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Summary

Today, technology has achieved a level at which the extremely high precision of cur-

rent ground-based radio interferometric observations are approaching an accuracy of 1

µarcsec. Moreover the planned space-based interferometers, such as the Global Astro-

metric Interferometer for Astrophysics (GAIA) and the Space Interferometric Mission

(SIM), are going to measure the positions and/or the parallaxes of celestial objects with

uncertainties in the range 10−5 − 10−6 arcsec. Furthermore the interferometer for the

planned Laser Astrometric Test of Relativity Mission (LATOR) will be able to measure

light deflection angles of the order 10−8 arcsec.

In order to reach the desired accuracies of 10−6−10−8 arcsec in the computation of light

deflection in gravitational fields, corrections arising from the lack of spherical symmetry

of the gravitating system, the motion of the gravitating masses and the relativistic

definition of the centre of mass must be taken into account.

In this thesis, the light deflection in the post-linear gravitational field of two bounded

point-like masses is treated. Both the light source and the observer are assumed to be

located at infinity in an asymptotically flat space. The equations of light propagation are

explicitly integrated to the second order in G/c2. Some of the integrals are evaluated by

making use of an expansion in powers of the ratio of the relative separation distance r12

to the impact parameter ξ, r12/ξ. A discussion of which orders must be retained to be

consistent with the expansion in terms of G/c2 is given. It is shown that the expression

obtained in this thesis for the angle of light deflection is fully equivalent to the expression

obtained by Kopeikin and Schäfer up to the order given there. The deflection angle takes

a particularly simple form for a light ray originally propagating orthogonal to the orbital

plane of a binary with equal masses. Application of the formulae for the deflection angle

to the double pulsar PSR J0737-3039 for an impact parameter five times greater than

the relative separation distance of the binary’s components shows that the corrections to

the Epstein-Shapiro light deflection angle of about 10−6 arcsec lie between 10−7 and 10−8

arcsec. The corrections coming from the spins of the components of PSR J0737-3039 lie

between 10−8 and 10−9 arcsec.
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Zusammenfassung

Astronomische Beobachtungen mit den heutigen erdgebundenen Interferometern im

Radiofrequenzbereich sowie zukünftige astrometrische Beobachtungen mit geplanten

Weltrauminterferometern (wie z.B. GAIA und SIM) erreichen eine Genauigkeit von

10−5 − 10−6 arcsec. Außerdem wird das Interferometer der geplanten LATOR-Mission

Lichtablenkungen mit einer Genauigkeit von 10−8 arcsec messen.

Um bei der Berechnung der Lichtablenkung in Gravitationsfeldern eine entsprechend

hohe Genauigkeit zu erreichen, muss man Korrekturen, die durch das Fehlen der sphäri-

schen Symmetrie des gravitierenden Systems, die Bewegung der gravitierenden Massen

und der relativistischen Definition des Schwerpunktes verursacht werden, berücksichtigen.

Diese Arbeit behandelt die Lichtablenkung im post-linearen Gravitationsfeld eines

Systems zweier gebundenen Punktmassen. Es wird angenommen, dass sowohl die Licht-

quelle als auch der Beobachter im Unendlichen in einem asymptotisch flachen Raum

lokalisiert sind. Die Gleichungen der Lichtausbreitung werden bis zur Ordnung G2/c4

explizit integriert. Um die nicht elementaren Integrale zu berechnen, werden zunächst

die Integranden in Potenzreihen vom Verhältnis r12/ξ entwickelt, wobei r12 der relative

Abstand der Komponenten des Binärsystems und ξ der Stoßparameter ist. In der Arbeit

wird gezeigt, wie die Ordnung dieser Potenzreihenentwicklung zu wählen ist, damit sie

konsistent mit den Entwicklungstermen in G/c2 ist. Es wird auch gezeigt, dass der in

dieser Arbeit berechnete Ausdruck für die Lichtablenkung mit dem Ergebnis von Ko-

peikin und Schäfer bis zu deren berechneter Ordnung übereinstimmt. Der Ausdruck für

die Lichtablenkung nimmt insbesondere dann eine einfache Form an, wenn sich der un-

gestörte Lichtstrahl senkrecht zur Bahnebene eines Binärsystems, dessen Komponenten

gleiche Masse haben, ausbreitet. Die Anwendung der berechneten Formeln für die Lich-

tablenkung auf den Doppelpulsar PSR J0737-3039 unter Annahme eines Stoßparameters

der fünf Mal größer als der Abstand der Komponenten des Binärsystems ist, zeigt, dass

die Korrekturen zu einem Epstein-Shapiro Lichtablenkungswinkel von 10−6 arcsec zwi-

schen 10−7 und 10−8 arcsec liegen. Die Korrekturen, die durch die Eigendrehimpulse der

Komponenten von PSR J0737-3039 verursacht werden, liegen zwischen 10−8 und 10−9

arcsec.
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Notation

Summary of the notation and symbols used in this thesis:

G is the Newtonian constant of gravitation.

c is the velocity of light.

By < we denote the real part of a quantity.

The Greek indices α, β, γ..., are space-time indices and run from 0 to 3.

The Latin indices i, j, k,..., are spatial indices and run from 1 to 3.

gµν is a metric tensor of curved, four-dimensional space-time, depending on spatial

coordinates and time.

The signature adopted for gµν is (−+ ++).

We suppose that space-time is covered by a harmonic coordinate system (xµ) =

(x0, xi), where x0 = c t, t being the time coordinate.

The three-dimensional quantities (3-vectors) are denoted by ~a = ai.

The three-dimensional unit vector in the direction of ~a is denoted by ~ea = eia.

The Latin indices are lowered and raised by means of the unit matrix δij = δij =

diag(1, 1, 1).

The scalar product of any two 3-vectors ~a and ~b with respect to the Euclidean

metric δij is denoted by ~a ·~b and can be computed as ~a ·~b = δija
ibj = aibi.

The Euclidean norm of a 3-vector ~a is denoted by a = |~a| and can be computed

as a =
[
δmna

man
]1/2

.

By ~l(0) we denote the vector tangent to the unperturbed light ray ~z(t) and the unit

vector ~e(0) is defined by ~e(0) = ~l(0)/|~l(0)|.
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Notation

ηαβγν is the Levi-Civita tensor: ηαβγν = −(−g)−1/2εαβγν , where ε0123 = +1 and g

is the determinant of the covariant metric gµν .

Partial derivative: Tα, µ = ∂Tα/∂x
µ.

Christoffel symbols: Γαµν = 1
2
gαρ(gρµ, ν + gρν, µ − gµν, ρ).

Covariant derivative: Tα;µ = Tα, µ + ΓαµρT
ρ,

Tα;µ = Tα, µ − ΓραµTρ .

The symbol |(→) denotes the replacement in the integrals of the photon trajectory

by its unperturbed approximation before performing the integral and after evalu-

ating the partial derivatives of the metric coefficients with respect to the photon’s

coordinates (i.e. (z0, zi(t))).

The symbol (1 ↔ 2) refers to the preceding term but with the labels 1 and 2

exchanged.
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1 Introduction

Light deflection by a gravitational field [1] is one of the observational cornerstones of

general relativity. The observational confirmation during a solar eclipse in 1919 of

Einstein’s prediction that light would be deflected by the gravitational field of the Sun [2]

brought general relativity to the attention of the general public in the 1920’s. However,

these first measurements of the angle of light deflection had only 30 percent accuracy, and

succeeding experiments were not better. On account of the substantial improvements

that have been made in radio astronomy, the angle of light deflection in the gravitational

field of the Sun was measured with an uncertainty of less than one percent in the seventies

[3, 4]. Today, technology has reached a level at which the extremely high precision

of current ground-based radio interferometric astronomical observations approaches 1

µarcsec and within the next decade the accuracy of space-based astrometric positional

observations is also expected to reach this accuracy. At this level of accuracy, we can no

longer treat the gravitational field of a system of moving bodies as static and spherically

symmetric. This fact is one of the principal reasons for the necessity of a more accurate

solution to the problem of the propagation of electromagnetic waves in non-stationary

gravitational fields of celestial bodies. To reach the accuracy of 1 µarcsec, many subtle

relativistic effects must be taken into account. One of the most intricate problems is

the computation of the effects of translational motion of the gravitating bodies on light

propagation.

This question was treated for the first time by Hellings in 1986 [5]. In 1989 Klioner [6]

solved the problem completely to the first post-Newtonian (1PN) order (i.e. to the order

1/c2) for the case of bodies moving with constant velocity. The complete solution of

the problem for arbitrarily moving bodies in the first post-Minkowskian approximation

(linear in the gravitational constant G) was found by Kopeikin and Schäfer in 1999

[7]. They succeeded in integrating analytically the post-Minkowskian equations of light

propagation in the field of arbitrarily moving masses. The effect of the spin of the moving

masses on the propagation of light was computed in 2002 by Kopeikin and Mashhoon

[8]. In Ref. [9], Le Poncin-Lafitte et al. have recently developed an alternative approach

to the problem of light deflection and time/frequency transfer in post-Minkowskian

gravitational fields based on an expansion of the Synge world function for null geodesics.

1



1 Introduction

In that paper, the world function and time transfer function were computed for a static,

spherically symmetric body to the second post-Minkowskian approximation.

In this thesis we treat light deflection in the post-linear gravitational field of two

bounded point-like masses (binary system) for the case when the light source as well the

observer are located at infinity in an asymptotically flat space and the impact parameter

is much larger than the separation distance between the components of the binary. For

large impact parameters we assume, on physical grounds that the gravitational field

along the light path is weak. To compute the light deflection, we integrate the equations

of light propagation explicitly to the second order in G/c2, i.e. to the order G2/c4.

The assumption that the gravitational field is weak along the light path allows us to

consider the metric as a perturbation of a flat metric represented by a power series in

the gravitational constant G

gµν [x
σ, G] ≡ g(0)

µν +
∞∑
n=1

Gng(n)
µν (xσ), (1.1)

with

g(0)
µν = ηµν = diag(−1, 1, 1, 1).

For the same reason, we can consider the light trajectory as a perturbation of its tra-

jectory in flat space (a straight line) represented by a power series in G

~z(t) = ~z(0)(t) +
∞∑
n=1

Gnδ~̃z(n)(t). (1.2)

It follows from (1.2) that the vector tangent to the light trajectory takes the form

~l(t) ≡ d~z(t)

dt
= ~l(0) +

∞∑
n=1

Gnδ~̃l(n)(t), (1.3)

where ~l(0) is the constant vector tangent to the unperturbed light trajectory.

In order to obtain the post-linear equations for light propagation, we introduce into

the differential equations for the null geodesics the metric as given in (1.1) and the

expression for the tangent vector ~l(t) as given in (1.3). As a result we get a set of ordinary

coupled differential equations of first order for the perturbation terms δ~l(n)(t). Each term

δ~l(n) is given in the form of a line integral along a straight line in the fictitious metric

g
(0)
µν , i.e. along the original unperturbed light trajectory. We get the post-linear light

deflection to the order G2/c4 after computing the perturbation terms δ~l(1)(t), δ~l(2)(t) and

the corrections arising from introducing the linear perturbation of the light trajectory

2



δ~z(1)(t), the motion of the masses and the shift of the 1PN-centre of mass with respect

to the Newtonian centre of mass in the expression for linear light deflection. The final

result is the expression for light deflection in the post-linear gravitational field of two

bounded point-like masses. The deflection angle takes a particularly simple form for a

light ray originally propagating orthogonal to the orbital plane of a binary with equal

masses.

This thesis is organized as follows. In Chapter 2, by means of Maxwell’s equations

in curved space-time we find the fundamental laws of geometric optics in gravitational

fields. Then we derive the post-linear light propagation equations. We introduce an

approximation scheme to integrate these equations. The deflection angle as a function

of the perturbations of the vector tangent to the light ray is introduced. Chapter 3

starts with a recapitulation of the light deflection in the post-Minkowskian gravitational

field of a system of arbitrarily moving and spinning masses. The limit for the part of the

light deflection caused by the point-mass piece of the energy-momentum tensor in the

event that the speeds of the masses are small with respect to the speed of light and the

retarded times are close to the time of closest approach of the unperturbed light ray to

the origin of the coordinate system is computed. Furthermore, it is shown that the light

deflection is mainly determined by the near zone gravitational field. Chapter 4 is devoted

to the computation of the post-linear near zone metric in harmonic coordinates for two

bounded point-like masses up to the second order in G/c2. The coordinate frame is

chosen so that the 1PN-centre of mass is at rest at the origin. In Chapter 5 we calculate

the light deflection in the post-linear gravitational field of two bounded point-like masses.

In Section 5.1 the perturbation of the vector tangent to the unperturbed light ray and

the corresponding light deflection in the linear gravitational field are computed. In

Section 5.2 we compute the light deflection in the post-linear gravitational field. To

facilitate the computations we separate the light deflection terms that are functions

of the post-linear metric coefficients from the terms that are functions of the linear

metric coefficients and the perturbations of the first order in G of the vector tangent

to the unperturbed light ray. The resulting integrals are given in Appendices C and

D. In Section 5.3 we calculate the additional linear and post-linear light deflection

terms arising from the introduction of the motion of the masses into the expression for

the linear perturbation. In Section 5.4 we compute the corrections to the post-linear

light deflection arising from the introduction of the linear perturbed light trajectory

into the expression for the linear light deflection. The resulting integrals are given in

Appendix E. Section 5.5 is devoted to the computation of the corrections to the linear

3



1 Introduction

and post-linear light deflection arising from the introduction of the shift of the 1PN-

centre of mass with respect to the Newtonian centre of mass into the expression for

the linear light deflection. The resulting expressions for the total linear perturbation

and the linear and post-linear light deflection by the gravitational field of two bounded

point-like masses are given in an explicit form in Sections 5.6 and 5.7. In Section 5.6 it

is also shown that the expression for the angle of light deflection computed in Chapter

5 is fully equivalent to the expression obtained by Kopeikin and Schäfer in [7] up to

the order given there. In Chapter 6 we present our results and give the light deflection

expression for some simple cases in an explicit form. The derived formulae for the angle

of light deflection are applied to the double pulsar PSR J0737-3039. In Appendix F

we compute the linear light deflection terms arising from the acceleration terms in the

metric coefficients h
(1)
00 and h

(1)
pq . Finally, Chapter 7 is devoted to a discussion of the

results.
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2 Light propagation in the post-linear gravitational field

In this chapter we use Maxwell’s equations to derive the laws for light propagation in the

post-linear gravitational field. Since in most instances gravitational fields vary even over

macroscopic distances very little, we can assume that light propagation is well governed

by the laws of geometric optics. In Section 2.1 we shall derive these laws in the presence

of gravitational fields from Maxwell’s equations. In Section 2.2 we give the equations

of light propagation in an explicit form to the second order in G/c2. An approximation

scheme to solve the equations of light propagation is presented in Section 2.3. Finally, in

Section 2.4 the angle of light deflection as a function of the perturbations of the vector

tangent to the light ray is introduced. Part of this chapter is based on Sec. II of the

paper by the author [10].

2.1 Geometric optics in gravitational fields

The general formalism describing the behaviour of electromagnetic radiation in the pres-

ence of arbitrary gravitational fields is well known [11, 12, 13]. It is governed by the

source-free Maxwell equations in curved space-time:

Fβγ;α + Fγα;β + Fαβ;γ = 0, (2.1)

Fαβ
;β = 0, (2.2)

where the electromagnetic field tensor Fµν in terms of the four-vector potential Aµ is

given by

Fµν = Aν;µ − Aµ;ν . (2.3)

In the derivation of the laws of geometric optics the following characteristic lengths

are important [11, 13]:

1. the wavelength λ

2. a typical length L over which the amplitude, polarization and wavelength of the

wave vary significantly (e.g. the radius of curvature of a wave front)

5



2 Light propagation in the post-linear gravitational field

3. a typical “radius of curvature” for the geometry; more precisely, take

R =

∣∣∣∣∣ typical component of the Riemannian tensor

in typical local inertial system

∣∣∣∣∣
−1/2

.

Geometric optics is valid whenever the wavelength is very short compared to the others

characteristic lengths:

λ� L and λ� R. (2.4)

We consider an electromagnetic wave which is highly monochromatic1 in regions having

a size smaller than L. Now we separate the four-vector potential Aµ into a rapidly

varying real phase ψ and a slowly varying complex amplitude Aµ (eikonal ansatz)

Aµ = <{Aµe
iψ}. (2.5)

In order to obtain the equations of geometric optics, it is useful to introduce the small

parameter ε = λ/min(L,R) and expand the amplitude Aµ in powers of ε:

Aµ = aµ + εbµ + ε2cµ + ..., (2.6)

where aµ, bµ, ... are independent of λ. After introducing the expression for the amplitude

Aµ given by (2.6) into (2.5) we obtain

Aµ = <{(aµ + εbµ + ε2cµ + ...)e
iψ
ε }, (2.7)

where we have replaced ψ by ψ/ε since ψ ∝ λ−1.

Here it is important to note that in the expression for the amplitude Aµ given by

(2.6) the terms in powers of ε are small corrections (deviations from geometric optics) to

the dominant part, which is independent of λ, due to a finite wavelength. The resulting

equations for geometric optics, which we are going to derive below, take their simplest

form in terms of the following quantities:

1. the wave four-vector kµ = ∂µψ

2. the scalar amplitude a =
√

(aµāµ)

3. the polarization four-vector fµ = aµ/a, where fµ is a complex unit vector.

1More general cases can be treated through Fourier analysis.
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2.1 Geometric optics in gravitational fields

By definition, light rays are integral curves of the vector field kµ and are thus orthogonal

to the surfaces of constant phase ψ, in other words orthogonal to the wave fronts.

From equations (2.2) and (2.3) it follows that

Aν;µ;ν − Aµ;ν
;ν = 0. (2.8)

Upon applying the Ricci identity

Aν;µ;ν = Aν ;µ
;ν +Rµ

νA
ν (2.9)

and imposing the Lorenz gauge condition

Aν;ν = 0, (2.10)

equation (2.8) becomes

Aµ;ν
;ν −Rµ

νA
ν = 0. (2.11)

If we now insert (2.7) into the Lorenz condition (2.10), we obtain

0 = Aν;ν = <{( i
ε
kµ(a

µ + εbµ + ...) + (aµ + εbµ + ...);µ)e
iψ
ε }. (2.12)

From the term of order ε−1, we deduce that kµa
µ = 0, or equivalently

kµf
µ = 0. (2.13)

The preceding equation shows that the polarization vector is orthogonal to the wave

vector. Now we introduce (2.7) into (2.11) to get

0 = −Aµ;ν
;ν +Rµ

νA
ν

= <
{[ 1

ε2
kνkν(a

µ + εbµ + ...)− 2
i

ε
kν(aµ + εbµ + ...);ν

− i

ε
kν;ν(a

µ + εbµ + ...)− (aµ + εbµ + ...);ν
;ν +Rµ

ν(a
ν + εbν + ...)

]
e
iψ
ε

}
. (2.14)

From the term of order ε−2 we infer that kνkνa
µ = 0, which is equivalent to

kνkν = 0. (2.15)

Equation (2.15) proves that the wave vector is null. The terms of order ε−1 give

kνkνb
µ − 2i

(
kνaµ;ν +

1

2
kν;νa

µ
)

= 0. (2.16)

7



2 Light propagation in the post-linear gravitational field

With (2.15) the equation above implies that

kνaµ;ν = −1

2
kν;νa

µ. (2.17)

As a consequence of these equations, we obtain the geodesic law for the propagation of

light rays. From equation (2.15) we have

0 = (kνkν);µ = 2kνkν;µ. (2.18)

Now kν = ∂νψ, and since ψ;ν;µ = ψ;µ;ν we get, after interchanging indices,

kνkµ;ν = 0. (2.19)

Equations (2.19) and (2.15) show that the paths of light rays are null geodesics.

If we now write the amplitude aµ as aµ = afµ and take into account (2.17) we have

2akνa,ν = 2akνa;ν = kν(a2);ν = kν(aµā
µ);ν

= āµkνaµ;ν + aµk
ν āµ;ν = −kν;νa2,

so that

kνa,ν = −1

2
kν;νa. (2.20)

This can be regarded as a propagation law for the scalar amplitude. After introducing

aµ = afµ into (2.15) we get

0 = kν(afµ);ν +
1

2
kν;ν(af

µ)

= akνfµ;ν + kνfµa;ν +
1

2
kν;ν(af

µ)

= akνfµ;ν + fµ(kνa;ν +
1

2
kν;νa)

= akνfµ;ν

or

kνfµ;ν = 0. (2.21)

We thus see that the polarization vector fµ is perpendicular to the light rays and is

parallel propagated along them.

After multiplying equation (2.20) by a we find

akνa,ν +
1

2
kν;νa

2 = 0 (2.22)

8



2.2 The light propagation equation

We can rewrite the equation above as

kν(a2);ν + a2kν;ν = (a2kν);ν = 0, (2.23)

where (a2kν) can be regarded as a conserved current.

Quantum mechanically, (2.23) expresses the conservation law for the number of pho-

tons. Since the photon number is not in general conserved, here it is an adiabatic

invariant, in other words, a quantity which varies very slowly for R� λ in comparison

to the photon frequency.

Finally, we give a summary of the fundamental laws of geometric optics, which we

derived in this section:

1. Light rays are null geodesics;

2. The polarization four-vector is perpendicular to the rays and is parallel-propagated

along the rays;

3. The amplitude is governed by an adiabatic invariant which, in quantum language,

expresses that the number of photons is conserved.

2.2 The light propagation equation

In the present work, we calculate light deflection in the post-linear gravitational field of

two bounded masses for the case when the impact parameter |~ξ | is much larger (e.g. 5

times or more) than the coordinate distance r12 between the two accelerating masses,

so that we can suppose that the gravitational field is weak along the light path.

For weak gravitational fields, as was shown in the preceding section, we can assume

that light propagation is very well governed by the laws of geometric optics, whereby

light rays (photons) move in curved space-time along null geodesics. The equation for

a single null geodesic2 reads

d2zµ

dλ2
+ Γµαβ

dzα

dλ

dzβ

dλ
= 0, (2.24)

where

Γµρσ =
1

2
gµω
(
gρω,σ + gσω,ρ − gρσ,ω

)
(2.25)

2Contrasted with equation (2.19) which describes a congruence of null geodesics.
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2 Light propagation in the post-linear gravitational field

are the Christoffel symbols of the second kind and λ is an affine parameter. In this work

we shall use the time coordinate t instead of the affine parameter λ to parameterize the

null geodesics.

