FACULTY OF
COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

Session 6 - Environmental Systems: Management and Optimisation
Session 7 - New Methods and Technologies for Medicine and Biology
Session 8 - Embedded System Design and Application
Session 9 - Image Processing, Image Analysis and Computer Vision
Session 10 - Mobile Communications
Session 11 - Education in Computer Science and Automation
Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system’s performance.

- New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” technical systems and processes, in environmental systems or medical and bioengineering applications.

- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.

- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.

- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.

- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets Automation” are addressed by this colloquium at the Technische Universität Ilmenau.

All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

Professor Peter Scharff
Rector, TU Ilmenau

Professor Christoph Ament
Head of Organisation
CONTENTS

6 Environmental Systems: Management and Optimisation

T. Bernard, H. Linke, O. Krol
A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System 3

S. Röll, S. Hopfgarten, P. Li
A groundwater model for the area Darkhan in Kharaa river
Th. Bernard, H. Linke, O. Krol basin 11

A. Khatanbaatar Altantuul
The need designing integrated urban water management in cities of Mongolia 17

T. Rauschenbach, T. Pfützenreuter, Z. Tong
Model based water allocation decision support system for Beijing 23

T. Pfützenreuter, T. Rauschenbach
Surface Water Modelling with the Simulation Library ILM-River 29

D. Karimanzira, M. Jacobi
Modelling yearly residential water demand using neural networks 35

Th. Westerhoff, B. Scharaw
Model based management of the drinking water supply system of city Darkhan in Mongolia 41

N. Buyankhishig, N. Batsukh
Pumping well optimiation in the Shivee-Ovoo coal mine Mongolia 47

S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll
Data Management for Automated Life Science Applications 51

N. B. Chang, A. Gonzalez
A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety 57

P. Hamolka, I. Vrubblevsky, V. Parkoun, V. Sokol
New Film Temperature And Moisture Microsensors for Environmental Control Systems 63

N. Buyankhishig, M. Masumoto, M. Aley
Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia 67
7 New Methods and Technologies for Medicine and Biology

J. Meier, R. Bock, L. G. Nyúl, G. Michelson
Eye Fundus Image Processing System for Automated Glaucoma Classification

L. Hellrung, M. Trost
Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera

M. Hamsch, C. H. Igney, M. Vauhkonen
A Magnetic Induction Tomography System for Stroke Classification and Diagnosis

T. Neumuth, A. Pretschner, O. Burgert
Surgical Workflow Monitoring with Generic Data Interfaces

Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method

S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff
A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue

J. C. Ferreira, A. A. Fernandes, A. D. Santos
Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology

H. T. Shandiz, E. Zahedi
Noninvasive Method in Diabetic Detection by Analyzing PPG Signals

S. V. Drobot, I. S. Asayenok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy
Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to Ionizing Radiation and Chemical Agents in Vitro

8 Embedded System Design and Application

B. Däne
Modeling and Realization of DMA Based Serial Communication for a Multi Processor System
M. Müller, A. Pacholik, W. Fengler
Tool Support for Formal System Verification

A. Pretschner, J. Alder, Ch. Meissner
A Contribution to the Design of Embedded Control Systems

R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee
Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams

A. Jutmann
On LFSR Polynomial Calculation for Test Time Reduction

M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß
Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle

9 Image Processing, Image Analysis and Computer Vision

J. Meyer, R. Espiritu, J. Earthman
Virtual Bone Density Measurement for Dental Implants

F. Erfurth, W.-D. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler
Spectral Imaging Technology for Microarray Scanners

T. Langner, D. Kollhoff
Farbbasierte Druckbildinspektion an Rundkörpern

C. Lucht, F. Gaßmann, R. Jahn
Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess

H.-W. Lahmann, M. Stöckmann
Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing

A. Melitzki, G. Stanke, F. Weckend
Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlaser triangulation - am Beispiel von PKW-Stabilisatoren

F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth
3D contour detection by means of a multi camera system
M. Brandner
Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

H. Lettenbauer, D. Weiss
X-ray image acquisition, processing and evaluation for CT-based dimensional metrology

K. Sickel, V. Daum, J. Hornegger
Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids

S. Husung, G. Höhne, C. Weber
Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes

N. Schuster
Measurement with subpixel-accuracy: Requirements and reality

P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee
Position- and colour-accurate probing of edges in colour images with subpixel resolution

E. Sparrer, T. Machleidt, R. Nestler, K.-H. Franke, M. Niebelshücht
Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice

T. Machleidt, D. Kapusi, T. Langner, K.-H. Franke
Application of nonlinear equalization for characterizing AFM tip shape

D. Kapusi, T. Machleidt, R. Jahn, K.-H. Franke
Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

R. Burdick, T. Lorenz, K. Bobey
Characteristics of High Power LEDs and one example application in with-light-interferometry

T. Koch, K.-H. Franke
Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder

T. Riedel, C. Thiel, C. Schmullius
A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data

B. Waske, V. Heinzel, M. Braun, G. Menz
Classification of SAR and Multispectral Imagery using Support Vector Machines
V. Heinzl, J. Franke, G. Menz
Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions 287

