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Developmental psychology and developmental 
neuropsychology have traditionally focused on the study of 
children. But these two fields are also supposed to be about the 
study of change, i.e. changes in behavior, changes in the 
neural structures that underlie behavior, and changes in the 
relationship between mind and brain across the course of 
development. Ironically, there has been relatively little interest 
in the mechanisms responsible for change in the last 15 -20 
years of developmental research. The reasons for this de -em-
phasis on change have a great deal to do with a metaphor for mind 
and brain that has influenced most of experimental psychology, 
cognitive science and neuropsychology for the last few decades, 
i.e. the metaphor of the serial digital computer. We will refer to 
this particular framework for the study of mind as the First 
Computer Metaphor, to be contrasted with a new computer
metaphor, variously known as connectionism, parallel 
distributed processing, and/or neural networks. In this brief 
chapter, we will argue that the First Computer Metaphor has 
had some particularly unhappy consequences for the study of 
mental and neural development. By contrast, the Second 
Computer Metaphor (despite its current and no doubt future 
limitations) offers some compelling advantages for the study 
of change, at both the mental and the neural level.

The chapter is organized as follows: (1) a brief 
discussion of the way that change has (or has not) been treated 
in the last decade of research in developmental psychology, (2) a 
discussion of the First Computer Metaphor, and its 
implications for developmental re search, (3) an introduction 
to the Second Computer Metaphor, and the promise it offers 
for research on the development of mind and brain, ending 
with (4) a response to some common misconceptions about 
connectionism.

1. What Happened to the Study of Change?

Traditionally, there are three terms that have been used to 
describe changes in child behavior over time: maturation, 
learning, and development. For our purposes here, these terms 
can be defined as follows.

(a) Maturat ion.  As the term is  typical ly  used in the 
psychological literature (although this use may not be entirely 
accurate from a biological perspective-Bates, Thal,  Finlay 
and Clancy, in press; Elman et al., 1996; Johnson, 1997), 
"maturation" refers to the timely appearance or unfolding of 
behaviors that are predetermined, in their structure and their 
sequence, by a well-

defined genetic program. The role of experience in a strong 
maturational theory is limited to a "triggering" function 
(providing the general or specific conditions that allow some 
predetermined structures to emerge) or a "blocking" function 
(providing conditions that inhibit the expression of some 
predetermined event). The en vironment does not, in and of 
itself, provide or cause behavioral structure.

(b) Learning. "Learning" is typically defined as a systematic 
change in behavior as a result of experience. Under some 
interpretations, learning refers to a copying or transfer of 
structure from the environment to the organism (as in 
"acquisition" or "internalization"). Un der a somewhat weaker 
interpretation, learning may refer to a shaping or alteration of 
behavior that is caused by experience, although the resulting 
behavior does not resemble structures in the environment in 
any direct or interesting way.

(c) Development. As defined by Werner (1948) in his 
elaboration of the "orthogenetic principle", "development" 
refers to any positive change in the internal structure of a 
system, where "positive" is further defined as an increase in the 
number of internal parts (i.e. differentiation), accompanied by 
an increase in the amount of organization that holds among 
those parts. Under this definition, the term "development" is 
neutral to the genetic or experiential sources of change, and 
may in clude emergent forms that are not directly predictable 
from genes or experience considered separately (i.e. the sum is 
greater than and qualitatively different from the parts).

Although all three terms have been used to describe 
behavioral change in the psychological literature, the most 
difficult and (in our view) most interesting proposals are the 
ones that have involved emergent form, i.e. changes that are 
only indirectly related to structure in the genes or  the 
environment  (Bates  e t  al . ,  1998;  Elman et al., 1996; 
MacWhinney, 1999). We are referring here not to the banal 
interactionism in which black and white yield grey, but to a 
much more challenging interactionism in which black and 
white converge and interact to yield an unexpected red. 
Because this interactionist  view appears to be the only way 
to explain how new structures arise, it may be our only way 
out of a fruitless nature/nurture debate that has hampered pro-
gress in developmental psychology for most of its history.

Within our field, the most complete interactionist theory 
of behavioral change to date is the theory offered by Jean Piaget, 
across a career that spanned more than
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fifty years (Piaget, 1952, 1970a, 1970b, 1971). Piaget's genetic 
epistemology concentrated on the way that new mental 
structures emerge at the interface between an active child and a 
structured world. The key mechanism for change in Piaget 's 
theory is the consummate biological notion of adaptation. 
Starting with a restricted set of sensorimotor schemes (i.e. 
structured "packages" of perception and action that permit 
activities like sucking, reaching, tracking, and/or grasping), the 
child begins to act upon the world (assimilation). Actions are 
modified in response to feedback from that world (ac-
commodation), and in response to the degree of internal 
coherence or stability that action schemes bear to one another 
(reciprocal assimilation). The proximal cause that brings about 
adaptation is a rather poorly defined notion of equilibration, 
i.e. the re -establishment of a stable and coherent state after a 
perturbation that created instability or disequilibrium. In the 
infant years, adaptation of simple sensorimotor schemes to a 
structured world leads to an increasingly complex and 
integrated set of schemes or "plans", structures that 
eventually permit the child to "re -present" the world (i.e. to 
call potential perceptuo-motor schemes associated with a given 
object or event into an organized state-of-readiness, in the 
absence of direct perceptual input from the represented object 
or event). This developmental notion of representation 
comprised Piaget's explanation for the appearance of mental 
imagery, language and other symbolic or representational forms 
somewhere in the second year of life. After this point, the 
process of adaptation continues at both the physical and 
representation level (i.e. operations on the real world, and 
operations on the new "mental world"), passing through a 
series of semistable "stages" or moments of system-wide 
equilibrium, ultimately leading to our human capacity for 
higher forms of logical reasoning.

This "bootstrapping" approach to cognitive development 
does involve a weak form of learning (as defined above), but the 
mental structures that characterize each stage of development are 
not predictable in any direct way from either the structure of 
the world or the set of innate sensorimotor schemes with 
which the child be gan. Furthermore, Piaget insisted that these 
progressive increases in complexity were a result of activity 
("construction"), and not a gradual unfolding of predeter-
mined forms (maturation). In this fashion, Piaget strove to 
save us from the nature/nurture dilemma. Behavioral outcomes 
were determined not only by genes, or by environment, but by 
the mathematical, physical and biological laws that 
determine the kinds of solutions that are possible for any 
given problem. As Piaget once stated in a criticism of his 
American colleague Noam Chomsky, "That which is 
inevitable does not have to be innate" (Piaget, 1970a).

There was a period in the history of developmental 
psychology in which Piagetian theory assumed a degree of 
orthodoxy that many found stifling. Decades later, it now 
appears that much of Piaget's theory was wrong in detai l .  For 
one thing,  i t  is now clear  that  the infant 's  initial stock of 
innate sensorimotor schemes is far richer

than Piaget believed. It is also clear that Piaget overestimated 
the degree of cross-domain stability that children are likely to 
display at any given point in development (i.e. the notion of a 
coherent "stage"). Once the details of his stage theory were 
proven inadequate, all that really remained were the principles of 
change that formed the bedrock of Piaget's genetic 
epistemology-notions of adaptation and equilibration that 
struck many of his critics as hopelessly vague, and a  notion 
of emergent form that many found downright mystical. Piaget 
was aware of these problems, and spent the latter part of his 
career seeking a set of formalisms to concretize his deep 
insights about change. Most critics agree that these ef forts 
failed. This failure, coupled with new empirical information 
showing that many other aspects of the theory were incorrect, 
has led to a widespread repudiation of Piaget. Indeed, we are in 
a period of "anti-Piagetianism" of patricidal dimensions.

But what have we put in Piaget's place? We have never 
replaced his theory with a better account of the epistemology of 
change. In fact, the most influential developmental 
movements of the last two decades have essentially disavowed 
change. Alas, we fear that we are back on the horns of the 
nature-nurture dilemma from which Piaget tried in vain to save 
us.