After substituting λ by the time coordinate z0 = c t in the geodesic equation (2.24)

by means of

d2t

dλ2
+ c−1Γ0

νσ

dzµ

dλ

dzν

dλ
= 0, (2.26)

we obtain

d2zi

dt2
+ Γiαβ

dzα

dt

dzβ

dt
= c−1Γ0

νσ

dzν

dt

dzσ

dt

dzi

dt
. (2.27)

The condition for the geodesic to be light-like can be formulated as

gµν [z
0, zi(t), G]

dzµ

dt

dzν

dt
= 0. (2.28)

If we substitute in (2.27) dzµ/dt by lµ = (c, li) we find

dli

dt
+ Γiαβl

αlβ = c−1Γ0
νσl

νlσli. (2.29)

Notice that lµ is not exactly a 4-vector because we differentiate with respect to the time

coordinate t. So lµ is a 4-vector up to a factor. Here, li = dzi/dt is the 3-vector tangent

to the light ray zi(t). Now we consider a light ray zi(t) that is propagating in a curved

space-time gµν [z
0, zi(t), G] with the signature (− + ++). If the gravitational field is

weak, we can write the fundamental metric tensor gµν [z
0, zi(t), G] as a power series in

the gravitational constant G

gµν [z
0, zi(t), G] ≡ ηµν +

∞∑
n=1

h(n)
µν [z0, zi(t), G], (2.30)

where ηµν is the Minkowski metric and h
(n)
µν [z0, zi(t), G] is a perturbation of the order

n in the gravitational constant G equivalent to Gng
(n)
µν (z0, zi(t)) (physically, this means

an expansion in the dimensionless number Gm/c2d which is usually very small, d being

the characteristic length of the problem and m a characteristic mass).

In order to obtain from (2.29) the equations of light propagation for the metric (2.30),

we substitute the Christoffel symbols into (2.29). To save writing, we denote the metric

coefficients h
(1)
pq [z0, zi(t), G], h

(2)
pq [z0, zi(t), G] by h

(1)
pq and h

(2)
pq . Then the resulting equation

of light propagation to the second order in G/c2 is

10



2.3 The approximation scheme

dli

dt
=

1

2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,ml

m + c h
(1)
0m,il

m − c h
(1)
mi,0l

m − h
(1)
mi,nl

mln

+
1

2
h

(1)
mn,il

mln − 1

2
c h

(1)
00,0l

i − h
(1)
00,kl

kli +
(1

2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)
lmlpli

+
1

2
c2h

(2)
00,i −

1

2
c2h(1)ikh

(1)
00,k − h

(2)
00,kl

kli −
(
h

(2)
mi,n −

1

2
h

(2)
mn,i

)
lmln

+ h(1)ik
(
h

(1)
mk,n −

1

2
h

(1)
mn,k

)
lmln − h

(1)
00 h

(1)
00,kl

kli, (2.31)

where by ,0 and ,i we denote ∂/∂z0 and ∂/∂zi. To calculate the light deflection, we need

to solve equation (2.31) for li. In order to solve this complicated, nonlinear differential

equation we turn to approximation techniques.

2.3 The approximation scheme

The 3-vector li(t) can be written as

li(t) = li(0) +
∞∑
n=1

δli(n)(t), (2.32)

where li(0) denotes the constant incoming tangent vector li(−∞) and δli(n)(t) the pertur-

bation of the constant tangent vector li(0) of order n in G equivalent to Gnδ~̃l(n)(t).

After introducing the expression for li(t) given by (2.32) into (2.31) we obtain differential

equations for the perturbations δli(1) and δli(2):

dδli(1)

dt
=

1

2
c2h

(1)
00,i − c2h

(1)
0i,0 − c h

(1)
0i,ml

m
(0) + c h

(1)
0m,il

m
(0) − c h

(1)
mi,0l

m
(0) − h

(1)
mi,nl

m
(0)l

n
(0)

+
1

2
h

(1)
mn,il

m
(0)l

n
(0) −

1

2
c h

(1)
00,0l

i
(0) − h

(1)
00,kl

k
(0)l

i
(0) +

(1

2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)
lm(0)l

p
(0)l

i
(0) (2.33)

and

11



2 Light propagation in the post-linear gravitational field

dδli(2)

dt
=

1

2
c2h

(2)
00,i −

1

2
c2h(1)ikh

(1)
00,k − h

(2)
00,kl

k
(0)l

i
(0) −

(
h

(2)
mi,n −

1

2
h

(2)
mn,i

)
lm(0)l

n
(0)

+ h(1)ik
(
h

(1)
mk,n −

1

2
h

(1)
mn,k

)
lm(0)l

n
(0) − h

(1)
00 h

(1)
00,kl

k
(0)l

i
(0)

− c h
(1)
0i,mδl

m
(1) + c h

(1)
0m,iδl

m
(1) − c h

(1)
mi,0δl

m
(1)

− h
(1)
mi,nδl

m
(1)l

n
(0) − h

(1)
mi,nl

m
(0)δl

n
(1) + h

(1)
mn,iδl

m
(1)l

n
(0)

− 1

2
c h

(1)
00,0δl

i
(1) − h

(1)
00,kδl

k
(1)l

i
(0) − h

(1)
00,kl

k
(0)δl

i
(1)

+ c−1h
(1)
mp,0δl

m
(1)l

p
(0)l

i
(0) − c−1h

(1)
0p,mδl

m
(1)l

p
(0)l

i
(0) − c−1h

(1)
0p,ml

m
(0)δl

p
(1)l

i
(0)

+
(1

2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

)
lm(0)l

p
(0)δl

i
(1). (2.34)

In order to calculate the perturbations δli(1)(t) and δli(2)(t), we have to integrate equa-

tions (2.33) and (2.34) along the light ray trajectory to the appropriate order.

Before performing the integration it is convenient to introduce a new independent

parameter τ along the photon’s trajectory as defined by Kopeikin and Schäfer [7]. The

relationship between the parameter τ and the time coordinate t is

τ = t− t∗, (2.35)

where t∗ is the time of closest approach of the unperturbed trajectory of the photon to

the origin in an asymptotically flat harmonic coordinate system. Then the equation of

the unperturbed light ray can be represented as

zi(τ)unpert. = τ li(0) + ξi, (2.36)

where ξi is the vector directed from the origin of the coordinate system towards the

point of closest approach. The vector ξi is often called the impact parameter and is

orthogonal to the vector li(0). The distance r(τ) = |~z(τ)|, of the photon from the origin

of the coordinate system reads

r(τ) =
√
c2τ 2 + ξ2. (2.37)

It follows from equation (2.35) that the differential identity dt = dτ is valid, so that we

can always replace the integration along the unperturbed light ray with respect to t by

the integration with respect to the variable τ .

Then the resulting expression for δli(1) is given by

δli(1)(τ) =
1

2

∫ τ

−∞
dσ lα(0)l

β
(0)h

(1)
αβ,i|(→) − c h

(1)
0i − h

(1)
mil

m
(0) − h

(1)
00 l

i
(0)

+
1

2
c

∫ τ

−∞
dσ h

(1)
00,0l

i
(0)|(→) +

∫ τ

−∞
dσ lm(0)l

p
(0)

[1
2
c−1h

(1)
mp,0 − c−1h

(1)
0p,m

]
li(0) |(→) . (2.38)
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2.4 The light deflection

On the right-hand side of equation (2.38) after evaluating the partial derivatives

of the metric coefficients with respect to the photon’s coordinates (i.e. (z0, zi(t))),

we replace in the integrals the photon trajectory by its unperturbed approximation

zi(σ)unpert. = σli(0) + ξi and the time coordinate z0 by σ + t∗. In this work we denote

this operation by the symbol |(→). Then we perform the integration with respect to σ.

After substituting the expression obtained for δli(1) into equation (2.34), we can integrate

it to get δli(2). To calculate the perturbation δli(2), we separate the part of δli(2) which

depends on the post-linear metric coefficients from the part which depends on the linear

metric coefficients. We denote these parts of δli(2) by δli(2)I and δli(2)II respectively. As in

the case of equation (2.38) we replace the photon trajectory by its unperturbed approx-

imation and the time coordinate z0 by σ + t∗ after evaluating the partial derivatives of

the metric coefficients with respect to the photon coordinates. The resulting expressions

for δli(2)I and δli(2)II are

δli(2)I(τ) =

∫ τ

−∞
dσ
[1
2
c2h

(2)
00,i − h

(2)
00,kl

k
(0)l

i
(0)

]
|(→) +

∫ τ

−∞
dσ
[1
2
h

(2)
mn,i − h

(2)
mi,n

]
lm(0)l

n
(0)|(→)

(2.39)

and

δli(2)II(τ) = −
∫ τ

−∞
dσ
[1
2
c2h(1)ikh

(1)
00,k + h

(1)
00 h

(1)
00,kl

k
(0)l

i
(0)

]
|(→)

+

∫ τ

−∞
dσ
[
h(1)ik

(
h

(1)
mk,n −

1

2
h

(1)
mn,k

)]
lm(0)l

n
(0)|(→)

+ c

∫ τ

−∞
dσ
[
h

(1)
0m,i − h

(1)
0i,m − h

(1)
mi,0

]
δlm(1)(σ)|(→)

+

∫ τ

−∞
dσ
[
h

(1)
mn,iδl

m
(1)(σ)ln(0) − h

(1)
mi,nδl

m
(1)(σ)ln(0) − h

(1)
mi,nl

m
(0)δl

n
(1)(σ)

]
|(→)

−
∫ τ

−∞
dσ
[1
2
ch

(1)
00,0δl

i
(1)(σ) + h

(1)
00,kδl

k
(1)(σ)li(0) + h

(1)
00,kl

k
(0)δl

i
(1)(σ)

]
|(→)

+ c−1

∫ τ

−∞
dσ
[
h

(1)
mp,0δl

m
(1)(σ)lp(0) − h

(1)
0p,mδl

m
(1)(σ)lp(0) − h

(1)
0p,ml

m
(0)δl

p
(1)(σ)

]
li(0)|(→)

+ c−1

∫ τ

−∞
dσ
[1
2
h

(1)
mp,0 − h

(1)
0p,m

]
lm(0)l

p
(0)δl

i
(1)(σ)|(→). (2.40)

2.4 The light deflection

The dimensionless vector αi(n) of order n in G, describing the angle of total deflection

of the light ray measured at the point of observation and calculated with respect to the

13



2 Light propagation in the post-linear gravitational field

vector li(0) (see [7]), is given by

αi(n)(t) = P i
q

δlq(n)(t)

|~l(0)|
, (2.41)

where δli(n) is the perturbation of the constant tangent vector of order n in G. Here,

P i
q = δiq − ei(0)e(0)q (2.42)

is the projection tensor, which projects tensors onto the plane orthogonal to the vector

li(0). In the case of light rays (photons) |~l(0)| = c.
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3 Light deflection in the linear gravitational field of

arbitrarily moving and spinning masses

Since the linear metric perturbation h
(1)
µν for a system of arbitrarily moving and spin-

ning masses can be split into two pieces, one arising from the point-mass part of the

stress-energy tensor and one caused by the spin part of the stress-energy tensor, we can

calculate the light deflection corresponding to each part separately.

The angle of light deflection arising from the point-mass part was computed by

Kopeikin and Schäfer in 1999 [7] and the spin part by Kopeikin and Mashhoon in

2002 [8].

In this chapter we present their computation and derive the expression for the angle

of light deflection resulting from the expression obtained by Kopeikin and Schäfer in

the event that the speeds of the masses are small with respect to the speed of light and

the retarded times are close to the time of closest approach of the unperturbed light ray

to the origin of the coordinate system. We also compute the angle of light deflection

caused by the quadrupole moment of the system of arbitrarily moving masses. This

chapter is primarily based on the papers by S. M. Kopeikin and G. Schäfer [7], S. M.

Kopeikin and B. Mashhoon [8], and the author [10].

3.1 The linear gravitational field generated by arbitrarily moving

and spinning masses

In the linear approximation (2.30), reduces to

gµν(t, ~x) = ηµν + h(1)
µν (t, ~x). (3.1)

The metric perturbation h
(1)
µν (t, ~x) can be found by solving the Einstein field equations

which read in the first post-Minkowskian approximation and in the harmonic gauge (see

[14]) as follows:

�hµν(1)(t, ~x) = −16π
G

c4
T µν(t, ~x), (3.2)
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3 Light deflection in linear gravitational field of moving and spinning masses

where � = ηµν∂µ∂ν is the flat d’Alembertian operator and

T µν(t, ~x) = T µν(t, ~x)− 1

2
ηµνT λλ(t, ~x). (3.3)

In the present case T µν(t, ~x) is the energy-momentum tensor for a system of spinning

bodies, the explicit expression of which will be given in the next subsection.

As is well known, the solution of these equations has the form of a Liénard-Wiechert

potential [15], which in terms of the integral of the retarded tensor potential Tµν is given

by

hµν(1)(t, ~x) = 4
G

c4

∫
d3x′

T µν(t− |~x−~x ′|
c

, ~x ′)

|~x− ~x ′|
. (3.4)

3.1.1 Energy-momentum tensor of a system of spinning bodies

The energy-momentum tensor T µνa of the ath spinning body reads

T µνa (t, ~x) = T µνaM(t, ~x) + T µνaS (t, ~x), (3.5)

where T µνaM and T µνaS are parts of the tensor generated by the mass and spin of the ath

body, and t and ~x are the time coordinate and spatial coordinates in the underlying

inertial coordinate system. In the case of a system of spinning bodies the total tensor

of energy-momentum is a linear sum of tensors of the form (3.5) corresponding to each

body. Since in this chapter we are considering only the linear gravitational field, the

total gravitational field of the system of bodies results from the linear superposition of

the fields due to individual bodies.

In equation (3.5), T µνaM and T µνaS are defined in terms of the Dirac function as follows

[8, 16, 17]:

T µνaM(t, ~x) = c

∫ ∞

−∞
dη p(µ

a u
ν)
a (−g)−1/2δ(x0 − x0

a(η))δ
(3)(~x− ~xa(η)), (3.6)

T µνaS (t, ~x) = −c∇γ

∫ ∞

−∞
dη Sγ(µa uν)a (−g)−

1
2 δ(x0 − x0

a(η))δ
(3)(~x− ~xa(η)), (3.7)

where η is the proper time along the world line of the body’s centre of mass, ~xa(η) are the

spatial coordinates of the body’s centre of mass at the proper time η, uαa (η) = γa(c, ~va(t))

is the four-velocity of the body with γa = (1 − v2
a/c

2)−1/2, ~va(t) is the three-velocity of

the body in space, pαa (η) is the body’s linear momentum (in the approximation, which

neglects the rotation of the bodies, pαa (η) = mau
α
a (η), where ma is the invariant mass

of the ath body), Sµνa (η) is an antisymmetric tensor, which represents the body’s spin

angular momentum attached to the body’s centre of mass (spin-tensor), ∇γ denotes
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3.1 Linear gravitational field generated by moving and spinning masses

covariant differentiation with regard to the metric tensor gµν , the parentheses around

indices indicate symmetrization, and g = det(gµν) is the determinant of the metric

tensor.

The definition of the spin-tensor Sγνa is arbitrary up to the choice of a spin subsidiary

condition that is chosen as follows:

Sγνa uaν = 0. (3.8)

Because of this subsidiary condition, the antisymmetric tensor Sγνa has only three in-

dependent components, which can be mapped uniquely onto the spin-vector (intrinsic

angular momentum) Saα by means of

Saα =
1

2
ηαβγνu

β
aS

γν
a /c, Sγνa = ηαβγνSaαuaβ/c, (3.9)

with

Sρauaρ = 0. (3.10)

Here, ηαβγν is the Levi-Civita tensor in curved space-time related to the Levi-Civita

tensor εαβγν in Minkowskian space as follows:

ηαβγν = −(−g)−1/2εαβγν , ηαβγν = (−g)1/2εαβγν , (3.11)

where ε0123 = +1. In what follows we denote the spin-vector in the frame comoving with

the body as Sαa = (0, ~Sa ). In this frame, the temporal component of the spin-vector

vanishes as a consequence of (3.10). After applying a Lorentz transformation from

the comoving frame to the underlying inertial frame, we have in the post-Minkowskian

approximation

S0
a = γa

(~va · ~Sa
c

)
, Sia = S ia +

γa − 1

v2
a

(
~va · ~Sa

)
via, (3.12)

where γa ≡ (1− v2
a/c

2)−1/2 and ~va = (via) is the velocity of the ath mass with respect to

the frame at rest.

3.1.2 The metric perturbation hµν
(1)

In order to facilitate the computation of the metric perturbation hµν(1), we split it into two

parts hµνM(1) and hµνS(1) (see [8]) that are linearly independent in the first post-Minkowskian

approximation, that is

hµν(1)(t, ~x) = hµνM(1)(t, ~x) + hµνS(1)(t, ~x). (3.13)

Thus, the solution for each part can be found from the Einstein field equations (3.2)

with the corresponding energy-momentum tensor.
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3 Light deflection in linear gravitational field of moving and spinning masses

Solution for the point-mass part

After substituting hµν(1)(t, ~x) by (3.13) and the parts of the energy-momentum tensor

given by (3.6) and (3.7) into equation (3.2), we obtain for the point-mass part

�hµνM(1)(t, ~x) = −16π
G

c4
T µν
M (t, ~x), (3.14)

where

T µν
M (t, ~x) =

N∑
a=1

mac

∫ ∞

−∞
dη δ(x0 − x0

a(η))δ
(3)(~x− ~xa(η))

[
uµa(η)u

ν
a(η) +

1

2
ηµνc2

]
. (3.15)

The field equations (3.14) are integrated by using the retarded flat propagator Dr(x, x
′)

which is given by

Dr(x, x
′) =

θ(x0 − x0 ′)

4πr
δ(x0 − x0 ′ − r), (3.16)

where r = |~x− ~x ′|.
We finally get

hµνM(1)(t, ~x) = 4
G

c4

N∑
a=1

ma

√
1− v2

a(sa)

c2

[
uµa(sa)u

ν
a(sa) + 1

2
ηµνc2

ra(sa)− (1/c)(~va(sa) · ~ra(sa))

]
, (3.17)

where ~ra(sa) is given by ~ra(sa) = ~x− ~xa(sa) and ra(sa) is the Euclidean norm of ~ra(sa).

In the equation above sa denotes the retarded time sa = sa(t, ~x) for the ath body which

is a solution of the light-cone equation

sa +
1

c
ra(sa) = t. (3.18)

Solution for the spin part

From (3.2), (3.7) and (3.13), we find that the field equations for the spin part are

�hµνS(1)(t, ~x) = −16π
G

c4
T µν
S (t, ~x), (3.19)

where

T µν
S (t, ~x) = −

N∑
a=1

c
∂

∂xγa

∫ ∞

−∞
dη Sγ(µa (η)uβ)

a (η)δ(x0 − x0
a(η))δ

(3)(~x− ~xa(η)). (3.20)

Integration of (3.19) with the help of the flat retarded propagator (3.16) leads to1:

hµνS(1)(t, ~x) = −4
G

c4

N∑
a=1

∂

∂xγa

{√
1− v2

a(sa)

c2

[
Sγ(µ(sa)u

β)(sa)

ra(sa)− (1/c)(~va(sa) · ~ra(sa))

]}
. (3.21)

1Note that in equation (15) of Ref. [8] the factor
√

1− v2
a(sa)
c2 is missing.
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3.2 Angle of light deflection

Since in this chapter we are interested only in the effects arising from the linear gravita-

tional field, we can treat the sources as a system of free noninteracting spinning point-like

masses, each moving with arbitrary constant velocity with its spin axis pointing in an

arbitrary fixed direction. This follows from the Mathisson-Papapetrou equations in the

underlying inertial coordinate system.

After performing the differentiation in equation (3.21) we finally arrive at

hµνS(1)(t, ~x) = 4
G

c4

N∑
a=1

[
1− v2

a(sa)

c2

]3/2[ raγS
γ(µ
a u

ν)
a[

ra(sa)− (1/c)(~va(sa) · ~ra(sa))
]3], (3.22)

where ~va and Sγµa are treated as constants and we define rαa = (ra, ~ra).

3.2 Angle of light deflection

To compute the angle of light deflection, we follow the approximation scheme presented

in Section 2.2 of the preceding chapter. For the angle of light deflection linear in G,

we first have to compute the linear perturbation δli(1). The differential equation for the

perturbation δli(1) is (see (2.33)):

dδli(1)(t)

dt
=

1

2
c2h

(1)
00,i(t, ~z )− c h

(1)
0i,t(t, ~z )− c lm(0) h

(1)
0i,m(t, ~z ) + c lm(0) h

(1)
0m,i(t, ~z )

− lm(0) h
(1)
mi,t(t, ~z )− lm(0) l

n
(0) h

(1)
mi,n(t, ~z ) +

1

2
lm(0) l

n
(0) h

(1)
mn,i(t, ~z )− li(0)

1

2
h

(1)
00,t(t, ~z )

− lk(0) l
i
(0) h

(1)
00,k(t, ~z ) + li(0) l

m
(0) l

p
(0)

(1

2
c−2h

(1)
mp,t(t, ~z )− c−1h

(1)
0p,m(t, ~z )

)
, (3.23)

where by ,i and ,t we denote ∂/∂zi and ∂/∂t. In this work we assume that the unper-

turbed light ray trajectory (i.e. the light ray trajectory in the Minkowski space-time) is

given by (2.36).

Since, the metric coefficients are smooth functions of t and ~z, we can apply to (3.23)

the following rule of differentiation for an arbitrary smooth function F (t, ~z ) given in

[18],[( ∂

∂zi
+
l(0)i

c2
∂

∂t

)
F (t, ~z )

]
~z=~z(0)+~l(0)(t−t0)

=

(
P j
i

∂

∂ξj
+
l(0)i
c2

∂

∂τ

)
F [τ, ~ξ +~l(0)τ ], (3.24)

where P j
i is the projection tensor (2.42). Equation (3.24) states that the differentiation

of F (t, ~z ) with respect to time t and spatial coordinates zi followed by the substitution

~z = ~z(0) + ~l(0)(t − t0) is equivalent to performing the substitution of t by τ and ~z by

~z = ~ξ+~l(0)τ in F (t, ~z ) followed by the differentiation with respect to the time τ and the
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3 Light deflection in linear gravitational field of moving and spinning masses

impact parameter ξi. Here, it is important to remark that the new variables ξi and τ are

independent. For this reason, the integration of any function, which can be represented

as a time derivative with regard to the parameter τ , is always quite straightforward:∫
dτ

∂

∂τ
F (τ, ~ξ ) = F (τ, ~ξ ) + C(~ξ ), (3.25)

where C(~ξ ) is an arbitrary function of the constant impact parameter. Moreover, since

the vector ξi does not depend on the time τ , the partial derivatives with respect to ξi

can be taken outside the time integrals when we are computing them along the photon’s

trajectory, that is ∫
dτ

∂

∂ξi
F (τ, ~ξ ) =

∂

∂ξi

∫
dτF (τ, ~ξ ). (3.26)

As we shall see, the equations for the linear perturbations (3.23) become simpler in

terms of the parameters ~ξ and τ . After applying the rule (3.24) to (3.23) we get2

dδli(1)(τ)

dτ
=

1

2
lα(0)l

β
(0)∂̂ih

(1)
αβ(τ, ~z(τ))− ∂̂τ

[
l(0)αh

(1)αi(τ, ~z(τ)) +
1

2
li(0)h

(1)
00 (τ, ~z(τ))

− 1

2
li(0)

lm(0)l
n
(0)

c2
h(1)
mn(τ, ~z(τ))

]
, (3.27)

where ∂̂i ≡ P q
i ∂/∂ξ

q and ~z(τ) is given by (2.36).