I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas
An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production 293

D. Hofmann, G. Linss
Application of Innovative Image Sensors for Quality Control 297

A. Jablonski, K. Kohrt, M. Böhm
Automatic quality grading of raw leather hides 303

M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß
Uncompressed digital image data transfer for measurement techniques using a two wire signal line 309

R. Blaschek, B. Meffert
Feature point matching for stereo image processing using nonlinear filters 315

A. Mitsiukhin, V. Pachynin, E. Petrovskaya
Hartley Discrete Transform Image Coding 321

S. Hellbach, B. Lau, J. P. Eggert, E. Körner, H.-M. Groß
Multi-Cue Motion Segmentation 327

R. R. Alavi, K. Brieß
Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System 333

S. Bauer, T. Döring, F. Meysel, R. Reulke
Traffic Surveillance using Video Image Detection Systems 341

M. A-Megeed Salem, B. Meffert
Wavelet-based Image Segmentation for Traffic Monitoring Systems 347

E. Einhorn, C. Schröter, H.-J. Böhme, H.-M. Groß
A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection 353

U. Knauer, R. Stein, B. Meffert
Detection of opened honeybee brood cells at an early stage 359
10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel
Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks

N. Z.-Khan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel
Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks

N. Z.-Khan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer
Network Management of Future Access Networks

St. Schmidt, H. Kärst, A. Mitschele-Thiel
Towards cost-effective Area-wide Wi-Fi Provisioning

A. Yousef, M. A. A. Kalil
A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks

M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel
Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks

M. Ritzmann
Scientific visualisation on mobile devices with limited resources

R. Brecht, A. Kraus, H. Krömker
Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen

N. A. Tam
RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links

Ch. Kellner, A. Mitschele-Thiel, A. Diab
Performance Evaluation of MIFA, HMIP and HAWAI!

A. Diab, A. Mitschele-Thiel
MIFAv6: A Fast and Smooth Mobility Protocol for IPv6

A. Diab, A. Mitschele-Thiel
CAMP: A New Tool to Analyse Mobility Management Protocols
11 Education in Computer Science and Automation

S. Bräunig, H.-U. Seidel
Learning Signal and Pattern Recognition with Virtual Instruments
447

St. Lambeck
Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System
453

R. Pittschellis
Automatisierungstechnische Ausbildung an Gymnasien
459

A. Diab, H.-D. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel
MAeLE: A Metadata-Driven Adaptive e-Learning Environment
465

V. Zöppig, O. Radler, M. Beier, T. Ströhla
Modular smart systems for motion control teaching
471

N. Pranke, K. Froitzheim
The Media Internet Streaming Toolbox
477

A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva
An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences
485

N. Tsyrelchuk, E. Ruchaevskaia
Innovational pedagogical technologies and the Information educational medium in the training of the specialists
491

Ch. Noack, S. Schwintek, Ch. Ament
Design of a modular mechanical demonstration system for control engineering lectures
497
Eye Fundus Image Processing System for Automated Glaucoma Classification

INTRODUCTION AND VISION

Glaucoma is an eye disease that threatens the eyesight of the patients. As the disease progresses, nerve fibers in the retina die, which, if left untreated, leads to blindness. In Germany around 5% of the population (5 mill.) live with a glaucoma risk while around 800,000 people suffer from glaucomatous damages [1]. Although glaucoma cannot be healed, the progression can be stopped. Therefore, early detection of the disease is essential for preventing one of the most common causes of blindness. Glaucoma screenings based on digital images of the retina have been performed in the past few years in the clinics but they still lack robust automated assistance.

We devised an automated system that detects glaucomatous eyes based on acquired fundus images. In contrast to other approaches [2-5], we use image-based features of fundus photos that do not depend on exact measurements gained by segmentation techniques. This appearance based approach is new in the field of retina image processing.

Our vision is to establish a screening system that allows fast, robust and automated detection of glaucomatous changes in the eye fundus. Such a system could even be deployed in everyday environments, like shopping malls, to reach many people. It helps to discover suspected glaucomatous cases and warn the subject, so that careful evaluation can be done in time to control disease progression. This would not only reduce health care costs of treating glaucoma but would also prevent affected patients from vision loss. An acquisition device (Kowa NonMyd digital fundus camera) and an example image of the retina are shown in Figure 1.

![Figure 1](image_url)
Kowa Digital Fundus Camera and an acquired image example.

First, we briefly describe our processing system and the used methods. It is followed by an evaluation based on 200 images. By applying a 2-stage classification scheme we achieve a total classification correctness of 86 %.
SYSTEM OVERVIEW

We devised a system for computer aided detection of eye diseases (called CatEye). It is a database driven framework to process, analyze and classify retina images. Existing functionality from tools, such as the ITK image processing toolkit [6] or Matlab can be easily integrated while the C++ framework provides image (and derived) data access (read and write) to the retina database. There are interfaces to implement image processing filters or methods to compute classification features. Programs can be fairly easily created to process large image sets from the database by applying certain filters or to visualize results.

