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A model is introduced for the oxygen consumption in thin vital tissue preparation. The steady uptake
kinetics is modelled by a Michaelis-Menten form and for this case it proved that the resulting boundary
value problem admits a unique solution for those parameter ranges typical of related physiological
experiments. This solution is compared with Otto Warburg's hyperoxia model and with a hypoxra
model. Uselul and easily computed approximations are derived for the minimum oxygen supply across
the tissue and some numerical solutions of the governing equations are discussed.
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1. Introduction

Pharmacological and physiological experiments are
being increasingly performed on thin vital tissue
preparations known as slices. In contrast to the
corresponding problem for spherical cells, the oxygen
diffusion characteristics in slices are poorly under-
stood and remain a largely unresolved topic. The first
author to study diffusion for spherical cells appears to
have been Rashevsky (1960) who modelled the
kinetics for oxygen uptake by piecewise l inear
functions. Lin (1976) argued that this supposed
uptake is too simplistic and suggested that a
Michaelis-Menten kinetics form would be a far more
appropriate model. Lin's results were recomputed by
McElwain (1978) and Hiltmann & Lory (1983) were
able to prove that this Michaelis-Menten model for
spherical cells possesses exactly one solution. This
unique solution can only be precisely determined by
recourse to numerical procedures, but useful lower
and upper bounds on this true solution were given by
Anderson & Arthurs (1985) and these were improved
further by sharp polynomial approximations derived
by Asaithambi & Garner (1989, 1992).

The only existing model for thin tissue preparations
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is the long-standing classic suggestion of Otto
Warburg (1923) who was concerned with the analysis
of oxygen consumption within cancerous tissues. He
ignored the kinetics model of Michaelis & Menten
(1913) in  favour of  an assumpt ion that  the
consumption is constant across the width of the tissue
slice. This hypothesis was prompted by the frequent
experimental conditions in which the slice is bathed in
a solution which is richly supplied with oxygen. This
represents the situation in which a high diffusion
coefficient leads to an abundant pool of available
oxygen and, in this special case, it is intuit ively
reasonable that there is l i tt le to be gained by
appealing to a more complicated uptake form.

However, this having been said, there remarns a
plethora of situations for which the constant oxygen
consumption model is wildly inappropriate. The
minimal breadth for intact t issues of many internal
organs l ike the brain, l iver, heart and kidney from the
mouse, rat, guinea pig and other mammalians is
sufficiently large that oxygen diffusion is markedly
higher outside the tissue slice than within it. For
instance, most experiments with brain tissues use
slices with a minimal thickness typically in the range
25(H00 pm and hence the oxygen diffusion length-
scale in the organ is roughly five times larger than the
oxygen supply achieved by capil lary distances of only
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30-60pm [see Metzger et al. (1980) for further
discussionl. In order to control the inner oxygen
supply via the bath oxygen concentration (which is
easily monitored by microelectrodes) a realistic
oxygen consumption model is needed. Moreover,
Yamamoto (1972) introduced non-pathological brain
tissue slices for neurophysiological experiments. For
this type of preparation Bingmann & Kolde (1982)
report measurements which show conclusively that
Warburg's constant consumption model is inappro-
priate under normal experimental conditions as a
distinctive variation in oxygen consumption within
the slice is observed. Finally, we mention that modern
experiments in both biology and medicine use tissue
slices to simulate hypoxia; that is a situation in which
the tissue exhibits a low oxygen consumption. Once
more, it seems desirable to replace the constant model
with a more realistic one and the Michaelis-Menten
form is the natural first choice for this.