It follows from (3.27) and (2.41) that the expression for the angle of light deflection is

αi(1)(τ) =
1

2c

∫ τ

−∞
dσlα(0)l

β
(0)∂̂ih

(1)
αβ(τ, ~z(τ) )− 1

c
P i
q l(0)αh

(1)αq(τ, ~z(τ) ). (3.28)

Equation (3.28) gives the angle of light deflection measured by an observer located at

a spatial distance |~z(τ)| from the origin of the coordinate system when the light source

is located at infinity in an asymptotically flat space.

3.3 The light cone equation

In order to compute the integral in (3.28), it is useful to replace in the integrand the

time argument σ with the arguments ζa, defined by the light-cone equation (3.18), which

after substituting ~x with the unperturbed light trajectory (2.36) reads as follows:

σ + t∗ = ζa + |~ξ + σ~l(0) − ~xa(ζa)|. (3.29)

2Equation (3.27) is equivalent to equation (19) in [7].
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3.4 Gravitational lens approximation

Differentiation of this equation yields a relationship between differentials of the time

variables σ and ζa, and the parameters t∗, ξi, li(0):

dζa(cra − ~ra · ~va) = dσ(cra −~l(0) · ~ra) + cradt
∗ − ~ra · d~ξ − σ~ra · d~l(0), (3.30)

where the coordinates ~xa and the velocity ~va of the ath mass are taken at the retarded

time ζa, and the coordinates of the photon ~z are taken at the time σ(ζa). From (3.30)

we obtain the partial derivative of ζa with regard to the parameter ξi

∂ζa
∂ξi

= − ria/c

[ra − (~ra · ~va)/c]
, (3.31)

and the relationship between the time differentials along the photon’s world line which

reads

dσ = dζa
[ra − (~ra · ~va)/c]
[ra − (~l(0) · ~ra)/c]

. (3.32)

If the parameter σ runs from −∞ to +∞, the new parameters ζa run from ζa(−∞) =

−∞ to ζa(+∞) = t∗ +~l(0) · ~xa(ζa(+∞)) when the motion of each mass is restricted to a

bounded domain of space, as in the case for a binary system. For bodies moving along

straight lines with constant velocities, the parameter σ also runs from −∞ to +∞, but

here the parameters ζa run from −∞ to +∞.

3.4 Gravitational lens approximation

In this section we shall derive some important equations, which are valid when we treat

the system of arbitrarily moving and spinning masses as a moving gravitational lens.

In what follows it is convenient to introduce the vector (see Fig. 3.1 for more details

on the geometry of the lens)

~ya = ~z(sa)− ~xa(sa), (3.33)

where ~z(sa) is the location of the photon at the retarded time sa. Since in the event of

gravitational lensing, the impact parameter of the light ray is very small in comparison

with the distances of the light-deflecting masses to the observer and the source of light,

we can assume that the length of the vector ~ya is small compared to the distances D =

|~z(t)−~z(t0)| (distance between the light source and the observer) and ra = |~z(t)−~xa(sa)|.
From the light-cone equation (3.18) we have

sa = t− 1

c
ra. (3.34)
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3 Light deflection in linear gravitational field of moving and spinning masses

N S

~z(t)
O

~z(t0)

~xCM (t∗)

~xa(t∗)

~xa(sa)

~xa(t)

~xa(t0) ~z (t∗)

~r (t)

~z (sa)
~ya

~ra

Source plane at the moment t0

Observer plane at the moment t

Lens plane at the moment t∗

Unperturbed light ray

Perturbed light ray

Optical axis

~ξ

Figure 3.1: Relative configuration of observer O, source of light S, and a moving grav-

itational lens. The centre of the lens is at ~xCM(t∗), and the line through

~xCM(t∗) and the observer O is the ‘optical axis’.
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3.5 Angle of light deflection linear inG from point-mass part of energy-momentum tensor

Upon introducing (3.34) into (3.33) and taking into account (2.36) we get

~ya = ~z(t− 1

c
ra)− ~xa(sa),

≈ ~z(t)− 1

c
~l(0)ra − ~xa(sa),

≈ ~ra(t, sa)−
1

c
~l(0)ra, (3.35)

where, as in other parts of the present work, we have ~ra(t, sa) = ~z(t) − ~xa(sa). From

(3.35) it follows that

1

c
(~l(0) · ~ya) = − d2

a

2ra
, (3.36)

where the distance da = |~ya| is the Euclidean length of ~ya. It is easy to see that the

preceding equation can be written as

ra −
1

c
(~l(0) · ~ra(t, sa)) =

d2
a

2ra
. (3.37)

3.5 The angle of light deflection linear in G caused by the

point-mass part of the energy-momentum tensor

Upon substituting the value of h
M(1)
αβ given by (3.17) into (3.28) and performing the

integration with the help of the relationships (3.31) and (3.32), we finally obtain

αiM(1)(τ) = −2
G

c2

N∑
a=1

ma[1−
(~e(0)·~va(sa))

c
]2[ra(τ, sa) + (~e(0) · ~ra(τ, sa))]P i

qr
q
a(τ, sa)√

1− v2a(sa)
c2

[r2
a(τ, sa)− (~e(0) · ~ra(τ, sa))2][ra(τ, sa)− ~va(sa)·~ra(τ,sa)

c
]

+ 4
G

c3

N∑
a=1

ma[1−
~e(0)·~va(sa)

c
]√

1− v2a(sa)
c2

[ra(τ, sa)− ~va(sa)·~ra(τ,sa)
c

]
P i
qv

q
a(sa), (3.38)

which is equivalent to equation (68) in [7]. Note that (3.38) and equation (68) in [7]

have opposite signs, since our definition of the angle of light deflection in (2.41) has the

opposite sign with respect to the definition used by Kopeikin and Schäfer in [7].

For an observer located at infinity, we find

αiM(1) = lim
τ→∞

αiM(1)(τ)

= −4
G

c2

N∑
a=1

ma

[
1− ~e(0)·~va(sa)

c

]√
1− v2a(sa)

c2
Ra(sa)

[
ξi − P i

qx
q
a(sa)

]
, (3.39)
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3 Light deflection in linear gravitational field of moving and spinning masses

where the quantity Ra(sa) is defined by

Ra(sa) = r2
a(0, sa)− (~e(0) · ~xa(sa))2. (3.40)

Here, it is worthwhile to note that the preceding expression for the light deflection angle

is equivalent to the expression given by equation (139) in [7].

With the help of (3.18), (3.37) and the relationship for the time of closest approach,

t∗ = t− 1

c
(~e(0) · ~z(t))

= t− 1

c
~e(0) · ~ra(t, sa)−

1

c
~e(0) · ~xa(sa), (3.41)

it is straightforward to show (see also Sec. VII B in [7]) that

sa − t∗ =
1

c
[~e(0) · ~xa(sa)−

d2
a

2ra
]

' 1

c
~e(0) · ~xa(sa). (3.42)

If the speeds of the masses are small with respect to the speed of light and the retarded

times do not differ significantly from the time of closest approach t∗, we are allowed to

use the Taylor expansion of the quantity

xia(sa) ' xia(t
∗) + via(t

∗)(sa − t∗) +
1

2
aia(t

∗)(sa − t∗)2. (3.43)

After substituting into (3.42), we find

sa − t∗ ' 1

c
(~e(0) · ~xa(t∗)) +

1

c
(~e(0) · ~va(t∗))(sa − t∗) +

1

2c
(~e(0) · ~aa(t∗))(sa − t∗)2. (3.44)

Now we solve equation (3.44) iteratively with respect to (sa − t∗) to obtain

sa − t∗ ' 1

c
~e(0) · ~xa(t∗) +

1

c2
(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗)) +O

( 1

c3

)
. (3.45)

After performing the Taylor expansion of the expression for the light deflection angle

given by (3.39) and taking into account (3.45), we finally obtain
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3.5 Angle of light deflection linear inG from point-mass part of energy-momentum tensor

αiM(1) = −4
G

c2

N∑
a=1

ma

Ra

[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c3

N∑
a=1

ma

Ra

(~e(0) · ~va(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c3

N∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))P i
qv

q
a(t

∗)

− 8
G

c3

N∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗) + (~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))
]

×
[
ξi − P i

qx
q
a(t

∗)
]

− 2
G

c4

N∑
a=1

ma

Ra

v2
a(t

∗)
[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c4

N∑
a=1

ma

R2
a

v2
a(t

∗)(~e(0) · ~xa(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 16
G

c4

N∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))2
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2[

ξi − P i
qx

q
a(t

∗)
]

− 32
G

c4

N∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))3(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

− 16
G

c4

N∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))4(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

+ 8
G

c4

N∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)

+ (~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))
]
P i
qv

q
a(t

∗)

− 4
G

c4

N∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 4
G

c4

N∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2
[
~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗) + (~e(0) · ~xa(t∗))(~e(0) · ~aa(t∗))
]

×
[
ξi − P i

qx
q
a(t

∗)
]

+ 2
G

c4

N∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))2P i
qa

q
a(t

∗)

+ 4
G

c4

N∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))(~e(0) · ~aa(t∗))
[
ξi − P i

qx
q
a(t

∗)
]
. (3.46)
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3 Light deflection in linear gravitational field of moving and spinning masses

3.6 The angle of light deflection linear in G caused by the spin part

of the energy-momentum tensor

After inserting the value of h
S(1)
αβ given by (3.21) as well as (3.22) into (3.28) and evalu-

ating the integral with the help of the relationships (3.31) and (3.32), we arrive at

αiS(1)(τ) = −2
G

c4

n∑
a=1

[
1−

~e(0) · ~va(sa)
c

]{ [
1− v2a(sa)

c2

]
[
ra(τ, sa)− ~ra(τ,sa)·~va(sa)

c

]3
×

l(0)αraβS
αβ
a P i

pr
p
a(τ, sa)[

ra(τ, sa)− ~e(0) · ~ra(τ, sa)
]P i

qr
q
a(τ, sa)

+

[
1− ~e(0)·~va(sa)

c

]
l(0)αraβS

αβ
a[

ra(τ, sa)− ~ra(τ,sa)·~va(sa)
c

]2[
ra(τ, sa)− ~e(0) · ~ra(τ, sa)

]2P i
qr
q
a(τ, sa)

−
l(0)αraβS

αβ
a[

ra(τ, sa)− ~ra(τ,sa)·~va(sa)
c

]2[
ra(τ, sa)− ~e(0) · ~ra(τ, sa)

] 1

c
P i
qv

q
a(sa)

−
P i
q l(0)αS

αq
a[

ra(τ, sa)− ~ra(τ,sa)·~va(sa)
c

][
ra(τ, sa)− ~e(0) · ~ra(τ, sa)

]
}

+ 2
G

c3

[
1− v2

a(sa)

c2

]{ [
1− ~e(0)·~va(sa)

c

]
P i
qraγS

γq
a[

ra(τ, sa)− ~ra(τ,sa)·~va(sa)
c

]3
+

1

c2
P i
q l(0)αraγS

αγ
a vqa(sa)[

ra(τ, sa)− ~ra(τ,sa)·~va(sa)
c

]3
}
, (3.47)

where rαa = (ra, ~ra).

For an observer located at infinity, (3.47) becomes

αiS(1) = −4
G

c4

N∑
a=1

{
2
l(0)αraβS

αβ
a

d4
a

[ξi − P i
qx

q
a(sa)]−

P i
q l(0)αS

αq
a

d2
a

}
, (3.48)

where we have neglected all residual terms of orderO(da/ra), since in this case da/ra = 0.

In order to obtain the analytic expression for the angle of light deflection valid for a

system of spinning masses having arbitrarily high velocities ~va and spin ~Sa, we have to

substitute into the preceding equation the expressions given in (A.3) and (A.4). After

26



3.7 Linear light deflection in the far zone gravitational field

performing the substitution we get

αiS(1) = −8
G

c4

N∑
a=1

γa
d4
a

{
~Sa · (~l(0) × ~ra) + ~Sa ·

[
(~ra −

ra~l(0)

c
)× ~va

]
+

(1− γa)

γav2
a

(~va · ~Sa)(~l(0) × ~ra) · ~va

}
[ξi − P i

qx
q
a]

+ 4
G

c4

N∑
a=1

γa
d2
a

{
P i
q(~va × ~Sa)− (~l(0) × ~Sa)i −

(1− γa)

γav2
a

(~va · ~Sa)(~l(0) × ~va)i
}
, (3.49)

where the quantities ~Sa, ~va, da and xia are evaluated at the retarded time sa. In the

event of slow motion, the Taylor expansion of (3.49) with respect to the parameter v/c

yields

αiS(1) =
N∑
a=1

αiaS, (3.50)

where

αiaS = −8
G

c4

~Sa · (~l(0) × ~ra)
d4
a

[ξi − P i
qx

q
a]− 4

G

c4
(~l(0) × ~Sa)i

d2
a

. (3.51)

The angle of light deflection αiaS can also be written as the gradient of the potential ψaS:

αiS(1) = −4
∂ψaS
∂χia

, ψaS =
G

c3
(~e0 × ~Sa)q

∂da
∂χqa

, (3.52)

where χia = ξi − P i
qx

q
a(sa) and da = |~χa|.

3.7 Linear light deflection in the far zone gravitational field

In order to compute the part of the linear light deflection arising from the quadrupole

moment of a system of arbitrarily moving and spinning masses it is convenient to work

with the expression for the light deflection caused by the point-mass part of the energy-

momentum tensor given by equation (139) in [7],

αiM(1) = −4
G

c2

N∑
a=1

ma[1−
~e(0)·~va(sa)

c
]√

1− v2a(sa)
c2

ξi − ξia(sa)

|~ξ − ~ξa(sa)|2
, (3.53)

which results from (3.39) after substituting Ra(sa) by its expression given by (A.7).

In this work we assume that the impact parameter is always larger than the distance

|~ξa(sa)|. Upon performing the Taylor expansion of the right hand side of (3.53) with
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3 Light deflection in linear gravitational field of moving and spinning masses

respect to ξia(sa) and va(sa)/c, one can prove (see [7]) that the angle of light deflection

caused by the point-mass part of the energy-momentum tensor is represented in the

form

αiM(1) = −4∂̂iψM , (3.54)

where the potential ψM is given by

ψM =
G

c2

{
N∑
a=1

ma −
1

c
~e(0) ·

N∑
a=1

ma~va(sa)−
N∑
a=1

max
j
a(sa)∂̂j

+
1

c
~e(0) ·

N∑
a=1

ma~va(sa)x
j
a(sa)∂̂j +

1

2

N∑
a=1

max
p
a(sa)x

q
a(sa)∂̂pq

}
ln |~ξ |+ ..., (3.55)

and the ellipsis denotes residual terms of higher order.

The potential ψM is the, so-called, point-mass part of the gravitational lens potential

[19].

If we treat the system of N point-like masses as an isolated system, the multipole

moments are defined in the Newtonian approximation by

M =
N∑
a=1

ma, I i(t) =
N∑
a=1

max
i
a(t)

J i(t) =
N∑
a=1

ma(~xa(t)× ~va(t))i I ij(t) =
N∑
a=1

ma

(
xia(t)x

j
a(t)−

1

3
|~xa(t)|2δij

)
, (3.56)

where the multiplication symbol denotes the usual Euclidean cross product and, coor-

dinates as well as velocities of all point-masses are taken at one and the same instant of

time t. In the rest of this section we assume that the velocities of the point-like masses

are small with regard to the velocity of light and that the origin of the coordinate frame

is located at the barycentre of the system. This means that

I i(t) =
N∑
a=1

max
i
a(t) = 0 and İ i(t) =

N∑
a=1

mav
i
a(t) = 0. (3.57)

After expanding all terms in (3.55) with respect to the time t∗, noting that the second

projective derivative ∂̂pq ln |~ξ | is traceless, and taking into account (3.42) and (3.43), the

centre of mass conditions (3.57), the definitions of multipole moments (3.56) and the

the vector equality

xja(~e(0) · ~va)− vja(~e(0) · ~xa) = [~e(0) × (~xa × ~va)]j, (3.58)
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3.7 Linear light deflection in the far zone gravitational field

we find out that, up to the required order, the potential ψM reads

ψM =
G

c2

{ N∑
a=1

ma +
1

c
εjpqe

p
(0)J

q(t∗)∂̂j +
1

2
Ipq(t∗)∂̂pq

}
ln |~ξ |, (3.59)

where εjpq is the fully antisymmetric Levi-Civita symbol.

The gravitational lens potential (3.59) is equal to the lens potential given by equation

(168) in [18].

In order to get the total lens potential, we have to add to (3.59) the lens potential

arising from the spin of the masses. It follows from (3.52), in the case that the impact

parameter is larger than the distance |~ξa(sa)|, that the lens potential is given by

ψS =
G

c3
[εjpqe

p
(0)S

q(t∗)∂̂j], (3.60)

where

Sq(t∗) =
N∑
a=1

Sqa(t∗). (3.61)

Since the effect on the light propagation arising from the wave zone or far zone gravi-

tational field is caused by the quadrupole moment of the deflector, to obtain the corre-

sponding angle of light deflection we have to introduce into (3.54) only the quadrupole

term of the potential ψM ,

αi(1)Quad = −2
G

c2
Ipq(t∗)∂̂ipq ln |~ξ |. (3.62)

After evaluating the projective derivatives ∂̂ipq, we finally get

αi(1)Quad = −4
G

c2

N∑
a=1

ma

[
4(~xa(t

∗) · ~eξ)2 − |~xa(t∗)|2
]eiξ
ξ3

+ 8
G

c2

N∑
a=1

ma(~xa(t
∗) · ~eξ)

1

ξ3
P i
qx

q
a(t

∗), (3.63)

where ξ = |~ξ |.
The equation above shows that the angle of light deflection caused by the quadrupole

moment of the source of the gravitational field falls off as the inverse cube of the impact

parameter ξ. Taking into account this property of strong suppression of the influence

of gravitational waves on light propagation, we conclude that light deflection in the

linear gravitational field of a system of arbitrarily moving and spinning masses is mainly

determined by the near-zone gravitational field.
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4 The post-linear gravitational field of two bounded

masses

In the computation of the metric generated by a system of two bounded point-like masses

we distinguish between 3 zones [20, 21]: the near-zone, the intermediate-zone and the

far-zone or wave-zone. In Chapter 3 as well as in Refs [18, 22] it was shown that leading

order terms for the effect of light deflection in the case of a small impact parameter ξ

(i.e. an impact parameter small with respect to the distance between the deflector and

the observer) depend neither on the radiative part (∼ 1/ξ) of the gravitational field

nor on the intermediate (∼ 1/ξ2) zone terms. The main effect rather comes from the

near zone (∼ 1/ξ3) terms. Taking into account this property of strong suppression of

the influence of gravitational waves on light propagation, we can assume in the present

work that light deflection in the post-linear gravitational field of two point-like masses is

mainly determined by the near-zone metric. This chapter is devoted to the computation

of the post-linear metric in harmonic coordinates in the near-zone of a system of two

bounded point-like masses. It is based on papers by L. Blanchet [23, 24] and a paper

by L. Blanchet et al. [25].

4.1 Einstein’s Field Equations

The field equations of general relativity form a system of ten second-order partial dif-

ferential equations that are fulfilled by the space-time metric gµν ,

Gµν [g, ∂g, ∂2g] = κT µν [g], (4.1)

where the Einstein curvature tensor Gµν ≡ Rµν − 1
2
Rgµν is generated, through the

gravitational coupling κ = 8πG/c4, by the stress-energy tensor T µν . Four of these ten

equations control through the contracted Bianchi identity the evolution of the matter

system,

Gµν
;ν ≡ 0 =⇒ T µν;ν = 0. (4.2)

The space-time geometry is constrained by the six remaining equations, which place six

independent constraints on the ten components of the metric gµν , leaving four of them
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4 The post-linear gravitational field of two bounded masses

to be fixed by a choice of the coordinate system.

In the present work we shall solve Einstein’s field equations in harmonic, or de Donder

coordinates in order to compute the gravitational field for two bounded point-like masses.

We define, as a basic variable, the gravitational amplitude

h̄µν =
√
|g|gµν − ηµν , (4.3)

with gµν and g being the inverse and the determinant of the covariant metric gµν . The

absolute value of g is given in terms of a series expansion in the field variable h̄µν , i.e.

|g| = 1 + h̄+
1

2

(
h̄2 − h̄σρh̄

σρ
)

+O(h̄3), (4.4)

where h̄σρ = ησαηρβh̄
αβ and h̄ = ηαβh̄

αβ. By ηµν = ηµν = diag(−1, 1, 1, 1), as before, we

denote the Minkowskian metric.

The harmonic coordinate condition, which accounts exactly for the four equations

(4.2) corresponding to the conservation of the matter tensor, reads

∂ν h̄
µν = 0. (4.5)

Under this condition the Einstein field equations (4.1) take the form

�h̄µν =
16πG

c4
|g|T µν + Λµν , (4.6)

where Λµν is the gravitational source term. Here, � = ηµν∂µ∂ν , as in the preceding

chapter, is the flat d’Alembertian operator.

By means of the integral of the retarded potentials given by

�−1
R f(~x, t) = − 1

4π

∫
d3x′

f(~x ′, t− |~x− ~x ′|/c)
|~x− ~x ′|

, (4.7)

and under the condition of no incoming radiation, the Einstein field equations (4.6) can

be written equivalently in the form of the integro-differential equations

h̄µν = �−1
R

[
16πG

c4
|g|T µν + Λµν

]
. (4.8)

The gravitational source term Λµν is related to the Landau-Lifschitz pseudo-tensor

through equation

Λµν =
16πG

c4
|g|tµνLL + ∂ρh̄

µσ∂σh̄
νρ − h̄ρσ∂ρσh̄

µν . (4.9)
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4.2 Solution of Einstein’s equations in the near zone

Equation (4.9) can be expanded as an infinite non-linear series in h and its first and

second space-time derivatives; in this work we need only retain the non-linear terms

quadratic in h2 (i.e. in G2),

Λµν = Nµν(h̄, h̄) +O(h̄3), (4.10)

where the quadratic non-linearity reads

Nµν = −h̄ρσ∂ρσh̄µν +
1

2
∂µh̄ρσ∂

ν h̄ρσ − 1

4
∂µh̄ ∂ν h̄+ ∂σh̄

µρ(∂σh̄νρ + ∂ρh̄
νσ)

− 2∂(µh̄ρσ∂
ρh̄ν)σ + ηµν

[
− 1

4
∂τ h̄ρσ∂

τ h̄ρσ +
1

8
∂ρh̄ ∂

ρh̄+
1

2
∂ρh̄στ∂

σh̄ρτ
]
. (4.11)

In the preceding expression, all indices are lowered and raised with the Minkowski metric

ηµν ; h̄ = ηµν h̄µν ; the parentheses around indices, as before, indicate symmetrization.

