FACULTY OF
COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

Session 6 - Environmental Systems: Management and Optimisation
Session 7 - New Methods and Technologies for Medicine and Biology
Session 8 - Embedded System Design and Application
Session 9 - Image Processing, Image Analysis and Computer Vision
Session 10 - Mobile Communications
Session 11 - Education in Computer Science and Automation
Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system’s performance.

- New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” technical systems and processes, in environmental systems or medical and bioengineering applications.

- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.

- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.

- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.

- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets Automation” are addressed by this colloquium at the Technische Universität Ilmenau.

All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

Professor Peter Scharff
Rector, TU Ilmenau

Professor Christoph Ament
Head of Organisation
C O N T E N T S

6 Environmental Systems: Management and Optimisation

T. Bernard, H. Linke, O. Krol
A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System

S. Röll, S. Hopfgarten, P. Li
A groundwater model for the area Darkhan in Kharaa river Th. Bernard, H. Linke, O. Krol basin

A. Khatanbaatar Altantuul
The need designing integrated urban water management in cities of Mongolia

T. Rauschenbach, T. Pfützenreuter, Z. Tong
Model based water allocation decision support system for Beijing

T. Pfützenreuter, T. Rauschenbach
Surface Water Modelling with the Simulation Library ILM-River

D. Karimanzira, M. Jacobi
Modelling yearly residential water demand using neural networks

Th. Westerhoff, B. Scharaw
Model based management of the drinking water supply system of city Darkhan in Mongolia

N. Buyankhishig, N. Batsukh
Pumping well optimisation in the Shivee-Ovoo coal mine Mongolia

S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll
Data Management for Automated Life Science Applications

N. B. Chang, A. Gonzalez
A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety

P. Hamolka, I. Vrublevsky, V. Parkoun, V. Sokol
New Film Temperature And Moisture Microsensors for Environmental Control Systems

N. Buyankhishig, M. Masumoto, M. Aley
Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia
M. Jacobi, D. Karimanzira
Demand Forecasting of Water Usage based on Kalman Filtering

<table>
<thead>
<tr>
<th>7</th>
<th>New Methods and Technologies for Medicine and Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Meier, R. Bock, L. G. Nyúl, G. Michelson</td>
<td>81</td>
</tr>
<tr>
<td>Eye Fundus Image Processing System for Automated Glaucoma Classification</td>
<td></td>
</tr>
<tr>
<td>L. Hellrung, M. Trost</td>
<td>85</td>
</tr>
<tr>
<td>Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera</td>
<td></td>
</tr>
<tr>
<td>M. Hamsch, C. H. Igney, M. Vauhkonen</td>
<td>91</td>
</tr>
<tr>
<td>A Magnetic Induction Tomography System for Stroke Classification and Diagnosis</td>
<td></td>
</tr>
<tr>
<td>T. Neumuth, A. Pretschner, O. Burgert</td>
<td>97</td>
</tr>
<tr>
<td>Surgical Workflow Monitoring with Generic Data Interfaces</td>
<td></td>
</tr>
<tr>
<td>Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method</td>
<td></td>
</tr>
<tr>
<td>S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff</td>
<td>107</td>
</tr>
<tr>
<td>A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue</td>
<td></td>
</tr>
<tr>
<td>J. C. Ferreira, A. A. Fernandes, A. D. Santos</td>
<td>113</td>
</tr>
<tr>
<td>Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology</td>
<td></td>
</tr>
<tr>
<td>H. T. Shandiz, E. Zahedi</td>
<td>119</td>
</tr>
<tr>
<td>Noninvasive Method in Diabetic Detection by Analyzing PPG Signals</td>
<td></td>
</tr>
<tr>
<td>S. V. Drobot, I. S. Asayenok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy</td>
<td>123</td>
</tr>
<tr>
<td>Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to Ionizing Radiation and Chemical Agents in Vitro</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Embedded System Design and Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Däne</td>
<td>131</td>
</tr>
<tr>
<td>Modeling and Realization of DMA Based Serial Communication for a Multi Processor System</td>
<td></td>
</tr>
</tbody>
</table>
M. Müller, A. Pacholik, W. Fengler
Tool Support for Formal System Verification

A. Pretschner, J. Alder, Ch. Meissner
A Contribution to the Design of Embedded Control Systems

R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee
Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams

A. Jutmann
On LFSR Polynomial Calculation for Test Time Reduction

M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß
Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle

9 Image Processing, Image Analysis and Computer Vision

J. Meyer, R. Espiritu, J. Earthman
Virtual Bone Density Measurement for Dental Implants

F. Erfurth, W.-D. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler
Spectral Imaging Technology for Microarray Scanners

T. Langner, D. Kollhoff
Farbbasierte Druckbildinspektion an Rundkörpern

C. Lucht, F. Gaßmann, R. Jahn
Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess

H.-W. Lahmann, M. Stöckmann
Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing

A. Melitzki, G. Stanke, F. Weckend
Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlasertriangulation - am Beispiel von PKW-Stabilisatoren

F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth
3D contour detection by means of a multi camera system
M. Brandner
Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo 209

H. Lettenbauer, D. Weiss
X-ray image acquisition, processing and evaluation for CT-based dimensional metrology 215

K. Sickel, V. Daum, J. Hornegger
Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids 221

S. Husung, G. Höhne, C. Weber
Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes 227

N. Schuster
Measurement with subpixel-accuracy: Requirements and reality 233

P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee
Position- and colour-accurate probing of edges in colour images with subpixel resolution 239

E. Sparrer, T. Machleidt, R. Nestler, K.-H. Franke, M. Niebelschütz
Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice 245

T. Machleidt, D. Kapusi, T. Langner, K.-H. Franke
Application of nonlinear equalization for characterizing AFM tip shape 251

D. Kapusi, T. Machleidt, R. Jahn, K.-H. Franke
Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM) 257

R. Burdick, T. Lorenz, K. Bobey
Characteristics of High Power LEDs and one example application in with-light-interferometry 263

T. Koch, K.-H. Franke
Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder 269

T. Riedel, C. Thiel, C. Schmullius
A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data 275

B. Waske, V. Heinzel, M. Braun, G. Menz
Classification of SAR and Multispectral Imagery using Support Vector Machines 281
V. Heinzel, J. Franke, G. Menz
Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions 287

I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas
An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production 293

D. Hofmann, G. Linss
Application of Innovative Image Sensors for Quality Control 297

A. Jablonski, K. Kohrt, M. Böhm
Automatic quality grading of raw leather hides 303

M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß
Uncompressed digital image data transfer for measurement techniques using a two wire signal line 309

R. Blaschek, B. Meffert
Feature point matching for stereo image processing using nonlinear filters 315

A. Mitsiukhin, V. Pachynin, E. Petrovskaya
Hartley Discrete Transform Image Coding 321

S. Hellbach, B. Lau, J. P. Eggert, E. Körner, H.-M. Groß
Multi-Cue Motion Segmentation 327

R. R. Alavi, K. Brieß
Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System 333

S. Bauer, T. Döring, F. Meysel, R. Reulke
Traffic Surveillance using Video Image Detection Systems 341

M. A-Megeed Salem, B. Meffert
Wavelet-based Image Segmentation for Traffic Monitoring Systems 347

E. Einhorn, C. Schröter, H.-J. Böhme, H.-M. Groß
A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection 353

U. Knauer, R. Stein, B. Meffert
Detection of opened honeybee brood cells at an early stage 359
10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel 367
Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks

N. Z.-Khan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel 373
Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks

N. Z.-Khan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer 379
Network Management of Future Access Networks

St. Schmidt, H. Kärst, A. Mitschele-Thiel 385
Towards cost-effective Area-wide Wi-Fi Provisioning

A. Yousef, M. A. A. Kalil 391
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks

M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel 397
Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks

M. Ritzmann 403
Scientific visualisation on mobile devices with limited resources

R. Brecht, A. Kraus, H. Krömker 409
Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen

N. A. Tam 421
RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links

Ch. Kellner, A. Mitschele-Thiel, A. Diab 427
Performance Evaluation of MIFA, HMIP and HAWAII

A. Diab, A. Mitschele-Thiel 433
MIFAv6: A Fast and Smooth Mobility Protocol for IPv6

A. Diab, A. Mitschele-Thiel 439
CAMP: A New Tool to Analyse Mobility Management Protocols
11 Education in Computer Science and Automation

S. Bräunig, H.-U. Seidel
Learning Signal and Pattern Recognition with Virtual Instruments

St. Lambeck
Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System

R. Pittschellis
Automatisierungstechnische Ausbildung an Gymnasien

A. Diab, H.-D. Wutke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel
MAeLE: A Metadata-Driven Adaptive e-Learning Environment

