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Time-varying linear systems and invariants of system equivalence
ACHIM ILCHMANNY¥

In the paper we consider time-varying systems with coefficients depending mero-
morphically on time. In differential operator representations these systems are
described by matrices over a skew polynomial ring with coefficients in the field of
real meromorphic functions. Different kinds of indices (controllability, minimal,
geometric and dynamical) are introduced and it is proved that they essentially
coincide. The input module and the formal transfer matrix are defined and used for
an algebraic description of time-varying systems. A characterization of system
equivalence is given in these terms and also a complete list of invariants of similarity
for time-varying state-space systems.

1. Introduction

In the present paper we consider time-varying analytic state-space systems of the
form

X=Ax+ Bu } (L1

y=Cx+ E(D)(w)
where the matrices A, B and C are time-varying with entries in

o/ = {f:R—R]|f is real analytic}
k
E(D)= Y E;D' E, defined over &/
i=0
and D:oA >, fi>D(f)=f (1.2)

denotes the usual differential operator.
The associated system matrix of (1.1) is of the form

DI,-A -B
P= n D (n+p)x(ntm) 1.3
[P apfeom 0
with
k
M[D]::{\ZfiDilf,-ed, 0<i<k, kelN}
i=0

More generally we will study system matrices defined over

k
Jl[D]::{ZfiDﬂfie,/l, 0<i<k, ke[N}
i=0
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where
M = {f:R—R|f real meromorphic}

and D:#M - M, f—>D(f)=f is the extension of (1.2) to all of .#. .#[D] is an
R-vector space. If we identify any fe .# with the element g+ f(g): = fg of endg (.#)
and define (Df)(g) = D(fg) then

(DN =f¢+fg=(fD+f)g) for fge.M (1.4)

Therefore .#[D] can be considered as an R-subalgebra of endgp(.#). From an
algebraic point of view, .#[D] is a skew polynomial ring in D with coefficients in .#
and the multiplication rule

Df=fD+f for fe. (1.5)

As opposed to time-invariant systems, where the system matrix is defined over the
commutative rings R[D], resp. C[D], we consider system matrices over the non-
commutative ring #[D] in this paper. Basic results of the theory of skew
polynomial rings are given, for example, by Cohn (1971).

It has already been shown in Ilchmann et al. (1984) that the skew polynomial ring
#[D] yields an appropriate framework for an algebraic study of time-varying
systems. Different frameworks have been suggested by Kamen (1976) and Ylinen
(1980). Kamen (1976) considers input—output equations of the form

A(z) = Bu) (1.6)

where A and B are matrices over a skew polynomial ring J[p], p is a derivative
operator and J a left noetherian ring. The Noether condition appears to be
somewhat restrictive. The set of real analytic functions is not noetherian. Ylinen
(1980) considers equations of the form (1.6) where 4 and B are defined over a skew
polynomial ring with coefficients in any subring of ¥® (i.e. the space of infinitely
differentiable complex-valued functions on an open real interval) which does not
contain zero-divisors.

In the present paper it is important to distinguish between two considerations of
the elements

P(D)= .Zklo P.D'e M[D]"*"
Let ze(@®)". Then -
P(D)z = .Zklo P.Dize #[DY
is obtained by formal multiplication in .#[D], while
P(D)(z) = .Zk:o Pz%e.u"

denotes the action of the differential operator P(D) on z.
In § 2 we give some basic results for time-varying systems described by higher-
order differential equations of the form

P(D)(z) = Q(D)(w) }
y = V(D){z) + W(D)(u)
where the matrices P, Q, V and W are defined over .#[D] (cf. Iichmann et al.

(1984)). These equations extend the differential operator representation as intro-
duced by Rosenbrock (1970) to linear time-varying systems.

(1.7)
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In §3 we generalize Rosenbrock’s (1970), resp. Kalman’s (1971), definition of
controllability indices to state-space systems with real analytic coefficients. It is
shown that a system of the form (1.1) is controllable if and only if its sum of
controllability indices coincides with the dimension of the system.

In § 4 .#[D]-right submodules of .#[D]" are analysed and minimal bases of these
modules are characterized. This is an extension of Forney’s main theorem (1975,
p-495). Minimal indices of a module are defined. Analogously to the time-
invariant case (see Miinzner and Pritzel-Wolters (1979)), the set of transformation
matrices which transform a minimal basis of a module to another minimal basis is
characterized.

In § 5 the mathematical theory of modules over the non-commutative ring .#[D]
as developed in § 4 is used for systems-theoretical questions. It is shown that for a
system of the form (1.7) the right .#[D]-input module

w(P(D), QD)) = {u e M[D]"|3 z e M[D]":P(D)z = Q(D)u}

is invariant under system equivalence. For analytic state-space systems, we provide
a proof that the set of controllability indices and the set of minimal indices of
u(DI, — A, B) coincide. From knowledge of the controllability matrix of a con-
trollable system of the form (1.1) a minimal basis of u(DI,— A, B) is constructed.

Brunovsky (1970) derives a complete set of invariants for the action of the full
feedback group on time-varying state-space systems. These ‘geometric indices’ are,
in general, time-varying. For analytic state-space systems they are constant on R\N,
where N is a discrete set.  In § 6 it is proved that, on R\N, the set of geometric indices
coincide with the set of controllability indices and with the set of the minimal indices
of the input module of a given analytic state-space system.

In § 7 we introduce a left skew polynomial field .#(D) of .#[D]. This enables us
to define a formal transfer matrix VP 1Q + W over .#(D) for systems of the form
(1.7). It is invariant under system equivalence. In contrast to time-invariant
systems, no interpretation is possible via the Laplace transform. The formal transfer
matrices form an [R-algebra. In Ilchmann et al. (1984, Definition 7.2) an
input—-output map for systems of the form (1.7) is defined. We prove that for two
systems, the formal transfer matrices coincide if and only if the input—output maps
coincide.

In § 8 it is shown that the module

{ue M[DI"|(VP1Q + Wyue. .#[D]"} (1.8)

of an observable system of the form (1.7) coincides with the input module of the
system. This is an extension of Forney’s (1975) results. The dynamical indices are
defined as the minimal indices of the module (1.8).

In § 9 we provide a proof that two systems of the form (1.7) are system-equivalent if
and only if their input modules and their formal transfer matrices coincide.
Furthermore, as an extension of Popov (1972), we specify a complete set of similarity
invariants for controllable analytic state-space systems.

2. Preliminaries

In the present paper we consider time-varying finite-dimensional linear systems in
the differential operator representations

P(D)(z) = Q(D)(u) }

2.1)
y=V(D)(z) + W(D)(w)
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with P(D)e .#[DY ", Q(D)e M[DT *™, V(D)e M[D}**™ and W(D)e .4[D]**™
ue™:= {ue(¥>)"|supp u bounded to the left}

ze(6°) and ye(€¢™).
Following Ilchmann et al. (1984) we suppose:
(Al) im Q(D) <im P(D)
i.e. for every input u there exists a solution z with P(D)(z) = Q(D)(u)

(A2) P(D)is full w.r.t. of
i.e. P(D)is non-singular and if z is real analytic on a non-void open interval I
of R and P(D)(z)|; =0, then z can be analytically continued to all of R and
P(D)(z) =0.

The matrix

P -0
P= EJIZ[D](""")"(H'")
Vv W

is called the system matrix corresponding to equation (2.1) and assumptions (A 1) and
(A2).

For simplicity’s sake, we often write P instead of P(D).