4.2 Solution of Einstein’s equations in the near zone

The near zone of the source is defined as the domain Di = {(~x, t) | |~x| < ri} in which

the radius ri is adjusted so that

1. ri > a, where a is the radius of a sphere which totally encloses the source, and

2. ri � λ, where λ = λ/2π ∼ ac/v is a characteristic reduced wavelength of the

emitted gravitational radiation, and v is a typical internal velocity in the source.

The definition of Di assumes in particular that a � λ, or equivalently ε � 1 where

ε ∼ v/c is a small “post-Newtonian” parameter appropriate to the description of

slowly moving sources. We shall also assume that the source is self-gravitating so that

GM/(a c2) ∼ ε2, where M is the total mass of the source and that the internal stresses

are such that T ij/T 00 ∼ ε2.

In the domainDi we can solve Einstein’s equations (4.6) using the harmonic coordinate

condition (4.5) by formally taking the limit ε→ 0.

4.2.1 The retarded potentials and the general 2PN metric

We describe the matter source by means of the density of mass σ, of current σi, and

of the stress σij which are defined as functions of the contravariant components of the
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4 The post-linear gravitational field of two bounded masses

stress-energy tensor Tαβ by

σ ≡ 1

c2
(
T 00 + T ii

)
, (4.12)

σi ≡
1

c
T 0i, (4.13)

σij ≡ T ij, (4.14)

where T ii = δijT
ij denotes the spatial trace of Tαβ.

From the covariant conservation of the matter stress-energy tensor (i.e. ∇νT
µν = 0)

we deduce the equations of continuity and motion, which read to the Newtonian order

∂tσ + ∂iσi = O(ε2), (4.15)

∂tσi + ∂jσij = σ∂iV +O(ε2). (4.16)

As in Refs [24] and [25] we introduce retarded potentials generated by the densities σ, σi,

and σij. First, V and Vi are the usual retarded scalar and vector potentials of the mass

and current densities σ and σi, i.e.,

V (~x, t) = G

∫
d3x′

|~x− ~x ′|
σ
(
~x ′, t− 1

c
|~x− ~x ′|

)
, (4.17)

Vi(~x, t) = G

∫
d3x′

|~x− ~x ′|
σi

(
~x ′, t− 1

c
|~x− ~x ′|

)
, (4.18)

which fulfil the equations �V = −4πGσ and �Vi = −4πGσi. Secondly, Ŵij is a more

complicated retarded tensor potential defined by

Ŵij(~x, t) = G

∫
d3x′

|~x− ~x ′|

[
σij − δijσkk +

1

4πG
∂iV ∂jV

](
~x ′, t− 1

c
|~x− ~x ′|

)
. (4.19)

Furthermore, we shall often consider the trace of the potential Ŵij; i.e.

Ŵii(~x, t) = G

∫
d3x′

|~x− ~x ′|

[
− 2σii +

1

4πG
∂iV ∂iV

]
. (4.20)

From the Newtonian equations of continuity (4.15) and motion (4.16) we deduce that

the potentials V , Vi, Ŵij, and Ŵii satisfy the conservations laws

∂tV + ∂iVi = O(ε2), (4.21)

∂tVi + ∂j

{
Ŵij −

1

2
δijŴkk

}
= O(ε2). (4.22)
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4.2 Solution of Einstein’s equations in the near zone

We now proceed to solve Einstein’s equations (4.5) and (4.6) with an accuracy corre-

sponding to the second post-Newtonian order. After introducing the lowest-order results

h̄00 = −4V/c2 + O(ε4), h̄0i = O(ε3), and h̄ij = O(ε4) into the right-hand-side of (4.6)

with the explicit expression (4.11), we get the equations

�h̄00 =
16πG

c4

(
1 +

4V

c2

)
T 00 − 14

c4
∂kV ∂kV +O(ε6), (4.23)

�h̄0i =
16πG

c4
T 0i +O(ε5), (4.24)

�h̄ij =
16πG

c4
T ij +

4

c4

{
∂iV ∂jV −

1

2
δij∂kV ∂kV

}
+O(ε6). (4.25)

These equations can be straightforwardly solved by means of the potentials V , Vi, Ŵij

and Ŵii that are given by equations (4.17)–(4.20). The result is

h̄00 = − 4

c2
V − 2

c4
(Ŵkk + 4V 2) +O(ε6), (4.26)

h̄0i = − 4

c3
Vi +O(ε5), (4.27)

h̄ij = − 4

c4

[
Ŵij −

1

2
δijŴkk

]
+O(ε6). (4.28)

Since the potentials satisfy the conservations laws (4.21) and (4.22), it is easy to see

that the corresponding field quantities (4.26), (4.27) and (4.28) satisfy the approximate

harmonic gauge condition

∂0h̄
00 + ∂ih̄

0i = O(ε5), (4.29)

∂0h̄
0i + ∂jh̄

ij = O(ε6). (4.30)

On inserting the coefficients h̄αβ given by (4.26)–(4.28) into (4.3) and (4.4) and com-

puting the inverse of gµν we finally obtain,

g00 = −1 +
2

c2
V − 2

c4
V 2 +O(ε6), (4.31)

g0i = − 4

c3
Vi +O(ε5), (4.32)

gij = δij

(
1 +

2

c2
V +

2

c4
V 2

)
+

4

c4
Ŵij +O(ε6). (4.33)

In what follows we are going to compute the retarded potentials V , Vi, Ŵij and Ŵkk

for a system of two bounded point-like masses.
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4 The post-linear gravitational field of two bounded masses

4.2.2 Application to a system of two bounded point-like masses

For a system of two bounded point-like masses (i.e. a point-mass binary) we use the

matter stress-energy tensor

T µν = µ1(t)v
µ
1 v

ν
1δ(~x− ~x1(t)) + (1 ↔ 2), (4.34)

where the symbol (1 ↔ 2) refers to the preceding term but with the labels 1 and 2

exchanged; δ denotes the three-dimensional Dirac distribution; the trajectories of the

two masses (in harmonic coordinates) are denoted by ~x1(t) and ~x2(t); the two coordinate

velocities are ~v1(t) = d~x1(t)/dt, ~v2(t) = d~x2(t)/dt and vµ1 ≡ (c, ~v1), v
µ
2 ≡ (c, ~v2); µ1(t)

represents an effective time-dependent mass of body 1 defined by

µ1(t) =

(
m1√
ggρσ

vρ1v
σ
1

c2

)
1

, (4.35)

where m1 is the (constant) Schwarzschild mass, with gρσ the metric and g its deter-

minant. After introducing into equations (4.12)–(4.14) the matter stress-energy tensor

(4.34) we find

σ = µ̃1(t)δ(~x− ~x1(t)) + (1 ↔ 2), (4.36)

σi = µ1(t)v
i
1(t)δ(~x− ~x1(t)) + (1 ↔ 2), (4.37)

σij = µ1(t)v
i
1(t)v

j
1(t)δ(~x− ~x1(t)) + (1 ↔ 2). (4.38)

Here, the quantity µ̃1(t) is given by

µ̃1(t) = µ1(t)

[
1 +

v2
1(t)

c2

]
, (4.39)

where v2
1(t) = ~v1(t)

2. At the Newtonian order the quantities µ1(t) and µ̃1(t) reduce to

the Schwarzschild mass: µ1(t) = m1 +O(ε2) and µ̃1(t) = m1 +O(ε2).

Since the stress-energy tensor for a point-like mass depends on the values of the

metric coefficients at the very location of the masses and the metric coefficients there

become infinite, we must supplement the model of the stress-energy tensor (4.34) by a

regularization procedure in order to remove the infinite self-field of the point-like sources.

The choice of one or another regularization procedure represents (a priori) an integral

part of the choice of physical model for describing the point-like masses. In the present

work as in the paper of Blanchet et al. [25] we shall use the Hadamard regularization

based on the finite part of functions admitting a special (“tempered”) type of singularity.
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4.2 Solution of Einstein’s equations in the near zone

Hadamard’s “partie finie” regularization

Let F be a real valued function defined in a neighbourhood of a point ~x0 ∈ R, excluding

this point. At ~x0 the function F is assumed to be singular. We consider the family of

auxiliary functions f~n(ε) := F (~x0 + ε~n), labelled by the unit vectors ~n. We expand f~n

as a Laurent series around ε = 0,

f~n(ε) =
∞∑

m=−N

am(~n)εm, (4.40)

where the coefficients am depend on the unit vector ~n. The regularized value of the

function F at ~x0 is defined as the coefficient of ε0 in the expansion (4.40) averaged over

all directions:

Freg(~x0) :=
1

4π

∮
dΩa0(~n). (4.41)

We use the formula (4.41) to give a sense to the spatial integral of the product of F and

the Dirac delta function. It means that we define∫
d3xF (~x)δ(~x− ~xa) := Freg(~xa). (4.42)

More details about Hadamard’s regularization can be found in [26].

We shall compute the 2PN metric in the form known as order-reduced, by which we

mean that in the final result all accelerations are replaced by explicit functions of the

positions by means of the Newtonian equations of motion:

dvi1
dt

= −Gm2

r2
12

ni12, (4.43)

dvi2
dt

=
Gm1

r2
12

ni12, (4.44)

where r12 = |~x1(t)− ~x2(t)| and ~n12 = (~x1(t)− ~x2(t))/r12.

4.2.3 Computation of the potentials V , Vi and Ŵij

The potentials V and Vi are generated by the compact-supported source densities σ and

σi. Similarly Ŵij consists of a part generated by a compactly supported source, but

also a part whose source is given by quadratic products of the spatial derivative of the

potential V . We denote the compact part of Ŵij by Ŵ
(C)
ij and the quadratic part by

Ŵ
(∂V ∂V )
ij . So we can write the potential Ŵij as

Ŵij = Ŵ
(C)
ij + Ŵ

(∂V ∂V )
ij , (4.45)
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4 The post-linear gravitational field of two bounded masses

where Ŵ
(C)
ij and Ŵ

(∂V ∂V )
ij are given by

Ŵ
(C)
ij = �−1

R {−4πG(σij − δijσkk)}, (4.46)

Ŵ
(∂V ∂V )
ij = �−1

R {−∂iV ∂jV }. (4.47)

Compact Parts of Potentials

First, we compute the compactly supported potentials V , Vi, and the compactly sup-

ported parts of Ŵij for a system of two bounded point-like masses described by the

stress-energy tensor (4.34) and the regularization (4.41). For our computation of the

post-linear light deflection, we only need to compute V up to the 1PN order and the

potentials Vi and Ŵij up to the Newtonian order.

By performing the Taylor expansion up to the 1PN order of the retardation inside the

integral (4.17) and using the mass density in the form (4.37), we obtain

V = G

{
µ̃1

r1
− 1

c
∂t(µ̃1) +

1

2c2
∂2
t (µ̃1r1)

}
+O(ε3) + (1 ↔ 2). (4.48)

We start by computing µ̃1 up to the 1PN order. After substituting in (4.35) the metric

coefficients by their values (4.31)–(4.33), µ̃1 becomes

µ̃1 = m1

{
1 +

1

c2

[
− (V )1 +

3

2
v2

1

]}
+O(ε4), (4.49)

where the potential V is to be evaluated at the location of mass 1 by means of the rule

(4.41). Application of this rule to the Newtonian part of V given by

V =
Gm1

r1
+O(ε2) + (1 ↔ 2), (4.50)

leads to

(V )1 =
Gm2

r12
+O(ε2) + (1 ↔ 2), (4.51)

where r12 = |~x1 − ~x2|. After substituting in (4.49) the quantity (V )1 by its expression

(4.51) we get

µ̃1 = m1

{
1 +

1

c2

[
− Gm2

r12
+

3

2
v2

1

]}
+O(ε4). (4.52)

To obtain the final expression for V we have to introduce into (4.48) the effective mass

(4.52) and compute the time derivatives. The explicit expression for V is given in

Appendix B. Notice, that we do not need to compute the time derivative of the effective

mass µ̃ since it starts at 1PN and we are interested only in V up to the 1PN order.
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4.2 Solution of Einstein’s equations in the near zone

The potential Vi and the compact potential Ŵ
(C)
ij to the Newtonian order are computed

in the same manner. As an example we give

Ŵ
(C)
ij =

Gm1

r1
(vi1v

j
1 − δijv2

1) +O(ε) + (1 ↔ 2). (4.53)

The explicit expressions for the potentials V and Vi to the order required in the compu-

tation of the metric to the conservative 2PN order are given in Appendix B.

Quadratic Part of the Potential Ŵij

To compute the quadratic part of the potential Ŵij given by equation (4.47), we have

first to work out the sources using (4.50). After computing ∂iV ∂jV we obtain

∂iV ∂jV =
G2m2

1

8
(∂2

1ij + δij∆1)

(
1

r2
1

)
+G2m1m2∂1i∂2j

(
1

r1r2

)
+O(ε2) + (1 ↔ 2), (4.54)

where ∂2
1ij ≡ ∂2/∂xi1∂x

j
1, ∂1i∂2j ≡ ∂2/∂xi1∂x

j
2 and ∆1 ≡ ∂2/∂xi1∂x

i
1.

In order to compute Ŵ
(∂V ∂V )
ij to the Newtonian order we first perform the Taylor

expansion of the retardation in (4.47) to that order. This yields

Ŵ
(∂V ∂V )
ij = �−1

R {−∂iV ∂jV }

= ∆−1{−∂iV ∂jV }+O(ε), (4.55)

where the source ∂iV ∂jV is given by (4.54).

The Poisson integral of the self-terms can be readily deduced from ∆(ln r1) = 1/r2
1,

while the Poisson integral of the interaction terms is obtained by solving the elementary

Poisson equation

∆g =
1

r1r2
. (4.56)

A regular solution of the preceding equation is

g = lnS, (4.57)

where S ≡ r1 + r2 + r12.

On inserting the source term given by (4.54) into (4.55) and computing the Poisson

Integrals we obtain,

Ŵ
(∂V ∂V )
ij = −G

2m2
1

8

{
∂2
ij(ln r1) + δij

1

r2
1

}
−G2m1m2∂1i∂2jg

+O(ε) + (1 ↔ 2). (4.58)
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4 The post-linear gravitational field of two bounded masses

After summing up equations (4.53) and (4.58) and computing the derivatives ∂1i∂2jg

we finally get the expression for the potential Ŵij, which is given in an explicit form in

Appendix B.

4.3 The metric

Upon introducing the potentials V , Vi and Ŵij given by equations (B.1)–(B.3) into

(4.31), (4.32) and (4.33), we obtain the conservative 2PN harmonic coordinate metric

generated by two bounded point-like masses as a function of the coordinate position ~z

and of the coordinate positions and velocities of the masses ~xa(t), ~va(t) with a = 1, 2.

The post-linear metric for two bounded point-like masses (to the 2PN-order) reads

h
(2)
00 =

1

c4

{
− 2

G2m2
1

r2
1

+G2m1m2

(
− 2

r1r2
− r1

2r3
12

+
r2
1

2r2r3
12

− 5

2r2r12

)}
+

1

c4
(1 ↔ 2) (4.59)

h(2)
pq =

1

c4

{
δpq
[G2m2

1

r2
1

+G2m1m2

( 2

r1r2
− r1

2r3
12

+
r2
1

2r2r3
12

− 5

2r1r12
+

4

r12S

)]
+
G2m2

1

r2
1

np1n
q
1 − 4G2m1m2n

p
12n

q
12

(
1

S2
+

1

r12S

)
+

4G2m1m2

S2

(
n

(p
1 n

q)
2 + 2n

(p
1 n

q)
12

)}
+

1

c4
(1 ↔ 2), (4.60)

where r1 = |~z− ~x1(t)|, r2 = |~z− ~x2(t)| and r12 = |~x1(t)− ~x2(t)|. The vectors np1, n
p
2 and

np12 are unit vectors defined by np1 = rp1/r1, n
p
2 = rp2/r2 and np12 = rp12/r12.

In our computations we also need a part of the linear gravitational field of two accel-

erating point-like masses. The part that is relevant to our calculation is given by

h
(1)
00 = 2

G

c2

2∑
a=1

ma

ra
+
G

c4

2∑
a=1

ma

ra

[
− (~na · ~va)2 + 4v2

a

]
(4.61)

h
(1)
0p = −4

G

c3

2∑
a=1

ma

ra
vpa (4.62)

h(1)
pq = 2

G

c2

2∑
a=1

ma

ra
δpq +

G

c4

2∑
a=1

ma

ra

[
− (~na · ~va)2 δpq + 4vpav

q
a

]
, (4.63)

where vpa denotes the velocity of the mass ma.

Here, it is worthwhile to point out that the parts of the linear gravitational field

in h
(1)
00 and h

(1)
pq that contain the accelerations of the masses were introduced into the
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part of the gravitational field quadratic in G after substituting the accelerations by

explicit functionals of the coordinate positions of the masses by means of the Newtonian

equations of motion.

4.4 The barycentric coordinate system

We use a harmonic coordinate system in which the 1PN-centre of mass is at rest at the

origin. Using the 1PN-accurate centre of mass theorem of Ref. [27], we can express

the individual centre of mass frame positions of the two masses in terms of the relative

position ~r12 ≡ ~x1 − ~x2 and the relative velocity ~v12 ≡ ~v1 − ~v2

as

~x1 =
[
X2 +

1

c2
ε1PN

]
~r12, (4.64)

~x2 =
[
−X1 +

1

c2
ε1PN

]
~r12, (4.65)

where X1, X2 and ε1PN are given by

X1 ≡
m1

M
, (4.66)

X2 ≡
m2

M
, (4.67)

ε1PN =
ν(m1 −m2)

2M

[
v2

12 −
GM

r12

]
. (4.68)

Here, we have defined

M ≡ m1 +m2, v12 = |~v12| (4.69)

and

ν ≡ m1m2

M2
. (4.70)
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5 Light deflection in the post-linear gravitational field of

bounded point-like masses

In this chapter, light deflection in the post-linear gravitational field of a system of

two bounded point-like masses is treated. Both the light source and the observer are

assumed to be located at infinity in an asymptotically flat space. The equations of light

propagation are explicitly integrated to the second order in G/c2. Some of the integrals

are evaluated by making use of an expansion in powers of the ratio of the relative

separation distance to the impact parameter r12/ξ. The correction terms arising from

the effect of the motion of the masses on light propagation, the linear perturbation of

the light ray trajectory and the shift of the 1PN centre of mass with respect to the

Newtonian centre of mass are computed. It is shown that the expression obtained in

this chapter for the angle of light deflection is fully equivalent to the expression obtained

by Kopeikin and Schäfer in [7] up to the order given there. This chapter along with the

associated appendices B, C and D, are based on a paper by the author [10].

5.1 Light deflection in the linear gravitational field of two bounded

point-like masses

In this section we compute a part of the perturbation term δli(1)(τ) and the corresponding

angle of light deflection for an observer located at infinity in an asymptotically flat space.

After substituting in (2.38) the linear metric coefficients by their values (4.61), (4.62)

and (4.63), we obtain

δli(1)(τ) = −2G
2∑

a=1

ma

∫ τ

−∞
dσ

1

r3
a

[
zi − xia(t)

]
|(→)

+ 4
G

c

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

(~e(0) · ~va(t))
[
zi − xia(t)

]
|(→)

− 2
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

[
v2
a(t) + (~e(0) · ~va(t))2

][
zi − xia(t)

]
|(→)
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+ 3
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r5
a

(~ra · ~va(t))2
[
zi − xia(t)

]
|(→)

− 4
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

(~e(0) · ~va(t))
[
c σ − (~e(0) · ~xa(t))

]
li(0)|(→)

− 2
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

{
(~e(0) · ~va(t))c σ +

[
~ξ · ~va(t)− ~xa(t) · ~va(t)

]}
via(t)|(→)

+ 4
G

c2

2∑
a=1

ma

ra
via(t)− 4

G

c2

2∑
a=1

ma

ra
li(0) − 4

G

c3

2∑
a=1

ma

ra
(~e(0) · ~va(t))via(t)

+ 2
G

c4

2∑
a=1

ma

{
(~ra · ~va(t))2

r3
a

− 2
1

ra
v2
a(t)

}
li(0), (5.1)

where ~ra = ~z − ~xa(t) and ra = |~ra|.
Because the linear metric coefficients are functions of the positions and velocities of

the masses ~xa(t) and ~va(t) respectively, the expression for δli(1)(τ) given in (5.1) is a

function of these quantities. This means that we have to take into account the motion

of the masses when we are going to compute the integrals in (5.1). Considering that the

influence of the gravitational field on light propagation is strongest near the barycentre

of the binary and that the velocities of the masses are small with respect to the velocity

of light, we are allowed to make the following approximations:

1. We may assume that the linear gravitational field is determined by the positions

and velocities of the masses taken at the time of closest approach (t = t∗) of the

unperturbed light ray to the barycentre of the binary (i.e. to the origin of the

asymptotically flat harmonic coordinate system). The expression, resulting from

(5.1) after setting t = t∗ for the positions and velocities, is denoted by δli(1)I(τ);

2. We treat the effect of the motion of the masses on light propagation as a correction

to the expression of δli(1)I(τ), which we denote by δli(1)II(τ). We shall compute this

correction in Section 5.3.

Consequently, the corresponding angle of light deflection reads

αi(1)(τ) =
1

c
P i
q

[
δlq(1)I(τ) + δlq(1)II(τ)

]
, (5.2)

where P i
q is given by (2.42).

Here, it is important to remark that in order to obtain the total linear light deflection

we have to add to (5.2) terms arising from the 1PN-corrections in the positions of the

masses, which we shall compute in Section 5.5. Since these terms are proportional to
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5.1 Light deflection in linear gravitational field of two bounded point-masses

v2
12/c

2, it is easy to see by virtue of the virial theorem that they are of the same order

as the terms in G2/c4.