These deficiencies in Warburg's analysis provide
the motivation for the work in this paper. Our aim is
to consider a Michaelis-Menten uptake in a tissue
slice and to provide both theoretical and numerical
analyses of the resulting equations. Popel (1979)
considered the steady-state diffusion in slices with this
uptake and examined how the relevant constants in
the Michaelis-Menten form can be determined
experimentally using the technique proposed by
Kawashiro et al . (197 5). Here we are able to prove the
existence of and derive some useful bounds on the
requisite solution and, although the particular
problem is not amenable to solution by elementary
analytical means, we demonstrate that our bounds are
useful for a variety of realistic parameter values. It is
convenient to begin by considering a tissue slice
within a Cartesian coordinate system which is aligned
so that the slice lies in the Y-Z plane with the X-axis
normal to the slice (see Fig. 1). For simplicity, we

FIc. l. The geometry of the tissue slice and co-ordinate system.

shall assume that the slice is of infinite extent in the
Y and Z directions so that edge effects need not be
considered. The slice is also taken to lie within
-L<X (Z so that the surrounding oxygen bath
lies above the slice where X > L and below it with
X < - L. lf u(X) denotes the oxygen concentration
in the tissue then, by Fick's law of diffusion, the
uptake equation for the steady state is

D#:s6 t .

where q(X) is the oxygen consumption rate and D the
constant diffusion coefficient for the tissue. Since
oxygen uptake is catalysed by enzymes, this reaction
is usually modelled by the Michaelis-Menten kinetics
equation

d'u au
t F : r . '  

- L < x < r '

where q : llD and B denotes the requisite Michaelis-
Menten constant. This equation needs to be solved
subject to the boundary conditions u(-L):
u(L) : cu,t, which reflect the fact that at the edges of
the tissue the oxygen concentration matches that
within the solution surrounding the preparation.

It is useful to scale the problem before proceeding
with the analysis. If we define the modified coordinate
x: XIL and suppose that u(X): cunu(x) then the
model system acquires the form

d'u * ),u
d x 2  

-  
u  +  K )  

u ( l ) :  u ( - l ) : 1 ,  ( l )

which needs to be solved for - l  (x( l .  The
solution depends on the parameters

aL) ß
Y : 7 * , ' 0 .  K : - - , > 0  ( 2 )

and we shall sometimes emphasise this dependence by
writing the solution to eqn (l) as a(x;1l, K)-this is
done particularly when we are comparing two
solutions relating to different y and K values. At other
times we will suppress explicit mention of this
parameter dependence when it is less crucial and no
confusion should arise.

Two simple limits arise very naturally from eqn (l).
In Warburg's hyperoxia model, in which oxygen
concentration level within the tissue is high, i.e.
K<<u(x), it is reasonable to approximate K:0 in
eqn (l). If the corresponding solution of eqn (l) is
defined to be wr(x) then

f f i :  r, wr(* l) :  I (3)
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and it is immediate that

n , 1 ( - x ) : l r , . r , -  l )  +  l .  ( 4 )

We remark that this solution is only physically
realistic when y ( 2 for otherwise we have rl,r { 0
somewhere across the tissue.

On the other hand, if the concentration within the
slice is relatively low compared with that in the
surrounding bath, then we expect u<<K and we can
then approximate u(x) by ,,(x) where

d:r', ./r,r'r

d F : ? . t t : ( * l ) : l  ( 5 )

so that

,,2 (,r) : .",n (,.f")^.,. (fä)
In the work below we consider the regions of y-K

parameter space in which either (4) or (6) represents
a good approximation to u(x). We are also able to
obtain simple polynomial approximations for the
value of u at the centre of the slice x : 0 and provide
some sample numerical solutions of eqn (l). It is, of
course, important to bear in mind the values of y and
K which pertain to experimentally realisable con-
ditions. There seems to be a considerable diversity of
parameter ranges reported in the literature. Accord_
ing to Bingmann & Kolde (19S2) the rough estimares
I : I and K: 0.03 are realistic for physiological
problems. In non-physiological cases both Lin (1976)
and McElwain (1978) suggest that K is no more than
unity. Under extreme conditions Bingmann & Kolde
(1982) argue that 7 may be as large as 300 whilst Lin
(1976) and McElwain (1978) conclude that wirh the
most unfavourable combination of parameters this
upper l imit could reach 1600. However, this latter
value is probably unduly pessimistic and, moreover,
for our numerical simulations here we shall be
principally concentrating on the physiologically more
interesting circumstance in which y : O(l).