V. Zöppig, O. Radler, M. Beier, T. Ströhla
Modular smart systems for motion control teaching

N. Pranke, K. Froitzheim
The Media Internet Streaming Toolbox

A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva
An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences

N. Tsyrelchuk, E. Ruchaevskaia
Innovational pedagogical technologies and the Information educational medium in the training of the specialists

Ch. Noack, S. Schwintek, Ch. Ament
Design of a modular mechanical demonstration system for control engineering lectures
A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection

1 Introduction and Related Work

Obstacle detection and collision avoidance must be considered important capabilities of mobile robots. Vision-based approaches provide a large field of view and supply a large amount of information about the structure of the local surroundings. In this paper we present a sparse feature-based “shape-from-motion” approach for mobile robots which is applicable for collision avoidance, online map building and scene reconstruction in real-time. Our method processes a sequence of images which are taken by a single camera mounted on a mobile robot. In contrast to similar monocular shape-from-motion algorithms we combine two different approaches: A traditional motion stereo approach and a Kalman filter based algorithm for scene reconstruction. We show that the disadvantages of the traditional stereo approach are compensated by the Kalman filter and vice versa. Our special method of initializing the Kalman filter leads to a faster convergence compared to other plain Kalman based approaches. Moreover, we present a feature matching algorithm which is faster and more reliable than the widely-used KLT-Tracker in the domain of scene reconstruction. These image features are extracted using the “FAST” high-speed corner detector [8].

As we intend to use the reconstructed scene for obstacle detection and collision avoidance our camera is mounted in front of the mobile robot and tilted towards the ground. This results in two major problems we have to deal with:

1. **The camera is moving along its optical axis.** In a sensitivity analysis Matthies and Kanade [7] proved that when using forward motion shape-from-motion leads to higher uncertainties in the depth estimates. Compared to the ideal lateral camera translation parallel to the image plane - which is used in standard binocular approaches - the estimation must be applied over a long base distance in order to achieve the same accuracy.

2. **Many objects are visible during a few frames of the captured image sequence only,** while the robot is approaching these obstacles. Hence, most image features cannot be tracked over a large number of frames and the scene reconstruction algorithm must be able to provide a reliable estimate by using a few image measurements only.

To overcome the first problem Matthies et al. [7] suggest scene reconstruction using Kalman filters, since they can integrate the depth and scene information over a long base distance. Consequently, many shape-from-motion solutions that have been researched and published in recent years are based on Kalman filtering [10, 5, 1, 7]. Since Kalman filter based methods...
solve the reconstruction problem in an iterative manner the speed of convergence depends on the choice of the initial estimate which is used for the initialization of the Kalman filter. If unfavourable initial estimates are used, Kalman filter based approaches tend to suffer from a low speed of convergence, i.e. several iterations must be processed to get a reliable estimation of the obstacle positions. Unfortunately, as stated above, most image features cannot be tracked over many frames and it is not possible to compute enough iterations.

To prevent this problem our hybrid algorithm combines two completely different approaches for scene reconstruction: A Kalman filter based method for scene reconstruction and a “classical” correlation-based depth estimation approach.

The depth estimation algorithm is used to compute a reliable initial estimate for the Kalman filter, which then will refine the estimate and recover the three-dimensional model. We show that this novel kind of initialization leads to a significantly better convergence of the filter.

2 Scene-Reconstruction

Since depth estimation and scene reconstruction using Kalman filtering are common techniques in computer vision they will not be described in detail here. Further information can be found in [3, 10, 5, 1, 9].

The figure on the left illustrates the complete architecture of our algorithm. Our motion stereo approach is inspired by the publication of Bunschoten and Kröse [3], where a multi-baseline depth estimation algorithm for panoramic image data is presented. Based on their work we have developed a similar correlation-based algorithm for projective cameras. To obtain the image data we work with a single projective camera mounted on our mobile robot to capture not only a sequence of images - each taken from a different pose (i.e. position and orientation) during the robot’s locomotion - but also the corresponding odometry data measured by the robot drive. Hence, for each image of the sequence the approximate position of the camera is known, including uncertainty in odometry measurements from systematic and non-systematic errors.

