FACULTY OF
COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

Session 6 - Environmental Systems: Management and Optimisation
Session 7 - New Methods and Technologies for Medicine and Biology
Session 8 - Embedded System Design and Application
Session 9 - Image Processing, Image Analysis and Computer Vision
Session 10 - Mobile Communications
Session 11 - Education in Computer Science and Automation
Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system’s performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets Automation” are addressed by this colloquium at the Technische Universität Ilmenau.

All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

Professor Peter Scharff
Rector, TU Ilmenau

Professor Christoph Ament
Head of Organisation
CONTENTS

6 Environmental Systems: Management and Optimisation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Bernard, H. Linke, O. Krol</td>
<td>3</td>
</tr>
<tr>
<td>A Concept for the long term Optimization of regional Water Supply Systems</td>
<td></td>
</tr>
<tr>
<td>as a Module of a Decision Support System</td>
<td></td>
</tr>
<tr>
<td>S. Röll, S. Hopfgarten, P. Li</td>
<td>11</td>
</tr>
<tr>
<td>A groundwater model for the area Darkhan in Kharaa river</td>
<td></td>
</tr>
<tr>
<td>Th. Bernard, H. Linke, O. Krol basin</td>
<td></td>
</tr>
<tr>
<td>A. Khatanbaatar Altantuul</td>
<td>17</td>
</tr>
<tr>
<td>The need designing integrated urban water management in cities of Mongolia</td>
<td></td>
</tr>
<tr>
<td>T. Rauschenbach, T. Pfützenreuter, Z. Tong</td>
<td>23</td>
</tr>
<tr>
<td>Model based water allocation decision support system for Beijing</td>
<td></td>
</tr>
<tr>
<td>T. Pfützenreuter, T. Rauschenbach</td>
<td>29</td>
</tr>
<tr>
<td>Surface Water Modelling with the Simulation Library ILM-River</td>
<td></td>
</tr>
<tr>
<td>D. Karimanzira, M. Jacobi</td>
<td>35</td>
</tr>
<tr>
<td>Modelling yearly residential water demand using neural networks</td>
<td></td>
</tr>
<tr>
<td>Th. Westerhoff, B. Scharaw</td>
<td>41</td>
</tr>
<tr>
<td>Model based management of the drinking water supply system of city Darkhan in Mongolia</td>
<td></td>
</tr>
<tr>
<td>N. Buyankhishig, N. Batsukh</td>
<td>47</td>
</tr>
<tr>
<td>Pumping well optimiation in the Shivee-Ovoo coal mine Mongolia</td>
<td></td>
</tr>
<tr>
<td>S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll</td>
<td>51</td>
</tr>
<tr>
<td>Data Management for Automated Life Science Applications</td>
<td></td>
</tr>
<tr>
<td>N. B. Chang, A. Gonzalez</td>
<td>57</td>
</tr>
<tr>
<td>A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety</td>
<td></td>
</tr>
<tr>
<td>P. Hamolka, I. Vrublebsky, V. Parkoun, V. Sokol</td>
<td>63</td>
</tr>
<tr>
<td>New Film Temperature And Moisture Microsensors for Environmental Control Systems</td>
<td></td>
</tr>
<tr>
<td>N. Buyankhishig, M. Masumoto, M. Aley</td>
<td>67</td>
</tr>
<tr>
<td>Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia</td>
<td></td>
</tr>
</tbody>
</table>
M. Jacobi, D. Karimanzira
Demand Forecasting of Water Usage based on Kalman Filtering

7 New Methods and Technologies for Medicine and Biology

J. Meier, R. Bock, L. G. Nyúl, G. Michelson
Eye Fundus Image Processing System for Automated Glaucoma Classification

L. Hellrung, M. Trost
Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera

M. Hamsch, C. H. Igney, M. Vauhkonen
A Magnetic Induction Tomography System for Stroke Classification and Diagnosis

T. Neumuth, A. Pretschner, O. Burgert
Surgical Workflow Monitoring with Generic Data Interfaces

Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method

S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff
A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue

J. C. Ferreira, A. A. Fernandes, A. D. Santos
Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology

H. T. Shandiz, E. Zahedi
Noninvasive Method in Diabetic Detection by Analyzing PPG Signals

S. V. Drobot, I. S. Asayanok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy
Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to Ionizing Radiation and Chemical Agents in Vitro

8 Embedded System Design and Application

B. Däne
Modeling and Realization of DMA Based Serial Communication for a Multi Processor System
M. Müller, A. Pacholik, W. Fengler
Tool Support for Formal System Verification

A. Pretschner, J. Alder, Ch. Meissner
A Contribution to the Design of Embedded Control Systems

R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee
Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams

A. Jutmann
On LFSR Polynomial Calculation for Test Time Reduction

M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß
Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle

9 Image Processing, Image Analysis and Computer Vision

J. Meyer, R. Espiritu, J. Earthman
Virtual Bone Density Measurement for Dental Implants

F. Erfurth, W.-D. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler
Spectral Imaging Technology for Microarray Scanners