On the one hand, we have seen a series of strong 
nativist proposals in the last few years, including proposals 
by some neo-Gibsonian theorists within the socalled 
"competent infant movement" (Baillargeon, 1999; Bai l largeon 
and de  Vos, 1991 ;  Spelke,  1990,  1991;  Spelke and 
Newport, 1998), and proposals within language acquisition 
inspired by Chomsky's approach to the nature and origins of 
grammar (Hyams, 1986; Lightfoot, 1991; Roeper and 
Williams, 1987). In both these movements, it is assumed that 
the essence of what it means to be human is genetically 
predetetmined. Change-insofar as we see change a t  all -is 
at tr ibuted to the maturation of predetermined mental content, 
to the release of preformed material by an environmental 
"trigger", and/or to the gradual removal of banal sensory and 
motor limitations that hid all this complex innate knowledge 
from view. Indeed, the term "learning" has taken on such 
negative connotations in some quarters that efforts are 
underway to eliminate it altogether. The following quotes 
from Piatelli-Palmarini (1989) illustrate how far things have 
gone:

1, for one, see no advantage in the preservation
of the term learning. We agree with those who main
tain that we would gain in clarity if the scientific use

of the term were simply discontinued." (p. 2)
"Problem-solving... adaptation, simplicity, com

pensation, equilibration, minimal disturbance and all
those universal, parsimony-driven forces of which the
natural sciences are so fond, recede into the back
ground. They are either scaled down, at the physico
chemical level, where they still make a lot of sense, or

dismissed altogether." (pp. 13-14)
On the other hand, the neo-Vygotskian movement and 

associated approaches to the social bases of cognition have 
provided us with another form of pre-
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formationalism, insisting that the essence of what it means to 
be human is la id  out for the child in the structure of social 
interactions (Bruner and Sherwood, 1976;  Rogoff,  1990).  In 
these theories,  change is viewed primarily as a process of 
internalization, as the child takes in preformed solutions to 
problems that lie in the "zone of proximal development", i.e. 
in joint activities that are just outside his current ability to act 
alone. Related ideas are often found in research on 
"motherese", i.e. on the special, si mplified and caricatured 
form of language that adults direct to small children (for a 
review, see Ferguson and Snow, 1978). In citing these 
examples, we do not want to deny that society has an influence 
on development, because we are qui te  sure that  i t  do es.  Our 
point  is,  simply, that  the pendulum has swung too far from 
the study of child initiated change. The most influential 
movements in developmental psychology for the last two 
decades are those that have de -emphasized change in favor of 
an emphasis on some kind of preformation: either a prefor-
mation by nature and the hand of God, or a preformation by the 
competent adult.

Why have we accepted these limits? Why haven't we 
moved on to study the process by which new struc tures really 
do emerge? We believe that developmental psychology has  
been influenced for many years by a metaphor for mind in 
which it is difficult to think about change in any interesting 
form-which brings us to the First Computer Metaphor.

2.  The First Computer M etaphor and its
Impl icat ions  for  Deve lopment

At its core, the serial digital computer is a machine that 
manipulates symbols. It takes individual symbols (or  s t r ings 
of symbols)  as  i ts input ,  applies a  set  of stored algorithms 
(a program) to that input, and produces more symbols (or 
strings of symbols) as its output. These steps are performed 
one at a time (albeit very quickly) by a central processor. 
Because of this serial constraint, problems to be solved by the 
First Computer must be broken down into a hierarchical 
structure that permits the machine to reach solutions with 
maximum efficiency (e.g. moving down a decision tree until a 
particular subproblem is solved, and then back up again to the 
next step in the program).

Without question, exploitation of this machine has led to 
huge advances in virtually every area of science, industry and 
education. After all, computers can do things that human 
beings simply cannot do, permitting quantitative advances in 
information processing and numerical analysis that were 
unthinkable a century ago. The problem with this device for our 
purposes here lies not in its utility as a scientific tool, but in 
its utility as a scientific metaphor, in particular as a metaphor 
for the human mind/brain. Four properties of the serial digital 
computer have had particularly unfortunate consequences for the 
way that we have come to think about mental and neural 
development.

(1) Discrete representations. The symbols that are 
manipulated by a serial digital computer are discrete entities. 
That is, they either are or are not present in the input. There is 
no such thing as 50% of the letter A or 99% of the number 7. 
For example, if a would-be user types in a password that is off 
by only one keystroke, the computer does not respond with 
"What the heck, that's close enough." Instead, the user is 
damned just as thoroughly as  he would be if  he did not 
know the password at all.

People (particularly children) rarely behave like this. We 
can respond to partial information (degraded input) in a systematic 
way; and we often transform our inputs (systematic or not) 
into partial decisions and im perfect acts (degraded output). We 
are error-prone, but we are also forgiving, flexible, willing and 
able to make the best of what we have. This mismatch 
between human behavior and the representations manipulated 
by serial digital computers has of course been known for some 
time. To resolve this well-known discrepancy, the usual device 
adopted by proponents of the First Computer Metaphor for 
Mind is the competence/performance distinction. That is, it is 
argued that our knowledge (competence) takes a discrete and 
idealized form that is compatible with the computer metaphor, 
but our behavior (performance) is degraded by processing factors 
and other sources of noise that are irrelevant to a characterization 
of knowledge and (by extension) acquisition of knowledge. 
This is a perfectly reasonable intellectual move, but as we 
will see in more detail below, it has led to certain difficulties in 
characterizing the nature of learning that often result in the 
statement that learning is impossible.

(2) Absolute rules. Like the symbolic representations 
described above, the algorithms contained in a computer 
program also take a discrete form. If the discrete symbols 
that trigger a given rule are present in the input, then that rule 
must apply, and give an equally discrete symbol or string of 
symbols as its output. Conversely, if the relevant symbols are 
not present in the input, then the rule in question will not 
apply. There is no room for anything in between, no coherent 
way of talking about 50% of a rule, or (for that matter) weak 
vs. strong rules. Indeed, this is exactly the reason why computers 
are so much more reliable than human beings for many 
computational purposes.

Presented with the well-known mismatch between human 
behavior and the absolute status of rules in a serial digital 
computer, proponents of the First Computer Metaphor for 
Mind usually resort to the same competence/performance 
described above. Alternatively, there have been attempts to 
model the probabilistic nature of human behavior by adding 
weights to rules, a device that permits the model to decide 
which rule to apply (or in what order of preference) when a 
choice has to be made. The problem is that these weights are 
in no way a natural product or property of the architecture in 
which they are embedded, nor are they produced automatically 
by the learning process. Instead, these weights
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are arbitrary, ad hoc devices that must be placed in the system by 
hand-which brings us to the next point.

(3) Learning as programming. The serial digital computer 
is not a self-organizing system. It does not learn easily. 
Indeed, the easiest metaphor for learning in a system of th is 
kind is programming; that is, the rules that must be applied to 
inputs of some kind are placed directly into the system-by 
man, by Nature or by the hand of God.  To be sure,  there is 
a  l i terature on computer learning in the field of artificial 
intelligence. However, most of these efforts are based on a 
process of hypothesis testing. In such learning models, two 
essential factors are provided a priori: a set of hypotheses that 
will be tested against the data, and an algorithm for deciding 
which hypothesis provides the best fit to those da ta .  This is 
by its very nature a  strong nativist  ap proach to learning. It 
is not surprising that learning theories of this kind are 
regularly invoked by linguists and psycholinguists with a 
strong nativist orientation. There is no graceful way for the 
system to derive new hypotheses (as opposed to modifications 
of a pre-existing option). Everything that really counts is 
already there at the beginning.

Once again, however, we have an unfortunate mismatch 
between theory and data in cognitive science. Because the 
hypotheses tested by a traditional computerlearning model are 
discrete in nature (based on the rule and representations described 
above), learning (a.k.a. "selection") necessarily involves a series 
of discrete decisions about the truth or falsity of each 
hypothesis. Hence we would expect change to take place in a 
crisp, step-wise fashion, as decisions are made, hypotheses are 
discarded, and new ones are put in their place. But human 
learning rarely proceeds in this fashion, characterized more often 
by error, vacillation and backsliding. In fact, the limited value 
of the serial digital computer as a metaphor for learning is 
well known. Perhaps for this reason, learning and development 
have receded into the background in modern cognitive 
psychology, while the field has concentrated instead on issues 
like the nature of representation, processes of recognition and 
retrieval, and the various stages through which discrete bits of 
information are processed (e.g. various buffers and checkpoints 
in a serial process of symbol manipulation). Developmental 
psychologists working within this framework (or indirectly 
influenced by it) have moved away from the study of change 
an d self-organization toward a catalogue of those 
representations that are there at the beginning (e.g. the 
"competent infant" movement in cognition and perception; the 
parametersetting movement in developmental 
psycholinguistics), and/or a characterization of how the 
processes that elaborate information mature or expand across 
the childhood years (i.e. changes in performance that "release" the 
expression of pre-existing knowledge).

