali.diab|dieter.wuttke|Karsten.Henke|mitsch}@tu-ilmenau.de / ruhwedel@freenet.de