The image processing pipeline follows the standard three-stage structure of (i) preprocessing, (ii) image-based feature extraction, and (iii) classification (see Figure 2). A brief description of the methods used in each step follows.

PREPROCESSING

On one hand, nonuniform illumination is a general problem in retina image analysis. It is due to the small size of the objects and the complexity of the optical system (including both the camera and the eye) involved in the imaging process. Such inhomogeneities are corrected by robust homomorphic surface fitting [7].

On the other hand, blood vessels introduce a high variation in retina images which seems to be a distracting feature when diagnosing glaucoma. In our study, blood vessels are removed by computing a vessel mask and interpolating the missing pixel values by morphological inpainting [8].

The neuroretinal rim around the optic disc (papilla) is the most important region for glaucoma detection [9]. We normalize the images such that the papilla is centered and appears in the same size. This normalized input is required for the feature computation by appearance based approaches. Localization and size estimation is done by the method of [5]. Finally, all images are scaled to a fixed size of 128x128 pixels for feature extraction. Figure 3 shows example images after all steps are done except the final scaling step.
FEATURE EXTRACTION

To capture different aspects of the image information, we use four types of feature extraction. (i) The first set of features is obtained by taking the pixel values directly as input to principal component analysis (PCA) which is used here as a dimensionality reduction technique. (ii) The second feature group comes from 28 Gabor texture filter responses [10] that represent spatial and spatial-frequency information of the data. The filter output is also compressed using PCA. (iii) The third set of features is computed from the coefficients of the Fast Fourier Transform (FFT) which contains translation invariant global frequency information. Again, PCA is used for data reduction. (iv) Histograms provide a compact summary of the intensity distribution in an image. In this application, they also show structural parts of the images (background, papilla rim, optic cup). A tri-modal Gaussian mixture is fitted to the histogram using maximum likelihood estimation and then the found distribution parameters, such as the mean and the variance values, serve as features.

CLASSIFICATION

We found that a 2-stage classification scheme performs better than classification using any of the four feature sets alone or using a single pooled feature set. First, the four sets of feature values are classified separately by support vector machines (nu-SVM [11]). Then, the probability score of belonging to the glaucoma class, obtained from each of the four classifiers is taken as a new feature vector input to another classifier. This final SVM-classifier decides whether the sample is considered glaucomatous or not.

EVALUATION AND RESULTS

For evaluation, we took 200 images (50 images each of healthy and glaucomatous eyes for training and a similar mixture for separate testing; age of the subjects: 57±10 years) randomly selected from the Erlangen Glaucoma Registry (EGR) that contains thousands of records of the eye ground of healthy subjects and patients having glaucoma. Diagnosis was done by an ophthalmologist using anamnesis, image data and other measurements. The images were acquired by a Kowa NonMyd digital fundus camera.

We computed the overall classification correctness and also the F-measure, which is the harmonic mean of sensitivity and precision, for healthy and glaucomatous eyes. The experiments where performed with a cross-validation on the separated test set. The performance of the classifications using one feature set only varies: total correctness of 73% with the histogram features, 76% with the FFT coefficients, 80% with the Gabor
textures and 83% with the pixel intensities. When applying the second classification step, 86% classification correctness is achieved with an F-measure of 83% for healthy and 88% for glaucomatous samples. This is similar to what was achieved by experienced human observers. According to [12], experts achieved by qualitative assessment of optic disc stereo photographs (63 normal and 29 glaucomatous subjects) an average F-measure of 91% for detecting normals and 79% for detecting glaucoma.

CONCLUSION

We presented our automatic system for computer aided detection of eye diseases (CatEye) used to identify glaucomatous eyes in fundus photographs. The images can be acquired quickly and without any inconvenience to patients. The classification success rate of the system is comparable with that of experienced human observers. Thus, such a system can be deployed in large scale screening examinations for early detection of the disease. To our knowledge this is the first data-driven feature computation and classification system for glaucoma detection from retina images.

Acknowledgments:

Images and diagnoses obtained from the Erlangen Glaucoma Registry. R. Bock was supported by the SFB 539, A4 (German Research Foundation). J. Meier is a member of the Int. Max Planck Research School on Optics and Imaging. L.G. Nyúl is a fellow of the Alexander von Humboldt-Foundation.

References:

[1] Initiativkreis zur Glaukomfrüherkennung, Germering, Germany. www.glaukom.de

Authors:

Dipl.-Inf. Jörg Meier
Dipl.-Inf. Rüdiger Bock
Dr. László G. Nyúl
Prof. Dr. Georg Michelson

University of Erlangen-Nuremberg, Institute of Pattern Recognition
Martensstr. 3, 91058 Erlangen
Phone: +49 9131 85 27882, Fax: +49 9131 303811
E-mail: joerg.meier@informatik.uni-erlangen.de