After fixing the values of the quantities ~xa(t) and ~va(t) to ~xa(t
∗) and ~va(t

∗) in (5.1),

we find

δli(1)I(τ) = −2G
2∑

a=1

ma

∫ τ

−∞
dσ

1

r3
a

[
zi − xia(t

∗)
]
|(→)

+ 4
G

c

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

(~e(0) · ~va(t∗))
[
zi − xia(t

∗)
]
|(→)

− 2
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

[
v2
a(t

∗) + (~e(0) · ~va(t∗))2
][
zi − xia(t

∗)
]
|(→)

+ 3
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r5
a

(~ra · ~va(t∗))2
[
zi − xia(t

∗)
]
|(→)

− 4
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

(~e(0) · ~va(t∗))
[
c σ − (~e(0) · ~xa(t∗))

]
li(0)|(→)

− 2
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

1

r3
a

{
(~e(0) · ~va(t∗))c σ +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]}

via(t
∗)|(→)

+ 4
G

c2

2∑
a=1

ma

ra
via(t

∗)− 4
G

c2

2∑
a=1

ma

ra
li(0) − 4

G

c3

2∑
a=1

ma

ra
(~e(0) · ~va(t∗))via(t∗)

+ 2
G

c4

2∑
a=1

ma

{
(~ra · ~va(t∗))2

r3
a

− 2
1

ra
v2
a(t

∗)

}
li(0). (5.3)

Evaluation of the integrals in (5.3) leads to

δli(1)I(τ) = −2
G

c

2∑
a=1

maBa

[
ξi − xia(t

∗)
]
− G

c2

2∑
a=1

ma

{
2Aa +

4

ra

}
li(0)

+ 4
G

c2

2∑
a=1

ma(~e(0) · ~va(t∗))Ba

[
ξi − xia(t

∗)
]
+ 4

G

c2

2∑
a=1

ma

ra
via(t

∗)

+ 4
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))
{
Aa +

1

ra

}
li(0)

+
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))2
{

3Fa2 − 2Ba

}[
ξi − xia(t

∗)
]

+ 6
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Fa3
[
ξi − xia(t

∗)
]
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− 2
G

c3

2∑
a=1

mav
2
a(t

∗)Ba

[
ξi − xia(t

∗)
]

+ 3
G

c3

2∑
a=1

ma

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2
Fa4
[
ξi − xia(t

∗)
]

− G

c3

2∑
a=1

ma

{
(~e(0) · ~va(t∗))

[
2Aa +

4

ra

]

+ 2
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Ba

}
via(t

∗)

+ 6
G

c4

2∑
a=1

ma(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Fa2l

i
(0)

+
G

c4

2∑
a=1

ma(~e(0) · ~va(t∗))2
{

3Fa1 − 2Aa

}
li(0)

− G

c4

2∑
a=1

mav
2
a(t

∗)
{

2Aa +
4

ra

}
li(0) + 2

G

c4

2∑
a=1

ma

r3
a

(~r · ~va(t∗))2li(0)

+ 3
G

c4

2∑
a=1

ma

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2
Fa3l

i
(0), (5.4)

where the functions Aa, Ba, Fa1, Fa2, Fa3, and Fa4 are given by

Aa =
1

raRa

[
− r2

a(0, t
∗) + (~e(0) · ~xa(t∗))

(
c τ + ra

)]
, (5.5)

Ba =
1

raRa

[
− (~e(0) · ~xa(t∗)) + c τ + ra

]
, (5.6)

Fa1 =
1

3 r3
aR

2
a

{
− r2

a(0, t
∗)

[
2 r4

a(0, t
∗)− (~e(0) · ~xa(t∗))

(
3 r2

a(0, t
∗)− (~e(0) · ~xa(t∗))2

)
ra

]

+ 2 (~e(0) · ~xa(t∗))

[
3 r4(0, t∗)− (~e(0) · ~xa(t∗))

(
3 r2

a(0, t
∗)− (~e(0) · ~xa(t∗))2

)
ra

]
c τ

−

[
3 r4

a(0, t
∗) + 3 (~e(0) · ~xa(t∗))2r2

a(0, t
∗)

− (~e(0) · ~xa(t∗))
(
3 r2

a(0, t
∗)− (~e(0) · ~xa(t∗))2

)
ra

]
c2τ 2

+ (~e(0) · ~xa(t∗))

[
3 r2

a(0, t
∗)− (~e(0) · ~xa(t∗))2

]
c3τ 3

}
, (5.7)
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Fa2 =
1

3 r3
aR

2
a

{
− 2 (~e(0) · ~xa(t∗)) r4

a(0, t
∗) +

[
r2
a(0, t

∗) + (~e(0) · ~xa(t∗))2
]
r2
a(0, t

∗) ra

− 2 (~e(0) · ~xa(t∗))
[(
r2
a(0, t

∗) + (~e(0) · ~xa(t∗))2
)
ra − 3 (~e(0) · ~xa(t∗)) r2

a(0, t
∗)
]
c τ

+
[
r2
a(0, t

∗) + (~e(0) · ~xa(t∗))2
][
ra − 3 (~e(0) · ~xa(t∗))

]
c2τ 2

+
[
r2
a(0, t

∗) + (~e(0) · ~xa(t∗))2
]
c3τ 3

}
, (5.8)

Fa3 =
1

3 r3
aR

2
a

{
− r2

a(0, t
∗)
[
r2
a(0, t

∗) + (~e(0) · ~xa(t∗))2 − 2 (~e(0) · ~xa(t∗)) ra
]

+ (~e(0) · ~xa(t∗))
[
3 r2

a(0, t
∗) + 3 (~e(0) · ~xa(t∗))2 − 4(~e(0) · ~xa(t∗)) ra

]
c τ

+ 2 (~e(0) · ~xa(t∗))
[
ra − 3 (~e(0) · ~xa(t∗))

]
c2τ 2 + 2 (~e(0) · ~xa(t∗))c3τ 3

}
, (5.9)

Fa4 =
1

3 r3
aR

2
a

{
(~e(0) · ~xa(t∗))

[
− 3 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))2

]
+ 2 r2

a(0, t
∗) ra

+
[
3 r2

a(0, t
∗) + 3 (~e(0) · ~xa(t∗))2 − 4 (~e(0) · ~xa(t∗))ra

]
c τ

+ 2
[
ra − 3 (~e(0) · ~xa(t∗))

]
c2τ 2 + 2 c3τ 3

}
. (5.10)

Here, the subscript a labels the masses and ra is the distance between the position of

the photon along its unperturbed trajectory and the position of the mass ma at the time

t∗. Explicitly, the distance ra is given by

ra = ra(τ, t
∗) =

[
c2τ 2 + ξ2 − 2 c τ~e(0) · ~xa(t∗)− 2 ~ξ · ~xa(t∗) + x2

a(t
∗)

]1/2

. (5.11)

It follows from the expression for ra that ra(0, t
∗) is the distance between the point of

closest approach of the unperturbed light ray to the origin of the coordinate system and

the position of the mass ma at the time t∗. The quantity Ra appearing in equations

(5.5)–(5.10) is defined by

Ra = r2
a(0, t

∗)− (~e(0) · ~xa(t∗))2. (5.12)

Finally, in order to get the expression for the angle of light deflection for an observer

located at infinity, we introduce the expression for δli(1)I(τ) given by (5.4) into (2.41)

and compute the limit τ →∞. The resulting angle of light deflection reads

47



5 Light deflection in the post-linear gravitational field of bounded point-like masses

αi(1)I = lim
τ→∞

[1
c
P i
qδl

q
(1)I(τ)

]
= −4

G

c2

2∑
a=1

ma

Ra

[
ξi − P i

qx
q
a(t

∗)
]

+ 8
G

c3

2∑
a=1

ma

Ra

(~e(0) · ~va(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma

Ra

v2
a(t

∗)
[
ξi − P i

qx
q
a(t

∗)
]
− 4

G

c4

2∑
a=1

ma

Ra

(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma

Ra

{
(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗)) + ~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
}
P i
qv

q
a(t

∗)

+ 2
G

c4

2∑
a=1

ma

Ra

(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~va(t∗))2 (~e(0) · ~xa(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

+ 8
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
][
ξi − P i

qx
i
a(t

∗)
]

+ 4
G

c4

2∑
a=1

ma

R2
a

[
(~ξ · ~va(t∗))2 − 2(~ξ · ~va(t∗)(~xa(t∗) · ~va(t∗)) + (~xa(t

∗) · ~va(t∗))2
]

[
ξi − P i

qx
q
a(t

∗)
]
. (5.13)

5.2 The post-linear light deflection in the post-linear gravitational

field of two bounded point-like masses

In this section we present our computations for light deflection in the post-linear grav-

itational field of two bounded point-like masses. In our computations we assume that

both the light source and the observer are at infinity in an asymptotically flat space so

that the effects of h
(1)
µν and h

(2)
µν near the light source and near the observer are negligible.

We take into account only the terms of order G2/c4. From equations (2.39), (2.40) and

(2.41) we see that αi(2) is a function of the post-linear metric coefficients h
(2)
µν and of

the linear metric coefficients h
(1)
µν . To facilitate the computations, we separate the light

deflection terms that are functions of the post-linear metric coefficients from the terms

that are functions of the linear metric coefficients and the perturbations of the first order

in G of the vector tangent to the unperturbed light ray. First we compute the terms of
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αi(2) that are functions of the post-linear metric coefficients, which we denote by αi(2)I.

5.2.1 The post-linear light deflection terms that depend on the metric

coefficients quadratic in G

It follows from equations (2.39) and (2.41) that a part of the post-linear light deflection

is given by:

αi(2)I =
1

c
P i
q

[
1

2
c2
∫ ∞

−∞
dτh

(2)
00,q |(→) +

∫ ∞

−∞
dτ
[1
2
h(2)
mn,q − h(2)

qm,n

]
lm(0)l

n
(0) |(→)

]
. (5.14)

Upon introducing the post-linear metric (4.59) and (4.60) into (5.14) we obtain integrals

whose integrands are functions of the distances r1, r2, S and their inverses. Through the

distances r1, r2 and S, the resulting integrals from (5.14) are functions of the positions

of the masses ~xa(t).

For the same reason as in the case of the linear light deflection, we are here allowed

to fix the values of the positions of the masses ~xa(t) to their values at the time t∗ before

performing the integration. The resulting integrals are given explicitly in Appendix C.

To evaluate the integrals that cannot be represented by elementary functions, we

resort as usual to a series expansion of the integrands. To perform the series expansion

we consider the integrands as functions of the distances r1, r2 and S. Then, we expand

these functions in a Taylor series about the origin of the coordinate system ~x1 = ~x2 = 0

to the second order. We only need to perform the Taylor expansion up to second order,

since with an expansion to this order we obtain a result which is sufficiently accurate

for the applications that we shall consider in this work.

The positions of the masses in the centre of mass frame defined in Section 4.4 are

given by equations (4.64) and (4.65). Here, we do not need to take into account the

1PN-corrections in the positions of the masses, because if we introduced these into (5.14)

we would obtain terms of higher order than G2/c4.

In Section 5.5 we shall compute the post-linear light deflection terms resulting from

the introduction of the 1PN-corrections in the positions of the masses into the equation

for linear light deflection.

Also, we do not need to consider here the correction terms arising from introducing

the motions of the masses into (5.14), because these terms are of higher order than

G2/c4. The correction to the post-linear light deflection arising from introducing the

motion of the masses into the expression for the linear perturbation is denoted by αi(2)III

and we shall compute it in Section 5.3.
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5.2.2 The post-linear light deflection terms that depend on the metric

coefficients linear in G

The post-linear light deflection terms that are functions of the linear metric coefficients

and the linear perturbations δ~l(1)(τ) we denote by αi(2)II. It follows from equations (2.40)

and (2.41) that the resulting expression for the post-linear light deflection αi(2)II reads

αi(2)II =
1

c
P i
q

[
− 1

2
c2
∫ ∞

−∞
dτ h(1)qmh

(1)
00,m|(→)

+

∫ ∞

−∞
dτ
[
h(1)qp

(
h(1)
mp,n −

1

2
h(1)
mn,p

)]
lm(0)l

n
(0)|(→)

+ c

∫ ∞

−∞
dτ
[
h

(1)
0m,q − h

(1)
0q,m

]
δlm(1)(τ)|(→)

+

∫ ∞

−∞
dτ
[
h(1)
mn,qδl

m
(1)(τ)l

n
(0) − h(1)

mq,nδl
m
(1)(τ)l

n
(0) − h(1)

mq,nl
m
(0)δl

n
(1)(τ)

]
|(→)

−
∫ ∞

−∞
dτ h

(1)
00,kl

k
(0)δl

q
(1)(τ)|(→)

− 1

c

∫ ∞

−∞
dτ h

(1)
0p,ml

m
(0)l

p
(0)δl

q
(1)(τ)|(→)

]
. (5.15)

To compute αi(2)II, we introduce the expression for the perturbation δli(1)(τ) given by

(5.35) and the metric functions (4.61), (4.63) and (4.62) into the expression for αi(2)II.

Here, we may use the same approximations as before, i.e. we can fix the values of the

positions and velocities of the masses to their values at the time t∗ before performing

the integrals. The resulting integrals are given in Appendix D. As explained in the

preceding section, with the help of a Taylor expansion of the integrands we can evaluate

the integrals, which cannot be represented by elementary functions.

5.3 Light deflection and the motion of the masses

In this section we compute the correction terms to the linear and post-linear light de-

flection arising from the effect of the motion of the masses on light propagation. The

correction terms to the linear and post-linear light deflection can be found by means of

Taylor expansions of the linear perturbation (5.1) in which the coefficients depend on

the sources’ coordinates xia and their successive derivatives with respect to t, namely

dxia
dt

= via(t),
d2xia
dt2

=
dvia
dt

= aia(t), ...,

taken at the time t∗.

50



5.3 Light deflection and the motion of the masses

5.3.1 The linear light deflection and the motion of the masses

The correction terms to the linear perturbation arising from the Taylor expansion of

(5.1) are

δli(1)II(τ) = G

2∑
a=1

ma

∫ τ

−∞
dσ

{[
− 6

r5
a

(~ra · ~va(t∗))ria +
2

r3
a

via(t
∗)

]
σ

+

[
− 15

r7
a

(~ra · ~va(t∗))2ria +
6

r5
a

(~ra · ~va(t∗))via(t∗) +
3

r5
a

v2
a(t

∗)ria

]
σ2

}
|(→)

+
G

c

2∑
a=1

ma(~e(0) · ~va(t∗))
∫ τ

−∞
dσ

{[
12

r5
a

(~ra · ~va(t∗))ria −
4

r3
a

via(t
∗)

]
σ

+

[
30

r7
a

(~ra · ~va(t∗))2ria −
12

r5
a

(~ra · ~va(t∗))via(t∗)−
6

r5
a

v2
a(t

∗)ria

]
σ2

}
|(→)

+
G

c2

2∑
a=1

ma

∫ τ

−∞
dσ

{[
v2(t∗) + (~e(0) · ~v(t∗))2

][(
− 6

r5
a

(~ra · ~va(t∗))ria

+
2

r3
a

via(t
∗)

)
σ +

(
− 15

r7
a

(~ra · ~va(t∗))2ria +
6

r5
a

(~ra · ~va(t∗))via(t∗) +
3

r5
a

v2
a(t

∗)ria

)
σ2

]
+

[(
15

r7
a

(~ra · ~va(t∗))3ria −
3

r5
a

(~ra · ~va(t∗))2via(t
∗)− 6

r5
a

(~ra · ~va(t∗))v2
a(t

∗)ria

)
σ

+

(
105

2

(~ra · ~va(t∗))4

r9
a

ria −
15

r7
a

(~ra · ~va(t∗))3via(t
∗)− 75

2

(~ra · ~va(t∗))2

r7
a

v2
a(t

∗)ria

+
6

r5
a

(~ra · ~va(t∗))v2
a(t

∗)via(t
∗) +

3

r5
a

v4
a(t

∗)ria

)
σ2

]
− (~e(0) · ~va(t∗))

[
c σ − (~e(0) · ~xa(t∗))

][12

r5
a

(~ra · ~va(t∗))σ

+

(
30

r7
a

(~ra · ~va(t∗))2 − 6

r5
a

v2
a(t

∗)

)
σ2

]
li(0)

+ (~e(0) · ~va(t∗))2

[
4

r3
a

σ +
12

r5
a

(~ra · ~va(t∗))σ2

]
li(0)

+

[
(~e(0) · ~va(t∗))c σ +

(
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
)][

− 6

r5
a

(~ra · ~va(t∗))σ

+

(
− 15

r7
a

(~ra · ~va(t∗))2 +
3

r5
a

v2
a(t

∗)

)
σ2

]
via(t

∗)

+ v2
a(t

∗)

[
2

r3
a

σ +
6

r5
a

(~ra · ~va(t∗))σ2

]
via(t

∗)

}
|(→)
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+
G

c2

2∑
a=1

ma

{
4

r3
a

(~ra · ~va(t∗))τ +

[
6

r5
a

(~ra · ~va(t∗))2 − 2

r3
a

v2
a(t

∗)

]
τ 2

}[
via(t

∗)− li(0)

]
+
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))

{
− 4

r3
a

(~ra · ~va(t∗))τ +

[
− 6

r5
a

(~ra · ~va(t∗))2

+
2

r3
a

v2
a(t

∗)

]
τ 2

}
via(t

∗)

+
G

c4

2∑
a=1

ma

{[
6

r5
a

(~ra · ~va(t∗))3 − 4

r3
a

(~ra · ~va(t∗))v2
a(t

∗)

]
τ

+

[
15

r7
a

(~ra · ~va(t∗))4 − 15

r5
a

(~ra · ~va(t∗))2v2
a(t

∗) +
2

r3
a

v4
a(t

∗)

]
τ 2

− 4v2
a(t

∗)

[
(~ra · ~va(t∗))

r3
a

τ +

(
3

2

(~ra · ~va(t∗))2

r5
a

− 1

2

v2
a(t

∗)

r3
a

)
τ 2

}
li(0) (5.16)

Considering that in the present work we compute the post-linear light deflection up to

the order G2/c4, we must retain the linear light deflection terms up to the order G/c4.

Notice that the linear terms of the order G/c4 are of the same order as the post-linear

terms of the order G2/c4 since for a system of bounded point-like masses, the virial

theorem applies (i.e. v2
a ∼ G/d) and, considering that the terms of the order G/c4 are

also terms in v2
a, it is easy to see that these terms are of the same order as the post-

linear terms of the order G2/c4. Of course, we get linear light deflection terms from the

perturbation δli(1)II(τ) too. To obtain the perturbation δli(1)II(τ), we have to evaluate the

integrals in the expression above. Taking into account that we are only interested in the

angle of light deflection to the order G/c4, we need only retain the terms of the order

G/c2 and G/c3, since the expression for the light deflection angle (see equation (5.21))

contains a further factor 1/c. After performing the integration of the expression above

and retaining only terms of the order G/c2 and G/c3, we finally find

δli(1)II(τ) = −6
G

c2

2∑
a=1

ma

[
(~e(0) · ~va(t∗))Fa2+

[
~ξ · ~va(t∗)−~xa(t∗) · ~va(t∗)

]
Fa3

]
[ξi−xia(t∗)

]
− 4

G

c2

2∑
a=1

ma

r3
a

[
(~e(0) · ~va(t∗))c τ +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]]
τ li(0)

+ 2
G

c2

2∑
a=1

ma

{
Aa +

2

r3
a

[
(~e(0) · ~va(t∗))c τ +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]]
τ

}
via(t

∗)

+ 4
G

c2

2∑
a=1

ma

r3
a

[
(~e(0) · ~va(t∗))c τ +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]]
τvia(t

∗)

52



5.3 Light deflection and the motion of the masses

+ 12
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))
[
(~e(0) · ~va(t∗))Fa2+

[
~ξ · ~va(t∗)−~xa(t∗) · ~va(t∗)

]
Fa3

][
ξi−xia(t∗)

]
− G

c3

2∑
a=1

ma

[
15(~e(0) · ~va(t∗))2Ga2 + 30(~e(0) · ~va(t∗))

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Ga3

+ 15
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2
Ga4 − 3v2

a(t
∗)Fa2

][
ξi − xia(t

∗)
]

− 6
G

c3

2∑
a=1

ma

[
(~e(0) · ~va(t∗))Fa1 +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Fa2

]
li(0)

+ 6
G

c3

2∑
a=1

ma

[
(~e(0) · ~va(t∗))Fa1 +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
Fa2

]
via(t

∗)

− 4
G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))

{
Aa+

1

r3
a

[
(~e(0) ·~va(t∗))cτ+

[
~ξ ·~va(t∗)−~xa(t∗)·~va(t∗)

]]
τ

}
via(t

∗),

(5.17)

where the functions Aa, Fa1, Fa2, Fa3 are given in Section 5.1 by equations (5.5)–(5.10).