(4) The hardware/software distinction. One of the most 
unfortunate consequences of the First Computer Metaphor for 
cognitive science in general and developmental psychology in 
particular has been the acceptance

of a strong separation between software (the knowledge -
symbols,  rules,  hypotheses,  e tc .-that  is contained in a 
program) and hardware (the machine that is used to implement that 
program). From this perspective, the machine itself places very 
few constraints on our theory of knowledge and (by extension) 
behavior, except perhaps for some relatively banal concerns 
about capacity (e.g. there are some programs that one simply 
cannot run on a small personal computer with limited mem-
ory).

The distinction between hardware and software has provided 
much of the ammunition for an approach to philosophy of 
mind and cognitive science called Functionalism (Fodor, 
1981).' Within the functionalist school, the essential properties of 
mind are derived entirely from the domains  on which the 
mind must operate: language, logic, mathematics, three-
dimensional  space, etc .  To be sure, these properties have to 
be implemented in a  machine of  some kind,  but the 
machine itself does not place interesting constraints on mental 
representations (i.e. the objects manipulated by the mind) or 
functional architecture (i.e. the abstract system that manipulates 
those objects). This belief has justified an approach to 
cognition that is entirely independent of neuroscience, thereby 
reducing the number and range of constraints to which our 
cognitive theories must respond. As a by-product (since 
divorces usually affect both parties), this approach has also 
reduced the impact of cognitive theories and cognitive 
phenomena on the field of neuroscience.

The separation between biology and cognition has had 
particularly serious consequences for developmental psychology, 
a field in which biology has traditionally played a major role 
(i.e. a tradition that includes Freud, Gesell, Baldwin, and 
Piaget, to name a few). Not only have we turned away fr om 
our traditional emphasis on change, but we have also turned 
away from the healthy and regular use of biological 
constraints on the study of developing minds. Ironically, some 
of the strongest claims about innateness in the current 
literature have been put forth in complete disregard of 
biological facts (Bates et al., in press; Elman et al., 1996). 
For example, claims about the innateness of detailed cortical 
representations (e.g. an innate theory of physics, or innate 
theory of mind) are difficult to square with what we now know 
about (a) the plastic and activity-de pendent nature of the 
processes that set up cortical microcircuitry, and (b) the 
mathematical bottleneck involved in setting up a brain with 
10" connections using
fewer than 10ˆ6 genes, 98% of which humans share with 
chimpanzees (Gerhart & Kirschner, 1998). The underlying 
assumption appears to be that our cognitive find ings have 
priority, and if there is a mismatch between

I This particular school of Functionalism has little to do with, and is 

indeed diametrically opposed to, an approach within linguistics and 
psycholinguistics alternatively called Functional Grammar or Cognitive 
Linguistics. For discussions, see Bates and MacWhinney, 1989; 
Givon, 1984; Lakoff, 1987; Langacker, 1987.
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cognitive and biological conclusions, we probably got the 
biology wrong (which may be the case some of the t ime-but 
surely not all the time!).

It seems to us that we need all the constraints that can be 
found to make sense of a  growing mass of information about 
cognitive development, language de velopment, perceptual 
development, social development. Furthermore, we suspect 
that developmental neuroscience would also profit from a 
healthy dose of knowledge about the behavioral functions of the 
neural systems under study. Finally, we would all be better off if 
we could find a computational model (or class of models) in 
which it would be easier to organize and study the mutual 
constraints that hold between mental and neural  development-
which brings us to the ne xt computer metaphor.

3. The Second Computer M etaphor and Its
Impl icat ions  for  Deve lopment

During the 1950s and 60s,  when the First Computer 
Metaphor for mind began to influence psychological research, 
some information scientists were ex ploring the properties of a 
different and competing computational device called the 
Perceptron (Rosenblatt, 1958, 1962). The roots of this approach 
can be traced to earlier work in cybernetics (M insky, 1956; 
von Neumann, 1951, 1958) and in neurophysiology (Eccles, 
1953; Hebb, 1949; McCulloch and Pitts, 1943). In a perceptron 
network, unlike the serial digital computer, there was not a clear 
distinction between processor and memory,  nor d id  i t  operate 
on symbols  in the usual  sense of the term. Instead, the
perceptron network was composed of a large number of 
relatively simple "local" units that worked in parallel to perceive, 
recognize and/ or categorize an input. These local units or 
"nodes" were organized into two layers, an "input set" and an 
"output set". In the typical perceptron architecture, every unit on 
the input layer was connected by a single link to each and 
every unit on the output layer (see Figure 1). These connections 
varied in degree or strength, from 0 to 1(in a  pu re ly  
exc i t a to ry  sys tem)  or f rom -1 t o  + 1 ( in  a system with 
both activation and inhibition). A given output unit would 
"fire" as a function of the amount of input that it received from 
the various input units, with activation collected until a critical 
firing threshold was reached (see also McCulloch and Pitts, 
1943). Individual acts of recognition or categorization in a 
Perceptron reflect the collective activity of all these units. 
Knowledge is a property of the connection strengths that hold 
between the respective input and output layers; the machine 
can be said to "know" a pattern when it gives the correct 
output for a given class of inputs (including novel members of 
the input class that it has never seen before, i.e. generalization).

There are some obvious analogies between this system 
and the form of computation carried out in real neural systems, 
e.g. excitatory and inhibitory links, summation of activation, 
firing thresholds, and above all the distribution of patterns 
across a large number of interconnected units. But this was 
not the only ad -

vantage that perceptrons offered, compared with their 
competitors. The most important property of perceptrons was 
(and is) their ability to learn by example.

During the teaching and teaming phase, a stimulus is 
registered on the input layer in a distributed fashion, by 
turning units on or off to varying degrees. The system 
produces the output that it currently prefers (based,  in the 
most extreme tabula rasa case, on a random set of 
connections). Each unit in this distributed but "ignorant" 
output is then compared with the corresponding unit in the 
"correct" output. If a given output unit within a distributed 
pattern has "the right answer", its connection strengths are left 
unchanged. If a given output has "the wrong answer", the 
size of the error is calculated by a simple difference score (i.e. 
"delta"). All of the connections to that erroneous output are 
then increased or decreased in proportion to the amount of 
error that they were responsible for on that trial. This 
procedure then continues in a similar fashion for other trials. 
Because the network is required to find a single set of 
connection weights which allow it to re spond correctly to all 
of the patterns it has seen, it typically succeeds only by 
discovering the underlying generalizations which relate inputs 
to outputs. The important and interesting result is that the 
network is then able to respond appropriately not only to 
stimuli it has seen before,  but  to novel st imuli  as well .  The 
learning procedure is thus an example of learning in ductively.

Compared with the cumbersome hypothesis-testing 
procedures that constitute learning in serial digital computers, 
learning really appears to be a natural property of the 
perceptron. Indeed, perceptrons are able to master a broad range of 
patterns, with realistic generalization to new inputs as a function 
of their similarity to the initial learning set. The initial success 
of these artificial systems had some impact on theories of 
pattern recognition in humans. The most noteworthy example is 
Selfridge's "Pandemonium Model" (Selfridge, 1958), in which 
simple local feature detectors or "demons" work in parallel to 
recognize a complex pattern. Each demon scans the input for 
evidence of its preferred feature; depending on its degree of 
certainty that the relevant feature has appeared, each demon 
"shouts" or "whispers" its results. In the Pandemonium Model 
(as in the Perceptron), there is no final arbiter, no homunculus 
or central executive who puts all these daemonical inputs 
together. Rather, the "solution" is an emergent property of the 
system as a whole, a global pattern produced by independent, local 
computations. This also means that results or solutions can 
vary in their degree of resemblance to the "right" answer, 
capturing the rather fuzzy properties of human categorization 
that are so elusive in psychological models inspired by the serial 
digital computer.