The class of systems of the form (2.1) includes (cf. Ilchmann et al. 1984):

(i) time-invariant systems in differential operator representation as introduced
by Rosenbrock (1970);

(ii) system matrices with P e /[ D]"*" non-singular and in normed upper trian-
gular form as dealt with in Ylinen (1980); and

(iii) analytic state-space systems, i.e. systems of the form (1.1).
The system X = Ax + Bu is identified with the pair (4, B)e &/**™*™_  For systems
Py -0
P,= eM[D]rtPxtitm 12
Vi i
the concept of system equivalence is introduced (see Iichmann et al. (1984), Prop-
osition 5.3) as follows:

P, is system-equivalent to P,, written P~ P,, iff there exist matrices 7, T}, X, Y
over #[D] of compatible dimension with

P,=P, (2.2
X 1, 0 I,

and T, P,, resp. P,, Ty, are left, resp. right, coprime.
For a given system

P -0
P = EJ;[[D](Hp)x(Hm)
V W

M(P, Q):= {(z, T (&™) x U™ P(z) = Qw)} @3

the solution space
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(where, in order to simplify the notation we use (z, )T instead of (27, u™)™) can be

decomposed into the direct sum of the R-vector space of forced motions|starting from
Zero

M. (P,Q):= {(z,, W) e M(P, Q) (U" x U™) 2.4)
and the R-vector space of free motions
ker P x {0} := {(z/, 0)Te M(P, Q)} 2.5

The assumption that P is full is essential for the decomposition. In contrast to the
time-invariant case where M(P, Q) is an R[D]-module, for time-varying systems of the
form (2.1) M(P, Q) is in general only an R-vector space and not an R[D]- or
A [ D]-module.

3. Controllability indices
In this section we introduce controllability indices and characterize controllability
for time-varying state-space systems, whose coefficients depend analytically on time.
For (4, Bye /"*"*™ and le N we define

KA, B):= [(DI,— A)°(B), ..., (DI, — A}(B)] 3.1
where
(DI,—A)°:=1, and (DI,—A):= SDI.. —A)...(DI, — Az

g
i-times

If the transition matrix of X = Ax is denoted by ¢(t, t,), or briefy by ¢, the matrix
K(4, B):= K""'(4, B)= [¢"'B,($ B}, ... (¢ ' B)" 1] (32)

is said to be the controllability matrix of (A, B) (see Silverman and Meadows (1967)).

Definition 3.1
Let R be a ring and GL,(R):= {AeR"*"|3A 'e R"*™AA ' =1,}.
Two systems

DI,—4 -B DI, —A —PB
P= , P= eL[D] P xntm
C E(D) C E'(D)

are called (analytically) similar (via T), written P~ ', if there exists a T € GL, (=)
such that

AT—TA'=T B =TB, C=CT"!, E(D)=E(D)

These equations are equivalent to
T O0|{DI,—A -B DI,—A —FB T 0
0 I, c Ep| | ¢ E®|o0 1,
Lemma 3.1

If P and [’ as given in Definition 3.1 are similar via T it follows that

(DI, — A)(B)= T(DI, — A)(B) for every ieN
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Proof

For i =0 the equality holds by Definition 3.1. If the assertion is valid for i >0
then

(DI, — A 1(B)=(DI,~ A)[T(DI1,— A)(B)]
=[T(DI, — A)][(DI,— A)(B)] O

As a consequence, for the controllability matrices of similar systems, (4, B),
(A, B)e o/"*"*™ we have

T-K(4, B)= K(4, B) (3.3)

Applying Rosenbrock’s deleting procedure (see Rosenbrock (1970), p. 90) to K(4, B)
for a given (4, B)e o/"*"*™ we get

H:= [blla d’(d’ _.lbl)a Ty (¢*1b1)(k1_1)5 bZ’ sres (¢*1bm)(km_l)] € dnxn’ (34)

with ' < n where b, ..., b, denote the columns of B. If k;=0 the corresponding
column in H is omitted.

Note, if ¢(¢~'b;)" is linearly dependent on its predecessors then ¢(¢p~1b,)U+ 1 is
too. This is not valid, in general, if one constructs a matrix H(f) for fixed te R and
| considers linear dependency over R.  Consider in Example 3.1, K(4, B) at t =0 and
"~ t=1. Thus there is no chance to define time-varying k; pointwise by the same
deleting process.

The numbers k4, ..., k,, are called the controllability indices of (4, B) and because of
(3.3) they are invariant under similarity.

The following example will also be used later to illustrate new definitions.

Example 3.1
Let

expt —expt 0
(A, B):=] 05,3, | t—1 1 t
0 t t

It is easily computed that

expt —expt O expt —expt 0 expt —expt O

|
K(A,B)=|t—-1 1 t 1 0 1 i 0 0 0
0 t t 0 1 1i 0 0 0
and
exXpt expt —expt
H=[b,b,b,]=|t—1 1 1

0 0 t
Therefore (ky, k,, k3) = (2, 1, 0).
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Definition 3.2
A system

DI,—A -B
]EM[D]("“’) x (n+m)
C E(D)

is called controllable if for any (x,, to)€ R" x R there exists a t; > t, and a ue %™ with
supp u < {to, t;} such that

ty

Ly, to)xo + f o(t, s)B(s)u(s) ds =0

to

where ¢(-, t,) denotes the transition matrix of (4, B).

Other authors (for example, Kalman (1962)) only require that the control
functions are piccewise continuous. But for analytic state-space systems it is not
restrictive to require that ue %™ Moreover, controllability and total controllability
(i.e. controllability in every open non-void subinterval of R) coincide for these systems
(see Silverman and Meadows (1967) and Iichmann et al. (1984, Appendix)).

Proposition 3.1
Given

DI,—A —B
P= eJ%[D](rﬂ-p)><(n+m)
C E(D)

with controllability indices k,, ..., k,,,

then the following are equivalent:

(i) P is controllable
(i) tk K(4,B)=n
(iii) rk K" 4, B)=n

i) ¥ k=n

Proof

As mentioned above, it is not restrictive if ue %™, and therefore “(i)<>(ii)’ can be
proved using Silverman and Meadows (1967, p. 69). ‘(ii)<>(iv) and (iii)<>(ii)’ are
immediate. It remains to prove ‘(ii)=>(iii): without restriction of generality assume
ky=1,....,k>1, k,,=...=k,=0. The assumption that there exists i>1 such
that k; >n— 1+ 1 leads to the contradiction

1
n=Y k>l—-1+n—I+1=n
i1

Therefore k;<n—1+ 1 for i=1,...,m and (iii) is proved. U

4. Minimal bases of .#[ D]-right modules
In this section we analyse submodules of the free .#[D]-right module .#[D]" and
characterize their minimal bases.
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If » is a right- (left-) .#[D]-module, its rank is the cardinality of any maximal
right- (left-) linearly independent (over .#[D]) subset of element of » (see Cohn (1971,
p-28)). Since .#[D] is a right and left euclidean domain (see Ore 1933) it follows for
the free .#[D]-right module .#[D] that each of its submodules is also free and of
rank at most r (see Cohn (1971, p. 46)).

For a matrix P e .#[D]"** the column (row) rank is defined as the rank of the right
(eft) .#[D]-submodule of .#[D]" (#[D]"**) spanned by the columns (rows) of
P.  Both ranks coincide (see Cohn (1971, p. 195)).

For v:= (v',...,v")Te . #[ D] let

degv:=max {deg¢’, i=1,..,r}
where deg v denotes the usual degree of v e .#[D].
For V=[v,,...,0,]e #4[D]"** let A;:= deg v; be the ith index of V (1 <i< k) and
k
ord V:= )}, the order of V.
i=1

Let » be a right-.#[ D] submodule of #[ DY, written » ¢, #[D]". If m is of rank
k then Ve #[ D] ** is called a minimal basis of w if .= V- M[DJ, ie. Vis a basis of
m, and V has the least order among all bases for .

Ai
Lety,= Y Div;fori=1,...,k. Then the leading (column) coefficient matrix of V
j=0
is defined as
V] i= [o1,5 5 Uk 2 ]

Note that this matrix does not depend on the side on which the coefficients of the
column polynomials v; are written.

The following proposition characterizes a minimal basis of a .#[D]-submodule of
[DY. This is a generalization of Forney’s main theorem (1975, p. 495), see also
Miinzner and Pritzel-Wolters (1979, p. 293).