The functions Ga2, Ga3 and Ga4 are defined by

Ga2 =
1

15 r5
aR

3
a

{[
3 r8

a(0, t
∗) ra − 8 (~e(0) · ~xa(t∗)) r8

a(0, t
∗)

+ 6 (~e(0) · ~xa(t∗))2 r6
a(0, t

∗) ra − (~e(0) · ~xa(t∗))4 r4
a(0, t

∗) ra

]
−
[
12 (~e(0) · ~xa(t∗)) r6

a(0, t
∗) ra − 40 (~e(0) · ~xa(t∗))2 r6

a(0, t
∗)

+ 24 (~e(0) · ~xa(t∗))3 r4
a(0, t

∗) ra − 4 (~e(0) · ~xa(t∗))5 r2
a(0, t

∗) ra

]
c τ

−
[
− 6 r6

a(0, t
∗) ra + 20 (~e(0) · ~xa(t∗)) r6

a(0, t
∗)− 24 (~e(0) · ~xa(t∗))2 r4

a(0, t
∗) ra

+ 60 (~e(0) · ~xa(t∗))3 r4
a(0, t

∗)− 22 (~e(0) · ~xa(t∗))4 r2
a(0, t

∗) ra + 4 (~e(0) · ~xa(t∗))6 ra

]
c2τ 2

−
[
12 (~e(0) · ~xa(t∗)) r4

a(0, t
∗) ra − 60 (~e(0) · ~xa(t∗))2 r4

a(0, t
∗)

+ 24 (~e(0) · ~xa(t∗))3 r2
a(0, t

∗) ra − 20 (~e(0) · ~xa(t∗))4 r2
a(0, t

∗)− 4 (~e(0) · ~xa(t∗))5 ra

]
c3τ 3

−
[
− 3 r4

a(0, t
∗) ra + 15 (~e(0) · ~xa(t∗)) r4

a(0, t
∗)− 6 (~e(0) · ~xa(t∗))2 r2

a(0, t
∗) ra

+ 30 (~e(0) · ~xa(t∗))3 r2
a(0, t

∗) + (~e(0) · ~xa(t∗))4 ra − 5 (~e(0) · ~xa(t∗))5

]
c4τ 4
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−
[
− 3 r4

a(0, t
∗)− 6 (~e(0) · ~xa(t∗))2 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))4

]
c5τ 5

}
, (5.18)

Ga3 =
1

15 r5
aR

3
a

{
− 2 r4

a(0, t
∗)

[
r4
a(0, t

∗)− (~e(0) · ~xa(t∗))3 ra

+ 3 (~e(0) · ~xa(t∗)) r2
a(0, t

∗)
[
− ra + (~e(0) · ~xa(t∗))

]]
+ 2 (~e(0) · ~xa(t∗)) r2

a(0, t
∗)

[
5 r4

a(0, t
∗)− 4 (~e(0) · ~xa(t∗))3 ra

+ 3 (~e(0) · ~xa(t∗)) r2
a(0, t

∗)
[
− 4 ra + 5 (~e(0) · ~xa(t∗))

]]
c τ

−
[
5 r6

a(0, t
∗)− 8 (~e(0) · ~xa(t∗))5 ra + 6 (~e(0) · ~xa(t∗)) r4

a(0, t
∗)
[
− 2 ra

+ 5 (~e(0) · ~xa(t∗))
]

+ (~e(0) · ~xa(t∗))3 r6
a(0, t

∗)
[
− 28 ra + 45 (~e(0) · ~xa(t∗))

]]
c2τ 2

+ (~e(0) · ~xa(t∗))
[
3 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))2

] [
5 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))

[
− 8 ra

+ 15 (~e(0) · ~xa(t∗))
]]
c3τ 3

− (~e(0) · ~xa(t∗))
[
− ra + 5 (~e(0) · ~xa(t∗))

] [
3 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))2

]
c4τ 4

+ 2 (~e(0) · ~xa(t∗))
[
3 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))2

]
c5τ 5

}
, (5.19)

Ga4 =
1

15 r5
aR

3
a

{
2 r4

a(0, t
∗)

[
r2
a(0, t

∗)
[
ra − 3 (~e(0) · ~xa(t∗))

]
+ (~e(0) · ~xa(t∗))2

[
3 ra

− (~e(0) · ~xa(t∗))
]]

+ 2 (~e(0) · ~xa(t∗)) r2
a(0, t

∗)

[
(~e(0) · ~xa(t∗))2

[
− 12 ra + 5 (~e(0) · ~xa(t∗))

]
+ r2

a(0, t
∗)
[
− 4 ra + 15 (~e(0) · ~xa(t∗))

]]
c τ

+

[
r2
a(0, t

∗) + 3 (~e(0) · ~xa(t∗))2

] [
r2
a(0, t

∗)
[
4 ra − 15 (~e(0) · ~xa(t∗))

]
+ (~e(0) · ~xa(t∗))2

[
8 ra − 5 (~e(0) · ~xa(t∗))

]]
c2τ 2
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+

[
r2
a(0, t

∗) + 3 (~e(0) · ~xa(t∗))2

][
5 r2

a(0, t
∗) + (~e(0) · ~xa(t∗))

[
− 8 ra

+ 15 (~e(0) · ~xa(t∗))
]]
c3τ 3

+ 2

[
ra − 5 (~e(0) · ~xa(t∗))

] [
r2
a(0, t

∗) + 3 (~e(0) · ~xa(t∗))2

]
c4τ 4

+ 2

[
r2
a(0, t

∗) + 3 (~e(0) · ~xa(t∗))2

]
c5τ 5

}
. (5.20)

After introducing the perturbation δli(1)II(τ) into (2.41) and computing the limit for

τ →∞, we obtain

αi(1)II = lim
τ→∞

[1
c
P i
qδl

q
(1)II(τ)

]
= −4

G

c3

2∑
a=1

ma

Ra

(~e(0) · ~va(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

− 8
G

c3

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))
[
(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗)) + ~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]

×
[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c3

2∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))P i
qv

q
a(t

∗)

+ 2
G

c4

2∑
a=1

ma

Ra

v2
a(t

∗)
[
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c4

2∑
a=1

ma

R2
a

v2
a(t

∗)(~e(0) · ~xa(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

+ 2
G

c4

2∑
a=1

ma

Ra

(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 8
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 16
G

c4

2∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))4(~e(0) · ~va(t∗))2
[
ξi − P i

qx
q
a(t

∗)
]

− 8
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

− 32
G

c4

2∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))3(~e(0) · ~va(t∗))
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
][
ξi − P i

qx
q
a(t

∗)
]
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− 4
G

c4

2∑
a=1

ma

R2
a

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2[

ξi − P i
qx

q
a(t

∗)
]

− 16
G

c4

2∑
a=1

ma

R3
a

(~e(0) · ~xa(t∗))2
[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]2[

ξi − P i
qx

q
a(t

∗)
]

+ 4
G

c4

2∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))P i
qv

q
a(t

∗)

+ 8
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2

{[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]

+ (~e(0) · ~xa(t∗))(~e(0) · ~va(t∗))

}
P i
qv

q
a(t

∗)

+ 4
G

c4

2∑
a=1

ma

Ra

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
P i
qv

q
a(t

∗), (5.21)

where the quantity Ra is defined by (5.12).

5.3.2 The post-linear light deflection and the motion of the masses

The correction terms to the post-linear light deflection to the order G2/c4 resulting from

the Taylor expansion of (5.1) are given by

αi(2)III = −3
G

c

2∑
a=1

ma

∫ ∞

−∞
dτ

τ 2

r5
a

[
cτ(~e(0) ·~aa(t∗))+~ξ · ~aa(t∗)−~xa(t∗) · ~aa(t∗)

][
ξi−P i

qx
q
a(t

∗)
]

+
G

c

2∑
a=1

ma

∫ ∞

−∞
dτ

τ 2

r3
a

P i
qa

q
a(t

∗)

+ 4
G

c2

2∑
a=1

ma

∫ ∞

−∞
dτ

τ

r3
a

(~e(0) ·~aa(t∗))
[
ξi−P i

qx
q
a(t

∗)
]
. (5.22)

In the preceding equation the second integral diverges. Therefore we resort to a Taylor

expansion of its integrand about the origin of the coordinate system ~xa = 0 up to second

order. Then only the first term of the Taylor expansion is a divergent integral and it is

given by

G

c

2∑
a=1

ma

∫ ∞

−∞
dττ 2 1[

c2τ 2 + ξ2
]3/2P i

qa
q
a(t

∗).

Because in this case we do not need to take into account the 1PN-corrections in the

positions of the masses we can assume that the origin of the coordinate system, which is

located at the 1PN-centre of mass, coincides with the position of the Newtonian centre
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of mass. Taking into account the consequence of the Newtonian centre of mass theorem

2∑
a=1

ma~aa = 0,

it is easy to see that the divergent integral vanishes. After performing the integration

with respect to the parameter τ we find:

αi(2)III = 2
G

c4

2∑
a=1

ma

Ra

(~e(0) ·~xa(t∗))(~e(0) · ~aa(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))3(~e(0) · ~aa(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

− 2
G

c4

2∑
a=1

ma

Ra

[
~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma

R2
a

(~e(0) · ~xa(t∗))2
[
~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

+
G

c4

2∑
a=1

ma

{
2
~ξ · ~xa(t∗)

ξ2
− x2

a(t
∗)

ξ2
+ 3

(~e(0) · ~xa(t∗))2

ξ2
+ 2

(~ξ · ~xa(t∗))2

ξ4

}
P i
qa

q
a(t

∗),

(5.23)

where the quantity Ra is defined by (5.12). Note that in (5.22) two of the three integrals

were exactly integrated, so that the resulting expression (5.23) is a combination of exact

terms with a term which is represented as an expansion in powers of xa(t
∗)/ξ. In view

of further applications and for the sake of uniformity we perform the Taylor expansion

of the exact terms about the origin of the coordinate system ~xa = 0 up to second order

and obtain

αi(2)III = 2
G

c4

2∑
a=1

ma(~e(0) ·~xa(t∗))(~e(0) ·~aa(t∗))

{
1

ξ2
+2

(~ξ ·~xa(t∗))
ξ4

−x
2
a(t

∗)

ξ4
+

(~e(0) ·~xa(t∗))2

ξ4

+ 4
(~ξ ·~xa(t∗))2

ξ6

}[
ξi−P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma(~e(0) ·~xa(t∗))3(~e(0) ·~aa(t∗))

{
1

ξ4
+4

~ξ ·~xa(t∗)
ξ6

−2
x2
a(t

∗)

ξ6
+2

(~e(0) ·~xa(t∗))2

ξ6

+12
(~ξ ·~xa(t∗))2

ξ8

}[
ξi−P i

qx
q
a(t

∗)
]
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− 2
G

c4

2∑
a=1

ma

[
~ξ · ~aa(t∗)−~xa(t∗) · ~aa(t∗)

]{ 1

ξ2
+2

(~ξ ·~xa(t∗))
ξ4

−x
2
a(t

∗)

ξ4
+

(~e(0) ·~xa(t∗))2

ξ4

+ 4
(~ξ ·~xa(t∗))2

ξ6

}[
ξi−P i

qx
q
a(t

∗)
]

− 4
G

c4

2∑
a=1

ma(~e(0) · ~xa(t∗))2
[
~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗)
]{ 1

ξ4
+ 4

~ξ · ~xa(t∗)
ξ6

− 2
x2
a(t

∗)

ξ6

+ 2
(~e(0) · ~xa(t∗))2

ξ6
+ 12

(~ξ · ~xa(t∗))2

ξ8

}[
ξi−P i

qx
q
a(t

∗)
]

+
G

c4

2∑
a=1

ma

{
2
~ξ · ~xa(t∗)

ξ2
− x2

a(t
∗)

ξ2
+ 3

(~e(0) · ~xa(t∗))2

ξ2
+ 2

(~ξ · ~xa(t∗))2

ξ4

}
P i
qa

q
a(t

∗). (5.24)

To replace the accelerations in the preceding equation by functions of the positions we

shall use the Newtonian equations of motion. After replacing the accelerations in (5.24)

and expressing the positions of the masses by their centre-of-mass-frame coordinates

without considering the 1PN-corrections we find,

αi(2)III =
G2m1m2

c4r2
12

{
2 (~eξ · ~n12)− 2X2

[
1− 2 (~eξ · ~n12)

2 − 3 (~e(0) · ~n12)
2

](
r12
ξ

)
− 6X2

2 (~eξ · ~n12)

[
1− 4

3
(~eξ · ~n12)

2 − 3 (~e(0) · ~n12)
2

](
r12
ξ

)2

+ 2X3
2

[
1− 4 (~eξ · ~n12)

2 − 3 (~e(0) · ~n12)
2

](
r12
ξ

)3

+O
[(

r12
ξ

)4]}
eiξ

− G2m1m2

c4r2
12

{
2X2(~eξ ·~n12)

(
r12
ξ

)
− 2X2

2

[
1− 2(~eξ ·~n12)

2 − 3(~e(0) ·~n12)
2

](
r12
ξ

)2

− 6X3
2 (~eξ · ~n12)

[
1− 4

3
(~eξ · ~n12)

2 − 3 (~e(0) · ~n12)
2

](
r12
ξ

)3

+ 2X3
2

[
1− 4 (~eξ · ~n12)

2 − 3 (~e(0) · ~n12)
2

](
r12
ξ

)4

+O
[(

r12
ξ

)5]}
P i
qn

q
12

+
G2m1m2

c4r2
12

{
− 2X2 (~eξ · ~n12)

(
r12
ξ

)
+X2

2

[
1− 2 (~eξ · ~n12)

2

− 3 (~e(0) · ~n12)
2

](
r12

ξ

)2

+ 2X3
2 (~eξ · ~n12)

[
1− 4

3
(~eξ · ~n12)

2

− 3 (~e(0) · ~n12)
2

](
r12

ξ

)3

+O
[(

r12
ξ

)4]}
P i
qn

q
12
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− 8
G2m1m2

c4r2
12

X2(~e(0) · ~n12)
2

{(
r12

ξ

)
+ 2X2 (~eξ · ~n12)

(
r12
ξ

)2

+O
[(

r12
ξ

)3]}
eiξ

+ 8
G2m1m2

c4r2
12

X2
2 (~e(0) · ~n12)

2

{(
r12
ξ

)2

+ 2X2 (~eξ · ~n12)

(
r12
ξ

)3

+O
[(

r12

ξ

)4]}
P i
qn

q
12 + (1 ↔ 2), (5.25)

where the quantities ~n12, ~v12 and r12 are taken at the time t∗.

5.4 The post-linear light deflection and the perturbed light ray

trajectory

If we introduce into the equations for the linear perturbations δli(1)I(τ) and δli(1)II(τ)

the expression for the perturbed light ray trajectory, we get additional post-linear light

deflection terms. To compute these terms, we first have to find the expression for the

perturbation of the photon’s trajectory that is linear in G. This perturbation is obtained

by integrating the expression for the total linear perturbation (5.35) with respect to the

parameter τ . Considering that in this work we compute the post-linear light deflection to

the order G2/c4, we do not need to retain in the expression resulting from the integration

of (5.35) the terms of the order G/c4, since these terms are related to the post-linear

light deflection terms of higher order than G2/c4. After performing the integration of

(5.35) with respect to τ and retaining only terms of the order G/c2 and G/c3 we obtain

δzi(1)(τ) = −2
G

c2

2∑
a=1

maBa
[
ξi − xia(t

∗)
]
− 2

G

c3

2∑
a=1

ma(~e(0) · ~xa(t∗))Bali(0)

− 2
G

c3

2∑
a=1

ma ln

[
cτ − ~e(0) · ~xa(t∗) + ra
ra(0, t∗)− ~e(0) · ~xa(t∗)

]
li(0) + 4

G

c3

2∑
a=1

ma(~e(0) · ~va(t∗))Ba
[
ξi − xia(t

∗)
]

+ 2
G

c3

2∑
a=1

ma(~e(0) · ~xa(t∗))Bavia(t∗) + 2
G

c3

2∑
a=1

ma ln

[
cτ − ~e(0) · ~xa(t∗) + ra
ra(0, t∗)− ~e(0) · ~xa(t∗)

]
via(t

∗)

− 6
G

c3

2∑
a=1

ma

[
(~e(0) · ~va(t∗))Fa2 + (~ra(0, t

∗) · ~va(t∗))Fa3
][
ξi − xia(t

∗)
]
+O

(
G

c4

)
,

(5.26)

where the functions Ba, Fa2 and Fa3 are given by
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Ba =
1

Ra

[
cτ + ra

]
,

Fa2 =
1

3raR3
a

{
(~e(0) · ~xa(t∗))2

[
3r4

a(0, t
∗) + r2

aRa + (~e(0) · ~xa(t∗))2r2
a(0, t

∗)
]

+ r2
a(0, t

∗)
[
r4
a(0, t

∗) + r2
aRa − 5(~e(0) · ~xa(t∗))2r2

a(0, t
∗)
]

+
[
− 2(~e(0) · ~xa(t∗))r4

a(0, t
∗)

+
(
r2
a(0, t

∗)+(~e(0) ·~xa(t∗))2
)
raRa+2(~e(0) ·~xa(t∗))3

(
2r2

a(0, t
∗)− (~e(0) · ~xa(t∗))2

)]
cτ

}
,

Fa3 =
1

3raR2
a

{
2(~e(0) · ~xa(t∗))r2

a(0, t
∗)−

[
Ra − 2(~e(0) · ~xa(t∗))ra + 4(~e(0) · ~xa(t∗))2

]
cτ

+ 2(~e(0) · ~xa(t∗))c2τ 2

}
.

(5.27)

As our integration constant we have chosen in (5.26)

Ki = 2
G

c3

2∑
a=1

ma ln

[
2
(
ra(0, t

∗)− ~e(0) · ~xa(t∗)
)]
li(0)

− 2
G

c3

2∑
a=1

ma ln

[
2
(
ra(0, t

∗)− ~e(0) · ~xa(t∗)
)]
via(t

∗)

+O
(
G

c4

)
,

because with this integration constant we recover from our expression for the post-linear

light deflection the correct expression for the post-linear light deflection in the event that

the value of one of the masses is equal to zero (i.e. the Epstein-Shapiro post-linear light

deflection).

It follows from (5.2) that the expression for the linear light deflection for an observer

located at infinity reads

αi(1) = lim
τ→∞

{
1

c
P i
q

[
δlq(1)I(τ) + δlq(1)II(τ)

]}
, (5.28)

where the perturbations δlq(1)I(τ) and δlq(1)II(τ) are given by (5.3) and (5.16).

Upon inserting the perturbation δ~z(1) into the equations for δlq(1)I(τ) and δlq(1)II(τ), we get

a perturbed linear light deflection. Because the perturbation δ~z(1) is a small quantity

compared to ~z(τ)unpert., we can resort to a Taylor expansion of the perturbed linear

light deflection about δ~z(1) = 0 in order to get the terms of the perturbed linear light
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deflection that are quadratic in G. We denote these terms by αi(2)IV and they are given

by

αi(2)IV = lim
τ→∞

{
1

c
P i
q

[(
∂δl

q(Pert.)
(1)I

∂δzm(1)

)
δ~z(1)=0

δzm(1) +

(
∂δl

q(Pert.)
(1)II

∂δzm(1)

)
δ~z(1)=0

δzm(1)

]}

=
G

c

2∑
a=1

ma

∫ ∞

−∞
dτ

{[
6

r5
a

(~ra · δ~z(1))− 6
[ 1

r5
a

(~va(t
∗) · δ~z(1))

− 5

r7
a

(~ra · ~va(t∗))(~ra · δ~z(1))
]
τ − 15

[ 2

r7
a

(~ra · ~va(t∗))(~va(t∗) · δ~z(1))

+
1

r7
a

v2
a(t

∗)(~ra · δ~z(1))−
7

r9
a

(~ra · ~va(t∗))2(~ra · δ~z(1))
]
τ 2

]
P i
qr
q
a

−
[

2

r3
a

+
6

r5
a

(~ra · ~va(t∗))τ − 3
[ 1

r5
a

v2
a(t

∗)− 5

r7
a

(~ra · ~va(t∗))2
]
τ 2

]
P i
qδz

q
(1)

−
[

6

r5
a

(~ra · δ~z(1))τ − 3
[ 2

r5
a

(~va · δ~z(1))−
10

r7
a

(~ra · ~va(t∗))(~ra · δ~z(1))
]
τ 2

]
P i
qv

q
a(t

∗)

}
|(→)

+
G

c2

2∑
a=1

ma(~e(0) · ~va(t∗))
∫ ∞

−∞
dτ

{
− 6

[
2

r5
a

(~ra · δ~z(1))− 2
[ 1

r5
a

(~va(t
∗) · δ~z(1))

− 5

r7
a

(~ra · ~va(t∗))(~ra · δ~z(1))
]
τ − 5

[ 1

r7
a

v2
a(t

∗)(~ra · δ~z(1)) +
2

r7
a

(~ra · ~va(t∗))(~va(t∗) · δ~z(1))

− 7

r9
a

(~ra · ~va(t∗))2(~ra · δ~z(1))
]
τ 2

]
P i
qr
q
a + 2

[
2

r3
a

+
6

r5
a

(~ra · ~va(t∗))τ

− 3
[ 1

r5
a

v2
a(t

∗)− 5

r7
a

(~ra · ~va(t∗))2
]
τ 2

]
P i
qδz

q
(1) + 12

[
1

r5
a

(~ra · δ~z(1))τ

−
[ 1

r5
a

(~va(t
∗) · δ~z(1))−

5

r7
a

(~ra · ~va(t∗))(~ra · δ~z(1))
]
τ 2

]
P i
qv

q
a(t

∗)

}
|(→)

+
G

c3

{
...
}
.

(5.29)

In the equation above we need not write out the expression G/c3
{
...
}

explicitly since it

contributes only terms of order greater than G2/c4. After substituting the perturbation

(5.26) into the preceding equation, we obtain the integrals for the post-linear light

deflection αi(2)IV. Here, we take into account only the integrals of the order G2/c4.

These integrals are given in an explicit form in Appendix E.

5.5 Light deflection and the centre of mass

In this section we compute the corrections to the linear and the post-linear light de-

flection resulting from the introduction of the 1PN-corrections to the positions of the
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masses in the equations for the linear perturbations δlq(1)I(τ) and δlq(1)II(τ) given by (5.3)

and (5.16). It follows from equations (4.64) and (4.65) that the 1PN-corrections in the

positions are

δ~x1 = δ~x2 =
1

c2

[
ν(m1 −m2)

2M

[
v2

12 −
GM

r12

]]
~r12. (5.30)

From (5.30), it is easy to see that the corrections vanish when m1 = m2. The correc-

tions also vanish for the case of circular orbits. After introducing the 1PN-corrections

into the equations for the linear perturbations δlq(1)I(τ) and δlq(1)II(τ), we obtain the ex-

pression for the perturbed linear light deflection. Because the corrections δ~xa are small

quantities compared to ~xa, we can resort to a Taylor expansion of the perturbed linear

light deflection about δ~xa = 0 in order to find the correction terms for the linear and

post-linear light deflection. We denote these terms by α̃i(1)(2) and they are given by

α̃i(1)(2) = lim
τ→∞

{
1

c
P i
q

[(
∂δl

q(Pert.)
(1)I

∂δxma

)
δ~xa=0
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∂δl
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∂δxma

)
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]}

=
G

c

2∑
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ma

∫ ∞
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dτ

{[
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r5
a
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[ 1
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a
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− 5

r7
a
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]
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r7
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+
1

r7
a

v2
a(t
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7

r9
a
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]
τ 2

]
P i
qr
q
a

+

[
2

r3
a

+
6

r5
a

(~ra · ~va(t∗))τ − 3
[ 1

r5
a

v2
a(t

∗)− 5

r7
a

(~ra · ~va(t∗))2
]
τ 2

]
P i
qδx

q
a

+

[
6

r5
a

(~ra · δ~xa)τ − 3
[ 2

r5
a

(~va · δ~xa)−
10

r7
a

(~ra · ~va(t∗))(~ra · δ~xa)
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]
P i
qv

q
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}
|(→)

+
G

c2

2∑
a=1
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∫ ∞

−∞
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{
6

[
2

r5
a
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[ 1

r5
a

(~va(t
∗) · δ~xa)

− 5

r7
a

(~ra · ~va(t∗))(~ra · δ~xa)
]
τ − 5

[ 1

r7
a

v2
a(t

∗)(~ra · δ~xa) +
2

r7
a

(~ra · ~va(t∗))(~va(t∗) · δ~xa)

− 7

r9
a

(~ra · ~va(t∗))2(~ra · δ~xa)
]
τ 2

]
P i
qr
q
a − 2

[
2

r3
a

+
6

r5
a
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r5
a
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a(t

∗)− 5

r7
a
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]
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P i
qδx

q
a − 12

[
1

r5
a

(~ra · δ~xa)τ

−
[ 1

r5
a

(~va(t
∗) · δ~xa)−

5

r7
a

(~ra · ~va(t∗))(~ra · δ~xa)
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τ 2
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P i
qv

q
a(t

∗)

}
|(→)

+
G

c3

{
...
}
. (5.31)

62



5.5 Light deflection and the centre of mass

For the same reason as in equation (5.29), we do not need to write out the expression

G/c3
{
...
}

explicitly in (5.31). After substituting the 1PN-corrections (5.30) into the

equation above and taking into account only the terms of the orders G/c4 and G2/c4 we

find,

α̃i(1)(2) = −6
G

c3

2∑
a=2

ma

[
ν(m1 −m2)

2M

[
v2

12(t
∗)− GM

r12(t∗)

]]
∫ ∞

−∞
dτ

1

r5
a

[
c τ~e(0) · ~r12(t

∗)− ~xa · ~r12(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

+ 2
G

c3

2∑
a=2

ma

[
ν(m1 −m2)

2M

[
v2

12(t
∗)− GM

r12(t∗)

]] ∫ ∞

−∞
dτ

1

r3
a

P i
qr
q
12(t

∗) + (1 ↔ 2).

(5.32)

Here, we have already replaced the photon trajectory by its unperturbed approximation

~z(τ)unpert. = τ ~l(0) + ~ξ.