T. Langner, D. Kollhoff
Farbbasierte Druckbildinspektion an Rundkörpern

C. Lucht, F. Gaßmann, R. Jahn
Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess

H.-W. Lahmann, M. Stöckmann
Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing

A. Melitzki, G. Stanke, F. Weckend
Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlaserradiation - am Beispiel von PKW-Stabilisatoren

F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth
3D contour detection by means of a multi camera system
M. Brandner
Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

H. Lettenbauer, D. Weiss
X-ray image acquisition, processing and evaluation for CT-based dimensional metrology

K. Sickel, V. Daum, J. Hornegger
Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids

S. Husung, G. Höhne, C. Weber
Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes

N. Schuster
Measurement with subpixel-accuracy: Requirements and reality

P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee
Position- and colour-accurate probing of edges in colour images with subpixel resolution

E. Sparrer, T. Machleidt, R. Nestler, K.-H. Franke, M. Niebelschütz
Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice

T. Machleidt, D. Kapusi, T. Langner, K.-H. Franke
Application of nonlinear equalization for characterizing AFM tip shape

D. Kapusi, T. Machleidt, R. Jahn, K.-H. Franke
Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

R. Burdick, T. Lorenz, K. Bobey
Characteristics of High Power LEDs and one example application in with-light-interferometry

T. Koch, K.-H. Franke
Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder

T. Riedel, C. Thiel, C. Schmullius
A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data

B. Waske, V. Heinzel, M. Braun, G. Menz
Classification of SAR and Multispectral Imagery using Support Vector Machines
Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions

An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production

Application of Innovative Image Sensors for Quality Control

Automatic quality grading of raw leather hides

Uncompressed digital image data transfer for measurement techniques using a two wire signal line

Feature point matching for stereo image processing using nonlinear filters

Hartley Discrete Transform Image Coding

Multi-Cue Motion Segmentation

Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System

Traffic Surveillance using Video Image Detection Systems

Wavelet-based Image Segmentation for Traffic Monitoring Systems

A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection

Detection of opened honeybee brood cells at an early stage
10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel
Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks 367

N. Z.-Khan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel
Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks 373

N. Z.-Khan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer
Network Management of Future Access Networks 379

St. Schmidt, H. Kärst, A. Mitschele-Thiel
Towards cost-effective Area-wide Wi-Fi Provisioning 385

A. Yousef, M. A. A. Kalil
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks 391

M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel
Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks 397

M. Ritzmann
Scientific visualisation on mobile devices with limited resources 403

R. Brecht, A. Kraus, H. Krömker
Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen 409

N. A. Tam
RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links 421

Ch. Kellner, A. Mitschele-Thiel, A. Diab
Performance Evaluation of MIFA, HMIP and HAWAII 427

A. Diab, A. Mitschele-Thiel
MIFAv6: A Fast and Smooth Mobility Protocol for IPv6 433

A. Diab, A. Mitschele-Thiel
CAMP: A New Tool to Analyse Mobility Management Protocols 439
11 Education in Computer Science and Automation

S. Bräunig, H.-U. Seidel
Learning Signal and Pattern Recognition with Virtual Instruments 447

St. Lambeck
Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System 453

R. Pittschellis
Automatisierungstechnische Ausbildung an Gymnasien 459

A. Diab, H.-D. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel
MAeLE: A Metadata-Driven Adaptive e-Learning Environment 465

V. Zöppig, O. Radler, M. Beier, T. Ströhla
Modular smart systems for motion control teaching 471

N. Pranke, K. Froitzheim
The Media Internet Streaming Toolbox 477

A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva
An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences 485

N. Tsyrelchuk, E. Ruchaevskaja
Innovational pedagogical technologies and the Information educational medium in the training of the specialists 491

Ch. Noack, S. Schwintek, Ch. Ament
Design of a modular mechanical demonstration system for control engineering lectures 497
I. Aksit, K. Bünger, A. Fassbender, D. Frekers, C. Götze, J. Kemenas,

An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of mass production

Today’s Printed Circuit Boards (PCB) for sensors meet structure sizes in the µm or even nm range at high circuit complexity. These structures are usually printed in thin layer technology and coated in thin film technology. Those PCBs are being used in a large variety of applications ranging from cars to space stations, from private security devices to power plant control facilities, from toys and domestic appliances to consumer electronics, from robots to information devices. With increasing complexity, the demands on quality assurance and quality evaluation are quickly increasing. PCBs usually have to be investigated for surface and coating defects by optical techniques. So far, it has been impossible or prohibitively expensive to implement automated quality assurance procedures for each individual PCB by optical measures and at high throughput. Quality assessment is therefore mostly limited to statistical sampling techniques employing specially trained personnel performing the evaluations. This means that performance is frequently subjective and non-reproducible, let aside the often stress-prone conditions facing the personnel. Past attempts to automate optical inspections for each individual PCB and allowing on-line keep-or-reject decisions have largely been unsuccessful because the structures to be inspected are microscopically small, therefore requiring high magnifications and advanced image resolutions, which usually prevents large area inspections in one working step. Clearly, a novel approach is needed in the area of hardware and software, both of them being capable of acquiring and accurately analysing these structures at high resolution and within a time slot that allows on-line implementation in a mass production.