The remainder of this paper is divided as follows.
Section 2 is concerned with a theoretical discussion of
eqn (l) and includes mention of existence and
uniqueness of solutions and the derivation of lower
and upper bounding functions. In writing this article
we have been conscious ofthe diverse backgrounds of
the possible readership. For this reason, in Section 2
we have deliberately kept our mathematical tech-
niques as simple as possible whilst consistent with our
aim of maintenance of rigour. Those disinterested in
the technical details are recommended to only note
the main results. In Section 3 we present some

(6)

numerical solutions of eqn (l) and il lustrate how these
relate to the theory of the preceding section. In
particular, we are able to show how the numerical
results of the Michaelis-Menten model compare with
the hyperoxia and hypoxia models. Finally, in Section
4, we make a few concludins remarks.

2. The Michaelis-Menten, the Warburg (hyperoxia
and the Hypoxia Models

A natural starting point for studying the three
models introduced in Section I concerns the full
Michaelis-Menten problem (l). For ease of presen-
tation, we divide our discussion of this boundary-
value system into three subsections. In the first two of
these we consider various aspects of the problem and
in the third we compare the Michaelis*Menten
solutions with the simple hyperoxia and hypoxia
approximations given by eqns (4) and (6). To begin we
must be assured that biologically acceptable solutions
of (l) exist and this is the topic we address now.

2.I. THEORETICAL PROPERTIES OF THE MICHAELIS-

MENTEN SOLUTION

We begin our discussion of the theoretical
properties of (l) by introducing a technical lemma
which considerably simplifies the ensuing analysis.
This lemma, which is concerned with a comparison of
functions may be succinctly stated:
Lemma 1

Let u(.) - [0, 1] be a solution of eqn (l).
(i) IJ w( ) satisfies

d rn '_ ,  J 'w ( . r )
,l-r, 2 

",(.r) + /( for all 'r e [- l, l],

together with w(* l) : I then w(x) ( u(r) for att
. r  e  [ -  I ,  l ] .

( i i) IJ v,(.) satisfes

dtn '  Yn' ( . r  )
*.... > 

ffi6 for all x e [- I, l],

together v,ith w(tl): I then u'(x) < u(x) for all
r e [ - 1 , 1 ] .
Proof

We seek a contradiction by supposing that
u'(O > a(O for some ( € (- l, l). Then by continuity
there ex is ts  an in terval  [ ( , ,  ( r ] - [ -  I ,  l ]  such that
u ( 1 ) :  n ' ( ( , )  f o r  i : 1 , 2  a n d  w ( x ) > r z ( x )  f o r  a l l
r € (( ', {r). Hence, we conclude that on the interval
l€,, 1.), due to the monotonicity of the r.h.s.,

d ' " '_  ) r ' ( .y)  -  1 ,u( .y)  d2u
AF z u(r) + 1( - r1r1 * * 

:  
AF'

whence lr(.) - u(.) is a convex function on [(,, (,]
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Frc. 2. Numerical solutions l(.: i, K) of the Michaelis-Menten 
juurion (l) for various values of 1' and r(. (a) shows the solutions

c o r r e s p o n d i n g t o i : 1 a n d K : 0 . l , 0 . 5 ,  l , 2 , 4 a n d 8 w h i l s t i n ( b ) a r e s h o w n s o l u t i o n s f o r i ( = 1 1 2 , ^ i : 0 . 1 , 0 . 5 ,  1 , 2 , 4 a n d 8 .

1.00 .75

with boundary values r1 ' ( ( ' )  -  u(( , )  :0  for  i  :  l ,  2 .
Therefore, rl '(,y) - u(r) ( 0 for all r e [( ', (,] which
contradicts our assumptions so that part (i) of the
lemma is proved.