Proposition 4.1

Let e =V-#[D]* with V=[v,,...,0]eA[D]** and J,,..., A, denote the
indices of V. Then the following are equivalent:

(i) Vis a minimal basis of »
(i) tk[V],=k
(il)) For any x =(x,, ..., x;)" e #[D]*\{0}

deg Vx = max {deg x; + 4;|x; # 0}
(iv) For deN, d >0 the .#-vector space
my = {veEm|degv < d}

has dimension dim 4 #e; = Y, (d+1— 1)
iiA2d

Proof

) .
() = (ii): Let (my,...,m)"e.#*\{0} such that ) [v,],m;=0 and 4, be the
i=1



Time-varying systems and system equivalence 767

maximal index of V with m,# 0. Then

k Ai—1 )
vi= ) oD% m = z < Z Diy; +Ij‘vi’h>D“P"”mi
=

i i=

k

Z Div; D%~ 2, 4 Zﬁ(D“P Ay, 5+ wom;

i=81j=0 i=91

with w; such that degw; <4,— 4
k
=w+D* Y v, m
= Y

with w such that degw < 4,
=w

Since

K
v, = (v’ -y v,-D"“"“)m,-)m,,_1

i=9,i#p
the matrix [vy,...,v,_, 0, Up+ir---> Uy] 1S @ basis with lower order than V. This
contradicts (i).
(i) = (iii): Let x = (x4, ..., x,)" € #[D]*\{0}. Then
k
deg Vx =deg ) v;x;% max {deg x; + A,|x; #0} =:a
i=1
Let ;1= deg x; for i = 1, wkand N:= {ie{l,...,k}|l;+ A4, =a}. Then

Dl 3 P

)—'

e

1]

[=]
~.

Il

Vx =

i 0

i

M::-

DJ Z D vu+yuu) in

[o]

101

with y,;; such that deg y,;; < u
=D} vy Xy, +y
ieN
with y such that deg y <a

(iif)=>(iv): Use similar arguments as in Miinzner and Pritzel-Wolters (1979,
p. 294).

(iv)=(i): Forde Nlet h(d):= 3 1,ie. the number of indices of V equal to d. (iv)

yields pasd
M= Y @+1-2)+@d—1-A)-2d=2)— ¥ @—1-2)
itA;<d ithi=d
=Z(d+1—,)+2(d 24+1-4)— Z(d—l—

—2 Y @—14+1-4)

iA;<d

dim 4 2y + dim gy wey_, — 2 dim 4 4,
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If (iv) is valid, h(d) is only determined by the module not by the specific basis. All
bases which satisfy (iv) have the same order 1 Z A= Z d-h(d). Since for a

minimal basis of » (iv) is fulfilled, it follows that V is a mmlmal basis. g

Remark 4.1

The last part of the above proof shows that two minimal bases of a given
submodule » ¢, # [ D] have the same set of indices. We call the indices of a minimal
basis of s thevindices of m.

Remark 4.2

Given s o M[D]" of rank k one can select k vectors which form a basis of » (see
Rosenbrock (1970, p. 96)). Part (i)=>(ii)’ of the above proof leads to an algorithm
which starts with an arbitrary basis of » and constructs a minimal basis in a finite
number of steps.

Definition 4.1
Let we, w' o M[D]. A right-#[D] homomorphism y : s — » is called degree-
preserving if deg v = deg Y(v) for every vem. Let

= {Y :9n = m|Y is a right-#[D] isomorphism}

Fixing a minimal basis V of a given submodule » ¢, .#[D]" one obtains a bijective
map:

h:{V'|V'" is a minimal basis of »}—T,
Vish(V'): Vx—V'x
(cf. Miinzner and Prétzel-Wolters (1979)).
To every h(V')el’,, one can assign a unique basis transformation matrix

TeGL, (#[D]) with W(V')=VT. If V and V are two minimal bases of » with
ordered indices 4, >... > A, and V= VT, then T is an element of

T = {Te GL, (#[D])

degt;; <Aj—4; for 4;<A;
t;=0 for A;> 4;

This implies that T is of the following form:

[+]

with square diagonal block corresponding to the columns of V with the same degree.

Proposition 4.2

Let V be a minimal basis of a submodule » <, #[D]" of rank k with ordered
indices 4, > ... 2 4,. Then V= VTis a minimal basis of » if and only if Te 7
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Proof

Let V=_[vy,....,0.], V=[0y, ..., 6] and T=(t;}); i <s-

‘=" Use the same arguments as in Miinzner and Pritzel-Wolters (1979, p. 295).

‘<=" First we show that the indices of ¥ coincide with those of V. Consider a
subset J:= {p, ..., I} of the minimal indices with 1,_; <1,= ... =4, </4;,;. Then

k
deg v; = deg _; vty <max {deg v;t;|1 <i<k} <max {(4;+(4;— A1 <i<k} =1

Therefore for jeJ there exists iyeJ such that ¢
blocks are invertible over .#). This implies

.. %0 (since Te 7 ,,, the diagonal

deg v; = deg Vi; = max {(deg t;; + A))|t;; # 0} = deg t; ; + A, = 4;
which proves that
degv;=degv; for l<i<k
If je J we have the representation
U;=Uptp;+ o F 0L+ Uppilyg 1 0 + U
Since t,,...,t;€.# and degut;<4i; for ie{l+1,..,k} we conclude that
(5;1,= Zkzl [v,],t% where ¢ is the coefficient of D*~*int;;. Therefore [V],=[V], T*

and T* is invertible since the diagonal blocks of T and T* coincide and
TeGL, (#[D]). So [V], has full rank and ¥V is a minimal basis. O

5. The input module and its minimal indices
For a system

P -0
P= D (n+p)x(nt+tm
[V W}Gﬂ[ ]

lichmann et al. (1984) analyse the differential equation P((z,u)")=(0,y)" for
(z,u, ) €(E°) x U™ x (€°)". In this section the algebraic equation

Pz=Qu for (z,u)e #/[D]" x H[D]"
is considered.
Definition 5.1

Given [P as above and the projection
7, HM[D]" x M[D]" > #[D]", (z,u)—u

the input module of B is defined as

WP, Q):= my(ker [P, —Q])o .4 [D]"
where

ker [P, —Q]:= {xe.#[D]*"*™|[P, —Q]x =0}

We use this notation in order to show the close connection with time-invariant
systems as analysed in Miunzner and Pritzel-Wolters (1979). Note that u(P, Q)
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coincides with the kernel of the controllability map
@: M D]"—> M[D]"/P- M[D]", u—Qu+P-M[D]"

The following lemma shows that the minimal indices of the input module are
invariant under system equivalence.

Lemma 5.1
For two system matrices

P =0
P, = €MDYt Pxtm i )
2

with P, < P, it follows that u(P,, Q,) = u(P,, Q,).

Proof

Use Iichmann et al. (1984, Proposition 5.3) to describe the system isomorphism.
Then the proof is similar to Miinzner and Pritzel-Wolters (1979, Proposition 4). [

A consequence of the following proposition will be that the input module of an
analytic state-space system can be characterized in terms of the matrices (DI, — A)(B),
see (3.1).

Proposition 5.1 , ,
Let (4, B)e /" "*™ and u= Y D'(—1fu;= Y (—1)4;D'e #[D]". Then the
i=0 =0
following are equivalent:

(i) ue(DI,— A, B)

(i) K*(4, B) (g )" = 3 (DI, — AY(Bju; = 0
<o
(i) ¥ (DI, — A¥(Bi) =0
=0

Proof

We make us of two multiplication rules which can easily be proved by induction.
Let Ne #[D]"*", keN and x,, ..., x,€ #". Then

ND*= i (— 1)i<1;>D"“'N“’ (5.1)

—1

N3 D=3 i_(—l)“(l l .)N‘“’xl (52)

()<=(ii): If ¢(+, to) denotes the transition matrix of X = Ax then [DI, — A]x = Bu
for xe .#[D]" is equivalent to

DI,¢ 'x=¢ 'Bu (5.3)

k—1
LetX:= Y D'x;:= ¢ 'xand B:= ¢ 'B. Use of (5.2) yields that (5.3) is equivalent
i=0
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to

N
)

i
-

Comparing the coefficients we get for i=1, ..., k

1

k

= Z BP, and x,_,= i_(—l)‘( ii>1§“‘_i)u,1 (5.4

By Lemma 3.1, the first equation in (5.4) is equivalent to (ii). On the other hand, let u

satisfy (x) )Then using similarity and the second equation in (5.4), xe #[D]" is
defined such that [DI — A]x = Bu.

