Technische Universität Ilmenau

Forschungsbericht

für den Zeitraum

2001 - 2002
1. Inhaltsverzeichnis

1. INHALTSVERZEICHNIS .. 2

2. VORWORT DES PROREKTORS FÜR WISSENSCHAFT ... 7

3. STRUKTUR DER UNIVERSITÄT ... 9

4. DIE FORSCHUNG AN DER TU ILMENAU .. 10
 4.1 Einführung .. 10
 4.2 Kompetenzfelder/Forschungsschwerpunkte .. 14
 4.3 Forschung im Überblick ... 20
 4.3.1 Sonderforschungsbereich 622 „Nanopositionier- und Nanomessmaschinen“ 20
 4.3.2 Sonderforschungsbereich „Automatischer Systementwurf“ SFB 358 gemeinsam mit der TU Dresden und dem IIS/EAS Fraunhofer - Institut Dresden 22
 4.3.3 DFG - Graduiertenkolleg „Automatisierung des Entwurfs analoger und gemischter analoger/digitaler Strukturen am Beispiel neuronaler Netze“ GRK 164 ... 23
 4.3.4 DFG - Forschergruppe “Magnetofluiddynamik” ... 23
 4.3.5 DFG - Schwerpunktprogramm (1083) „Intelligente Softwareagenten und betriebswirtschaftliche Anwendungsszenarien“ .. 24
 4.3.6 TMWFK - Forschungsschwerpunkt „Solartechnik“ .. 25
 4.3.7 TMWFK - Forschungsschwerpunkt „Bildverarbeitung, Mustererkennung und Technische Sehsysteme“ .. 26
 4.3.8 TMWFK - Nachwuchsforschergruppe “Peristaltisch getriebene Sonde mit haptischem Sensorarray für minimal - invasive Wirbelsäulenchirurgie“ 27
 4.3.9 TMWFK - Nachwuchsforschergruppe „Electromagnetic Processing of Materials“ ... 28
 4.3.10 Kompetenzzentrum „OphthalmoInnovation“ .. 30
 4.3.11 TU - Forschungsschwerpunkt „Mobilkommunikation“ 31
 4.3.12 TU - Forschungsschwerpunkt „Intelligente Mobile Systeme - Assistenzrobotik“ ... 32
 4.4 Multimediakonzept der Technischen Universität Ilmenau (Zusammenfassung) 33
 4.5 Profilierung der Forschung bis 2005 und strategischer Ausblick 35

5. FAKULTÄTEN ... 38
 5.1 Fakultät für Elektrotechnik und Informationstechnik .. 38
 5.1.1 Institut für Kommunikations- und Messtechnik .. 38
 5.1.1.1 Fachgebiet Nachrichtentechnik .. 38
 5.1.1.2 Fachgebiet Elektronische Messtechnik .. 41
 5.1.1.3 Fachgebiet Hochfrequenz- und Mikrowellentechnik (bis 09/2002: Grundlagen der Hochfrequenztechnik) ... 44
 5.1.1.4 Fachgebiet Digitale Signalverarbeitung .. 46
 5.1.1.5 Fachgebiet Kommunikationsnetze ... 48
 5.1.2 Institut für Schaltungstechnik und Elektroniktechnologie 50
 5.1.2.1 Fachgebiet Elektronische Schaltungen und Systeme 50
 5.1.2.2 Fachgebiet Konstruktion und Technologie der Elektronik 52
 5.1.2.3 Fachgebiet Mikroperipherik .. 53
 5.1.3 Institut für Allgemeine und Theoretische Elektrotechnik 56
 5.1.3.1 Fachgebiet Grundlagen der Elektrotechnik .. 56
5.1.3.2 Fachgebiet Theoretische Elektrotechnik .. 59
5.1.3.3 Fachgebiet Elektromagnetische Felder ... 59
5.1.1 Institut für Festkörperelektronik .. 62
5.1.3.4 Fachgebiet Festkörperelektronik .. 62
5.1.3.5 Fachgebiet Nanotechnologie ... 64
5.1.3.6 Fachgebiet Integrierte Schaltungen .. 67
5.1.3.7 Fachgebiet Halbleitersensorik ... 68
5.1.4 Institut für Elektrische Energiewandlung und Automatisierung 69
5.1.4.1 Fachgebiet Leistungselektronik und Steuerungen in der Elektroenergietechnik ... 69
5.1.4.2 Fachgebiet Elektrothermische Energiewandlung 71
5.1.4.3 Fachgebiet Kleinmaschinen .. 73
5.1.5 Institut für Elektrische Energie- und Hochspannungsrichtung 75
5.1.5.1 Fachgebiet Elektrische Geräte und Anlagen .. 75
5.1.5.2 Fachgebiet Hochspannungsrichtung ... 77
5.1.5.3 Fachgebiet Elektrische Energiespeicher ... 79
5.1.6 Fakultätsübergreifendes Institut für Werkstofftechnik 82
5.1.6.1 Fachgebiet Elektrochemie und Galvanotechnik 82
5.1.6.2 Fachgebiet Werkstoffe der Elektrotechnik .. 84
5.1.6.3 Fachgebiet Plasma- und Oberflächentechnik .. 88
5.1.6.4 Fachgebiet Werkstofftechnologie ... 90
5.1.7 Institut für Medientechnik ... 92
5.1.7.1 Fachgebiet Elektronische Medientechnik ... 92
5.1.7.2 Fachgebiet Audiovisuelle Technik .. 94
5.1.7.3 Fachgebiet Medienproduktion ... 95
5.1.7.4 Fachgebiet Angewandte Mediensysteme ... 97
5.2 Fakultät für Informatik und Automatisierung ... 98
5.2.1 Institut für Automatisierungs- und Systemtechnik 98
5.2.1.1 Fachgebiet Systemanalyse .. 98
5.2.1.2 Fachgebiet Dynamik und Simulation ökologischer Systeme 100
5.2.1.3 Fachgebiet Regelungstechnik ... 102
5.2.1.4 Fachgebiet Automatisierungsanlagen und Prozessleittechnik 104
5.2.2 Institut für Biomedizinische Technik und Informatik 105
5.2.2.1 Fachgebiet Biomedizinische Technik ... 105
5.2.2.2 Fachgebiet Biosignalverarbeitung (bis 31.9.2002 Medizinische Informatik) ... 108
5.2.3 Institut für Theoretische und Technische Informatik 111
5.2.3.1 Fachgebiet Rechnerarchitektur ... 111
5.2.3.2 Fachgebiet Prozessinformatik ... 112
5.2.3.3 Fachgebiet Neuroinformatik ... 115
5.2.3.4 Fachgebiet Automaten und Formale Sprachen 118
5.2.3.5 Fachgebiet Integrierte Hard- und Softwaresysteme 118
5.2.3.6 Fachgebiet System- und Steuerungstheorie .. 121
5.2.3.7 Fachgebiet Methodik des Hardwareentwurfs 122
5.2.3.8 Fachgebiet Künstliche Intelligenz ... 122
5.2.3.9 Fachgebiet Komplexitätstheorie und Effiziente Algorithmen 124
5.2.4 Institut für Praktische Informatik und Medieninformatik 125
5.2.4.1 Fachgebiet Softwaretechnik und Programmiersprachen 125
5.2.4.2 Fachgebiet Graphische Datenverarbeitung .. 126
5.2.4.3 Fachgebiet Telematik ... 129
5.2.4.4 Fachgebiet Datenbanken und Informationssysteme 130
5.2.4.5 Fachgebiet Verteilte Systeme und Betriebssysteme 131
5.3 Fakultät für Maschinenbau .. 134
5.3.1 Institut für Maschinenelemente und Konstruktion .. 134
5.3.1.1 Fachgebiet Maschinenelemente ... 134
5.3.1.2 Fachgebiet Konstruktionslehre ... 137
5.3.2 Institut für Fertigung ... 139
5.3.2.1 Fachgebiet Fertigungstechnik ... 139
5.3.2.2 Fachgebiet Arbeitswissenschaft ... 142
5.3.3 Institut für Lichttechnik und Technische Optik ... 144
5.3.3.1 Fachgebiet Lichttechnik ... 144
5.3.3.2 Fachgebiet Technische Optik .. 146
5.3.4 Institut für Mikrosystemtechnik, Mechatronik und Mechanik 148
5.3.4.1 Fachgebiet Mechatronik .. 148
5.3.4.2 Fachgebiet Mikrosystemtechnik ... 151
5.3.4.3 Fachgebiet Technische Mechanik ... 153
5.3.4.4 Fachgebiet Getriebetechnik .. 156
5.3.4.5 Fachgebiet Thermo- und Fluidtechnik .. 157
5.3.4.6 Fachgebiet Biomechatronik .. 160
5.3.4.7 Fachgebiet Rechneranwendung im Maschinenbau 163
5.3.5 Institut für Präzisionstechnik und Automation ... 165
5.3.5.1 Fachgebiet Fabrikbetrieb .. 165
5.3.5.2 Fachgebiet Qualitätssicherung .. 167
5.3.5.3 Fachgebiet Feinwerktechnik/Precision Engineering 170
5.3.5.4 Fachgebiet Kraftfahrzeugtechnik .. 172
5.3.6 Institut für Prozessmess- und Sensortechnik ... 175
5.3.6.1 Fachgebiet Prozessmesstechnik im Maschinenbau und Fertigungsmesstechnik .. 175
5.3.7 Institut für Werkstofftechnik .. 181
5.3.7.1 Fachgebiet Glas- und Keramiktechnologie .. 181
5.3.7.2 Fachgebiet Metallische Werkstoffe und Verbundwerkstoffe 184
5.4 Fakultät für Mathematik und Naturwissenschaften ... 188
5.4.1 Institut für Mathematik ... 188
5.4.1.1 Fachgebiet Diskrete Mathematik und Algebra ... 188
5.4.1.2 Fachgebiet Wahrscheinlichkeitsrechnung und Mathematische Statistik 189
5.4.1.3 Fachgebiet Mathematische Optimierung ... 189
5.4.1.4 Fachgebiet Mathematische Methoden des Operations Research 189
5.4.1.5 Fachgebiet Numerische Mathematik und Informationsverarbeitung 191
5.4.1.6 Fachgebiet Analysis und Dynamische Systeme ... 193
5.4.1.7 Fachgebiet Analysis/Funktionalanalysis .. 193
5.4.1.8 Fachgebiet Kombinatorik/Graphentheorie ... 194
5.4.1.9 Fachgebiet Grundlagen der Mathematik .. 195
5.4.2 Institut für Physik ... 197
5.4.2.1 Fachgebiet Theoretische Physik I ... 197
5.4.2.2 Fachgebiet Experimentalphysik I .. 198
5.4.2.3 Fachgebiet Technische Physik II / Polymerphysik 200
5.4.2.4 Fachgebiet Technische Physik I .. 202
5.4.2.5 Fachgebiet Chemie .. 205
5.4.2.6 Fachgebiet Theoretische Physik II/Computational Physics 207
5.4.2.7 Fachgebiet Experimentalphysik II / Umweltphysik 210
5.4.2.8 Fachgebiet Physikalische Chemie/Mikroreaktionstechnik 211
5.4.3 Institut für Medien- und Kommunikationswissenschaft 213
5.4.3.1 Fachgebiet Politikwissenschaft/Medien ... 213
5.4.3.2 Fachgebiet Medienwissenschaft ... 214
5.4.3.3 Fachgebiet Kommunikationswissenschaft ... 216
5.4.3.4 Fachgebiet Medienkonzeption/Digitale Medien 218
5.4.3.5 Fachgebiet Technik- und Wirtschaftsgeschichte 219
5.4.3.6 Fachgebiet Medienmanagement ... 220
5.4.3.7 Fachgebiet Multimediale Anwendungen ... 222
5.5 Fakultät für Wirtschaftswissenschaften .. 224
 5.5.1 Institut für Betriebswirtschaft ... 224
 5.5.1.1 Fachgebiet Rechnungswesen/Controlling ... 224
 5.5.1.2 Fachgebiet Produktionswirtschaft/Industriebetriebslehre 226
 5.5.1.3 Fachgebiet Marketing ... 227
 5.5.1.4 Fachgebiet Finanzwirtschaft/Investition ... 228
 5.5.1.5 Fachgebiet Unternehmensführung .. 229
 5.5.1.6 Fachgebiet Steuerlehre/Prüfungswesen .. 230
 5.5.2 Institut für Wirtschaftsinformatik ... 231
 5.5.2.1 Fachgebiet Wirtschaftsinformatik I .. 231
 5.5.2.2 Fachgebiet Operations Research und Wirtschaftsstatistik 234
 5.5.2.3 Fachgebiet Informations- und Wissensmanagement 234
 5.5.2.4 Fachgebiet Wirtschaftsinformatik II .. 236
 5.5.3 Institut für Volkswirtschaftslehre .. 238
 5.5.3.1 Fachgebiet Wirtschaftstheorie .. 238
 5.5.3.2 Fachgebiet Wirtschaftspolitik .. 239
 5.5.3.3 Fachgebiet Finanzwissenschaft ... 240
 5.5.4 Institut für Rechtswissenschaft ... 241
 5.5.4.1 Fachgebiet Zivilrecht ... 241
 5.5.4.2 Fachgebiet Öffentliches Recht .. 242

6. ZENTRALE EINRICHTUNGEN ... 244
 6.1 Universitätsbibliothek ... 244
 6.2 Universitätsrechenzentrum ... 246
 6.3 Patentinformationszentrum und Online - Dienste (PATON) 247

7. FAKULTÄTSÜBERGREIFENDE EINRICHTUNGEN ... 250
 7.1 Zentrum für Mikro- und Nanotechnologien ... 250
 7.2 Fakultätsübergreifendes Institut für Werkstofftechnik 253

8. FORSCHUNGSFÖRDERUNG UND TECHNOLOGIETRANSFER 255
 8.1 EU - Forschungsförderung ... 255
 8.2 Transferspektrum der Technischen Universität .. 257
 8.3 Volumen der Drittmittelforschung 1996 - 2002 258

9. FORSCHUNGS- UND TRANSFEREINRICHTUNGEN IM UMFELD DER UNIVERSITÄT . 261
 9.1 Institut für Mikroelektronik- und Mechatroniksysteme gGmbH (IMMS) 261
 9.2 Fraunhofer Anwendungszentrum für Systemtechnik 262
 9.3 Fraunhofer - Institut für Digitale Medientechnologie IDMT 263
 9.4 transSIT GmbH - Thüringer Anwendungszentrum für Software-, Informations- und Kommunikationstechnologien ... 266
 9.5 Steinbeis Transferzentren .. 266
 9.5.1 Steinbeis Transferzentrum „Qualitätssicherung und Bildverarbeitung“ ... 266
 9.5.2 Steinbeis Transferzentrum „Federntechnik“ .. 268
 9.5.3 Steinbeis Transferzentrum „Mechatronik“ .. 269
 9.5.4 Steinbeis Transferzentrum „Fahrzeugtechnik“ 270
 9.5.5 Steinbeis Transferzentrum „Interaktive Computersysteme/CAD“ 270
10. TECHNOLOGIEREGION ILMENAU UND SCIENCE PARK .. 272
 10.1 Vorstellung der Region und ihre Perspektiven.. 272
 10.2 Rolle der TU Ilmenau.. 273
 10.3 Applikationszentrum.. 275
 10.4 Technologie- und Gründerzentrum... 276
 10.5 Existenzgründungen aus der TU Ilmenau.. 277
 10.6 Kommunikations- und Servicecenter... 278

11. SCHLAGWORTVERZEICHNIS... 279
2. Vorwort des Prorektors für Wissenschaft

Forschung ist die Grundlage einer lebendigen Lehre, ein Charakteristikum für Universitäten. Ein weiteres ist die Einheit und Freiheit von Forschung und Lehre. Beides findet in und zwischen den Fachgebieten der Fakultäten und Institute, aber auch universitätsübergreifend sowie in Form nationaler und internationaler Projekte statt. Mit dem vorliegenden Forschungsbericht über die vergangenen zwei Jahre ziehen die Fakultäten, die universitätsnahen Forschungs- und Transfereinrichtungen, ebenso aber auch das regionale Umfeld eine Bilanz, die in dieser kompakten Form bisher noch nicht zusammengestellt worden ist, denn der bisherige Forschungsbericht ist mit dem früheren Transferkatalog nun in einem Band zusammengefasst.

Dem eigentlichen Berichtsteil vorangestellt wurden die für die gesamte Universität vom Rektorat in Zusammenarbeit mit den Dekanen erarbeiteten acht Forschungskompetenzfelder sowie universitätsweite Schwerpunktprojekte (Kapitel 4).

Aus den Grafiken (Kapitel 8.3) geht hervor, dass sich vor allem im letzten Jahr das Volumen der eingeworbenen Forschungsmittel sowie die Zahl der Projekte deutlich erhöht haben, vor allem das Forschungsvolumen war mit 18.12 Mio. in 2001 und 17.2 Mio. in 2002 das Höchste seit fünf Jahren. Den Hauptanteil hieran haben die Ingenieur - Fakultäten.

Hier sind besondere Anstrengungen angezeigt, um die Technische Universität auch künftig für Studierende, besonders mehr ausländische Studierende, als attraktive Forschungseinrichtung anzubieten. Bei Verträgen mit der Industrie ist deshalb verstärkt darauf zu achten, dass auch Promotions- und Habilitationsstipendien bereitgestellt werden.

Aufgrund der positiven strukturellen Entwicklung und besonders auch der Entwicklung in der Forschung sowie im deutlich breiteren universitären Lehrangebot hat die Technische Universität Ilmenau im Jahre 2003 den Antrag zur Aufnahme in die Deutsche Forschungsgemeinschaft (DFG) gestellt.

Für das Zustandekommen und die balancierte Form des vorliegenden Forschungsberichtes ist den Fakultäten, für die ausgewogene Zusammenstellung dem Referenten des Prorektors für Wissenschaft und dem Referat für Öffentlichkeitsarbeit, aber auch dem Senatsausschuss für Forschung herzlich zu danken.

Mit diesem zweiten Forschungsbericht erhofft sich die Technische Universität Ilmenau noch mehr Attraktivität als technische universitäre Bildungs- und Forschungseinrichtung des Landes Thüringen im nationalen und vor allem auch im internationalen Wettbewerb bei Studierenden und für die Wirtschaft.

Univ. Prof. Dr. - Ing. Horst Puta
Prorektor für Wissenschaft
3. **Struktur der Universität**

Abb. 1: **Organigramm der TU Ilmenau**

Die Berufungsgebiete der Technischen Universität Ilmenau organisieren sich zum derzeitigen Zeitpunkt in fünf Fakultäten. Es sind dies die Fakultäten für:

- Elektrotechnik und Informationstechnik
- Informatik und Automatisierung
- Maschinenbau
- Mathematik und Naturwissenschaften
- Wirtschaftswissenschaften

Neben den Fakultäten existieren fünf Zentrale Einrichtungen, die Aufgaben in der Lehre bzw. Dienstleistungen in Lehre und Forschung wahrnehmen. Es sind dies:

- das Universitätsrechenzentrum
- die Universitätsbibliothek
- das Universitätssprachenzentrum
- das Universitätssportzentrum
- das Patentinformationszentrum und Online - Dienste
4. Die Forschung an der TU Ilmenau
4.1 Einführung

Wesentliche Grundlage einer effizienten, zukunftsorientierten Ausbildung an einer Universität ist die innovative Forschung. Während in den frühen 90’er Jahren die Technische Universität Ilmenau eher durch ihre sehr gute Ausbildung bekannt wurde, lässt sich seit ca. Mitte der 90’er Jahre auch eine erfreulich gute Forschungsreputanz beobachten, die ihren Ausdruck u.a. in qualitativ hochwertigen Veröffentlichungen und in Forschungsprojekten findet. Die Technische Universität Ilmenau hat seit 1999 klare Profillinien beschlossen, um auf ausgewählten Kompetenzfeldern national und international Spitzenpositionen zu besetzen. Insbesondere wurde die interdisziplinäre und fakultätsübergreifende Zusammenarbeit ausgeweitet und die Bündelung der Kompetenzen zu leistungs- und international wettbewerbsfähigen Forschungsschwerpunkten vollzogen. Das betrifft sowohl die Grundlagen- als auch die Anwendungsforschung auf folgenden Gebieten.

Mikro- und Nanosysteme und -technologien

Mobile multimediale Informations- und Kommunikationssysteme

Intelligente Mobile Systeme, Assistenzrobotik
Von übergreifender Bedeutung sind mobile Systeme/Fahrzeuge mit Aspekten der Selbstorganisation, der Beherrschung unerwarteter Situationen, der Einbeziehung elastischer Komponenten und begrenzter Ressourcen. Hier sind die hohen Kompetenzen für Konstruktion und Design, flexibles Ressourcenmanagement, Adaptivität und Lernfähigkeit universitärweit zu konzentrieren und geräte-technische Lösungen einer neuen Robotik - Generation zu entwickeln. Beispiele sind die medizinische Robotik, Tauchrobotik und Shopping - Assisten...

Modellierung und Führung komplexer technischer und nichttechnischer Systeme
Ein weiteres Cluster von disziplinübergreifender Aktualität besteht in der Modellierung und Führung hochdimensionaler, stark nichtlinearer sowie ereignisdiskreter Prozesse. Unschärfen in den Daten bzw. qualitative Informationen über den Systemzustand sind in der Robo...

Biomedizinische Technik
An der Universität wird ein Forschungsbedarf in den bildgebenden Verfahren für Funktionsdiagnostik und interoperative computergestützte Navigation, in der Biomesstechnik und -sensorik, in der Biosignalverarbeitung für das klinische Monitoring und die Therapieassistenz, in der Entwicklung von Werkzeugen für minimalinvasive Techniken und der Endoskopie, in der OP - Robotik auf Basis hochgenauer bildgebender Diagnostik, in der The...
Rapiesimulation mittels virtueller Realität, in Implantaten, der Prothetik und Biomaterialien sowie in der Telemedizin und dem Home-Care gesehen.

Optische Technologien, Photonik
Die Universität konzentriert sich auf moderne bildgebende Verfahren, optische Sensoren, photonische Bauelemente, Licht- und Strahlungstechnik sowie Design, Konstruktion und Fertigung optischer Systeme.

Dezentrale Energiesysteme

Auswirkungen Neuer Medien auf wirtschaftliche Prozesse, Informations- und Kommunikationsverhalten
Für die TU Ilmenau ist u.a. die komplexe Wirtschaftlichkeitsbewertung von „virtuellen“ Produkten (z.B. High Speed Internet) von großer Bedeutung, ebenso die simultan mit der Konstruktion ablaufende Bewertung von technischen Produkten während der Entwicklungsphase. Auf der anderen Seite verändern die Neuen Medien die wirtschaftlichen Prozesse selbst, z.B. durch Auswirkungen von innovativen Online-Diensten oder des E-Commerce auf die Besteuerung, auf die Sicherheit im Internet-Zahlungsverkehr, auf das Medienrecht oder auf die Entwicklung von Geschäftsmodellen für digitale Güter.

Zu diesen Forschungskompetenzfeldern kommen mathematisch-naturwissenschaftliche sowie ingenieurwissenschaftliche Bereiche, die als unverzichtbare Grundlagen für die genannten Gebiete benötigt werden, die aber gleichzeitig als eigenständige Bereiche einen Vergleich mit entsprechenden Einrichtungen anderer Universitäten problemlos bestehen. Dabei ist ein wesentlicher Gesichtspunkt, dass die einzelnen Kompetenzbereiche interdisziplinär zusammenarbeiten.

Im Bereich der optischen Technologien ist die Technische Universität Ilmenau ein wichtiger Partner im „OptoNet - Technologienetzwerk“ des Freistaates Thüringen. Durch die Einbindung der Aktivitäten der Regionen Erfurt, Gera und Jena wird es gelingen, eine weltweite Spitzenstellung insbesondere auf den Feldern Optische Technologien in der industriellen Fertigung, Optische Messtechnik, Optische Sensorik und Mehrkoordinaten - Nanomess- und Positioniertechnik zu erzielen.

Daneben laufen an der TU Ilmenau zahlreiche weitere grundlagen- und anwendungsorientierte Forschungsprojekte, die sich durch innovative Herangehensweisen und hohes Niveau auszeichnen. Erklärtes Ziel ist hierbei, die Ergebnisse der wissenschaftlichen Forschung rasch in die wirtschaftliche Nutzung zu überführen. Beispielartig seien genannt:

- Sonderforschungsbereich „Nanomess- und Nanopositioniersysteme“ SFB 662
- Sonderforschungsbereich „Automatischer Systementwurf“ SFB 358 gemeinsam mit der TU Dresden und dem IIS/EAS Fraunhofer - Institut Dresden (beendet 12/2001)
- DFG - Graduiertenkolleg „Automatisierung des Entwurfs analoger und gemischter analoger/digitaler Strukturen am Beispiel neuronaler Netze“ GRK 164 (beendet 03/2003)
- DFG - Schwerpunktprogramm (1083) „Intelligente Softwareagenten und betriebswirtschaftliche Anwendungsszenarien“
- Thüringenweiter Forschungsschwerpunkt „Solartechnik“
- Thüringenweiter Forschungsschwerpunkt „Bildverarbeitung, Mustererkennung und - Technische Sehsysteme“
- Kompetenzzentrum „OphthalmoInnovation Thüringen“

Die Technische Universität Ilmenau konnte in den letzten Jahren zunehmend DFG - Mittel einwerben (siehe Abb. 2) und wird sich verstärkt um Sonderforschungsbereiche, Forschergruppen und Projekte im Normalverfahren bemühen.

Bei den Drittmittelenaufnahmen hat die Universität in den letzten Jahren einen guten Stand erreicht. Mit ca. 400 Projekten und über 300 Beschäftigten beträgt der finanzielle Anteil der Dritt- und Fördermittel am Gesamthaushalt der Universität ca. 20 %.
Abb. 2: Drittmittel einnahmen 1998 - 2002

Die TU Ilmenau wird durch Änderung ihrer internen Mittelverteilungsmodelle die Anreizfunktionen für die Drittmittel einwerbung durch ein höheres Gewicht der Drittmittelparameter bzw. durch Ergänzung entsprechender Parameter in die Modelle zum Haushaltsjahr 2004 verstärken.

Die Universität will mit der o.g. Profilierung in das regionale, nationale und internationale Umfeld ausstrahlen. Sie pflegt hierzu Partnerschaftskontakte im In- und Ausland zu Bildungseinrichtungen und zur Wirtschaft und beteiligt sich aktiv am Auf- und Ausbau von Netzwerken und Partnerschaften. Verstärkt werden die Bemühungen zur Beteiligung an nationalen und internationalen Verbundprojekten der EU, der DFG und des BMBF.

Im Rahmen der o.g. Forschungskompetenzfelder der Universität werden bestehende Schwerpunktsetzungen mit ihrer Bündelungsfunktion ausgebaut und fortgeführt, so z.B.:

- der Sonderforschungsbereich 622 „Nanopositionier- und Nanomessmaschinen“
- das Zentrum für Mikro- und Nanotechnologien (ZMN), hier u.a. durch die vom TMWFK unterstützte Einreichung eines Projektantrages zur Einrichtung eines Zentrums für Innovationskompetenz mit zwei Nachwuchsforschergruppen beim BMBF
- die Mobilkommunikation
- die Magnetofluiddynamik/Turbulenzforschung

und neue Schwerpunktsetzungen aufgebaut wie:

- Intelligente mobile Systeme - Assistenzrobotik (Senatsbeschluss liegt vor)
- Optische Technologien (Senatsbeschluss bis Ende 2004)

Die TU Ilmenau sieht das Hochschulmarketing als eine wesentliche Aufgabe des Rektorates an. Besondere Verantwortung tragen vereinbarungsgemäß hierfür der Prorektor für Wissenschaft, die Abteilung Technologietransfer, das Akademische Auslandsamt und das Referat für Öffentlichkeitsarbeit.

4.2 Kompetenzfelder/Forschungsschwerpunkte

Die Kompetenzbereiche sollen im folgenden näher beleuchtet werden:

Der Bereich Mikro- und Nanosysteme und Technologien kann sich im Wettstreit nur dann behaupten, wenn er sich solchen wissenschaftlichen Fragestellungen zuwendet, die an anderen Stellen nicht oder nicht mit der hier verfügbaren Tiefe behandelt werden. Daher wird sich dieser insbesondere der Erarbeitung von Konzepten für neue Funktionselemente und Funktionsgruppen zuwenden. Als Beispiele seien Mikrofluidsysteme, Mikroakto- und -motoren, Mikromanipulations- und Bewegungssysteme genannt. In diesem Umfeld sind Arbeiten auf nano- und molekularbiotechnologischen Gebieten von zukünftiger Relevanz für die TU Ilmenau, wie z.B.:

- Chip - Reaktoren und Biochips
- Nanopartikeltechnik
- biomimetische Techniken auf molekularer Ebene
- molekularen Akten und Maschinen
- Membrantechniken und Membranmedizin.

Die ebenfalls zu diesem Bereich zählenden Gebiete der Mikro- und Nanoelektronik und des Schaltungsentwurfs werden sich mit der Weiterentwicklung von integrieren System- und Verbindungsträgern für eine Kombination elektronischer, mechanischer, optischer und elektrischer Funktionselemente bis zu Arbeitsfrequenzen im GHz-Bereich und für High-Power Anwendungen befassen. Dies gilt in gleicher Weise für die Entwicklung von Analytikhalbleitern, Halbleitersensoren sowie für die Polymerelektronik.

Neue Materialien sind eine unverzichtbare Voraussetzung zur Umsetzung von Mikro- und Nanotechnologien. Aus Sicht der bereits vorhandenen Aktivitäten und der perspektivischen Entwicklungen erfolgt eine Konzentration auf ausgewählte Inhalte, wie bspw.:

- sensorische und aktorische Verbundwerkstoffe für komplexe Aufgabenstellungen
- nanostrukturierte Halbleiter
- polymere und organische Materialien
- Nanokomposite
- Nanokohlenstoffverbindungen
- adaptive und biokompatible Werkstoffe.

Thüringen verfügt auf dem Gebiet der Optik über eine historisch gewachsene Industrie- und Forschungslandschaft mit einem sehr guten, zukunftsfähigen Innovationspotential. Als Schwerpunktgebiete wurden moderne bildgebende Verfahren sowie die Sensorik identifiziert.

Bei der Behandlung dieser Themen kommt der TU Ilmenau eine zentrale Bedeutung zu. Sie verfügt auf einigen Gebieten der Grundlagen- und Vorlaufforschung über herausragende Kompetenzen. Dazu zählen u.a.:

- Licht- und Strahlungsquellen sowie deren Applikationen
- Licht-/Strahlungstechnik, optische Messtechnik und Farbmetrik
- Fertigungs- und Lasermesstechnik
- optische Sensorik
- Technische Optik und Optikdesign
- Konstruktion und Fertigung optischer Komponenten und Systeme
- Bildverarbeitung, Mustererkennung und bildgebende Verfahren
- optische Mikro- und Nanostrukturen
- Mikrooptik und optische Schichten
- photonische Materialien
- photovoltaische Absorberschichten
Im Hinblick auf die eigenen Kompetenzen und aus Gründen der Wettbewerbsfähigkeit bietet sich eine Konzentration auf folgenden ausgewählten Gebieten an:

- moderne bildgebende Verfahren
- optische Sensorik
- photonische Bauelemente
- Licht- und Strahlungstechnik
- Design, Konstruktion und Fertigung optischer Systeme

Die **biomedizinische Technik** ist ein multidisziplinäres Wissenschaftsgebiet, das auf die Erforschung und Entwicklung von technikorientierten Methoden und Geräten zur Früherkennung, Diagnose, Therapie und Rehabilitation orientiert ist. Als Forschungsschwerpunkte an der TU Ilmenau werden in den nächsten Jahren vor allem folgende gesehen:

- bildgebende Verfahren für Funktionsdiagnostik und intraoperative computergestützte Navigation
- Biomesstechnik und -sensorik sowie spezielle Verfahren der Signalverarbeitung für die medizinische Diagnostik, klinisches Monitoring und Therapieassistenz
- Entwicklung von Werkzeugen für minimalinvasive Techniken und Endoskopie
- OP - Robotik auf Basis hochgenauer bildgebender Diagnostik sowie Verfahren der Therapiesimulation mittels virtueller Realität
- Implantate und Biomaterialien und Prothetik
- Telemedizin und Home - Care.

turbulenter Konvektionsströmungen beschäftigen. Sie haben das Ziel, Strömungen in Fahrzeugen sowie bei Brand- und Schadstoffausbreitungsvorgängen in großen Gebäuden und Tunneln strömungsmechanisch maßstabsge recht nachzubilden.

Aufgrund des Querschnittscharakters der Regelungstechnik/Systemtechnik ergeben sich hochschulweit Kooperationen und Beiträge. Diese betreffen die Informatik, den Maschinenbau, die Elektrotechnik und die Physik.

- die wachsende Integration von Informationstechnologien und leistungselektronischer Komponenten in die Anlagen der elektrischen Energieversorgung
- den wachsenden Anteil regenerativer Energiequellen
- die zwingend erforderliche Einbeziehung von Speicher- und Steuerelementen
- die notwendige Sicherung einer den Anforderungen entsprechenden stabilen Elektroenergiequalität

erarbeit und mit den neuen Bedingungen eines liberalisierten Energiemarktes einschließlich der dafür erforderlichen Managementsysteme in Einklang gebracht.

Im Bereich der zur Lösung dieser Aufgaben notwendigen Geräte und Anlagen ergeben sich zukunftsträchtige Forschungsschwerpunkte u.a. auf den Gebieten Optimierung und Schutz von Schaltgeräten und -anlagen, Elektromagnetische Verträglichkeit sowie Diagnostik elektrischer Betriebsmittel.

Weitere Arbeitsfelder eröffnen sich für die TU Ilmenau im Bereich der Elektroenergiewandlung in der Leistungselektronik, der Elektroprozesstechnik sowie der elektrischen Steuerungs- und Antriebstechnik.

Intelligente mobile Systeme, insbesondere Assistenz- und Serviceroboter, können wie kaum ein anderes technisches System als Integrator fungieren für eine zielgerichtete interdiszipli-
näre Forschungstätigkeit mit klarer Anwendungsorientierung und Demonstratorfunktion. Von zentraler Bedeutung sind Forschungsarbeiten zu:

- konstruktiv - technischen und gestalterischen Aspekten
- innovativen Energieversorgungskonzepten
- Materialien für Konstruktion und Oberflächengestaltung
- Antriebstechnik und Bewegungssystemen sowie zur Manipulatorik
- fortgeschrittenen Sensorsystemen incl. Sensorfusion
- Signal- und Bildverarbeitung und -auswertung sowie Situationserkennung mit Methoden der Computational Intelligence
- Missions- und Manövermanagement für teilautonome (operatorgeführte) bzw. autonome mobile Systeme zu Lande, Wasser und Luft
- Entwurf und Gestaltung komplexer Steuerarchitekturen incl. Softwareengineering
- Mensch - Roboter - Schnittstellen für verbale und nonverbale Kommunikation

Die modernen Informations-, Kommunikations- und Medientechnologien gehören zu den Schlüsseltechnologien der Zukunft, wobei an der TU Ilmenau insbesondere die mobilen multimedialen Informations- und Kommunikationssysteme eine Zuwendung erfahren.

Zukünftige Mobilfunksysteme werden mobile Multimediadienste unterstützen. Damit wird nicht nur der Zugang zum Internet „from anywhere at anytime“ ermöglicht, sondern es werden auch völlig neue Anwendungen entwickelt werden, die durch die Mobilität der Teilnehmer bestimmt sind. Die Voraussetzung sind neue Übertragungsverfahren und eine flexible Organisation der Nachrichtennetze, um den Teilnehmern in der jeweiligen Umgebung die für die gewünschte Anwendung benötigte Übertragungskapazität und Qualität zur Verfügung zu stellen. Dabei werden sich öffentliche Mobilfunknetze, drahtlose lokale Netze und digitale Rundfunknetze sinngemäß ergänzen.

Die damit einhergehenden technischen Herausforderungen der Funk-, Codierungs-, Übertragungs- und Netztechnik sind enorm. Es werden neuartige Bauelemente benötigt um komplexe Systeme wirtschaftlich nutzbar zu machen, neue Frequenzbänder zu erschließen usw.

Eine ähnliche Prognose gilt für leistungsfähige Mensch - Maschine - Schnittstellen sowie für Systeme der automatischen Spracherkennung und der digitalen Bildverarbeitung. Die Ausweitung der Mensch - Technik - Kommunikation auf das volle Spektrum der menschlichen Interaktionsmöglichkeiten mit Sprache, Gestik, Mimik, Haptik und Visualisierung ist eine grundlegende wissenschaftliche Herausforderung. Multimodale und virtuelle Benutzerschnittstellen mit einem breiten Spektrum an Kommunikationsmöglichkeiten erlangen hohe Bedeutung. Internet und webbasierte Dienstleistungen werden zunehmend die Ent-
wicklungsrichtungen bestimmen. Schwerpunkte der Forschung der TU Ilmenau auf diesem Gebiet liegen in den Bereichen:

- domänenunabhängige Beantwortung natürlichsprachlicher Anfragen
- robuste Spracherkennung und -synthese unter Real-Welt-Bedingungen
- anthropomorphe Benutzerschnittstellen
- Nutzermodellierung, nutzeradaptive Systeme und Intentionserkennung des Nutzers
- situative Informationsbereitstellung.

Die Forschungen auf dem Gebiet **Auswirkungen der Neue Medien auf wirtschaftliche Prozesse und das Informations- und Kommunikationsverhalten** befassen sich mit den teilweise umwälzenden Änderungen, welche die Neuen Medien - und hier insbesondere das Internet und verwandte Technologien - in vielen Bereichen des Wirtschaftslebens sowie im gesellschaftlichen Kommunikationsverhalten auslösen.

So spiegelt sich die zunehmende Bedeutung immaterieller Güter in aktuellen gemeinsamen Forschungsaktivitäten der Fachgebiete der Fakultät für Wirtschaftswissenschaften wider. Gerade für eine Technische Universität ist unter anderem die komplexe Wirtschaftlichkeitsbewertung von „virtuellen“ Produkten (wie zum Beispiel High Speed Internet) von hoher Bedeutung, ebenso wie die simultan mit der Konstruktion ablaufende Bewertung von technischen Produkten während der - so gesehen ebenfalls virtuellen - Entwicklungsphase. Auf der anderen Seite verändern die Neuen Medien die wirtschaftlichen Prozesse selbst; Forschungsschwerpunkte der Universität sind hier zum Beispiel die Auswirkungen des E-Commerce auf die nationale und internationale Besteuerung, das Medienrecht sowie insbesondere durch das Internet erwachsende Rechtsfragen oder die Entwicklung von Geschäftsmodellen für digitale Güter.

Alle genannten Bereiche können sich nur dann erfolgreich weiterentwickeln, wenn sie die fachübergreifende Zusammenarbeit zur obersten Maxime ihres Handelns erklären. So ist bspw. im Bereich der Mikro- und Nanosysteme nur dann ein herausragender Erfolg zu erwarten, wenn die Zusammenarbeit auch mit der Werkstoffwissenschaft und der Physik intensiv betrieben wird.
Forschung im Überblick

4.3.1 Sonderforschungsbereich 622 „Nanopositionier- und Nanomessmaschinen“

Zur effektiven Bündelung der Fachkompetenz der beteiligten Wissenschaftlerinnen und Wissenschaftler wurde der Sonderforschungsbereich in drei Projektbereiche untergliedert:

Projektbereich A: Nanomess- und Positionierverfahren / Nanotools (Koordinator: Prof. Dr. - Ing. habil. G. Jäger)

Projektbereich B: Konstruktion, Technologien und Werkstoffe (Koordinator: Prof. Dr. - Ing. habil. G. Höhne)

Projektbereich C: Signalverarbeitung, Systemsteuerung und Nutzerinterface (Koordinator: Prof. Dr. - Ing. habil. M. Weiß)

Im Projektbereich A werden die Grundlagen und Konzepte der Mess- und Tastsysteme, der Nanotools, der Positioniersysteme und der mikrotechnischen Komponenten für die NPM - Maschinen erforscht.

Der Projektbereich B erarbeitet die wissenschaftlichen Grundlagen für die konstruktive und technologische Realisierung von NPM - Maschinen unter besonderer Berücksichtigung der Werkstoffe, der tribologischen Eigenschaften von Paarungen und des dynamischen Verhaltens.

Der Projektbereich C bündelt innerhalb des SFB die Aktivitäten auf dem Gebiet der Informationstechnologie. Das fachliche Spektrum reicht dabei von der Hochleistungsinformations-
verarbeitung, über Visualisierung und Teleservice bis zur ergonomischen Gestaltung von NPM - Maschinen.

Abb. 3: Applikationsbereiche der NPM - Maschinen

4.3.2 Sonderforschungsbereich „Automatischer Systementwurf“ SFB 358 gemeinsam mit der TU Dresden und dem IIS/EAS Fraunhofer - Institut Dresden

Teilprojekt F1 der TU Ilmenau:

„Automatisierter Entwurf analoger und gemischter analog/digitaler Baugruppen“

Im Rahmen der Entwurfsautomatisierung werden Untersuchungen zur Beschreibung von kombiniert analog-digitalen Baugruppen mit dem Ziel einer mehrstufigen High Level Synthese ausgeführt. Dies beinhaltet die Realisierung eines von einer algorithmischen Beschreibung zur physikalischen Realisierung durchgängigen Syntheseablaufs einschließlich der Anbindung an die in diesem Teilprojekt entwickelten automatisierten Methodiken zur Layout-Generierung.

Die Grundlagen dazu bilden zugeschnittene formale Beschreibungen des Entwurfsablaufs und der Entwurfsdaten. Darüber wird eine Schnittstelle zwischen der High Level Synthese und den im Teilprojekt realisierten Verfahren zur Layoutgenerierung geschaffen, die im "Analog Design Assistance System" (ADAS) implementiert werden. ADAS ist ein entwurfsunterstützendes Layoutgenerierungs-Werkzeug, welches eine enge Kopplung zwischen der Schaltungs- und der Layouthebene realisiert. Einen weiteren Schwerpunkt stellen Chiprealisierungen dar, die mittels der im Teilprojekt entwickelten Synthesewerkzeuge durchgeführt werden und welche die experimentelle Grundlage für die Forschungsarbeiten bilden.