So far so good. And yet this promising line of research 
came to a virtual end in 1969, when Minsky and Papert 
published their famous book Perceptrons. Minsky and Papert 
(who were initial enthusiasts and pioneers in perceptron 
research) were able to prove that perceptrons are only capable of 
learning a limited class
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of first-order, linearly separable patterns. These systems are 
incapable of learning second-order relations like "A or B  but not 
both" (i.e. logical exclusive OR), and by extension, any 
pattern of equivalent or greater complexity and 
interdependence. This fatal flaw is a direct product of the fact that 
perceptrons are two-layered systems, with a single direct link 
between each input and output unit. If A and B are both "on" 
in the input layer, then they each automatically "turn on" 
their collaborators on the output layer. There is simply no 
place in the system to record the fact that A and B are both 
on simultaneously, and hence no way to "warn" their 
various collaborators that they should shut up on this 
particular trial. It was clear even in 1969 that this problem 
could be addressed by adding another layer somewhere in the 
middle, a set of units capable of recording the fact that A 
and B are both on simul taneously, and therefore capable of 
inhibiting output nodes that would normally tu rn on in the 
presence of ei ther  A or B.  So why not add  a  set  of "in 
between" units, creating three- or four- or N-layered perceptrons? 
Unfortunately, the learning rules available at that time (e.g. the 
simple delta rule) did not work with mul tilayered systems. 
Furthermore, Minsky and Papert offered the conjecture that 
such a learning rule would prove impossible in principle, due 
to the combinatorial complexity of delta calculations and 
"distribution of blame" in an N-layered system. As i t  turns 
out,  this  conjecture was wrong (after all, a conjecture is not 
a proof). Nevertheless, it was very influential. Interest in the 
perceptron as a model of complex mental processes dwindled 
in many quarters. From 1970 on, most of artificial intelligence 
research abandoned this architecture in favor of the fast, 
flexible and highly programmable serial digital computer. 
And most of cognitive psychology followed suit. (For a 
somewhat different account of this history, see Papert, 1988; a 
good collection of historically important documents can be 
found in Anderson and Rosenfeld, 1989. A good tutorial on 
how to do connectionist simulations is Plunkett and Elman, 
1997, and Golden, 1996, provides an excellent technical over-
view of neural networks.)

Parallel distributed processing was revived in the late 
1970s and early 1980s, for a  variety of reasons. In fact, the 
computational advantages of such systems were never entirely 
forgotten (Anderson, 1972; Feldman and Ballard, 1980; Hinton 
and Anderson, 1981; Kohonen, 1977; Willshaw et al., 1969), 
and their resemblance to real neural systems continued to 
exert some appeal (Grossberg, 1968, 1972, 1987). But the 
current "boom" in parallel distributed processing or 
"connectionism" was inspired in large measure by the 
discovery of a learning rule that worked for multilayered 
systems (Le Cun, 1985; Rumelhart et al., 1986a). The 
Minsky-Papert conjecture was overturned, and there are now 
many impressive demonstrations of learning in multilayered 
neural nets, including learning of N-order dependencies l ike "A 
or B  but not both" (Rumelhart  et  al.,

1986b).2 Multilayer networks have been shown to be universal 
function approximators, which means they can approximate 
any function to any arbitrary degree of precision (Hornik, 
Stinchcombe and White, 1989). Such a  network is shown in 
Figure 2.

Another reason for the current popularity of con-
nectionism derives from technical advances in the design of 
parallel computing systems. It has become increasingly clear
to computer scientists that we are close to the absolute 
physical limits on speed and efficiency in serial systems-and 
yet the largest and fastest serial computers sti l l  cannot come 
close to the speed with which our small, slow, energy-efficient 
brains recognize patterns and decide where and how to move. As 
Carver M ead  has pointed out (M ead,  1989),  i t  is t ime to 
"reverse-engineer Nature", to figure out the principles by 
which real brains compute information. It is still the case that 
most connectionist simulations are actually carried out on 
serial digital computers (which mimic parallelism by 
carrying out a set of would -be parallel computations in a 
series, and waiting for the result until the next wave of would-
be parallel computations is ready to go). Bu t new, truly 
parallel architectures are coming on line (e.g. the now-famous 
Connection Machine) to implement those discoveries that have 
been made with pseudo-parallel simulations. Parallel distrib-
uted processing appears to be the solution elected by 
Evolution, and (if Mead is right) computer science will have 
to move in this direction to capture the kinds of processing 
that human beings do so well.

For developmental psychologists, the Second Computer 
Metaphor holds some clear advantages for the study of 
change in human beings. The first set involves the same four 
areas in which the First Computer Metaphor has let us down: 
the nature of representations, rules or "mappings", learning, and 
the hardware/software issue. The last two are advantages 
peculiar to connectionist networks: nonlinear dynamics, and 
emergent form.

(1) Distributed representations. The representations 
employed in connectionist nets differ radically from the 
symbols manipulated by serial digital computers. First, these 
representations are "coarse-coded", distributed across many 
different units. Because of this property,  i t  is reasonable to 
ta lk  about the degree to which a representation is active or 
the amount of a representation that is currently available in 
this system (i.e. 50% of an "A" or 99% of the number "7"). 
This also means that patterns can be built up or torn down in 
bits and pieces, accounting for the graded nature of learning in 
most instances, and for the gradual or graded patterns of 
breakdown that are typically displayed by brain-damaged 
individuals (Hinton and Shallice, 1991; Marchman, 1993; 
Schwartz et al., 1990; Seidenberg and

²A number of readable introductions to connectionism are now 
available. See Bechtel and Abrahamsen, 1991; Churchland and 
Sejnowski, 1992; Dayhoff, 1990. An excellent but more technical 
introduction can be found in Hertz et al., 1991.
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McClelland, 1989). Second, the same units can participate in 
many different patterns, and many different patterns coexist in 
a superimposed fashion across the same set of units. This fact 
can be used to account for degrees of similarity between 
patterns, and for the ways in which patterns penetrate, facilitate 
and/or interfere with one another at various points in learning 
and de velopment (for an expanded discussion of this point, see 
Bates et al., 1991; Elman et al., 1996).

(2) Graded Rules. Contrary to rumor, it is not the case 
that connectionist systems have no rules. However, the rules or 
"mappings" employed by connectionist nets take a  very 
different  form from the crisp algori thms contained within 
the programs employed by a serial digital computer. These 
include the learning rule itself (i.e. the principle by which the 
system reduces error and "decides" when it has reached a good fit 
between input and output), and the functions that determine 
when and how a  uni t  wi l l  f i re .  B ut above  a l l ,  the  " ru les"  
in a connectionist net include the connections that hold 
among units, i.e. the links or "weights" that embody all the 
potential mappings from input to output across the system as a 
whole. This means that rules (like representations) can exist 
by degree, and vary in strength.

It should also be clear from this description that it is 
difficult to distinguish between rules and representations in a 
connectionist net. The knowledge or "mapping potential" of a 
network comprises the units that participate in distributed 
patterns, and the connections among those units. Because all 
these potential mappings coexist across the same "territory", 
they must compete with one another to resolve a given input. 
In the course of this competition, the system does not 
"decide" between alternatives in the usual sense; rather, it 
"relaxes" or "resolves" into a  ( temporary) s tate  of 
equil ibrium. In a  stochastic system of this kind,  i t  is 
possible for several different networks to reach the same solution 
to a problem, each with a totally different set of weights.  This  
fact  runs d i rectly counter to the tendency in traditional 
cognitive and linguistic research to seek "the rule" or "the 
grammar" that underlies a set of behavioral regularities. In 
other words, rules are not absolute in any sense-they can vary 
by degree within a given individual, and they can also vary in 
their internal structure from one individual to another. We 
believe that these properties are far more compatible with the 
combination of universal tendencies and individual variation that 
we see in the course of human development, and they are 
compatible with the remarkable neural and behavioral plasticity 
that is evident in children who have suffered early brain injury 
(Bates et al., 1997; Elman et al., 1996; Marchman, 1993).

(3) Learning as structural change. As we pointed out earlier, 
much of the current excitement about connectionist systems 
revolves around their capacity for learning and self-
organization. Indeed, the current boom in connectionism has 
brought learning and development back onto center stage in 
cognitive science. These systems really do change as a 
function of learning, dis-

playing forms of organization that were not placed there by the 
programmer (or by nature,  or by the Hand of God). To be 
sure, the final product is co-determined by the initial structure of 
the system and the data to which it is exposed. These systems 
are not anarchists, nor solipsists. But in no sense is the final 
product "copied" or programmed in. Furthermore, once the 
system has learned, it is difficult for it to "unlearn", if by 
"unlearning" we mean a return to its pristine prelearning state. 
This is true for the reasons described in (1) and (2): the 
knowledge contained in connectionist nets is contained in and 
defined by its very architecture, in the connection weights that 
currently hold among all units as a function of prior learning. 
Knowledge is not "retrieved" from some passive store, nor is it 
"placed in" or "passed between" spatially localized buffers. 
Learning is struc tural change, and experience involves the 
activation of potential states in that system as it is currently 
struc tured.

