FACULTY OF
COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

Session 6 - Environmental Systems: Management and Optimisation
Session 7 - New Methods and Technologies for Medicine and Biology
Session 8 - Embedded System Design and Application
Session 9 - Image Processing, Image Analysis and Computer Vision
Session 10 - Mobile Communications
Session 11 - Education in Computer Science and Automation
Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system’s performance.

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” technical systems and processes, in environmental systems or medical and bioengineering applications.

• The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.

• Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.

• Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.

• The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets Automation” are addressed by this colloquium at the Technische Universität Ilmenau.

All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

Professor Peter Scharff
Rector, TU Ilmenau

Professor Christoph Ament
Head of Organisation
# CONTENTS

## 6 Environmental Systems: Management and Optimisation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Bernard, H. Linke, O. Krol</td>
<td>3</td>
</tr>
<tr>
<td>A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System</td>
<td></td>
</tr>
<tr>
<td>S. Röll, S. Hopfgarten, P. Li</td>
<td>11</td>
</tr>
<tr>
<td>A groundwater model for the area Darkhan in Kharaa river</td>
<td></td>
</tr>
<tr>
<td>Th. Bernard, H. Linke, O. Krol basin</td>
<td></td>
</tr>
<tr>
<td>A. Khatanbaatar Altantuul</td>
<td>17</td>
</tr>
<tr>
<td>The need designing integrated urban water management in cities of Mongolia</td>
<td></td>
</tr>
<tr>
<td>T. Rauschenbach, T. Pfützenreuter, Z. Tong</td>
<td>23</td>
</tr>
<tr>
<td>Model based water allocation decision support system for Beijing</td>
<td></td>
</tr>
<tr>
<td>T. Pfützenreuter, T. Rauschenbach</td>
<td>29</td>
</tr>
<tr>
<td>Surface Water Modelling with the Simulation Library ILM-River</td>
<td></td>
</tr>
<tr>
<td>D. Karimanzira, M. Jacobi</td>
<td>35</td>
</tr>
<tr>
<td>Modelling yearly residential water demand using neural networks</td>
<td></td>
</tr>
<tr>
<td>Th. Westerhoff, B. Scharaw</td>
<td>41</td>
</tr>
<tr>
<td>Model based management of the drinking water supply system of city Darkhan in Mongolia</td>
<td></td>
</tr>
<tr>
<td>N. Buyankhishig, N. Batsukh</td>
<td>47</td>
</tr>
<tr>
<td>Pumping well optimisation in the Shivee-Ovoo coal mine Mongolia</td>
<td></td>
</tr>
<tr>
<td>S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll</td>
<td>51</td>
</tr>
<tr>
<td>Data Management for Automated Life Science Applications</td>
<td></td>
</tr>
<tr>
<td>N. B. Chang, A. Gonzalez</td>
<td>57</td>
</tr>
<tr>
<td>A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety</td>
<td></td>
</tr>
<tr>
<td>P. Hamolka, I. Vrublevsky, V. Parkoun, V. Sokol</td>
<td>63</td>
</tr>
<tr>
<td>New Film Temperature And Moisture Microsensors for Environmental Control Systems</td>
<td></td>
</tr>
<tr>
<td>N. Buyankhishig, M. Masumoto, M. Aley</td>
<td>67</td>
</tr>
<tr>
<td>Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia</td>
<td></td>
</tr>
</tbody>
</table>
M. Jacobi, D. Karimanzira
Demand Forecasting of Water Usage based on Kalman Filtering

7 New Methods and Technologies for Medicine and Biology

J. Meier, R. Bock, L. G. Nyúl, G. Michelson
Eye Fundus Image Processing System for Automated Glaucoma Classification

L. Hellrung, M. Trost
Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera

M. Hamsch, C. H. Igney, M. Vauhkonen
A Magnetic Induction Tomography System for Stroke Classification and Diagnosis

T. Neumuth, A. Pretschner, O. Burgert
Surgical Workflow Monitoring with Generic Data Interfaces

Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method

S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff
A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue

J. C. Ferreira, A. A. Fernandes, A. D. Santos
Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology

H. T. Shandiz, E. Zahedi
Noninvasive Method in Diabetic Detection by Analyzing PPG Signals

S. V. Drobot, I. S. Asayenok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy
Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to Ionizing Radiation and Chemical Agents in Vitro

8 Embedded System Design and Application

B. Däne
Modeling and Realization of DMA Based Serial Communication for a Multi Processor System
M. Müller, A. Pacholik, W. Fengler
Tool Support for Formal System Verification 137

A. Pretschner, J. Alder, Ch. Meissner
A Contribution to the Design of Embedded Control Systems 143

R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee
Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams 147