Die Veranschaulichung des Entwurfsablaufs erfordert interaktive Fähigkeiten der Entwurfsumgebung. Mit der Hilfe dieser Entwurfsumgebung wird die High Level Synthesesemethodik an ausgewählten Schaltungsbastempeilen demonstriert.
4.3.3 DFG - Graduiertenkolleg „Automatisierung des Entwurfs analoger und gemischter Strukturen am Beispiel neuronaler Netze“
GRK 164

Beteiligte Fachgebiete:

- Fakultät Elektrotechnik und Informationstechnik
 FG Elektronische Schaltungen und Systeme
 Univ. - Prof. Dr. - Ing. habil. Gerd Scarbata
 2 Doktoranden

- Fakultät Elektrotechnik und Informationstechnik
 FG Konstruktion und Technologie der Elektronik
 Univ. - Prof. Dr. - Ing. habil. Winkler
 1 Doktorand

- Fakultät Informatik und Automatisierung
 FG Neuroinformatik
 Univ. - Prof. Dr. - Ing. Horst - Michael Groß
 2 Doktoranden

Das Graduiertenkolleg geht im Berichtszeitraum in seiner weiteren Zielsetzung davon aus, Entwurfskonzepte und -werkzeuge für die Implementation analoger und gemischter Strukturen hauptsächlich am Beispiel neuronaler Netze zu entwickeln. Die dafür einzusetzenden Methoden sollen sich vor allem auf die Erforschung von Konzepten für die optimale Partitionierung algorithmischer Beschreibungen in parametrisierbare elektronische Schaltungen sowie tragfähige Konzepte zur raum- und energieeffizienten Integration parametrisierbarer Zellen als monolithische und Hybridbaugruppen konzentrieren. Darauf leiten sich folgende Teilziele der Forschungsarbeiten ab:

- Modellierung und dynamische Simulation komplexer neuronaler Systeme und Teillnetzwerke unter Verwendung zeitkontinuierlicher und zeitdiskreter Basisstrukturen auf verschiedenen Abstraktionsebenen
- Entwicklung von Synthesewerkzeugen für die optimierte schaltungstechnische Umsetzung und die massiv parallele Verschaltung der Basiselemente
- Erforschung und Erprobung passiver Kopplungsstrukturen zwischen Silizium und Hybridbaugruppen.

Im GRK wird die Synthesemethodik an ausgewählten Schaltungen aus dem Bereich biologenaher neuronaler Prozessoren, sogenannter Integrate- und Fire Neuronen, demonstriert.

4.3.4 DFG - Forschergruppe "Magnetofluiddynamik"

Am 5. Februar 2001 bewilligte die Deutsche Forschungsgemeinschaft (DFG) die Einrichtung einer Forschergruppe zum Thema "Magnetofluiddynamik (MFD): Strömungsbeeinflussung und Strömungsmessung in elektrisch leitfähigen Flüssigkeiten". Das Vorhaben wird von der DFG in der ersten Etappe für 3 Jahre in einem Umfang von ca. 1.7 Mio. EUR finanziert. Herr Prof. Dr. André Thess (Fakultät für Maschinenbau) und Herr Prof. Dr. Dietmar Schulze (Fakultät für Elektrotechnik und Informationstechnik) koordinieren als Sprecher bzw. als stellvertretender Sprecher die Arbeiten der Forschergruppe. In sieben Teilprojekten verfolgen ca. 30 Wissenschaftler aus den Fakultäten Maschinenbau, Elektrotechnik und Informationstechnik sowie Mathematik und Naturwissenschaften das Ziel, die Wechselwirkung elektrisch leitfähiger Flüssigkeiten mit elektromagnetischen Feldern durch eine sorgfältig abge-
stimmte Kopplung aus Präzisionsexperimenten und Computersimulationen besser zu verstehen und für die Entwicklung neuer, umweltfreundlicher und effizienter Verfahren der Werkstoffherstellung anzuwenden.

4.3.5 DFG - Schwerpunktprogramm (1083) „Intelligente Softwareagenten und betriebswirtschaftliche Anwendungsszenarien

Sprecher: Univ. - Prof. Dr. rer. nat. habil. Stefan Kirn (TU Ilmenau)
Tel.: (03677)69 4043 Fax: (03677)69 4219
E-mail: stefan.kirn@tu-ilmenau.de

H. Krallmann (FU Berlin), O. Herzog (Univ. Bremen), O. Spaniol (RWTH Aachen), S. Zelewski (Univ. Essen)

liegen bereits umfangreiche Erfahrungen vor- und andererseits im Gesundheitswesen untersucht werden. Gerade letzteres zeichnet sich durch besonders dynamischen Bedingungen in Bezug auf die Planung sowie Durchführung von Leistungsprozessen aus und stellt deshalb eine hervorragende Referenzdomäne für große agentenbasierte Anwendungssysteme dar. Die transdisziplinären Ziele des Schwerpunktprogramms werden wiederum auf wirtschaftswissenschaftliche Theorien und Referenzmodelle befruchtende Rückwirkungen haben und es den beteiligten Forschungsgruppen ermöglichen, an der internationalen Standardisierung der Agententechnologie wegweisend mitzuwirken.

4.3.6 TMWFK - Forschungsschwerpunkt „Solartechnik“

Sprecher: Univ. - Prof. Dr. rer. nat. habil. G. Gobsch, Institut für Physik;
Univ. - Prof. Dr. - Ing. habil. H. Puta, Institut für Automatisierungs- und Systemtechnik

Koordinator: Dr. rer. nat. D. Schulze, Institut für Physik

Ziele:

Ausbau eines Netzwerkes zur Neu- und Weiterentwicklung von Methoden und Techniken zur Nutzung der Solarenergie im Hinblick auf:

- Komponentenentwicklung (insbesondere photovoltaische Absorberschichten, Wechselrichter und elektrische Komponenten, Kollektoren, Wärmespeicher für Langzeitspeicherung und Nahwärmeversorgungssysteme), Optimierte Systemlösungen, Automatisierungs-(Hardware-)Lösungen
- Schaffung klimaangepasster und marktkonformer Gesamtlösungen, die wettbewerbsfähig und arbeitsmarktorientiert sind
- Beförderung der interdisziplinären Zusammenarbeit zwischen Naturwissenschaft und Technik, Ökonomie und Wirtschaft (insbesondere mit KMU) zur schnellen Umsetzung von F&E-Leistungen in umsatzträchtige Produkte, Verfahren und Dienstleistungen in Thüringen
- Beförderung der Aus- und Weiterbildung auf dem Gebiet der Solartechnik

Aktuelle Forschungsaktivitäten:

Die an der TU Ilmenau derzeit existierenden Forschungsaktivitäten auf dem Gebiet der Solartechnik betreffen folgende allgemeine Forschungsfelder:

- Thermodynamische, strömungsmechanische und optische Grundlagenuntersuchungen an solarthermischen Komponenten und Systemen
- Photovoltaische Komponenten und Systeme, Regelungstechnik
- Entwicklung photovoltaischer Absorberschichten auf Polymerbasis
- Optimierte Lösungen für solarenergetische Gesamtsysteme
- Solare Licht- und Messtechnik, Tageslichtlenksysteme
- Volkswirtschaftliche und arbeitsmarktrelevante Gesichtspunkte der Solartechnik
Aufgaben der Koordinierungsgruppe:
- Abstimmung von Forschungsvorhaben mit dem Ziel deutlicher Synergieeffekte
- Organisation des Informationsaustauschs innerhalb der TU Ilmenau
- Ansprechpartner und Organisation des Informationsaustausches nach außen
- Beförderung der Öffentlichkeitsarbeit
- Organisation von Aus- und Weiterbildungsangeboten und von Graduiierungsarbeiten in der Industrie

Auswahl von bearbeiteten Themen und Projekten:
- Solarthermie2000 (gefördert durch BMBF), Koordinierung der Projekte für Thüringen und Sachsen - Anhalt
- Entwicklung solarthermischer Komponenten und Systeme im Rahmen des vom TMWFK geförderten Verbundvorhabens VakuSol
- Internationale und nationale Verbundprojekte zur Entwicklung polymerer Solarzellen
- Maßgebliche Aktivitäten bei der Realisierung des ganzheitlichen Konzeptes Solar - Dorf Thüringen in Kettmannshausen
- Präsentation des Forschungsschwerpunktes auf regionalen, nationalen und internationalen Tagungen und Messen
- Mitgliedschaft im Energie- und Umweltpark Thüringen e.V. (EUT), Leitung des wissenschaftlichen Beirates und Mitarbeit im Vorstand
- Mitgründung des Interessenverbundes Photovoltaik und Umwelt in Thüringen INPUT e.V., die TU Ilmenau stellt den Sprecher für den Bereich Forschung und Entwicklung

4.3.7 TMWFK - Forschungsschwerpunkt „Bildverarbeitung, Mustererkennung und Technische Sehsysteme“

Auf der Basis einer umfangreichen Bedarfsanalyse wurden im Rahmen des Forschungsschwerpunktes vier Leitprojekte erarbeitet, die Grundlage einer strukturierten Vorgehensweise bei der Förderung von Forschungsvorhaben sind und zugleich wissenschaftlich-methodische Klammern darstellen (http://kb-bmts.rz.tu-ilmenau.de/kb-bmts/Leitprojekte/default.htm)

Zu diesen Leitprojekten gehören:
- 3D - Oberflächenerfassung und -analyse
- Flexible Inspektions- und Diagnosesysteme zur Qualitätssicherung
- Bildgebung und Bildverarbeitung in der Medizin
- Komplexe Überwachungs- und Servicesysteme mit multimedialer Mensch - Technik - Interaktion

4.3.8 TMWFK - Nachwuchsforschergruppe “Peristaltisch getriebene Sonde mit haptischem Sensorarray für minimal-invasive Wirbelsäulenchirurgie”

Für die Entwicklung der Sonde ergeben sich folgende Teilprojekte nahezu zwangsläufig:

An der TU Ilmenau wurden bereits im Rahmen des Innovationskollegs „Bewegungssysteme“ die Möglichkeiten der technischen Umsetzung der Wirmllokotion untersucht. Basierend auf diesen Vorkenntnissen wurde entschieden, die Sonde aus identischen Segmenten...
ten aufzubauen, die mit Kochsalzlösung befüllt werden und dabei sowohl eine radiale als auch eine Längenausdehnung erreichen. Befüllt man eine serielle Anordnung solcher Segmente periodisch, kann man eine peristaltische Bewegung der Sonde erreichen.

Die Verformung dieser Segmente wird mit Hilfe der Finiten Elemente Methode (FEM) simuliert und dadurch das Design so optimiert, dass eine möglichst große Längenausdehnung der Segmente beim Befüllen erreicht wird. Gleichzeitig muss der Außendurchmesser von 4 - 10 mm variierbar sein und ein Innendurchmesser von min. 2.5 mm für den Arbeitskanal verbleiben.

Weitere Details können der Webpage der Nachwuchsgruppe entnommen werden: http://www.tu-ilmenau.de/pademis

Literaturverzeichnis:

4.3.9 TMWFK - Nachwuchsforschergruppe „Electromagnetic Processing of Materials“

Mit der offiziellen Einweihung des Großgerätes „Cryogen - Free Magnet“ (CFM) am Fachgebiet Elektrowärme wurde ein bis zu 5 T Flussdichte produzierender Hochfeldmagnet seiner wissenschaftlichen Bestimmung übergeben. Seitdem lag das Hauptaugenmerk der Nachwuchsgruppe EPM auf der genauen Vermessung der dreidimensionalen Flussdichte-
verteilung innerhalb des experimentell zugänglichen Raumes, sowie dem sogenannten Training des Magneten. Im Zuge dieses durchgeführten „Trainingsprogramms“, das zur Erhöhung der Standdauer des CFM dient, konnten mittlerweile Flussdichten von 5 T über mehrere Wochen zuverlässig zur Verfügung gestellt werden.

Im Zuge des III. Ilmenauer Physiksommers konnte der CFM für das Schülerpraktikum sehr eindrucksvoll eingesetzt werden, um 7 Thüringischen Gymnasiasten der 11. Klasse einen ersten Einblick in die materialwissenschaftliche Forschung unseres Hochfeldmagnets zu geben.

Zur Erweiterung des Einsatzgebietes hin zu hohen Temperaturen konnte der CFM im November 2003 um einen Hochtemperaturofen erweitert werden, womit im starken magnetischen Gleichfeld von bis zu 5 T Materialien bei Temperaturen von bis zu 1500°C erschmolzen bzw. auch kristallisiert werden können. Diese bisher in Deutschland einzigartige Kombination von Hochfeldmagnet und Hochtemperaturofen erlaubt nun die Untersuchung des Einflusses eines starken Magnetfeldes bei Schmelz- und Kristallisationsprozessen bei mittleren bis zu hohen Temperaturen.

Untersuchungen zur Kristallisation von Bariumhexaferrit (BHF), einem der bedeutendsten und in Deutschland weitverbreiteten hartmagnetischen Werkstoff, stehen auf dem wissenschaftlichen Untersuchungsprogramm der Nachwuchsgruppe EPM. Ziel ist dabei eine weitere Verbesserung der ohnedies guten magnetischen, werkstofflichen Eigenschaften von BHF sowie die Klärung der Frage, wie ein äußeres Magnetfeld die Kristallisation mechanistisch verändert (Initiierung, Kristallwachstum, Domäneausrichtung, Erzeugung und Orientierung makroskopischer, anisotroper magnetischer Eigenschaften). Gerade der Mechanismus des Einkoppelns und der Wirkung eines starken Magnetfeldes bei der Kristallisation von Materialien stellt ein bisher nur unvollständig gelöstes, wissenschaftliches Problem dar.

Ergebnisse zur Barium - Hexaferrit - Kristallisation:

Bei diesen Untersuchungen stellte sich heraus, dass die im Rahmen der vorangegangenen Untersuchungen ermittelte optimale Herstellungstemperatur von 870°C um mehr als 70°C reduziert werden kann, was großtechnisch im Bezug auf die aufzuwendenden Energiekosten eine bedeutendes Resultat darstellt. Die genaue Einhaltung der chemischen Zusammensetzung der Startmischungen der Ausgangsverbindungen führt zu einer Optimierung
der Materialeigenschaften, deren Struktur sowie deren magnetischer Eigenschaften. Die in den vorangegangenen Untersuchungen festgestellte maximal erreichte Koerzitivfeldstärke von etwa 4800 kOe konnte verifiziert und in chemisch - optimierten Zusammensetzungen sogar übertroffen werden. Diese nun abgeschlossenen Untersuchungen fixieren die materialwissenschaftlichen Mindestanforderungen, die durch die Kristallisation im Magnetfeld erreicht bzw. übertroffen werden müssen. Die erzeugten BHF - Materialien dienen somit als Referenzmaterial zukünftiger Untersuchungen. Der Beginn der Experimente zur Behandlung von BHF - Flakes im äußeren magnetischen Feld ist noch zum Ende dieses Jahres geplant nachdem die genauen Prozessparameter (Temperaturprofil im HTO, Beeinflussung der Temperaturmessung durch Magnetfeld, etc) präzise überprüft bzw. definiert sind.

Ausblick:

Die bereits vorliegenden Resultate erlauben eine sehr positive Bilanz der wissenschaftlichen Tätigkeit der vorangegangenen Forschungsperioden. BHF stellt ein sehr vielversprechendes Material dar, das großes Potential zu Verbesserungen seiner magnetischen Eigenschaften besitzt wenn es durch ein starkes äußeres Magnetfeld permanent anisotrop orientiert und in Folge optimiert werden kann. Darüber hinaus soll die Palette der zu untersuchenden Materialien im kommenden Jahr drastisch erweitert werden. Dazu steht grundsätzlich die gesamte Palette technisch, wissenschaftlich oder industriell interessanter Verbindungen und Legierungen zur Verfügung. Hauptaugenmerk soll jedoch auf anorganischen Verbindungen und metallischen Legierungen liegen.

4.3.10 Kompetenzzentrum „OphthalmolInnovation“

Inhaltliche Zielstellung des Kompetenzzentrums ist die Neu- und Weiterentwicklung innovativer Produkte für die Ophthalmologie mit den Schwerpunkten:

- Funktionsdiagnostische Systeme zur objektiven Beurteilung der Funktionen des Sehvorgangs, des Stoffwechsels und der Mikrozirkulation des Auges
- Therapeutische Systeme für die Laseranwendung in der Augenheilkunde.
Diese Zielstellung ist in sieben Projektlinien mit hohem Synergiepotential untersetzt:

- Bildgebende Basistechnologien für Funktionsimaging und individuelle Therapieführung am Auge
- Funktionsimaging der Mikrozirkulation für die individuelle Therapieführung
- Spektralimaging zur Erfassung therapeutisch relevanter Kenngrößen des Stoffwechsels
- Elektrodiagnostik zur objektiven Beurteilung des visuellen Funktionszustandes
- Refraktive Laserchirurgie: Topografie- und Wellenfrontanalyse - gestützte Laserablation der Cornea mit online - Kontrolle
- Lasertherapeutische Kataraktbehandlung, Laser - Mikrochirurgie am Auge

4.3.11 TU - Forschungsschwerpunkt „Mobilkommunikation“

4.3.12 TU - Forschungsschwerpunkt „Intelligente Mobile Systeme - Assistenzrobotik"

Die Analyse dieser internationalen Forschungsrichtungen im Abgleich mit den bereits existierenden Entwicklungsschwerpunkten an der Technischen Universität Ilmenau macht deutlich, dass bei einer Konzentration der universitären und außeruniversitären Kapazitäten ein national und international beachtliches Kompetenzpotential im Bereich Intelligente Systeme/Robotik in der Technologieregion Ilmenau existiert.

Die mit dem Konzept verbundene Entwicklung intelligenter mobiler Systeme kann in der ersten Phase auf folgende Schwerpunkte orientiert werden:

Plattformentwicklung für unterschiedliche Anwendungsszenarien:

Entwicklung einer Plattform in universitärer und industrieller Gemeinschaftsarbeit als Basis modular aufgebauter mobiler Roboter.

Anwendungsszenarien:

- Baumarkt - Szenario/Beratungs- und Shopping Assistenten
- Security - Scenario/Home - Care - Szenario
- Inspektionsrobotik - Szenario
- Autonomous Underwater Vehicles
Aufbau eines Intelligenten Transport-Systems zur Unterstützung der Logistik in urbanen Zentren:

- Intelligente Transport-Systeme zur Vernetzung der am Verkehrsprozess beteiligten technischen Systeme
- Aktive/passive Sicherheitssysteme, Fahrzeugführungssysteme, multimediale Kommunikations- und Navigationssysteme, leistungsfähige Umwelterfassungssysteme

Mobile intelligente Systeme in der Lehre und im Technologie-Park:

- authentische Wissensvermittlung neuester Erkenntnisse auf einem hochaktuellen Gebiet → Ausbildung der Studenten in modernen Robotik-Laboren
- Mobilrobotik hat keine Probleme, sich nach außen hin mitzuteilen → Technologie-Region Ilmenau mit geplanter Technologie-Park („Ilmenauer Fass“ + mobile Roboter/fahrrerlose Kraftfahrzeuge)

4.4 Multimediakonzept der Technischen Universität Ilmenau (Zusammenfassung)

Abb. 5: Multimedia an der TU Ilmenau in der Übersicht

Multimedia an der TU Ilmenau - das bedeutet:

Drei Forschungs- und Entwicklungsbereiche:

- ...mit Schnittfeldern:
In Forschung und Entwicklung haben sich enge Kooperationsbeziehungen entwickelt - bilateral (z.B. zwischen der Medientechnologie und der Kommunikationswissenschaft oder der Medientechnologie und dem Maschinenbau) und trilateral (zwischen allen drei Forschungs- und Entwicklungsbereichen).
...auf dem Hintergrund:

...in Verbindung:

4.5 Profilierung der Forschung bis 2005 und strategischer Ausblick

Interdisziplinäre und interfakultative Forschungsschwerpunkte, die auch von außerhalb mit der TU Ilmenau assoziiert werden, wurden unter Punkt 4.3 genannt. Die Diskussion in den einzelnen Fakultäten zeigte, dass eine fakultätsübergreifende Identifikation und Zustimmung zu diesen Kompetenzbereichen an der TU Ilmenau gegeben ist.
Die Universität beabsichtigt, die bereits gut ausgeprägten Aktivitäten der Fakultäten für Maschinenbau sowie für Informatik und Automatisierung auf dem Gebiet der „Mobilen Bewegungssysteme/Assistenzrobotik“ zu bündeln, um auch hieraus den Antrag für eine DFG - Forschergruppe sehr zeitnah zu entwickeln. Dies gilt auch für die Thematik „Mobilkommunikation“, für die in den Fakultäten Elektrotechnik und Informationstechnik sowie Informatik und Automatisierung sehr konkrete Vorarbeiten bestehen.

getragen, jedoch werden die jährlichen Kolloquien themenorientiert und fakultätsübergreifend gestaltet.

5. Fakultäten

5.1 Fakultät für Elektrotechnik und Informationstechnik

Anschrift: 98693 Ilmenau, Gustav - Kirchhoff - Straße I (Kirchhoffbau)

Dekan: Univ. - Prof. Dr. - Ing. habil. Heinz - Ulrich Seidel
Tel.: (03677)69 2843 Fax: (03677)69 1517
E - mail: dekanat-ei@tu-ilmenau.de

Prodekan: Univ. - Prof. Dr. - Ing. habil. Jürgen Petzoldt
Tel.: (03677)69 2608 Fax: (03677)69 1469
E - mail: juergen.petzoldt@tu-ilmenau.de

5.1.1 Institut für Kommunikations- und Messtechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Reiner Thomä
Tel.: (03677)69 2622 Fax: (03677)69 1113
E - mail: reiner.thomae@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 3 C3

5.1.1.1 Fachgebiet Nachrichtentechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. Martin Haardt
Tel.: (03677)69 2613 Fax: (03677)69 1195
E - Mail: martin.haardt@tu-ilmenau.de

Forschungsgebiete:

Die Nachrichtentechnik umfasst Verfahren und Einrichtungen zur Aufnahme, Übertragung, Zwischenspeicherung und Aus- beziehungsweise Wiedergabe von Nachrichten (Sprache, Text, Musik, Bilder, usw.). In der Forschung beschäftigt sich das Fachgebiet Nachrichtentechnik zur Zeit vorwiegend mit effizienten Verfahren der Übertragungstechnik. Ein Forschungsschwerpunkt ist die breitbandige Mobilkommunikation. Hier liegen die Anwendungen der Forschungsergebnisse besonders bei

- der Weiterentwicklung von Mobilfunksystemen der 3. Generation (3G) wie UMTS und

Im Mittelpunkt der Forschungsarbeiten stehen unter anderem

- adaptive Antennen,
- MIMO (multiple input multiple output) - Systeme mit Antennengruppen auf der Send- und der Empfangsseite sowie
- effiziente Signalverarbeitungsalgorithmen (z. B. zur Kanalschätzung und Kanalentzer- rung)

zur Erhöhung der spektralen Effizienz zukünftiger Mobilfunksysteme. Genaue Kenntnisse über die zeitvarianten richtungsabhängigen Eigenschaften von Mobilfunkkanälen sind für den Entwurf und die Evaluierung dieser Algorithmen unabdingbar. In Kooperation mit dem...

Ein weiterer Forschungsschwerpunkt ist die hochauflösende Parameterschätzung. Die Aktivitäten konzentrieren sich hier auf

- Parameterschätzverfahren und Array-Kalibrierungsalgorithmen, die eine hochauflösende Messung von Mobilfunkkanälen ermöglichen und in den oben beschriebenen Channel-Soundern benötigt werden,
- die Modellierung von Mobilfunkkanälen, aufbauend auf gemessenen Kanalimpulsantworten,
- Algorithmen zur Zeit- und Frequenzsynchronisation sowie die Prädiktion zeitvarianter Mobilfunkkanäle.

Promotionen:

„Zur breitbandigen Infrarot-Indoor-Kommunikation“, Mike Wolf, 2002

„On computer aided modelling of photonic systems and networks“, Ronald Freund, 2002

„Multicode-Detektion im UMTS“, Ralf Machauer, Universität Karlsruhe, 2002 (Gutachter: Prof. Jondral, Prof. Haardt)

Publikationen:

Forschungsprojekte:

Space - Time - Sendekonzepte für Mobilfunktensysteme der 3. und 4. Generation

Projektleiter: Prof. M. Haardt
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft Forschung und Kunst, Fördersumme 155.239,97
Laufzeit: 01.01.2002 bis 31.12.2002
Schlagwörter: Space - Time Algorithmen, Mobilfunk, UMTS, 4. Generation, MIMO, Downlink Beamforming, adaptive Antennen

MiniWatt

Projektleiter: Prof. R. Thomä, Prof. M. Haardt
Partner/Förderinstitution: BMBF, Fördersumme 65.000
Laufzeit: 01.03.2002 bis 31.12.2002
Schlagwörter: alternative Funksysteme, Reduktion der Strahlungsleistung, drahtlose Kommunikationssysteme, adaptive Antennen, MIMO, Raum - Zeit Signalverarbeitung, UW

HyEff

Projektleiter: Prof. R. Thomä
Partner/Förderinstitution: BMBF, Fördersumme 919.397 DM
Schlagwörter: Space - Time Algorithmen, Mobilfunk, UMTS, 4. Generation, MIMO, adaptive Antennen

Mitgliedschaft der TU Ilmenau im Wireless World Research Forum (WWRF)

Projektleiter: Prof. M. Haardt
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 14.896,74
Schlagwörter: Mobilfunktensysteme

Leistungsangebote:

- Erstellung von Tools zur Simulation von Mobilfunk - Übertragungssystemen
- Messung der charakteristischen Eigenschaften optischer und elektrischer Baugruppen
- theoretische Untersuchungen an Nachrichtenübertragungssystemen

Spezialausstattung:

Optik - Labor mit folgender Ausstattung:

- Optischer Signalgenerator HP 7000
- Netzwerkanalysator HP 8702
- Digitalspeicherosilloskop Tektronik TDS 540
- Fehlerratenmessplatz ME 520 A
Mobilfunklabor mit folgender Ausstattung:

- Communications Signal Analyser CSA 8000
- Vektorieller - Netzwerk - Analyser ZVK
- Vector Signal Generator SMIQ und I/Q Modulation Generator AMIQ
- Analysator FSU 8
- Mikrowellengenerator SMP04
- Wideband Multichannel Simulatormessplatz PROBSim - C8 mit Erweiterungsmodulen
- Wideband I/Q Demodulator VN 6000
- fünf PC Arbeitsplätze Powerline P4 - 1200 bis 2000

5.1.1.2 Fachgebiet Elektronische Messtechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Reiner Thomä
Tel.: (03677)69 2622 Fax: (03677)69 1113 E-Mail: reiner.thomae@tu-ilmenau.de

Forschungsgebiete:

- Messung und Modellierung richtungsaufgelöster Mobilfunkkanäle
- Optimale Signalverarbeitung für Mobilfunksysteme mit mehreren Antennen auf beiden Seiten der Übertragungsstrecke (Turbo - MIMO)
- Link- und System - Level - Simulation von Mobilfunksystemen mit adaptiven Antennen
- Implementierung und Anwendung von hochauflösenden Richtungs-, Doppler- und Laufzeit - Schätzverfahren in einem Breitband - Vektor - Channel - Sounder
- Ultrabreitband - Radar - Technik
- Surface Penetrating Radar zur Suche von Anti - Personenminen und zur Leitungsortung
- hybrid und monolithisch integrierte Hochfrequenzschaltkreise für Ultra - Breitbandsysteme (UWB)

Promotionen:

„Messung der spektralen Korrelation zyklostationärer Prozesse“, J. Goerlich, 2001

Publikationen:

Forschungsprojekte:

„Link - Level Simulation Toolbox“

Projektleiter: Prof. R. Thomä
Partner/Förderinstitution: TOYO Corporation, Japan
Schlagwörter: Link - level - Simulation, MIMO - Systeme, realistische Performance - Evaluierung, Turbo - MIMO - Detection

„Bodenradar mit integrierter HF - Elektronik für die humanitäre Minensuche“ (DE-MINE)

Projektleiter: Dr. - Ing. J. Sachs
Partner/Förderinstitution: EU, Fördersumme 199.000
Laufzeit: 2/1999 bis 7/2001
Schlagwörter: humanitäre Minensuche, Ground Penetrating Radar, Ultra-Breitband - Elektronik, Korrelationsempfang

„Entwicklung eines Gerätesystems zur zerstörungsfreien Ortung und automatischen Dokumentation unterirdisch verlegter Leitungen - Ortungs- und Dokumentationssystem ORDOSYS“

Projektleiter: Dr. - Ing. J. Sachs
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 359.278,16
Schlagwörter: Leitungstrassenerkundung, Ground Penetrating Radar (GPR), UWB - Antennen, UWB - Elektronik, GPR - Datenverarbeitung

„Messung und parametrische Modellierung instationärer, richtungsaufgelöster Mobilfunkkanäle in komplizierter Umgebung“

Projektleiter: Prof. R. Thomä
Partner/Förderinstitution: DFG, Fördersumme 113.964,03 (+ 1 Jahr BAT - O IIa + 2.000)
Schlagwörter: Multidimensional Channel Sounding, hochauflösende Parameterschätzung, Wellenausbreitung, Funkkanalmodellierung

„Enhancement of three existing technologies and data fusion algorithms for the test and Demonstration of Multi - sensor landmine Detection techniques“

Projektleiter: Dr. - Ing. J. Sachs
Partner/Förderinstitution: EU, Fördersumme 212.004
Laufzeit: 1/2001 bis 7/2003
Schlagwörter: Minensuche, Ground Penetrating Radar, UWB - Elektronik, PN - Sequenzen, Korrelationsempfang, Metalldetektor, Biosensor, Datenfusion

„Space - Time Algorithmen zur Kapazitätserhöhung für Mobilfunksysteme mit multiplen Antennen auf der Sender- und Empfängerseite“

 Projektleiter: Prof. R. Thomä
 Partner/Förderinstitution: BMBF, Fördersumme 919.397 DM
 Schlagwörter: MIMO - Systeme, Link - Level - Simulation, Space - Time - Signalverarbeitung, Funkkanalmessung, Turbo - MIMO - Detektion

„Alternative Funksysteme zur Vermeidung der Strahlungsdichte im digitalen Rundfunk “

 Projektleiter: Prof. R. Thomä
 Partner/Förderinstitution: Uni Karlsruhe (Unterauftrag zum BMBF - Vorhaben), Fördersumme 65.000
 Schlagwörter: elektromagnetische Exposition, MIMO - Funksysteme, UWB - Übertragungssysteme, Downlink - Optimierung

„Design und Evaluierung von UWB - Schaltkreisen“

 Projektleiter: Dr. - Ing. J. Sachs
 Partner/Förderinstitution: Industrieförderung MEODAT
 Schlagwörter: UWB, PN - Sequenzen, Korrelationsempfang, Track & Hold - Stufe, UWB - Verstärker, Verstärker, Teiler

Leistungsangebote:

Messung von Mobilfunk - Kanälen:
- Verfahren zur breitbandigen, richtungsaufgelösten Messung der zeitvarianten Impulsantwort, Messung und Modellierung der Wellenausbreitung im Mobilfunk, Durchführung von Messkampagnen für "beyond - 3G" - Szenarien

Satellitennavigationssystem GPS in der Umweltmesstechnik:
- GPS - Positionsbestimmung, Methoden zur Genauigkeitserhöhung
- Anwendungen: Driftsensoren, Positionsbestimmung von Messfahrzeugen

Akustische Messtechnik:
- Frequenzbereichsidentifikation linearer und schwach nichtlinearer Systeme

Ultrabreitbandtechnik:
- neue Breitbandmessprinzipien, SiGe - und LTCC - Schaltkreisentwurf, Antennen

Georadar:
- Entwicklung von Algorithmen und Komponenten für ein Georadarsystem zum Einsatz bei Baugrunduntersuchungen und zur Rohrleitungssuche
- Entwicklung von Komponenten eines Minensuchgerätes
Schwingungsmesstechnik:
- Signalerfassung, Schwingungsmessung und -diagnose an rotierenden Maschinen, Ordnungsanalyse, Merkmalsgewinnung und Klassifikation für Zustandsüberwachung

Spezialausstattung:
- Echtzeit - Channel - Sounder mit linearen, planaren und zirkularen Antennenarrays MEDAV RUSK (Bandbreite 240 MHz, Frequenzbereich 1.4...2.6, 5.0...6.0 GHz)
- 3D - Antennenpositionierer, 8 - Kanal - Funkkanalsimulator Elektrobit C8
- Technik zur Messdatenerfassung und -verarbeitung (parallele DSP - Systeme)
- Digital - Speicheroszilloskope, HF - Signalgeneratoren bis 6 GHz und 40 GHz
- Spektralanalysatoren bis 26 GHz, vektorielle Netzwerkanalysatoren bis 40 GHz
- GPS - Empfänger und Telemetriestrecken, GPR - Radar - Scanner
- Mehrkanal - UWB - Radarsystem

5.1.1.3 Fachgebiet Hochfrequenz- und Mikrowellentechnik (bis 09/2002: Grundlagen der Hochfrequenztechnik)

Fachgebietsleiter: Univ. Prof. Dr. rer. nat. habil. Matthias Hein
(Nachfolge Prof. Dr. - Ing. G. Fuchs, Prof. Dr. - Ing. H. Loele)
Tel.: (03677)69 2831 Fax: (03677)69 1586
E - Mail: hmt@e-technik.tu-ilmenau.de

Forschungsgebiete:
Die Forschungsarbeiten des Fachgebietes umfassen ein breites Themenspektrum von der etablierten Schaltungstechnik bis hin zu neuen zukunftsträchtigen Technologien. Im Berichtszeitraum wurden folgende Projekte bearbeitet:
- Entfernungsbestimmung mittels super - breitbandiger Rauschsignale
- Entwicklung von Gruppenantennen für Kommunikationssysteme
- Echtzeitanalyse DQPSK - modulierter OFDM - Signale
- Entwicklung eines kundenspezifischen drahtlosen Video - Übertragungssystems
- Entwurf, Modellierung und Charakterisierung von HF- und Mikrowellenschaltungen
- Mikrowellensensorik
- Hochtemperatursupraleiter für Mikrowellenanwendungen

Publikationen:

Forschungsprojekte:

„Nahbereichs - Rauschradar“

Projektleiter: Prof. H. Loele
Partner/Förderinstitution: DFG (DFG LO577/2 - 1), Universität Ulm, Abteilung Elektronische Bauelemente und Schaltungen, Prof. Schumacher, Fördersumme 130.000
Laufzeit: 1/2000 bis 12/2001
Schlagwörter: Radartechnik, Mikrowellentechnik, Rauschradar, magnetostatische Wellen, Verzögerungsleitungen.

„KFZ - Radarsensoren“

Projektleiter: Dr. - Ing. R. Stephan
Partner/Förderinstitution: DaimlerChrysler Forschungszentrum Ulm
Laufzeit: 7/2001 bis 12/2001
Schlagwörter: Radartechnik, Mikrowellentechnik, Breitbandradar, Funktechnik

„Drahtlose digitale Bildübertragung durch nichtmetallische Rohre und Kanäle“

Projektleiter: Prof. G. Fuchs
Partner/Förderinstitution: KEG mbH Burgstädt - Herrenhaide, BMWi mit AiF als Projektträger, FKZ:KF 0285501 KLF1, Fördersumme 141.000
Laufzeit: 7/2001 bis 12/2003
Schlagwörter: Videosignalparameter, digitale Modulationsverfahren, Modulator / Demodulator, MW - Sende - Empfangseinrichtung, Wellenausbreitung

“Nonlinear microwave response of high temperature superconducting microwave devices“

Projektleiter: Prof. M. Hein
Partner/Förderinstitution: European Office of Aerospace Research and Development (EOARD, London), FKZ F61775 - 01 - WE033, MIT Lincoln Laboratory, Lexington, MA, U.S.A., QinetiQ Malvern, Worcestershire, U.K.
Laufzeit: 8/2001 bis 7/2003
Schlagwörter: Hochtemperatursupraleiter, Mikrowellenfilter, Zweiton-Intermodulation, Harmonischenerzeugung, Oberflächenimpedanz, dielektrischer Verlustwinkel, nichtlineare Mikrowelleneigenschaften.

Leistungsangebote:

- Simulation elektromagnetischer Feldprobleme in der Hochfrequenztechnik
- Entwurf und Charakterisierung von Mikrowellenschaltungen bis 110 GHz
- Spezialmessplätze zur Untersuchung der HF- und MW-Eigenschaften dielektrischer, metallischer und magnetischer Materialien
- Simulation und messtechnische Charakterisierung von Wellenausbreitungsfänomenen in metallisch oder dielektrisch berandeten Rohren und Kanälen
- Realisierung von Send- und Empfangsanordnungen zur drahtlosen Videosignalübertragung im X-Band in Rohren und Kanälen
- Videosignalüberwachung für drahtlose analoge/digitale Bildübertragungsverfahren
- Entwicklung von Komponenten für anwendungsspezifische Funksysteme

Spezialausstattungen:

- Mikrowellenmesstechnik bis 50 GHz und 75 - 110 GHz
- On-wafer Messtechnik (koplanar und Mikrostreifenleitung)
- Diverse Simulations-Softwarepakete für HF- und Mikrowellen - Schaltungsentwurf
- Videomesstechnik für PAL-Norm an drahtlosen Übertragungseinrichtungen (z.B. Vektorscope)
- Echtzeitanalysator für DQPSK - modulierte OFDM - Signale
- Messeinrichtungen zur Simulation von Mobilfunkkanälen

5.1.1.4 Fachgebiet Digitale Signalverarbeitung

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Werner Zühlke
Tel.: (03677)69 2617 Fax: (03677)69 1151
E-Mail: werner.zuehlke@tu-ilmenau.de

Forschungsgebiete:

Sprachcodierung:
- Simulation von Varianten der im Fachgebiet DSV entwickelten Distanzcodierung (DIC) in Verbindung mit Code - Multiplex (CDMA), vorgesehen für Mobilfunk

Spracherkennung:
- Entwicklung einer Kommandoworterkennung
- Untersuchung der Dialekt- und Akzenterkennung
- Untersuchung einer Sprachergruppenerkennung für strukturelles Training von Spracherkennungsanlagen
Publikationen:

W. Zühlke: „Distanzcodierung für CDMA“, im Internet veröffentlicht in deutsch, englisch und französisch. 6 Seiten

Forschungsprojekte:

„Robuste Wort- und Lauterkennung“

Projektleiter: Prof. W. Zühlke
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst
Fördersumme 622.066 DM

„Sprachkategorisierung Teil II“

Projektleiter: Prof. W. Zühlke, Dr. - Ing. U. Metz
Partner/Förderinstitution: MEDAV GmbH Uttenreuth
Schlagwörter: Dialekterkennung, Akzenterkennung, Personengruppenerkennung, Wortspotter, Aufbau Datenserver, Sprachkorpora.

„Multimediaanwendungen im mobilen Umfeld“

Projektleiter: Prof. J. Seitz, Dr. - Ing. K. Schran
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst
Fördersumme 228.512 DM
Laufzeit: 1/2002 bis 12/2003
Schlagwörter: Worterkenntung, Sprachsteuerung von Multimediaendgeräten, Dialoggestaltung, Vokabular, strukturiertes Training, Implementierung

Leistungsangebote:

- Automatische Sprachenidentifikation
- Spracherkennungsmodul
- DIC - Software
5.1.1.5 Fachgebiet Kommunikationsnetze

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Jochen Seitz
Tel.: (03677)69 2614 Fax: (03677)69 1143
E - Mail: Jochen.Seitz@tu-ilmenau.de

Forschungsgebiete:

Das Fachgebiet Kommunikationsnetze befasst sich mit Telekommunikationsdiensten sowie mit der Dienste- und Netzintegration in zukünftigen Fest- und Mobilkommunikationsnetzen. Zudem wirkt das Fachgebiet maßgeblich am Forschungsschwerpunkt „Mobilkommunikation“ der TU Ilmenau mit. Folgende Komplexe sind hierfür besonders zu nennen:

- Signalisierung, Kommunikationsprotokolle und Messtechnik in zukünftigen festen und mobilen Kommunikationsnetzen
- Interworking zwischen Kommunikationsnetzen
- Simulation von Kommunikationsnetzen, -diensten und -protokollen
- Ad - hoc - Netze
- Kontextsensitive Diensterbringung
- Kommunikationsdienste zur Hausautomatisierung
- Netz- und Dienstmanagement
- Telelearning/Teleteaching als Telekommunikationsdienst

Publikationen:

Forschungsprojekte:

M³: „Multimediaanwendungen im mobilen Umfeld“

Projektleiter: Prof. J. Seitz
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fachgebiet „Elektronische Medientechnik“ (Prof. Brandenburg), Fachgebiet „Telematik“ (Prof. Reschke), Fachgebiet „Digitale Signalverarbeitung“ (Prof. Zühlke), Fördersumme ca. 485.000 €
Laufzeit: 2001 bis 2003
Schlagwörter: Mobilkommunikation, Multimediaanwendungen, Dienstgüte (QoS), Endgerätetechnik, Demonstratoranwendung, Labor

Klassenbibliothek für die Erstellung von interaktiven, web-basierten multimedialen Lerndokumenten in digitalen Lernplattformen.

Projektleiter: Prof. J. Seitz
Partner/Förderinstitution: HWP - Projekt: Thüringer Ministerium für Wissenschaft, Forschung und Kunst / Bund Fachgebiet „Integrierte Hard- und Softwaresysteme“ (Prof. Mitschele-Thiel, Dr. Wuttke), Fördersumme ca. 95.000 €
Laufzeit: 2002 bis 2003
Schlagwörter: Web-based Training, Lernmodule, virtuelle Lernumgebung, Multimedia, Interaktivität, Programmierumgebung

Leistungsangebote:

- Spezifikation von Kommunikationsprotokollen, insbesondere für Mobilkommunikation
- Kontextabhängige mobile Anwendungen in einem Testbed
- Sprach- und Datenkommunikation im ISDN, Signalisierung
- Entwicklung von Simulationstools
- Weiterbildung „Telekommunikations-Manager“
- Erstellung von web-basierten Lehrinhalten

Spezialausstattung:

- Testbed für mobile Endgeräte:
 - Mobile PCs mit WLAN - Anbindung und Bluetooth
 - PDAs und WebPads mit WLAN - Zugang und Bluetooth - Schnittstelle
 - GPS - Erweiterungen für PDAs
 - GSM - Endgeräte
- ADSL - Teststrecke
- 2 ISDN - Nebenstellenanlagen
- D - Kanal - Protokolltester, Logikanalysator, Oszilloskope
- 3 ATM - Switches (Cisco)
5.1.2 Institut für Schaltungstechnik und Elektroniktechnologie

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Gert Winkler
Tel.: (03677) 69 2606 Fax: (03677) 69 1204
E-mail: gert.winkler@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 1 C3

5.1.2.1 Fachgebiet Elektronische Schaltungen und Systeme

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Gerd Scarbata
Tel.: (03677) 69 2625 Fax: (03677) 69 1163
E-Mail: gerd.scarbata@tu-ilmenau.de

Forschungsgebiete:

Das Fachgebiet "Elektronische Schaltungen und Systeme" befasst sich vorwiegend mit dem Entwurf elektronischer Systeme im Bereich der Informations- und Kommunikationstechnologien. Dazu werden einerseits die Grundlagen der digitalen und analogen Schaltungstechnik gelehrt, die für jeden Elektronikentwickler das Handwerkszeug darstellen, anderseits werden aber auch die Fähigkeiten vermittelt, die heute notwendig sind, um den komplizierten Entwurfsablauf von der Aufgabenstellung bis hin zum fertigen System zu beherrschen.