After performing the integration we obtain,

α̃i(1)(2) = 8
G

c4

[
ν(m1 −m2)

2M

[
v2

12(t
∗)− GM

r12(t∗)

]] 2∑
a=1

ma

R2
a

[
(~xa(t

∗) · ~r12(t∗))

− (~e(0) · ~xa(t∗)) (~e(0) · ~r12(t∗))
][
ξi − P i

qx
q
a(t

∗)
]

+ 4
G

c4

[
ν(m1 −m2)

2M

[
v2

12(t
∗)− GM

r12(t∗)

]] 2∑
a=1

ma

Ra

P i
qr
q
12(t

∗), (5.33)

where the quantity Ra is defined by (5.12). Finally, considering further applications we

express the positions of the masses by their centre of mass coordinates and expand the

preceding expression about the origin of the coordinate system to the second order in

r12/c to obtain,

α̃i(1)(2) = 8X2
G

c4
m1

[
ν(m1−m2)

2M

[
v2

12−
GM

r12

]]{[
1−(~e(0) ·~n12)

2

](
r12
ξ

)2

+O
[(

r12
ξ

)3]}
ei

ξ

+ 4
G

c4
m1

[
ν(m1−m2)

2M

[
v2

12−
GM

r12

]]{(r12
ξ

)
+ 2X2(~eξ · ~n12)

(
r12
ξ

)2

+O
[(

r12

ξ

)3]}
1

ξ
P i
qn

q
12 + (1 ↔ 2). (5.34)

As in the preceding section, the quantities ~n12, ~v12 and r12 are taken at the time t∗.
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5.6 The total linear perturbation and the linear light deflection in

the gravitational field of two bounded masses

To obtain the total linear perturbation δli(1)(τ), we have to sum up the expressions for

the linear perturbations δli(1)I(τ) and δli(1)II(τ) given by equations (5.4) and (5.17). The

resulting expression is

δli(1)(τ) = −2
G

c

2∑
a=1

maBa

[
ξi − xia(t

∗)
]

− G

c2

2∑
a=1

ma

{
2Aa +

4

ra
+

4

r3
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[
(~e(0) · ~va(t∗))c τ 2 +

[
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]
τ

]}
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+
G
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{
4(~e(0) · ~va(t∗))Ba − 6(~e(0) · ~va(t∗))Fa2 − 6
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]
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}
×
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]

+ 2
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2

ra
+

2

r3
a

[
(~e(0) · ~va(t∗))c τ 2 +

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
]
τ

]}
via(t

∗)

+
G

c3

2∑
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ma

{
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[
Aa +

1
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]
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[
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+
[
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]}
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+
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ma

{
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[
15Fa2 − 2Ba − 15Ga2

]
+ (~e(0) · ~va(t∗))

[
~ξ · ~va(t∗)− ~xa(t

∗) · ~va(t∗)
][

18Fa3 − 30Ga3

]
+
[
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]2[
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∗)
[
3Fa2 − 2Ba
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{
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4
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r3
a
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+O
(
G

c4

)
. (5.35)

In the expression above we need only retain the terms of the order G/c2 and G/c3, since

the terms of the order G/c4 are related to linear and post-linear light deflection terms
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of order higher than the terms which we compute in this work. After introducing the

perturbation δli(1)(τ) into (2.41) and computing the limit for τ →∞, we find

αi(1) = lim
τ→∞
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where Ra is defined by (5.12).
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5.6.1 Comparison of αi
(1) with the angle of light deflection obtained by Kopeikin

and Schäfer

It is easy to see that the sum of the expression above with equations (5.23) and (F.4) is

equal to (3.46) for the case N = 2. In Chapter 3 it was shown that (3.46) follows from

the expression for the light deflection computed by Kopeikin and Schäfer in [7] in the

event that the velocities of the masses are small with respect to the velocity of light and

the retarded times are close to the time of closest approach of the unperturbed light

ray to the origin of the coordinate system. Note, that to obtain the term in P i
aa

q
a(t

∗)

of (3.46), it is better to sum up the corresponding terms in equations (5.22) and (F.3)

before performing the integration in order to remove the formal divergences. After

summing up and performing the integration of these terms we get:
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where the first term on the last line vanishes as consequence of the Newtonian centre of

mass theorem.

5.6.2 The linear light deflection in terms of the centre-of-mass-frame coordinates

Considering that the expression for the post-linear light deflection computed in this work

is given in terms of the centre-of-mass-frame coordinates and as an expansion in powers

of r12/ξ, we must perform the expansion of the expression above about the origin of

the coordinate system ~xa = 0 and express the positions of the masses in terms of their

centre of mass coordinates. After expressing the positions of the masses by their centre-

of-mass-frame coordinates without considering the 1PN-corrections and expanding the

expression (5.36) about the origin of the coordinate system to the third order in r12/ξ

we finally obtain,

αi(1) =
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c2 ξ

{[
− 4 + 4X2
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c
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2
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12
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]
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where the quantities ~n12, ~v12 and r12 are taken at the time t∗. Notice that in (5.38) we

chose the order of the expansion in an arbitrary manner in order to show the structure

of the terms belonging to the linear light deflection. In concrete applications we have to

choose the order of the expansion of the linear light deflection in accordance with the

accuracy reached by the post-linear light deflection.

As we pointed out in Section 5.1, the total linear light deflection is obtained by adding

to (5.38) the correction terms arising from the part of α̃i(1)(2) (i.e. of (5.34)) that is linear

in G.

5.7 The post-linear light deflection

The final expression for the post-linear light deflection in the gravitational field of two

bounded masses is obtained by summing up the parts of the light deflection, which are

given in the preceding sections and in Appendices A to C. The final expression for the

angle of light deflection quadratic in G to the first order in r12/ξ, in which the positions

of the masses are expressed in the centre-of-mass-frame coordinates, is given by
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where αi(2)V is the part of α̃i(1)(2) (i.e. of (5.34)), that is quadratic in G. Here, it should

be pointed out that some terms which belong to the post-linear light deflection (5.39)

(e.g. the term 4G
2m1m2

c4ξr12
eiξ) are related to terms in v2

12 of the linear light deflection (5.38)

through the virial theorem. In Section 6.2, we shall group these terms together before

computing the limit r12 → 0 in equations (5.38) and (5.39) in order to remove the formal

divergences. As in the case of the linear light deflection, the order of the expansion in

(5.39) was chosen in an arbitrary manner in order to show the structure of the terms

belonging to the post-linear light deflection. In concrete applications the order of the

expansion of the post-linear light deflection is to be chosen in accordance with the

accuracy reached by the linear light deflection.
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6 Results

In this chapter we shall apply the formulae for the linear and post-linear light deflection

given in Sections 5.6 and 5.7 to some special cases in order to study the important

features of the derived results.

6.1 The value of one of the two masses is equal to zero

If in equations (5.38) and (5.39) we put the value of one of the masses equal to zero

(e.g. m1 = M , m2 = 0), we obtain expressions for the light deflection angle for a static

point-like mass,

αi(1)(E) = −4
GMADM

c2 ξ
eiξ, (6.1)

αi(2)(E−S) = −15

4
π
G2M2

ADM

c4 ξ2
eiξ, (6.2)

where in this case the ADM mass MADM is equal to the mass M . The deflection angle

linear in G is the well known “Einstein angle” (see [1]). The light deflection angle (6.2)

is the post-post-Newtonian light deflection for a point-like mass, which was obtained

for the first time by Epstein and Shapiro and by other authors in 1980 and 1982 (see

[28, 29, 30, 31]).

6.2 The light deflection when r12 → 0

In this subsection we are going to compute the limit of the expression for the linear and

post-linear angle of light deflection (equations (5.38) and (5.39)) in the event that the

distance r12 between the components of the binary goes towards zero (i.e. r12 → 0). As

we explained at the end of the preceding chapter, we have to group together the terms

of (5.34), (5.38) and (5.39) in an appropriate manner in order to remove the formal

divergences. By inspection, it is clear that the remaining terms in (5.34), (5.38) and
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(5.39) are given by
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After grouping together the terms that are related through the virial theorem in (6.3),

(6.4) and (6.5) we get
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After simplifying (6.6) and (6.7) we finally obtain
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6.3 Values of two masses equal and light ray orthogonal to orbital plane of binary

where

MADM = M +
1

2
µ
v2

12

c2
− Gm1m2

c2 r12
(6.10)

is the ADM mass of the system with µ = m1m2/M and M = m1 + m2. In equations

(6.3)–(6.8), the quantities ~n12, v12 and r12 are taken at the time t∗. Note that the second

term in (6.8) goes to zero when r12 → 0 since the expression in brackets remains finite.

At the end, we recover the Einstein-angle (i.e. equation (6.1)) with the ADM mass as

given by (6.10) as well as the Epstein-Shapiro angle (i.e. equation (6.2)).

6.3 The values of the two masses are equal and the light ray is

originally orthogonal to the orbital plane of the binary

In this case we choose M/2 for the value of the masses in equations (5.38) and (5.39)

and assume that the light ray is originally propagating orthogonal to the orbital plane

of the two bounded masses (i.e. ~e(0) ·~n12 = 0, ~e(0) ·~v12 = 0). After introducing the ADM

mass in the resulting expression for the angle of light deflection linear and quadratic in

G and rearranging the terms, we finally find
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4 − 7 (~eξ · ~n12)
6 + 9 (~eξ · ~n12)

8 − 4 (~eξ · ~n12)
10

](
r12
ξ

)10

+

[
− 1

1024
+

21

256
(~eξ · ~n12)

2 − 35

32
(~eξ · ~n12)

4 +
21

4
(~eξ · ~n12)

6

− 45

4
(~eξ · ~n12)

8 + 11 (~eξ · ~n12)
10 − 4 (~eξ · ~n12)

12

](
r12
ξ

)12

+O

[(
r12

ξ

)14
]}

eiξ
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+
GMADM

c2 ξ
(~eξ · ~n12)

{
2

(
r12
ξ

)2

+

[
− 1 + 2 (~eξ · ~n12)

2

](
r12
ξ

)4

+

[
3

8
− 2 (~eξ · ~n12)

2 + 2 (~eξ · ~n12)
4

](
r12
ξ

)6

+

[
− 1

8
+

5

4
(~eξ · ~n12)

2

− 3 (~eξ · ~n12)
4 + 2 (~eξ · ~n12)

6

](
r12
ξ

)8

+

[
5

128
− 5

8
(~eξ · ~n12)

2

+
21

8
(~eξ · ~n12)

4 − 4 (~eξ · ~n12)
6 + 2 (~eξ · ~n12)

8

](
r12
ξ

)10

+

[
− 3

256
+

35

128
(~eξ · ~n12)

2 − 7

4
(~eξ · ~n12)

4 +
9

2
(~eξ · ~n12)

6 − 5 (~eξ · ~n12)
8

+ 2 (~eξ · ~n12)
10

](
r12

ξ

)12

+O

[(
r12
ξ

)14
]}

P i
qn

q
12 (6.11)

and

αi(2)⊥ =
G2M2

ADM

c4 ξ2

{
− 15

4
π − 1

6

[
1− 7 (~eξ · ~n12)

2 + 6 (~eξ · ~n12)
4

](
r12
ξ

)

+
75

256
π

[
10− 31 (~eξ · ~n12)

2

](
r12
ξ

)2

+O

[(
r12
ξ

)3
]}

eiξ

+
G2M2

ADM

c4 ξ2
(~eξ · ~n12)

{
− 1

3

(
r12
ξ

)
+

465

128
π

(
r12
ξ

)2

+O

[(
r12
ξ

)3
]}

P i
qn

q
12

(6.12)

where in this case the ADM mass is given by

MADM = M

[
1 +

1

4

( v2
12

2c2
− GM

c2r12

)]
. (6.13)

The expression for the linear light deflection (6.11) was expanded to the order (r12/ξ)
12

in order to reach the accuracy of the post-linear light deflection (6.12). Note that an

expansion to the order (r12/ξ)
12 in the linear part of the light deflection which is of

the same accuracy as an expansion to the second order in r12/ξ in the post-linear part

implies that r12/ξ ∼ (GMADM/c
2ξ)1/10. In equations (6.11)–(6.13), the quantities ~n12,

v12 and r12 are taken at the time t∗. In this case, the correction arising from the shift

of the 1PN-centre of mass with respect to the Newtonian centre of mass (see (5.34))

vanishes.
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6.4 Values of two masses equal and light ray parallel to orbital plane of binary

6.4 The values of the two masses are equal and the light ray is

originally parallel to the orbital plane of the binary

Again, we choose the value of the masses equal to M/2 in equations (5.38) and (5.39)

and assume that the light ray is originally propagating parallel to the orbital plane of

the binary (i.e. ~eξ · ~n12 = 0). After introducing the ADM mass as given by (6.13) and

rearranging the terms, we finally find:

αi(1)‖ =
GMADM

c2 ξ

{
− 4 +

[
1− (~e(0) · ~n12)

2

](
r12
ξ

)2

+

[
− 1

4
+

1

2
(~e(0) · ~n12)

2

− 1

4
(~e(0) · ~n12)

4

](
r12

ξ

)4

+

[
1

16
− 3

16
(~e(0) · ~n12)

2 +
3

16
(~e(0) · ~n12)

4

− 1

16
(~e(0) · ~n12)

6

](
r12

ξ

)6

+

[
− 1

64
+

1

16
(~e(0) · ~n12)

2 − 3

32
(~e(0) · ~n12)

4

+
1

16
(~e(0) · ~n12)

6 − 1

64
(~e(0) · ~n12)

8

](
r12
ξ

)8

+

[
1

256
− 5

256
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2

+
5
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6 +
5

256
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8

− 1
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10

](
r12

ξ

)10

+
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1024
+

3

512
(~e(0) · ~n12)

2

− 15

1024
(~e(0) · ~n12)

4 +
5

256
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1024
(~e(0) · ~n12)

8

+
3

512
(~e(0) · ~n12)

10 − 1

1024
(~e(0) · ~n12)

12

](
r12
ξ

)12

+O

[(
r12
ξ

)14
]}

eiξ

+
GMADM

c3 ξ
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− (~e(0) · ~v12)

(
r12
ξ

)
+

[
1

4
(~e(0) · ~v12)

[
1 + (~e(0) · ~n12)

2
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2
(~n12 · ~v12) (~e(0) · ~n12)

](
r12
ξ

)3

+

[
− 1

16
(~e(0) · ~v12)

[
1 + 2 (~e(0) · ~n12)

2

− 3 (~e(0) · ~n12)
4
]

+
1

4
(~n12 · ~v12) (~e(0) · ~n12)

[
1− (~e(0) · ~n12)

2
]](r12

ξ

)5

+

[
1

64
(~e(0) · ~v12)

[
1 + 3 (~e(0) · ~n12)

2 − 9 (~e(0) · ~n12)
4 + 5 (~e(0) · ~n12)

6
]

− 3

32
(~n12 · ~v12) (~e(0) · ~n12)

[
1− 2 (~e(0) · ~n12)

2 + (~e(0) · ~n12)
4
]](r12

ξ

)7

+O

[(
r12

ξ

)9
]}

P i
qn

q
12
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+
GMADM

c3 ξ
(~e(0) · ~n12)

{
1

2

(
r12

ξ

)
− 1

8

[
1− (~e(0) · ~n12)

2

](
r12
ξ

)3

+
1

32

[
1− 2 (~e(0) · ~n12)

2 + (~e(0) · ~n12)
4

](
r12
ξ

)5

− 1

128

[
1− 3 (~e(0) · ~n12)

2 + 3 (~e(0) · ~n12)
4 − (~e(0) · ~n12)

6

](
r12
ξ

)7

+O

[(
r12
ξ

)9
]}

P i
qv

q
12

+
GMADM

c4 ξ
(~e(0) · ~n12)

2

{
1

4

[
v2

12 − (~e(0) · ~v12)
2

](
r12
ξ

)2

+O

[(
r12
ξ

)4
]}

eiξ (6.14)

and

αi(2)‖ =
G2M2

ADM

c4 ξ2

{
− 15

4
π − 1

24

[
4 + (~e(0) · ~n12)

2 + (~e(0) · ~n12)
4

](
r12
ξ

)

+
3

256
π

[
250− 797 (~e(0) · ~n12)

2

](
r12
ξ

)2

+O

[(
r12
ξ

)3
]}

eiξ

+
G2M2

ADM

c4 ξ2

{
4 (~e(0) · ~n12)

(
r12
ξ

)2

+O

[(
r12
ξ

)3
]}

P i
qn

q
12 (6.15)

where, the quantities ~n12, ~v12 and r12 are taken at the time t∗.

In (6.14) the components eiξ, P
i
qn

q
12 and P i

qv
q
12 of the linear light deflection were ex-

panded to the order (r12/ξ)
12, (r12/ξ)

7 and (r12/ξ)
7 respectively in order to reach the

accuracy of the post-linear light deflection (6.15). As in the preceding subsection here

the correction arising from the shift of the 1PN-centre of mass with respect to the

Newtonian centre of mass (see equation (5.34)) vanishes.

6.5 Light deflection in the post-linear gravitational field of the

double Pulsar PSR J0737-3039

Finally, we apply the formulae for the angle of light deflection (6.1)–(6.15) to the double

pulsar PSR J0737-3039. The parameters of the pulsar PSR J0737-3039 (e.g. see [32])

are given in Table 6.1.

We compute the angle of light deflection for the cases when the distance between the

two stars r12 is maximal and minimal. In our computations we assume that the masses

of the binary’s components are equal, i.e. that the mass ratio R is equal to 1. For the

impact parameter, we choose ξ = 5 r12. In order to compute the angle of light deflection

we have first to calculate r12 and v12. Note that we only use Newtonian relations, since
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6.5 Light deflection in post-linear field of double Pulsar PSR J0737-3039

Pulsar PSR J0737-3039A PSR J0737-3039B

Pulse Period P (ms) 22.69937855615(6) 2773.4607474(4)

Orbital period T (day) 0.102251563(1)

Eccentricity e 0.087779(5)

Total mass mA +mB (M�) 2.588(3)

Mass ratio R ≡ mA/mB 1.069(6)

Table 6.1: The parameters of PSR J0737-3039.

the uncertainties in observational data, although small, are nonetheless greater than the

corrections that post-Newtonian corrections would yield.

To compute r12 we have to calculate the semi-major axis of the elliptical orbit by

means of the following equation (because of the low accuracy of the observational data,

Newtonian relations are sufficient),

a =
3

√
G(m1 +m2)T 2

4π2
, (6.16)

where a denotes the semi-major axis and T the orbital period. The preceding equation

follows from Kepler’s third law (e.g. see [33]). The relationships between the distances

r12max, r12min and the semi-major axis a are given by,

r12max = a(1 + e), (6.17)

r12min = a(1− e). (6.18)

We obtain the corresponding velocities to r12max and r12min from equations

v12min = 8 π3

√
G(m1 +m2)

a

(1− e)

(1 + e)
, (6.19)

and

v12max = 8 π3

√
G(m1 +m2)

a

(1 + e)

(1− e)
(6.20)

respectively.

After introducing the parameters of PSR J0737-3039 into the preceding equations

and into the formulae for the light deflection given in this chapter, we find the results

presented in Table 6.2.

Table 6.2 shows the angles of light deflection computed by means of formulae (6.12)

and (6.15) corresponding to the Epstein-Shapiro angles of αi(E−S) = −1.55·10−6 eiξ arcsec
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6 Results

r12max = 9.56 · 1010 cm r12min = 8.02 · 1010 cm

v12min = 5.72 · 107 cm/s v12max = 6.83 · 107 cm/s

ξ = 5 r12max ξ = 5 r12min

αi(1)(E) −0.659 eiξ −0.785 eiξ

αi(2)(E−S) −1.55 · 10−6 eiξ −2.20 · 10−6 eiξ

αi(1)⊥ −0.679 eiξ + 0.013P i
qn

q
12 −0.809 eiξ + 0.016P i

qn
q
12

αi(2)⊥ −1.65 · 10−6 eiξ + 5 · 10−8 P i
qn

q
12 −2.35 · 10−6 eiξ + 7 · 10−8 P i

qn
q
12

αi(1)‖ −0.659 eiξ −0.785 eiξ

αi(2)‖ −1.66 · 10−6 eiξ + 2 · 10−8 P i
qn

q
12 −2.36 · 10−6 eiξ + 3 · 10−8 P i

qn
q
12

Table 6.2: The angles of light deflection linear and quadratic in G are given in arcsec.

We denote by αi(1)(E) and αi(2)(E−S) the Einstein angle and the Epstein-Shapiro

angle. For the light ray originally orthogonal to the orbital plane we assume

that ~eξ · ~n12 = 1. For the light ray originally parallel to the orbital plane we

assume that ~e(0) · ~n12 = 1.

and αi(E−S) = −2.20 · 10−6 eiξ arcsec. If we define the corrections to the Epstein-Shapiro

angle that we calculated in this paper by δαi(2)⊥,‖ = αi(2)⊥,‖ − αi(E−S), we find:

1. light ray originally orthogonal to the orbital plane

δαi(2)⊥ = (−1.0 · 10−7 eiξ + 5 · 10−8 P i
qn

q
12) arcsec for ξ = 5 r12max,

δαi(2)⊥ = (−1.5 · 10−7 eiξ + 7 · 10−8 P i
qn

q
12) arcsec for ξ = 5 r12min.

2. light ray originally parallel to the orbital plane

δαi(2)‖ = (−1.1 · 10−7 eiξ + 2 · 10−8 P i
qn

q
12) arcsec for ξ = 5 r12max,

δαi(2)‖ = (−1.6 · 10−7 eiξ + 3 · 10−8 P i
qn

q
12) arcsec for ξ = 5 r12min.

From the values of δαi(2)⊥ and δαi(2)‖ we see that the corrections to the Epstein-Shapiro

light deflection angle are slightly smaller for the case when the light ray is originally

orthogonal to the orbital plane. Details related to the measurement of the corrections

to the Epstein-Shapiro angle will be discussed in the next chapter.

Corrections arising from the spins of the components of PSR J0737-3039

The double Pulsar PSR J0737-3039 is a highly relativistic, double neutron star system,

the components of which are the 23 ms pulsar J0737-3039A and the 2.8 s pulsar J0737-
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6.5 Light deflection in post-linear field of double Pulsar PSR J0737-3039

3039B (see Table 6.1 and Ref. [32]). In this subsection we compute the corrections

to the angle of light deflection arising from the spins of the neutron stars by means of

equation

αiS(1) = −8
G

c3

2∑
a=1

~Sa · (~e(0) × ~eξ)
|~ξ|2

eiξ − 4
G

c3

2∑
a=1

(~e(0) × ~Sa)
|~ξ|2

, (6.21)

which results from (3.50) and (3.51) for the case when |~ξa| < |~ξ|. Before computing the

corrections, we have to calculate the value of the spin for each neutron star by applying

the formula

~Sa = Ia(ma)~ωa, (6.22)

where ~ωa and Ia(ma) are the angular velocity and the function giving the moment of

inertia of the star, respectively. The angular velocity we determine from the pulse period

of the pulsar. Because of our present insufficient knowledge of the equation of state of

condensed matter, the function Ia(ma) is not known with precision. According to [34]

and [35] the value of Ia(ma) lies somewhere between 1.14 · 1045 g cm2 and 1.84 · 1045 g

cm2 for ma ∼ 1.4M�. As in the other parts of this chapter, we assume here that the

masses of the two components of PSR 0737-3039 are equal to 1.29 M�. Also we assume

that both neutron stars have a moment of inertia equal to 1.5 · 1045 g cm2.