A. Jutmann
On LFSR Polynomial Calculation for Test Time Reduction 153

M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß
Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle 159

9 Image Processing, Image Analysis and Computer Vision

J. Meyer, R. Espiritu, J. Earthman
Virtual Bone Density Measurement for Dental Implants 167

F. Erfurth, W.-D. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler
Spectral Imaging Technology for Microarray Scanners 173

T. Langner, D. Kollhoff
Farbbasierte Druckbildinspektion an Rundkörpern 179

C. Lucht, F. Gaßmann, R. Jahn
Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess 185

H.-W. Lahmann, M. Stöckmann
Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing 191

A. Melitzki, G. Stanke, F. Weckend
Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlasertriangulation - am Beispiel von PKW-Stabilisatoren 197

F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth
3D contour detection by means of a multi camera system 203
M. Brandner
Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

H. Lettenbauer, D. Weiss
X-ray image acquisition, processing and evaluation for CT-based dimensional metrology

K. Sickel, V. Daum, J. Hornegger
Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids

S. Husung, G. Höhne, C. Weber
Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes

N. Schuster
Measurement with subpixel-accuracy: Requirements and reality

P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee
Position- and colour-accurate probing of edges in colour images with subpixel resolution

E. Sparrer, T. Machleidt, R. Nestler, K.-H. Franke, M. Niebelschütz
Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice

T. Machleidt, D. Kapusi, T. Langner, K.-H. Franke
Application of nonlinear equalization for characterizing AFM tip shape

D. Kapusi, T. Machleidt, R. Jahn, K.-H. Franke
Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

R. Burdick, T. Lorenz, K. Bobey
Characteristics of High Power LEDs and one example application in with-light-interferometry

T. Koch, K.-H. Franke
Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder

T. Riedel, C. Thiel, C. Schmullius
A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data

B. Waske, V. Heinzel, M. Braun, G. Menz
Classification of SAR and Multispectral Imagery using Support Vector Machines
V. Heinzel, J. Franke, G. Menz
Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions 287

I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas
An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production 293

D. Hofmann, G. Linss
Application of Innovative Image Sensors for Quality Control 297

A. Jablonski, K. Kohrt, M. Böhm
Automatic quality grading of raw leather hides 303

M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß
Uncompressed digital image data transfer for measurement techniques using a two wire signal line 309

R. Blaschek, B. Meffert
Feature point matching for stereo image processing using nonlinear filters 315

A. Mitsiukhin, V. Pachynin, E. Petrovskaya
Hartley Discrete Transform Image Coding 321

S. Hellbach, B. Lau, J. P. Eggert, E. Körner, H.-M. Groß
Multi-Cue Motion Segmentation 327

R. R. Alavi, K. Brieß
Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System 333

S. Bauer, T. Döring, F. Meysel, R. Reulke
Traffic Surveillance using Video Image Detection Systems 341

M. A-Megeed Salem, B. Meffert
Wavelet-based Image Segmentation for Traffic Monitoring Systems 347

E. Einhorn, C. Schröter, H.-J. Böhme, H.-M. Groß
A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection 353

U. Knauer, R. Stein, B. Meffert
Detection of opened honeybee brood cells at an early stage 359
10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel 367
Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks

N. Z.-Khan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel 373
Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks

N. Z.-Khan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer 379
Network Management of Future Access Networks

St. Schmidt, H. Kärst, A. Mitschele-Thiel 385
Towards cost-effective Area-wide Wi-Fi Provisioning

A. Yousef, M. A. A. Kalil 391
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks

M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel 397
Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks

M. Ritzmann 403
Scientific visualisation on mobile devices with limited resources

R. Brecht, A. Kraus, H. Krömker 409
Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen

N. A. Tam 421
RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links

Ch. Kellner, A. Mitschele-Thiel, A. Diab 427
Performance Evaluation of MIFA, HMIP and HAWAII

A. Diab, A. Mitschele-Thiel 433
MIFAv6: A Fast and Smooth Mobility Protocol for IPv6

A. Diab, A. Mitschele-Thiel 439
CAMP: A New Tool to Analyse Mobility Management Protocols
11 Education in Computer Science and Automation

S. Bräunig, H.-U. Seidel
Learning Signal and Pattern Recognition with Virtual Instruments 447

St. Lambeck
Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System 453

R. Pittschellis
Automatisierungstechnische Ausbildung an Gymnasien 459

A. Diab, H.-D. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel
MAeLE: A Metadata-Driven Adaptive e-Learning Environment 465