Teil der Forschungsarbeiten im Fachgebiet sind komplexe Softwaresysteme, sowohl bei der Umsetzung von komplexen Videokompressionsalgorithmen als auch bei der Umsetzung von neuen Strategien beim Analogentwurf integrierter Komponenten.

Publikationen:

Forschungsprojekte:

Graduiertenkolleg 164 „Entwurf analoger und gemischter analog-digitaler Strukturen am Beispiel neuronaler Netze“

Projektleiter: Prof. G. Scarbata, Prof. H. - M. Groß
Partner/Förderinstitution: DFG, Fördersumme 1.807.436
Laufzeit: 01.10.1993 bis 30.09.2002
Schlagwörter: Entwurfsautomation, neuronale Netze, Hardwareimplementierung neuronaler Netze, Field Programmable Gate Arrays, Schallquellenlokalisierung, evolutionäre Algorithmen, Schaltungsentwurf

SFB 358 Teilprojekt F1 „Automatisierter Systementwurf, Synthese, Test, Verifikation, Dedizierte Anwendungen“

Projektleiter: Prof. G. Scarbata
Partner/Förderinstitution: DFG, Fördersumme 1.586.499
Laufzeit: 01.01.1992 bis 31.12.2001
Schlagwörter: Entwurfsautomatisierung, analog-digitale Baugruppen, High-Level-Synthese, Layout-Generierung

„Entwicklung einer Display-Unit im Rahmen des BMS-Projektes (EDUBOS)“

Projektleiter: Dr. - Ing. G. Scheller
Partner/Förderinstitution: HHI Berlin, BMBF, Fördersumme 362.300 DM
Laufzeit: 01.06.2001 bis 31.12.2003
Schlagwörter: Audio und Video Streaming, mobile Anwendungen, MPEG-4, Bluetooth, Übertragungssysteme

„Hard- und Software-Architektur für Multimediageräte (SIPROS)“

Projektleiter: Dr. - Ing. G. Scheller
Partner/Förderinstitution: Loewe Opta GmbH, BMBF, Fördersumme 357.000 DM
Laufzeit: 01.10.2000 bis 31.03.2003
Schlagwörter: digitale Displayschnittstellen, TV-Endgeräte, DMD- und LCD-Technologien, Rückprojektionssysteme, Panel-Link-Technologie, digitale TV-Konzepte

„Echtzeitgenerierung digitaler Wasserzeichen in Videodaten (WAZVID)“

Projektleiter: Dr. - Ing. G. Scheller
Laufzeit: 01.01.2002 bis 31.12.2004
Schlagwörter: digitale Wasserzeichen, Copyright-Schutz, Videodaten, Kundenidentifizierung, Wavelet- und DFT-Transformation, Datenüberprüfung, Medienmarkierung
„Entwicklung von A/D - Wandlern für die Anwendung in digitalen Signalverarbeitungssystemen unter Berücksichtigung neuester Techniken, Technologien und Anforderungen“

Projektleiter: Prof. G. Scarbata
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 220.680
Laufzeit: 01.05.1999 bis 30.04.2001
Schlagwörter: A/D - Wandler, digitale Signalprozessoren, Analog/Digital - Umsetzer (ADU)

„Rapid Development Kit für Mixed - Signal Systeme“

Projektleiter: Prof. Dr. - Ing. habil. G. Scarbata
Partner/Förderinstitution: EMSYS GmbH, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 613.515
Laufzeit: 01.06.2002 bis 31.05.2005
Schlagwörter: In - System - Configuration, System on Chip, Programmable System on Chip, Programmable Mixed Signal System

Spezialausstattung:
Messlabor für analoge und digitale Schaltung, Logic - Analyzer, Calibrator, Timer/Counter HP - Gateway, Digital Source Meter, Digital Oszilloskop, Digital - Multimeter, DSP - Board

5.1.2.2 Fachgebiet Konstruktion und Technologie der Elektronik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Gert Winkler
Tel.: (03677)69 2606 Fax: (03677)69 1204
E - Mail: gert.winkler@tu-ilmenau.de

Forschungsgebiete:
- Simulation von Hochfrequenzeigenschaften in LTCC Strukturen.
- Einbeziehung der Ergebnisse in existierende CAE - Werkzeuge um eine Simulation unter Berücksichtigung der Technologie der verschiedenen Mikrotechniken zu ermöglichen.
- Entwicklung neuer Technologien für umweltfreundliche, recycelbare elektronische Baugruppen.

Publikationen:

A. Jancura*, G. Chen**: Frequency and Time domain behavior of solid and gridded reference power/ground planes in LTCC modules, Prof. Dr. - Ing. habil. Gert Winkler*, Dr. John L. Prince**, Dr. Kathleen L. Virga**, 52nd Electronic Components and Technology Conference to be held on May 28 - May 31, 2002 in San Diego, CA, 355 - 359
Forschungsprojekte:

„Verbundprojekt zur Entwicklung, Optimierung und Qualifizierung einer Technologie auf Basis Polysiloxanfolie zur kostengünstigen und umweltverträglichen Gestaltung elektronischer Baugruppen“

Projektleiter: Prof. Dr. Winkler
Partner/ Förderinstitution: Keramische Folien GmbH Eschenbach - KERAFOL, KEW Konzeptentwicklung GmbH Kronach u. a., Deutsche Bundesstiftung Umwelt, Fördersumme 35.000 DM (Phase 1), Fördersumme 120.000 DM (Phase 2)
Laufzeit: 1. 1. 2000 bis 31. 3. 2001 (Phase 1), 1. 5. 2001 bis 31. 1. 2004 (Phase 2)
Schlagwörter: Polysiloxanfolie, Umweltfreundliche Leiterplatte, Multilayer-technologien

„Entwicklung und Anwendung von Modellen für elektromagnetische Beeinflussung“

Projektleiter: Prof. Dr. Winkler
Partner/ Förderinstitution: University of Arizona USA /Deutscher Akademischer Austauschdienst, National Science Foundation USA
Schlagwörter: elektromagnetische Beeinflussung (EMV), CAD, Modellbildung

„Chemikalienfreie, strukturierte Metallisierung von schadstofffreien Leiterplatten auf Polysiloxanbasis (POLYMETA)“

Projektleiter: Prof. Dr. Winkler
Partner/ Förderinstitution: Loewe, CREAVAC/ BMFT, Fördersumme 103.000
Laufzeit: 1. 10. 2001 bis 31. 3. 2004
Schlagwörter: Polysiloxanleiterplatte, PVD - Beschichtung

5.1.2.3 Fachgebiet Mikroperipherik

Fachgebietsleiter: Univ.-Prof. Dr.-Ing. habil. Heiko Thust
Tel.: (03677)69 2605 Fax: (03677)69 1204
E-Mail: heiko.thust@tu-ilmenau.de

Forschungsgebiete:

Im Verlauf der Realisierung komplexer Systeme ist eine Aufbau- und Verbindungstechnologie erforderlich, die es gestattet, die einzelnen Komponenten dort, wo sie nicht weiter monolithisch integrierbar sind, durch hybride Techniken zusammenzufassen (MCM’s, Packages). Ausgehend von den bestehenden und in der Entwicklung begriffenen hybriden Technologien der Elektronik, soll deren Weiterentwicklung so vorangetrieben werden, dass sie in der Lage sind, hybride Lösungen als Kombination der unterschiedlichen monolithischen Baugruppen (Elektronik, Mechanik, Optik) zu erbringen.
Insbesondere die LTCC - Dickschichttechnik (Low Temperature Cofired Ceramics) bietet hier neue Lösungsmöglichkeiten durch die Vielfalt von Materialparametern und Lagenzahl. Weiterhin gestattet diese Technologie auch die Beherrschung erhöhter Anforderungen bezüglich Wärmeabfuhr, dreidimensionaler Konstruktion, Höchstfrequenzeinsatz und an die elektromagnetische Verträglichkeit bei hohen Taktraten.

Die LTCC - Technologie bietet auch neue Lösungsmöglichkeiten für integrierte Sensorik- und Mechatronik - Anwendungen.

Schwerpunkte der Forschungsarbeiten sind:

- Optimierung der technologischen Prozessschritte und Parameter für spezielle Einsatzfälle.
- Weiterentwicklung der Technologien als integrative System- und Verbindungsträger für die Kombination elektronischer, mechanischer und sensorischer Bauelemente.
- Schaffung exakter Simulationsvoraussetzungen für Baugruppen unter Einbeziehung neuer Technologien, Materialien sowie anderer Mikrotechniken (Mikromechanik, Mikroakustik, Mikrooptik).

Einbeziehung der Ergebnisse in existierende CAD - Werkzeuge, um eine Simulation unter Berücksichtigung der Technologie der verschiedenen Mikrotechniken zu ermöglichen.

Methodenkompetenz:

- Entwurf und technologische Realisierung hybrider elektronischer Baugruppen unter Berücksichtigung material- und technologieabhängiger elektrischer, thermischer und mechanischer Parameter.

Anwendungskompetenz:

- Erarbeitung von Designvorschriften und technologiebezogene Bibliotheken.
- Technologische Realisierung von komplexen mikroelektronischen Baugruppen und Integration mit anderen Mikrotechniken (3D - Keramik - Module).
- Materialcharakterisierung, insbesondere für HF- und Mikrowelleneinsatz.

Promotionen:

„Gläser mit hoher Permitivität für niedrigsinternden Mikrowellenkeramik“, M. Eberstein, 2001
Publikationen:

Forschungsprojekte:

"Entwicklung eines Verteilernetzwerkes mit integrierter Antenne auf mehrlagigem LTCC Substrat (EASTON)"

Projektleiter: Prof. H. Thust, Bearbeiter: Dipl. - Ing. R. Münnich
Partner/Förderinstitution: IMST GmbH Kamp Lintfort, TESAT Spacecom GmbH / DLR Bonn
Schlagwörter: Patchantennenarray, Wilkensonteiler, LTCC, Multilayer, Benchmark LTCC - Systeme bis 35GHz, HF - Charakterisierung

"Neue Technologievarianten von Mehrlagenkeramik - Modulen für Frequenzbereiche über 20 GHz"

Projektleiter: Prof. H. Thust, Bearbeiter: Dipl. - Ing. M. Hintz
Partner/Förderinstitution: VIA electronic GmbH Hermsdorf, CiS gGmbH Erfurt, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 349.000
Schlagwörter: fotostrukturierbare Pasten, 0 - Schrumpfung, LTCC - Mehlagenschaltungen, Kantenstrukturen bei Mikrowelleneinsatz, Flip - Chip - Montage, Mikrobumps,
"Abgleich von gedruckten Bauelementen durch Veränderung der Mikrostruktur, insbesondere von Widerständen mit Hochspannungsimpulsen"

Projektleiter: Prof. H. Thust, Bearbeiter: Dipl. - Ing. W. Ehrhardt
Partner/Förderinstitution: DFG, Fördersumme ca. 200.000
Schlagwörter: Mikrostruktur, Leitungsmechanismen, amorphe gedruckte Schichten, Energieeintrag, Impulsbelastung, Stabilitäts- und Lebensdaueruntersuchungen, SEM und Thermographieuntersuchungen

Leistungsangebote:
- Entwicklung und Technologieberatung,
- Optimierung von Teilschritten und kompletten elektronischen und MST - Muster - schaltkreisen und Keramikmodulen.

Spezialausstattung:

5.1.3 Institut für Allgemeine und Theoretische Elektrotechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Hermann Uhlmann
Tel.: (03677)69 2630 Fax: (03677)69 1152
E - mail: hermann.uhlmann@tu-ilmenau.de
C - Stellenstruktur: 1 C4, 2 C3

5.1.3.1 Fachgebiet Grundlagen der Elektrotechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Heinz - Ulrich Seidel
Telefon: (03677)69 2627 Fax: (03677)69 1125
E - Mail: heinz-ulrich.seidel@tu-ilmenau.de

Forschungsgebiete:
Systeme und Anwendungen der digitalen Bildverarbeitung, Signalanalyse und Signalerkennung sowie multimediale Lernumgebungen für die elektrotechnische Grundlagenausbildung

Schwerpunktthemen:
- Intelligente miniaturisierte Bildverarbeitungssysteme
- Aktive Sehsysteme für die Mess- und Automatisierungstechnik
- Kurzzeitsignalanalyseverfahren in der Behandlung instationärer Prozesse
- Magnetooptische Sensoren für die Strom- und Schwingungsmeßtechnik
- Computerunterstütztes Lehren und Lernen
Multimediale Präsentation von Vorlesungen
- Lernprogramme für Übung und Selbststudium
- Erprobung innovativer didaktischer Merkmale multimedialer Lernangebote

Promotionen:
„Grenzen der Genauigkeit und Dynamik von nichtkonventionellen energietechnischen Messsystemen“, S. Mohr, 2001

Publikationen:
Schmidt, F.; Krüger, U.; Poschmann, R.: „Ortsaufgelöste Farbmessung von Licht und Kör-

S. Hammer, V. Neundorf, E. Wagner: “Von der Off - zur Online - Lernumgebung Grundla-

H. - U. Seidel, E. Wagner: „Allgemeine Elektrotechnik“. Gleichstrom - Felder - Wechsel-
strom. 3. Auflage, Carl Hanser Verlag München - Wien, 2003, 296 S.

Forschungsprojekte:
„Hardware/Software - Codesign für Systeme der industriellen Bildverarbeitung (HSCD)“

Projektleiter: Prof. H. - U. Seidel
Schlagwörter: digitale Bildverarbeitung, Hardware/Software - Codesign, programmierbare Logik, Echtzeitsysteme

„Entwicklung innovativer Wirkprinzipien für die Realisierung eines neuartigen opti-
schen Wellenmesssystems zur industriellen Hochgeschwindigkeitsvermessung großer Rotationskörper (GWMS)“

Projektleiter: Privatdozent Dr. - Ing. habil. F. Schmidt
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 161.000 DM, Jenoptik L.O.S. GmbH Jena, Zentrum für Bild- und Signalverarbeitung Ilmenau, Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena, EQUIcon Software GmbH Jena
Schlagwörter: digitale Bildverarbeitung, CCD - Zeilensysteme, Mehrkameraanordnungen, Präzisionsmesssysteme

„CMOS - Kameratechnik für die High - End - Bildverarbeitung“

Projektleiter: Prof. H. - U. Seidel
Schlagwörter: digitale Bildverarbeitung, CMOS - Sensoren, Messplatz, CMOS - Farbkamera, High - End - Fotografie, Biometrie, industrielle Bildverarbeitung

„Multimediale Lernumgebungen für die Hochschullehre - Interdisziplinäre und überregionale Kooperation (mile)“

Projektleiter: Prof. E. Wagner
Partner/Förderinstitution: BMBF (FKZ: 08NM073), Partner: TU Ilmenau: Fachgebiete: Medienwissenschaft, Digitale Medien/Medienkonzeption, Kommunikationswissenschaft, Technische Mechanik, TU Dresden, Universität Magdeburg, Universität Trier, An - Institut OFFIS der Universität Oldenburg, Fördersumme 2.445.639
Schlagwörter: multimediale Lernprogramme, Lernmodule, LOM - Standard

Leistungsangebote:
- Erarbeitung von Studien zum Einsatz der Bild- und Signalerkennung in Industrie, Medizin, Umwelt, Verkehr, Forschung
- Projektbearbeitung zu Technischen Erkennungssystemen, bildauflösender Messtechnik, Qualitätssicherung
- Entwicklung von Systemtechnik, Verfahren und Software zur Bild- und Signalerkennung

Spezialausstattung:
- Bildverarbeitungssysteme mit massiver Hardwareunterstützung
- Entwicklungsumgebung für ADSP Sharc
- Themenbezogene Laborausstattung mit rechnergekoppelten Messtechnik
- Aufgabenbezogene Softwaresysteme (MATLAB, MATHEMATICA, MATCAD u. a.)
5.1.3.2 Fachgebiet Theoretische Elektrotechnik

5.1.3.3 Fachgebiet Elektromagnetische Felder

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. F. Hermann Uhlmann (k.)

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. F. Hermann Uhlmann
Tel.: (03677)69 2629 Fax: (03677)69 1152
E - Mail: hermann.uhlmann@tu-ilmenau.de

Forschungsgebiete:
- Methoden zur Berechnung elektromagnetischer Felder
- CAD für elektromagnetische Einrichtungen
- Simulation elektromagnetischer Felder in biologischen Objekten
- Lösung inverser Feldprobleme/Optimierung
- rechnergestützte Analyse nichtlinearer dynamischer Systeme
- Entwurf und Simulation metallischer Nanometerstrukturen, ultraschneller supraleitender Elektronik, mikromagnetischer Strukturen

Promotionen:
„Eine Boundary Elemente Methode zur Berechnung quasistationärer elektromagnetischer Felder unter dem Gesichtspunkt der zerstörungsfreien Wirbelstromprüfung“, O. Michelson, 2001

„Ein Beitrag zur Empfindlichkeitsanalyse an Magnetstrukturen“, C. Müller, 2001

„Modellierung von nichtlinearen Differentialgleichungen zum Aufbau elektronischer Schaltungen bei angegebenem Bifurkationsverhalten“, Th. Mohr, 2001

„Analytische Berechnung pyramidenförmiger Wellenleiter mit ein- und zweifach zusammenhängenden Querschnitten“, M. Schneider, 2002

Publikationen:

Forschungsprojekte:

EU Teilprojekt „Design of digital high - T_c - SQUID sensors for non - destructive evaluation in unshielded environment“ (No. G6RD-CT-2002-00790)

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: Univ. Twente/NL; TRT Paris und Eindhoven/EC, Fördersumme 246.102
Schlagwörter: Hochtemperatur - Supraleitung, digitaler SQUID - Sensor, Simulation, Rauschoptimierung, Ausbeuteoptimierung

INTAS - Projekt „Development of ultra - low - noise superconducting devices for high frequency detection (INTAS-01-686), Teil: studies and development of new HTc Josephson detectors and SQUID amplifiers“

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: Chalmers Univ./SE; IREE/Rus./EC, Fördersumme 6.000
Laufzeit: 2002 bis 2004
Schlagwörter: Josephson - Technik, HTS - SQUID, Simulation, Design/Konzeption, Optimierung

"Temperaturberechnung an magnetischen Aktoren" im BMBF - Verbundprojekt „SESAM“ (Werkzeuge für magnetische Sensor- und Aktorelemente)

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: Profi Engineering/BMBF, Fördersumme 202.617 DM
Laufzeit: 7/97 bis 6/2001
Schlagwörter: magnetische Aktoren, numerische Feldberechnung, Optimierung, nichtlineare Netzwerke

„Neue Aspekte der Theorie der Elektrotechnik“

Projektleiter: Priv. - Doz. Dr. - Ing. habil. R. Süße, Dr. - Ing. U. Diemar
Partner/Förderinstitution: TMG Geraberg
Laufzeit: 2000 bis 2004
Schlagwörter: Lagrange - Formalismus, Hamilton - Formalismus, Analyse, Modellierung, Synthese, Elemente höherer Ordnung

DAAD Sonderprogramm "Akademischer Neuaufbau in Südosteuropa" Teilprojekt „Theoretische Elektrotechnik (TEE)“

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: TU Sofia, Universität Niš, Universität Banja Luka/DAAD, Fördersumme ca. 300.000
Laufzeit: 8/2000 bis 12/2003
Schlagwörter: Stabilitäspakt Südosteuropa, akademischer Neuaufbau, Lehre und Ausbildung, wiss. Nachwuchs, Kooperation

DFG - Forschergruppe „Magnetofluiddynamik: Strömungsbeeinflussung und Strömungsmessung in elektrisch leitfähigen Flüssigkeiten“
Teilprojekt B - 1: Magnetfeldtomographische Detektion von Grenzflächenbewegungen: Experiment und Sensorik

Projektleiter: Dr. rer. nat. Ch. Resagk, Fakultät MB, Prof. F. H. Uhlmann, Fakultät EI
Partner/Förderinstitution: TU Ilmenau/Fak. MB; TU Ilmenau/Fak. MN/DFG, Fördersumme ca. 20.000 DM
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetfeldsensorik, Empfindlichkeit, Sensoroptimierung

Teilprojekt B - 2: Magnetfeldtomografische Detektion von Grenzflächenbewegungen: Numerische Behandlung inverser Probleme (DFG - Forschergruppe „MFD“)

Projektleiter: Dr. - Ing. H. Brauer, Fakultät EI, Univ. - Prof. H. Babovsky, Fakultät MN
Partner/Förderinstitution: TU Ilmenau/Fak. MN; TU Ilmenau/Fak. MB/DFG, Fördersumme 166.500
Laufzeit: 10/2001 bis 9/2004
Schlagwörter: Magnetofluiddynamik, Magnetfeldtomographie, inverse Feldprobleme, Rekonstruktion freier Grenzflächen

„Euclid RTP 9.7 - Basisentwurf für kabellose HF - Verbindungen“

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: Astrium GmbH
Laufzeit: 8/1999 bis 11/2001
Schlagwörter: HF - Übergänge, Simulation, elektromagnetisches Feld, Optimierung, experimentelle Evaluation

DFG - Projekt: „Untersuchungen zu prinzipiellen Aspekten und fundamentalen Operationsgrenzen von Einzelflußquanten - Elektronikschaltungen“ (Uh S3/4-1,2) im Rahmen einer überregionalen Forschergruppe (PTB, FZ Jülich)

Projektleiter: Prof. F. H. Uhlmann
Partner/Förderinstitution: PTB; FZ Jülich/DFG, Fördersumme ca. 360.000 DM
Schlagwörter: Einzelflussquanten - Schaltungen, Logikzellen, Optimierung, neue Technologie, Entwurf

Leistungsangebote:
- Software zum Entwurf und zur Optimierung von supraleitender Elektronik
- Entwurf magnetischer Aktuatoren
- Optimierung kapazitiver Sensoren

Spezialausstattung:
- Magnetik - Messlabor, Kryolabor/RSFQ - Design - Zentrum, TDR - Messplatz

5.1.1 Institut für Festkörperelektronik

Institutsleiter: Vertr. - Prof. Dr. - Ing. habil. Theodor Doll
Tel.: (03677)69 3714 Fax: (03677)69 3777
E-mail: theodor.doll@tu-ilmenau.de

C - Stellenstruktur: 3 C4, 1 C3

5.1.3.4 Fachgebiet Festkörperelektronik

Fachgebietseleiter: Vertr. - Prof. Dr. - Ing. habil. Theodor Doll
Tel.: (03677)69 3402 Fax: (03677)69 3777
E-Mail: theodor.doll@tu-ilmenau.de

Forschungsgebiete:
Elektronische Bauelemente:
- Nanoelektronik
 • Simulation von NanoMOS und Höchstfrequenzbauelementen
 • Technologie von Bauelementen mit großer Bandlücke
- Polymerelektronik
 • Technologie von All - Polymer - MOS
 • Messtechnische Charakterisierung und Modellierung
- Leistungselektronik
 • Design von Bauelementen und Aussteuerkreisen
- Halbleiter
 • Chemosensoren, Simulation von Sensoreffekten
 • Design von Si - Sensoren
 • Sensorsysteme
- Nanosysteme
 • Integration Photonischer Kristalle
 • Nano - Vakuumelektronik

Publikationen:

Forschungsprojekte:

„Industrielle Gas - Sensor - Systeme in Verkehr und Umwelt auf Si - Carbid - Basis“ (IESSICA)

Projektleiter: Vertr. - Prof. Th. Doll
Partner/Förderinstitution: EADS, Ottobrunn; TU Berlin; HL Planar, Dortmund; RST, Rosstock; Bernt GmbH, Düsseldorf; BMBF, Fördersumme 370.000 DM
Schlagwörter: Gas - Sensor - Systeme, Expertensystem

„Neue Materialkombinationen für SiC - Feldeffekttransistoren“ (NEMASIC)

Projektleiter: Vertr. - Prof. Th. Doll
Partner/Förderinstitution: FG Nanotechnologie, Ilmenau; FG Werkstoffe der Elektrotechnik, Ilmenau; Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 212.692
Schlagwörter: Hochtemperaturfeste SiC - MESFET

„Nanotools“ (SFB 622)

Projektleiter: Vertr. - Prof. Th. Doll
Partner/Förderinstitution: DFG, Fördersumme 372.000 DM
Schlagwörter: SiC MESFET, Hochtemperaturfestigkeit

„Mikrosystem zur Erhöhung der Zuverlässigkeit leistungselektronischer Systeme“ (ZULES)

Projektleiter: Dr. - Ing. Mario Netzel
Partner/Förderinstitution: Semikron Elektronik GmbH, Nürnberg; DaimlerChrysler AG, Stuttgart; AVK - SEG GmbH, Kempten; BMBF, Fördersumme 4.500.00 DM
Schlagwörter: leistungselektronische Systeme, Zuverlässigkeit, IGBT, Ansteuerung, Schutz, Diagnose, intelligente Leistungsmodule, Systemintegration, Smartpower
„Baulementeverhalten und Transistoreigenschaften organischer Feldeffekttransistoren: Experiment - Simulation - Theorie“

Projektleiter: Dr. - Ing. Susanne Scheinert
Partner/Förderinstitution: IFW, Dresden; DFG, Fördersumme 23.000
Schlagwörter: OFET, Polymer, Ladungstransport,

„Organische Schichten und ihre Grenzflächen zur Anwendung in Feldeffekttransistoren“

Projektleiter: Vertr. - Prof. Th. Doll, Dr. - Ing. Susanne Scheinert
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 12.000
Schlagwörter: Grenzflächen, Polymer, OFET,

„Untersuchung von Schwindungsphänomenen in Modulen mit parallel geschalteten IGBT - Chips“

Projektleiter: Dr. - Ing. Mario Netzel
Partner/Förderinstitution: DFG, Fördersumme 35.000
Laufzeit: 2/2002 bis 1/2004
Schlagwörter: Leistungsmodule, EMV, Schwingungen, Parallelschaltung,

Leistungsangebote:
- Charakterisierung vom Halbleitermaterialien und Bauelementen,
- Simulation und Design von Bibliotheksgruppen,
- Entwicklung Halbleiter - Simulationsprogramme,

Spezialausstattung:
- Nutzung der Technologien des ZMN,
- Polymerelektronik-Technologie,
- Hall - Messplatz, Charakterisierung von Gassensoren,
- automatische Waferprober,
- Parameterextraktion, IC - CAP, automatisierte Messplätze,
- UNIX - und LINUX - basierte Rechencluster,
- Softwarepakete ATLAS, DAMOCLES, SIMULANTEN, PROSA, u. a.

5.1.3.5 Fachgebiet Nanotechnologie

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Oliver Ambacher
Tel.: (03677)69 3723 Fax: (03677)69 3709
E - Mail: oliver.ambacher@tu-ilmenau.de

Forschungsgebiete:
Ziel des Fachgebiets Nanotechnologie ist die Herstellung und Charakterisierung von hochqualitativen Hetero- und Nanostrukturen aus organischen Materialien, Siliziumkarbid, Me-
talloxiden und Gruppe III - Nitriden zur Realisierung von neuartigen Bauelementkonzepten für die Nanoelektronik und -sensorik.

Folgende Themen sind Gegenstand laufender Forschungsarbeiten:

- Herstellung von Nanostrukturen aus Halbleitern mit großer Bandlücke, die mit Hilfe der Molekularstrahlepitaxie und der chemischen Gasphasenabscheidung gewonnen werden,
- Realisierung von Sensoren auf der Basis von pyroelektrischen Heterostrukturen für die Nano- und Pikofluidik,
- Prozessierung von AlGaN/Si- und AlN/ZnO- basierenden Mikro- und Nanoresonatoren sowohl für elektrische Filter, als auch für die Sensorik organischer Substanzen,
- Fertigung von Wellenleitern aus pyroelektrischen AlInGaN/GaN- und ZnO/GaN- Heterostrukturen mit lateral strukturierter Polarität und spontaner Polarisation für optische Verstärker,
- Entwicklung von Emittern, Sensoren und single photon Detektoren für sichtbares und ultraviolettes Licht aus ZnO/GaN/Si- und AlGaN/GaN/Si-basierten Hetero- und Quantenpunktstrukturen, sowohl zur Regelung von Verbrennungsprozessen und Quecksilberdampflampen, als auch zur Überwachung der Desinfektion von Luft und Wasser,

Publikationen:

F. Fiorentini, F. Bernardini and O. Ambacher: “Evidence for nonlinear macroscopic polariza-

Forschungsprojekte:

„GaN - basierende UV - Detektoren für die Siliziumtechnologie (UVSENS)“

Projektleiter: Prof. O. Ambacher
Partner/Förderinstitution: CIŚ Institut für Mikrosensorik gGmbH, IL Metronic Sensortechnik GmbH, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 330.000
Laufzeit: 2002 bis 2004
Schlagwörter: Halbleiter großer Bandlücke, Epitaxie, Detektoren
„Untersuchungen zur Entwicklung von Polymeren und organischen Mischschichten für Solarzellen (ORSOL)“
Projektleiter: Prof. O. Ambacher
Partner/Förderinstitution: SurA Chemicals GmbH Jena
Laufzeit: 2002 bis 2004
Schlagwörter: Fullerene, konjugierte Polymere, Photovoltaik

„GaN - Quantenpunkte für optische Ladungsspeicher und Detektoren (GaNano)“
Projektleiter: Prof. O. Ambacher
Partner/Förderinstitution: Experimentalphysik I/ Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 65.000
Laufzeit: 2003 bis 2005
Schlagwörter: Galliumnitrid, Nanostrukturen, Photonic

„Flash Lamp Supported Deposition of 3C - SiC (FLASIC)“
Projektleiter: Dr. - Ing. Jörg Pezoldt
Partner/Förderinstitution: Universität Montepellier/Europäische Union (5. RP), Fördersumme 245.000
Laufzeit: 2002 bis 2005
Schlagwörter: Siliziumkarbid, Molekularstrahlepitaxie, Ellipsometrie

„Pyroelectric AlGaN/GaN HEMTs for ion-, gas- and polar- liquid sensors (GaNSens)“
Projektleiter: Prof. O. Ambacher
Partner/Förderinstitution: Cornell University/Office of Naval Research
Laufzeit: 2003 bis 2005
Schlagwörter: Sensorik, pyroelektrische Materialien, Nano- und Pikofluidik

Leistungsangebote:
- Halbleiter- und Nanotechnologie, siehe: http://www.zmn.tu-ilmenau.de
- Elementanalyse, siehe: http://www.tu-ilmenau.de/EI/FKE/NT/ausstattung.htm

Spezialausstattung:
- Molekularstrahlepitaxieanlage zur Herstellung von SiC- und GaN - basierenden Hetero- und Nanostrukturen,
- Augerelektronenspektrometer zur Elementanalyse und Tiefenprofilierung,
- Spektrallellipsometrie, Photothermische Deflektionsspektroskopie und spektralaufgelöste Photoleitung zur optischen Charakterisierung dünner Filme,
- Inertgastechnologie zur Herstellung von Polymerfilmen und organischen Solarzellen.
5.1.3.6 Fachgebiet Integrierte Schaltungen

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Uwe Hartmann
Tel.: (03677)69 3717 Fax: (03677)69 3132
E - Mail: uwe.hartmann@tu-ilmenau.de

Forschungsgebiete:
- Programmierbare Bauelemente, Bauelementemodellierung
- Schaltkreisentwurf, Halbleiterspeicher
- Zuverlässigkeit

Publikationen:
M. Netzel, R. Siemnieniec, R. Lerner, J. Lutz: „3.3 kV IGBT and Diode Chipset using Lifetime Control Techniques and Low - Efficiency Emitters“, Facta Universitatis (Niš), Ser.: Elec. Energ., Vol. 15, No. 1, pp. 51 - 59, April 2002

Leistungsangebote:
- Zuverlässigkeitsmessungen
- Schaltungsentwicklung
- Bauelementemessungen/-entwicklungen

Spezialausstattung:
- Xilinx - Entwicklungsumgebung für CPLDs und FPGAs
- Entwicklungsumgebung für ASICs (Cadence u.a.)
5.1.3.7 Fachgebiet Halbleitersensorik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Werner Buff
Tel.: (03677)69 3122 Fax: (03677)69 3132
E - Mail: werner.buff@tu-ilmenau.de

Forschungsgebiete:

- Passive Telemetrie - Sensorik:

 - Erforschung, Entwicklung und Umsetzung neuer Sensorprinzipien, insbesondere passive fernabfragbare Sensoren auf Basis akustischer Oberflächenwellen
 - Entwurf, Design, Simulation von SAW - Bauelementen sowie peripherer Elektronik, (SAW - surface acoustic waves)
 - Aufbau, Messung, Erprobung von Funksensoren in speziellen Einsatzbereichen

Publikationen:

Forschungsprojekte:

„Wiregone - Wireless monitoring online of strain and temperature“

Projektleiter: Prof. W. Buff
Förderinstitution: EU, G1RD-CT-2001-00541, Iberdrola Generacion SA.(Ibergen), Spain; Electricité de France (EdF) , France; Corus UK Ltd., UK; Technische Universität Ilmenau (TUI), BRD; Sentec Elektronik GmbH, BRD; AVL List GmbH, Österreich; University of Southampton (UoS), UK; SJB Engineering Ltd., UK; ERA Technology Ltd. (ERA), UK, Fördersumme TU Ilmenau 257.000
Schlagwörter: strain measurement, high temperature, surface acoustic wave resonator, short - range RF link
5.1.4 Institut für Elektrische Energiewandlung und Automatisierung

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Dieter - Siegbert Oesingmann
Tel.: (03677) 69 2853 Fax: (03677) 69 1552
E - mail: dieter.oesingmann@tu-ilmenau.de

C - Stellenstruktur: 1 C4, 2 C3

5.1.4.1 Fachgebiet Leistungselektronik und Steuerungen in der Elektro-energie-technik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Jürgen Petzoldt (seit 04/00)
Tel.: (03677) 69 2851 Fax: (03677) 69 1469
E - Mail: juergen.petzoldt@tu-ilmenau.de

Forschungsgebiete:

- Applikation leistungselektronischer Bauelemente, Stromrichterberechnung, Thermische Untersuchung, leistungselektronischer Systeme
- Applikation von Steuerhard- und -software, Bus - Systeme, Prozessvisualisierung, Microcontroller und DSP - Programmierung
- Elektrische Antriebstechnik, Technologische Stromquellen, dezentrale Energieversorgung und Bordnetze

Publikationen:

Forschungsprojekte:

Theoretische und experimentelle Untersuchungen zum Überspannungsschutz von Zweirichtungsventilen auf der Basis von Hochvolt - IGBTs

Projektleiter: Dr. - Ing. T. Reimann, Prof. J. Petzoldt, Bearbeiter: Dipl. - Ing. R. Krümmer, Dipl. - Ing. U. Rädel

Partner/Förderinstitution: DFG, Fördersumme 190.000

Laufzeit: 01.11.1997 bis 31.12.2001

Schlagwörter: IGBT - Ansteuerung, Überspannungsschutz

Entwicklung neuartiger Regelungskonzepte in Inselnetzen

Projektleiter: Dr. - Ing. J. Büttner, Bearbeiter: Dipl. - Ing. W. Schaade

Partner/Förderinstitution: ABB Forschungszentrum Heidelberg

Laufzeit: 01.07.1999 bis 30.09.2002

Schlagwörter: 3 - Leitersysteme, 4 - Leitersysteme, Null- und Gegensystemregelung

On-line - Bestimmung der Sperrschichttemperatur von Leistungshalbleiterbauelementen im Umrichterbetrieb

Projektleiter: Dr. - Ing. T. Reimann, Bearbeiter: Dipl. - Ing. U. Franke

Partner/Förderinstitution: DFG, Fördersumme 350.000 DM

Laufzeit: 01.09.1999 bis 31.08.2002

Schlagwörter: Sperrschichttemperaturmonitoring, Leistungshalbleiterbauelemente

Entwurf und Untersuchung von Steuerungen für Leistungselektronik - Schaltungen hoher Pulsfrequenz mit 16 Bit - Mikrorechner

Projektleiter: Dr. G. Berger, Bearbeiter: Dr. - Ing. J. Büttner

Partner/Förderinstitution: ISLE e.V. + Industriepartner

Laufzeit: seit 01.03.1996

Schlagwörter: 16 Bit - Mikrorechner, programmierbare Logik

Simulation von Umrichtersystemen

Projektleiter: Prof. J. Petzoldt, Bearbeiter: Dipl. - Ing. U. Rädel

Partner/Förderinstitution: Siemens AG Erlangen

Stromrichtersystem für Brennstoffzellen - BHKW

Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 404.000 DM

Laufzeit: 01.04.2001 bis 31.03.2003

Schlagwörter: Stromrichtersysteme, Windkraftanlagen, Regelung von Linearantrieben, modulare Prozessvisualisierung, Photovoltaik, Brennstoffzellen, Halbleiterschalter, Temperaturmonitoring in Frequenzumrichtern, Induktionserwärmung, Automobilelekt-
ronik, Schaltnetzteile und Batterieladetechnik, Stromrichternetzrückwirkungen

5.1.4.2 Fachgebiet Elektrothermische Energiewandlung

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dietmar Schulze
Tel.: (03677)69 2842 Fax: (03677)69 1504
E - Mail: dietmar.schulze@tu-ilmenau.de

Forschungsgebiete:

- Induktives Erwärmen und Schmelzen
- Elektromagnetische Beeinflussung von elektrisch leitfähigen Flüssigkeiten
- Erstarrung und Kristallisation im starken magnetischen Feld
- Numerische Simulation elektromagnetischer Felder und damit verkoppelter Felder
- Dielektrische Kondensator- und Mikrowellenerwärmung
- Erwärmung durch UV-, Licht- und IR-Strahlung
- Temperaturfeldsimulation
- Elektromagnetische Abschirmung durch modifizierte Baustoffe

Promotionen:

Publikationen:

Forschungsprojekte:

„Magnetofluiddynamik: Strömungsbeeinflussung und Strömungsmessung in elektrisch leitenden Flüssigkeiten“ - Teilprojekt A - 3 „Formung und Kontrolle freier Oberflächen: Experiment“

Projektleiter: Prof. D. Schulze, Dr. - Ing. Ch. Karcher
Partner/Förderinstitution: Forschergruppe der TU Ilmenau / Deutsche Forschungsgemeinschaft, Fördersumme ca. 165.000
Schlagwörter: Magnetfeld, Lorentzkraft, freie Oberfläche, Instabilität, Fluidschwingungen, Wirbelstrom

„Elektromagnetische Abschirmung von Induktionsanlagen durch Konstruktionselemente aus Beton mit magnetisch wirksamen Bestandteilen“

Projektleiter: Prof. D. Schulze
Partner/Förderinstitution: Verbundprojekt zusammen mit KLEBL GmbH Gröbzig, EMA-TEC Sondershausen, Bauhaus-Universität Weimar - Institut für Baustoffkunde, Deutsche Bundesstiftung Umwelt, Fördersumme ca. 60.000
Schlagwörter: elektromagnetische Abschirmung, magnetische Feldstärke, Mittelfrequenz, Wirbelströme,

„Wissenschaftlich technische Dienstleistungen für territoriale Unternehmen“

Projektleiter: Prof. D. Schulze
Partner: Qsil Quarzschmelze, Ilmenau; Henkel + Roth, Ilmenau
Schlagwörter: numerische Simulation, Stromdichteverteilung, Wirbelstrom, Grafit, Heizelement, Einsenkbuchse, Temperaturmessung, Induktionserwärmung, Hochfrequenz

Leistungsangebote:

- Entwicklung von problemangepasster Simulationsoftware für alle elektrothermischen Erwärmungs- und Schmelzprozesse auf Basis des selbstentwickelten Programmsystems PROMETHEUS
- Numerische Simulation von elektrotechnologischen Prozessen mit verkoppelten Feldern (elektromagnetische und thermische Felder, Strömungsfelder und andere) mit dem Programmsystem PROMETHEUS
- Experimentelle Untersuchungen von Flüssigkeiten und Schmelzen unter dem Einfluss starker magnetischer Gleich- und Wechselfelder
- Temperatur- und Wärmemengenmessungen

Spezialausstattung:

- Stromquellen für den Frequenzbereich 150 Hz bis 27 MHz bis zu 150 kW (Mittelfrequenz)
- Hochstromanlage 20 kA, 10 V
- Symmetriereinrichtung 100 kW
- Induktive Erwärmungs- und Schmelzanlagen
- Vakuumversuchsstand 5 - 10 Pa
- Hochfeldmagnet 5 T, 300 mm Warmbohrungsdurchmesser
- Messeinrichtungen und Messwertverarbeitungssysteme für hohe Temperaturen,
- elektromagnetische Felder, schnellveränderliche Ströme und Spannungen
- Höchsttemperatur - Öfen bis 2200 °C
- Flüssigmetallkanal mit In - Ga - Sn - Eutektikum

5.1.4.3 Fachgebiet Kleinmaschinen

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dieter Oesingmann
Tel.: (03677)69 2852 Fax: (03677)69 1552
E - Mail: dieter.oesingmann@tu-ilmenau.de

Forschungsgebiete:

Elektrische Maschinen (Werkzeuge, Haushaltsgeräte, Nebenantriebe in Kraftfahrzeugen):
- Betriebsverhalten, Auslegung, Berechnung
- dynamisches Verhalten, Diagnose, Kommutierung

Promotionen:

„Analyse der Erregerspannung hochtouriger Reihenschlussmotoren kleiner Leistung im
Hinblick auf Kommutierung und Fehlererkennung“, A. Möckel, 2001

Publikationen:

D. Oesingmann in „Handbuch Elektrische Kleinantriebe“, Carl Hanser Verlag München,
Wien, 2002, S. 39 - 51
A. Möckel, D. Oesingmann: „Die Abbildung der Stromkommutierung von Kommutatorrei-
henschlussmaschinen in der Erregerspannung“, GMM - Fachtagung, Innovative Klein- und
Mikroantriebe, Mainz, 15./16.5.2001, S. 13 - 22

Forschungsprojekte:

„Grundlegende Kommutierungsuntersuchungen an Kfz - Nebenantrieben“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: TEMIC Automotive GmbH Berlin
Laufzeit: 10/2000 bis 10/2003
Schlagwörter: Betriebsverhalten, Auslegung, Kommutierung