(i)<=>(iii): Let x = Z x;D'e MDY such that

(DI, — A)x = 2 (x;DI, + (DI, — A)(x,))D BZ(—I)

8

By comparing the coefficients we get
(DI, — A)(x,) = Bii, )
Xo + (DI, — A)(x,) = Bii,(—1)
: > (5.5
X2 + (DI, — A)(x; - ) = Bify _,(—1)*!
Xx—1 + (DI, — A)(x,) = Bit,(— 1)

7

Substitution yields
k
0= Bip — (DI, — A)(Bily(=1)— (DI, — A)(...)) = Y (DI, — AY(Bi)
i=0

On the other hand, if (iii) is valid, by (5.5) xe M[D]" is defined such that
[DI,— A]x = Bu. This proves (i). ]

For (4, B)e /" *™*™ the map
K p: M"[D]—> . M"

Z Dl(_ l)iuiHKr(A’ B)(an ceey ur)T
i=0
is a right .#-homomorphism. Using this notation we obtain the following.

Corollary 5.1
() The map y :ker[DI, — A, — B] — ker KA,B
(2, u) u
is a degree-preserving .#/[ D]-right isomorphism.
(ii) ker K, = (DI, — A, B)

Proof

(z, w' eker [DI, — A, —B] implies that deg z <deg u and therefore  is degree-
preserving. That  is surjective and injective is a direct consequence of the proof of
Proposition 5.1 “(i)<>(ii)". O
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The following lemma will be used to prove that the set of controllability indices of
a state-space system coincides with the set of minimal indices of its input module.

Lemma 5.2
Let (4, B)e"*"*™ be controllable with controllability indices k,, ..., k,,.
There exist T e GL,(.#) and U € GL, . ,,(.#) such that
Tt 0
(@) T-[DI,— A, —B]- . —[DI,— A4, —B']

m

where
B
. , ki—1 Okifl,m
B = , Bi=(—1"
0 .. 0 1 * *
B, 1
ith column
and B; is omitted if k,=0
0 1 : _
| 0
|
0 1:
* * | % o % | <5 th row
______ - - -
A =
io 1
[
0 i
01
|+ - % : * o * |5, th row

sii=k; + - +k;fori=1,...,mand k; >0, and the ‘#’s are clements of .#.
T—l

0
(i) T(DI,— A4, —BJ[ . ]U=[diag (Lt ooes L), O ]

m

where
[:= l=rk,B
ithk;>0
and
D -1
L= " | ed[DJF &Y for k;>0
D -1

Proof

First we show an elementary property which will be used in the proof. Let
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g%, be #™ reN be such that

0 forv<r
o _
&b {1 forv=r+1
Then

0 foru+v<r

5.6
(=1 forp+v=r+1 (56

g(u) bV = {

This is proved by induction on u. Assume that the assertion is valid for u <r + 1.

Let u+v=r. By assumption, g®p"”*V =(—1)* and since g™ b™ =0 we have
0= (g(“) b(v))' — g(u+ Dpe 4 g(u)b(v+ by g(u+ Dp™ 4 (_ 1)“. Therefore g(u+ Dp —
(— 1P+,

Let p+v<r. Then by assumption g¥Wbp™ =gWp®*D =0, Thus 0= (g®h"») =
g** Y™ +0. This completes the proof.

We proceed in several steps.

(x) Without restriction of generality we may assume that A=0. Let
B=[b,,...,b,]. For H as given in (3.4) use the representation I,= H 'H in the
following form

ky—1 ki—1 ko — 1
[by, oy B0 by bR B ke 1]

g |1 |
I
I
|
g5, 11
S a
_____ | |
85 1+1 i 1 I
| |
| |
! |
! |
__‘g:s'__ L______l_l
''''' r-—-—7="
s 1+1 i1 |
I I
| |
| |
|
| &, | oo 1

If k; = 0 the matrix [g,, 1y, ..., &, 1" is omitted.
Furthermore define

&s,
&s,

km—1)
[ g6
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(B) We prove: B'= H,B. It suffices to show for i€ {1,..., m} and k; >0 that

[Bys vy biseves ] = T (—1)

ith column

s

ki—1
gl v

(B,) It is proved that
8s;
[bl’ LS} bi—l] = Okix(i—l)

ki—1
g~ v

Let je{l,...,i—1}. Then by (a) it is known that g,b®’ =0 for v=0,...,k;— 1 and
k>0, Ifk—1<k,—1let
b§kj) = Kouo + ... + Kkj_lu]',___t + Kkj(ul’kj, eny uj*lvkj’ 0, neesy O)T
k;- 2

with u; ;=0 if b is not a column of H and K,:= (DI,— M)(B). Using (a) we
conclude g, b%*) = 0. Proceeding in this way we obtain g, b{” =0for v=0,..., k;—

ji—-1
and k;>0. If k;=0 let b;= ) bu, with u;=0 if k;=0. Then g, b\ =
A=1

-1 v
g Y, 3 (;) b~ "u$ and the foregoing implies that g, b’ =0for v=0,....k; — 1.

1450

Forje{l,...,i— 1} use of (5.6) yields g#'b{’ =0 for u+v<k;— 1. This proves
the assertion.

(B,) We show that

s
[bn-n,bm]=:0wﬁ1)ﬂm—i+n

di-1
gl i~ 1)

Let je{i,...,m}. () implies g, b’ =0 for v=0,...,k;—2 and k;>0. Using the
same arguments as in (8;) we obtain g b =0 for p+v<k; —2.
(85) It remains to show that g%~ V[b, ..., b, ]=(L* ..., *)(—1"1 With (o)
and (f8,) one concludes that
0 forv<k;—2
b = !
Baii {1 forv=k;—1
(5.6) implies
ZPB = 0 for y+v<k,—2
s (=1 foru+v=k—1
(y) It is proved that H, € GL,(#). Let v' € 4" and vH, =0. Using (B) yields:
0=vH,B=vB. By the special form of B’ it follows that v,, =0,..., v, =0. Using
the results of () we conclude

Bl 0k.-*2,m
. _ 2
HB=|:| withBi=]0o .. 0 1 * . x| (=pk?

B * o *
1

ith column
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and B is omitted if k,=0. v-H;B=0impliesv,,_;=...=v, _,=0. Proceeding
in this way we have v =0, which proves the claim.
(6) To prove part (i) of Lemma 5.2 define

H' 0
[DI,— A, —B]:= H,[DI,, —B] o I

m

Since HT = HT(HT ') (— HT) it follows that for HTA'T = HT, 4’ has the claimed form.

(¢) Part (ii) of Lemma 5.2 is easily proved: One can choose an elementary matrix
U’ over .4 such thatin [DI, — A’, — B']JU’ the “* of A’ are annulled. Multiplying the
columns of B’ by units and exchanging the columns of the matrix gives the claimed
form. .

Note, that in Lemma 5.2 we do not call (4’, B') a normal form of (4, B) since T'is not
necessarily an element of GL, ().

Proposition 5.2
Let (A, Bye &/™*"*™ be controllable. Then
(i) The set of controllability indices of (4, B) coincides with the set of minimal
indices of (DI, — A, B).
(ii) dim 4p) W(DI, — A, B) =m.