If the inequality is strict, i.e. if

d r r r '  " r r ' (  r )  
I  g  f o r  a l l  x  e  [ -  l .  l ] .f  ( . \  ) :  :  

d r ,  
-  

l , 1 r )  +  ^

then we can choose r > 0 sufficientlv small so that

F \ r ) 2 , 1 r * . - = , a t - - - . . . . . . . . . . J'  
[  

-  ( r i ( . r )  +  K)(u ' ( . r )  + ,K) l

for  a l l  r  e  [ -  I ,  l ]

where

r i ' ( r ) :  :  h ' ( - r )  + r (1 - . r ' � ) .

An easy calculation shows that for all x e [- I, l ] we
have

d r r i  -  ; ' r ' r ' ( v )  *  F ( . r )  _q2 t  2  -1 " . ( I )
d.rr 

- 
x'("v) + K 

.. '" - '  - r i '(-x) * K'

whence, by (i), x,(-r) < f,(-r) ( u(x). This completes
the proof.

It is quite straightforward to show that for every

I > 0, K> 0 problem (l) admits a solution which is,
in fact, unique. Bounds on this solution can be readily
evaluated and.  for  convenience,  we can summarise
these findings in the following proposition.
Proposition 2

For erer)' ^,', K ) 0 there exists a unique solution
u ( ' )=u ( ' ; l ,K )  o f  t he  bounda r l , ua lue  p rob lem ( l ) .

This solution is symmetric about r : 0, takes on its
least ualue uo at the origin, and satisfies

0 < uo < u(x)  < I  for  a l l  . r  €  ( -  I ,  l ) \ {0}  (7)

and

I
I - *r ( r.ro ( ,tr(,-, x) < t, (8a)

z

where ttr\, K) ß defined by

r l
ü 0 .  r , ) :  i 0  

-  K )  -  
4 t

( r  |  |  r  ) r '
+  1 ^ K  + ; Q + y t K + +  ( l - r ) + # ; ' ' |  ( 8 b )

t 4  4 '  4  '  l b ' J

Before tackling the proof of these results we show
sample solutions of (l) in Fig. 2. Figure 2(a) shows
solutions at a fixed value of 7 : I and various values
of (e [0.], 8] whilst Fig. 2(b) gives results for K: i
and y e [0.1,8]. These solutions suggest that for f ixed

7 solutions are monotonically increasing with K whilst
for prescribed rK solutions decrease with 1 and we
shall consider details of this aspect later. The shape of
the solutions is as expected: the oxygen concentration
in the slice is symmetric about the mass centre and is
maximal at the boundaries of the tissue and the bath.
The higher the value of K, the lower the oxygen
consumption within the tissue-an observation which
has been reported in many of the experimental results
discussed in the introduction. We also see that the
value of r.r(0) : uo is a crucial piece of information as

Increasing K



the solutions in Fig. 2 demonstrate that the minimum
of the oxygen supply to the tissue occurs at .x : 0.
Therefore, it is this site at which cells are the first to
be insufficiently supplied with oxygen and so die. This
will often lead to an uncontrolled non-physiological
electrolyte composition of the extracellular space
around these cells and so irritate surroundins vital
cells.

We also note that it is a simple exercise in
differentiation to show that the upper bound ry' [see
eqn (8b)l on the value ao satisfies dttr ldK > 0 for K > 0
so that ry' is monotonic with K. Furthermore. as
K - cr" so ry'- - I and hence we conclude that ü < I
for all positive values of y and K.
Proof of Proposition 2

We proceed to prove the results of the proposition
in two steps.

srnp l: Existence, uniqueness, symmetry and
eqn (7).