To correct these errors we use correspondences our feature tracker has found over the frames of the image sequence to estimate the pose of the camera. Since the translation vector of the camera movement can only be computed up to a scale, we are content with estimating the angle of roll and the pitch of the camera, since inaccuracies in the orientation of the camera cause the largest error in the scene reconstruction. Starting with values provided from the robots odometry both angles are varied using Gauss-Newton iteration in order to minimize the Sampson error, which is defined by the used image point correspondences and
the fundamental matrix.

The estimated depth is then used to compute the approximate 3D position of the feature in the real scene. This position is used as a reliable initial estimate for the Kalman filtering, which then will refine the estimate and recover the three-dimensional model. In contrast to \([5, 1]\) where one single Kalman filter with a large state vector is used to recover the 3D-positions of all features (model points), we use a separate filter for each feature point. According to \([10]\) this leads to a linear space and time complexity in terms of the number of features while the loss in accuracy is small. Similar to \([10]\) we choose the 3D position of the feature point as state vector \(X_\in\mathbb{R}^3\) which is to be estimated. Using this estimated 3D position of each scene point an a-priori estimate of its image position can be computed by projecting it onto the image surface of the camera. The observed measurement is the position of the real image point in the current image which is provided by a feature tracker, that tracks each image point over consecutive frames. With each new frame the tracked features will pass through this Kalman filter cycle and their 3D positions will be estimated more precisely in each iteration.

3 Feature Tracking

In order to track the image features over several frames, we apply a feature matching algorithm. First we select the image features independently in each frame using the FAST corner detector \([8]\). Similar to the IPAN feature tracker \([4]\) corresponding features are matched in subsequent frames then. While the IPAN tracker solves a pure motion correspondence problem by using three consecutive frames and solely kinematic constraints, we only use two frames. To eliminate the resulting ambiguities we additionally take the image similarity into account.

Let \(I_{t-1}\) and \(I_t\) be two consecutive frames of the image sequence. In order to find the correspondences \(x_{i_{t-1}}^{(i)} \leftrightarrow x_{i_t}^{(j)}\) between the previously selected image features of both frames, possible hypotheses of matching points are chosen first. Each hypothesis \(h = (x_{i_{t-1}}^{(i)}, x_{i_t}^{(j)})\) consists of a pair of two potentially matching points \(x_{i_{t-1}}^{(i)}\) and \(x_{i_t}^{(j)}\) of the frames \(I_{t-1}\) and \(I_t\).

To reduce the number of hypotheses we use a maximum speed constraint, i.e. we only choose pairs of image points that satisfy \(\|x_{i_{t-1}}^{(i)} - x_{i_t}^{(j)}\|_2 \leq r_{max}\), where \(r_{max}\) defines the maximum speed, at which a point can cross the frame within the image sequence.

For each hypothesis \((x_{i_{t-1}}^{(i)}, x_{i_t}^{(j)})\) we compute a cost function which is defined by the following weighted sum:

\[
\text{cost}(x_{i_{t-1}}^{(i)}, x_{i_t}^{(j)}) = w_1c_1 + w_2c_2 + w_3c_3,
\]

where \(c_1 = \|x_{i_t}^{(i)} - \hat{x}_{i_t}^{(j)}\|_2^2\) is the squared euclidean distance between the image point \(x_{i_t}^{(j)}\) and the predicted feature position \(\hat{x}_{i_t}^{(j)}\) of the feature which was estimated so far and the corresponding camera projection matrix \(P_t\), which is computed from the corrected odometry data of the robot. Since we perform an initial depth estimation as described in the previous section, an estimate of the 3D position is already
available for newly selected features. For features that have been tracked over several frames more accurate estimations of the 3D positions were computed by the Kalman filters and their location in the current frame can be predicted more precisely.

Additionally, corresponding image points must satisfy the epipolar constraint, hence an image point \(x^{(j)}_t \) that corresponds to \(x^{(i)}_{t-1} \) is located on or near the epipolar line that is induced by \(x^{(i)}_{t-1} \). The distance of the image point \(x^{(j)}_t \) from that epipolar line can be computed as follows:

\[
c_2 = \frac{\|x^{(j)\top}_t F x^{(i)}_{t-1}\|}{\sqrt{(F x^{(i)}_{t-1})^2 + (F x^{(i)}_{t-1})^2}}
\]

where \(F \) is the corresponding fundamental matrix which again is computed using the robot’s odometry. Alternatively, the Sampson distance [6] could be used which is, however, computationally more complex.