V. Zöppig, O. Radler, M. Beier, T. Ströhla
Modular smart systems for motion control teaching 471

N. Pranke, K. Froitzheim
The Media Internet Streaming Toolbox 477

A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva
An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences 485

N. Tsyrelchuk, E. Ruchaevskaia
Innovational pedagogical technologies and the Information educational medium in the training of the specialists 491

Ch. Noack, S. Schwintek, Ch. Ament
Design of a modular mechanical demonstration system for control engineering lectures 497
M. Brandner

Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

Abstract

Dimensional inspection both during and after the manufacturing process is a valuable tool to identify defective parts and to isolate bad tolerance trends of the production line. Safety critical components as frequently encountered by the aeronautic industry require the inspection of 100% of the production leading to a demand for fast and reliable inspection tools. Vision-based inspection offers appealing properties such as a non-contacting measurement principle and the simultaneous measurement of multiple features on a given part. However, especially in the aeronautic sector the inspection system is often faced with difficult surface properties (e.g. non-coated shiny parts) and a large variety of object sizes ranging from small engine components to large fuselage elements. This work describes an optical sensor prototype based on two active stereo systems used to perform quality control measurements on small-scale aeronautic parts. Experimental results on aeronautic parts show the feasibility of the proposed approach.

Introduction

The detection of defective parts plays an important role in the production of aeronautic parts. Due to the high complexity and the demanded level of accuracy, inspection systems capable of performing highly accurate quality control measurements are required. Vision-based inspection systems have gained in importance especially for applications that require the inspection of a large number of geometric features within a short timeframe or for automated processing [1]. In contrast to standard mechanical inspection systems such as coordinate measurement systems and measurement arms, optical systems are only restricted by the line of sight. The robustness of vision-based measurement systems in difficult situations such as changing ambient illumination or presence of highly reflective target surfaces can be improved by using a structured light approach. In this case, the illumination system is used to support the search for corresponding image features in different views of the scene.

Structured light can, however, be used to obtain active stereo setups once both the camera and the light projector are calibrated. Laser sources are frequently used in such applications as resultant projectors have small form-factors and are easy to integrate into the sensor design.

Vision-based inspection of aeronautic parts is confronted with a wide range of object scales. The development presented in this paper targets towards the robust measurement of the geometric entities wall thickness, angle between planes, and edge between planes as outlined in Figure 1. The proposed sensor has been developed as part of a larger project aiming at the improvement and adaptation of image processing tools to aid the quality control and assembly processes in the aeronautic sector.
Active Stereo Setup

A combination of two cameras and two laser projectors is used to capture object properties such as the parameters of planar surface patches, angles between adjacent surfaces, distances, and wall-thickness. The components of the proposed sensor are arranged as outlined in Figure 2. Simulations of different setups showed the maximum performance of the setup in terms of measurement uncertainty for 90° tilt angles between the components. The layout is further optimised so that each combination of an image sensor and a laser projector can act as active stereo pair.

We define an active stereo system as a geometric setup comprising an image sensor and a light source as outlined in Figure 3. Assuming calibrated components the unknown point $X$ can be reconstructed in 3D space using the geometry of the projected ray and the observation of the image sensor.
The laser projectors used in the sensor are equipped with line-generating lenses such that each laser projects a number of \( N = 10 \ldots 20 \) parallel lines. In order to use these lines in the context of the active stereo a geometric model describing the surfaces projected by the laser is needed. Figure 4 depicts the deviation of the projected structures from their ideal straight lines. The different surfaces projected by the laser are modelled using their intersection with a plane orthogonal to the principle axis of the laser in a distance of 1m. These intersections are referred to as profiles and modelled by two polynomials where

\[
\begin{align*}
S_i(t) &= \left( p_{ix}(t), p_{iy}(t) \right)^T \\
&= \left( c_i + \alpha \left( t, a_2 t^2 + a_1 \right) \right)^T 
\end{align*}
\]

(cf. Figure 4b). Consequently, after substitution of a first and a second order polynomial, the \( i \)-th surface projected by the laser is represented by

\[
S_i(t) = c_i + \alpha \left( t, a_2 t^2 + a_1 \right)^T
\]