Proof

By analogy to Rosenbrock (1970, pp. 96 and 97) it can be proved that the minimal
indices of ker [DI, — A, B] are invariant under transformations as considered in
Lemma 5.2. Then the proposition is an immediate consequence of Lemma 5.2. [J

Now we discuss the relations between the input modules of time-varying and time-
invariant systems.
For [P, —Qle #[D]"*"*™ et

pegpy(P, Q) := {ue R[D]™|3z € R[D]": Pz = Qu}

Consider a time-invariant controllable state-space system (A4, B)e R"*®"*™_ Then
Proposition 5.2 and Theorem 1.1 in Rosenbrock (1970, p. 96) yields:

dim 4;p (DI, — A, B) = m = dimg,; w(DI, — A, B)

Proposition 4.2 implies that for every minimal basis U of y(DI, — A, B) there exists a
transformation matrix Te J ,, such that U=UT and UeR[D]™*™ with constant
coefficients. For an arbitrary controllable system (A, B)e o/"*™*™ the module
u(DI, — A, B) does not necessarily possess a minimal basis over R[D]. Consider for
example

1+Dt—1)+D*(t—2) 1+Dt 1

U:= 0 1+ Dt 1

0 0 -1

which is a minimal basis of w(DI;, B), where B is defined as in Example 3.1. It can
easily be concluded that U cannot be transformed to a minimal basis over R[D].
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Example 5.1

We illustrate how (4, B) as given in Example 3.1 is transformed to (4’, B') as given
in Lemma 5.2.  We only calculate the matrix B’; 4’ is left to the reader.

[ —exp(—0) 1 —2t7!
H'=@t—-2)"'|exp(—0)(t—1) —1 1
0 0 (t—-2u!

Since s, =2 and s, =3, it is calculated that H, as defined in (o) of the proof of
Lemma 5.2 is of the form

—1 N
eap(-n  —a-2" (-2
H=|-t*43t-3 B B
! Wexp(—t) (t—22 —(@-2) 2
| 0 0 it
and
0 00
B':H1B= -1 1 0
01 1

In the remainder of this section we construct a minimal basis of the input module
of a controllable state-space system. (Cf. Kalman (1971) for the time-invariant
case.) Let (4, B)eo/"*"*™ be controllable and use the notation as given in (3.1),
(3.2) and 34). Forie{l,...,m} there exist unique elements 4, ; of .# such that

¢(¢~1bi)(ki) =B(A1,0, s Amo)' + - + (DI, — AT B Ay =15 -5 Amgio1)"
+ L7 b )™, ., ¢ b= ) Ty s eor A 4)T
with
'li,j =0 if ¢(¢7 lbi)(j) ¢ H
Fori=1,...,m define

ki—1

u; = Zo Dj(—l)j(/ll,j,...,/lm,j)T+D""(—l)""(il,h,...,/li,lyki,—l,O,...,O)T (5.7

e

Using this notation we obtain the following,

Proposition 5.3

For a controllable (4, B)e /"™ *™ the matrix U := [u,, ..., u, ] € #[D]™*™ with
u; as defined in (5.7) is a minimal basis of (DI, — A, B).

Proof

Let V=[v,,...,v,] be a minimal basis of (DI, — A, B). Assume without restric-
tion of generality that k, > ... > k,,. Since the minimal and the controllability indices
coincide, let degv; =k;. By construction, we have u; € ker K, p=uDI,— A, B).
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Thus there exists a Te .#[D]™*™ such that U = VT. By Proposition 4.2 it remains to
show that TeJ ,p;, -4 By Proposition 4.1 (iii) and construction of u; it
follows that

k;=degu; =max {degt; +degv;|j:t; #0} fori=1,.,m
This implies deg t;; <k; — k; for k; <k, and t;; =0 for k;>k,. Since
(_1)k|+1
[(Ul,= 0 *
(_l)km+1

the columns of U are linearly independent over .#[D], see proof i)=-(iiy of
Proposition 4.1. Therefore T is non-singular. Due to the special structure of 7] its
diagonal blocks are non-singular over .#. Thus Te GL,(.#[D]). 0

Example 5.2
We compute a minimal basis for the input module of the system considered in

Example 3.1. Using the procedure given in Proposition 5.3 one obtains
b = B(1,0,0)" +(B— AB)(1 —1,0,0)T-2—1)~ !
and
u,=(1+D(t—1)+DXt—2),0,00"2—1)"'eu(DI;, B)
Furthermore
bV = B(1,1,0)" + (B — AB)(—t,0,0)T ¢!
and
uy=(1+4Dt,1+4Dt,0)Tt !
The matrix
[0 0 Dexp()2—t)+exp(t)(t—3) |
0 -2 DU—-tit—2)+20t—2)—(1—1)?
0 - 0
V=
1 14Dt 1+D(t—1)+DXt—2)
1 14Dt 0
| —1 0 0 |

is a minimal basis of ker [DI;, —B]. This is true by construction and in addition

because of Proposition 4.1 since

03x3

1
tk [V], =1k . =3
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At least
1 1+Dt 14+DEt—1)+D*(t—2)
w(DI;, B)= 1 1+Dt 0 - M[D]?
—1 0 0

with minimal indices (0, 1, 2).

6. Geometric indices and controllability

Following Brunovksy (1970, p. 179) we introduce a third class of indices.

Let (A, Byes/"*"*™ and consider K'(4,B) as in (3.1) for fixed teR, ie.
KYA(p), B()) e R+ Vm  Define

ri(): = rkp K'(AQ), B(f) — tkg K~ (A(2), B(0)) 6.1)
fori=0,..,n—1 and rky K~ YA(t), B(t)):= 0.

Let a;(t) be the number of r(t)s which are greater or equal to i, i.e.

w®):= > 1 fori=1,...,m 6.2)

Jr>i

Since (A, B) is analytic, it follows that r;(t) = const for t € R\N, where N is a discrete set,
and o,(t) = const for te R\M, M = N. Then on R\N we have

0%r, ()% ... €ry() < 1kg B)<m
and
0=a, )< ... €o,()En

The functions ay, ..., a, are called the geometric indices of (A, B).
The following example demonstrates that the information on (4, B) contained in the
r;(t) may be lost if we consider a(t).

Example 6.1
Consider the system given in Example 3.1 (resp. Example 5.2). Then

1 fort=0

ro(t) = rkg Blt) = {2 for t #0

) 2 fort=0
ri(8)=rkg [B(t), B(®)] — kg B(t) =3 —ro(t) = {1 for ¢ 0

ro(t) = rkg K(A(t), B(t)) — rke [B(t), B(t)] =0
and (a,(2), a5 (0), o3(1) = (2, 1, 0).

Proposition 6.1

For (A, B)e o/**®*™ the set of geometric indices of (4, B) coincide with the set of
minimal indices of (DI, — A, B) on R\N, where N is a discrete set.

Proof
The proof follows the proof of Miinzner and Pritzel-Woiters (1979, p. 298) for the
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time-invariant case. Let V;:= {veJ?[D]ldeg v <d}, then
K, 5(V)) = {K%(A, B)[ug, ..., us1"|ug, ..., uge M™)
The map
I KA.B(Vd) - Va/Vanker KA,B
Kug, ..o ug]"—ug + .. +Duy+(Vynker K 4 p)

is a #-right homomorphism.
Let s;,:= Vynker K, 5. Then

dim 4 K o 5(V;) = m(d + 1) — dim_y, e, : (6.3)

From now on we consider the system on a non-void open interval where the ri(t)s
(i=0,...,n—1)as defined in (6.1) are constant. Let h(d) denote the number of indices
of w(DI, — A, B) equal to deN.  Using the proof (iv)=(i)’ in Proposition 4.1 we have:

h(d) = dim_y, eg + dim g smy_, — 2 dim , my_, (6.4)

It remains to show that h(d) = k(d) for deN, where k(d): = Y landay,...,uq, denote

Loy=d
the set of geometric indices of (4, B). Since ) kid)= Y 1= Y l=r_, it
ddzl i 21 il<igrn_,

follows that
kd)=ry_y~r;=2r1k, K" (4, B)—rk , K*"%(4, B)—rk , K%A, B)
The equations rk , K%(4, B)=dim , K 4.8(Vi-1), (6.3) and (6.4) yield
k(d)=2dim , K, 5(V, 1) —dim 4 K 4 5(V;,) —dim , K , 5(V})

=dim , #e, + dim 4 wey_ 5 —2 dim 4 sy _ | = W(d) O
Now we are able to characterize controllability by all of the indices discussed before.