For a 2 0 consider the init ial value problem

d) _ i,r'
6-r, 

: 
_lr;-K' -Y(0) : a, "r"(0) : 0, (9)

which is equivalent to the integral equation

r(.r): (s),)(r): : " + f' f ' , l ' ' l ' t^tl--oro,.
Jn Jo ,l '(^rt + ^

Since S maps the convex and closed set

{ r (  )e T[0,  l ] :0  ( "y(x)  (  e  *  j7 , r , ,  Vr  e [0,  l ] ]

into itself, we can apply Schauder's Theorem to
ensure the existence of a solution to eqn (9). If a
solution to (9) is denoted f ( '; a), it is readily seen that
f ( ' ; 0 ) : 0  and  f ( r ;  l )  >  I  f o r  a l l  . t  >  0 .  Now the
continuous dependence on the init ial values necessi-
tates the existence of some d e (0, l) such that
.r '( l; d) : I and therefore f(_r; d) solves the boundary
value problem

d'y _ y!
d7: il?' 'r '(o) : o' r'(l) : l '

By the simple even continuation

existence of a solution to (l) is guaranteed.
Uniqueness is immediate from Lemma I and
symmetry of the solution follows from the even
continuation above.

This information can be used in the process of the
derivation of bounds on the solution of 0 ) which we
examine below. At this stage we can also be assured
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that uo + 0. lf i t were not then ü(0) : u'(0) : g 115.
latter result from symmetry) and differentiation of ( l)
shows that all derivatives of rz(x) vanish at the origin.
This would imply rz(.) : 0 across the entire tissue slice
and this is clearly fallacious.

srnp 2: Derivation of the bounds (8a) and (8b) on
the minimal oxygen supply ar.

We rewrite eqn (1) as a fixed point problem. With
the Green's function for x, I e [- l, l ]

and the operator

( l

( I r ' ) ( r ) :  : '  *  
. , l ,  

I41;+(n+dr  re [ - r .  r ]

it is a straightforward calculation to see thar

(  D' ) " ( ' r )  :  ' I l ' ( ' r )  -
.r'('Y) + K

and hence the boundary value problem (l) is
equivalent to (Ia)(x) : rz(r). Since g(x, r) is non-
positive, the operator 7" is anti-monotone on the set
of positive functions. Therefore, for the solution u(.)
o f  ( l ) .

r , t ' 1 1 0 , )| + ,tuo +__!-n 
(r' - l) : (Ia6)(x) 2 (Tu)(x): a(,t),

s e t t i n g x : 0 y i e l d s

, ; + ( x -  r * + r , ) r , . - r < o
\  " /

and completion of the square leads to ao < ry' as
defined by (8b).

The lower bound orr !16 3S given by (8a) follows very
quickly from Lemma 1. The hyperoxia model solution
wr(x) as given by (3) and (4) satisfies the criteria of
that Lemma so that the solution rz("r) of eqn (l)
satisfies rz(r) > wr(x) for all ,r e [- l, l ] It is obvious
that wr(0): I - i l  and hence the resulr (8a) is
immediate.

2.2. DEIENDENCE oF soLUrroNS u(.;1,, K) oN K eNn 7
We have now established upper and lower bounds

on the quantity uo(y, K).In order to characterise our
solutions further we now turn our attention to study
the development of u(x) with varying scaled
Michaelis-Menten constant K. An important prop-
erty that we prove below concerns the monotonicity
of u(x): that is, if rz1 (x; 7, K,) and uz(x; y, K:) are the
solutions of eqn (l) for some fixed y but with the
choices Kt I Kr then, for each .r e ( - l, I ),

n t - , \ .  [ j t * -  l ) ( l  + / )  i f  r < . r
8:r ' r '  I , :  :  

t ] , ,  -  I ) ( l  *  v)  i f  .v  (  r



t24 A .  P .  B A S S O M  E T  A L ,

ur(x; ^1 , Kt) > uz(x; l, Kr). Graphically, this corre-
sponds to the statement that for each fixed x then r.r(x)
grows with K. This phenomenon is evident from Fig.
2(a) for the selection of solutions plotted there and is
summarised in the following proposition.
Proposition 3