In the present pilot project, the authors have demonstrated a successful implementation of a system providing these features. Each partner company contributed special core competencies and integrated those into a single product. In a first step, the Eclipse optical microscope of the MedXP GmbH equipped with the patented AMBISTM
technique acquires a series of images from the entire area of test samples, each of them being about 10 mm in diameter. Typical sustained acquisition speeds are about 25 – 30 frames/s at full image resolution in continuous scanning mode. The resulting image sizes depend on the optical system used, and in the present application perfect results were achieved with images of about 18,000 x 14,000 pixels per sample. In this case, the overall image of a single sample is separated into 14 x 14 partial images, each of 1280 x 1024 pixels in size and joined together without the need of a seaming algorithm for any of the edges. The samples can optionally be supplied to the microscope in a magazine of about 100 pieces by an automatic robot system. For acquiring the image of a single sample of the typical size of 10 mm in diameter, the microscope needs about 10 s, which includes the overhead for the focusing to the object surface. As there are no start-stop sequences involved during image acquisition, the microscope system operates without generating any extra noise and without creating any inertial forces due to acceleration or deceleration or any other frictional forces.

Together with position information for each single image the acquired images are then handed over to the arivis ImageCore software developed and distributed by arivis – Multiple Image Tools GmbH. This software package is capable of handling extremely large, multi-dimensional image data even on common, budget-priced hardware and manages these image areas for visual inspection at any zoom level or for an automated analysis. The software combines all individual image parts to a single large image for each sample and stores the image for subsequent ultra-fast access into a single file using proprietary formatting software.

Next, the image data are transferred to the alfaVis analysis software developed and distributed by alfa vision systems GmbH. This software package is developed for the detection of various types of structural defects on the original sample, like missing circuit structures, short circuits or any other surface defects or surface pollution. The analysis provides a quality certificate for every single sample in the line of the production.

The integrated pilot system needs about 20 minutes for the inspection of a magazine containing about 100 samples. Every sample is treated in an identical way making the evaluation independent of time, human subjectivity or human error. The
system is flexible and can be adopted quickly and easily to a change of sample layout requiring only minutes for the adjustment to the new layout and to the optimization process.

Authors:
Dipl. Phys. Ishak Aksit,
MedXP GmbH, Munscheidstraße 14,
45886 Gelsenkirchen
Phone: 0251 83 36216
Fax: 0251 83 34962
E-mail: aksit@medxp.de

Dr. Kirsten Bünger,
MedXP GmbH, Munscheidstraße 14,
45886 Gelsenkirchen
Phone: 0209 167 1050
Fax: 0209 167 1051
E-mail: buenger@medxp.de

Alfred Fassbender,
alfa vision systems GmbH,
Altenlinde 51a,
51789 Lindlar
Phone: 02266 901206
Fax: 02266 901331
E-mail: fassbender@alfavisionsystems.com

Prof. Dr. Dieter Frekers,
MedXP GmbH, Munscheidstraße 14,
45886 Gelsenkirchen
Phone: 0251 83 34996
Fax: 0251 83 34962
E-mail: frekers@medxp.de, frekers@uni-muenster.de

Dr. Christian Götze,
arivis – Multiple Image Tools GmbH,
Schwaansche Straße 1
18055 Rostock
Phone: 0381 461393-0
Fax: 0381 461393-99
E-mail: christian.goetze@arivis.com

Jürgen Kemenas,
SMD-Production-Technology,
Inrather Straße 11-15
47798 Krefeld
Phone: 02151 5696573
Fax: 02151 5696575
E-mail: jk@smd-pt.de
MEDXP GmbH has a patented Anti Motion Blurring Imaging System called AMBIS™. The PCT patented technology makes the microscope ready for ultra-fast, high-throughput scanning in continuous motion, i.e. no start-stop sequences are implied for image acquisition. Within 11 seconds an area of 10mm x 10mm will be completely scanned and stored on disk. Objects will be digitised at 27 images per second and a velocity of 29 mm/s. Each image has (1280 H x 1024 V) pixels and represents (850 x 680)µm² of the object. The higher the field of view the higher the scanning speed.

Make the quality management with alfaVis analysis software by alfa vision systems GmbH, the experts in machine vision.

Tune and speed up your microscope system with AMBIS™ and get on THE HIGHWAY OF MICROSCOPY, as is presented by MedXP GmbH.

Manage multi dimensional image data, combine the digitised images to a high resolution single image file, browse and navigate in unexpected dimensions offered by arivis multiple image tools GmbH.

Internationales Wissenschaftliches Kolloquium
International Scientific Colloquium

Three companies
One project

52. IWK