Proposition 6.2
For (4, B)e o/ *®*™ the following are equivalent:

(i) (4, B) is controllable.
(i) The sum of the controllability indices of (4, B) is n.
(iif) The sum of the minimal indices of (DI, — A, B) is n.

(iv) There exists a non-void open interval I =R such that the sum of geometric
indices of (A4, B) on I is n.

Proof
For ‘()< (ii)=>(iii)=(iv)" see Propos1t10ns 31, 5.2 and 6.1. We prove ‘(iv)=(i).

Let Z {()=nonl. Since Z o (t) = Z Y 1= Z ri(t) = rkg K(A(t), B(t)) on I, it

=0 iigry) J=0

follows from Proposition 3. 1 that (4, B) is controllable |

In Ilchmann et al. (1984, Definition 6.1) controllability for systems in differential
operator representation is defined as follows.
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Definition 6.1

P —
P:[V WQ]E/’[D]("”)X(”’") is called controllable on [to,t,] if for any

z%eker P there exists a control ue#™ such that

204 fore<t
] — Y
(Z +Z“)(t)_{ 0 fort>t,

where z, denotes the forced motion starting from zero under control u, see (2.4).

Since controliability (cf. Ilchmann et al. (1984), Remark 6.2) and the input module is
invariant under system equivalence (see Lemma 5.1) one can use a state-space
representation for the system matrices (cf. llchmann et al. (1984), Proposition 5.7) and
the foregoing Proposition 6.2 to prove the following.

Proposition 6.3

P - . . . .
P= |:V WQ]G,//{ [D]¢* P >x&*m is controllable on an interval IeR if and only if

the sum of minimal indices of u(P, Q) coincides with dim ker, P.

This proposition also shows that the input module is an appropriate tool to
generalize invariant indices for time-varying systems in differential operator
representation.

In the following it will be explained how different definitions of controllability in the
case of state-space systems are related.

Definition 6.2

A system (A4, B)e o/"*®*™ is said to be uniformly controllable if tky K(A(t), B(t)) =n
for every teR.

While in the single-input case this condition is equivalent to controllability and

constant r;(t)s, for multi-input systems uniform controllability is not sufficient to
guarantee the existence of a normal form. Consider, for example, the system

(ofs e

and assume that there exists a Te .#%*2 such that

o 2o 1

with be.&/. Then this equality implies

7! ¢
T=|", i |#CL), cew
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Remark 6.1

For (4, Byes/""*™ let He o/"*" be given as in (3.4). The value of H at teR

will be denoted by H(t). Then the following implications hold due to the construc-
tion of H:

tkg H(t)=r1k ,H for every te R

=rit)=const fori=0,...n—1
n—1 m

=rtkp K(A(t), Bt) = ) r;= Y a;=rk,H forevery teR
i=1 i=1

In general the inverse conclusions are false. To see this, consider (4, B)=

t 0 1 2ys _ _ _ [t o
<0, [0 { O])eazl . Then ro(t) = rkg B(t) =2 and r,(t) =0, but H = l:o 1]
t 0
For the inversion of the second implication consider (4, B) = <0, [ 0 IJ) e.af?x4,
Then

rkg K(A(2), B(t)) = rkg [3 (1) (1) (1)] =2=rke [(t) (1)}

and, in addition, (4, B) is uniformly controllable. But

2 fort#0
t)=rkg B(t) =
ro(t) = rkg B(t) {1 fort =0
7. Formal transfer matrix
In Ilchmann et al. (1984, Definition 7.2) the input—output map G of a system

P - ..
P= [V WQ] €M[D]"+P>*+m i introduced:
G U™ > Y*
u—Viz,) + Wiu)
where z, is the forced motion starting from zero under control u, see (2.4).

In the following we introduce the formal transfer matrix G — VP™'Q + W and
analyse its connection with G. For this, let

M(D):= {p~'qlpe M[D]*, qe .#[D]}

denote the left-skew field of fractions of .# [D]. This field is constructed as follows
(cf. Cohn (1971), p.20): For pairs (p,q)e #[D]* x #[D] we define an equiva-
lence relation between them by the condition: (P1> 41) =(p,, q,) iff there exist
uy, up € #[D]* such that

(1.1)

Upr=up, and u,q, =u,q,
The equivalence class containing a pair (p, g) is denoted by p~ 'q. The multiplication
pilay - p: 'q, =(“2P1)¥1(U1Q2) with u,, u, € #[D]* such that Uip; =uzq,

depends only on the equivalence classes of the factors and is associative.
For Pe .#(D)"*™ it can be proved (analogous to the commutative case) that there
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exist Ue GL, (# (D)) and U’ e GL,, (#(D)) such that

P=U diag(l,..., 1,0,...,0)U’
T

rth element

The number r is called the rank of P, rk P =r, and it coincides with the maximal
number of right linear independent columns or left independent rows (over .#(D)) of
P. Furthermore for n < m(n = m) we have

P is right- (left-) invertible iff rk P =n(=m)
Definition 7.1

Let P= [;}; _WQ]GJI[D]"‘*")X‘”"". Then G=VP 'Q+ We d(DP*™ is
callefi the formal transfer matrix of P.

G can be associated with an operator acting on %™ in the following way (see (2.4))

G:U™—>UP
u—(VP~1Q + W)(u)
with (P~ 1Q)(w):=z, and (z,,u)"eM (P, Q)

Therefore G(u) = G(u) for every ue %™

If P= |:DI" —B] e M[D]"*Pxt+m 45 an analytic state-space system with

C E(D)
constant free motion it follows that

[C (DI,) !B+ ED)](u(t) = C(t) J t B(s)u(s) ds + E(D)(u(t))

for every ue #™.

Unfortunately the formal transfer matrices of time-varying systems do not form an
R-algebra with respect to the usual multiplication of matrices over a skew field:
If Pe#[D]"*" and Qe.#[D]*™ then P 'Qe.#(D)"*™ can be interpreted
as an operator on #™ only if P is full and im Q <im P. But the set
{P~1Qe #(Dy"*?|Pe #[D]"*" full w.r.t. o/, Qe #[D]"*? and im Q < im P} do not
form an R-algebra. 1f P;'Q,-P,'Q, =P 'Qand P,, P, are full, in general P is not
full.

Lemma 7.1

{VP"Q+ We #(D)P*™

P _
[V WQ:|E,//Z[D]‘"+’”X("+'"’ is a system matrix, ne [N}

is an R-algebra with respect to the following multiplication and addition:
-0
(ViPT'Q + W)O (P10, + Wa)=[0,V,, Wo,PT1] | O |,
W,
P, 0 0
P=(0 P, -0,
vy 0 —I,
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0,

P 0o (!
(VlPl‘Q1+VV1)@(V2P;1Q2+W2)=[—VI,V2][01 J [

P, :|+W1+Wz

2

These operations correspond to series and parallel connections of systems, see
Rosenbrock (1970, p. 125).

Proof

We prove that P is full w.rt. of. The state-space representation for system
matrices (see Ilchmann et al. (1984), p. 353) yields

Pi _Qi DIn!- —Bi
2 EJZ/[D](M+IJ)><(M+M), n[.:dim kerﬂ P, i=12
i W C; E«(D)

Using this representation and the fact that the full matrix

DI, 0 0 Dr, 0 0
—-B,C, DI,, O is equivalent to 0 DI, —B,|:=P
C, 0 -1, C, 0 -1,

we conclude

P —0Q | —B,
|
P 10 P00
I L !
______ 0 N T
0.V, W1 0 0,Cp, Ex(D) 1 0
The property full is preserved under system equivalence. Thus P is full. O

Lemma 7.2

Both the formal transfer matrix and the input—output map of a system matrix are
invariant under system equivalence.