For fixed x € ( - l, l), the unique solution u(x; y , K)
of (l) ß strictly monotonically decreasing with y > 0
and increasing with K> 0.
Proof

For fixed lt 1 Tz and Kwe have, for all x e [- I, l ],
that

u " ( x : v . .K ) :  r .  - - !ß " "  x l  u ( ' v :  l ' : '  K )
' ,,('r: r'=n--+ K > TrtG-:'K) + 1(

and therefore Lemma l(ii) yields

u ( x ; y z ,  K )  >  u ( r , l r ,  K ) .

Strict monotonicity with K is proved in an completely
analogous manner and is therefore omitted.

2.3. coMpARrsoN BETwEEN u("v; y, K), rHs HypERoxIA
AND THE HYPOXIA MODELS

In the preceding subsections we have established
some fundamental properties of the solution to the
Michaelis-Menten equation for the tissue slice. Of
significant practical interest is the question of when
the solution of the nonlinear system can be
reasonably approximated by the explicit hyperoxia or
hypoxia solutions w1(x) and n'1(x) given by eqns (4)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
x

Frc. 3. Comparison of the solutions of the Michaelis-Menten
equation (l) and r1':(-y) as given by eqn (6). Shown are solutions for

i r  :  I  and  (a )  K :0 .2 ,  ( b )  , ( : 0 . 5 .  ( c )  K :  I  and  (d )  , ( : 4 .  So l i d
l ines indicate solut ions u(x:^t ,K) and broken ones show
r':(-r; i, K).

and (6). ln Fig. 3 we compare u(r) and n'2(x) for the
parameter  values I  :  I  and K:0.2,0.5,  I  and 4.  The
results suggest that w2(r) is a useful approximation
when K is reasonably large (as expected) but less good
for small K. It is also obvious that for each parameter
combination the actual solution ri(r) lies above w2(x)
across the whole slice (except, of course, at the edges
where the two solutions are the same). Formally, we
can summarise this result by
Proposition 4

For eueryl > 0, K > 0 and x € (- l. l) the solutions
u(x; y, K) of (l), r ' , (x; y, K) of (3) and w2 (x: y, K) of
(6) satisfy

wr ( . r ; ? ,  K )  <  u ( r ;V ,  K )  i f  1 '  (  2 ,  ( 10 )

0 < r1( .x ;  ) , ,  K)  < a(r ;  t ' ,  K) .  ( l  l )

Proof
Both inequalit ies (10) and (l l) are a consequence of

Lemma 1(ii). They are derived using the same
arguments as were used in the proof of Proposition 3
and so need not be discussed further.

We can now infer some further bounds on the
minimum oxygen concentration u0 at the centre of the
slice. In view of the bounds in (8a) it is immediate that

o ( uo - l.r(o) ( ,trt-,,. xl - )";.

and

(t2a)

( 12b)

Of greater interest, we can show by considering the
function g(x) : u(x) - u'r(x) that C'(0) < 0 and
g"(x) < 0 for all x e [0, l] so the difference between
r.r(x) and wr(,r) is greatest at the centre of the slice. A
similar calculation proves that u(,r) - n'2(x) is also
largest a! x : 0 as long as the parameters satisfy
.,/y . .,/ Xcosh- r(l + | I K).The usefulness of bounds
(12) is strongly dependent on the value of r(. If K is
small then (l2a) represents a tight bound between the
Michaelis-Menten solution and the simple parabolic
form w'(r) whilst the corresponding result (l2b) is
virtually useless as rr2(x) is exponentially small across
the overwhelming majority of the slice. In contrast,
(l2b) is much the better bound for larger K and
illustrations of this effect will be eiven in Section 3.