As stated above we also use a similarity constraint to eliminate ambiguous matchings. For each pair of potentially matching points \(x^{(i)}_{t-1} \) and \(x^{(j)}_t \) we compute the similarity of their neighborhood patterns. Again we use the SAD as measure of correlation:

\[
c_3 = \text{SAD}_W(x^{(i)}_{t-1}, x^{(j)}_t)
\]

The weights of the above cost function must be chosen empirically. We use \(w_1 = 1 \), \(w_2 = 3 \) and \(w_3 = 20 \). From all hypotheses those with minimal matching costs are chosen by a greedy algorithm. Hypotheses whose costs are larger than a certain threshold are rejected. An appropriate threshold depends on the image data. Finally, all chosen hypotheses represent the corresponding image points.

4 Results

In order to make a quantitative analysis and to be able to compare our hybrid approach with others we have rendered a sequence of a synthetic scene consisting of 250 frames and their corresponding ground truth depth images using the raytracer POV-Ray\(^1\). The ground truth depth images are used to measure the tracking error and the error of the reconstructed 3D model. We use realistic textures and add some gaussian image noise. To simulate odometry errors and the sway of the camera we add gaussian noise to the camera position and orientation while rendering the images.

The figure on the left shows a top view of the synthetic scene where the camera trajectory is plotted and its position at certain frames is marked. In figure 1 and 2 the guided feature matching algorithm we have proposed in this paper and Birchfield’s implementation of the KLT feature tracker [2] are compared. Because of the guided matching, our greedy feature linking algorithm has a smaller tracking error. Although the tracking error of the KLT tracker can also be reduced if guided tracking is used and the tracker is provided with the predicted feature locations as described in the previous section, the runtime of the KLT

\(^1\text{http://www.povray.org/}\)
tracker remains a problem for realtime applications. Using the proposed feature matching algorithm we were able to reduce the runtime that is needed for feature tracking dramatically as shown in the second diagram of figure 2. Using 200 features per image the hybrid scene reconstruction and the feature linking can be computed in just 20 ms per frame. Hence we can process up to 50 frames per second.

Figure 1: Mean tracking error for each frame of the synthetic image sequence. Due to the large optical flow while the camera is rotating and approaching near obstacles the tracking error of the KLT tracker becomes larger while with guided matching it remains small.

Figure 2: left: Mean tracking error averaged over all frames of the synthetic sequence for different feature counts. middle: Runtime that is needed for feature selection and feature tracking depending on the number of features that are selected in each frame. The time was measured on a Pentium 4 with 3.4 GHz. right: comparison of different methods for initializing the Kalman filters.

In the right diagram of figure 2 it can easily be seen that the hybrid algorithm presented in this paper converges faster than plain Kalman filter based aproaches which use simple heuristics for choosing the initial estimates. Less iterations and therefore less images are necessary to obtain a reliable scene reconstruction.

The above figure shows a map which was created while the robot was moving through a real indoor environment. The estimated positions of the features are visualized using red and orange dots. The estimated z-coordinate is used only to determine if a point belongs to an obstacle or if it lies on the floor, i.e. if the z-coordinate of a point is less than a certain threshold of 0.1 m it is regarded as belonging to the ground plane and not included in the map. The gray map in the background was built using a laser range finder and is used as reference. The accuracy of the map which was built using our approach is similar to the laser-built reference map. Moreover, our visual method is able to detect some obstacles which are not “visible” to the laser because they are too small and lie beneath the laser.
range finder. Those obstacles were labeled manually and are highlighted by the red color. Additionally, the corresponding camera images are shown for two of these obstacles. It can easily be seen that one part of the left obstacle is not included in the laser map, since it is too small and located below the laser plane. This would have led to a collision if solely laser based navigation had been used. Using our hybrid approach for visual obstacle detection instead, this obstacle can be detected very well.

References

Author Information:

Erik Einhorn, Dipl. Inf. Christof Schröter, Dr. Hans-Joachim Böhme, Dr. Horst-Michael Groß
Neuroinformatics and Cognitive Robotics Lab,
Faculty of Computer Science and Automation
Ilmenau Technical University,
POB 10 05 65, 98694 Ilmenau
Tel: +49 3677 69 1306
E-mail: Erik.Einhorn@t-online.de