„Motorenentwicklung für Haushaltgeräte“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: Bosch und Siemens Hausgeräte GmbH Bad Neustadt
Laufzeit: 1/2001 bis 12/2003
Schlagwörter: Reihenschlusskommutatormotor, Diagnose, Auslegung, Berechnung
„Ermittlung des Betriebsverhaltens des Plusmotors“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: MOTEC Components GmbH Suhl
Schlagwörter: Reluktanzmotor, Berechnung

„Auslegung und Eigenschaften von dauermagnetregten Motoren“

Projektleiter: Prof. Dr. - Ing. habil. Oesingmann
Partner/Förderinstitution: Bühler Motor GmbH Nürnberg
Schlagwörter: permanenterregte Motoren, Magnetkreis, Berechnung, Betriebsverhalten

„Analyse der Kommutierungseigenschaften von Waschmaschinenmotoren mit dem Ziel, Möglichkeiten zur Erhöhung und besseren Absicherung des Lebensdauer zu erarbeiten“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: FHP Motors GmbH Oldenburg
Schlagwörter: Reihenschlusskommutatormotor, Kommutierung, Zuverlässigkeit

„Motoroptimierung für Staubsauger“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: Miele & Cie. GmbH Euskirchen
Schlagwörter: Magnetkreis, Bereichung

„Geräuschverbesserung - insbesondere nutzfrequenter Anteile - am Fensterheberantrieb 1BB2735“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: Siemens VDO Automotive AG Würzburg
Schlagwörter: Dauermagnetmotor, Diagnose, Auslegung

„Analyse und Optimierung der elektromagnetischen Eigenschaften von Motorvarianten in elektromotorisch betriebenen Handwerkzeugen der Firma Atlas Copco“

Projektleiter: Prof. D. Oesingmann
Partner/Förderinstitution: Atlas Copco Electric Tools GmbH Winnenden
Laufzeit: 8/2002 bis 7/2003
Schlagwörter: Kommutatormotor, Lebensdauer, Diagnose

„Wirkungsweise und Auslegung von Elektronikmotoren als Nebenantriebe in Fahrzeugen“

Projektleiter: Prof. Dr. - Ing. habil. Oesingmann
Partner/Förderinstitution: Valeo Motoren und Aktuaturen GmbH Bietigheim
Schlagwörter: Elektronikmotor, Berechnung, Betriebsverhalten

Leistungsangebote:
- Magnetkreisberechnungen, Kommutatorprüfungen
- allgemeine Motorendiagnose, Kommutierungsdiagnose
- Messung von Motorenkennlinien

Spezialausstattung:
- Drehzahl - Drehmomente - Messstände
- Software für FE - Berechnungen
- Kommutatorprüfgerät, Spezialsoftware zur Kommutierungsdiagnose

5.1.5 Institut für Elektrische Energie- und Hochspannungstechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Friedhelm Noack
Tel.: (03677)69 2837 Fax: (03677)69 1686
E - mail: friedhelm.noack@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 1 C3

5.1.5.1 Fachgebiet Elektrische Geräte und Anlagen

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Friedhelm Noack
Tel.: (03677)69 2834, Fax: (03677)69 1686
E - Mail: friedhelm.noack@TU-Ilmenau.de

Forschungsgebiete:
- Schaltgeräte und Schaltvorgänge in elektrischen Netzen, Lichtbogenvorgänge
- Blitzschutz- und Überspannungsschutz, Elektromagnetische Verträglichkeit
- Regenerative Energien

Promotionen:
„Ein neues Prinzip für Blitzstromableiter im Niederspannungsnetz“, J. Pospiech, 2001

„Einfluss der Remanenz auf das gesteuerte Ein- und Ausschalten von leerlaufenden und belasteten Transformatoren“, M. Rock, TU Ilmenau, 2002

„Störlichtbogenschutz im Gleichstromteil von Photovoltaik - Anlagen“, I. Müller, TU Ilmenau, 2002

„Simulation der Strömungsvorgänge in Blaskolbenleistungsschaltern unter Berücksichtigung des Lichtbogens“, F. Reichert, TU Ilmenau, 2002
Publikationen:

Forschungsprojekte:

„Schaltermodellierung“

Projektleiter: Prof. F. Noack
Partner/Förderinstitution: DFG, Schwerpunktprogramm „Zustandsbewertung von Betriebsmitteln und Anlagen der elektrischen Energieversorgung“ (SPP 1101), Fördersumme 120.000
Schlagwörter: SF6 - Leistungsschalter, Blaskolbenschalter, Strömungsvorgänge, Lichtbogen, Antriebscharakteristik, Technische Diagnostik

„Stoßstromfestigkeit von Sicherungen/Koordination von Sicherungen und Überspannungsschutzeinrichtungen“

Projektleiter: Prof. F. Noack
Partner/Förderinstitution: BMWi, AiF Projektbegleitender Ausschuss mit sieben Sicherungsherstellern und zwei Schutzgeräteherstellern, Fördersumme 384.200
Schlagwörter: Niederspannungssicherungen, Hochleistungssicherungen, Blitzstromfestigkeit, Schmelzintegral, Überspannungsschutz einrichtungen

Spezialausstattung:

- Hochleistungs - Impulslabor:
 • Hochstrom - Impulsgenerator (10/350 μs bis 200 kA; 8/80 μs bis 100 kA, 100 ns/10 ms bis 5 kA)
 • Verknüpfung mit Blitzlangzeitströmen
 • triggerbare flexible Stoßstrom - Generatoren (8/20 μs bis 100 kA, Stoßspannung 1,2/50 μs, \(u_{\text{max}} = 40 \text{ kV} \))
• Blitzlangzeitstrom - Generator (8 kA, 50 ms bis 2 kA, 500 ms)
• triggerbare Hybridgeneratoren (8/20 µs; 1,2/50 µs) (i = 10 kA, u = 10 kV)
• Verknüpfung mit netzfrequenten Größen
• Steilimpulsgeneratoren (5/200 ns; 0,25/10 µs; 1/10 µs; 4/10 µs)

- Hochleistungs - Prüffeld:
 • Ds - Schaltleistungsanlage, 35 kA, 400 V AC, 500 V AC, variable R, L
 • Des - Schaltleistungsanlage, 25 kA, 242 V... 3163 V AC, in 18 Stufen
 • Ds - Schaltleistungsanlage, 8 kA, 0 V ... 800 V DC, variabel R, L
 • Ds - Hochstromanlage 20 kA, 0 V ... 14 V DC
 • Gs - Hochstromanlage 4 kA, 0 V ... 16 V DC
 • Einphasen - Prüftransformator 10/0,230 kV + 6 x 5 %, 300 kVA, uᵢ = 2 %,
 • variabel R, L

- EMV - Mess- und Prüftechnik:
 • für Emissions- und Störfestigkeitsmessungen (GTEM - Zelle, Messkabine, burst, ESD,
 surge, Feldsensoren, Absorptionsmesswandlzerzange, EM - Feldanalysator u. a.)
- Digitales Hochgeschwindigkeitskamerasystem:
 • HSFC - Pro (zeitliche Auflösung bis 5 ns, räumliche Auflösung bis 10 µm, Bildwieder-
 holrate bis 1 Giga fps)

Leistungsangebote:

- Hochleistungs - Impuls - Untersuchungen, Untersuchung von Blitzstromwirkungen
- EMV- und Felduntersuchungen
- Untersuchung von Schaltvorgängen in Anlagen und Netzen, Untersuchung von Strö-
 mungsvorgängen und Druckentwicklungen durch Störlichtbögen

5.1.5.2 Fachgebiet Hochspannungstechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Richard Porzel †
Tel.: (03677)69 2834 Fax: (03677)69 1686
E - Mail: FG-EET@TU-Ilmenau.de

Forschungsgebiete:

- Hochspannungs - Isoliertechnik (Konstruktive Lösungen von Isolierproblemen, Feldbe-
 rechnungen und -optimierungen, Alterungsuntersuchungen, Isolierstoffanalysen)
- Hochspannungsmess- und Prüftechnik (Gleichspannungs-, Wechselspannungs-, Blitz-
 und Schaltimpulsprüfungen, Prüfungen und Messungen mit Sonderspannungen
 (VFL/0,1 Hz, OSV/OSI, Mittelfrequenz), Entwurf, Bau, Konstruktion von Hochspannungs-
 teilern und Messsystemen)
- Technische Diagnostik (TE - Messungen und Analysen (Muster), dielektrische Messun-
 gen und Analysen, Transformator-, Kabel-, Maschinendiagnosen), visuelle Diagnostik im
 UV - und IR - Bereich
- Elektrostatik (Elektrostatische Aufladungen, Entstauben, Beschichten)

Habilitationen:

„Anwendung moderner Hochspannungsprüfechnik und Diagnostik zur Instandhaltungs-
planung bei Energiedienstleistungen im liberalisierten Strommarkt“, Dr. - Ing. M. Sturm,
2001
Publikationen:

Forschungsprojekte:

„Teilentladungsidentifikation“
Projektleiter: Prof. R. Porzel, Dr. - Ing. E. Neudert
Partner/Förderinstitution: SIEMENS AG
Laufzeit: 1998 bis 2002

„Infrafrequenzgeneratoren - Prüfungen und Messungen mit VLF“
Projektleiter: Prof. R. Porzel, Dr. - Ing. E. Neudert, Dr. - Ing. M. Sturm
Partner/Förderinstitution: Firma BAUR Mess- und Prüftechnik GmbH, Sulz/Österreich
Laufzeit: 1996 bis 2002

„Teilentladungsortung von großen elektrischen Maschinen“
Projektleiter: Prof. R. Porzel, Dr. - Ing. E. Neudert, Dipl. - Ing. R. Koch
Partner/Förderinstitution: SIEMENS AG Power Generation, Mülheim
Laufzeit: 1999 bis 2003

„Telekommunikationskabel im Hochspannungsfeld“
Projektleiter: Prof. R. Porzel, Dipl. - Ing. D. Wartschinski
Partner/Förderinstitution: Corning Cable Systems GmbH und Co. KG, Neustadt
Laufzeit: 1998 bis 2003

Spezialausstattung:
- Wechselspannungsprüfanlage 250 kV, Gleichspannungsprüfanlage 300 kV
- Impulsspannungsprüfanlage (Blitzimpuls, Schaltimpuls) 650 kV
- 100 - kV - Bausteinsystem für WS-, GS-, Impuls-, schwingende Spannungen, Infrafrequenz
- 10 - kV - Bausteinsystem für flexible Prüfaufgaben
- große Klimaprüfkammer, kleine Klimaprüfkammer
- hochwertiges Digitalspeicheroszilloskop (DSO LeCroy)
- Kapazitäts- und Verlustfaktormessungen 20 Hz ... 1 MHz, 20 V; 50 Hz, bis 100 kV
- diverse Picoamperemeter für Isolierstoffanalysen (bis unter 1 fA)
- diverse dielektrische Transformator- und Kabeldiagnosesysteme (DIMEDIS, DITRADIS)

Leistungsangebote:

- Hochspannungsprüfungen von Geräten und Anlagen entsprechend Spezialausstattung und internationalen Vorschriften
- Berechnungen, Analysen und Optimierung von Hochspannungsfeldern und Hochspannungskonstruktionen
- di elektrische, Teilentladungs- und visuelle Diagnosen an elektrischen Geräten und Betriebsmitteln
- dielektrische Isolierstoffuntersuchungen, Materialanalysen
- Untersuchungen bei elektrostatischen Gefährdungen, Risikoabschätzungen, Beseitigung elektrostatischer Aufladungen
- Fremdschichtdiagnosen
- Untersuchungen von dielektrischen Kabeln, Leitern und Konstruktionen im Hochspannungsfeld

5.1.5.3 Fachgebiet Elektrische Energieversorgung

Fachgebietsleiter: Dr. - Ing. H. Schau (k.)
Tel.: (03677) 692838 Fax: (03677) 691496
E - Mail: holger.schau@tu-ilmenau.de

Forschungsgebiete:

- Elektroenergiequalität und Abnehmernetzrückwirkungen
- Entwicklung von Abnehmermodellen und Simulation des Betriebsverhaltens in Elektroenergiesystemen
- Messung, Erfassung, Bewertung und Steuerung der Elektroenergiequalität
- Netzanschluss regenerativer Energiequellen
- Rationeller Energieeinsatz und Ermittlung von Einsparpotentialen in der Energieversorgung
- Kurzschlussstrombegrenzung und Kurzschlussschutz in elektrischen Anlagen und Netzen
- Personen- und Anlagenschutz in Niederspannungsanlagen (Lichtbogenschutz)
- Lichtbogenbeanspruchungen und -prüfungen

Promotionen:

„Optische Störlichtbogendetektion in luftisolierten Mittelspannungsschaltanlagen“, A. Klaus, 2001

„Modellierung des elektrischen Betriebsverhaltens von Gleichstromlichtbogenschmelzanlagen“, I. Aprelkow, 2001
Publikationen:

Forschungsprojekte:

„Personenschutz bei Arbeiten unter Spannung“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Berufsgenossenschaft für Elektrotechnik und Feinmechanik Köln
Laufzeit: 2000 bis 2001
Schlagwörter: elektrische Anlagen, Schaltanlagen und Verteiler, Störlichtbögen, Schutzeinrichtung, Störlichtbogenerfassung und -lösung

„Wirkungen von Störlichtbögen und Personenschutz bei geöffneter Anlagentür“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Moeller GmbH Bonn
Laufzeit: seit 1999
Schlagwörter: Schaltanlagen, Niederspannung, direkte Lichtbogen Exposition, Wärmewirkung, Kraftwirkung, Schall- und Strahlungswirkung, Kenngrößen, Grenzwerte, Personenschutz

„Entwicklung von Verfahren für Lichtbogenprüfungen an Textilmaterialien“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Sächsisches Textilforschungsinstitut Chemnitz
Laufzeit: seit 2000
Schlagwörter: Störlichtbogen, Wärmewirkung, Testverfahren, Arbeitsschutztexilien und -kleidung, Prüfaufbau, Wärmestrommessung
„Simulation des Ausschaltverhaltens strombegrenzender Schaltgeräte“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Moeller GmbH Bonn
Laufzeit: seit 2001
Schlagwörter: Schaltgeräte, spezielle Schaltkontakte/Einrichtungen, Strombegrenzung, Kurzschlussausschaltung, Selektivität

„Elektroenergiequalität und Versorgungssicherheit in Stadtnetzen“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Stadtwerke Suhl / Zella - Mehlis
Laufzeit: 2001 bis 2002
Schlagwörter: Mittelspannungsnetz, Messungen, Elektroenergiequalität, Spannungsabstieg, Leistungsbelastung, Schaltzustände, Schlussfolgerungen für Netzplanungen

„Untersuchungen zum Betriebsverhalten spezieller Abnehmer im Netz“

Projektleiter: Dr. - Ing. H. Schau
Partner/Förderinstitution: Analytic Power Technology AG
Laufzeit: seit 2002
Schlagwörter: Elektroenergiequalität, Netzmessungen und -analysen, experiensierte Abnehmer, mathematische Modelle, Simulation des Netzverhaltens, Kompensationsmaßnahmen

Leistungsangebote:

- Hochleistungsprüfungen und Prüfungen mit Kurzschlusströmen, Gutachten zu Kurzschlussproblemen
- Lichtbogenprüfungen nach ENV 50354 (einschließlich Wärmeauswaschung)
- Netzstudien und Analysen (Messungen, Berechnungen, Simulation)
- Gutachten zur Elektroenergiequalität
- Projektierungsunterlagen für elektrische Netze und Anlagen
- Forschungskooperation auf dem Gebiet der elektrischen Energieversorgung

Spezialausstattung:

- Hochstromlabor
- Analogmodell der Kraftwerks- und Anlagentechnik (3polig, dynamisch)
- Elektroenergiequalitätslabor
- Spezialmesstechnik zur Analyse der Elektroenergiequalität in elektrischen Netzen (Leistungen, Harmonische, Flicker, Unsymmetrien, „voltage dips“)
- Prüfstand für Lichtbogenprüfungen nach ENV 50354
5.1.6 Fakultätsübergreifendes Institut für Werkstofftechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Heinrich Kern
Tel.: (03677)69 2450 Fax: (03677)69 1597
E - mail: heinrich.kern@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 2 C3

5.1.6.1 Fachgebiet Elektrochemie und Galvanotechnik

Fachgebietsleiter: apl. Prof. Dr. - Ing. habil. Christine Jakob (k.)
Tel: (03677)69 3106 Fax: (03677)69 3104
E - Mail: christine.jakob@tu-ilmenau.de

Forschungsgebiete:
- Dispersionsschichten mit nanoskaligen Dispergaten
- elektrochemische Hochleistungsverfahren der Oberflächentechnik und der Prozesskontrolle
- Präparation und Modifikation von Oberflächenschichten mit speziellen elektrischen und magnetischen Eigenschaften durch Legierungsabscheidungen der Metalle Eisen, Cobalt und Nickel
- Eigenschaftsbestimmung galvanisch abgeschiedener Schichten
- Galvanische Verfahren für die Mikrosystemtechnik (Mikrogalvanik) und Legierungsabscheidung
- Dispersionsabscheidung für verschleißfeste Beanspruchung
- Pulseplating für funktionelle Schichten

Publikationen:

Forschungsprojekte:

„Nickelabscheidung bei Raumtemperatur“

Projektleiter: apl. Prof. C. Jakob, Dipl. - Ing. (FH) Th. Mache
Partner/Förderinstitution: Forschungszentrum Karlsruhe, Institut für Mikrostrukturtechnik
Laufzeit: 2001 bis 2003
Schlagwörter: Metallelektrolyt, Raumtemperatur

„Herstellung und Eigenschaften von Nickeldispersionsschichten in Mikrostrukturen“

Projektleiter: apl. Prof. C. Jakob; Dipl. - Ing. F. Erler
Partner/Förderinstitution: DFG Bonn, Fördersumme 68.000
Laufzeit: 2001 bis 2003
Schlagwörter: Dispersionsschichten, nanoskalige Keramikpartikel, Mikrostrukturen

„Werkstofftechnische Untersuchungen an Nickeldruckplatten“

Projektleiter: apl. Prof. C. Jakob, Dr. - Ing. R. Nutsch
Partner/Förderinstitution: Giesecke § Devrient, München
Laufzeit: 2000 bis 2001
Schlagwörter: Schichtcharakterisierung metallischer Schichten

„Widerstandsmessungen an unbeschichteten und diamantbeschichteten Dentalbohrern“

Projektleiter: apl. Prof. C. Jakob, Dr. - Ing. P. Kutzschbach
Partner/Förderinstitution: NTI Kahl GmbH
Laufzeit: 2000 bis 2001
Schlagwörter: Galvanik, Technologie, Dispersionsschichten, Hartstoffe

„Untersuchung innerer Spannungen und Härte von Nickelschichten“

Projektleiter: apl. Prof. C. Jakob, Dr. - Ing. P. Kutzschbach
Partner/Förderinstitution: CDA Datenträger Albrechts GmbH
Laufzeit: 20.06.2002 bis 29.11.2002
Schlagwörter: Innere Spannungen, Härte, Metallschichten

Leistungsangebote:

- Entwicklung galvanischer Verfahren hinsichtlich:
 - Hochgeschwindigkeitsabscheidung
 - Magnetmaterialien
 - Legierungen
- Dispersionsabscheidung für den Verschleiß- und Korrosionsschutz,
- Umweltanalytik, Metall- und Ionenanalytik
- Nanoskalige Verbundwerkstoffe
Spezialausstattung:
- Chemische und elektrochemische Analysenmesstechnik
- Messtechnik für die dynamische Systemanalyse elektrochemischer Elektroden
- Galvano-technische Laborausstattung
- Schichtcharakterisierung (AFM, Röntgenfluoreszenz, Auflichtmikroskopie)

5.1.6.2 Fachgebiet Werkstoffe der Elektrotechnik

Fachgebiet: Univ. - Prof. Dr.-Ing. habil. Dr. rer. nat. Christian Knedlik
Tel.: (03677)69 3611 Fax: (03677)69 3171
E - Mail: christian.knedlik@tu-ilmenau.de

Forschungsgebiete:
- Neue Funktionswerkstoffe der Elektrotechnik / Elektronik, insbesondere für die Mikrotechnik
- Metallkundliche Grundlagen, Oberflächen- und Grenzflächeneffekte, Diffusion, Phasenbildung, Fremdschichtbildung
- Festkörperanalytik, Werkstoffdiagnostik sowie mechanische und zerstörungsfreie Werkstoffprüfung
- Schichtmesstechnik
- Oberflächentechnologien: Dünnschichttechnik, PVD - Schichtabscheidung (Mehrebenen- und Mischschichten, Metallisierung)
- Computersimulation von Materialparametern und -transportprozessen

Promotionen:
„Siliciumcarbid - Bildung auf Silizium unter Bedingungen der Molekularstrahlepitaxie”, F. Scharmann, 2002

Publikationen:
Forschungsprojekte:

„Abgleich von gedruckten Bauelementen durch Veränderung der Mikrostruktur, insbesondere von Widerständen mit Hochspannungsimpulsen“

Projektleiter: Prof. H. Thust, Prof. Ch. Knedlik
Partner/Förderinstitution: TU Ilmenau, FG Mikroperipherik/ DFG, Fördersumme 223.000 DM
Schlagwörter: Dickschichttechnik, Widerstandsschicht, Hochspannungsimpuls

„Randzonenbeurteilung von Sonderwerkzeugmustern“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: GFE Schmalkalden
Schlagwörter: Charakterisierung

„Neue Dünnschicht - Strukturen für elektrochemische Mikrosensoren für Anwendungen in Medizin und Umwelt“

Projektleiter: Prof. Ch. Knedlik, Prof. Tvarozek, PhD (STU Bratislava)
Partner/Förderinstitution: STU Bratislava, Lehrstuhl Mikroelektronik/ Thüringer Ministerium für Wissenschaft, Forschung und Kunst - internationale Zusammenarbeit im Hochschulwesen, Fördersumme 84.000 DM
Laufzeit: 1/2001bis 12/2001
Schlagwörter: Sensorschichten, Herstellung und Charakterisierung

„Hochtemperaturverhalten elektrisch leitfähiger, hochschmelzender Metallkarbide“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: DFG, Fördersumme 116.000
Schlagwörter: Wolframcarbidherstellung, Charakterisierung, elektrisches Verhalten

„Röntgenographische Spannungsanalysen an Beschichtungen auf Wendeschneidplatten“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Widia GmbH Essen
Schlagwörter: Spannungsanalysen
„Dünne ferritische Schichten/ Schichtsysteme für den Einsatz in Einlagen- und Mehrlagenleiterplatten unter Beachtung der elektromagnetischen Verträglichkeit (IT - Bereich) für den Frequenzbereich f = 1000MHz bis 4000MHz“

Projektleiter: Prof. Ch. Knedlik
Partner/Förderinstitution: IMG Nordhausen, Fördersumme 41.900 (BMBF)
Schlagwörter: Ferritschichten, Herstellung und Charakterisierung, elektromagnetische Verträglichkeit

„Erforschung und Analyse von flüssigmetallischen Legierungen für die Elektro- und Informationstechnik“

Projektleiter: Prof. Ch. Knedlik
Partner/Förderinstitution: Moeller GmbH Bonn
Laufzeit: 10/2001 bis 10/2003
Schlagwörter: Flüssigmetall, Alterungsverhalten, Charakterisierung

„Thin film materials and structures for microsensors“

Projektleiter: Prof. Ch. Knedlik, Prof. Tvarozek, PhD (STU Bratislava)
Partner/Förderinstitution: STU Bratislava, Lehrstuhl Mikroelektronik/ DAAD und Bildungsministerium der Slowakischen Republik - Programm personengebundener Projektaustausch, Fördersumme 14.658
Laufzeit: 1/2002 bis 12/2003
Schlagwörter: Sensorschichten, Herstellung und Charakterisierung

„Nickeloxidschichten für Gassensoren“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: STU Bratislava /WTZ SVK
Schlagwörter: Sensoren, Charakterisierung

„Neue Materialien für SiC - Feldeffektransistoren - NEMASIC“

Projektleiter: Vertr. - Prof. Th. Doll, Prof. O. Ambacher, PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 70.000
Schlagwörter: SiC - Metallisierung

„Werkstoffe und Oberflächen“

Projektleiter: Prof. Ch. Knedlik, Prof. H. Kern, PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: SFB 622, Teilprojekt B3, Fördersumme 170.000
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: Oberflächenmodifikation, Werkstoffnormale, Werkstoffkritik, adaptive Werkstoffe

86
„Nanopartikelinduzierte Oberflächenmodifikation und Analyse-NANOVSS“

Projektleiter: Prof. Ch. Knedlik, PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 154.600
Schlagwörter: Verschleißschutzschichten, Charakterisierung

„Spannungsmessungen an Hartstoffschichten“; „Texturmessungen an Hartstoffschichten“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Widia GmbH Essen
Schlagwörter: Spannungsanalysen, röntgenographische Texturanalyse

Leistungsangebote:

- Abscheidung dünner Schichten (PVD)
- Röntgendiffrakтометrie: Strukturuntersuchungen, Phasennachweis, Spannungsmessungen; ortsempfindlicher Detektor, DünnSchichtzusatz
- Rastertunnel- / Atomkraftmikroskopie mit verschiedenen Betriebsarten
- Rasterelektronenmikroskopie (Elementanalyse mittels EDX, EBSD, ESEM)
- Analytisches hochauflösendes Transmissionselektronenmikroskop
- Röntgenfluoreszenz: Elementanalyse, Schichtdickenmessung
- spezielle Schichtmesstechnik: elektrische Schicht- und Kontaktmessungen, Schichtdicke, Schichtspannungen, Haftfestigkeit, Härtestatio
- Werkstoffprüfung: mechanische Kennwerte, Härte, Mikro- und Universalhärte (Härteprofil, elastische und plastische Verformungsenergie), Metallographie mit Bildverarbeitung, Standardverfahren der zerstörungsfreien Werkstoffprüfung
- photothermische Spektroskopie
- optische Profilometrie

Spezialausstattung:

- Röntgendiffraktometer
- Rastersondenmikroskop
- Transmissionselektronenmikroskop Tecnai S20 mit Gatanfilter
- Analytisches Rasterelektronenmikroskop (ESEM)
- HV - Bedampfungs- und Sputteranlagen
- Werkstoffprüfgeräte; metallographische Präparationstechnik, Mikroskopie, Mikro- und Universalhärte; Klimaprüfkammer
- Schichtspannungsmesser
- Optisches Profilometer
- Thermodürk - Inspektionsgerät
- elektrische Messtechnik

Dem Fachgebiet ist das Prüfzentrum Schicht- und Materialeigenschaften als Außenstelle der Materialforschungs- und Prüfanstalt Weimar zugeordnet.
5.1.6.3 Fachgebiet Plasma- und Oberflächentechnik

Fachgebietsleiter: apl. Prof. Dr. - Ing. habil. Gabriele Nutsch (k.)
Tel: (03677)69 2835 Fax: (03677)69 1533
E - Mail: gabriele.nutsch@tu-ilmenau.de

Forschungsgebiete:

- Thermisches Spritzen (atmosphärisches Gleichstrom- und Induktionsplasmaspritzen)
- Herstellung von oxidischen Nanopulvern (Plasma - Flash - Verdampfung mit Inertgas - Kondensation)
- Metastabile Diamantsynthese im thermischen Plasma
- Pulverbehandlung im thermischen Induktionsplasma
- Barriere - Entladung zur Oberflächenmodifikation von Kunststoffen
- Lotdiffusion in Schmelzleitern elektrischer Sicherungen
- Schaltverhalten elektrischer Sicherungen

Promotionen:

„Ein Beitrag zur Anwendung des induktiv erzeugten Hochfrequenz - Plasmas zum Atmosphärischen Plasmaspritzen oxidkeramischer Werkstoffe“, B. Dzur, 2002,

Publikationen:

Forschungsprojekte:

„Entwicklung neuer Technologien zur Anwendung der Plasmatechnik im Recyclingbereich“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: AiF FUEGO 0012 101 A 1, Fördersumme: 172.620
Laufzeit: 01. 09. 1998 - 31. 08. 2000
Schlagwörter: DC - Plasmatron, Betonschneiden, Betonbohren
„Untersuchung der Prozessbedingungen und der Haftung bei der chemischen Gasphasenabscheidung mittels thermischen, induktiv gekoppelten Plasmas“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: DFG Bonn, Fördersumme: 142.000
Laufzeit: 12.11.1998 bis 11.11.2000
Schlagwörter: Induktionsplasma, flüssige Precursoren, nanokristalline dichte Schichten

„Plasmaspritztechnische Herstellung von hochwertigen Permanentmagnetschichten für die Mikrosystemtechnik“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: AiF - Forschungsvorhaben 12.641 B/DVS - Nr. 2.028, Fördersumme: 172.624,01
Laufzeit: 01. 12. 2000 bis 31.03.2003
Schlagwörter: Induktionsplasmaspritzten, NdFeB - Schichten, NdFeB - Pulverbehandlung

„Experimentelle Untersuchungen an NH - Sicherungseinsätzen gemäß DIN 43623 bei Betätigung unter Last“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: EFEN GmbH Eltville
Laufzeit: 01. 01. 2000 bis 31. 12. 2001
Schlagwörter: Schaltverhalten von Sicherungsschmelzeinsätzen, Sicherungsleisten, Abschalten unter Last

„Abschaltverhalten von Schmelzsicherungen beim Einsatz in batteriegestützten DC - Anlagen“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: EFEN GmbH Eltville
Laufzeit: 01.01. 2002 bis 31.12.2002
Schlagwörter: Schmelzsicherungen, Abschaltverhalten, Gleichstromanlagen- schutz

„Kurzschlussverhalten von Niederspannungsschaltgeräten“

Projektleiter: apl. Prof. G. Nutsch
Partner/Förderinstitut: EKL Schaltelektronik Dresden GmbH
Laufzeit: 1999 bis 2002
Schlagwörter: Niederspannungsschaltgeräte, Abschaltverhalten

Leistungsangebote:
- Entwicklung von physikalischen Verfahren der Oberflächentechnik
- Entwicklung von Plasmaerzeugern
- Beschichtungs- und Schichtentwicklung
- Beratung bei der Auswahl von Beschichtungsverfahren
- Durchführung von Schulungen und Testbeschichtungen für Plasmaspritzte bei Atmosphärendruck
Spezialausstattung:
- Plasmaspritzanlage (APS) / Fa. Medicoat, Schweiz
- 3 Induktionsplasmaspritzanlagen für Pulver und Lösungen
- Diamantsynthese-Anlage (Labor - Anlage)
- Nanopulver - Synthese - Anlage (Labor - Anlage)
- Barriere - Plasmajet zur Modifikation von Polymeroberflächen
- Hochleistungsprüfanlage für Schmelzsicherungseinsätze

5.1.6.4 Fachgebiet Werkstofftechnologie

Fachgebietsleiter: apl. Prof. Dr. - Ing. habil. Christine Jakob (k)
Tel: (03677)69 3106 Fax: (03677)69 3104
E - Mail: christine.jakob@tu-ilmenau.de

Forschungsgebiete:
- Automatisierte elektrochemische Messtechnik zur Elektrolytüberwachung
- Abscheidung in Mikrostrukturen
- Technologiestudien zur Solar-, Wasserstoff- und BHKW - Technik
- Aufarbeitung von technischen Abwässern
- komplexe werkstoffwissenschaftliche Charakterisierung von Schichten und Materialien

Publikationen:

Forschungsprojekte:
„Hochtemperaturverhalten elektrisch leitfähiger, hochschmelzender Metallkarbide“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Deutsche Forschungsgemeinschaft Bonn, DFG - Projekt SP 585/3-1, Fördersumme 116.000
Schlagwörter: Wolframcarbidherstellung, Charakterisierung, elektrisches Verhalten
„Werkstoffe und Oberflächen“

Projektleiter: Prof. H. Kern, Prof. C. Knedlik, PD Dr. - Ing. habil. L. Spieß (Teilprojektleiter)
Partner/Förderinstitution: Teilprojektleiter B3 im SFB 622, Fördersumme 343.000
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: Oberflächenmodifikation, Werkstoffnormale, Werkstoffkritik adaptive Werkstoffe

„Nanopartikelinduzierte Oberflächenmodifikation und Analyse - NANOVSS“

Projektleiter: PD Dr. - Ing. habil. L. Spieß (Teilprojektleiter)
Partner/Förderinstitution: Teilprojektleiter Thüringer Ministerium für Wissenschaft, Forschung und Kunst - Projekt B 407-02002, Fördersumme 154.600
Schlagwörter: Verschleißschutzschichten, Charakterisierung

„Neue Materialien für SiC - Feldeffekttransistoren - NEMASIC“

Projektleiter: Prof. Th. Doll, Prof. O. Ambacher, PD Dr. L. Spieß (Teilprojektleiter)
Partner/Förderinstitution: Teilprojektleiter Thüringer Ministerium für Wissenschaft, Forschung und Kunst - Projekt B 607-02006 Fördersumme 217.000
Schlagwörter: SiC - Metallisierung

„Texturmessungen an Hartstoffschichten“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Drittmittelvertrag Widia GmbH Essen
Schlagwörter: Spannungsanalysen

„Nickeloxidschichten für Gassensoren“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: WTZ SVK 01/016 (2174 50 74) TU Bratislava
Schlagwörter: Sensoren, Charakterisierung

„Randzonenbeurteilung von Sonderwerkzeugmustern“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: GFE Schmalkalden
Schlagwörter: Charakterisierung
„Röntgenographische Spannungsanalysen an Beschichtungen auf Wendeschneidplatten“

Projektleiter: PD Dr. - Ing. habil. L. Spieß
Partner/Förderinstitution: Widia GmbH Essen
Schlagwörter: Spannungsanalysen

Leistungsangebote:
- Schichtabscheidungen
- Schichtcharakterisierungen (Substruktur, Phasenzusammensetzung, Morphologie der Oberfläche, Eigenschaften, Härte, Spannungen)
- Erfassung technologischer Einflussgrößen

Spezialausstattung:
- zwei Röntgendiffraktometer
- analytische Elektronenmikroskope (Raster- und Transmissionselektronenmikroskop)
- Rastertunnelmikroskop, Auflichtmikroskop
- Beschichtungsanlagen

5.1.7 Institut für Medientechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. Karlheinz Brandenburg
Tel.: (03677) 69 2888 2676 Fax: (03677) 69 2888
E - mail: karlheinz.brandenburg@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 2 C3

5.1.7.1 Fachgebiet Elektronische Medientechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. Karlheinz Brandenburg
Tel.: (03677) 69 2676 Fax: (03677) 69 1255
E - Mail: karlheinz.brandenburg@tu-ilmenau.de

Forschungsgebiete:
- Technologie - Integration von elektronischen Medien
- Interaktive Angebote in den Medienproduktionen für traditionelle und online Medien
- Codierung von Audiosignalen
- Automatische Erkennung von Audiosignalen
- Klangfeldsynthese
- Erzeugung und Decodierung von MPEG - 4 basierten virtuellen Welten
- Neue Anwendungen auf der Basis von DVB
- Autorensysteme für Lern- und Multimediasysteme

Publikationen:

Horst Weißleder, Ernst Edelmann, Hendrik Danz, Michael Richter, Volker Jecht: „Analoger und Digitaler Rundfunk im Kabelnetz“ Schriftenreihe der Medienanstalt Sachsen - Anhalt; Bd. 4, Vistas media production Berlin, ISBN 3-89158-317-6, 103 Seiten

Forschungsprojekte:

„DVB Transportstrom Toolbox“

Projektleiter: Dr. - Ing. Horst Weißleder
Partner/Förderinstitution: Technotrend Systemtechnik Erfurt, Blankom Antennentechnik Bad Blankenburg, E&S Manebach, Förderung: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 481.600
Laufzeit: 11/2000 bis 10/2003
Schlagwörter: DVB, Transportstrom, Insertion of Signals, CATV

„Interaktive audiovisuelle Anwendungssysteme“

Projektleiter: Prof. Brandenburg
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 795.000
Laufzeit: 10/2001 bis 9/2004
Schlagwörter: MPEG - 4, interaktiv, objektbasiert, dreidimensional, Multimedi

„Benutzeroberflächen und Restaurierung von Audiosignalen“

Projektleiter: Prof. Brandenburg
Partner/Förderinstitution: Arbeitsgruppe El. Medientechnologie (FhG)
Laufzeit: 1/2001 bis 12/2002,
Schlagwörter: Datenträger, Schallplatte, Restaurierung, Benutzeroberfläche,

Spezialausstattungen:

- DVB - Labor mit Messtechnik, Empfangs- und Sendesignalaufbereitung
- Audio- und Studiotechnik (Regie- und Sprecherraum)
- Medienlabor mit Audio- und Videoaufnahmeeinrichtungen einschließlich spezieller Komponenten der virtuellen Studiotechnik
- Fernseh - Übertragungswagen inklusive Ausstattung für elektronische Außenproduktion
- Kamerarecorder (u. a. DV, Betacam SP, S - VHS, DVC - Pro, D9)
- professionelles Computeranimationssystem, professionelles Film- und Videobearbeitungssystem
- Postproduktion für Audio und Video

5.1.7.2 Fachgebiet Audiovisuelle Technik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. Hans - Peter Schade
Tel.: (03677)69 2670 Fax: (03677)69 1255
E - Mail: schade@tu-ilmenau.de

Forschungsgebiete:
- Virtuelles Studio (Weiterentwicklung der Technologie und neue Anwendungen)
- Anwendung des Media Exchange Format (MXF) für die Übertragung und Strukturierung von Medienobjekten
- Raumakustische Simulationen
- Mensch - Maschine - Schnittstellen in der Audio- und Videotechnik
- Digital Video Broadcast, Interaktives Fernsehen

Publikationen:

Forschungsprojekte:
„Haptisches Fernbedienungssystem“

Projektleiter: Prof. H. - P. Schade(10/99 - 9/00, 4/02 - 3/03)/Prof. K. Brandenburg (10/00 - 03/02)
Partner/Förderinstitution: Loewe Opta AG Kronach, Cherry Mikroschalter GmbH Auerbach TU Ilmenau Fak. Maschinenbau, FG Arbeitswissenschaft
Schlagwörter: haptisches Fernbedienungssystem

Leistungsangebote:
- Beratung zum Einsatz von Audio- und Tonstudiotechnik
- Tonaufnahmen (Sprache und kleinere musikalische Darbietungen)
- Audiopostproduktion

94
Spezialausstattungen:

- Audio-Studio (Regie- und Sprecherräum)
- Medienlabor mit Audio- und Videoaufnahmeinrichtungen einschließlich spezieller Komponenten der virtuellen Studiotechnik
- Fernseh-Übertragungswagen inklusive Ausstattung für elektronische Außenproduktion
- Kamerarecorder (u.a. DV, Betacam SP, S-VHS, DVC-Pro, D9)
- professionelles Computeranimationssystem, professionelles Film- und Videobearbeitungssystem
- Postproduktion für Audio und Video

5.1.7.3 Fachgebiet Medienproduktion

Fachgebietsleiter: Prof. Dr. phil. Heidi Krömker
Tel.: (03677)69 2883 Fax: (03677)69 2888
E-Mail: heidi.kroemker@tu-ilmenau.de

Forschungsgebiete

Die Arbeitsgruppe forscht auf dem Gebiet der Medienproduktion mit dem Schwerpunkt:

- Engineering von Medienproduktionsprozessen für TV, Hörfunk, Film und Multimedia-Applikationen
- Konvergenz von Medien
- Usability neuer Technologien (z.B. interaktives Fernsehen)

Das Fachgebiet ist neu gegründet und besteht seit dem 1. November 2001. Die entstehenden Forschungsgebiete haben zum Inhalt:

- Medienproduktionsprozesse:

- Medienkonvergenz:
 In Zusammenarbeit mit verschiedenen Sendeanstalten und Produktionsfirmen entwickelt dieses Forschungsprojekt einen Ansatz, interaktive Medien, wie z.B. interaktives Fernsehen und Internet benutzergerecht zu kombinieren.

- Regeln für die benutzerzentrierte Gestaltung (Usability) von innovativen Technologien: Interaktives Fernsehen, Set-Top-Boxen und virtueller Realität bilden dabei einen besonderen Schwerpunkt.
Publikationen:

Forschungsprojekte:

"Usability Engineering für multimediale Endgeräte"

Projektleiter: Prof. H. Krömker und Dipl. - Ing. Ch. Wisser
Partner/Förderinstitution: Loewe Opta GmbH
Laufzeit: 2002 bis 2003
Schlagwörter: multimediale Komponenten, Bedienkonzepte, interaktive Steuerung, Fernbedienung, Usability Test

„Informationskonzept für die BUGA 2007“

Projektleiter: Prof. H. Krömker und Dipl. - Art. K. - D. Locke
Partner/Förderinstitution: Bundesgartenschau Gera und Ronneburg 2007 GmbH
Laufzeit: 2002 bis 2007
Schlagwörter: Zielgruppenanalyse, multimediales Informationskonzept, Usability Test

Leistungsangebote:

- Optimierung von Medienproduktionsprozessen
- Integration von neuen Technologien in Medienproduktionsprozessen
- Konzepte für Medienkonvergenz (z. B: TV und Internet)
- User Interface Design für neue Technologien, wie z. B. Interaktives Fernsehen

Spezialausstattungen:

- Usability Lab zu Evaluation von neuen Technologien durch Endanwender
- Audio - Studio (Regie- und Sprecherraum)
- Medienlabor mit Audio- und Videoaufnahmeeinrichtungen einschließlich spezieller Komponenten der virtuellen Studiotechnik
- Fernseh-Übertragungswagen inklusive Ausstattung für elektronische Außenproduktion
- Kamerarecorder (u. a. DV, Betacam SP, S - VHS, DVC - Pro, D9)
- professionelles Computeranimationssystem, professionelles Film- und Videobearbeitungssystem Postproduktion für Audio und Video
5.1.7.4 Fachgebiet Angewandte Mediensysteme

Fachgebietsleiter: nn
Tel.: (03677) 69 2757 Fax: (03677) 69 1255

Forschungsgebiete:
- Interaktive Medien
- Multimedia - Applikationen
- Medienprojekt

Spezialisierungen:
- Audio - Studio (Regie- und Sprecherraum)
- Medienlabor mit Audio- und Videoaufnahmeeinrichtungen einschließlich spezieller Komponenten der virtuellen Studiotechnik
- Fernseh - Übertragungswagen inklusive Ausstattung für elektronische Außenproduktion
- Kamerarecorder (u. a. DV, Betacam SP, S - VHS, DVC - Pro, D9)
- professionelles Computeranimationssystem, professionelles Film- und Videobearbeitungssystem
- Postproduktion für Audio und Video
- DVB - Labor mit Messtechnik, Empfangs- und Sendesignalaufbereitung
5.2 Fakultät für Informatik und Automatisierung

Anschrift: 98693 Ilmenau, Gustav-Kirchhoff-Straße 1 (Kirchhoffbau)

Dekan: Univ. - Prof. Dr. - Ing. Horst - Michael Groß
Tel.: (03677)69 2809 Fax: (03677)69 1476
E - mail: dekan-ia@tu-ilmenau.de

Prodekan: Univ. - Prof. Dr. - Ing. habil. Oliver Sawodny
Tel.: (03677)69 2817 Fax: (03677)69 1434
E - mail: oliver.sawodny@tu-ilmenau.de

5.2.1 Institut für Automatisierungs- und Systemtechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Oliver Sawodny
Tel.: (03677)69 2817 Fax: (03677)69 1434
E - mail: oliver.sawodny@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 2 C3

5.2.1.1 Fachgebiet Systemanalyse

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Jürgen Wernstedt
Tel.: (03677)69 2815 Fax: (03677)69 1434
E - mail: juergen.wernstedt@tu-ilmenau.de

Forschungsgebiete:

Entwicklung und Einsatz der Methoden der Systemanalyse zur Lösung von Diagnose-, Überwachungs-, Führungs- und Vorhersageaufgaben in komplizierten und komplexen technischen und nichttechnischen Prozessen sowie zur Untersuchung des Entscheidungsverhaltens von einbezogenen Menschen.