From this point of view, the term "acquisition" is an 
infelicitous way of talking about learning or change. Certain 
states become possible in the system, but they are not acquired 
in the usual sense, i.e. found or purchased or stored away 
like nuts in preparation for the winter. This property of 
connectionist systems permits us to do away with problems 
that have been rampant in certain ar eas of developmental 
psychology, e.g. the problem of determining "when" a given 
piece of knowledge is acquired, or "when" a rule finally 
becomes productive. Instead, development (like the representa-
tions and mappings on which it is based) can be viewed as a 
gradual process; there is no single moment at which learning 
can be said to occur (but see nonlinearity, below).

(4) Software as hardware. We have stated that knowledge in 
connectionist nets is defined by the very structure of the system. 
For this reason, the hardware/ software distinction is 
impossible to maintain under the Second Computer Metaphor. 
This is true whether or not the structure of connectionist nets as 
currently conceived is "neurally real", i .e.  like the structure 
that  holds in real neural systems. We may still have the 
details wrong (indeed, we probably do), but the important point 
for present purposes is that there is no further excuse for ignoring 
potential neural constraints on proposed cognitive 
architectures. The distinction that has separated cognitive 
science and neuroscience for so long has fallen, like the 
Berlin Wall. Some cognitive psychologists and philosophers 
of science believe that is not a good thing (and indeed, the 
same might be said someday for the Berl in  Wall) .  But  we are 
convinced that  this  historic event is a good one, especially 
for those of us who are interested in the co -development of 
mind and brain. We are going the right direction, even though 
we have a long way to go.

(5) Nonlinear dynamics. Connectionist networks are 
nonlinear dynamical systems, a fact that follows from several 
properties of connectionist architecture including the existence 
of intervening layers between
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inputs and outputs (permitting the system to go beyond linear 
mappings), the nonlinear threshold functions that determine how 
and when a single unit will fire, and the learning rules that 
bring about a change in the weighted connections between 
units. Because these networks are nonlinear systems, they can 
behave in unexpected ways, mimicking the U-shaped learning 
functions and sudden moments of "insight" that challenged old 
Stimulus-Response theories of learning, and helped to bring 
about the cognitive revolution in the 1960s (MacWhinney and 
Leinbach 1991; Plunkett and Marchman, 1991a, b).

(6) Emergent form. Because connectionist networks are 
nonlinear systems, capable of unexpected forms of change, 
they are also capable of producing truly novel outputs (see 
also Elman et al., 1996; MacWhinney, 1999). In trying to 
achieve stability across a large number of superimposed, 
distributed patterns, the network may hi t  on a  solut ion that  
was  "hidden" in bi ts  and  pieces of the data; that solution may 
be transformed and generalized across the system as a whole, 
resulting in what must be viewed as a qualitative shift. This is 
the first precise, formal embodiment of the notion of emergent 
form-an idea  that  stood a t  the heart  of Piaget 's  theory of 
change in cognitive systems. As such, connectionist systems 
may have the very property that we need to free ourselves from 
the nature-nurture controversy. New structures can emerge at 
the interface be tween "nature" (the initial architecture of the 
system) and "nurture" ( the input to which that  system is ex -
posed). These new structures are not the result of black magic, 
or vital forces. They are the result of laws that govern the 
integration of information in nonlinear systems-which br ings  
us to our f inal  section.

4.  Some Common M isconcept ions  about
C o n n e c t i o n i s m

It is no doubt quite clear to the reader that we are enthusiastic 
about the Second Computer Metaphor, be cause we believe 
that it will help us to pick up a cold trail that Piaget first 
pioneered, moving toward a truly interactive theory of change. 
But we are aware of how much there is to do, and how many 
pitfalls lie before us. We are also aware of some of the doubts 
and worries about this movement that are currently in 
circulation. Perhaps it would be useful to end this essay with 
some answers to some common misconceptions about con-
nectionism, with special reference to the application of 
connectionist principles within developmental psychology.

Worry 1 . "Connectionism is nothing but associa-
tionism, and we already know the limits of associationism" 
(e.g. Fodor and Pylyshyn,  1988).  As we pointed out above, 
multilayer connectionist nets are nonlinear dynamical systems, 
whereas the familiar associationist models of the past rested on 
assumptions of linearity. This is both the good news, and the 
bad news. The good news is that nonlinear systems can learn 
relationships of considerable complexity, and they can produce 
surprising and (of course) nonlinear forms of

change. The bad news is that no one really understands the 
limits and capabilities of nonlinear dynamical systems. M aybe 
this is also good news: we have finally met our goal, after 
years of physics envy, because we have finally reached the 
same frontiers of ignorance as the physicists! Presumably, the 
limits of these systems will someday be known (although 
probably not within our lifetimes). But right now, it would be 
grossly premature to claim that connectionist networks can 
"never" perform certain functions. Anyone who claims that  we 
already know the limits of this k ind  of associationism has 
been misinformed.

Worry 2. "There are no interesting internal re -
presentations in connectionist nets" (e.g. Pinker and Prince, 1988). 
There are indeed complex and rich representations in 
connectionist networks, and transformations that do the same 
work as rules in classical systems. However, these rules and 
representations take a radically different form from the familiar 
symbols and algorithms of serial digital computers and/or 
generative linguistics. The representations and rules embodied 
in connectionist nets are implicit and highly distributed. Part of the 
challenge of modern research on neural networks is to understand 
exactly what a net has learned after is has reached some criterion 
of performance. So far, the answer appears to be that the 
solutions that networks find very often look quite different 
than their symbolic counterparts (for examples, see Elman, 
1989, 1990, 1991).

Worry 3. "Connectionist nets only yield interesting 
performance on cognitive problems when the experiment 
`sneaks in'  the solution by (a) f ixing the internal weights 
until they work, or (b) laying out the solution in the input" 
(e.g. Lachter and Bever, 1988). Part of the fascination of 
connectionist modeling lies in the fact  that  i t  offers the 
experimenter  so many surprises. These are self-organizing 
systems that learn how to solve a problem. As the art is 
currently practiced, no one fiddles with the internal weights 
but the system it self, in the course of learning. Indeed, in a 
simulation of any interesting level of complexity, it would be 
virtually impossible to reach a solution by "hand-tweaking" of 
the weights. As for the issue of "sneaking the solution into 
the input",  we have seen several  simulations in which the 
Experimenter did indeed try to make the input as explicit as 
possible-and yet the system stubbornly found a  different 
way to solve the problem. Good connectionist modelers 
approach their simulations with the same spirit of discovery and 
breathless anticipation that  is very famil iar  to those who 
carry out real  ex periments with real children. Aside from 
being close to impossible, cheating would not be any fun at 
all-and the hand-crafting of solutions is usually considered a 
form of cheating.

Worry 4. "The supposed commitment to neural 
plausibility is a scam; no one really takes it seriously." 
Connectionists work at many different levels between brain 
and behavior. In current simulations of higher cognit ive 
processes,  i t  is t rue that  the architecture is "brain-like" only 
in a very in direct sense. In fact, the
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typical 100-neuron connectionist toy is "brain-like" only in 
comparison with the serial digital computer (which is wildly 
unlike nervous systems of any known kind). The many 
qualities that separate real brains from connectionist 
simulations have been described in detail elsewhere (Churchland 
and Sejnowski, 1992; Crick, 1989; Hertz, Krogh and Palmer, 
1991). The real questions are: (a) is there anything of 
interest that can be learned from simulations in simplified 
systems, and (b) can connectionists "add in" constraints from 
real neural systems in a series of systematic steps, 
approaching something like a realistic theory of mind and 
brain? Of course  we st i l l  do not  know the answer  to e i ther  
of these questions, but th ere are many researchers in the 
connectionist movement who are trying to bring these systems 
closer to neural reality. For example, efforts are underway to 
study the computational properties of different neuronal types. 
Some researchers are exploring analogues to synaptogenesis 
and synaptic pruning in neural nets. Others are looking into 
the computational analogues of neural transmitters within a 
fixed network structure. The current hope is that work at all 
these different levels will prove to be compatible, and that a 
unified theory of the mind and brain will someday emerge. 
Of course we are a long way off, but the commitment by 
most of the researchers that we know in this field is a very 
serious one. It has launched a new spirit of interdisciplinary 
research in cognitive neuroscience, one with important 
implications for developmental psychology.