Proof

For the latter, see llchmann e al. (1984, Proposition 7.3 (a)). We give a proof of
the first statement. Let

P, —Q;
Pi= e[D]mrmxmrm i=1,2 and P, %P,
With the notation of (2.2) we obtain
XPi+Vi=WT, —-XQ+W,=V,Y+W, TP, =P, T,, —TQ,=P,Y-Q,
Using the equations in this sequence we conclude
ViPTIQ + W = (TP — X)0, + W, =V, Y + VyTiPL'Q + W,
=V, Py P, Y+TQ) + W, =V, P50, + W, 0

The following lemma is used to give a proof of the main result of this section.
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Lemma 7.3

DI, —B
Let P = € oA/ [D]" P *(+m with input—output map G given. Then
C ED)

there exist k(D)e #[D]* and N(D)e .#[D]?*™ such that (k(D)I, > G)(u) = N(D)(u) for
every ue ™.

Proof

N -1
(i) For c¢,besf we prove: (coD b)(u)= <<D — g) cb)(u) for every

N -1

ue9. Multiplication in .#(D) implies cD~'={( D “%) e Let D™ 'b(u) = z, with
c

I3 41 .
(z,,w)e M . (D, b) and <<D — S) cb>(u) =z, with (z,,u)e M , <D — %, cb). It re-

. _ . ¢ . .
mains to show that ¢z, =z,. Since the kernel of <D — —) consists only of analytic
c

functions (see Ilchmann et al. (1984), Lemma 2.5) and z, and z, have bounded support,
the proof is achieved if (D — g)(cz‘u —z,)=0. The latter follows from <D - f>(cz',,) =
c
(Dc — O)(Z,) = cD(Z,) = cbu = (D _ 5>(zu).
¢
(i) Let ({(c;;)=Cand k= kij<D - (c—:i’—> € [ D] be a least common left multiple of
ij
iy
Applying (i) we conclude
(k1= G)(w) = (kl,=((c;}))> DB+ kI, E(D))(u)

- (klpo (( - %}) lcij>B + kl,,E(D))(u)

:= N(D)(u) O

cij¢0,1<i<p,l<j<m}.

Proposition 7.1

Pi - Qi
Let P, =|: }eﬂ[D]‘"”””“”"*"" with input—output map G; and formal
|4 i

transfer matrix G, be given, i =1,2. Then G, = G, iff G,(u) = G, (u) for every ue%™.

Proof

Because of Lemma 7.2 and the state-space representation for system matrices (see
Iichmann et al. (1984), Proposition 5.7) we may assume without restriction of
generality that

DIn). _B).
P, = € A[D]m+Pxetm 712
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Let ((¢})=C, for A=1,2 and k(D) be a least common left multiple of

()

N,(D):= k(D)II,(C,lD‘ll,,AB,1 + E;(D)e #[D]"*™ for A=1,2. Use of Lemma 7.3
implies (k(D)>(G, — G,)}(u) =(N (D) — N,(D))(u). From Ilchmann et dl. (1984,
Appendix) the following implication is known for arbitrary N(D)e #[D]?*™: If
N(D)(u) =0 for every ue %™ then N(D)=0. This completes the proof. O

c§j¢0,1<i<p,1<j<n,i=1,2}

8. Dynamical indices
The introduction of the formal transfer matrix in § 7 enables us to define a fourth
class of indices.

Definition 8.1

-0
w
dices of the .#[D]-right module

mg = {ueJ{[D]"‘lGueJl[D]”}

P - .. .
Let P=[V ]e,//l[D]‘"“”x‘"*"') and G=VP '!Q+ W The minimal in-

are called the dynamical indices of G.

Forney (1975, Chap.7) considers proper rational input—output maps
G(s):R(s">R(s)” and the minimal indices of the rational vector space
{(u(s), G(s)u(s))T|u(s) e R(s)™} which he calls the ‘dynamical indices’ of G(s). Miinzner
and Prétzel-Wolters (1979) show that these indices coincide with those of the module
{u(s) € R[s1™| G(s)u(s) R[s]?}. Forney (1975) proves that the set of dynamical indices
of G(s) and the set of controllability indices of a certain realization of G(s) coincide.
This result generalizes as follows.

Definition 8.2

P - .
P= [ WQ] e[D]"*P>=*m is called observable if V acts as a monomorphism

on ker_, P.

It can be shown that P is observable if and only if P and V are right coprime, i.e.
there exist Re #[D]"*" and S € .#[D]"*? such that RP + SV = I, (see llchmann et al.
(1984) § 6).

Proposition 8.1
P -0
Let P =
‘ [V

W ]e M[D]" TP+ be observable. Then g = u(P, Q).

Proof

We use the notation as above.
‘e’ Let uemg. Then

z:= P 'Qu=(RP + SV)P 'Qu=RQu + S(G — Wiue .#4[D]".
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‘2’ For ue #[D]™ there exists ze .#[D]" such that Pz=Qu. Then
Gu=Vz + Wue M[D]". O
Corollary 8.1
P -0 + + A -1
Let P= e M[D]TP*nrm  phe observable and G=VP 'Q+ W

Vv W

Then the set of dynamical indices of G and the set of minimal indices of (P, Q)
coincide.

9 Characterization of system equivalence and a complete set of invariants

The analysis of the input module enables us to give a characterization of system
equivalent controllable time-varying systems. These results are known for time-
invariant state-space systems, cf. Popov (1972).

Proposition 9.1

P —-Q P —-Q . ,
Let P = (rt ) x (r+m) f_ MDD P = +m)
e [V W ]e.//l[D] and P [V’ ) ]e [D]
be both controllable. Then we

PEP iff uP,Q)=uP,Q) and VP'Q+VPITIQ+W

Proof

For every system matrix there exists a system-equivalent state-space representa-
tion (see Iichmann et al. (1984), Proposition 5.7). Furthermore controllability, input
module and formal transfer matrix are invariant under system equivalence.
Therefore we assume without restriction of generality that

DI, —B DI, -PB
P= n MDDt xntm d P= " le #TD1® +pyxn +m)
[c E(D)]e o o [C' E'(D)]E i

‘=" Immediately by Lemma 5.1.

3 s

<"

(i) We prove that ker KO‘ p=ker K o.p implies (0, B) by (0, B). Let B=[by,..., b,]
and B'=[b),...,b,] for i=1,...,m. k;(resp. k;) denote the controllability indices
of (0, B) (resp. (0, B)). Then

H=[b,b,, ... b Y b, ... bEm 1D]eGL, (M)

and
H =[b, b, ..., 0%V b, p%==D] e GL,. (H)
Since ker K, 5 = ker K, 5 we have {k,, ..., k,} = {ki, ..., k,}. Let

kim1
u= Y D—1*u, with u;=(0,...,0,a;,0,..,0 e.l™
i=o !

ith row

for ie{l,...,m} and a;#0 for some A€ {0,....k;—1}. Then u¢Kker Ko and so
u ¢ ker K, -, which implies k; <ki. On the other hand k;<k;. Thus k;,=k; for
I<ig<m.
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Since P and P’ are controllable it follows that &= Y k= Y ki=n. Let
i= i=1

i=1
T:=HH 'eGL,(#). Then H =TH, ie b= ThY for 1<i<m,
J=0,...,k—1. Since there exists a unique u; € .#" such that Hu, = b, the assump-
tion implies H'u; = bi*?.  Therefore Th*) = THu; = H'u,= b!* for 1 <i<m. This
yields (TbY) = T(b{?) for 1 <i<m, j=0,....k,—1 and TH =(THY—-TH =0. In
particular TB=B'. Since T=0 we have proved (0, B) £ (0, B)).