Zur Lösung dieser Aufgabe sind notwendig:

- Entwicklung und Einsatz von Methoden der Daten- und Signalanalyse
- Entwicklung und Einsatz von Methoden der Strukturanalyse und der experimentellen Modellbildung, Kombination von theoretischer und experimenteller Modellbildung
- Entwicklung und Einsatz von Beratungs- / Entscheidungshilfesystemen

Die Methodenentwicklung zur Signalanalyse und Modellbildung konzentriert sich auf die Gebiete der Schätzverfahren, des maschinellen Lernens und der optimalen Versuchsplanung.

Beratungs- / Entscheidungshilfesysteme werden auf Grundlage von numerischen und symbolischen Wissensverarbeitungskonzepten entworfen. Forschungsschwerpunkt ist das Gebiet der Computational Intelligence und die Führung mobiler Systeme.

Anwendungsgebiete:

- Elektronische und mechatronische Systeme
- Energie- und wasserwirtschaftliche Systeme
Promotionen:

„Ein Beitrag zur Vorhersage musterbasierter nichtlinearer stochastischer Signale“, P. Bretschneider, 2002

Publikationen:

Kroll, A.; Mikut, R.; Pfeiffer; Rauschenbach, Th.: VDI/VDE Richtlinie 3550, Computational Intelligence Fuzzy - Logik und Fuzzy Control, Begriffe und Definitionen, Oktober 2002, pp. 1 - 24

Forschungsprojekte:

„Intelligente Energiebörse Thüringen“

Projektleiter: Prof. J. Wernstedt
Partner/Förderinstitution: Thüringer Energie AG, Erfurt
Laufzeit: 1998 bis 2003
Schlagwörter: Energiemanagement, Liberalisierter Markt, Netznutzung, Stromhandel

„Nichtlineare Regelung von Schrittmotoren“

Projektleiter: Prof. J. Wernstedt
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 120.000
Laufzeit: 1999 bis 2001
Schlagwörter: nichtlineare dynamische Modelle, nichtlineare Steuerungen, nichtlineare Regelungen, fuzzy - adaptive Regelkonzepte

„Prädiktives Führungssystem für autonome Unterwasserfahrzeuge (AUV’s)“

Projektleiter: Prof. Dr. J. Wernstedt / PD Dr. Otto
Partner/Förderinstitution: BMBF, Fördersumme 583.000
Laufzeit: 2000 bis 2004
Schlagwörter: Modellierung; Missions- und Manövermanagement; Mission-level-Design; Autonome mobile Systeme

„Intelligente datenbankgestützte Vorhersagestrategien“

Projektleiter: PD Dr. P. Otto
Partner/Förderinstitution: Fraunhofer Anwendungszentrum Systemtechnik Ilmenau
Laufzeit: 1999 bis 2001
Schlagwörter: Musterbasierte Vorhersagestrategien; Fuzzy-Konzepte, neuronale Netze

„FABMAS - ein System zur Steuerung des Waferfertigungsprozesses auf der Grundlage autonomer und kooperativer Softwareagenten“

Projektleiter: Prof. Dr. J. Wernstedt
Partner/Förderinstitution: DFG - SPP 1083, Fördersumme 106.000
Laufzeit: 2002 bis 2004
Schlagwörter: Multi-Agentensysteme; Prozesssteuerung; Hierarchiekonzepte

5.2.1.2 Fachgebiet Dynamik und Simulation ökologischer Systeme

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Horst Puta
Tel.: (03677)69 2816 Fax: (03677)69 1415
E-mail: horst.puta@tu-ilmenau.de

Forschungsgebiete:

Simulation und Modellbildung komplexer dynamischer, besonders auch ökologischer Systeme sowie Entwicklung und Anwendung optimaler Planungs- und Steuerstrategien in Komplexen:

- Zentrale, hierarchische und mehrkriterielle Optimierungsverfahren und Algorithmen
- Methoden zur integrierten Modellbildung, Simulation und Optimierung
- Mengen- und Qualitätssteuerung für Trinkwasserversorgungssysteme
- Modellierung und Simulation limnischer Ökosysteme (z.B. Talsperren) und Entwicklung optimierter Bewirtschaftungsstrategien
- Auslegung und Bewirtschaftung solarthermischer Systeme
- Entscheidungshilfemethoden zur Bewirtschaftung von Abwasserreinigungsanlagen
- Optimierte Wasserstraßenbewirtschaftung (Mittellandkanal, Elbeseitenkanal, Mosel) mittels modellprädiktiver Regelung
- Hierarchische Entscheidungsfindung unter mehrfacher Zielsetzung und Berücksichtigung von Unsicherheit in verfügbaren Informationen

Promotionen:

„Ein Entscheidungshilfesystem für komplexe Planungsprozesse der kommunalen/regionalen Energieversorgung“, Pham Thieu Nga, 2000
Publikationen:

H. Linke, E. Arnold: „Model Based Predictive Control of River Reservoirs“. 15th IFAC World Congress Barcelona, Juli 2002, CD

Forschungsprojekt:

“SMAC - SMArt Control of wastewater systems” (5. EU - Rahmenprogramm Energie, Umwelt und nachhaltige Entwicklung): Koordinierte Bewirtschaftung von Kläranlagen und Abwassernetz

Projektleiter: Prof. H. Puta, Dr. - Ing. S. Hopfgarten

Partner/Förderinstitution:
- **Denmark** (Krüger A/S (Coordinator of the project); The Municipality of Helsingør; Technical University of Denmark; The Computer Aided Process Engineering Center (CAPEC). United Kingdom (University of Strathclyde, Industrial Control Centre; Scottish Water (formerly West, East and North of Scotland Water Authorities); University of Birmingham). Poland (The School of Electronic and Electrical Engineering Poland; Technical University of Gdansk, Faculty of Electrical and Control Engineering and Faculty of Water and Environmental Engineering; Kartuzy Water Supply and Sewerage Enterprise). Germany (Technical University of Ilmenau, Department of Automation and Systems Engineering; JenaWasser (former Wasser- und Abwasserzweckverband Jena); Fraunhofer Application Centre, Ilmenau), Fördersumme 198.000

Laufzeit: 3/2001 bis 2/2004

Schlagwörter: modellgestützte Simulation, Abwasserreinigungssysteme, Belebungsbecken, Nachklärbecken, Abwassersammelröhren, optimaler Steuerungsentwurf, modellprädiktives Regelungskonzept

Leistungsangebote:

- Optimierungstool zur nichtlinearen Optimierung siehe: http://hqp.sourceforge.net
- genetische Algorithmen - Toolbox siehe: http://www.systemtechnik.tu-ilmenau.de/~pohlheim/GA_Toolbox
Spezialausstattung:
- Rechnernetz aus Linux Windows - PC's
- Leistungsfähige Simulations-, Steuerungsentwurfs- und Optimierungssoftware

5.2.1.3 Fachgebiet Regelungstechnik

Fachgebietsleiter: seit 1. April 2002
Univ.-Prof. Dr. - Ing. habil. Oliver Sawodny
Tel.: (03677)69 2816 Fax: (03677)69 1415
E-mail: oliver.sawodny@tu-ilmenau.de

Forschungsgebiete:

Mit dem 1. April 2002 hat Herr Prof. Sawodny die Fachgebietsleitung nach dem Ausscheiden von Herrn Prof. Dr. Manfred Günther übernommen. Im Zuge dessen wurden in den Bereichen Regelungstheorie, Robotik und Regelung fluidtechnischer Aktuatoren die folgenden Schwerpunkte gesetzt:

Regelungstheorie:
- Differentialadaptive algebraische Methoden zur Regelung nichtlinearer Systeme
- Dezentrale parameterveränderliche adaptive Regelung
- Identifikation nichtlinearer Systemdynamik

Robotik:
- Bahnregelung armelastischer Manipulatoren mit großen Arbeitsräumen
- Trajektoriengenerierung unter Berücksichtigung von dynamischen und kinematischen Beschränkungen

Regelung fluidtechnischer Antriebe:
- Modellbildung für pneumatische und hydraulische Steuerkreise
- Nichtlineare Regelung fluidtechnischer Antriebe

In Zusammenarbeit mit der FESTO AG wird am Aufbau eines Versuchsstandes für pneumatische Aktuatoren gearbeitet. Hierbei wurde auch das FG Biomechatronik mit Herrn Prof. H. Wittke eingebunden. Mit Herrn Prof. K. Augsburg besteht eine Zusammenarbeit auf dem Gebiet der Regelung hydraulischer Steuerkreise für den Einsatz in Bremsanlagen in Kfz.

Publikationen:

tern. Workshop on Robot Motion and Control (RoMoCo ’02). Poznan - Bukowy Dworek, Poland, November 9 - 11, pp. 411 - 416.

Drittmittelprojekte:

„Lastpendeldämpfung“

Projektleiter: Prof. O. Sawodny
Partner/Förderinstitution: Liebherr Werke Nenzing GmbH Österreich
Laufzeit: 2002 bis 2006
Schlagwörter: Robotik, fluidtechnische Antriebe, mechatronische Systeme

„Aktive Regelung mit Gelenkleiter“

Projektleiter: Prof. O. Sawodny
Partner/Förderinstitution: IVECO Magirus Brandschutztechnik GmbH Ulm Fraunhofer Anwendungszentrum Systemtechnik Ilmenau
Laufzeit: 2002 bis 2004
Schlagwörter: Robotik, fluidtechnische Antriebe, mechatronische Systeme

„Pneumatischer Zylinder und Muskel“

Projektleiter: Prof. O. Sawodny
Partner/Förderinstitution: Firma FESTO Esslingen
Laufzeit: 2002 bis 2003
Schlagwörter: Regelungstheorie, Robotik, fluidtechnische Antriebe

Leistungsangebote:

- Entwicklung von Steuerungen und Regelungen für die Kraftfahrzeugindustrie und den Anlagenbau
- Erfahrungen in der Realisierung von Regelungen als embedded control system
- Hardwarenahe Programmierung von Mikrorechnern zur echtzeitfähigen Steuerung und Regelung von Prozessen
- Experimentelle Identifikation von dynamischen Prozessen
Spezialausstattung:
- Echtzeitfähige flexible Hardware zur Matlab - Simulink - basierten Regelung und Steuerung
- Frequenzanalyzer zur Identifikation des Prozessverhaltens
- Softwaretools (Programme zur Simulation von fluidtechnischen Systemen, Tools zur Programmierung von Regelungen und Steuerungen in Integer - Arithmetik)
- Verschiedene Versuchsaufbauten (hydraulischer Manipulator, Aufbau für pneumatische Zylinder und Aufbauten für hydraulische Antriebssysteme).

5.2.1.4 Fachgebiet Automatisierungsanlagen und Prozessleittechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Ulrich Engmann; seit 01. 04. 2003
komm. Leiter des Fachgebietes Univ. - Prof. Dr. - Ing. habil. Oliver Sawodny
Tel.: (03677)69 2817 Fax: (03677)69 1415
E-mail: oliver.sawodny@tu-ilmenau.de

Forschungsgebiete:
- Entwicklung rechnergestützter Methoden auf Basis formaler Spezifikationssprachen für Entwurf, Simulation und Validierung komplexer Automatisierungssysteme
- Prototyp - Werkzeugentwicklung, Umsetzung von Entwurfs - Vorgehensmodellen auf Basis formalisierter Beschreibungen, wie Spezifikationssprachen, Petri - Netze, Statecharts
- Modellierung und Analyse kontinuierlich - ereignisdiskreter Systeme; systematischer Entwurf auf Grundlage formaler Spezifikationen
- Entwicklung von flexiblen Steuerungen und Leitfunktionen für verketteten kontinuierlich - ereignisdiskreten (hybriden) Produktionsprozess
- Implementierung von Prozessleit- und Steuerungsalgorithmen in Prozessleitsystemen und speicherprogrammierbaren Steuerungen
- Objektorientierte Modellierung und Entwurf von Automatisierungssystemen insbesondere unter Echtzeitaspekten mittels UML
- Zeitliche Analyse zeitbehafeter UML - Modelle mittels Realzeitautomaten
- Modellierung und Simulation ereignisdiskreter Prozesse mit Petri - Netzen

Publikationen:

Forschungsprojekt:

„Objektorientierte Modellierung komplexer hybrider technischer Prozesse auf Basis hybrider Objektnetze“ im Rahmen des Schwerpunktprogramms “Analyse und Synthese kontinuierlich - diskreter technischer Systeme (KONDISK)”

Projektleiter: Prof. U. Engmann, Dr. - Ing. R. Drath
Partner/Förderinstitution: DFG, Fördersumme 50.000 DM
Laufzeit: April 1999 bis März 2001
Schlagwörter: Prozessleittechnik, formale Spezifikationssprachen

Leistungsangebote:
- siehe Leistungen entsprechend der Forschungsgebiete
- Internetbasierte Visualisierung und Steuerung verfahrenstechnischer Prozesse
- Prozessablaufoptimierung in ereignisdiskreten Prozessen

Spezialausstattung:
- Ausbildungslabor für Prozessleittechnik am realen verfahrenstechnischen Prozess (Distillationsanlage)
- PC - Entwurfswerkzeuge, u.a. zur Projektierung und Planung von Automatisierungssystemen
- Fertigungstechnische Modellanlage als Beispielprozess für ereignisdiskrete Steuerungen
- Softwaretools zur Modellierung von zeitbewerteten Petri - Netzen

5.2.2 Institut für Biomedizinische Technik und Informatik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Günter Henning
Tel.: (03677)69 2860 Fax: (03677)69 1311
E - mail: guenter.henning@tu-ilmenau.de

C - Stellenstruktur: 1 C4, 1 C3

5.2.2.1 Fachgebiet Biomedizinische Technik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Günter Henning
Tel.: (03677)69 2860 Fax: (03677)69 1311
E - mail: guenter.henning@tu-ilmenau.de

Forschungsgebiete:
- Objektive Sinnesfunktionsdiagnostik, Nichtinvasive medizinische Messtechnik
- Spatiotemporale Methoden der Biosignalanalyse, Optimierung von Dialysestrategien
- Neurofeedback - Methodenentwicklung (gemeins. mit FG Biosignalverarbeitung)
Promotionen:

„Neue methodische Ansätze zur Objektivierung von Diagnostik und Therapiekontrolle bei venösen Insuffizienzen der unteren Extremitäten“, Ralph Schüler, 2001

„Verfahren zur Analyse und Klassifikation iktaler und interiktaler Aktivität im Elektroenzephalogramm bei Epilepsie“, Ulrich Möller, 2001

“Online Detection of Haemodialysis Induced Hypotension”, Gangmin Ning, 2001

„Hybride Entscheidungsverfahren bei der numerischen und symbolischen Wissensverarbeitung im Beratungssystem DIABETEX“, Andrè Kaeding, 2002

Publikationen:

Forschungsprojekte:

„Basistechnologien für das Funktionsimaging - Grundlagen“

Projektleiter: Prof. G. Henning, Dr. - Ing. habil. W. Vilser
Partner/Förderinstitution: IMEDOS GmbH Weimar; DOMS Medizintechnik GmbH Saalfeld, Augenarztpraxis Dr. Nagel Rudolstadt, Bundesministerium für Bildung und Forschung (BMBF); FKZ 13N8002, Fördersumme 386.000 DM
Laufzeit: 01.01.2001 bis 30.06.2003
Schlagwörter: adaptive bildgebende Systeme, ophthalmologische Diagnostik

„Startprojekt zum Funktionsimaging der Netzhautzirkulation (FIRC1-A-TUI)“

Projektleiter: Prof. G. Henning, Dr. - Ing. habil. W. Vilser
Partner/Förderinstitution: IMEDOS GmbH Weimar, Augenklinik der FSU Jena; Universitäts-augenkliniken Dresden, Erlangen, Essen, München, BMBF; FKZ 13N8001, Förderumme 884.000 DM
Laufzeit: 01.01.2001 bis 30.06.2003
Schlagwörter: ophthalmologische Diagnostik, Funktionsimaging der Netzhaut

„Gerätetechnische Ausstattung für die Projektlinien zur Funktionsdiagnostik im Rahmen des Kompetenzzentrums OphthalmolInnovation Thüringen des BMBF“

Projektleiter: Prof. Dr. - Ing. habil. G. Henning
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, FKZ B 308-00018; Fördersumme 630.000

„Methodische Untersuchungen zur Dialyse - Optimierung“

Projektleiter: Dipl. - Ing. B. Schultheiß, Prof. G. Henning
Partner/Förderinstitution: Medizinische Klinik IV der Friedrich - Schiller - Univ. Jena, FRESENIUS Medical Care Deutschland GmbH Bad Homburg
Schlagwörter: Dialyse, Kreislaufmonitoring, Bioimpedanz

“Methoden der Bild- und Biosignalverarbeitung für die optische Stimulation und Elektrodiagnostik“, Vorprojekt

Projektleiter: PD Dr. - Ing. habil. Peter Husar
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, FKZ B 307 00020, Fördersumme 298.730 DM
Schlagwörter: Eye - Tracking, Sigma - Delta - Beamforming, aktive Elektrode

„Neue Methoden der Optik und der Biosignalverarbeitung für die ophthalmologische Funktionsdiagnostik“

Projektleiter: PD Dr. - Ing. habil. Peter Husar
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, FKZ B 307 00020, Fördersumme 723.312
Laufzeit: 01.01.2002 bis 31.12.2004
Schlagwörter: stereoskopische Blickrichtungserfassung, adaptives Source - Tracking, optimierte Stimulationsfolgen

Leistungsangebote:
- Bearbeitung von Projekten der angewandten Forschung und von Entwicklungsprojekten zu o. g. Arbeitsgebieten für Unternehmen
- Studien und Gutachten zu Problemen aus o. g. Arbeitsgebieten

Spezialausstattung:
- Elektrophysiologisches Labor mit moderner Ausstattung zur Multikanal - Erfassung und -auswertung elektrophysiologischer Daten
- Labor für medizinische Messtechnik mit Kompletausstattung für modernen Hardware-entwurf, -realisierung und -test
- Herz - Kreislauf - Labor mit frei programmierbarem Kipptisch und Monitoring - Ausstattung
- Röntgenlabor mit Hell- und Dunkelarbeitsplatz, Kernstrahlungslabor
- heterogenes PC - /UNIX - Workstation - Rechnernetz, DSP - Entwicklungsumgebungen, μC - Entwicklungsumgebung

5.2.2.2 Fachgebiet Biosignalverarbeitung (bis 31.9.2002 Medizinische Informatik)

Fachgebietsleiter: Prof. Dr. rer. nat. habil Gert Grießbach †
apl. Prof. Dr. - Ing. habil. Vesselin Detschew (k) seit 1/2002
Tel.: (03677)69 2769 Fax: (03677)69 1311
E - mail: vesko.detschew@tu-ilmenau.de

Forschungsgebiete:
- Adaptive Modelle, Algorithmen u. Verfahren der Biosignalanalyse
- Nichtinvasive Verfahren der Diagnostik u. Therapie in der Medizin
- Neurofeedback - Systeme, Informationssysteme und Qualitätssicherung in der Medizin

Promotionen:

Publikationen:

Forschungsprojekte:
„Entwicklung eines Softwaresystems zur Überwachung der Therapiequalität am Beispiel der Behandlung von Patienten mit Schädelhirntrauma (SHT)“
Projektleiter: apl. Prof. V. Detschew
Partner/Förderinstitution: Klinikum der FSU Jena, Medvantis Systems GmbH, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, B 609-98021, Fördersumme 398.500 DM
Schlagwörter: Prozessmodellierung, Leitlinien, Schädelhirntrauma, Therapieoptimierung

„Applikation innovativer Algorithmen der adaptiven Signalanalyse in der medizinischen und technischen Diagnostik“

Projektleiter: apl. Prof. V. Detschew, Dr. D. Steuer
Partner/Förderinstitution: GJB Datentechnik GbR Ilmenau, µ - sen Mikrosystemtechnik GmbH Rudolstadt, IMEDOS GmbH Weimar, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, B 609-00011, Fördersumme 452.934 DM
Schlagwörter: adaptive Signalverarbeitung, Software - Komponenten, Medizinische Diagnose, Technische Diagnose

„Modulares, komponentenbasiertes Softwaresystem für die Bild- und Signalverarbeitung“

Projektleiter: PD Dr. Franke, apl. Prof. V. Detschew
Partner/Förderinstitution: GBS GmbH Ilmenau, ZBS Ilmenau, GJB Datentechnik GmbH Ilmenau, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, B 609-01028, Fördersumme 254.998 €
Schlagwörter: Software - Komponenten, Graphischer Editor, Medizinische Diagnose, Technische Diagnose Signalverarbeitung, Bildverarbeitung

“Entwicklung von mathematischen Modellen und adaptiv rekursiver Algorithmen für eine telemedizinische Signalanalyse (Monitoring)“.

Projektleiter: apl. Prof. V. Detschew, Dipl. - Ing. F. Schlegelmilch
Partner/Förderinstitution: Software + Systeme Erfurt GmbH, Erfurt, eldith GmbH, Ilmenau, Klinik Bergfried Saalfeld (Chefarzt Dr. G. Grohmann)
Laufzeit: 10/2001 bis 3/2003,
Schlagwörter: adaptiv rekursive Algorithmen, Telemedizin, Monitoring, Signalanalyse, EKG

“Entwicklung von Verfahren der zeitvarianten Bispektralanalyse und deren Anwendung für die Analyse transienter quadratischer Phasenkopplungen in biomedizinischen Signalen“.

Projektleiter: PD Dr. - Ing. habil. B. Schack, apl. Prof. V. Detschew
Partner/Förderinstitution: FSU Jena, Institut für Medizinische Statistik, Informatik und Dokumentation, DFG, GR 1555/2-3 und GR 1555/2-4, Fördersumme 80.000
Schlagwörter: zeitvariante Bispektral- und Bikohärenzanalyse, transiente quadratische Phasenkopplungen Biosignalanalyse

Projektleiter: Prof. G. Henning, Prof. G. Grießbach
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme: 380.000 DM
Laufzeit: 01.02.2000 bis 31.01.2002
Schlagwörter: Elektrodiagnostik, Ophthalmologie, objektive Perimetrie, nicht-medicamentöse Therapieverfahren, Biofeedback, Epilepsie

„Anfallsvorhersage durch Zeitreihenprognosen mittels partiell rekurrenter Elman - Netze bei pharmakoresistenten, nicht operablen Epilepsiepatienten“

Projektleiter: apl. Prof. V. Detschev
Partner: Abteilung für Neuropädiatrie, Universitätsklinik Kiel, Abteilung für Klinische Neurophysiologie, Universitätsklinik Göttingen,
Schlagwörter: Epilepsie, Anfallvorhersage, Elektroencephalogramm, EEG - Analyse, neuronale Netze, Elman - Netze

„Evaluierung von einer Neurotherapie für Epilepsiekranke“

Projektleiter: Dr. - Ing. Galina Ivanova
Partner: Klinik für Neurologie/Zentralklinik Bad Berka,
Laufzeit: 01.01.2001 bis 31.12.2003
Schlagwörter: Epilepsie, Biofeedback, Selbstregulation hirnelektrischer Prozesse, Elektroencephalogramm, langsame Potentiale, kognitive Potentiale, Monitorring hirnelektrischer Dynamik, Interaktion physiologischer Systemen

Leistungsangebote:
- OUZO Tool zur Workflow - Modellierung klinischer Prozesse siehe: www.medvantis.de
- Algorithmen - Toolbox ATISA siehe: www.atisa.de

Spezialausstattung:
- Rechnernetz aus UNIX - Workstations sowie Windows - PCs
- Hochleistungsfähige grafische Arbeitsplätze (Silicon Graphics Workstations)
- Elektrophysiologisches Labor mit moderner Ausstattung zur Multikanal - Erfassung und Auswertung elektrophysiologischer Daten
- Herz/Kreislauf - Labor mit frei programmierbarem Kipptisch und Monitoringausstattung
5.2.3 Institut für Theoretische und Technische Informatik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Wolfgang Fengler
Tel.: (03677)69 2827 Fax: (03677)69 1614
E - mail: wolfgang.fengler@tu-ilmenau.de

C - Stellenstruktur: 4 C4, 4 C3

5.2.3.1 Fachgebiet Rechnerarchitektur

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Wolfgang Fengler
Tel.: (03677)69 2827 Fax: (03677)69 1614
E - mail: wolfgang.fengler@theoinf.tu-ilmenau.de

Forschungsgebiete:
Entwurf und Realisierung komplexer und verteilter eingebetteter Systeme für die Automatisierungstechnik, Messtechnik und Fahrzeugsteuerung, Parallele Systeme in Technik und Wissenschaft, Electronic Systems Design Automation (ESDA), Modellierung und Verifikation mit zustandsorientierten Diagrammen und Petri - Netze

Publikationen:

Forschungsprojekte:

„Mehrkoordinaten - Nanomess- und Positioniertechnik“

Projektleiter: Prof. W. Fengler (Teilprojekt)
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme: ca. 324.000 DM
Laufzeit: 1/98 bis 08/02
Schlagwörter: digitale Signalprozessoren, Hochleistungsmesswertverarbeitung, eingebettetes System

„Entwurf eingebetteter paralleler Steuerungssysteme für integrierte multi-axiale Antriebssysteme“

Projektleiter: Prof. W. Fengler
Partner/Förderinstitution: DFG, Fördersumme: ca. 200.000 DM
Laufzeit: 6/99 bis 6/03
Schlagwörter: eingebettete Systeme, Mechatronik, Antriebssysteme, Entwurfsmethodik

„Entwicklung von A/D-Umsetzern für die Anwendung in digitalen Signalverarbeitungssystemen unter Berücksichtigung neuester Technologien, Techniken und Anforderung“

Projektleiter: Prof. W. Fengler
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme: ca. 300.000 DM
Laufzeit: 5/99 bis 4/01
Schlagwörter: Analog-Digital Umsetzer, Signalprozessoren, Wiederverwendung, Kurzkanaltechnologie

Projektleiter: Prof. W. Fengler
Partner/Förderinstitution: DFG, Fördersumme: 288.400
Laufzeit: 12/02 bis 06/05
Schlagwörter: Hochleistungssignalverarbeitung, DSP-Mehrzprozessorsystem, modellbasierter Entwurf

5.2.3.2 Fachgebiet Prozessinformatik

Fachgebietsleiter: Univ.-Prof. Dr.-Ing. habil. Ilka Philippow
Tel.: (03677)69 2826 Fax: (03677)69 1220
E-mail: ilka.philippow@tu-ilmenau.de

Forschungsgebiete:

- Objektorientierte Modellierungs-, Analyse- und Simulationsverfahren für den für den UML basierten Softwareentwurf
- Wiederverwendung auf der Basis von Frameworks, Komponenten und Produktlinien
- Requirements - Engineering für Softwareproduktlinien
- Merkmalsgetriebener Softwareentwurf
- Modellbasierte automatische Mustererkennung in Softwarearchitekturen
- Testfallgenerierung aus UML Modellen

Promotionen:

„Objektorientierte Entwicklung von Software - Produktlinien zur Serienfertigung von Software - Systemen“, K. Böllert, 2002

Publikationen:

Streitferdt, D.: Integration of Current Models Towards Family Oriented Requirements Engineering. 24th International Conference on Software Engineering (ICSE) In proc. of 3rd Workshop on Software Product Lines (ISEE) 2002, USA, 38 - 41

Forschungsprojekte:

„Generierung von Anwendungstestfällen für statistische Testmethoden auf der Basis von UML - Modellen“.
Projektleiter: Prof. I. Philippow, Dr. - Ing. M. Riebisch
Partner/Förderinstitution: DFG, Fördersumme 146.000
Schlagwörter: erweiterte USE Case Modelle, Transformation von Zustandsgraphen, Anwendungsmodelle, Testfallgenerierung

„Multimedia CAD - Produktinformationssysteme im WWW“.
Projektleiter: Prof. I. Philippow,
Partner/Förderinstitution: Syscon GmbH Sömmerda, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 109.000
Laufzeit: 8/1999 bis 8/2001
Schlagwörter: multimedia Produktinformationssysteme, herstellerspezifische Informationssysteme, werkzeugunterstützte Erstellung von Informationssystemen
„Problemangepasste intelligente Agentenarchitektur für e-Business und Informationssysteme“

Projektleiter: Prof. I. Philippow,
Partner/Förderinstitution: Syscon GmbH Sömmerda, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 128.000
Laufzeit: 8/2001 bis 7/2003
Schlagwörter: Agenten für e-Businesssysteme, Agenten für Informationssysteme, problemangepasste Agenten, intelligente Agenten

„Nutzung von Domain-Engineering Techniken zur Entwicklung objektorientierter Systeme mit Anbindung an hostbasierte Systeme im Versicherungswesen“

Projektleiter: Prof. I. Philippow,
Partner/Förderinstitution: Finanzdata GmbH Gotha, HUK Coburg, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 118.000
Schlagwörter: Legacy-Systeme, Softwarearchitekturen, Architektur-Refactoring

„Entwurfsmethodik für Softwarearchitekturen für Systemfamilien“

Projektleiter: Prof. I. Philippow,
Partner/Förderinstitution: ZT Siemens AG München
Schlagwörter: Produktlinien, Requirements Engineering, Architektur-Design

„Überführung existierender Software systeme in eine Komponentenarchitektur“. Förderung durch Siemens Dematic AG Konstanz, 03/2002-02/2004

Projektleiter: Prof. Dr. - Ing. habil. Ilka Philippow,
Partner/Förderinstitution: Siemens Dematic AG Konstanz
Schlagwörter: Legacy-Systeme, Softwarearchitekturen, Architektur-Refactoring

Leistungsangebote:

Beratung und Ausführung zu:
- Objektorientierter Prozessmodellierung für Simulationen und für den Softwareentwurf
- Modellierung von domänenorientierten Mustern zur automatischen Musterinstantzierung

Spezialausstattung:
- Rechnernetz aus Linux- und Sun-Solaris-Workstations sowie Windows-PCs
5.2.3.3 Fachgebiet Neuroinformatik

Fachgebietsleiter:
Univ.-Prof. Dr.-Ing. Horst - Michael Groß
Tel.: (03677)69 2858 Fax: (03677)69 1665
E - mail: horst-michael.gross@tu-ilmenau.de

Forschungsgebiete:

Forschungsziel der Ilmenauer Neuroinformatik ist die Entwicklung biologisch motivierter neuronaler Architekturkonzepte zur Verhaltens- und Handlungsorganisation in aktiv lernenden senso - motorischen Systemen, die ausgestattet mit multimodaler Sensorik und Mechanismen der Aufmerksamkeit ihre Umgebung wahrnehmen und imstande sind, das Wahrgenommene im Verhaltenskontext effektiv in Handlungen umzusetzen. Dabei lassen sich nachfolgende Forschungsgebiete definieren:

Im Methodenbereich:
- Neuronale und probabilistische Verfahren für die visuelle Roboternavigation in realen Einsatzumgebungen
- Verfahren für die videobasierte, non - verbale Mensch - Maschine - Kommunikation mittels Gestik, Mimik und Körpersprache
- Modellierung des generativen Charakters der Wahrnehmung - als interne sensomotorische Simulation hypothetischer Handlungen und Vorhersage ihrer sensorischen Konsequenzen
- Reinforcement Lernverfahren für den Verhaltenserwerb in sensomotorischen Systemen sowie für die Verhaltenskoordination in Multi - Agentensystemen
- Selektive akustische Aufmerksamkeit für die akustische Szenenanalyse, insbes. binaurale Quellenlokalisierung und -separierung sowie audiovisuelle Integration
- Analyse und Identifikation von raum - zeitlichen Datenströmen mit Verfahren der NI

Im Anwendungsbereich:
- Interaktive, teilautonome und lernfähige mobile Serviceroboter
- Robuste Navigation mobiler Roboter in realen Einsatzumgebungen
- Lernfähige multimodale Mensch - Maschine - Schnittstellen für mobile Roboter
- Selbstoptimierende Prozessführungen mittels Reinforcement - Lernstrategien

Promotionen:

„Kooperative neuronale Gruppenbildung im primären visuellen Cortex bei der Mustererkennung“, Sabine Heinze, 2001

„Multi - Cue Ansatz für ein dynamisches visuelles Auffälligkeitssystem“, Ulf - Dietrich Braumann, 2001

„Visuomotorische Antizipation: eine handlungsorientierte Sicht auf die visuelle Wahrnehmung“, Volker Stephan, 2001

„Erwerb und Koordination von Verhalten für visuomotorische Systeme in realen Umgebungen mittels Reinforcement Lernen“, Dimitrij Surmeli, 2002

Publikationen:

Forschungsprojekte:

„PERSES (PER)sonenlokalisation und -tracking für mobile (SE)ervice - (S)ysteme“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. H. - J. Böhme
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 207.000 DM
Schlagwörter: visuelle Personendetektion, visuelle Personenlokalisation, visuelles Personentracking, Roboternavigation, Integration von Navigation, Integration von Interaktion

„MONIST (MO)dellsimulation neuronaler kognitiver (I)nformationsverarbeitung - (S)chule der (T)echniken“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. V. Stephan
Partner/Förderinstitution: BMBF, Fördersumme 181.000 €
Laufzeit: 3/2001 bis 12/2003
Schlagwörter: Lern- und Simulationssysteme, E - Learning, Neurowissenschaften, Java - Applets

Projektleiter: Prof. H. - M. Groß
Partner/Förderinstitution: DFG, Fördersumme 325.000 € (Gesamtlaufzeit)
Schlagwörter: Integrate - and - Fire Neuronen, auditorisches System, binaurale Quellenlokalisation, audio - visuelle Integration, Neurochips, Neuromorphic Engineering
„ASOP - (A)daptive (S)elbst - (O)ptimierende (P)rozessführung“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. K. Debes
Partner/Förderinstitution: Powitec Intelligent Technologies GmbH, Essen
Schlagwörter: Farbbildverarbeitung, Videosequenzanalyse, Feuerungsführung, Reinforcement Lernen, modellprädiktive Steuerung

„SERROKON - V - (SE)rvice (RO)boter (KON)zeption - Vorprojekt“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. habil. H. - J. Böhme
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 159.000 €
Laufzeit: 10/2001 bis 1/2003
Schlagwörter: Serviceroboter, Shopping - Assistant, Home - Roboter, Mensch - Maschine - Kommunikation

„CarDiKon - Auswertung impedanz(CARDI)ografischer Messdaten mit modernen (KO)nzepten der (N)euroinformatik“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. K. Debes
Partner/Förderinstitution: BMWI, Arbeitsgemeinschaft industrieller Forschungsvereinigungen, medis. Medizinische Messtechnik GmbH Ilmenau, Fördersumme 70.000 €
Schlagwörter: Zeitreihenanalyse, Signalseparierung, ICA, PCA, Hidden - Markov - Modelle, Impedanzkardiographie

„CORSA - (CO)2 - (R)educierung in Verbrennungsprozessen durch selbstoptimierende Systeme am Beispiel der (S)onder(A)bfallverbrennung“

Projektleiter: Prof. H. - M. Groß, Dr. - Ing. K. Debes
Partner/Förderinstitution: BMWI, Arbeitsgemeinschaft industrieller Forschungsvereinigungen, Powitec Intelligent Technologies GmbH Essen, Fördersumme 48.000 €
Schlagwörter: Feuerungsführung, PCA, POMDP, Reinforcement Lernstrategien

Spezialausstattung:
- mobiler Experimentalroboter MILVA mit triocularem Active - Vision System sowie 2D Laser-Scanner
- mobiler Experimentalroboter HOROS (HOme RObot System) auf Basis einer PIONEER II Plattform mit Farb - Panoramakamera sowie US - Sensoren sowie 2D Laser - Scanner
- mobiler Roboter PIONEER mit monocularem Active - Vision System und Laserscanner
- mobile Miniaturroboter KHEPERA mit verschiedenen Kamerasytemen
- Rechnernetz aus Linux- und Sun - Solaris - Workstations sowie Windows - PCs
5.2.3.4 Fachgebiet Automaten und Formale Sprachen

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Manfred Kunde
Tel.: (03677)69 2766 Fax: (03677)69 1237
E - mail: manfred.kunde@tu-ilmenau.de

Forschungsgebiete:
- Effiziente Algorithmen, Parallele Algorithmen, Web - Algorithmen
- Algorithmen und neue Architekturen, Algorithmen für optische Verbindungsnetzwerke

Promotionen:
“Aspects of k - k Routing in Meshes and OTIS Networks”, A. Osterloh, 2002

Publikationen:

M. Brinkmeier: Communities in Graphs, Technical Report, TU Ilmenau, 2002, in Druck

Leistungsangebot:
- Beratung bei Fragestellungen der parallelen und sequentiellen Algorithmen und anderen im Fachgebiet bearbeiteten Arbeitsgebieten

5.2.3.5 Fachgebiet Integrierte Hard- und Softwaresysteme

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil Andreas Mitschele - Thiel
Tel.: (03677)69 2819 Fax: (03677)69 1196
E - mail: mailto:mitsch@tu-ilmenau.de

Forschungsgebiete:
Der Fokus des Fachgebietes liegt auf der Entwicklung integrierter Hard- und Software insbesondere für Kommunikationssysteme. Die Schwerpunkte der Forschung gliedern sich in die Bereiche Entwurfsmethodik, Mobilkommunikation und E - Learning:

Entwurfsmethodik:
- Architecture Engineering, d. h. die systematische Untersuchung und der Vergleich verschiedener Systemarchitekturen insbesondere für Kommunikationssysteme
- Performance Engineering, d. h. die Untersuchung von Systemen auf Kapazität, Antwortzeitenverhalten und Echtzeitfähigkeit
- Design Methodik und Protocol Engineering, d.h. der systematische Entwurf eingebetteter Systeme, Kommunikationsprotokolle und Protokollarchitekturen auf der Basis von FSMs, SDL und MSCs, inklusive deren Modellierung, Visualisierung, quantitativen und qualitativen Analyse
- HW/SW - Codesign, d.h. der Entwurf, die Implementierung und die Analyse komplexer, integrierter Hard- und Softwaresysteme
- Heuristische Optimierungsverfahren zur Optimierung der HW/SW - Zuordnung und der Ablaufreihenfolge integrierter HW/SW - Systeme, insbesondere Tabu Search, Genetische Algorithmen und Fuzzy Logik
- Effiziente Systemimplementierung, insbesondere von Kommunikationssystemen und eingebetteten Steuerungssystemen

Mobilkommunikation:
- Architektur zukünftiger Funkzugangssysteme, insbesondere die Weiterentwicklung des UMTS - Funkzugangssnetzes und der Einsatz von IETF - Protokollen
- Systemübergreifende Verwaltung von Funkressourcen zur Unterstützung der nahtlosen Integration verschiedener Funktechnologien wie UMTS, GSM/GPRS und WLAN

E - Learning:
- Entwicklung Internet - basierter Lehrmodule zur Veranschaulichung der Etappen des systematischen Entwurfs integrierter Hard- und Softwaresysteme und des System - on - a - Chip - Designs
- Methoden des E - Learnings, d. h. die Erarbeitung von Methoden und Werkzeugen zur ingenieurtechnischen Beherrschung komplexer Systeme mit Mitteln der Visualisierung und Modellierung

Publikationen:

Forschungsprojekte:

„MxRAN - Projekt“

Projektleiter: Prof. A. Mitschele - Thiel
Partner/Förderinstitution: Lucent - Technologies/BMBF,
Laufzeit: seit 1/2003
Schlagwörter: Common Radio Resource Management, Multistandard/Multiband Funkzugangssnetz
„Bildungsportal Thüringen“

Projektleiter: Dr. - Ing. H. - D. Wuttke
Partner/Förderinstitution: Bauhaus Universität Weimar, Friedrich Schiller Universität Jena, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 600.000
Laufzeit: seit 9/2001
Schlagwörter: Internetportal, Marketing, Weiterbildungsangebote Thüringer Hochschulen, Kompetenz- und Ressourcenbündelung

„Klassenbibliothek für interaktive Lerndokumente“

Projektleiter: Prof. J. Seitz, Dr. - Ing. H. - D. Wuttke
Partner/Förderinstitution: Fachgebiet Kommunikationsnetze, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 100.000
Laufzeit: 8/2002 bis 7/2003
Schlagwörter: interaktive, web - basierte multimediale Lerndokumente, Werkzeug, Klassenbibliothek, JAVA

„EU - Projekt REASON“

Projektleiter: Prof. W. Kuzmicz, Dr. - Ing. H. - D. Wuttke
Partner/Förderinstitution: 22 Partnereinrichtungen in 14 EU - und assoziierten Staaten, EU, 5. Rahmenprogramm IST Fördersumme: 1.200.000 (Anteil TU Ilmenau: 192.000)
Laufzeit: 2002 bis 2004
Schlagwörter: System - on - a - Chip - Design, Kompetenz und Trainingscenter, web - basierte Ausbildungsmaterialien, Tutorien

Leistungsangebote

- Informationssystem zur Weiterbildung an Thüringer Hochschulen siehe: Bildungsportal Thüringen
- Lernmodule zur Ausbildung in Technischer Informatik siehe: Applets zum Thema Schaltsysteme, Schulungen UMTS - Systeme
- Leistungsuntersuchung und Optimierung von Kommunikationssystemen
- Heuristischen Optimierungsverfahren, Sicherheitsanalyse von WLAN - Systemen

Spezialausstattung:

- Rechnernetz aus Linux - und Sun - Solaris - Workstations sowie Windows - PC's
- Leistungsfähige Entwurfsoftware
5.2.3.6 Fachgebiet System- und Steuerungstheorie

Fachgebietsleiter: Univ. - Prof. Dr.(PhD) Horst Salzwedel
Tel.: (03677)69 1316 Fax: (03677)69 1285
E - mail: horst.salzwedel@tu-ilmenau.de

Forschungsgebiete:

Mission Level Design Automation, Simulation und Animation Integrierter Systeme, Echtzeit- Bildverarbeitung und Kompression, Autonome Systeme, Mobile und Satellitenkommunikationssysteme

Promotionen:

„Untersuchung spezieller geometrischer Größen zum Aufbau von Intersatellitenverbindungen“, H. Keller, 2002

Publikationen:

Forschungsprojekte:

„DeepC - Aktivautonomes Unterwasserfahrzeug für große Tauchtiefen“ Teilprojekt „Mission Level Design“

Projektleiter: Dr. - Ing. V. Zerbe
Partner/Förderinstitution: BMBF, AIR, ATI, ZSW, ELTA, STN Atlas Elektronik GmbH, TU Ilmenau, Uni Karlsruhe, OSAE, Fördersumme 136.000
Laufzeit: 2001 bis 2004
Schlagwörter: Design Autonome Systeme, Modellbildung, Simulation/Animation, Ressourcenmanagement
„ISSN - Ilmenau, Sofia, Skopje, Nis“

Projektleiter: Dr. - Ing. V. Zerbe
Partner/Förderinstitution: DAAD, TU Ilmenau, TU Sofia, Universität Skopje, Universität Nis, Fördersumme 80.000
Laufzeit: 2000 bis 2003
Schlagwörter: akademischer Wiederaufbau, Entwurf von Mikrosystemen (Multisensorik)

Spezialausstattung:
- Rechnernetz aus Linux- und Windows-PCs
- Designtools: ML Designer, FPGA Developmentkits
- Validierungs- und Testplattform: Großflugmodell

5.2.3.7 Fachgebiet Methodik des Hardwareentwurfs

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Wolfgang Fengler (k.)
Tel.: (03677)69 2827 Fax: (03677)69 1614
E - mail: wolfgang.fengler@theoinf.tu-ilmenau.de

Forschungsgebiete:
siehe Fachgebiet Rechnerarchitektur

5.2.3.8 Fachgebiet Künstliche Intelligenz

Fachgebietsleiter: Univ. - Prof. Dr.- Ing. habil. Ilka Philippow (k)
Tel.: (03677)69 2870 Fax: (03677)69 1202
E - mail: ilka.philippow@tu-ilmenau.de

geschäftsführender Mitarbeiter: Priv. - doz. Dr. - Ing. habil. Rainer Knauf
Tel.: (03677) 69 1445 Fax: (03677) 69 1665
E - mail: rainer.knauf@tu-ilmenau.de

Forschungsgebiete:
- Formale Methoden der Aneignung, Strukturierung und Repräsentation von Wissen einschließlich „Induktiver Inferenz“ und „Fallbasiertem Schließen“
- Entwurf „Wissensbasierter Systeme“
- Validation und formale Methoden der Revision und Verfeinerung intelligenter Systeme
- Evaluation und Zertifikation komplexer Softwaresysteme

Publikationen:

Forschungsprojekte:

„Validation und Revision intelligenter Systeme“

<table>
<thead>
<tr>
<th>Projektleiter:</th>
<th>PD Dr. - Ing. habil. R. Knauf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner/Förderinstitution:</td>
<td>University of Central Florida, School of Electrical Engineering and Computer Science, Orlando, FL, USA; LibRT B.V., Amsterdam, The Netherlands; Deutsches Forschungszentrum für Künstliche Intelligenz GmbH Saarbrücken, Deutschland; Tokyo Denki University, Tokyo, Japan</td>
</tr>
<tr>
<td>Laufzeit:</td>
<td>seit 1997</td>
</tr>
<tr>
<td>Schlagwörter:</td>
<td>Software Evaluation, Validation of AI Systems, Test Case Validation, Turing Test Methodology, Formal System Refinement, Validation Interface</td>
</tr>
</tbody>
</table>

„Data Mining Tutor: Ein generisches Konzept für das Lehren und Lernen im Internet“ (Projektbeteiligung)

<table>
<thead>
<tr>
<th>Projektleiter:</th>
<th>Prof. Dr. Jörg H. Siekmann, Universität des Saarlandes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partner/Förderinstitution:</td>
<td>Universität des Saarlandes; Universität Kaiserslautern; TU Ilmenau, Albert - Ludwigs Universität Freiburg; Universität zu Lübeck; TU Darmstadt; TU Chemnitz; BTU Cottbus; Rheinische Friedrich Wilhelms Universität Bonn; Hochschule Wismar; prudsys AG, Chemnitz; 4FriendsOnly AG, Ilmenau; XtraMind Technologies, Saarbrücken; Deutsches Forschungszentrum für KI, Saarbrücken; Austrian Research Institute for Artificial Intelligence (ÖFAI), Wien</td>
</tr>
<tr>
<td>Laufzeit:</td>
<td>2000 bis 2003</td>
</tr>
<tr>
<td>Schlagwörter:</td>
<td>Data Mining, induktive Inferenz, Lehr- und Lernsystem</td>
</tr>
</tbody>
</table>
5.2.3.9 Fachgebiet Komplexitätstheorie und Effiziente Algorithmen

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. (USA) Martin Dietzfelbinger
Tel.: (03677)69 2656 Fax: (03677)69 1237
E - mail: martin.dietzfelbinger@tu-ilmenau.de

Forschungsgebiete:

- Konkrete Komplexitätstheorie: Grenzen der effizienten Berechenbarkeit auf sequentiellen und parallelen Rechenmodellen
- Effiziente Algorithmen und Datenstrukturen: Entwurf und Analyse
- Randomisierte Algorithmen, Approximationsalgorithmen
- Maschinennahe Algorithmenanalyse, Algorithm Engineering
- Implizite Komplexitätstheorie

Habilitationen:

“Control Structures in Programs and Computational Complexity”, Dr. rer. nat. K. - H. Niggl, 2002

Publikationen:

Forschungsprojekte:

„Grundlagen randomisierter Datenstrukturen“.