Worry 5 . "Connectionism is anti-nativist, and efforts are 
underway to reinstate a tabula rasa approach to mind and 
development" (e.g. Kirsh, 1992; Pinker, 1999). It is true that 
many current simulations assume something like a tabula rasa 
in the first stages of learning (e.g. a random "seeding" of 
weights among fully connected units before learning begins). 
This has proven to be a useful simplifying assumption, in 
order to learn something about the amount and type of struc-
ture that has to be assumed for a  given type of learning to go 
through. But there is no logical incompatibility between 
connectionism and nativism. Indeed, just as many historians 
have argued that Franklin Delano Roosevelt saved capitalism, 
connectionism may prove to be the salvation of nativist 
approaches to mind. The problem with current nativist theories 
is that they offer no serious account of what it might mean in 
biological terms for a given structure or idea to be innate. In 
neural networks, it is possible to explore various avenues for 
building in innate structure, including minor biases that have 
major structural consequences across a range of 
environmental conditions (Elman, 1994; Elman et al., 1996;  
Jacobs,  1999;  Jacobs e t  al . ,  1991;  Jacobs and Jordan, 1992). 
In fact, within connectionist models there are coherent ways 
to talk about 90% or 10% of any innate idea! This is an 
approach that has not been explored in any detail to date, but 
the possibilities are intriguing, and might (ironically enough) 
end up being connectionism's greatest contribution to 
developmental cognitive neuroscience.

5. Epilogue: New directions in 
D e v e l o p me nta l  C o nnec t io n i s m

T h e  s to ry  i s  f a r  f rom o v e r - so  t h i s  i s  n o t  a  t rue  
epilogue-but since we first  wrote this chapter i t  has become 
even clearer how connectionist models are offering new insights 
into developmental phenomena. Consider the following (by no 
means exhaustive) ex am ples:

• U-shaped curves. In the course of learning a number of 
tasks, children frequently exhibit various "U-shaped" patterns 
of behavior in which good initial performance is followed by 
poorer performance, which eventually again improves. One of 
the best-known cases of this is the acquisition of the past 
tense of English. Networks that are trained on similar tasks 
exhibit the same patterns of behavior (M acWhinney et al., 
1989; Plunkett and Juola, 1999; Plunkett and Marchman, 1991a, 
1991b, 1993; Rumelhart and McClelland, 1986). Furthermore, 
the sorts of differences in learning of regular forms (e.g., those 
which add "-ed") compared with irregulars ("sing"-"sang") have 
now been explored in network models of many other languages 
(e.g., German, Arabic; Hare, Elman and Daugherty, 1995; Naki-
sa, Plunkett and Hahn, in press; Plunkett and Nakisa, 1997).

• Critical periods in brain plasticity. Developmental  
changes in brain plast ici ty-the abil i ty to re cover from early 
lesions-suggest that there are "critical periods" during which 
the brain is more plastic and able to learn. Marchman (1993) 
has shown that such changes in plasticity can also arise 
merely as a by -product of learning itself, and do not necessarily 
require some kind of exogenous (learning-independent) change in 
the structure or function of the brain. The same changes in 
brain structure that occur as a result of learning may also 
make recovery from stroke more difficult ,  and make later 
learning harder.

• Lesioning networks. Networks that are trained on tasks 
such as reading or verb morphology demonstrate, when 
"lesioned," symptoms and patterns of recovery which closely 
resemble the patterns of human aphasics (Farah and 
McClelland, 1991; Hinton and Shallice, 1991; Marchman, 
1993; Martin et al., 1994; Plaut and Shallice, 1993; 
Seidenberg and McClelland, 1989). Finally, the kinds of 
dissociations in behavior that may be found as a result of 
brain damage, in which regular forms are better preserved than 
irregulars (or vice versa) have been simulated by lesioning 
networks in which the regular/irregular distinction is not directly 
encoded (Juola and Plunkett, 1998; Joanisse and Seidenberg, 
1999).

• Learning rediscovered. There have been a number of 
recent demonstrations of apparently precocious knowledge in 
young infants (e.g., very early learning of language-like patterns; 
object permanence). Some researchers have taken this as 
evidence for innate knowledge, and the existence of abstract 
rules and symbols. But similar results have been easily 
replicated in networks that are sensitive to statistical properties 
in
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their environment, suggesting that the environment is a richer 
source of information than might be thought, and that young 
in fants are using a relatively simple learning algorithm to 
extract this information (Mareschal, Plunkett and Harris, 1995; 
Munakata, McClelland, Johnson and Siegler, 1999; Seidenberg 
and Elman, 1999).

• Readiness phenomena. Children are known to go through
phases in which behavior changes slowly and is resistant to 
new learning. At other points in time children show 
heightened sensitivity to examples and rapid changes in 
behavior. Networks exhibit similar readiness phenomena 
(Elman et al., 1996, Chapter 6; McClelland, 1989).

• The importance of starting small. Some aspects of 
grammatical structure are particularly hard to learn, and it has 
been claimed that these structures must therefore be innate. 
Paradoxically, these structures can be learned in networks as 
long as learning begins when the network has a limited 
working memory (similar to that of an infant or young child). 
This limitation turns out to be crucial for learning the more 
complex aspects of language.

• Activity-dependent origins of brain structure. Visual 
cortex in mammals is well known to include neurons that are 
selectively sensitive to highly specific visual inputs. These 
neurons include edge detectors, center-surround cells, and 
motion detectors. Biologically plausible network models have 
been constructed which demonstrate that such specialized 
response properties do not have to be prespecified. They emerge 
naturally and inevitably from cells which are initially 
uncommitted, simply as a function of a simple learning rule 
an d exposure to stimulation (Linsker, 1986, 1990; Miller, 
Keller and Stryker, 1989; Sereno and Sereno, 1991).  These 
artificial networks even develop the characteristic zebra-like 
striped patterns seen in ocular dominance columns in real cortex 
(Miller, Keller and Stryker, 1989).

• Learning the categories of language. Must children have 
innate knowledge of linguistic categories such as "noun" or 
"verb"? Or can these notions be learned? Network simulations 
as well as corpus analyses have shown that such categories can 
be learned merely from the distributional properties in the 
language that young children hear (Elman, 1990; Mintz, 
Newport and Bever, submitted).

* * *
These examples (as well as many others described in Elman 

et al., 1996) lead us to believe we will soon see a revival of 
Piagetian theory within a connectionist framework-not a 
mindless reinterpretation of the old theory in modern jargon, 
but a return to Piaget's program of genetic epistemology, 
instantiating his principles of equilibration and adaptation in 
concrete systems that really work -and really change. As we 
said before, Piaget spent the later decades of his life seeking a 
way of formalizing the theory, to answer critics (including 
Piaget himself) who charged that his principles of change were 
much too vague. We think that Piaget would have loved these 
new possibilities if he had lived to see them. We now have an 
opportunity to pick up

the threads of his old program and move it forward into an 
ex citing new decade, incorporating all the new insights and 
new empirical information that has been gained in the 
interim, without abandoning the fundamental commitment of 
developmental psychology to the study of change.

R E F E R E N C E S
Anderson, J.A. (1972) A simple neural network generating an 

interactive memory. Mathematical Bio-Sciences, 8,  137-
160.

Anderson, J.A. and Rosenfeld, E. (1989) Neurocomputing: 
Foundations of research. M IT Press/ Bradford Books.

Baillargeon, R. (1999) Young infants' expectation about hidden 
objects: A reply to three challenges. Developmental 
Science, 2, 115-132.

Bail largeon, R.  and de Vos, J. (1991) Object  permanence in 
young infants: Further evidence. Child Development, 62,
1227-1246.

Bates,  E.,  Elman,  J. ,  Johnson, M .,  Karmiloff-Smith,  A., 
Parisi, D. and Plunkett,  K. (1998) Innateness and 
emergentism. In W.  Bechtel  and G. Graham (eds), A 
companion to cognitive science. Malden, MA & Oxford: 
Blackwell Publishers, pp. 590-601.

B ates,  E. ,  Thai ,  D. ,  Finlay,  B.L.  and Clancy,  B .  ( in press) 
Early language development and its neural correlates.  To 
appear  in F. Boller &  J. Grafman (Series eds) & I. Rapin 
& S. Segalowitz (Vol. eds), Handbook of neuropsychology, 
Vol. 7: Child neurology (2nd ed.). Amsterdam: Elsevier.

Bates, E., Thal, D. and Marchman, V. (1991) Symbols and 
syntax: A Darwinian approach to language development. 
In N. Krasnegor, D. Rumbaugh, E. Schiefelbusch and M. 
Studdert-Kennedy (eds), The biological and behavioral 
determinants of language development. Hillsdale, NJ: 
Erlbaum.

Bates, E., Thal, D., Trauner, D., Fenson, J., Aram, D., 
Eisele, J. and Nass, R. (1997) From first words to 
grammar in children with focal brain injury. In D. Thal and 
J. Reilly (eds), Special issue on Origins of 
Communication Disorders, Developmental Neu-
ropsychology, 13, 275-343.