(i) It remains to prove: ker K, 5= ker Kop and C(DI1,)"'B+ EMD) =
C(DL,)"'B'+E(D) imply PXP. By (i) we have . C(DI) 'B+ E(D)=
C(DI,)"'TB+ E(D). Since P is controllable there exist Se.# [D]"** and
Re #[D]"*" such that DI,S+BR=1I, (sece Ilchmann et al. (1984), Theo-
rem 6.4). Therefore (CD™'B+ E(D)R=(C'D”'TB + E(D))R or equiv-
alently (CD"'BR— C'D"'TBR) = (E(D)— E(D))R. Since T is constant we have
D™!'T=TD™'. Thus the following equivalent equations are valid:

(C—C'TD™ Y1, — DS) = (E'(D) — E(D)R
(C—-CT)1,~SD)=(E(D)— E(D)RD
(C—CT)=((E'(D)— E(D)R +(C — C'T)S)D
Comparing the coefficients we conclude C = C'T and E(D)= E'(D). O

If no outputs are considered the following corollary clarifies the relation between
the input module and the solution vector space of a system, see (2.3).

Corollary 9.1

Let P;=[P;, Q1€ . #[D]"*™*™ for i=1,2 be both controllable. Then the
following are equivalent:

(i P, X P,
(ii) lf(Pn Q1) = uP,, Q,)

(iii) there exists a map

J:M(Py, Q) M(P,, Q;)

z T, Y[z
u ~ 0 I u
with T, e GL(#[D]), Y e AN ek

Proof
Use Ilchmann et al. (1984, Proposition 4.2(c)). O

In Iichmann et al. (1984, Proposition 7.3) system equivalence is characterized in

terms of the input—output map. Using Proposition 7.1 this can now be carried out
in the following form.

Remark 9.1

1%

i i

P, —Q,;
Let P;= [ :I € M[D]*Pxttm ;-1 2) be both controllable and
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observable. Then
P P, iff V,P{'Q,+ W, =V,P;'0,+W,

For controllable state-space systems a complete set of invariants of similarity is
given in the following.

Remark 9.2

Let (4, Byeo/"*"*™ be a controllable system with controllability indices
ki,...,k,. We use the notation as in (3.4). Then there exists a unique matrix
U=[4,,...,4,le#"" such that

[B(¢~'b)™ ), ..., Y~ b)) ] = HU
Let &= ((t} )os -or ) Yy~ 15 +es U0 ver Uy, —1) €M where (uf), is omitted if
k;=0,AeN. Then by construction of H we know that necessarily
ki+1<i<k;—1

1
A=kjand i<j G-

(u),=0 for {
Using this notation we obtain:

Proposition 9.2

Let (A4, B), (4, BYeo/"<®*™ both be controllable. Then (4, B)< (A4, B) iff
#;=u;and k;=k;fori=1,...,m.

Proof

“=: Let (4,B) and (A, B) be similar via TeGL,(%/). Lemma 3.1 yields
THi; = To(¢p ™ 'b)*) = ¢'(¢' "' b)) = H'I, for 1 <i<m.

‘¢ . Without restriction of generality assume A=A4'=0. Let T:= HH™ '
Then Th¥*’ = THd;, = H'@l,=b;* for 1 <i<m. Arguing as in (i) of the proof of
Proposition 9.1 completes the proof. |

The following example illustrates how to construct a system with a presented list of
invariants.

Example 9.1

Let (ky, ky, k3) =(2,0,1) and U = [uy, u,, us]€#2*3. Because of (9.1) let U be
of the following structure

a d e
U=|b 0 0.
¢c 0 f
Define
H:=[eg,e11,€30]:= I3
and

1 d 0
[e1k1,32k2’e3k3]3= U,K0:=B:=[elo,e20,e30]= 0 00

0 01
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0 e
K :=[ej,er,e31]=|1 e;; 0|=—-4Ky,+K,
0 f
which implies
0 e
ay=—|1},a3=—|0
0 f
where
A:=[ay, a,,a5]
and
d d
ey =—da+|0]|=|d
0 0
a 0 d e 0 d ¢
Ky:=1[e1;,€15,e3,]=|b,eyy,e3,|=—AK, +K;,=—A|1 d 0[+]|0 d 0
¢ ‘ 00 f 00 f
which implies
a
b|l=—a,

So (A4, B) with invariants (2, 0, 1) is determined.
In general one obtains:

Proposition 9.3

Let ky,...,k,eN with i k;=n be given and Ue./"*™ which satisfies
(9.1). Then there exists a clcznlltrollable system (A4, Bye o/"*™*™ with invariants
kiyooos k-

Proof

Let H:=1,:=[e10,..:»€1 4,-1€20> > Cmp—1]

Lernp s lmp, ] i=U,Ko:=B:=[e10, s &mo]
Now successively the columns of 4H are defined:

Ky:=[ei1, ., em]=—AK,+ K,

Kii=T[e1s s emal = —AK;_ 1 + K4y



790 Time-varying systems and system equivalence

where d =max {k;|1 <i<m}. The so constructed system (4, B) has the invariants
kiyooos kpy. 0

Remark 9.3

It is important to choose U in Proposition 9.3 with entries in ./, not in
. Otherwise in general for arbitrary given indices k, ..., k,, € N there does not exist
an analytic system (4, B)e o&#/"*®*™_ Let for example n=m=k, =1and u, =t~ 1.
Then H=1=K,=Band K; =t '= —(—¢t"1)-1+0.

Therefore (4, B)y=(—t"1,1). But the system (D + ¢t~ ')(z) = u is not of interest
since ker , (D +t~ ') = {rt !|reR}. That means D+ ¢~ ' is not full w.r.t. <.

ACKNOWLEDGMENT
Very special thanks for helpful suggestions are due to Diederich Hinrichsen
(Bremen) and Wiland Schmale (Oldenburg) and to Sue Irwin (Oldenburg) for
correcting the English.

REFERENCES

BruNoOvVsKY, P., 1970, Kybernet. Cislo, 3, 173.

Conn, P. M., 1971, Free Rings and their Relations (London and New York: Academic Press).

FornEy, G. D, Jr,, 1975, SIAM J. Control, 13, 493.

HINRICHSEN, D., and PRATZEL-WOLTERS, D., 1980, Int. J. Control, 32, 777.

ILcHMANN, A., NURNBERGER, 1., and SCHMALE, W., 1984, Int. J. Control, 40, 329.

KaLMAN, R. E., 1962, Proc. Nat. Acad. Sci. (U.S.A)), 48, 596; 1971, Kronecker invariants and
feedback. Ordinary Differential Equations, edited by L. Weiss. Proc. Conf. Ordinary
Differential Equations, Washington D.C.

KaMEN, E. W, 1976, J. Franklin Inst., 301, 559.

MUNzZNER, H. F., and PRATZEL-WOLTERS, D., 1979, Int. J. Control, 30, 291.

ORE, O., 1933, Ann. Math., 34, 480.

Porov, V. M., 1972, SIAM J. Control, 10, 252.

PRATZEL-WOLTERS, D., 1981 a, I.LE.E.E. Trans. autom. Control, 26, 429; 1981 b, Feedback
morphisms between unified linear systems. Thesis, Report 39, Forschungsschwerpunkt
Dynamische Systeme, Universitidt Bremen.

Rosensrock, H. H,, 1970, State-Space and Multivariable Theory (London: Nelson and Sons
Ltd.).

SILVERMAN, L. M., 1966, I.E.E.E. Trans. autom. Control, 11, 300.

SILVERMAN, L. M., and Meapows, H. E., 1967, SIAM J. Control, 5, 64.

WoLovicH, W. A, 1974, Linear Multivariable Systems (New York: Springer).

YLINEN, R., 1980, Act. Polyt. Scand., Math. Comp. Science Series, Vol. 32.



	Time-varying linear systems and invariants of system equivalence
	1. Introduction
	2. Preliminaries
	3. Controllability indices
	4. Minimal bases of M[D]-right modules
	5. The input module and its minimal indices
	6. Geometric indices and controllability
	7. Formal transfer matrix
	8. Dynamical indices
	9. Characterization of system equivalence and a complete set of invariants
	References