Projektleiter: Prof. Dr. rer. nat. (USA) M. Dietzfelbinger
Partner/Förderinstitution: Max - Planck - Institut für Informatik, Saarbrücken
Laufzeit: 2002 bis 2003
Schlagwörter: randomisierte Algorithmen, Datenstrukturen, Hashing

Leistungsangebote:

- Beratung bei Fragestellungen in Algorithmik und anderen im Fachgebiet bearbeiteten Arbeitsgebieten
Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Winfried Kühnhauser
Tel.: (03677)69 4577 Fax: (03677)69 4541
E - mail: winfried.kuehnhauser@tu-ilmenau.de

C - Stellenstruktur: 4 C4, 1 C3

5.2.4.1 Fachgebiet Softwaretechnik und Programmiersprachen

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dietrich Reschke (k)
Tel.: (03677)69 4576, Fax: (03677)69 4540
E - mail: dieter.reschke@tu-ilmenau.de

Forschungsgebiete:
- Methodische Aspekte der Softwaretechnik
- Komponentenbasierte Softwareentwicklung
- Konstruktion sicherer Software
- Anforderungsermittlung
- Musterbasierte Softwareentwicklung
- Softwareevolution
- Modularisierung im Übersetzerbau

Publikationen:

Forschungsgebiete:

Publikationen:

Forschungsprojekte:

VRIB - Virtual Reality Interaction Toolbox (Virtual Reality Interaktions - Baukasten)
Projektleiter: Prof. B. Brüderlin
Partner/Förderinstitution: DaimlerChrysler Research Ulm, 3DConnexion Seefeld, Fraunhofer IPK Berlin, Fraunhofer IMK St. Augustin / BMBF, Fördersumme ca. 304.700
Schlagwörter: Modular Toolbox, VR/AR applications

AR - PDA - A Mobile Digital Assistant for VR/AR Content
Projektleiter: Prof. B. Brüderlin
Partner/Förderinstitution: Unity AG Büren, Siemens Business Services - C - Lab, Paderborn, Miele Gütersloh, Lunatic Interactive Berlin, Heinz Nixdorf Institut Paderborn, Universität Paderborn / BMBF, Fördersumme ca. 286.500
Schlagwörter: personal digital assistant, object recognition, augmentation

Image - guided Distortion Measurement for Control of a Weft Straightening Machine
Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: SETEX GmbH, Thorey GmbH, Jenoptik LOS GmbH, Suchy GmbH, Zentrum für Bild- und Signalverarbeitung, e. V. / EU - Projekt in EUTIST IMV, Fördersumme ca. 71.000
Schlagwörter: pattern recognition, imagebased quality control, imageguided distortion measurement, weft straightening, textile industry

Konni - Internet - based design and realistic representation
Projektleiter: Prof. B. Brüderlin
Partner/ Förderinstitution: Gesellschaft zur Förderung angewandter Informatik e. V. (GFaI), Widis GmbH, INNOTECH Holztechnologien GmbH, Steinbeis Transfer Center for Interactive Computer Graphics/CAD Ilmenau / BMWI, Fördersumme ca. 54.000
Schlagwörter: Web - based design, electronic commerce

Image - guided Distortion Measurement Equipment
Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: SETEX GmbH (Industrieauftrag)
Schlagwörter: imageguided distortion measurement, weft straightening equipment, data acquisition technique, cameras, image analysis
Koordinierungsbüro (Phase III)

Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 180.000
Laufzeit: 2001 - 2004
Schlagwörter: image processing, pattern recognition, industrial applications

Digital image processing of astronomical data

Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: Sternwarte Sonneberg/ Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 246.200
Laufzeit: 1/2001 - 2002
Schlagwörter: image restoration, image reconstruction, pixon-based regularization, photographic plates

Modulares komponentenbasiertes Softwaresystem für die Bild- und Signalverarbeitung (Modular Component Based Software System for Image and Signal Processing)

Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: Zentrum für Bild- und Signalverarbeitung/ Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 255.000
Laufzeit: 1/2002 - 2004
Schlagwörter: image processing, modular software, software design

Sensornahe Signalverarbeitung für Nanomess- und Nanopositioniermaschinen (C2) (Sensor Signal Processing for Nano-measuring and Nano-positioning Machines)

Projektleiter: PD Dr. - Ing. habil. K. - H. Franke
Partner/Förderinstitution: Sonderforschungsbereich der TU Ilmenau/ DFG, Fördersumme ca. 160.000
Laufzeit: 2002 - 2004
Schlagwörter: tip characterization, tip reconstruction, tip object interaction, data acquisition, data compression, point cloud processing

Leistungsangebote:
- Forschung und Entwicklung im Bereich interaktive Grafik. siehe: http://www.stw.de/stz/489.htm

Spezialausstattung:
- Trackingsystem Polhemus
- Head Mounted Display für VR Anwendungen.
- Spezialsoftware für interaktive 3D Grafik
- Doppelmonochromator für spektrale Messungen (z.B. Farbe)
5.2.4.3 Fachgebiet Telematik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dietrich Reschke
Tel.: (03677)69 4576, Fax: (03677)69 4540
E-mail: dieter.reschke@tu-ilmenau.de

Forschungsgebiete:
- Qualitätssicherung (QoS) und Ressourcen - Management in heterogenen Netzen mit mobilem Zugang
- Automatisiertes Dienstemanagement, Aktive Netze
- Routing - Verfahren in Ad - hoc - Netzen
- Verteilte Telematik - Anwendungen und Gridcomputing/ Resourcesharing, Architekturen
- Sicherheitsarchitekturen (in Netzinfrastrukturen, in verteilten Web - Anwendungen)
- Modellierung und Systembewertung
- Unterstützung von mobilen Anwendungen, Session Management

Promotionen:

„The Wandering Logic Intelligence - A Hyperactive Approach to Network Evolution and its Application to Adaptive Mobile Multimedia Communications“, Plamen L. Simeonov, 2002

Habilitationen:

„Adaptives Informationssystem für kooperative Lernumgebungen“, Thomas Flor, 2002

„Ein Proaktives Modell für die Unterstützung der Dienstgüte (Quality of Service - QoS) im Mobilfunkumfeld“, Dang Hai Hoang, 2002

Publikationen:

Ralf Döring: „Towards a Service Configuration Model“, 8th International Netties Conference, Applications and Services in Future Telecommunication Networks, European Associa-
Forschungsprojekte:

„Multimedia - Anwendungen im mobilen Umfeld“ Teilprojekt: „Dienstgütesicherung (Quality of Service) in Netzen mit mobilem Zugang“

Projektleiter: Prof. D. Reschke (für Teil IA)
Partner/Förderinstitution: Fachgebiet „Kommunikationsnetze“ der Fakultät Elektrotechnik und Informationstechnik der TU Ilmenau/ Freistaat Thüringen, ca. 202.000 DM
Laufzeit: 10/2001 bis 12/2003
Schlagwörter: Internet, Multimedia - Anwendung (Video, Audio), Wireless LAN, Dienstgüte

„Einsatz von WLAN/UMTS in großen Krankenhäusern“

Projektleiter: Prof. D. Reschke (Mentor)
Partner/Förderinstitution: morix human mobility concepts OHG, Ilmenau/BMBF, Fördersumme 70.975
Laufzeit: Beginn: 1.6.2002, vorerst begrenzt auf ein Jahr
Schlagwörter: mobile Datenübertragung, Kleinstcomputer, WLAN, UMTS, Krankenhaus/Pflegeheim

„Mobile Session Management“

Projektleiter: Prof. D. Reschke
Partner/Förderinstitution: Daimler - Chrysler AG, Ulm
Laufzeit: 2002
Schlagwörter: mobile Computing, Internet, Intranet, Dienstequalität, PC, Notebook, PDA, Bordcomputer

Spezialausstattung:

- Rechnernetz aus Linux- und Sun - Solaris - Workstations sowie Windows - PCs
- ATM - Switch – Technik, Routertechnik, WLAN - Komponenten.

5.2.4.4 Fachgebiet Datenbanken und Informationssysteme

Fachgebietsleiter: Univ.- Prof. Dr. rer. nat. habil. Günther Specht (bis 15.10. 2001)
Univ.- Prof. Dr. - Ing. habil. Winfried Kühnhauser (k)
Tel.: (03677)69 4577 Fax: (03677)69 4541
E - mail: winfried.kuehnhauser@tu-ilmenau.de

Forschungsgebiete:

Datenbanken und Informationssysteme, insbesondere Multimedia - Datenbanksysteme und Digitale Bibliotheken.
Publikationen:

5.2.4.5 Fachgebiet Verteilte Systeme und Betriebssysteme

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Winfried Kühnhauser
Tel.: (03677)69 4577 Fax: (03677)69 4541
E - mail: winfried.kuehnhauser@tu-ilmenau.de

Forschungsgebiete:

Forschungs schwerpunkte des Fachgebiets "Verteilte Systeme und Betriebssysteme" sind Kommunikationsinfrastrukturen für verteilte Systeme mit mobilen Komponenten und ihre qualitativen Eigenschaften wie:

- Adaptierbarkeit, Rechtzeitigkei t, Informationssicherheit
- Mobilität.

Promotionen:

„Die elektronische Form und das Präsentationsproblem“, Ulrich Pordesch, 2002

Publikationen:

Forschungsprojekte:

„Noja - Eine Middlewareplattform für verteilte multimediale Anwendungssysteme“

Projektleiter: Dipl. - Inf. A. Eichhorn
Laufzeit: 2002 bis heute
Schlagwörter: Replikation, elektronische Kommunikation, Mobilität, Konsistenzmodell, Mobilitätsmodell, Fehlermodell

„THILA - Kommunikationsmodelle für adaptive Kommunikationsinfrastrukturen“

Projektleiter: Prof. W. Kühnhauser
Laufzeit: 2002 bis heute
Schlagwörter: Kommunikationsmodelle, Fehlersemantiken, Adaption, verteiltes Ressourcenmanagement, Ereignismeldesysteme

„Replik - Replikationskonzept für ein verteiltes Mediationssystem“

Projektleiter: Prof. W. Kühnhauser
Partner/Förderinstitution: GMD - Forschungszentrum Informationstechnik (heute FhG).
Schlagwörter: Replikation, Mobilität, Konsistenzmodell, Mobilitätsmodell, Fehlermodell

„Komponenten für Public Key Infrastrukturen“

Projektleiter: Prof. W. Kühnhauser
Partner/Förderinstitution: emagine GmbH
Schlagwörter: IT - Sicherheit, elektronische Geschäftsprozesse, Public Key Infrastruktur, digitale Signatur, Vertraulichkeit, Verbindlichkeit, Verfügbarkeit

„Verteiltes Qualitätsmanagement“

Projektleiter: Prof. W. Kühnhauser
Partner/Förderinstitution: General Cologne Reinsurance AG
Laufzeit: 8/1999 bis 2/2001
Schlagwörter: Software - Qualitätsmanagement, verteilte Softwaresysteme, Qualitätsmodelle, Softwaremetriken

Leistungsangebote:
- Framework für die Erstellung verteilter multimedialer Anwendungssysteme unter dem Linux - Betriebssystem

Spezialausstattung:
- verteilte Systemplattform mit Multimedia - Datenbankservaltern, stationären Linux Arbeitsplätzerechnern, mobilen Laptops, PDAs und digitalen Kameras, stationäre LANs (100 MBit und 1GBit Ethernet) und drahtlose Netztechnologien (11 MBit und 54 Mbits WLANs)
5.3 Fakultät für Maschinenbau

Anschrift: 98693 Ilmenau, Max - Planck - Ring 12 (Haus F)

Dekan: Univ. - Prof. Dr. - Ing. Klaus Augsburg
Tel.: (03677)69 2498 Fax: (03677)69 1802
E - mail: dekanat-mb@tu-ilmenau.de

Prodekan: Univ. - Prof. Dr. - Ing. habil. Mathias Weiß
Tel.: (03677)69 2495 Fax: (03677)69 1800
E - mail: mathias.weiss@tu-ilmenau.de

5.3.1 Institut für Maschinenelemente und Konstruktion

Institutsleiter: N. N.
C - Stellenstruktur: 2 C4

5.3.1.1 Fachgebiet Maschinenelemente

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Hans - Jürgen Schorcht
Tel. (03677)69 2471 Fax: (03677)69 1259
E - mail: hans-juergen.schorcht@tu-ilmenau.de

Forschungsgebiete:
- mathematische Modellierung von Einzelfedern komplizierter Gestalt, von Federn aus nichtmetallischen Werkstoffen und von Federanordnungen sowohl im Makro- wie im Mikrobereich
- Untersuchungen zum elastisch - plastischen Verhalten von Federn während des Herstellungsprozesses und Ermittlung von Beeinflussungsmöglichkeiten
- Entwicklung von Messverfahren und -einrichtungen zum Erfassen von Kennwerten des statischen und dynamischen Verhaltens von Federn und Federanordnungen
- experimentelle Ermittlung statischer und dynamischer Kennwerte von Federn und Federanordnungen, Untersuchungen zum Umformverhalten von Federdraht
- tribologische Untersuchungen an Federn und Pumpen

Publikationen:

D. Micke; H. - J. Schorcht; U. Kletzin: Springprocessor - Milestone in Computing Springs, SMI Close the Loop II; Chicago (Ill, USA), June 2001, proceedings p. 31 - 38

Forschungsprojekte:

„Offenes Entwurfssystem zur integrierten Gestaltung und Berechnung von Federanordnungen der Makro- und Mikrotechnik“

Projektleiter:
Prof. H. - J. Schorcht, Dipl. - Ing. D. Micke

Partner/Förderinstitution:
DFG, Sachbeihilfe zur Finanzierung eines wissenschaftlichen Mitarbeiters, Fördersumme 87.347,51

Laufzeit:

Schlagwörter:
Federn, Berechnung, Entwicklung, MKS, FEM, CAD, Simulation

„Untersuchungen zu Wirkprinzipien von intelligenten stoßbegrenzenden Gelenkwellen und Entwicklung von Funktionsmustern)1“

Projektleiter:
Prof. H. - J. Schorcht, Prof. G. Christen, Dr. - Ing. St. Lutz, Dipl. - Ing. D. Heß

Partner/Förderinstitution:
Thüringer Ministerium für Wissenschaft, Forschung und Kunst in Verbindung mit der Fa. Gelenkwelle Stadtildm GmbH, Fördersumme 826.853 DM

Laufzeit:
4/1999 bis 12/2001

Schlagwörter:
Gelenkwelle, Stoßbegrenzung, Wirkprinzipien

„Simulation von Federn“

Projektleiter:
Prof. H. - J. Schorcht, Dipl. - Ing. T. Wittkopp

Partner/Förderinstitution:
Robert Bosch GmbH, Schwieberdingen und Scherdel GmbH, Marktredwitz

Laufzeit:

Schlagwörter:
Federn, Berechnung, Simulation

„Einflüsse der End- und Übergangswindungen auf Funktion, Fertigung und Betriebsverhalten von kaltgeformten Schraubendruckfedern2“

Projektleiter:
Prof. H. - J. Schorcht, Dr. - Ing. K. Liebermann

Partner/Förderinstitution:
Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) und Verband der Deutschen Federnindustrie (VDFI), Fördersumme 209.783

Laufzeit:

Schlagwörter:
Federn, Endwindung, Fertigung, Betriebsverhalten

„Standardisierte Berechnungsmethoden für Schraubendruckfedern“

Projektleiter:
Prof. H. - J. Schorcht, Dipl. - Ing. D. Micke

Partner/Förderinstitution:
Verband der Deutschen Automobilindustrie (VDA) und Verband der Deutschen Federnindustrie (VDFI)

Laufzeit:
1/2001 bis 3/2002

Schlagwörter:
Federn, Schraubendruckfedern, Berechnung
„Einfluss von Beschichtungen auf das Lauf- und Umformverhalten von Federstahldraht auf Federwindeautomaten“

Projektleiter: Prof. H. - J. Schorcht, Dipl. - Ing. D. Heß, Dipl. - Ing. I. Bretschneider
Partner/Förderinstitution: AVIF (Forschungsvereinigung der Arbeitsgemeinschaft der Eisen und metallverarbeitenden Industrie e.V.)
Schlagwörter: Federn, Herstellung, Federdraht, Beschichtung, Federwindeautomat

„Scrollpumpe für den Chemieeinsatz“

Projektleiter: Prof. H. - J. Schorcht, Dr. - Ing. G. Gevorgyan, Dipl. - Ing. W. Heinritz
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst in Verbindung mit ILMVAC GmbH Ilmenau, Fördersumme 164,324
Schlagwörter: Tribologie, Pumpen

1): in Zusammenarbeit mit dem FG Getriebetechnik; Prof. Christen
2): in Zusammenarbeit mit dem FG Rechneranwendung im Maschinenbau; Prof. Weiß

Leistungsangebote:

- Entwurf und optimierte Dimensionierung von Federn
- FEM - Untersuchungen und Bewegungssimulation von Federn und Federungen
- Hochgeschwindigkeits - Videoaufnahmen
- Zug-, Druck-, Biege- und Torsionsprüfungen von Draht- und Bandmaterial
- statische und dynamische Untersuchungen von Materialien und Bauteilen (Zug, Druck, Torsion), speziell von Federn und Federdrähten
- Dauerfestigkeitsuntersuchungen an Schraubendruckfedern mittlerer Größe
- tribologische Werkstoff- und Bauteiluntersuchungen siehe: http://www.maschinenbau.tu-ilmenau.de/mb/wwwme/me.htm

Spezialausstattung:

- Hochgeschwindigkeitskamera mit 4000 Bilder/sec.
- 50 kN - und 10 kN - Universalprüfmaschinen
- umfangreiche CAD- und Simulations - Software
- tribometrisches Messsystem (translatorisch, rotatorisch, oszillierend) für höherer Belastung
- servohydraulische Prüfmaschine für kombinierte Zug- und Torsionsbeanspruchung (max. 25 KN/100 mm; 400 Nm/280 Grad)
- Schwingfestigkeitsprüfmaschine für federnde Elemente (max. 20 kN, 80 mm Hub)
- Torsionsprüfstand für stoßbelastete rotierende Bauteile (Kupplungen, Gelenkwellen u. ä.) für 200 Nm Spitzenmoment (Nennmoment: 50 Nm)
- Prüfstand für quasistatische Torsionsprüfung von Drähten bis 100 Nm
- Prüfstand für querkraftfreies Biegen von stabförmigen Proben bis 10 Nm zur Ermittlung von Biegeumformmeigenschaften
5.3.1.2 Fachgebiet Konstruktionstechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Günter Höhne
Tel. (03677)69 2472 Fax: (03677)69 1259
E - mail: guenter.hoehne@tu-ilmenau.de

Forschungsgebiete:

- Rechnerunterstütztes Konfigurieren modular aufgebauter Produkte der Präzisionstechnik, Modellieren von Funktionsstrukturen und technischen Prinzipien
- Variantenkonstruktion und Baukastenprojektierung von Elementen und Baugruppen
- Rechnerunterstützte Variation und Kombination von Konstruktionslösungen
- Integration von Berechnungen
- Grundlagen des Gestaltens im Konstruktionsprozess
- Justierung von Produkten der Präzisionstechnik
- Kostenprognose und Kostenreduzierung im Konstruktionsprozess.

Promotionen:

„Feature - und constraint - basierter Entwurf technischer Prinzipien“, T. Brix, 2001

Publikationen:

Forschungsprojekte:

„Analyse technischer Produkte mittels Constraint - Solving zur rechnergestützten Bestimmung der Grobgestalt“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: DFG, Fördersumme 124.500
Schlagwörter: Rechnerunterstützung, Modellierung, Funktionssimulation

„Netzbasiertes Management von Konstruktionswissen und multimediale Vermittlung innerhalb einer internetgestützten Lernumgebung“ (Kurztitel: Pro - Teach - Net) in Zusammenarbeit mit den Universitäten Bremen, Ilmenau, Karlsruhe, Magdeburg und Rostock

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: BMBF, Fördersumme 443.300
Laufzeit: 3/2001 bis 12/2003
Schlagwörter: Lehrmodule, Maschinenelemente, Konstruktionsmethoden, Gestaltungsregeln

„Fernstudienprojekt „Innovative Produktentwicklung“ in Zusammenarbeit mit FSU Jena und TU Ilmenau“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: BLK (50% TMWFK/50% BMBF), Fördersumme 207.200
Laufzeit: 10/2001 bis 12/2002
Schlagwörter: Methoden der Produktentwicklung, Multimedia, Lehrmodule, Weiterbildung

„Projekt PROBRAL (Technische Universität Ilmenau - Universidade Federal Santa Catarina/Brasilien) - Genauigkeitserhöhung an Maschinen der Nanotechnik“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: DAAD, Fördersumme 20.300
Laufzeit: 1999 - 2002
Schlagwörter: Konstruktionsmethoden, Genauigkeit, Entwicklung von Prinzipvarianten

„MEMS - Fab. - Fabrikation von Mikro - Elektro - Mechanischen Systemen“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, TU Ilmenau (Fachgebiet Maschinenelemente, Institut für Mikrosystemtechnik, Mechatronik und Mechanik, Fachgebiet Glas - und Keramiktechnologie, Institut für Physik, TETRA GmbH, IMMS gGmbH, LMS, ILMVAC, Fördersumme 245.741
Laufzeit: 7/1999 bis 12/2001
Schlagwörter: Automatisierung, Glaswafer, Arbeitsstationen für Strukturierungsprozess
„SFB 622 Nanopositionier- und Messmaschinen, Teilprojekt B2, Nanokonstruktion“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: DFG, Fördersumme 359.900
Laufzeit: 07/2002 bis 2005
Schlagwörter: Konstruktion von Komponenten, Modulkonzept, Simulation, Entwicklung von Prinzipvarianten, Virtual Prototyping

Leistungsangebote:
- Entwurf und Konstruktion für Produkte der Präzisionstechnik
- Beratung bei der Auswahl und optimalen Nutzung von 2D - und 3D - CAD - Systemen
- Konstruktionskritik und Fehleranalyse zu Konstruktionsunterlagen und technischen Einrichtungen des Präzisionsmaschinenbaus und der Feinwerktechnik
- Entwicklung, Simulation und Automatisierung von Justierprozessen
- Gutachtertätigkeit

Spezialausstattung:
- CAD - Labor mit Workstation - und PC - Arbeitsplätzen für die Systeme ACAD, Autodesk Inventor, Solid Works, Catia, Software für Kostenkalkulation, Pro/ENGINEER, Techoptimizer
- Justierleitstand mit umfangreicher Mess- und Steuerungstechnik zur Entwicklung und Simulation rationeller Justierverfahren für mechanische und optische Komponenten
- Hexapod
- Hochleistungsgrafik - Rechner, Stereoprojektor, VR - Software

5.3.2 Institut für Fertigung

Institutsleiter: N. N.

C - Stellenstruktur: 1 C4, 1 C3

5.3.2.1 Fachgebiet Fertigungstechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Peter Wiesner (bis 2001)
Univ. - Prof. Dr. - Ing. habil. Johannes Wilden (ab 2002)
Tel. (03677)69 2981 Fax: (03677)69 1660
E - mail: info.fertigungstechnik@tu-Ilmenau.de

Forschungsgebiete:
- Fertigungstechnik, Mikrofertigungstechnik, Werkzeugmaschinen, Fügetechnik, Beschichtungstechnik, Prozesssimulation, Material- und Bauteilprüfung

Promotionen:
„Heat Molding: eine Technologie zum ungerichteten Fassen optischer Bauelemente in Kunststofffassungen“, J. Hofmann, 2002
Publikationen:

Forschungsprojekte:

„Rapid Tooling von Spritzgusswerkzeugen“
Projektleiter: Prof. P. Wiesner, Dipl. - Ing. T. Leutbecher
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 201.682 DM
Schlagwörter: Rapid Tooling, Rapid Prototyping

„Erprobungs- und Beratungszentren - Laserberatungsverbund Thüringen“
Projektleiter: Prof. P. Wiesner, Dr. - Ing. S. Sändig
Partner/Förderinstitution: BMBF, Fördersumme 27.750 DM
Schlagwörter: Laserstrahlschweißen, Laserschneiden, Laserhärten, Laserbearbeiten

„Eigenschaftscharakterisierung laserbeschichteter Proben“
Projektleiter: Prof. J. Wilden, Dipl. - Phys. H. Frank
Partner/Förderinstitution: BIAS Bremer Institut für angewandte Strahltechnik GmbH
Schlagwörter: Beschichtungsverfahren, Lasertechnologien, Werkstoffprüfung
„Schweißen von Federenden“

Projektleiter: Prof. J. Wilden, Dr. - Ing. H. Vogel
Partner/Förderinstitution: Steinbeis - Transferzentrum Federntechnik
Schlagwörter: Widerstandsschweißen, Schweißeignung, Federn

„Untersuchung der Rissentstehungsmechanismen an Halogenlampen“

Projektleiter: Prof. J. Wilden, Dr. - Ing. D. Szczesny
Partner/Förderinstitution: Gesellschaft für Prüftechnik und Werkstoffanwendung mbH
Laufzeit: 10/2002 bis 1/2003
Schlagwörter: FEM - Analyse, Halogenlampen, Rissentstehung

„Magnetische Beeinflussung des Schmelzbades bei Lasertechnologien“

Projektleiter: Prof. J. Wilden, Dipl. - Ing. M. Dolles
Partner/Förderinstitution: DFG, Fördersumme 135.000
Schlagwörter: Lasertechnologien, Schmelzbadgeometrie, Magnetfeldbeeinflussung

„Precursorbasierte Plasmasynthese multinärer Hartstoffschichten für Hochtemperaturanwendungen“

Projektleiter: Prof. J. Wilden, Dipl. - Phys. H. Frank
Partner/Förderinstitution: DFG, Fördersumme 69.000
Schlagwörter: Precursorkeramik, Hartstoffschichten, Plasmasynthese

Leistungsangebote:

- F & E: Zerspanen, Fügen, Beschichten, Abtragen
- Präzisionsbearbeitung: -drehen, -fräsen
- Läppen
- Prozesssimulation
- Werkstoff- und Bauteilprüfung
- Herstellung von Musterteilen und Werkzeugen durch Laserschneiden und Diffusions- schweißen
- Diffusionsschweißen
- Lasermaterialbearbeitung: Schweißen, Schneiden, Härten, Beschichten
- Plasma-, WIG-, MIG,- MAG - Schweißen
- Plasma - Pulver - Auftragsschweißen
- Löten: Hochtemperatur-, Hart-, Weichlöten
- Elektroerodieren / Draht- und Senkerosion
- Softwareentwicklung für CNC - Technik
- Design von Spritzgusswerkzeugen
- Simulation von Fertigungsprozessen
- Metallographie, Mikroskopie, Werkstoffprüfung

Spezialausstattung:

- Laseranlagen (CO2, Nd - YAG, HLDL), Diffusionsschweißanlagen
5.3.2.2 Fachgebiet Arbeitswissenschaft

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Peter Kurtz
Tel. (03677)69 2458 Fax: (03677)69 1280
E - mail: peter.kurtz@tu-ilmenau.de

Forschungsgebiete:

Publikationen:

P. Kurtz, G. Sievers: „Arbeitstechnische Aspekte der Wirbelsäulenerkrankungen“, Beitrag im Weiterbildungsprogramm der Klinik für Orthopädie/Wirbelsäulenchirurgie, Schmerztherapeutisches Kolloquium Rudolstadt, Saalfeld, September 2001, 10 Seiten

Forschungsprojekte:

„Teilprojekt C4 im Sonderforschungsbereich 622: Ergonomische Gestaltung nanotechnischer Systemkomponenten“

Projektleiter: Prof. P. Kurtz
Laufzeit: ab 7/2002
Schlagwörter: Mensch - Maschine - Schnittstelle; ergonomische Gestaltungsgüte; nanotechnische Systemkomponenten; Bedienoberflächen; Bedienstrategien

„Verbundprojekt Haptisches Fernbedienungsgeber - Nutzung sensitiver Oberflächen zur nutzerfreundlichen Steuerung von Benutzeroberflächen (Display’s)“

Projektleiter: Prof. P. Kurtz
Partner/Förderinstitution: Loewe Opta GmbH; Cherry Mikrotaster GmbH; TU Ilmenau, Institut für Medientechnik/BMBF, Projektträger VDI/VDE - Technologiezentrum Informationstechnik GmbH, Fördersumme 367.318 DM
Schlagwörter: Fernbedienung, haptische Erkennungsprinzipien, ergonomische Gestaltungsgüte

Leistungsangebote:

- Beratungsleistungen zur Gestaltung informationsverarbeitender Tätigkeiten (Bildschirmarbeit, Maschinenbedienung) und Prozessgestaltung (Zeitwirtschaft und Gruppenarbeit)
- Veranstaltung von Seminaren, Workshops, Weiterbildungen
- Analysen und Unterstützung bei der Gestaltung o.g. Schwerpunkte im Rahmen studentischer Arbeiten
- Bereitstellung von Methoden und Hilfsmitteln zur Bewertung und Gestaltung von Arbeitsbedingungen und Arbeitsumwelt
- Belastungsberechnung der Wirbelsäule beim Heben und Tragen von Lasten

Spezialausstattung:

- Rechnergestützte ortsaufgelöste Leuchtdichtemessung mit dem Messsystem „Kalif“
5.3.3 Institut für Lichttechnik und Technische Optik

Institutsleiter: Univ. - Prof. Dr. rer. nat. habil. Stefan Sinzinger
Tel.: (03677) 69 2490 Fax: (03677) 69 1281
E - mail: stefan.sinzinger@tu-ilmenau.de

C - Stellenstruktur: 2 C4

5.3.3.1 Fachgebiet Lichttechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dietrich Gall
Tel. (03677) 84 6912 Fax: (03677) 84 2463
E - mail: dietrich.gall@tu-ilmenau.de

Forschungsgebiete:
- Visibilimetrie unter erschwerten Bedingungen für Rauchsituationen
- Adaptive Kfz - Beleuchtung
- Lichttechnische Parameter von Anti - Tau - Schichten
- Physio - psychologische Untersuchungen zur Wirkung der Bürobeleuchtung
- Optimierung von Hochspannungsleuchtstoffröhren
- UV - Sensorik für die Wasserentkeimung
- Wirkung von Lichtlenk- und Sonnenschutzeinrichtungen

Promotionen:
„Entwicklung und vergleichende Bewertung einer videobasierten Kurvenlichtsteuerung für adaptive Kraftfahrzeugescheinwerfer“, F. Ewerhart, 2002

„Leuchtdichte und Kontraststeuerung von Displays bei Verwendung als elektronische Rückspiegel“, T. Weis, 2002

„Untersuchung der lichttechnischen Eigenschaften von retroreflektierenden Materialien mit superhydrophiler photokatalytischer Beschichtung zur Vermeidung der Tau- und Reifbildung, U. Slabke, 2002

Publikationen:

St. Wolf; C. Blankenhagen; W. Hahn; D. Gall: „Fahrersichtweiten bei Nebelbedingungen im Feldversuch“, Licht 54 (2002) 3, S. 238 - 243
Forschungsprojekte:

„Verbesserung der technischen Eigenschaften von Hochspannungsleuchtröhren“

Projektleiter: Prof. D. Gall, Prof. J. A. Schäfer
Partner/Förderinstitution: Fakultät MN; Fachgebiet Technische Physik I; Neon Böhm Ilmenau, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 388.855 DM
Schlagwörter: Lampenlebensdauer, Vergrauung des Leuchtstoffes, elektrische Lampenparameter

„Evaluierung von Sicherheitsleitsystemen in Rauchsituationen“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: Hauptverband der gewerblichen Berufsgenossenschaften e. V.,
Laufzeit: 1/2001 bis 12/2002
Schlagwörter: Not- und Sicherheitsbeleuchtung, Raucheinwirkung, Erkennbarkeit, Sicherheit, Evakuierung, nachleuchtende Systeme, LED - Leuchten

„Kfz - Innenraumbeleuchtung“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: BMW AG
Schlagwörter: Kfz - Innenbeleuchtung, physio - psychologische Grenzwerte, Erkennungsweiten, Umwelteinflüsse

„Licht in Büroräumen - Sonnenschutz - Vergleich innovativer Systeme“

Projektleiter: Prof. D. Gall, Prof. Müller (Dortmund)
Partner/Förderinstitution: Uni Dortmund, Land NRW, BMBF, Fördersumme 33.300
Laufzeit: 10/2001 bis 9/2003
Schlagwörter: Tageslichtlenksysteme, physio - psychologische Wirkung, Lichtverteilung, Blendwirkung, Farbveränderungen

„Retroreflexion mit Anti - Tau - Schichten“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: Nippon carbide
Laufzeit: 1999 bis 2001
Schlagwörter: Retroreflexion, meteorologische Abhängigkeiten

„Videobasierte Lichtsteuerung im Kfz“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: Robert Bosch GmbH
Laufzeit: 1999 bis 2001
Schlagwörter: Kfz - Kurvenlicht, Erkennungsweiten, doppelt - dynamische Blendung, Lichtsteueralgorithmus, adaptive Beleuchtung
„UV - Reaktoren“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: IL Metronik, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 169.300 DM
Laufzeit: 1999 bis 2001
Schlagwörter: UV - Sensoren

„Untersuchung der Mehrkomponenten - Beleuchtung bei Bildschirmarbeitsplätzen“

Projektleiter: Prof. D. Gall
Partner/Förderinstitution: Waldmann Lichttechnik GmbH
Laufzeit: 2001
Schlagwörter: Behaglichkeit, Reflexblendung und Schleierreflexion, zonierte Beleuchtung, Lichtfarbenkombination, Beleuchtungsniveau

Leistungsangebote:
- Vermessung von Lampen und Leuchten (LVK, Lichtstrom, Wirkungsgrade u. ä.)
- Messung von spektralen Verteilungen im UV - und sichtbarem Gebiet
- Vermessung von ultraschwacher Strahlung
- Bestimmung von Stoffkennzahlen (Reflexion und Transmission)
- Farbmessungen

Spezialsausstattung:
- bildauflösendes Goniophotometer
- spektrale Messtechnik für sichtbaren Bereich und UV - Gebiet
- Leuchtdichte - Analysator

5.3.3.2 Fachgebiet Technische Optik

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Stefan Sinzinger
Tel. (03677)69 2490 Fax: (03677)69 1281
E - mail: stefan.sinzinger@tu-ilmenau.de

Forschungsgebiete:
- Modellierung optischer Abbildungen
- Optimierung optischer Abbildungssysteme mit mikrostrukturerter Optik
- Mikrooptische Systemintegration
- Optische Messtechnik (winkelauflöste Streulicht - Messtechnik)

Publikationen:
W. Richter: “About the imaging of non - transparent bodies in transmitted light” Optik 112, No. 5 (2001), 185 - 188

Forschungsprojekte:

„Entwicklung eines Streulichtsensors zur fertigungsnahen Überwachung von Oberflächenkenngrößen“

Projektleiter: Prof. H. Truckenbrodt
Partner/Förderinstitution: GFE e. V. Schmalkalden, prokent AG Ilmenau, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 245.175
Laufzeit: 4/1999 bis 1/2001
Schlagwörter: Rauheitsmessung, Mikrotopografie, Streulichtmessung,

„Streulichtmessverfahren zur Bestimmung periodischer Mikrotopografieparameter“

Projektleiter: Dr. - Ing. A. Hertzsch, Dozent Dr. - Ing. habil. W. Richter
Partner/Förderinstitution: DaimlerChrysler AG
Schlagwörter: Visualisierung geschliffener Oberflächen

„Doppelreflexrechnung an einem Fokussensor“

Projektleiter: Dr. - Ing. B. Mitschunas
Partner/Förderinstitution: Carl Zeiss Oberkochen
Schlagwörter: numerische Falschlichtsimulation

„Falschlichtuntersuchungen an einem Spezialobjektiv - Design“

Projektleiter: Dr. - Ing. B. Mitschunas
Partner/Förderinstitution: Carl Zeiss Oberkochen
Schlagwörter: Fassungssimulation, Reflexions- und Streulichtberechnung

„Numerische Streu- und Falschlichtsimulationen“

Projektleiter: Dr. - Ing. B. Mitschunas
Partner/Förderinstitution: Carl Zeiss Oberkochen
Schlagwörter: polarisationsoptische Berechnungen
„Visualisieren von Objekten auf „optischen Umwegen“

Projektleiter: Dozent Dr. habil. W. Richter
Partner/Förderinstitution: BMW AG
Schlagwörter: anamorphotische Optik

Leistungsangebote:
- Design mikrooptischer Komponenten und Systeme
- Beratungsleistungen zur mikrooptischen Fertigung
- Anwendung und Fertigung mikrostrukturierter Optik
- Streulichtmessung
- Algorithmierung und Modellierung optischer Systeme
- Analyse und Bewertung optischer Systeme
- Beratungsleistungen zu optischen Abbildungen und Beleuchtungen
- Beratungsleistungen bei der Entwicklung optischer Messverfahren

Spezialausstattung:
- Defektstreulichtmessanordnung DSMA
- Auflichtmikroskop Axiotech
- Optik - Rechenprogramme (z.B. Code V, ASAP, SIGMA, PARAX, LASER)

5.3.4 Institut für Mikrosystemtechnik, Mechatronik und Mechanik

Institutsleiter: N. N.