Bechtel, W. and Abrahamsen, A. (1991) Connectionism and 
the mind. Oxford: Basic Blackwood.

Bruner, J. and Sherwood, V. (1976) Peekaboo and the 
learning of rule structures. In J.S. Bruner, A. Jolly and K. 
Sylva (eds), Play: Its role in development and evolution. 
New York: Basic Books, Inc.

Churchland, P. and Sejnowsky, T. (1992) The net ef -
fect. Cambridge, MA: MIT Press/Bradford Books.

Clancy, B., Darlington, R.B. and Finlay, B.L. (2000) The 
course of human events: Predicting the timing of primate 
neural development. Developmental Science,  3, 57 -66.

Crick, F. (1989) The recent excitement about neural networks. 
Nature, 337, 129-132.



11

Dayhoff, J. (1990) Neural network architectures. New York: 
Van Nostrand Reinhold.

Eccles, J.L. (1953) The neurophysiological basis of mind. 
Oxford: Clarendon.

Elman, J. (1989) Structured representations and connectionist 
models. In The Eleventh Annual Conference of the Cognitive 
Science Society. Hillsdale, NJ: Erlbaum.

Elman, J. (1990) Finding structure in time. Cognitive Science, 
14, 179-211.

Elman, J. (1991) Distributed representations, simple recurrent 
networks, and grammatical structure. Machine Learning , 7, 
195-225.

Elman, J. (1993) Learning and development in neural networks: 
The importance of starting small. Cognition, 48, 71 -99.

Elman, J. (1994) Learning and development in neural networks: 
The importance of starting small. In C. Umilta & M. 
Moscovitch (Eds.), Attention and performance XV.•
Conscious and nonconscious information processing. 
Hillsdale, NJ: Erlbaum.

Elman,  J., Bates,  E.,  Johnson, M ., Karmiloff-Smith,  A., 
Parisi, D. and Plunkett,  K. (1996) Rethinking innateness: 
A connectionist perspective on de velopment. Cambridge, 
MA: MIT Press/Bradford Books.

Farah, M.J. and McClelland, J. (1991) A computational model 
of semantic memory impairment: Modality specificity and 
emergent category specificity. Journal of Experimental 
Psychology: General ,  120, 339-357.

Feldman, J..A. and Ballard, D.H. (1980) Computing with 
connections. TR 7 2 . University of Rochester: Computer 
Science Department.

Ferguson, C. and Snow, C. (1978) Talking to chi ldren.  
Cambridge: Cambridge University Press.

Fodor, J.A. (1981) Representat ions.  Brighton (Sussex): 
Harvester Press.

Fodor, LA. and Pylyshyn, Z.W. (1988) Connectionism and 
cognitive architecture: A critical analysis. In S. Pinker and 
J. Mehler (eds), Connections and symbols. Cambridge, MA: 
MIT Press/Bradford Books, pp. 3 -71 .

Gerhart, J., & Kirschner, M. (1997) Cells, embryos and 
evolution: Toward a cellular and developmental 
understanding of phenotypic variation and evolutionary 
adaptability. Malden, MA: Blackwell Science.

Givon, T. (1984) Syntax: A functional-typological introduction. 
Volume I. Amsterdam: John Benjamins.

Golden, R. (1996) Mathematical models for neural network 
analysis and design. Cambridge, MA: MIT Press.

Grossberg, S. (1968) Some physiological and biochemical 
consequences of psychological postulates. Proceedings of 
the National Academy of Science,  USA,  60,  758-765.

Grossberg, S. (1972) Neural expectation: Cerebellar and retinal 
analogs of cells fired by learnable or un learned pattern 
classes. Kybernetik, 10, 49 -57 .

Grossberg, S. (1987) The adaptive brain,  2  vols. Amsterdam: 
Elsevier.

Hare, M., Elman, J. and Daugherty, K.G. (1995) Default 
generalization in connectionist networks. Language and 
Cognitive Processes, 10, 601-630.

Hebb, D. (1949) The organization of behavior. New York: 
Wiley.

Hertz, J., Krogh, A. and Palmer, R. (1991) Introduction to the 
theory of neural computation. Redwood City, California: 
Addison Wesley.

Hinton,  G.E.  and Shallice,  T. (1991) Lesioning a 
connectionist network: Investigations of acquired dyslexia. 
Psychological Review, 98, 74 -95.

Hinton, G.E. and Anderson, J.A. (1981) Parallel models of 
associative memory. Hillsdale, NJ: Erlbaum.

Hornik, K., Stinchcombe, M. and White, H. (1989) Multilayer 
feedforward networks are universal approximators. Neural 
Networks, 2, 359-366.

Hyams, N. (1986) Language acquisition and the theory of 
parameters. Dordrecht & Boston: Reidel.

Jacobs, R(1999) Computational studies of the development of 
functionally specialized neural models. Trends in 
Cognitive Sciences, 3, 31 -38 .

Jacobs,  R., Jordan, M . and Barto,  A. (1991) Task 
decomposition through competition in a modular 
connectionist architecture: The what and where visual 
tasks. Cognitive Science, 15, 219-250 .

Jacobs, R. and Jordan, M. (1992) Computational consequences 
of a bias toward short connections. Journal of Cognitive 
Neuroscience, 4, 323-336.

Joanisse, M.F. and Seidenberg, M .S. (1999) Impairments in 
verb morphology after brain injury: A connectionist model 
Proceedings of the National Academy of Sciences of the 
United States of America,  96,  7592-7597 .

Johnson, M.H. (1997) Developmental cognitive neuroscience: 
An introduction. Cambridge, MA: Blackwell Publishers.

Juola, P. and Plunkett,  K. (1998) Why double dissociations 
don't mean much. In M.A. Gemsbacher and S.J. Derry 
(eds), Proceedings of the Twentieth Annual Conference of 
the Cognitive Science Society (pp. 561-566). Mahwah, NJ: 
Erlbaum.

Kellman, P.J., Spelke, E.S. and Short, K.R. (1986) Infant 
perception of object unity from translatory motion in depth 
and vertical translation. Child Development ,  57,  72 -86 .

Kirsh, D. (1992) PDP Learnability and innate knowledge of 
language. Center for Research in Language Newslet ter 
Vol.  6,  no. 3. University of California, San Diego.

Kohonen, T. (1977) Associative memory: A.rystemtheoretical 
approach. Berlin: Springer.

Lachter, J. and Bever, T.G. (1988) The relation between 
linguistic structure and associative theories of



12

language learning: A constructive critique of some 
connectionist learning models. In S. Pinker and J. Mehler 
(eds), Connections and symbols. Cambridge, MA: MIT 
Press/Bradford Books, pp. 3- 71.

Lakoff, G. (1987) Fire, women, and dangerous things: What 
categories reveal about the mind. Chicago: University of 
Chicago Press.

Langacker ,  R(1987)  Foundations of cognitive grammar: 
Theoretical perspectives. Volume 1. Stanford: Stanford 
University Press.

Le Cun, Y. (1985) Une procedure d'apprentissage pour rdseau a 
seuil assymetrique. In Cognitiva 85: d la Frontiere de 
l'Intelligence Artificielle des  Sciences de la 
Connaissance des Neurosciences, Paris, pp. 599-604.

Lightfoot, D. (1991) The child's trigger experience - Degree-0 
learnability. Behavioral and Brain Sciences, 14, 321-375.

Linsker,  R(1986)  From basic  network principles to neural 
architecture (series). Proceedings of the National Academy 
of Sciences, USA, 83,  7508-7512,8390-8394,8779-
8783 .

Linsker, R. (1990) Perceptual neural organization: Some 
approaches based on network models and information theory. 
Annual Review of Neuroscience, 13,  257-281.

MacWhinney, B. (1991) Implementations are not con-
ceptualizations: Revising the verb-learning model. 
Cognition, 4 0 , 121-157.

MacWhinney, B. (ed) (1999) The emergence of language. 
Mahwah, NJ: Lawrence Erlbaum.

MacWhinney, B., Leinbach, J. (1991) Implementations are not 
conceptualizations: Revising the verblearning model. 
Cognition, 40, 121-157.

MacWhinney, B., Leinbach, J., Taraban, R. and M cDonald, 
J. (1989) Language learning: Cues or rules? Journal of 
Memory and Language, 28,  255-277.