3. Numerical Simulations

For fixed y and K > 0 we have obtained a number
of key results dealing with the solutions of the

uu - rr '- '(0) < ,/-t1.", - {."rn E}
I  v ^ j

0
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FIc.4. Graph of the difference between ry'(y; K) as given by eqn
(8b) and the actual oxygen concentration at the centre of thj sliie
uo: u(0;7, $. The lines correspond to the parameter values
) ' : 0 . 5 ,  I ,  1 . 5 .  2 .  3  a n d  4 .

nonlinear boundary-value problem (l). Here we
illustrate a number of these by reference to some
direct numerical solutions. Our results pertaining to
the symmetry and uniqueness of solutions means that
for computational purposes our attention can be
restricted to the half-slice 0 ( x ( I and once a
solution has been located there is no fear that others
can have been missed. The necessary calculations
were executed using a Matlab code and, in order to
ensure proper convergence, these were checked using
an entirely independent Fortran program which relied
on a standard nonlinear eigenvalue solver from the
NAG suite of routines.

Our first results are concerned with the usefulness
of the bounds given by eqn (8). Figure 4 shows the
difference between the upper bound ,tr\, X) and the
actual oxygen concentration at the centre of the slice
uo. A striking feature of these results is that ,trO, X)
is a remarkably good approximation to ao for a wide
range of values of both y and K. lndeed, for 1, < 4 and
irrespective of K, a range which almost certainly
contains the regimes of physiological interest, it
appears that the maximum difference between the two
values is no more than about 60Ä of the oxygen
concentration in the surrounding bath. This therefore
is a result of much practical interest and shows that
although the estimate ,trO, X) was derived from a
simple approximation, it represents a useful and
powerful result. Meanwhile, Fig. 5 shows the
discrepancy between uo and the lower bound of

eqn (8a); this is equivalent to the greatest difference
between the Michaelis-Menten solution u(r) and the
hyperoxia solution w1(x). Clearly, for small y, this
disparity is quite small over a wide range of values of
K; as y increases so the constraint on r.16 provided by
this lower bound weakens. Indeed, once ? and K are
of appreciable size, the lower bound of eqn (8) is
virtually useless for practical purposes. (We note that
results in Fig. 5 relate to values I ( 2 for with greater
y we would have the physically absurd situation of
wr(x) < 0 in the middle of the tissue slice.) The
conclusion to be drawn from Figs 4 and 5 is that for
the overwhelming range of parameter values the
upper bound ,trfy, g eqn (8) is much more useful
than the lower one and, for O(l) values of y, the lower
bound is only accurate when K is quite small, typically
of the order of a few hundredths.

The main motivation for the work described here
has been to obtain a description of those circum-
stances under which the oxygen consumption
distribution across a thin tissue slice can be accurately
approximated by either the hyperoxia model wr(x)
solution (4) or the hypoxia u.'2(,x) solution given by
eqn (6). Under even the most careful experimental
conditions it is only possible to estimate the
parameters y and K of eqn (l) within an error of
maybe a few percent. The main reason for this is that
these parameters follow from the measurement of
oxygen pressure in the tissue and there is often
difficulty in assessing the precision of the signal
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FIc. 6. Plot showing the accuracy of the hyperoxia solution N,r(-r)
and hypoxia solution x':(-r-) compared with the numerical solution
a(,v; i, K) of the Michaelis Menten equation (l). The regions to the
left and below the lines denoted )i'rr and ur5 are the zones of
parameter space in which the difference between lt'1(-r) and r(-t)
across the slice are respectively less than loh and 5oÄ ofthe oxygen
concentration in the bath. Similarly, the regions to the left and
above the lines denoted n':r änd n':: are the domains in which the
difference between n':(,r) and a(.r) across the slice are respectively
less than I  and 5%.