C - Stellenstruktur: 3 C4, 4 C3

5.3.4.1 Fachgebiet Mechatronik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Eberhard Kallenbach
(Vertretungsprofessor bis 31.03.2002)
E - mail: eberhard.kallenbach@tu-ilmenau.de
Univ. - Prof. Dr. - Ing. Torsten Bertram
Tel. (03677)69 2486 Fax: (03677)69 1801
E - mail: torsten.bertram@tu-ilmenau.de

Forschungsgebiete:

Entwicklung innovativer Lösungsansätze und Produkte aus dem interdisziplinären Bereich der Mechatronik:
- Fahrzeugsystemtechnik
- Fahrdynamische Systeme (Fahrrad und Lenkung)
- Insassenschutzsysteme (Rollover)
- Assistenzsysteme (autonomes Fahren und Einparken)
- Adaptive Lichtsysteme
- Antriebstechnik
- Lineare, rotatorische und planare Antriebssysteme
- Asynchron- und Synchronmotoren
- Elektromagnetische Systeme
- Neue, integrierbare Antriebssysteme
Innerhalb der Forschungsschwerpunkte werden folgende Einzelthemen bearbeitet:

- Elektromagnetische Antriebstechnik und Mikroaktuatoren,
- Mehrkoordinatenmotoren nach dem elektrodynamischen und Schrittmotorprinzip,
- Modellierung und Simulation von elektromagnetischen Antrieben,
- Design mechatronischer Systeme,
- Formgedächtnisantriebe, Miniaturantriebe, Piezoantriebe,
- Modellbildung eines komplexen, dreidimensionalen, mechatronischen Kraftfahrzeugs,
- koordinierte Ansteuerung von Bremse, Antrieb, Lenkung und Fahrwerk zur Regelung der Fahrdynamik - hierarchische Fahrdynamikregelung auf der Stabilisierungsebene,
- objektive Bewertung der Regelungsgüte unter technischen Gesichtspunkten,
- Kopplung der Fahrdynamik und der Fahrzeugführung auf der Stabilisierungsebene,
- Modellbildung im Sinne einer für den Entwicklungsprozess durchgängigen, modularen, domänenübergreifenden Modellierung.

Promotionen:

„Labor- und Simulationswerkzeuge für die Analyse mechatronischer Systeme in der Feinwerktechnik, Martin Landwehr 2001,

„Ein Beitrag zur Empfindlichkeitsanalyse an Magnetstrukturen, Carsten Müller, 2001

„Magnetisch geführter Mehrkoordinaten - Präzisionsantrieb“, Sergej Kovalev, 2001

„Ein Beitrag zur Simulation und zum Entwurf von elektromagnetischen Systemen mit Hilfe der Netzwerkmethode“, Tom Ströhla, 2002

„Untersuchungen zum Entwurf von Elektromagneten unter Berücksichtigung dynamischer Kenngrößen“, Karsten Feindt, 2002

Publikationen:

E. Kallenbach, V. Kireev, J. Zentner: Design of Integrated Multi - Coordinate Drives. Friedly Reliable Mechatronics, September 11 - 13, Tampere, Finland, pp. 147 - 156, 2002

H. - D. Stölting, E. Kallenbach: Handbuch der elektrischen Kleinantriebe. 2. erweiterte Auflage, München; Wien: Carl Hanser, 2002, 360 Seiten

Forschungsprojekte:

„Miniaturisierte Mehrzwecksensoren für Hydraulikmagnete“
Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Kern - Technik GmbH & Co. KG Schleusingen, Fördersumme 182.500
Schlagwörter: Microcontroller, Kennlinienkorrektur, Wegmesssystem, Hallsensoren

„Miniaturisierte Wegsensoren für Hydraulikmagnete“
Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Kern - Technik GmbH & Co. KG Schleusingen, Fördersumme 326.529 DM
Schlagwörter: Microcontroller, Kennlinienkorrektur, Wegmesssystem, Hallsensoren

„Dynamische Interaktion zwischen Maschine und Struktur am Beispiel einer Klasse von mobilen kooperierenden parallelkinematik - basierten Bearbeitungsmaschinen“
Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: Prof. J. Lückel, Universität Paderborn, Prof. P. Maißer, Institut für Mechatronik, TU Chemnitz, DFG, Fördersumme 275.200
Schlagwörter: planare Antriebe, Plattform, Freiheitsgrade, Triplanar

„TRIPLANAR - MKAM - basiertes mobiles Handlingssystem“
Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: DFG, J. Lückel, Uni Paderborn, Prof. P. Maißer, Institut für Mechatronik, TU Chemnitz, Fördersumme 275.200
Schlagwörter: planare Antriebe, Plattform, Freiheitsgrade, Triplanar

„Integration modular aufgebauter Antriebssysteme in Maschinen und Anlagen auf der Basis des MST-Baukastens (IMODAS) Teilthema: Mikroaktorik“
Projektleiter: Prof. E. Kallenbach
Schlagwörter: modulare Mikrosystemtechnik, Match - X
„MODAN - Entwurf und Modellierung von Antriebssystemen für die Mikrosystemtechnik - Entwicklung netzwerkfähiger Entwurfsmodule für Mini- und Mikroaktuatoren“

Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: BMWF, TETRA GmbH Ilmenau, LAT Suhl AG, MAHLE Filtersysteme GmbH Stuttgart, IMMS gGmbH Ilmenau, SIMEC GmbH & Co. KG Chemnitz, Steinbeis GmbH & Co., STZ Mechatronik Ilmenau, FhG - IIS/EAS Dresden, ITI GmbH Dresden, Fördersumme 150.000

Schlagwörter: Magnetkreise, Entwurfssoftware, Antriebssysteme

„Hochpräzise bahngesteuerte planare Schrittmotorantriebe“

Projektleiter: Priv. - Doz. Dr. - Ing. habil. E. Räumschüssel
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, LAT Suhl AG, IMMS gGmbH Ilmenau, Fördersumme 177.000

Schlagwörter: Schrittmotorantrieb, Modellierung, Simulation

„Entwicklung eines Antriebssystems für eine 3D - Präzisions - Messmaschine“

Projektleiter: Prof. E. Kallenbach
Partner/Förderinstitution: DFG, Fördersumme 58.800

Laufzeit: 7/2001 bis 8/2003
Schlagwörter: integrierte Mehrkoordinatenantriebe, magnetisches Führungssystem, große Verfahrbereiche

Leistungsangebote:

- Entwicklung Software SESAM - Programmsystem zur Dimensionierung magnetischer Antriebssysteme

Spezialausstattung:

- Labor Mehrkoordinatenantriebe
- Innovationslabor Fluidmechatronik

5.3.4.2 Fachgebiet Mikrosystemtechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Helmut Wurmus
Tel. (03677)69 2487 Fax: (03677)69 1801
E - mail: helmut.wurmus@tu-ilmenau.de

Forschungsgebiete:

Entwicklung und Herstellung von:

- piezoelektrischen und magnetischen Mikroaktoren
- Mikrofluidkomponenten (Mikroventile, Mikropumpen, Mischer, Reaktoren)
- passiven mikromechanischen Komponenten
dünnen piezoelektrischen und magnetischen Schichten
dynamischen Messverfahren für Mikrostrukturen
chemomechanischen Aktoren, Strömungssensoren

Promotionen:

„Untersuchungen zu automatisierten Montageprozessen hybrider mikrooptischer Systeme“, T. Scheller, 2001

„Untersuchungen zum Einsatz elektromagnetischer Mikroaktoren“, T. Frank, 2002

„Beitrag zur Untersuchung von passiven planaren Hochgeschwindigkeitsmagnetlagern zur Anwendung in der Mikrosystemtechnik“, M. Klöpzig, 2002

Publikationen:

Forschungsprojekte:

„Strömungssensor - Hochauflösende Geschwindigkeits- und Temperatursensoren“

Projektleiter: Prof. H. Wurmus
Partner/Förderinstitution: DFG, Fördersumme 209.200
Schlagwörter: mikrotechnische Wandler

„Technologieentwicklung zur strukturierten Beschichtung von Bauteilen der Mikrotechnik“

Projektleiter: Prof. H. Wurmus
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 185.015
Schlagwörter: strukturierte Beschichtung, Glassubstrate

„µ - LCR - Mikrosyst/MST - Technologien für Mikrosyst Induktivitäten“

Projektleiter: Prof. H. Wurmus
Partner/Förderinstitution: BMBF, Fördersumme 340.800
Schlagwörter: Leiter- und LTCC - Technik

„Strukturierung von Mikroformeneinsätzen für Replikationsverfahren“

Projektleiter: Prof. H. Wurmus
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 262.400
Schlagwörter: Werkzeugentwicklung, Messtechnik von Mikrosystemen, Lichtschnittverfahren, Speckle - Verfahren, Siliziumprägewerkzeuge

„Kompetenz - Netzwerk Bionik“

Projektleiter: Prof. H. Wurmus, Dr. rer. nat. C. Schilling
Partner/Förderinstitution: BMBF, Fördersumme 247.500
Schlagwörter: bionische Produktlösungen

„FULCE Makromolekulare Polymere - Functional Liquid Crystal Elastomers“

Projektleiter: Prof. H. Wurmus
Partner/Förderinstitution: Europäische Union (5. RP, IHP), Fördersumme 199.900
Schlagwörter: Polymere in Mikrosystemen

Leistungsangebote:
- Technologie von Mikrostrukturierung von Silizium, Glas und Metallen

Spezialausstattung:
- Nutzung der Technologien des Zentrums für Mikro- und Nanotechnologien (ZMN)

5.3.4.3 Fachgebiet Technische Mechanik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Klaus Zimmermann
Tel. (03677) 69 2474 Fax: (03677) 69 1823
E - mail: klaus.zimmermann@tu-ilmenau.de

Forschungsgebiete:

Im Mittelpunkt der Forschung steht die Untersuchung der Dynamik von Mehrkörpersystemen. Die Arbeiten konzentrieren sich auf den SFB „Nanopositionier- und Nanomessmaschinen“ (A) und die Gebiete Biomechatronik (B) und Robotik (C).

SFB 622: Nanopositionier- und Nanomessmaschinen (NPM - Maschinen)
Im Teilprojekt B1 werden komplexe mechatronische Modelle zur Formulierung von Aussagen über das dynamische Verhalten von Komponenten der NPM - Maschine bzw. der Gesamtstruktur entwickelt sowie Werkzeuge geschaffen, um eine modellgestützte Analyse an Prototypen vornehmen zu können. Die Komplexität der Nanomaschine erfordert eine Ent-

Nachwuchsforschergruppe: "Peristaltisch getriebene Sonde mit haptischem Sensorarray für die minimal - invasive Wirbelsäulen chirurgie" (Leitung: Dr. rer. nat. P. Meier).

In Zusammenarbeit mit dem Fachgebiet Rechneranwendung im Maschinenbau und dem Fachgebiet Neuroinformatik wird an der Entwicklung autonomer mobiler Roboter für die Szenarien „Robocup“ (fußballspielende Roboter) und "Assistenzrobotik" gearbeitet.

Promotionen:

"Peristaltische Lokomotion - Modellbildung und technische Applikation", H. Kunz, 2001

"Modellierung, Simulation und Entwurf biomimetischer Roboter basierend auf apedaler undulatorischer Lokomotion", Huang Jianjun, 2002

Publikationen:

Forschungsprojekte:

„Modellgestützte Analyse und Optimierung des dynamischen Verhaltens von Nano-
maschinen (Teilprojekt B1 im SFB 622)“

Projektleiter: Prof. K. Zimmermann, Dipl. - Ing. E. Gerlach
Partner/Förderinstitution: DFG, Teilprojekte im SFB 622, Fördersumme 204.900
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: Mehrkörpersimulation, Modellbildung

„Peristaltische Sonde für die minimal - invasive Wirbelsäulenchirurgie“

Projektleiter: Dr. rer. nat. P. Meier
Partner/Förderinstitution: Zentralklinik Bad Berka, Thüringer Ministerium für Wissen-
schaft, Forschung und Kunst, Fördersumme 739.218
Laufzeit: 1/2001 bis 12/2003
Schlagwörter: Robotik, Haptik, Lokomotion, Biomechatronik, mobiler Robo-
ter, Mechatronik

„Multimediale Lernumgebung für die Hochschullehre - Interdisziplinäre und überre-
gionale Kooperation“

Projektleiter: Prof. K. Zimmermann
Partner/Förderinstitution: BMBF, Fakultät für Elektrotechnik und Informationstechnik
und dem Institut für Medientechnik, Fördersumme 50.000
Laufzeit: 1/2001 bis 12/2003
Schlagwörter: E - Learning, Schwingungstechnik

Multimediale Lehrsoftware "Mechatronik"

Projektleiter: Prof. K. Zimmermann, Prof. M. Weiß
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst,
Fachgebiet Rechneranwendung im Maschinenbau, Förder-
summe 50.000
Schlagwörter: E - Learning, Mechatronik

Leistungsangebote:

- Mehrkörpersimulation, Experimentelle Modalanalyse

Spezialausstattung:

- Schwingungs- und Stoßprüf anlagen, Modalanalysesysteme
5.3.4.4 Fachgebiet Getriebetechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Gerhard Christen
Tel. (03677)69 2476 Fax: (03677)69 1828
E - mail: gerhard.christen@tu-ilmenau.de

Forschungsgebiete:

Die Forschungsarbeiten im Fachgebiet erstrecken sich auf zwei Komplexe:

Führungs- und Übertragungsaufgaben mit Hilfe von Starrkörpermechanismen:
- Modellierung und Simulation von Antriebssystemen
- Punkt- und Ebenenführungen durch Koppelmechanismen mit dem Freiheitsgrad F = 1
 (Optimierung von Bauraum und Bahngenaugkeit)
- Gesteuerte Bewegungsübertragung und Realisierung von Führungsaufgaben durch Mechanismen mit dem Freiheitsgrad F = 1 und F > 1

Grundlagenforschung zu nachgiebigen Mechanismen und zu Systemen mit kombinierten starren und nachgiebigen Elementen:
- Untersuchungen zur Gestaltung und Funktion stoffschlüssiger Gelenke
- Strukturierung, Modellierung und Simulation nachgiebiger Führungsmechanismen
 (Festkörperführungen für Präzisionsbewegungen)
- Entwicklung und Untersuchung von Gelenken und Bewegungssystemen mit kombinierten Kopplungen unter Einbeziehung biologischer Funktionsprinzipien
- Greifer- und Bewegungstechnik mit besonderen Eigenschaften im Makro- und Mikrobe-reich

Promotionen:

„Nachgiebige Mechanismen für Geradführungen“, Nenad T. Pavlović, 2002

Publikationen:

Forschungsprojekte:

"Untersuchungen zu Wirkprinzipien von intelligenten stoßbegrenzenden Gelenkwellen und Entwicklung von Funktionsmustern"\(^1\)

Projektleiter: Prof. G. Christen, Prof. H. - J. Schorcht
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fa. Gelenkwelle Stadtilm GmbH; Fördersumme 826.853 DM
Schlagwörter: Stoßbegrenzung, Gelenkwelle, Wirkprinzipien

"Untersuchungen zur Entwicklung von Leergut - Kompaktoren für Leergutlogistiksysteme"

Projektleiter: Prof. G. Christen, A. Schmidt
Partner/Förderinstitution: prokent AG Ilmenau
Laufzeit: 3/2001 bis 10/2001
Schlagwörter: Leergutlogistiksystem, Kompaktor, Einwegverpackungen

Leistungsangebote:

- Unterstützung und Beratung bei der Auswahl und Dimensionierung von Getrieben (Mechanismen)
- Dimensionierung und Optimierung stoffschlüssiger Gelenke
- Entwurf und FEM - Berechnung nachgiebiger Mechanismen und Bewegungssysteme (Greifer, Festkörperführungen)

Spezialausstattung:

- Hochgeschwindigkeitskamera KODAK EKTOPRO zur Beobachtung und Registrierung dynamischer Bewegungsvorgänge (s. a. FG Maschinenelemente)
- Hochauflösende Weg- und Winkelmesstechnik
- Industriebaukasten Hydraulik/Pneumatik

5.3.4.5 Fachgebiet Thermo- und Fluidodynamik

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. André Thess
Tel. (03677)69 2445 Fax: (03677)69 1281
E - mail: thess@tu-ilmenau.de

Forschungsgebiete:

Das Fachgebiet widmet sich der experimentellen und theoretischen Untersuchung komplexer Wärmeübertragungs- und Strömungsprozesse. Im Mittelpunkt der Forschungsarbeiten stehen die Schwerpunkte:
- Magnetofluiddynamik, Solarthermische Systeme, Thermische Konvektion

Promotionen:

„Untersuchung geeigneter Arbeitsstoffpaare für Absorptionskältemaschinen unter Berücksichtigung der Wärmeprozessoptimierung“, S. Al - Najjar, 2002
Publikationen:

Forschungsprojekte:

„Solarthermie 2000, TP3: Solare Nahwärme - Begleitforschung: Durchführung eines Messprogramms an dem 300 m³ Pilotspeicher und Untersuchungen zur Optimierung des Wärmespeicherkonzeptes“
Projektleiter: Dipl. - Ing. J. Bühl
Partner/Förderinstitution: BMBF/BMWi über PT BEO, Fördersumme ca. 157.000
Schlagwörter: regenerative Energien

„Solarthermie 2000, TP2: Wissenschaftlich - technische Programmbegleitung im Land Thüringen“
Projektleiter: Dipl. - Ing. J. Bühl
Partner/Förderinstitution: BMBF/BMWi über PT BEO, Fördersumme ca. 303.000
Schlagwörter: regenerative Energien

„Thermische Konvektion bei großen Rayleigh - Zahlen - „Ilmenauer Fass“
Projektleiter: Prof. A. Thess, Dr. rer. nat. C. Resagk
Partner/Förderinstitution: DFG, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 357.000
Schlagwörter: interdisziplinäre Turbulenzinitiative

„Thermosolutale Marangonikonvektion“
Projektleiter: Prof. A. Thess
Partner/Förderinstitution: BMBF (Projektträger DLR), Fördersumme ca. 115.000
Schlagwörter: Interdisziplinäre Turbulenzinitiative
„Formung und Kontrolle freier Oberflächen: Analytische Untersuchungen (Teilprojekt A4 der Forschergruppe Magnetofluiddynamik: Strömungsbeeinflussung und Strömungsmessung in elektrisch leitfähigen Flüssigkeiten)“

Projektleiter: Dr. - Ing. C. Karcher, Dr. - Ing. U. Lüdtke
Partner/Förderinstitution: DFG, Fördersumme ca. 90.000
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetofluiddynamik

„Magnetisches Bremsen turbulenter Strömungen: Experiment (Teilprojekt A1 der Forschergruppe Magnetofluiddynamik)“

Projektleiter: Prof. A. Thess, Prof. Y. Kolesnikov
Partner/Förderinstitution: DFG, Fördersumme ca.150.000
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetofluiddynamik

„Gemeinsame Aufgaben (Gastwissenschaftler, Workshops, Großgerät „Modularer Flüssigmetallkanal“)“

Projektleiter: Prof. A. Thess, Prof. D. Schulze
Partner/Förderinstitution: DFG, Fördersumme ca. 500.000
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetofluiddynamik

„Formung und Kontrolle freier Oberflächen: Experiment (Teilprojekt A3 der Forschergruppe Magnetofluiddynamik: Strömungsbeeinflussung und Strömungsmessung in elektrisch leitfähigen Flüssigkeiten)“

Projektleiter: Dr. - Ing. C. Karcher, Prof. D. Schulze (Fakultät Elektrotechnik und Informationstechnik)
Partner/Förderinstitution: DFG, Fördersumme ca. 165.000
Schlagwörter: Magnetofluiddynamik

„Magnetfeldtomografische Detektion von Grenzflächenbewegungen: Experiment und Sensorik (Teilprojekt B1 der Forschergruppe Magnetofluiddynamik)“

Projektleiter: Prof. H. Uhlmann (Fak. Ei), Dr. rer. nat. C. Resagk
Partner/Förderinstitution: DFG, Fördersumme ca. 195.000
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetofluiddynamik

„Magnetische Bremsen turbulenter Strömungen: Numerische Simulation und Modellentwicklung (Teilprojekt A2 der Forschergruppe Magnetofluiddynamik)“

Projektleiter: Dr. rer. nat. E. Zienecke
Partner/Förderinstitution: DFG, Fördersumme ca. 140.000
Laufzeit: 2001 bis 2004
Schlagwörter: Magnetofluiddynamik
„Optimierung der Betriebsweise einer Absorptionskälteanlage zur Kühlung und Raumklimatisierung unter Anwendung von neuen Arbeitsstoffpaaren der Niedertemperaturantriebsquellen“

Projektleiter: Dr. - Ing. S. Ajib
Partner/Förderinstitution: BMWi, Fördersumme 478.000
Laufzeit: 1/2001 bis 10/2004
Schlagwörter: Kältetechnik

„Ergänzungsfinanzierung Forschergruppe „Magnetofluiddynamik““

Projektleiter: Prof. A. Thess, Prof. D. Schulze (Fakultät Elektrotechnik und Informationstechnik)
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme ca. 130.000
Laufzeit: 1/2001 bis 12/2001
Schlagwörter: Magnetofluiddynamik

„INNOVATEC Gastdozentenprogramm, Prof. Kolesnikov“

Projektleiter: Prof. A. Thess, Dr. - Ing. C. Karcher
Partner/Förderinstitution: DAAD, Fördersumme 109.000
Laufzeit: 10/2001 bis 10/2003
Schlagwörter: DAAD

„Numerische Simulation und Modellierung von Strömungen elektrisch leitfähiger Flüssigkeiten unter dem Einfluss von Magnetfeldern“

Projektleiter: Prof. A. Thess
Partner/Förderinstitution: N. Seehafer, Uni Potsdam, H. Politano, Observatoire de la Côte d’Azur, Nizza/Frankreich)/DFG - CNRS Projekt
Laufzeit: 01/2001 bis 01/2003
Schlagwörter: Magnetofluiddynamik

Spezialausstattung:
- Turbulenzforschungsgerät „Ilmenauer Fass“
- Windkanal, Flüssigmetallkanal

5.3.4.6 Fachgebiet Biomechatronik

Fachgebietsleiter: Univ. - Prof. Dipl. - Ing. Dr. med. (habil.) Hartmut Witte
Tel. (03677)69 2456 Fax: (03677)69 1280
E - mail: hartmut.witte@tu-ilmenau.de

Forschungsgebiete:

Biomechatronik ist die Entwicklung und Verbesserung mechatronischer Produkte und Verfahren unter Nutzung biologischen und medizinischen Wissens. Das Fach gründet auf den Hauptsäulen „Bionik“, „Robotik“ und „Mechatronik in der Biomedizintechnik“. Es schließt insbesondere Aspekte der Biomechanik, Biokybernetik, Mensch - Maschine - Interaktionen und Präventions- wie Rehabilitationsmaßnahmen als Forschungs- wie Lehrgegenstände mit

- Bionik mit Schwerpunkt Mikrosysteme
- Bioaktorik und Biosensorik
- Biokompatible Werkstoffe
- Biomechanik
- Funktionelle Morphologie
- Human Serving Systems mit Schwerpunkt Mechatronik in der Biomedizintechnik
- Prävention, Diagnostik, Therapie, Rehabilitation
- Assistenzsysteme für Behinderte
- Methoden der Ingenieurkreativität und ihre Erweiterung durch biologische Inspiration
- Nachgiebige Mechanismen
- Robotik, Sonderformen von Bewegungssystemen

Publikationen:

M. S. Fischer; N. Schilling; M Schmidt; H. Witte: Basic limb kinematics of small therian mammals, J. Exp. Biol. 205(9); S. 1315 - 1338, 2002

H. Witte; J. Biltzinger; R. Hackert; N. Schilling; M. Schmidt; C. Reich; M. S. Fischer: Torque patterns of the limbs of small therian mammals during locomotion on flat ground, J. Exp. Biol. 205(9), S. 1339 - 1353, 2002

G. Wu; S. Siegler; P. Allard; C. Kirtley; A. Leardini; C. Rosenbaum; M. Whittle; D. D. D’Lima; L. Cristolfini; H. Witte; O. Schmidt; I. Stokes: ISB recommendations on definitions of joint coordinate systems of various joints for the reporting of human joint motion - Part I: ankle, hip and spine, J. Biomech. 35(4), S. 543 - 548, 2002

H. Witte; N. Schilling; H. Hoffmann; R. Hackert; D. Voges; K. E. Lilje; M. Schmidt; M. S. Fischer: Der Rumpf wird vom Menschen und von anderen Säugetieren systematisch für die Fortbewegung benutzt., In: Grieshaber, R.; Schneider, W.; Scholle H. C. (Hrsg.) Prävention von arbeitsbedingten Gesundheitsgefahren und Erkrankungen. Monade Konzepte & Kommunikation, Leipzig, 2002, 291 - 304

Forschungsprojekte:

„Betrieb des Ilmenauer Netzknotens des Bionik - Kompetenznetzwerkes“ (bmb + f, DLR) zusammen mit FG Mikrosystemtechnik

Projektleiter: Dr. rer. nat. C. Schilling
Partner/Förderinstitution: TU Berlin, Uni Saarbrücken, Uni Bonn, Uni Münster, FH Karlsruhe
Laufzeit: 3/2001 bis 3/2004
Schlagwörter: Popularisierung der Bionik, Innovationsmethode Darstellung, Industrieforschung

„P - Protein als Bauelement der Mikrosystemtechnik (bmb + f) zusammen mit FG Mikrosystemtechnik“

Projektleiter: Prof. Wurmus
Partner/Förderinstitution: Uni Gießen, FH Jena (molekulare Biotechnologie), FH Jena, IMB, Schmallenberg
Laufzeit: 10/2002 bis 10/2005
Schlagwörter: mikrofluidische Systeme, biomolekulare Komponenten, Leitgefäße

„Bau biologisch inspirierter Laufmaschinen“

Projektleiter: Prof. Fischer, Inst. für Zoologie, FSU Jena, Prof. Dittmann, FZI Karlsruhe, Prof. Hiller, GMU Duisburg
Partner/Förderinstitution: DFG, ca. 3 Mio. DM
Schlagwörter: Bionik, Laufmaschine, Vierbeiner

„Gangdynamik von Säugetieren“

Projektleiter: Prof. Witte
Partner/Förderinstitution: Inst. Für Bewegungssysteme, Zoologie, Pathologie der FSU Jena
Schlagwörter: Biomechanik, Säugetiere

„Miniaturisierte Sensoren für die Biomechanik“

Projektleiter: Prof. Witte
Partner/Förderinstitution: Inst. für Zoologie der FSU Jena, Mexikanische Regierung
Schlagwörter: Biomechanik, Sensoren

„Aktiver Fixateur externe“

Projektleiter: Prof. Witte
Partner/Förderinstitution: Ruhr - Universität Bochum
Schlagwörter: Osteosynthese

„Diagnostikum für mechanische Funktionsstörungen der Halswirbelsäule“

Projektleiter: Prof. Witte
Partner/Förderinstitution: Klinikum Weimar
Schlagwörter: HWS, Wirbelsäule
„Prävention arbeitsbedingter Erkrankungen der Wirbelsäule“

Projektleiter: Prof. Scholle, AG Motorik, Inst. für Pathophysiologie, FSU Jena, Partner/Förderinstitution: KIP Jena, Bundesgenossenschaft Gaststätten und Nahrungsmittel
Laufzeit: 1/1999 bis 12/2008
Schlagwörter: Prävention, Wirbelsäule

5.3.4.7 Fachgebiet Rechneranwendung im Maschinenbau

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Mathias Weiß
Tel. (03677)69 2478 Fax: (03677)69 1802
E - mail: mathias.weiss@tu-ilmenau.de

Forschungsgebiete:

Weitere Arbeitsgebiete sind:
- Entwicklung von Echtzeitsteuerungen (real time control);
- Realisierung von Teleserviceaufgaben;
- Nutzung von Mikrocontrollern (z. B. Infineon C164) für Maschinensteuerungen;
- Visualisierungen mit OpenGL;
- Entwicklung von Spezialsoftware für den Maschinenbau. Beispiel: Programm zur Federndimensionierung auf der Basis von Werkstoffdatenbanken

Promotionen:

"Rechnergestütztes Entwurfs- und Optimierungssystem für Schraubendruckfedern", K. Liebermann, 2002

Publikationen:

Forschungsprojekte:

Sonderforschungsbereich 622:

"Einflüsse der End- und Übergangswindungen auf Funktion, Fertigung und Betriebsverhalten von kaltgeformten Schraubendruckfedern"

Projektleiter: Prof. H. Schorcht, Prof. M. Weiß
Partner/ Förderinstitution: AiF und VDFI, Fördersumme 410.300 DM
Schlagwörter: Schraubendruckfedern, Endwindungen, Schiefstellung

"Einfluss von Beschichtungen auf das Lauf- und Umformverhalten von Federstahldraht auf Federwindeautomaten"

Projektleiter: Prof. H. Schorcht, Prof. M. Weiß
Partner/ Förderinstitution: AVIF, Fördersumme 619.887 DM
Schlagwörter: Federstahldraht, Ziehmittel, Beschichtung

Multimediale Lehrsoftware "Mechatronik"

Projektleiter: Prof. K. Zimmermann, Prof. M. Weiß
Partner/ Förderinstitution: Land Thüringen (Thüringer Ministerium für Wissenschaft, Forschung und Kunst), Fördersumme 98.000 DM
Laufzeit: 1/2001 bis 12/2002
Schlagwörter: E - Learning, Mechatronik

"Multimediale Lernumgebungen für die Hochschullehre - Interdisziplinäre und überregionale Kooperation"

Projektleiter: Prof. E. Wagner
Partner/ Förderinstitution: BMBF, Fördersumme 2.400.000 DM
Laufzeit: 1/2001 bis 12/2003
Schlagwörter: Multimedia, E - Learning

Leistungsangebote:
- Ausbildung in den Sprachen C, C++, Assembler 8086
- Anwendung von Mikrocontrollern, Grafikprogrammierung mit OpenGL
- Beratung zu rechnergestützten Automatisierungsfragen
- Beratung zu Antriebssteuerungen (Schrittmotoren und Gleichstrommotoren)
- Anwendung serieller Datenübertragungen (Feldbusse)
- Programmierung von CAD - NC - Konvertierungen und Kopplungen
Spezialausstattung:
- PC basiertes Steuerungslabor

5.3.5 Institut für Präzisionstechnik und Automation

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Gerhard Linß
Tel.: (03677)69 3822 Fax: (03677)69 3823
E-mail: gerhard.linss@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 2 C3

5.3.5.1 Fachgebiet Fabrikbetrieb

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. Wolf - Michael Scheid
Tel. (03677)69 3855 Fax: (03677)69 3840
E-mail: wolf-michael.scheid@tu-ilmenau.de

Forschungsgebiete:
- Automatisierung in der innerbetrieblichen Logistik (Hochregallagertechnik, Kommissioniertechnik)
- Fertigungsprozessanalyse zur Optimierung von Montage- und Teilefertigungsprozessen bei ganzheitlicher Betrachtung von Qualität, Menge, Zeit, Kapazität und Kosten
- Projektierung flexiblter Montagezellen unter dem Aspekt des Einsatzes der Roboter- und Sensortechnik, der rationalen Programmierung und der integrierten Qualitätssicherung einschließlich adaptiver und selektiver Montage
- Untersuchungen zum Einsatz von Transpondern und anderen Identifikationssystemen als Informationsträger in Materialflussystemen
- Anwendung elektronischer und pneumatischer Aktorik und Sensorik mit SPS in der untersten Feldebene (AS - i - Bus)
- Beschleunigte Produktentwicklung durch die Integration von Rapid Prototyping- und Rapid Tooling Verfahren

Publikationen:

Forschungsprojekte:

„CERMOTOOL (Kleinserien - Spritzgusswerkzeuge aus einem polymerkeramischen Kompositwerkstoff)“

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 188.000 DM
Schlagwörter: Rapid Prototyping, Rapid Tooling

„Untersuchung Kommissionierung von Wein“

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: Gesellschaft für rechnergestützte Produktion irp e. V., Fördersumme 14.000 DM
Schlagwörter: Mann - zu - Ware, 2 stufige Kommissionierung, dynamische Bereitstellung

„Analyse Materialflusssimulation Teil I (Fluggepäck)“

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: IBM Logistik - Systeme GmbH, Falkensee, Fördersumme 25.000 DM
Schlagwörter: analytische Spielzeitberechnungen, allgemeine Schwachstellenbetrachtung

„Freeform Micro Tool (Rapid Tooling auf Basis von 3D - Druckverfahren zur Herstellung von Werkzeugen für den Mikrospritzguss von Freiformgeometrien)“

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: PORTEC GmbH, Eugen Helm GmbH, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 172.000 DM
Laufzeit: 10/2001 bis 7/2003
Schlagwörter: Rapid Prototyping, Rapid Tooling, Concept Modelling, Investment Casting

„Nutzung STL - basierter Datenmodelle zum Schichtfräsen von Prototypen“

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: Eugen Helm Formenbau und Thermoplastverarbeitung GmbH, Manebach, Fördersumme 10.000 DM
Schlagwörter: Layer Manufacturing, NC - Programmierung
Исследование возможности решения проблемы комплектации револьверных головок микроскопов объективами при помощи метода Адаптивно-Селективной Сборки (ASM)"

Projektleiter: Prof. W. - M. Scheid
Partner/Förderinstitution: СПбГИТМО (ТУ), Санкт - Петербургским Институтом Точной Механики, ОАО «ЛОМО», Открытое Акционерное Общество „Ленинградское Оптико - Механическое Объединение”, Fördersumme 10.000

Leistungsangebote:
- Logistik - Optimierung, Materialflussanalyse und -simulation, Auswahl von Kommissioniersystemen, Lagertechnik - Untersuchung, Fabrikplanung
- Auswahlunterstützung CAD - und NC - Programmiersysteme für 3D - Anwendungen
- Beratung zum 3D - Datenaustausch/Reparatur für Werkzeug- und Modellbau

Spezialausstattung:
- Concept Modeller ThermoJet zur direkten Herstellung geometrischer Prototypen aus CAD - Daten

5.3.5.2 Fachgebiet Qualitätssicherung

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Gerhard Linß
Tel. (03677)69 3822 Fax: (03677)69 3823
E - mail: gerhard.linss@tu-ilmenau.de

Forschungsgebiete:
Die wissenschaftlichen Arbeiten werden in enger Kooperation mit verschiedenen Forschungseinrichtungen und Unternehmen durchgeführt. In Projekten der Grundlagenforschung und der angewandten Forschung werden Themen der Qualitätssicherung und Bildverarbeitung bearbeitet:
- Angewandte Forschung für die industrielle Bildverarbeitung, Messtechnik und Qualitätssicherung
- Softwaretechnische Umsetzung neuer Verfahren der Qualitätssicherung
- Aufbau von anwenderneutralen Qualitätsdatenbanken
- PC - basierte Lösungen unter MS - Windows XP und MS - Windows - CE
- Programmerstellung mit Borland- und Microsoft-Entwicklungsumgebung
- Objektorientierte Programmierung in C++ und Aufbau von Softwarebibliotheken
- Automatische Prüfung von mikrosystemtechnischen Komponenten, Wafern und Leiterplatten
- Berührungslose Zweikoordinatenmessung mit hochauflösender Bildaufnahmetechnik
- Berührungslose Dreikoordinatenmessung mit Laser - Lichtschnittverfahren
- Untersuchung von Präzisionsmessverfahren für taktile und berührungslose Dreikoordinatenmessung
- Automatische Messmittelprüfung und -verwaltung, Kalibrierungstechnik
- Automatisierung von Sichtprüfung und technisches Erkennung
Promotionen:

„Beleuchtungs- und Fokusregelungen für die objektivierte optische Präzisionsantastung in der Koordinatenmessstechnik“, U. Nehse, 2001

„Integration der Qualitätsplanung und -steuerung in Produktionsplanungs- und -steuerungssysteme“, D. Höppner, 2001

Publikationen:

Forschungsprojekte:

„Digitale Biometrie am Auge“

Projektleiter: Prof. G. Linß, Dipl. - Math. W. Funk
Schlagwörter: 3D - Bildverarbeitung, Bildfilterung, Lichtschnittverfahren, Medizintechnik, Objekterkennung

„Anwendung einer Technik des optischen Einstellverfahrens zur Analyse des Beanspruchungszustandes von Holzbauteilen in Lasteinleitungs- und Störbereichen“

Projektleiter: Prof. G. Linß, Dipl. - Ing. M. Zumpf
Partner/Förderinstitution: DFG, Fördersumme 48.300
Laufzeit: 2/2001 bis 1/2003
Schlagwörter: hochauflösende Bildaufnahme, Beanspruchungsanalyse, Dehnungsmessung, bruchmechanische Kennwerte
„Messung geodätischer Objekte mit Bildverarbeitung“

Projektleiter: Dipl.-Ing. Ch. Usbeck
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Verbundprojekte Zeiss Spectra Precision, Fördersumme 131.782,39
Schlagwörter: Bildverarbeitung, Objekterkennung, Vermessungstechnik

„Bildleitkabel durch Faserbündelkorrektur“

Projektleiter: Prof. G. Linß, Dipl.-Ing. H.-D. Beck
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Verbundprojekt Faseroptik Jena GmbH, Fördersumme 238.713,49
Laufzeit: 8/2001 bis 7/2003
Schlagwörter: Bildübertragung, Lichtleitkabel, Bildkorrekturverfahren, Bildcodierung

„Untersuchungen zur In-line-Erfassung granulometrischer Kenngrößen und der Rohdichte von Schüttgütern - Granulometrie“

Projektleiter: Prof. G. Linß, Dipl.-Ing. U. Hamatschek
Partner/Förderinstitution: DFG, Fördersumme 96.720
Schlagwörter: Bildverarbeitung, optische Partikelanalyse, Korngrößenbestimmung, Qualitätssicherung

„Automatische CAD-basierte Qualitätssicherung mit optischer Koordinatenmess-technik - CADMESS“

Projektleiter: Prof. G. Linß, Dipl.-Ing. O. Unrath
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Förderkennzeichen B 609-01018 Verbundprojekt OKM GmbH Jena, Fördersumme 215.489,08
Schlagwörter: optische Sensoren, DME-Schnittstelle, Datenformatanpassung, Qualitätssicherung

„Digitales optisches Biometriesystem für eine innovative Diagnostik am vorderen Auge - DOBIOS“

Projektleiter: Prof. G. Linß, Dipl.-Math. W. Funk
Partner/Förderinstitution: Zeiss - Meditec AG, Jena
Schlagwörter: Lichtschnittverfahren, 3D-Bildverarbeitung, Bildsegmentierung, Kurvenantastung, Kegelschnitte

„Ingenieure von Morgen“

Projektleiter: Prof. G. Linß, Dipl.-Ing. U. Hartung
Partner/Förderinstitution: GFAW Thüringen
Schlagwörter: Ausbildung, Studium, Berufsfelderkenntnisse

„Entwurfs- und wissensbasierte Prüfplanerstellung“

Projektleiter: Prof. G. Linß, Dipl. - Wirtsch. - Ing. S. Töpfer
Partner/Förderinstitution: DFG, SFB 622, Fördersumme 153.432
Schlagwörter: automatische Prüfplanabarbeiten, CAD - Datenformate, Datenformate für Mikrostrukturen, wissensbasierte Prüfplanabarbeiten

Leistungsangebote:
- Softwaretools für industrielle Bildverarbeitung
- Berührungslose Koordinatenmessung
- Präzisionsbildaufnahme

Spezialausstattung:
- Universal- und Spezialbildaufnahmesysteme
- Direktangetriebene Optisches Koordinatenmessseinrichtung „Planaris“
- Optisches Mehrkoordinatenmessgerät „UNIVIS“

5.3.5.3 Fachgebiet Feinwerktechnik/Precision Engineering

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. René Theska
Tel. (03677)69 3957 Fax: (03677)69 3823
E - mail: rene.theska@tu-ilmenau.de

Forschungsgebiete:

Zusätzlich laufen Forschungsarbeiten zu integrierten Zweikoordinatendirektantreibern einschließlich der dazu benötigten speziellen Mess- und Regelungssysteme in Zusammenarbeit mit dem Fachgebiet Mechatronik. Ein weiterer Schwerpunkt besteht in Entwurf, Aufbau und Erprobung von sensor- und aktorintegrierten mechatronischen Funktionsgruppen für NPM.