All measurements performed by the sensor rely on the estimation of planes or piecewise planar structures. As the reconstruction of points in 3D space and consequently the estimate of the plane parameters are straightforward to obtain using the projector model in Equation 2, we subsequently focus on the treatment of parameter uncertainty. The intersection of the \( i \)-th surface \( S_i \) with a planar surface patch \( \Pi_j \) can be reformulated to obtain a quadratic form \[2\]

\[
p^T C_i(\Pi_j) p = (x, y, 1)^T C_i(\Pi_j)(x, y, 1) = 0
\]

in image coordinates where the parameters of the 3x3 matrix \( C_i \) capture the geometry of the setup relative to the planar patch \( \Pi_j \). We apply the first order geometric distance measure \( d(p, C) \) \[3\] to obtain the Jacobian matrix

\[
J(C_i, \Pi_j) = \left( J_{ij}(C_i, \Pi_j) \right) = \left( \frac{\partial d(p, C_i(\Pi_j))}{\partial \Pi_{j,l}} \right)
\]

where \( k \) denotes the index of the point on the profile and \( \Pi_{j,l} \) is the \( l \)-th component of the \( j \)-th plane. Assuming additive Gaussian noise deviations of the laser line detector that are small w.r.t. the position of the line intersection, the vector comprising the standard deviations of the plane components is given by

\[
\Sigma_\Pi = \sigma_d \sqrt{\text{diag}(J^T J)^{-1}}
\]

where \( \sigma_d \) denotes the standard deviation of the first order geometric distance \( d \). Based on these results the following section reports on measurements performed with the proposed sensor geometry using an aeronautic part and a robot-mounted sensor.
Fig. 4: Geometric modelling of the laser profiles. (a) Surfaces projected by the laser. (b) Polynomial approximation of the laser profiles.

Experiments

The geometry outlined in the previous section was used to obtain measurement results on an aeronautic part. Figure 5a outlines the optical sensor comprising two 1 MPixel cameras and two laser projectors. This sensor prototype is further equipped with a laser controller. The task of this component is to synchronise the laser illumination (both on/off and illumination power) to the image acquisition. 16 different illumination patterns each consisting of individually selectable laser powers can be stored on the controller and triggered using a remote command. Image acquisition is performed synchronously using the trigger inputs of the cameras. Prior to the measurement acquisition the sensor has been calibrated using a coordinate measurement machine. The calibration procedure includes the estimation of the intrinsic parameters of each camera, the stereo camera pair extrinsics, the parameters of the polynomials of each laser profile, and the laser extrinsics. Planar calibration targets are used to improve the quality of the parameter set of the whole sensor in a final non-linear optimisation step.

Fig. 5: Sensor prototype used for the experiments. (a) Two laser projectors (middle) and two cameras (left and right) are combined. (b) Sensor mounted on the robot arm.

Figure 5b shows the sensor mounted on a robot head. In this experiment the CAD model of the part is known. The position and orientation (i.e. the pose) of the sensor head is related to the robot parameters by means of a hand-eye calibration. Based on the CAD model and the sensor pose the regions of interest (ROI) are determined for both cameras. Measurements performed in this experiment include the thickness of a wall (measurement A), the step between two adjacent planar patches (measurement B), and the angle between to adjacent planes separated by an edge with chamfer (measurement
C). The results of the measurements are summarised in the following table. Note that the expanded uncertainty is computed based on $k=3$:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wall thickness</td>
<td>3.02 +/- 0.06 mm</td>
</tr>
<tr>
<td>B</td>
<td>Normal distance</td>
<td>0.025 +/- 0.017 mm</td>
</tr>
<tr>
<td>C</td>
<td>Angle between planes</td>
<td>91.29 +/- 0.18°</td>
</tr>
</tbody>
</table>

Fig. 6: Measurements taken on an aeronautic part. The yellow polygons depict the regions of interest used to restrict the correspondence search in each image. The green profiles are the detected laser profiles. (a-c) Three planar patches acquired during the measurement of wall thickness. (d-e) Measurement of the normal distance between two planes. (f-g) Angle between adjacent planes with chamfer.
Summary

This paper presents the development of a close-range photogrammetric sensor for vision-based inspection of aeronautic parts. The sensor design is based on two active stereo sets each comprising a camera and a laser projector. The use of the active stereo system allows to robustly estimate plane parameters and derived measurands such as wall thickness of highly reflective surfaces even under partial occlusion. A geometric model for surfaces projected by the laser source is presented which allows for accurate calibration of standard laser projectors and line lenses. Measurements performed with the calibrated sensor show the applicability of the proposed sensor design to vision-based inspection of aeronautic parts.

Acknowledgements

The work presented in this paper was supported by the EC FP6 Project IPROMES (Image PROcessing as MEtrological Solution, AST3-CT-2004-502905). The contributing members of the project team were: Harald Ganster, Gert Holler, Daniel Hrach, Miguel Ribo, and Gerald Schweighofer.

References:


Author:
Markus Brandner
Institute of Electrical Measurement and Measurement Signal Processing
Graz University of Technology
Kopernikusgasse 24/IV
A8010 Graz, Austria
Phone: +43 316 873 7773
Fax: +43 316 873 7266
E-mail: brandner@ieee.org