strength and the exact position of the microelectrodes
in the tissue slice (Lipinski & Bingmann, 1987;
Lipinski, 1992).lt is therefore of potential importance
to determine the ranges of the control parameters
such that  u(x)  is  c lose to n ' ; ( . r )  or  n '2(x) .  In  F ig.6 we
provide a sketch of the regions of parameter space in
which the difference between a("r) and n'1(-r) and/or
wr(.r) is less than 0.01 or 0.05 (that is, this maximum
difference is less than I o/o or 5o/o of the oxygen
concentration outside the tissue slice). In Fig. 6 solid
lines mark the divide between parameter regions
where the maximum difference between a(.r) and
u.'1(,r) or r ':(x) (as appropriate) is less than or greater
than l%. Dotted l ines delimit the corresponding
regions at the 5o/o accuracy level. The main conclusion
to be drawn from the figure is that over a large extent
of the parameter space the oxygen uptake character-
istics can be well approximated by wr(r) or n1(,r). Not
surprisingly, as 7 increases so wr(,r) is only useful for
a range of small K but x'3(.r) is helpful for a significant
region of sufficiently large K.

4. Conclusions

In this article we have been interested in the
analysis of oxygen consumption across a tissue slice

using a Michaelis Menten model for the necessary
diffusion process. Rigorous results concerning the
existence and uniqueness of solutions have been
established and, importantly, we have proved that the
solutions of eqn (l) are necessarily greater than the
corresponding hyperoxia and hypoxia forms. These
functions, given by eqns (4) and (6) respectively,
thereby provide useful lower bounds on our solution.
In the case when y is roughly unity, then w1(,r) is a
useful approximation for a(r) for small K but as K
increases so w2("r) becomes increasingly relevant.
Additional bounds on the minimum oxygen concen-
tration (which occurs at the centre of the slice) have
been deduced and are given by eqn (8).

Most of our numerical solutions and discussion has
been deliberately focussed on the physiologically
important case when y : O(l).We mentioned in the
introduction that for non-physiological experiments
then y might be large, sometimes of the order of some
hundreds. Then our bounds derived above cease to be
particularly useful but in this eventuality other
accurate bounds can be easily obtained. Since
0 ( u(-t) ( I across the whole of the slice, eqn (l)
gives that

l u  - d 2 u  - y u
l + K < d * ' < ?

and then, following the arguments of Section 2, it
follows that

c o s h 1 . r . [ 7 K 1  - , , ,  - c o s h ( r . f L t t t l  +  K ) )
\ 6 1 - 1  r r , r \ / \

cosht.rfilKl cosntu/-Xr + nr
for  a l l  .x€[ - l , l ] .  Once y is  at  a l l  appreciable (e.g.
much above about ten) the difference between these
two bounding functions is quite tiny and so further
work aimed at describing u(x) more precisely is
surplus to requirement; at least in the experimental
realisable situations for which l(: O(l). If K should
happen also to be large, calculations along the lines
of those summarised in Fig. 6 reveal that the hypoxia
solution (6) is in remarkable good agreement with
u(x: y, K) but this case is of l i tt le discernible practical
relevance.

To sum up, we have deduced a number of useful
results concerning the analysis of steady oxygen
consumption across a tissue slice. Arguably the most
significant result we have established is the potentially
important upper bound ry' for the minimum oxygen
concentration across the slice. Figure 4 i l lustrates that
in a significant majority of parameter space the
difference between this theoretical upper bound and
the computed Michaelis Menten solution is no more
than a few percent. This minimum concentration
value is of great importance in experimental work and
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we have derived a simple yet remarkably accurate
estimate for this.

Finally, we mention that an obvious extension of
our study would involve the inclusion of unsteadiness
and work on this aspect is currently under
consideration.

We are indebted to Hans-Gerd Lipinski (Lübeck) who
originally suggested the physiological problem to us and
guided us through the existing biological literature. Thanks
are also due to Dieter Neuffer (Exeter) who supported us
by providing some of the first numerical solutions of the
equations which led us to reassess our orisinal intuitive
notlons.
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