Mareschal, D., Plunkett,  K. and Harris, P.  (1995) Developing 
object permanence: A connectionist model.  In J .D.  M oore 
and J.F. Lehman (eds),  Proceedings of the Seventeenth 
Annual Conference of the Cognitive Science Society (pp. 
170-175). Mahwah, NJ: Erlbaum.

Marchman, V. (1993) Constraints on plasticity in a 
connectionist model of the English past tense. Journal of 
Cognitive Neuroscience, 5, 215-234.

Martin, N., Dell, G.S., Saffran, E.M., & Schwartz, M.F. (1994) 
Origins of paraphasias in deep dysphasia: Testing the 
consequences of a decay im pairment to an interactive 
spreading activation model of lexical retrieval. Brain and 
Language, 4 7 , 52 -88.

McClelland, J.L. (1989) Parallel distributed processing: 
Implications for cognition and development. In R.G.M. 
Morris (ed), Parallel distributed processing: Implications 
for psychology and neurobiology.
Oxford: Clarendon Press, pp. 9-45.

McClelland, L and Rumelhart, D. (1986) Parallel distributed 
processing: Explorations in the microstructure of cognition, 
Vol. 2. Cambridge, MA: MIT Press/Bradford Books.

McCulloch, W. and Pitts, W. (1943) A logical calculus of 
ideas immanent in nervous activity. Bulletin of 
Mathematical Biophysics, 5 , 115-133. Reprinted in J. 
Anderson and E. Rosenfeld (eds), Neurocomputing: 
Foundations of research. Cambridge, MA: MIT Press.

Mead, C. (1989) Analog VLSI and neural systems. Inaugural 
address presented to the Institute for Neural Computation, 
October, 1989. University of California, San Diego.

Miller, K.D., Keller, J.B. and Stryker, M.P. (1989) Ocular 
dominance column development: Analysis and simulation. 
Science, 245, 605-61 5.

Minsky, M. (1956) Some universal elements for finite 
automata. In C.E. Shannon and J. McCarthy (eds), 
Automata studies. Princeton: Princeton University Press, 
pp. 117-128.

Minsky, M. and Papert, S. (1969) Perceptrons. Cambridge, 
MA: MIT Press.

Mintz, T.H., Newport, E.L. and Bever, T.G. (submitted) The 
distributional structure of grammatical categories in speech 
to young children.

Munakata, Y., McClelland, J.L., Johnson, M.H. and Siegler, R.S. 
(1999) Rethinking infant knowledge: Toward an adaptive 
process account of successes and failures in object 
permanence tasks. Psychological Review, 4, 686-713.

Nakisa, R., Plunkett and Hahn, U. (in press) A crosslinguistic 
comparison of single and dual-route models of inflectional 
morphology. In P. Broeder & J. Murre (eds), Cognitive 
models of language acquisition. Cambridge, MA: MIT 
Press.

Papert ,  S. (1988) One Al or M any? Daedalus: Artificial 
lntelligence. Winter.

Piaget, J. (1952) The origins of intelligence in child-
ren. New York: International Universities Press.

Piaget, J. (1970a) Structuralism. New York: Basic Books.
Piaget, J. (1970b) Genetic epistemology.  New York: Columbia 

University Press.
Piaget, J. (1971) Biology and knowledge: An essay on the 

relations between organic regulations and cognitive 
processes. Chicago: University of Chicago Press.

Piatelli-Palmarini, M. (1989) Evolution, selection, and 
cognition: From "learning" to parameter setting in 
biology and the study of language. Cognition, 31, 1-44.

Pinker, S. (1999) Words and rules: The ingredients of      
language. New York: Basic Books.
Pinker, S. and Prince, A. (1988) On language and 
connectionism: Analysis of a parallel distributed processing 
model of language acquisition. In S. Pinker and J. Me hler 
(eds), Connections and sym-



13

bols. Cambridge, MA: MIT Press/Bradford Books, pp. 3-
71.

Plaut, D.C., and Shallice, T. (1993) Deep dyslexia: A case study 
of connectionist neuropsychology. Cognitive 
Neuropsychology, 10, 377-500.

Plunkett, K. and Elman, J. (1997) Exercises in rethinking 
innateness: A handbook for connectionist simulations. 
Cambridge, MA: MIT Press/ Bradford Books.

Plunkett, K. and Juola, P. (1999) A connectionist model of English 
past tense and plural morphology. Cognitive Science, 23, 
463-490.

Plunkett, K. and Marchman, V. (1991a) U-shaped learning and 
frequency effects in a multi-layered perceptron: Implications 
for child language acquisition. Cognition, 38, 43-102.

Plunkett, K. and Marchman, V. (1991b) From rote learing to 
system building (Tech. Rep. 9020). Center for Research in 
Language, University of California, San Diego.

Plunkett, K. and Nakisa, R.C. (1997) A connectionist model of 
the Arabic plural system. Language and Cognitive 
Processes, 12, 807-836.

Roeper, T. and Williams, E., (eds) (1987) Parameter setting. 
Dordrecht and Boston: Reidel.

Rogoff, B. (1990) Apprenticeship in thinking: Cognitive 
development in social context. New York: Oxford 
University Press.

Rosenblatt, F. (1958) The perceptron: A probabilistic model for 
information storage and organization in the brain. 
Psychological Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: 
Spartan.

Rumelhart, D., Hinton, G. and Williams, R. (1986a) Learning 
representations by back-propagating errors. Nature, 323, 
533-536.

Rumelhart, D., McClelland, J. and the PDP Research Group 
(1986b) Parallel distributed processing: explorations in the 
microstructure of cognition, Vol. 1. Cambridge, MA: MIT/ 
Bradford Books.

Schwartz, M.F., Saffran, E.M. and Dell, G.S. (1990) Comparing 
speech error patterns in normals and jargon aphasics: 
Methodological issues and theoretical implications. 
Presented to the Academy of Aphasia, Baltimore, MD.

Seidenberg, M. and Elman, J.L. (1999) Do infants learn grammar 
with algebra or statistics? Science, 284, 434-435.

Seidenberg, M. and McClelland, J.L. (1989) A distributed 
developmental model of visual word recognition and naming. 
Psychological Review, 96, 523-568.

Selfridge, O.G. (1958) Pandemonium: A paradigm for learning. In 
Mechanisation of Thought Processes: Proceedings of a 
Symposium Held at the National Physical Laboratory, 
November 1958. London:
HMSO, pp. 513-526.

Sereno, M.I. and Sereno, M.E. (1991) Learning to see rotation and 
dilation with a Hebb rule. In R.P. Lippman, J. Moody, & 
D.S. Touretzky (eds), Advances in neural information-
processing systems 3. San Mateo, CA: Morgan Kaufman, pp. 
320-326.

Spelke, E. (1990) Principles of object perception. Cognitive 
Science, 14, 29-56.

Spelke, E. (1991) Physical knowledge in infancy: Reflections on 
Piaget's theory. In S. Carey and R. Gelman (eds), The 
epigenesis of mind: Essays on biology and cognition. 
Hillsdale, NJ: Erlbaum, pp.133-69.

Spelke, E.S. and Newport, E.L. (1998) Nativism, empiricism, and 
the development of knowledge. In W. Damon (Series ed.) 
and D. Kuhn and R. Siegler (Vol. eds), Handbook of child 
psychology: Vol. 1, 5th ed. Theoretical models of human 
development.New York: Wiley, pp. 275-340.

Thal,  D., Marchman, V., Stiles,  J., Aram, D., Trauner, D., 
Nass, R and Bates, E. (1991) Early lexical development in 
children with focal brain injury. Brain and Language, 40, 
491-527.

Von Neumann, J. (1951) The general and logical theory of 
automata. In L.A. Jeffress (ed), Cerebral mechanisms in 
behavior. New York: Wiley.

Von Neumann, L(1958) The computer and the brain. New 
Haven: Yale University Press.

Werner, H. (1948) Comparative psychology of mental 
development. New York: International Universities Press.

Willshaw, D.J., Buneman, O.P. and Longuet-Higgins, H.C. 
(1969) Nonholographic associative memory. Nature, 222, 
960-962.

Zipser, D. and Andersen, R.A. (1988) A back-propagation 
programmed network that simulates response properties of 
a subset of posterior parietal neurons. Nature, 331, 679-
684.



14

PERCEPTRON
(output unit)

Input units



15

Output unit

Input units
Figure 2. A multi-layer network. The "hidden units" allow such 

networks to form internal representations. Multi-layer networks of this 
sort have been shown to be able to approximate any function to any 

arbitrary degree of accuracy.