After introducing the parameters of PSR J0737-3039 and the chosen value of the

moment of inertia into (6.21) and (6.22) we find the results given in Table 6.3.

r12max = 9.56 · 1010 cm r12min = 8.02 · 1010 cm

v12min = 5.72 · 107 cm/s v12max = 6.83 · 107 cm/s

ξ = 5 r12max ξ = 5 r12min

~eS = (~e(0) × ~eξ) αiS(1)⊥ −7.47 · 10−9 eiξ −1.06 · 10−8 eiξ

~eS = ~eξ αiS(1)⊥ −3.74 · 10−9 (~e(0) × ~eξ)i −5.32 · 10−9 (~e(0) × ~eξ)i

~eS = ~e(0) αiS(1)⊥ 0 0

(∗)~eS = (~e(0) × ~eξ) αiS(1)‖ −7.47 · 10−9 eiξ −1.06 · 10−8 eiξ

~eS = ~eξ αiS(1)‖ −3.74 · 10−9 (~e(0) × ~eξ)i −5.32 · 10−9 (~e(0) × ~eξ)i

~eS = ~e(0) αiS(1)‖ 0 0

Table 6.3: The angles of light deflection are given in arcsec. By ~eS we denote the unit

vector in the direction of the spin vector ~S = ~S1 + ~S2.

From the values of Table 6.3 we conclude that the corrections to the angle of light

deflection coming from the spins of the components of PSR J0737-3039 lie between 10−8

79



6 Results

and 10−9 arcsec. Taking into account that PSR J0737-3039 is observed nearly edge-on

with an inclination angle i of about 87◦ (see [32]), it is easy to see that in Table 6.3 the

case marked with (∗) is closer to reality.
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7 Discussion and Conclusions

The angle of light deflection in the post-linear gravitational field of two bounded point-

like masses has been computed to the second order in G/c2. Both the light source and

the observer were assumed to be located at infinity in an asymptotically flat space.

The light deflection linear in G has been exactly computed. It was shown that the

expression obtained for the linear light deflection is fully equivalent to the expression

given by Kopeikin and Schäfer in [7] in the event that the velocities of the masses are

small with respect to the velocity of light and the retarded times in the expression of

Kopeikin and Schäfer are close to the time of closest approach of the unperturbed light

ray to the origin of the coordinate system.

To evaluate the integrals related to the light deflection quadratic in G, which could

not be integrated by means of elementary functions, we resorted to a series expansion of

the integrands. For this reason the resulting expressions for the angle of light deflection

quadratic in G are only valid for the case when the distance between the two masses r12

is smaller than the impact parameter ξ (i.e. r12/ξ < 1). The final result is given as a

power series in r12/ξ.

The expression for the angle of light deflection in terms of the ADM mass to the

order G2/c4 including a power expansion to the second order in r12/ξ, in which r12/ξ ∼
(GMADM/c

2ξ)1/10 is being assumed, is given in an explicit form for a binary with equal

masses in the event that the light ray is originally orthogonal to the orbital plane of

the binary as well as for a binary with equal masses in the event that the light ray is

originally parallel to the orbital plane of the binary. For a light ray originally propagating

orthogonal to the orbital plane of a binary with equal masses, the deflection angle takes

a particularly simple form.

In the case when one of the masses is equal to zero, we obtain the “Einstein angle”

and the “Shapiro-Epstein light deflection angle”, as we do when r12 → 0.

Application of the derived formulae for the deflection angle to the double pulsar PSR

J0737-3039 has shown that the corrections to the “Einstein angle” are of the order 10−2

arcsec for the case when r12/ξ = 0.2, see Table 6.2. The corrections to the “Epstein-

Shapiro light deflection angle” lie between 10−7 and 10−8 arcsec, see Table 6.2. The

corrections arising from the spins of the neutron stars lie between 10−8 and 10−9 arcsec,
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7 Discussion and Conclusions

see Table 6.3.

We conclude that the corrections to the “Epstein-Shapiro light deflection angle” are

beyond the sensitivity of the current astronomical interferometers. Nevertheless, taking

into account that the interferometer for the planned mission LATOR [36, 37] will be able

to measure light deflection angles of the order 10−8 arcsec, we believe that the corrections

to the “Epstein-Shapiro light deflection angle” computed in the present work could well

be measured by space-borne interferometers in the foreseeable future.

Finally, it should be pointed out that a further development of the method presented

in this thesis can be used in the derivation of a more accurate formula for the timing

of binary pulsars (see Refs [38], [39] and [40]) as well as in the computation of effects

arising from moving gravitational lenses (see Refs [7] and [41]).
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A Auxiliary algebraic relationships

In this appendix we give several algebraic relationships which are useful in the com-

putation of observable effects. After inserting the expressions for S0
a and Sia given by

equation (3.12) into (3.9), we get

Si0a = γa

(~va × ~Sa
c

)i
, (A.1)

Sija = γaεikmSma +
(1− γa)

v2
a

(~va · ~Sa)εikmvma , (A.2)

l(0)αraβS
αβ
a = γa

[
~Sa · (~l(0) × ~ra) + ~Sa ·

[
(~ra −

ra~l(0)
c

)× ~va
]

+
(1− γa)

v2
a

(~va · ~Sa)~va · (~l(0) × ~va)
]
, (A.3)

l(0)αS
αm
a = γa

[
(~va × ~Sa)m − (~l(0) × ~Sa)m −

(1− γa)

γav2
a

(~va · ~Sa)(~l(0) × ~va)
]
, (A.4)

where γa = (1− v2
a/c

2)−1/2 and εikm = ε0ikm.

The quantity Ra(sa) is defined by

Ra(sa) = r2
a(0, sa)− (~e(0) · ~xa(sa))2, (A.5)

where ra(0, sa) = |~z(0)− ~xa(sa)|. Since xia(sa) can be written as

xia(sa) = (~e(0) · ~xa(sa))ei(0) + P i
qx

q
a(sa),

= (~e(0) · ~xa(sa))ei(0) + ξia(sa), (A.6)

where P i
q = δiq−ei(0)e(0)q and ξia(sa) ≡ P i

qx
q
a(sa), it follows after inserting (A.6) into (A.5)

that

Ra(sa) =
[
ξ2 − 2~ξ · ~ξa(sa) + ξ2

a(sa)
]
,

= |~ξ − ~ξa(sa)|2. (A.7)
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B The Potentials V , Vi and Ŵij

The explicit expressions for the potentials V , Vi and Ŵij to the orders relevant for the

computation of the post-linear light deflection presented in this work are

V =
Gm1

r1
+
Gm1

c2

[
− (~n · ~v1)

2

2r1
+

2v2
1

r1
+Gm2

(
− r1

4r3
12

− 5

4r1r12
+

r2
2

4r1r3
12

)]
+O(ε3) + 1 ↔ 2, (B.1)

Vi =
Gm1v

i
1

r1
+O(ε2) + 1 ↔ 2, (B.2)

Ŵij = δij
(
− Gm1v

2
1

r1
− G2m2

1

4r2
1

+
Gm1v

i
1v
i
1

r1

)
+
G2m2

1n
i
1n

j
1

4r2
1

+G2m1m2

{
1

S2

(
n

(i
1 n

j)
2 + 2n

(i
1 n

j)
12

)
− ni12n

j
12

(
1

S2
+

1

r12S

)}
+O(ε) + (1 ↔ 2), (B.3)

where the distance S is defined by

S = r1 + r2 + r12. (B.4)

After applying to the preceding potentials (B.1), (B.2) and (B.3) the Hadamard reg-

ularization procedure in order to calculate their values at the location of the point-mass

1, we get

(V )1 =
Gm2

r12

{
1 +

1

c2

[
− 3

2

Gm1

r12
+ 2v2

2 −
1

2
(~n12 · ~v2)

2

]}
+O(ε3), (B.5)

(Vi)1 =
Gm2

r12

+O(ε2), (B.6)

(Ŵij)1 =
Gm2

r12

{
vi2v

j
2 − δijv2

2 +
Gm1

r12
[−2ni12n

j
12 + δij]

+ 4
Gm1

4r12

[ni12n
j
12 − δij]

}
+O(ε), (B.7)

(∂iV )1 = −Gm2

r2
12

ni12 +O(ε2). (B.8)
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C The post-linear light deflection αi
(2)I

In the integrals that are given in this appendix as well as in Appendices D and E,

we already replaced the photon trajectory by its unperturbed approximation ~z(τ) =

τ ~l(0) + ~ξ, where ~l(0) is given by ~l(0) = c~e(0). The distances r1 and r2 are given by

ra = |~z(τ)− ~xa(t
∗)|

=

[
z2(τ)− 2~z(τ) · ~xa(t∗) + x2

a(t
∗)

]1/2

=

[
c2τ 2 + ξ2 − 2 c τ ~e(0) · ~xa(t∗)− 2 ~ξ · ~xa(t∗) + x2

a(t
∗)

]1/2

, (C.1)

with a = 1 and a = 2 for the distances r1 and r2. The distance S is defined by (B.4).

Here, r12 = |~x1(t
∗) − ~x2(t

∗)| is the distance between the two masses m1 and m2 at the

time t∗ and the unit vector ~n12 reads

~n12 =
1

r12

[
~x1(t

∗)− ~x2(t
∗)
]
. (C.2)

The positions of the masses in the centre of mass frame without considering the 1PN-

corrections are given by

~x1 = X2 ~r12(t
∗) (C.3)

and

~x2 = −X1 ~r12(t
∗). (C.4)

The integrals resulting from the introduction of the post-linear metric coefficients

(4.59) and (4.60) into the expression for αi(2)I given by (5.14) are:
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C The post-linear light deflection αi(2)I

αi(2)I(
~ξ ) = 2

G2m2
1

c3

∫ ∞

−∞
dτ

1

r6
1

[
c τ −X2 ~e(0) · ~r12(t∗)

]2[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r1S2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
12

[ 1

r2
− 1

r1

] [
ξi −X2 P

i
qr
q
12(t

∗)
]

+
1

2

G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
12

[ 1

r1
− r2

2

r3
1

] [
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 16
G2m1m2

c3

∫ ∞

−∞
dτ

1

r1r2S3
(~e(0) · ~n12)

[
c τ +X1 ~e(0) · ~r12(t∗)

]
×
[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r1S3
(~e(0) · ~n12)

2
[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r1S2
(~e(0) · ~n12)

2
[
ξi −X2P

i
qr
q
12(t

∗)
]

+
5

2

G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r3
1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 16
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r1S3
(~e(0) · ~n12)

[
c τ −X2 ~e(0) · ~r12(t∗)

]
P i
qr
q
12(t

∗)

− 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r2
12r1S

2
(~e(0) · ~n12)

[
c τ −X2 ~e(0) · ~r12(t∗)

]
P i
qr
q
12(t

∗)

− 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r1r2S2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r1r3
2S

2

[
c τ +X1 ~e(0) · ~r12(t∗)

]2 [
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r1r2
2S

3

[
c τ +X1 ~e(0) · ~r12(t∗)

]2 [
ξi −X2 P

i
qr
q
12(t

∗)
]

− 4
G2m1m2

c3

∫ ∞

−∞
dτ
[ 1

r12r1S2
− 1

r12r3
1S

2

[
c τ −X2 ~e(0) · ~r12(t∗)

]2 ]
P i
qr
q
12(t

∗)

+ 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r2
1S

3

[
cτ −X2~e(0) · ~r12(t∗)

]2
P i
qr
q
12(t

∗)

+ 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r1r2S3

[
c τ −X2 ~e(0) · ~r12(t∗)

]
×
[
c τ +X1 ~e(0) · ~r12(t

∗)
]
P i
qr
q
12(t

∗)

+ (1 ↔ 2). (C.5)

88



D The post-linear light deflection αi
(2)II

After inserting the perturbation (5.35) and the metric coefficients (4.61) and (4.62) into

(5.15), we find

αi(2)II(
~ξ ) = 12

G2m2
1

c3

∫ ∞

−∞
dτ

1

r4
1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 12
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
1r2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m2

1

c3

∫ ∞

−∞
dτ

1

r3
1

A1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
1

A2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 4
G2m2

1

c3

∫ ∞

−∞
dτ

1

r3
1

B1

[
~e(0) · (X2 ~r12(t

∗))
] [
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
1

B2

[
~e(0) · (X1~r12(t

∗))
] [
ξi −X2 P

i
qr
q
12(t

∗)
]

− 8
G2m2

1

c3

∫ ∞

−∞
dτ

1

r3
1

B1

[
c τ −X2 ~e(0) · ~r12(t∗)

] [
ξi −X2 P

i
qr
q
12(t

∗)
]

− 8
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
2

B1

[
c τ +X1 ~e(0) · ~r12(t∗)

] [
ξi −X2P

i
qr
q
12(t

∗)
]

+ (1 ↔ 2), (D.1)

where the functions A1, A2, B1 and B2 are given in Section 5.1.
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E The post-linear light deflection αi
(2)IV

The integrals of the order G2/c4 resulting from the introduction of the perturbation

(5.26) into (5.29) are

αi(2)IV(~ξ ) = −12
G2m2

1

c3
r2
1(0, t

∗)

∫ ∞

−∞
dτ

1

r5
1

B1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 12
G2m1m2

c3
(~r1(0, t

∗) · ~r2(0, t∗))
∫ ∞

−∞
dτ

1

r5
1

B2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 12
G2m2

1

c3
(X2 ~e(0) · ~r12(t

∗))2

∫ ∞

−∞
dτ

1

r5
1

B1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 12
G2m1m2

c3
(X1X2)(~e(0) · ~r12(t∗))2

∫ ∞

−∞
dτ

1

r5
1

B2

[
ξi −X2 P

i
qr
q
12(t

∗)
]

− 12
G2m2

1

c3

∫ ∞

−∞
dτ

1

r5
1

ln

[
cτ −X2 ~e(0) · ~r12(t∗) + r1(τ, t

∗)

r1(0, t∗)−X2 ~e(0) · ~r12(t∗)

]
×
[
cτ −X2 ~e(0) · ~r12(t

∗)
][
ξi −X2 P

i
qr
q
12(t

∗)
]

− 12
G2m1m2

c3

∫ ∞

−∞
dτ

1

r5
1

ln

[
cτ +X1 ~e(0) · ~r12(t∗)) + r2(τ, t

∗)

r2(0, t∗) +X1 ~e(0) · ~r12(t∗)

]
×
[
cτ −X2 ~e(0) · ~r12(t

∗)
][
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m2

1

c3

∫ ∞

−∞
dτ

1

r3
1

B1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ 4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r3
2

B1

[
ξi −X2 P

i
qr
q
12(t

∗)
]

+ (1 ↔ 2), (E.1)

where the functions B1 and B2 are given in Section 5.4.
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F The linear light deflection terms arising from the

terms of h
(1)
00 and h(1)

pq that contain the accelerations

of the masses

As we mentioned in Chapter 4, the terms of the metric coefficients h
(1)
00 and h

(1)
pq which

contain the accelerations of the masses were introduced into the metric quadratic in

G after substituting the accelerations by explicit functions of coordinate positions of

the masses by means of the Newtonian equations of motion. To get the light deflection

terms arising from these terms in a form suitable for the comparison of our computations

with the linear light deflection computed by Kopeikin and Schäfer [7], we compute here

the light deflection resulting from these terms before performing the substitution of the

accelerations. The terms of h
(1)
00 and h

(1)
pq which contains the accelerations are given by

h̃
(1)
00 = −G

c4

2∑
a=1

ma(~na · ~aa) = −G
c4

2∑
a=1

ma
(~ra · ~aa)
ra

,

h̃(1)
pq = h̃

(1)
00 δpq. (F.1)

From (2.41) it follows that the linear light deflection reads

αi(1) = lim
τ→∞

{
1

c
P i
qδl

q
(1)(τ)

}
, (F.2)

where δlq(1)(τ) is given by (2.38). Introduction of the metric coefficients (F.1) into (F.2)

leads to

α̃i(1) =
G

c3

2∑
a=1

ma

∫ ∞

−∞
dτ

1

r3
a

[
cτ(~e(0) · ~aa(t∗)) + ~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

− G

c3

2∑
a=1

ma

∫ ∞

−∞
dτ

1

ra
P i
qa

q
a(t

∗). (F.3)

As in (5.22) the second integral in the preceding equation diverges. After performing

the Taylor expansion of the second integrand about the origin of the coordinate system

~xa = 0 up to the second order and taking into account the Newtonian centre of mass
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F Linear light deflection terms arising from h
(1)
00 and h

(1)
pq containing accelerations of masses

theorem we perform the integration of (F.3). As result we find

α̃i(1) = 2
G

c4

2∑
a=1

ma

Ra

(~e(0) · ~xa(t∗))(~e(0) · ~aa(t∗))
[
ξi − P i

qx
q
a(t

∗)
]

+ 2
G

c4

2∑
a=1

ma

Ra

[
~ξ · ~aa(t∗)− ~xa(t

∗) · ~aa(t∗)
][
ξi − P i

qx
q
a(t

∗)
]

+
G

c4

2∑
a=1

ma

{
− 2

(~ξ · ~xa(t∗))
ξ2

−
(~e(0) · ~xa(t∗))2

ξ2
+
x2
a(t

∗)

ξ2
− 2

(~ξ · ~xa(t∗))2

ξ4

}
P i
qa

q
a(t

∗).

(F.4)
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G Calculation of Integrals

As we mentioned in Chapter 5, many integrals related to the post-linear light deflection

cannot be represented by elementary functions. To evaluate these integrals we resort as

usual to a series expansion of the integrands in order to approximate the non-elementary

integrals by a sum of elementary integrals. By way of example we shall show in this

appendix how this procedure works. As our exemplary integral we choose the integral

I i = −4
G2m1m2

c3

∫ ∞

−∞
dτ

1

r12r1S2
[ξi − P i

qx
q
1(t

∗)], (G.1)

which is given in Appendix C.

The Taylor Expansion

In order to perform the Taylor expansion of the integrand of integral (G.1), we introduce

the variable y = 1/z(τ) and the unit vector ~n = ~z(τ)/z(τ), where z(τ) =
√
c2τ 2 + ξ2.

After introducing y and ~n into the integral (G.1), its integrand becomes

f(y) =
1

r12r1S2
=

y3

r12w1(y)[w1(y) + w2(y) + yr12]2
, (G.2)

where

w1(y) =
[
1− 2~n · ~x1(t

∗)y + x2
1(t

∗)y2
]1/2

, (G.3)

w2(y) =
[
1− 2~n · ~x2(t

∗)y + x2
2(t

∗)y2
]1/2

. (G.4)

Since the first three terms of the Taylor expansion about y = 0 are equal to zero, we have

to perform the Taylor expansion up to the fifth order in order to get an expansion, which

is equivalent to a Taylor expansion of the integrand about the origin of the coordinate

system ~x1 = ~x2 = 0 to the second order. After performing the Taylor expansion of the
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G Calculation of Integrals

integrand (G.2), we obtain for the integral (G.1):

I i = −4
G2m1m2

c3

{
1

4r12

∫ ∞

−∞
dτ

1

z3(τ)
− 1

4

∫ ∞

−∞
dτ

1

z4(τ)

+
[ 3

16
r12 +

1

2

(~ξ · ~x1(t
∗))

r12

− 1

4

x2
1(t

∗)

r12
+

1

4

(~ξ · ~x2(t
∗))

r12
− 1

8

x2
2(t

∗)

r12

] ∫ ∞

−∞
dτ

1

z5(τ)

+
[1
2

(~e(0) · ~x1(t
∗))

r12

+
1

4

(~e(0) · ~x2(t
∗))

r12

] ∫ ∞

−∞
dτ

cτ

z5(τ)

−
[5
8
(~ξ · ~x1(t

∗)) +
3

8
(~ξ · ~x2(t

∗))
] ∫ ∞

−∞
dτ

1

z6(τ)

−
[5
8
(~e(0) · ~x1(t

∗)) +
3

8
(~e(0) · ~x2(t

∗))
] ∫ ∞

−∞
dτ

cτ

z6(τ)

+
[15

16

(~ξ · ~x1(t
∗))2

r12

+
5

8

(~ξ · ~x1(t
∗))(~ξ · ~x2(t

∗))

r12
+

5

16

(~ξ · ~x2(t
∗))2

r12

] ∫ ∞

−∞
dτ

1

z7(τ)

+
[15

8

(~e(0) · ~x1(t
∗))(~ξ · ~x1(t

∗))

r12

+
5

8

(~e(0) · ~x1(t
∗))(~ξ · ~x2(t

∗))

r12

+
5

8

(~e(0) · ~x2(t
∗))(~ξ · ~x2(t

∗))

r12

] ∫ ∞

−∞
dτ

cτ

z7(τ)

+
[15

16

(~e(0) · ~x1(t
∗))2

r12

+
5

8

(~e(0) · ~x1(t
∗))(~e(0) · ~x2(t

∗))

r12

+
5

16

(~e(0) · ~x2(t
∗))2

r12

] ∫ ∞

−∞
dτ

c2τ 2

z7(τ)

}[
ξi − P i

qx
q
1(t

∗)
]
. (G.5)

After computing the integrals we finally get,

I i =
G2m1m2

c4

{
− 2

r12

( 1

ξ2

)
+
[π
2
− 8

3

(~eξ · ~x1(t
∗))

r12
+

9

16
π(~eξ · ~x2(t

∗))

− 4

3

(~eξ · ~x2(t
∗))

r12

]( 1

ξ3

)
+
[15

16
π(~eξ · ~x1(t

∗)) +
4

3

x2
1(t

∗)

r12
− 4

(~eξ · ~x1(t
∗))2

r12
−

(~e(0) · ~x1(t
∗))2

r12
− r12

− 8

3

(~eξ · ~x1(t
∗))(~eξ · ~x2(t

∗))

r12

− 2

3

(~e(0) · ~x1(t
∗))(~e(0) · ~x2(t

∗))

r12
+

2

3

x2
2(t

∗)

r12

− 4

3

(~eξ · ~x2(t
∗))2

r12

− 1

3

(~e(0) · ~x2(t
∗))2

r12

]( 1

ξ4

)}[
ξi − P i

qx
q
1(t

∗)
]
. (G.6)

The Taylor expansion of the integrand (G.2) and the computation of the elementary

integrals in (G.5) were performed with the help of Mathematica IV.
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abwechslungsreichen Gespräche. Selbiges gilt auch für die Kollegen und Mitstreitern un-

serer Arbeitsgruppe, insbesondere Dr. Achamveedu Gopakumar und Dörte Hansen. Bei
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