Arbeitsschwerpunkte sind:
- Innerhalb des SFB 622 Untersuchung von Aufbauvarianten für den Grundaufbau von NPM und deren Optimierung
- Entwurf, Aufbau und Erprobung von sensor- und aktorintegrierten mechatronischen Funktionsgruppen für NPM
- Entwicklung der Grundlagen für schwingungsfreie aerostatische Führungselemente
- Entwicklung von Prinzipien zur Unterdrückung von mechanischen Schwingungen kleinster Amplituden
- Verbesserung der statischen und dynamischen Eigenschaften von sowohl in offenen Steuerketten als auch im Regelkreis betriebenen Linear- und Zweikoordinaten - Hybrid-schrittmotoren

Publikationen:

H. Stegel: Dynamisches Verhalten geregelter Tauchspulenmotoren - Analyse themenspezifischer Regelungsalgorithmen. DFG - Forschungsbericht SCHI 385/3-1, Dezember 2001, 36 Seiten

Forschungsprojekte:

„SFB 622 Nanopositionier- und Messmaschinen, Teilprojekt B2, Nanokonstruktion“

Projektleiter: Prof. R. Theska
Partner/Förderinstitutionen: DFG, Fördersumme 359.900
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: Konstruktion von Komponenten, Modulkonzept, Simulation, Entwicklung von Prinzipvarianten

„Dynamiksynthese von Präzisionsantrieben“

Projektleiter: Dr. - Ing. Bernhard Löwe
Partner/Förderinstitutionen: DFG, Fördersumme 48.000 und 1 wiss. Mitarbeiter BAT - OIla
Laufzeit: 10/1999 - 9/2001
Schlagwörter: Konstruktion von Präzisionsantrieben, Dynamiksynthese, mathematische Modellierung, Optimierung

„Mitarbeit im Projekt PROBRAL (Technische Universität Ilmenau - Universidade Federal Santa Catarina/Brasilien) - Genauigkeitserhöhung an Maschinen der Nanotechnik“

Projektleiter: Prof. G. Höhne
Partner/Förderinstitutionen: DAAD Bonn, Fördersumme 20.300
Laufzeit: 1999 bis 2002
Schlagwörter: Konstruktionsmethoden, Genauigkeit, Entwicklung von Prinzipvarianten

Leistungsangebote:

- Rapid Control Prototyping System
- Feinwerktechnisches Labor
- Laserwegmesssysteme
- 2-D Präzisionskoordinatendirektantrieb
5.3.5.4 Fachgebiet Kraftfahrzeugtechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. Klaus Augsburg
Tel. (03677)69 3842 Fax: (03677)69 3840
E - mail: klaus.augsburg@tu-ilmenau.de

Forschungsgebiete:

Experimentelle und theoretische Untersuchungen zur Verbesserung der Fahrsicherheit und des Fahrkomforts sowie zur Optimierung des Energieverbrauches und der Schadstoffemission von konventionellen und alternativen Antriebssystemen von Kraftfahrzeugen mit den Arbeitsschwerpunkten:

- Untersuchungen zur Verbesserung des Fahrkomforts von Kraftfahrzeugen, insbesondere hinsichtlich des Geräusch- und Schwingungsverhaltens von Fahrwerkssystemen und von Elementen des Antriebsstranges
- Untersuchungen zu Mensch - Maschine - Schnittstellen, d. h. zur objektiven Bewertung bisher subjektiv beschriebener Fahrzeugeigenschaften und zur optimierten Gestaltung von Bedieninterfaces
- Verringerung des Primärenergieverbrauches von Verbrennungsmotoren und des Hilfsenergieverbrauches von Kraftfahrzeugen durch innovative konstruktive Lösungen, mechatronische Systeme und Anwendung neuer Werkstoffe
- Experimentelle und analytische Untersuchungen an Kraftfahrzeug - Bremssystemen sowie Adaption neuartiger Messverfahren
- Untersuchungen an Echtzeit - Regelsystemen für automobile Anwendungen
- Konzeption, Konstruktion, Bau und Funktionserprobung von stationären und mobilen Mess- und Prüfeinrichtungen
- Simulation des dynamischen Verhaltens von Fahrzeugsystemen und des Gesamtfahrzeuges mit Hilfe verschiedener numerischer Verfahren

Publikationen:

K. Augsburg: „Straßenfahrzeuge mit Hybridantrieb - Gesamtkonzept“, Automobilzulieferer Thüringen e.V., Workshop 06.06.02, CD

K. Augsburg: „X -by -wire - Technologien für Kraftfahrzeuge - eine Herausforderung für die Ingenieure der Zukunft“, TU Ilmenau, 47. Internationales Wissenschaftliches Kolloquium, Workshop x - by - wire, 25.09.02, CD

Forschungsprojekte:

„Analytische und experimentelle Grundlagenuntersuchungen zu optimierten Verzahnungen für Fahrzeugantriebe“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: BGI Automotive GmbH & Co. KG, Eisenach, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 425.000
Schlagwörter: Getriebewirkungsgrad, Verzahnungsauslegung, Zahnradgeräusche, Prüfstandsentwicklung

„Entwicklung eines Geräuschbeurteilungsverfahrens von schnelllaufenden Radsätzen“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: Mitec Automotive AG, Eisenach, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 170.000
Schlagwörter: Zahnradgeräusche, Verzahnungsfehler, Körperschallanalysen, Prüfsystementwicklung

„Entwicklung und Erprobung eines elektrohydraulischen Brake - by - wire für ein Spezialfahrzeug“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: Multicar Spezialfahrzeuge GmbH, Waltershausen, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 398.000
Schlagwörter: Bremsanlagenauslegung, Brake - by - wire, Echtzeit - Regelsysteme, Bremspedalgefühl, Verhaltenssimulation

„Entwicklung und Aufbau eines Bremskomfort - Versuchsfahrzeuges“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: FORD Werke AG, Köln
Schlagwörter: Bremspedalgefühl, elektrohydraulische Fremdkraftbremsanlage, Echtzeit - Regelsysteme

„Simulation wichtiger Funktionseigenschaften und praktische Erprobung einer speziellen Hochdruckpumpe für CR - Dieseleinspritzung“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: Industrie
Schlagwörter: Diesel - Hochdruckeinspritzsysteme, Verhaltenssimulation, Einspritzpumpenprüfung
„Untersuchungen zum Funktions- und Festigkeitsverhalten von PKW - Vorderachs - Bremsscheiben“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: Industrie
Laufzeit: 1/2001 bis 12/2003
Schlagwörter: Thermo - mechanische Eigenschaften, Rissbewertungsverfahren, Bestimmung der Bremsscheibendeformation

„Experimentelle Untersuchungen zur Generierung von ungleichförmigem Bremscheibenverschleiß“

Projektleiter: Prof. K. Augsburg
Partner/Förderinstitution: Industrie
Schlagwörter: Dickenschwankung von Bremsscheiben, Tribologie

Leistungsangebote:

Prüfstandstest: Bremsenprüfstand
- Komfort - Test an Scheiben- und Trommelbremsen (Rubbeltest, Geräuschtst, DTV - Test, ...)
- Performance - Tests von Scheibenbremsen (Rissbildung, Verbindungsfestigkeit, Reibwert/AK - Master, ...)

Prüfstandstest: Servohydraulische Prüfeinrichtung (Hydropulser)
- Dauerfestigkeitsuntersuchung
- Bestimmung statischer und dynamischer Kennlinien von Dämpfern aller Art
- statische und dynamische Kraft - Weg - Kennlinien von Bauteilen

Messungen:
- Luftschallmessungen und -analysen, Körperschallmessungen und -analysen
- Einspritzpumpenkennlinien

Theoretische Analysen:
- FEM - Strukturanalysen (NASTRAN), MKS - Systemanalysen: Fahrwerk, ... (ADAMS)
- Systemsimulation anhand von Verhaltensmodellen:
- Hydrauliksysteme, hydraulisch - mechatronische Systeme, Triebstrang, Einspritzsysteme, ... (AMESim)

Beratung:
- Aufbau stationärer und mobiler PC - gestützter Mess- und Regelungstechnik

Spezialausstattung:

- Schwungmassen - Bremsenprüfstand für Pkw und Transporter
- Motorprüfstand, Einspritzpumpenprüfstand
- Servohydraulischer Prüfzylinder (Hydropulsprüfstand)
- Autarkes Betätigungssystem für Pedale in Automobilen
- Rolltischprüfstand zur Visualisierung der Vorgänge in der Reifenaufstandsfläche
- Messsysteme zur Aufnahme fahrdynamischer Zustandsgrößen in Versuchsfahrzeugen
- Hardware in the loop - System (Autobox Fa. dSpace)
- Spezialfahrzeug für Messung und Bewertung des Bremspresolvefühls
- Spezialprüfstände zur Ermittlung der dynamischen Parameter von Radaufhängungs- und Bremssystemkomponenten

5.3.6 Institut für Prozessmess- und Sensortechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Gerd Jäger
Tel.: (03677)69 2824 Fax: (03677)69 1412
E-mail: gerd.jaeger@tu-ilmenau.de

C - Stellenstruktur: 1 C4, 1 C3

5.3.6.1 Fachgebiet Messtechnik im Maschinenbau und Fertigungsmesstechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Rainer Grünwald
Tel. (03677)69 2823 Fax: (03677)69 1412
E-mail: gruenwald@mb.tu-ilmenau.de

Forschungsgebiete:

Um eine hohe Qualität und Effektivität in Lehre und Forschung zu erzielen, erfolgt im Rahmen des Institutes für Prozessmess- und Sensortechnik auch forschungsseitig eine sehr engen Kooperation mit dem Fachgebiet Prozessmesstechnik. Durch die Bündelung aller Ressourcen wird dabei eine besondere Leistungsfähigkeit erzielt. Schwerpunktmäßig werden vom Fachgebiet folgende Forschungsgebiete bearbeitet:

- Mikrooptische Sensorsysteme für die Präzisionstechnik
- Lichtwellenleiter gekoppelte Miniatur- und Mikrointerferometer
- Interferenzoptische Kalibriertechnik
- Laserinterferometrische Drucksensoren
- 3D - Koordinatenmesstechnik
- FEM - Berechnung von Präzisionsprimärwandlern für Kraft und Druck
- Interferenzoptische Messsignalgewinnung und Interpolation
- Computerunterstützte Vorbereitung und Durchführung der Messtechnik - Praktika
- Mitwirkung am Sonderforschungsbereich 622 „Nanopositionier- und Nanomessmaschinen“

Promotionen:

„Schnelle homogene Temperierung von Mikrotiterplatten mit Analysengut“, M. Bethge, 2002

Publikationen:

R. Grünwald: „Professor Gerd Jäger, Mitglied des Herausgeberbeirats, wird 60“, S. 115, tm 3/2001

G. Jäger, E. Manske, H. Wurzbacher, R. Grünwald, H. - J. Büchner, W. Schott, W. Pöschel: „Novel Microoptical Fibre Coupled Laser Interferometers for Various Applications in Preci-
Forschungsprojekte:

„Metrologie der NPM - Maschinen“

Projektleiter: Prof. R. Grünwald
Partner/Förderinstitution: Teilprojekte im SFB 622, DFG Bonn, Fördersumme 384.700
Laufzeit: 7/02 bis 6/05
Schlagwörter: Metrologie NPM - Maschinen

„Entwicklung und Aufbau eines Stehende - Wellen - Interferometers“

Projektleiter: Prof. G. Jäger, Prof. R. Grünwald
Partner/Förderinstitution: DFG Bonn, Fördersumme 84.363,16
Laufzeit: 2/00 bis 4/02
Schlagwörter: Stehende - Wellen - Interferometer

„SIMEP - Simultane Mehrgrößenmikrosensorsysteme für den Präzisionsmaschinenbau“

Projektleiter: Prof. G. Jäger, Prof. R. Grünwald
Partner/Förderinstitution: SIOS Messtechnik GmbH Ilmenau; OWIS GmbH Staufen; LOH Optikmaschinen AG Wetzlar; LLT Applikation GmbH Ilmenau, BMBF, Fördersumme 262.675,69
Laufzeit: 1/02 bis 12/04
Schlagwörter: Simultane Mehrgrößenmikrosensorsysteme, Präzisionsmaschinenbau

„Entwicklung eines Rasterkraftmikroskops“

Projektleiter: Prof. G. Jäger, Prof. R. Grünwald
Partner/Förderinstitution: PTB Braunschweig
Laufzeit: 9/02 bis 12/04
Schlagwörter: interferometrische Rasterkraftmikroskope, spezielle Antastsysteme

„Entwicklungsarbeiten auf dem Gebiet der interferometrischen Längenmessung, Autofokussensor“

Projektleiter: Prof. G. Jäger, Prof. R. Grünwald
Partner/Förderinstitution: PTB Braunschweig
Laufzeit: 4/02 bis 12/02
Schlagwörter: Autofokussysteme, Antastunsicherheiten bis 10 nm
Leistungsangebote:
- wissenschaftliche Untersuchungen auf den genannten Forschungsgebieten

Spezialausstattung:
- umfangreicher Gerätepark zu den im Fachgebiet Prozessmesstechnik genannten Gebieten

5.3.6.2 Fachgebiet Prozessmesstechnik

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dr. h.c. mult. Prof. h.c. Gerd Jäger
Tel. (03677)69 2824 Fax: (03677)69 1412
E-mail: jaeger@mb.tu-ilmenau.de

Forschungsgebiete:
Um eine hohe Qualität und Effektivität in Lehre und Forschung zu erzielen, erfolgt im Rahmen des Institutes für Prozessmess- und Sensortechnik auch forschungsseitig eine sehr enge Kooperation mit dem Fachgebiet Messtechnik im Maschinenbau und Fertigungsmeßtechnik. Durch die Bündelung aller Ressourcen wird dabei eine besondere Leistungsfähigkeit erzielt. Schwerpunktmäßig werden vom Fachgebiet folgende Forschungsgebiete bearbeitet:

- Leitung des Sonderforschungsbereiches 622 „Nanopositionier- und Nanomessmaschinen“
- Mehrkoordinaten - Nanomess- und Positioniertechnik
- Laserinterferometrische Messtaster und Autofokussysteme
- Dynamische Kraftmess- und Wägetechnik (DMS, laseroptisch, elektromagnetische Kraftkompensation)
- Dynamische Testanlagen
- Mikrowägetechnik
- Entwicklung und Untersuchung hochauflösender Komparatorwaagen
- Feldberechnung mittels FEM (Temperatur, mechanische Spannung)
- Dynamisches und statisches Verhalten von Thermometern
- Selbstkalibrierende Temperaturfühler und Miniaturfixpunktzellen
- Untersuchung und Modellierung des Mikroklimaeeinflusses in Präzisionsmessgeräten
- AD - Wandlung von Messsignalen
- Signalfilterung und Störgrößenkorrektur

Promotionen:
„Addition optischer Gangunterschiede mit Lichtwellenleitern“, H. Wurzbacher, 2001

„Nanopositionier- und Messmaschine“, T. Hausotte, 2002

„Miniatur - Fixpunktzellen als Basis selbstkalibrierender elektrischer Berührungstemometer“, D. Boguhn, 2002
Publikationen:

Forschungsprojekte:

„Komparatorwaagen, Präzisionswaage, Dynamische Wägetechnik“

Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Sartorius AG Göttingen
Laufzeit: Rahmenvertrag bis 2004; Aufgabenstellung 2000 bis 2002
Schlagwörter: Komparatorwaagen, Präzisionswaage, dynamische Wägetechnik

„Prototypkomparator 1kg“

Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Sartorius AG Göttingen
Schlagwörter: Prototypkomparator 1kg

„Digitale Hochgeschwindigkeitswäagezelle“

Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst Erfurt, Fördersumme 179.399,92
Schlagwörter: digitale Hochgeschwindigkeitswäagezelle

„Fehlerarme Messung der Frischdampftemperatur im Bereich 605 - 650 °C (KOMET 650)“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: BMBF und Industriepartner, Fördersumme 270.984,70
Schlagwörter: automatisierte Kalibrierung, Temperatursensoren unter Betriebsbedingungen, geringere Schadstoffemissionen, höherer Wirkungsgrad

„Industrielle selbstkalibrierende Thermoelemente für den Einsatz im Heißdampfbereich 520 - 590 °C“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: AiF und VGB, Fördersumme 218.321,63
Laufzeit: 7/1999 bis 12/2001
Schlagwörter: industrielle selbstkalibrierende Thermoelemente

„Intelligente Temperaturfühler“
Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: tmg Martinroda
Laufzeit: 8/2000 bis 10/2001
Schlagwörter: Konzeption einer Messeinrichtung

„3D - Präzisions - Messmaschine“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: DFG Bonn, Fördersumme 122.710,05
Laufzeit: 7/2001 bis 7/2003
Schlagwörter: 3D - Präzisionsmessmaschine

„Ultrapräzisionskoordinatenmessmaschine“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst Erfurt, Fördersumme 330.633,54
Schlagwörter: Ultrapräzisionskoordinatenmessmaschine

„Ultrapräzise Laserkalibriersysteme für Nanotechnologien“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: BMBF, Industriepartner, Fördersumme 303.707,38
Schlagwörter: interferenzoptische Kalibriermodule, Subnanometerbereich

„Entwicklung einer Nanomessmaschine“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: PTB Braunschweig
Schlagwörter: Nanomessmaschine

„Machbarkeitsstudie Selbstnachführendes Laserinterferometer“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: PTB Braunschweig
Schlagwörter: selbstnachführendes Laserinterferometer

„Erarbeitung und Aufbau eines Funktionsmusters für das Projekt Selbstnachführendes Laserinterferometer“
Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: PTB Braunschweig,
Schlagwörter: selbstnachführendes Laserinterferometer
„Nanomesstechnik“

Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Teilprojekte im SFB 622, DFG Bonn, Fördersumme 423.000
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: höchstauflösende Interferometern (0,1 nm), Nanopositionier- und Messtechnik

„Temperaturmessung im HD - Bereich“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: e.on Energie AG
Schlagwörter: Testmesseinrichtung

„Temperaturfühler mit MFPZ“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: Gemeinschaftskraftwerk Neckar GmbH
Schlagwörter: Testmesseinrichtung

„Vereinfachte Kalibriereinrichtung für Strahlungsthermometer mit unmittelbarer Rückführbarkeit auf die IST - 90“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: Universität Stuttgart, FB Energietechnik, DFG Bonn, Förder- summe 100.000
Schlagwörter: Kalibriereinrichtung für Strahlungsthermometer

„Verringerung der Temperaturmessunsicherheit im Heißdampfbereich von Kraftwerken“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: VGB Forschungsstiftung Essen
Schlagwörter: Verringerung der Temperaturmessunsicherheit

„Selbstkalibrierende Thermoelemente für den Kraftwerkseinsatz“

Projektleiter: Doz. Dr. - Ing. F. Bernhard
Partner/Förderinstitution: Electrotherm GmbH Elgersburg
Schlagwörter: Hard- und Softwareentwicklung

Leistungsangebote:

- wissenschaftliche Untersuchungen auf den spezifizierten Arbeitsgebieten Präzisionslängen- und Winkelmessungen
- geometrische Vermessung von komplizierten mechanischen Bauteilen
- Prüfung des statischen und dynamischen Verhaltens von Temperaturmessgeräten und elektronischen Waagen (Lastbereich bis 5 kg)
Spezialausstattung:
- dynamische Testanlage für Temperatursensoren und Waagen
- LWL - Technik, 3D - Koordinatenmessgerät, Präzisionsinterferometer, Klimakammer

5.3.7 Institut für Werkstofftechnik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Heinrich Kern
Tel.: (03677)69 2450 Fax: (03677)69 1597
E - mail: heinrich.kern@tu-ilmenau.de

C - Stellenstruktur: 2 C4

5.3.7.1 Fachgebiet Glas- und Keramiktechnologie

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. rer. oec. Dagmar Hülsenberg
Tel. (03677)69 2802 Fax: (03677)69 1436
E - mail: dagmar.huelsenberg@tu-ilmenau.de

Forschungsgebiete:
- Mikro- und nanostrukturierte Gläser
- Faserverstärkte Glaskompositwerkstoffe
- Nutzung elektromagnetischer Wechselwirkungen für werkstofftechnische Prozesse
- Synthese einkristalline Oxidpulver für magnetische und piezoelektrische Anwendungen
- Spezialgläser für lösliche Gießkerne
- Recycling mit Glastechnologien

Promotionen:
„Beitrag zur Entwicklung von oxidfaserverstärkten Gläsern“, T. Leutbecher, 2001

Publikationen:

Forschungsprojekte:

„SFB 622 „Nanopositionier- und Nanomessmaschinen“, Teilprojekt B 4: Glasbauteile für NPM - Maschinen“

Projektleiter: Prof. D. Hülsenberg, Dr. - Ing. A. Harnisch
Partner/Förderinstitution: DFG, Fördersumme 64.000 (+ jährlich 1 BAT - O II a und 400 h HiWi)
Laufzeit: 7/2002 bis 6/2005
Schlagwörter: mikrostrukturierte Gläser, mechanisches Verhalten, photoni­sche Bandstrukturen, Ziehtechnologie

„Elektromagnetisches Rühren undurchsichtiger Glasschmelzen“

Projektleiter: Prof. D. Hülsenberg, Dr. - Ing. B. Halbedel, Prof. A. Thess
Partner/Förderinstitution: DFG (Forschergruppe), Fördersumme 19.889 , 1 BAT - O II a, 19 h/Woche stud. Hilfskraft für 3 Jahre
Schlagwörter: Glasschmelze, Homogenisieren, Modellfluid, elektromagneti­sche Kräfte

„Transluzente Glaskomposite mit S - Glass- und Nextel - Fasern“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: DFG (Paketantrag), Fördersumme 21.975 , 1 BAT - O II a, 1/2 2 BAT - O IV a, 1 stud. Hilfskraft
Schlagwörter: Faserbeschichtung, Glasfaser/Glasmatrix - Komposite

„Funktionsintegrierte Konstruktionsgläser - Entwicklung, Herstellung, Verarbeitung und Anwendung (FuKoGlas)“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: BMBF, Fördersumme 757.041 , gemeinsam mit FG Antriebs­technik
Schlagwörter: fotostrukturierbare Gläser, Oberflächenmodifizierung

„Belichtung und Gefügemodifizierung mittels UV - Laserstrahlung zur Mikrostrukturierung fotostrukturierbarer Gläser (dritte Projektphase)“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: DFG, Fördersumme 10.000 , 1/2 BAT - O II a, 19 h/Woche stud. Hilfskraft für 1 Jahr
Laufzeit: 2/2002 bis 1/2003
Schlagwörter: UV - Laserstrahlung, UV - strukturierbare Gläser
„Werkstoff- und Verfahrensentwicklung zur Herstellung neuartiger hartmagnetischer Magnetobeads“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: AiF/Tridelta Hermsdorf, Fördersumme 112.000
Schlagwörter: Magnetobeads, Funktionalisierung, Abgasreinigung

„Wärmetauscher- und -speicherelemente aus Glasschmelzen von Recyclingmaterialien für den breiten Einsatz im Wohnumfeld und im technischen Bereich“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: AiF, PRO INNO, Fördersumme 83.750
Schlagwörter: Recycling, Beton, Schmelzen

„Einsatz der Glaskristallisationstechnik zur Synthese feindisperser, einkristalliner, perowskitischer Mischkristallpulver mit piezo- und ferroelektroelektrischen Eigenschaften“

Projektleiter: Prof. D. Hülsenberg
Partner/Förderinstitution: DFG, Fördersumme 154.120 , 1 BAT - O II a, 2 ½ BAT - O IV a, 2 stud. Hilfskräfte
Schlagwörter: Glaskristallisationstechnik, Kristallisation (bottom - up, top - down), Mischkristallbildung, PZT - Pulver

„Herstellung, werkstofftechnische Bewertung und Optimierung von hartmagnetischen Basismaterialchargen für magnetische Funktionspartikeln in Festphasensynthesen und Biotests“

Projektleiter: Prof. D. Hülsenberg, Dr. - Ing. B. Halbedel
Partner/Förderinstitution: Institut für Physikalische Hochtechnologie e. V. Jena
Schlagwörter: Ferritpulver, Granulierung, Magnetobeads

Leistungsangebote:
- Entwicklung von speziellen Glas-, Keramik- und Verbundwerkstoffen, Musterherstellung
- Technologieentwicklung für Glas-, Keramik- und Verbundwerkstoffe
- Eigenschaftsbestimmung an Glas-, Keramik- und Verbundwerkstoffen sowie Rohstoffen
- Mikrostrukturierung von Gläsern, Funktionenintegration und Applikation von mikrostrukturierbaren Glasbauteilen; Musterherstellung
- Herstellung superfeiner oxidischer Pulver, Entwicklung ferrimagnetischer Werkstoffe
- Untersuchung der Verglasungsfähigkeit von Reststoffen
- Applikation von Glas- und Keramikrecyclingwerkstoffen

Spezialausstattung:
- Verschiedene Schutzgas-, Schmelz-, Sinter- und Temperöfen bis 1700 °C
- Spezialschmelztechnik mit Schnellkühltechnik
- Dilatometer, Differential - Thermo - Analyse und Thermogravimetrie
- Rasterelektronen, Rasterkraft- und optische Mikroskope
- UV/VIS/IR – Photospektrometer, Hochtemperatur - Prozessmikroskop
- Vibrationsmagnetometer, Zerkleinerungs- und Partikelmesstechnik (Laserpartikelanalysator)
- Messplätze zur Bestimmung mechanischer, elektrischer, magnetischer und chemischer Eigenschaften
- Werkstoffprüfmachine/Heißpresse
- Hochtemperaturviskosimeter (Rotations-, Fadenzieh- und Balkenbiegeviskosimeter)
- Anlagentechnik zur Fotostrukturierung von Glas (Maskaligner, Ätztechnik)
- Mikroprägeanlage, Mikroziehanlage

5.3.7.2 Fachgebiet Metallische Werkstoffe und Verbundwerkstoffe

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Heinrich Kern
Tel. (03677)69 2450 Fax: (03677)69 1597
E-mail: kern@tu-ilmenau.de

Forschungsgebiete:

Grundlagen- und Industrieforschung auf den Gebieten metallische Werkstoffe, Verbundwerkstoffe und Sonderwerkstoffe des Maschinenbaus sowie Werkstoffprüfung und -charakterisierung in den Komplexen:

- Tribologisches Verhalten von Werkstoffen im Temperaturbereich von - 20 °C bis 800 °C, Ermittlung der Oberflächentopographie der Reibpartner und Erforschung der Grenzflächenvorgänge
- Herstellung und Charakterisierung von Verbundwerkstoffen
- CMC - Werkstoffe mit oxidkeramischen Fasern und Matrices (Elektrophoretische Infiltration von Submikro- und Nanopartikeln in Fasergewebe, druckloses Sintern)
- Transluzente oxidische faserverstärkte Glaskomposit - Werkstoffe (Heißpressen)
- Metall - Keramik - Kompositeschichten auf Stahl mittels elektrophoretischer und galvanischer Methoden
- Schlickerguss von Großkomponenten aus nichtoxidischer Hochleistungsgeramik (Entwicklung hydrolyseunempfindlicher und sedimentationsstabiler produktionstauglicher Schlicker)

Promotionen:

“Laserinduzierte Mikrostrukturierung und Metallisierung von Polymerlacken auf elektronischen Schaltungstragern”, S. Süllwald, 2002

Habilitationen:

Publikationen:

Forschungsprojekte:

„Nichtmetallisch Anorganische Werkstoffe“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Zusammenarbeit mit HITK Hermsdorf und FSU Jena (Otto-Schott Institut), Fördersumme 647.000 DM
Laufzeit: 1999 bis 2001
Schlagwörter: Elektrophorese, nanoskalige Teilchen, Schichten, Galvanotechnik

„Transluzente oxidische, faserverstärkte Glaskomposit - Werkstoffe, Teilthema: Kurzfaser - Glaskomposite“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: DFG, Zusammenarbeit mit der TU Ilmenau, FG Glas- und Keramiktechnologie, TU Chemnitz und TU Bergakademie Freiberg, Fördersumme ca. 300.000 DM (1,5 Drittmittelstellen)
Laufzeit: 1999 bis 2003 (Verlängerung)
Schlagwörter: Kurzfaser, Glaskomposite, Transluzenz

„Innovative Werkstoffe und kostengünstige Fertigungstechnologien zum Sägen oxidischer Gläser und Einkristalle“

Projektleiter: PD Dr. - Ing. habil. H. G. Krüger
Partner/Förderinstitution: BMBF, Zusammenarbeit mit PV Silicon GmbH Erfurt, Fördersumme 90.000 DM
Laufzeit: 2000 bis 2002
Schlagwörter: Halbleitertechnologie, Sägen, Silizium

„Potentialunterstützte Herstellung von Verbundwerkstoffen und deren Charakterisierung“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: DFG, TU Chemnitz, Bergakademie Freiberg, Universität des Saarlandes, Universität Bayreuth, Fördersumme ca. 320 000 DM (2 Drittmittelstellen) bzw. Fördersumme ca. 165.000,00 (2 Drittmittelstellen)
Schlagwörter: Verbundwerkstoffe, Elektrophorese, Keramikmatrix, Faserverstärkung
„Schlickerguss für Großkomponenten aus nichtoxidischer Hochleistungskeramik, Teilthema: Herstellung sedimentationsstabiler und hydrolyseunempfindlicher Schlicker“

Projektleiter: PD Dr. - Ing. habil. H. G. Krüger
Partner/Förderinstitution: FCT Technologie GmbH Rauenstein, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 246.900 DM
Laufzeit: 2001 bis 2003
Schlagwörter: Schlickerguss, Hochleistungskeramik, Siliziumnitrid

„SFB Nanopositionier- und Nanomessmaschinen, Teilprojekt B 3“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: DFG, Fördersumme FG - Teil anteilig von 638.500 , für 2002 1 Drittmittelstelle
Laufzeit: seit 2002
Schlagwörter: Nanomesstechnik, Nanotechnologie, Werkstoffe

„Forschungsschwerpunkt Grenzflächentechnologien, Teilthema: Untersuchungen zum Reibungs- und Verschleißverhalten bei tiefen Temperaturen“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 514.750
Schlagwörter: Tribologie, Reibung, Eis

„Länderübergreifendes Studium“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: BLK, Thüringer Ministerium für Wissenschaft, Forschung und Kunst, Fördersumme 450.000 DM
Schlagwörter: Studienangebote, Module, Ingenieurwissenschaften, Medien

„Modellprojekt: Entwicklung und Erprobung eines integrierten Leistungspunktesystems in der Weiterentwicklung modularisierter Studiengänge am Beispiel der Ingenieurwissenschaften“

Projektleiter: Prof. H. Kern
Partner/Förderinstitution: Bund - Länder - Kommission für Bildungsplanung und Forschungsförderung, Mitarbeit von 5 Hochschulverbänden, Fördersumme TUI 310.718
Laufzeit: 10/2001 bis 9/2004
Schlagwörter: Mobilität, Arbeitsmarktchancen für Hochschulabsolventen, Wettbewerbsfähigkeit

Leistungsangebote:

In den Arbeitsfeldern des Fachgebiets Metallische Werkstoffe und Verbundwerkstoffe erstreckt sich das Angebot von grundlegenden Forschungs- und Entwicklungsarbeiten bis hin zu vollständigen Problemlösungen für die Industrie. Weiterhin wird das Ziel verfolgt, die klein- und mittelständische Industrie bei innovativen Entwicklungen zu unterstützen, um
technologische Projekte zeit- und marktgerecht zu entwickeln und in eine Vorserienferti-
gung zu überführen.

Spezialausstattung:

Metallographie, REM, EDX, konfokales Laser-Scanning-Mikroskop, Lichtmikroskopie mit Bildverarbeitung, Festigkeitsprüftechnik, Mikrohärteprüftechnik, instrumentiertes Pendel-
schlagwerk, Potentialmessmethoden, Partikelmesstechnik, Rotationsviskosimeter, Wärme-
übergangszahl, Wärmeleitfähigkeit, Tribometer, Oberflächenprofilometer, Röntgen-
Diffraktometer, Druckgussanlage, Öfen bis 2200 °C.
5.4 Fakultät für Mathematik und Naturwissenschaften

Anschrift: 98693 Ilmenau, Weimarer Straße 25 (Curiebau)

Dekan: Univ. - Prof. Dr. rer. pol. habil. Andreas Will
Tel.: (03677)69 3703 Fax: (03677)69 3206
E - mail: dekan@mathematik.tu-ilmenau.de

Prodekan: Univ. - Prof. Dr. rer. nat. habil. Silvia Vogel
Tel.: (03677)69 3626 Fax: (03677)69 3270
E - mail: silvia.vogel@tu-ilmenau.de

5.4.1 Institut für Mathematik

Institutsleiter: Univ. - Prof. Dr. rer. nat. habil. Achim Ilchmann
Tel.: (03677)69 3623 Fax: (03677)69 3270
E - mail: achim.ilchmann@tu-ilmenau.de

C - Stellenstruktur: 4 C4, 5 C3

5.4.1.1 Fachgebiet Diskrete Mathematik und Algebra

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Dr. h. c. Hansjoachim Walther
Tel.: (03677)69 3613 Fax: (03677)69 3272
E - mail: hansjoachim.walther@tu-ilmenau.de

Forschungsgebiete:
Kombinatorik/Graphentheorie

Promotionen:
„Leichte Teilgraphen in Polyedergraphen“, I. Fabrici, 2002

Publikationen:

M. Voigt, H. Walther: „Polyhedral graphs with restricted number of faces of the same type“, Discrete Mathematics 244 (2002), pp. 473 - 478

Forschungsprojekte:

„INTAS - Projekt „Graph Colourings“ (Intas - Open - 97 - 1001)“

Projektleiter: Prof. Hansjoachim Walther
Partner/Förderinstitution: EU, Fördersumme 92.000 DM
Laufzeit: 01.01.1999 bis 31.12.2001
Schlagwörter: Polyedergraphen, Flächen- und Kantentypen

„DAAD - Projekt: Projektbezogener Personenaustausch mit der Slowakei“

Projektleiter: Prof. Hansjoachim Walther
Partner/Förderinstitution: P.J. Šafárik University Kosice, DAAD, Fördersumme 12.100
Laufzeit: 01.01.2002 bis 31.12.2003
Schlagwörter: längste Kreise, Polyedergraphen

Leistungsangebote:

- Gruppentheoretische Methoden in Chemie und Physik
- Strukturtheorie symplektischer Moduln

5.4.1.2 Fachgebiet Wahrscheinlichkeitsrechnung und Mathematische Statistik

5.4.1.3 Fachgebiet Mathematische Optimierung

5.4.1.4 Fachgebiet Mathematische Methoden des Operations Research

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Silvia Vogel
Tel.: (03677)69 3626 Fax: (03677)69 3270
E - mail: silvia.vogel@tu-ilmenau.de

Fachgebietsleiter: Univ. - Prof. Dr. Jan - J. Rückmann
(01.10.1999 - 14.01.2001) z. Z. unbesetzt

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Armin Hoffmann
Tel.: (03677)69 3627 Fax: (03677)69 3270
E - mail: armin.hoffmann@tu-ilmenau.de

Forschungsgebiete:

- Mathematische Methoden der globalen Optimierung
- Beste Approximation von Funktionen und Punkt - Menge - Abbildungen
- Verallgemeinerte semi - infinite Optimierung
- Nichtigglatte Optimierung
- Stochastische Optimierung
- Nichtigparametrische Statistik,
- Statistik stochasticer Prozesse
- Mathematische Modellierung, Analyse (und Optimierung) von Sigma - Delta Modulatoren

Publikationen:

Forschungsprojekte:

„Mathematische Beschreibung und Analyse von Sigma - Delta Konvertern über Differenzen- und Differentialgleichungen“

Projektleiter: Prof. A. Hoffmann, Prof. B. Marx
Partner/Förderinstitution: Institut für Theoretische und Technische Informatik/ Mitarbeit im DFG - Graduiertenkolleg 164/96 "Automatisierter Entwurf analoger und gemischter analog digitaler Systeme", Fördersumme 70.000 DM
Schlagwörter: AD - Wandler, Differenzengleichung, Filterverhalten, Modulatoren, Integrator
„Entwicklung von Methoden zur Lösung bestimmter Klassen von verallgemeinerten semi-infiniten Optimierungsproblemen“

Projektleiter: Prof. A. Hoffmann, M. Sc. A. Geletu
Partner/Förderinstitution: DAAD, Fördersumme 28.000 DM pro Jahr
Laufzeit: 1.4.1999 bis 30.9.2002
Schlagwörter: Optimierungsprobleme

„Anwendung der globalen Optimierung bei Approximationsaufgaben“

Projektleiter: Prof. A. Hoffmann, Prof. Dr. Tibor Szendes (Universität Szeged)
Partner/ Förderinstitution: Universität Szeged, DAAD und MÖB / Ungarn, Fördersumme 10.000 DM pro Jahr
Laufzeit: 01.01.2001 bis 31.12.2002
Schlagwörter: globale Optimierung, Approximation

Leistungsangebote:
- Numerische Experimente zur Nichtlinearen Optimierung. Skript, begleitend zur Vorlesung
- „Mathematische Optimierung - Theorie und Verfahren“, (etwa 100 S., 2002). (steht im Netz unter der Rubrik Lehrmaterial des Institutes im jeweiligen Semester der Lehrveranstaltung zur Verfügung).

Spezialausstattung:
- Rechnernetz aus Linux - und Sun - Solaris - Workstation sowie Windows - PCs
- Leistungsfähige Simulations-, Steuerungsentwurfs- und Optimierungssoftware

5.4.1.5 Fachgebiet Numerische Mathematik und Informationsverarbeitung

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Hans Babovsky
Tel.: (03677)69 3616 Fax: (03677)69 3272
E - mail: hans.babovsky@tu-ilmenau.de

Forschungsgebiete:
- Kinetische Gastheorie, Inverse Probleme in der Strömungsdynamik
- Numerik dynamischer Systeme, Diskretisierungsverfahren für gewöhnliche und partielle Differentialgleichungen
- Komplexität und Kondition numerischer Algorithmen
Publikationen:

Forschungsprojekte:

"Stochastische Partikelsysteme als numerische Verfahren für Probleme der Aerosoldynamik"

Projektleiter: Prof. H. Babovsky mit W. Wagner, WIAS Berlin
Partner/Förderinstitution: DFG - Projekt im Rahmen des DFG - Schwerpunktprogramms „Interagierende stochastische Systeme von hoher Komplexität“, Fördersumme 88.000 DM
Laufzeit: Oktober 1997 bis September 2001
Schlagwörter: Aerosoldynamik, Gelation, Monte Carlo - Verfahren

„Kinetische Randschichten und ihre Kopplung an strömungsdynamische Felder“

Projektleiter: Prof. H. Babovsky
Partner/Förderinstitution: DFG - Projekt im Rahmen des DFG - Schwerpunktprogramms „Analysis und Numerik von Erhaltungsgleichungen“, Fördersumme 171.400 DM
Laufzeit: April 1998 bis September 2002
Schlagwörter: Boltzmann - Gleichung, diskrete Geschwindigkeitsmodelle

„Simulation kinetischer Gasflüsse im Übergangsbereich zur Strömungsdynamik“

Projektleiter: Prof. H. Babovsky
Partner/Förderinstitution: DFG - Projekt im Rahmen des DFG - Schwerpunktprogramms „Analysis und Numerik von Erhaltungsgleichungen“, Fördersumme 43.000
Laufzeit: Oktober 2001 bis September 2003
Schlagwörter: Boltzmann - Gleichung, strömungsdynamischer Limes, kinetische Modelle
„Magnetfeldtomographische Detektion von Grenzflächenbewegungen: Numerische Behandlung inverser Probleme“

Projektleiter: Prof. H. Babovsky (mit Dr. - Ing. H. Bauer)
Partner/Förderinstitution: DFG - Projekt im Rahmen der DFG - Forschergruppe Magnetofluiddynamik: Strömungsbeeinflussung und Strömungsmessung in elektrisch leitfähigen Flüssigkeiten“, Fördersumme 147.000
Laufzeit: 2001 bis 2004
Schlagwörter: Aluminium - Reduktionszellen, Instabilitäten, Steuerung

„Einfluss räumlicher Fluktuationen auf das Gelationsverhalten von Koagulationsprozessen“

Projektleiter: Prof. H. Babovsky (mit W. Wagner, WIAS Berlin)
Partner/Förderinstitution: DFG - Projekt Fördersumme 50.000
Laufzeit: Dezember 2002 bis November 2003
Schlagwörter: Koagulationsprozesse, Diffusionsprozesse, Gelation

Leistungsangebote:
- Modellierung der Aerosoldynamik
- Magnetfeldtomografische Detektion von Grenzflächen

5.4.1.6 Fachgebiet Analysis und Dynamische Systeme

5.4.1.7 Fachgebiet Analysis/Funktionalanalysis

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Achim Ilchmann
Tel.: (03677)69 3623 Fax: (03677)69 3270
E - mail: achim.ilchmann@tu-ilmenau.de

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Bernd Marx
Tel.: (03677)69 3624 Fax: (03677)69 3270
E - mail: bernd.marx@tu-ilmenau.de

Forschungsgebiete: (Prof. Marx und Prof. Ilchmann gemeinsam)
- Qualitative Theorie dynamischer Systeme
- Kontrolltheorie und optimale Prozesse
- Adaptive Regelung mit Anwendungen auf Bioreaktoren
- Zufällige dynamische Systeme
- Mathematische Beschreibung, Analyse und Optimierung analog - digitaler Strukturen

Publikationen:

Forschungsprojekte:

"Adaptive Folgeregelung bei nichtlinearen Systemen mit höherem Relativgrad"

Projektleiter: Prof. A. Ilchmann
Partner/Förderinstitution: DFG, Fördersumme 10.000
Laufzeit: Oktober 2002 bis September 2004
Schlagwörter: adaptive Regelung, nichtlineare Systeme

5.4.1.8 Fachgebiet Kombinatorik/Graphentheorie

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Michael Stiebitz
Tel.: (03677)69 3621 Fax: (03677)69 3270
E - mail: michael.stiebitz@tu-ilmenau.de

Forschungsgebiete:

- Kombinatorik/Graphentheorie

Publikationen:

M. V. Diudea, P. E. John: Covering polyhedral tori, MATCH (Communications in mathematical and in computer chemistry) 44 (2001), pp. 103 - 116

Forschungsprojekte:

„Graphenminoren, Graphenfärbungen und Algorithmen“

Projektleiter: Priv. - Doz. Dr. rer. nat. habil. Th. Böhme
Partner/Förderinstitution: gefördert durch das BMFBF im Rahmen der wissenschaftlich-technischen Zusammenarbeit mit Slowenien, Projektnummer SLO 99/003, Fördersumme 9.000
Laufzeit: 01.10.2000 bis 31.12.2002
Schlagwörter: Graphentheorie, diskrete Mathematik

„Mathematische und chemische Grundlagen für neue Materialien“

Projektleiter: Priv. - Doz. Dr. rer. nat. habil. P. John
Partner/Förderinstitution: DAAD - Projekt (SOE) in Zusammenarbeit mit Prof. Dr. Gutman (Universität Kragujevac, Jugoslawien) und Prof. Dr. Graovac (Universität Split, Kroatien), Fördersumme: 15.000 DM
Laufzeit: März 2001 bis Februar 2002
Schlagwörter: Nanostrukturen

Leistungsangebote:

- Entwicklung effektiver Algorithmen zur Berechnung spezieller Graphenparameter

5.4.1.9 **Fachgebiet Grundlagen der Mathematik**

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Jochen Harant
Tel.: (03677)69 3615 **Fax:** (03677)69 3272
E - mail: jochen.harant@tu-ilmenau.de

Forschungsgebiete:

- Grundlagen der Mathematik,
- Kombinatorik/Graphentheorie

Promotionen:

„Wegesysteme“, F. Göring, 2002

Publikationen:

J. Harant, Jendrol', S.; Randerath, B.; Ryjacek, Z.; Schiermeyer, I.; Voigt, M.: „On Weights of induced paths and cycles in claw - free and $K_{1,r}$ - free graphs“, Journal of Graph Theory 36 (3) (2001), pp. 131 - 143

F. Göring: „A proof of Menger's Theorem by contraction“, Discussiones Mathematicae, Graph Theory 22 (2002), pp. 111 - 112

Forschungsprojekte:

„Theorie der konvexen Polyeder“

Projektleiter: Prof. J. Harant
Partner/Förderinstitution: Forschungsvertrag mit der P. J. Šafárik Universität Košice, Slowakei, im Rahmen eines Rektorvertrages
Laufzeit: seit 1992, jährlich erneuertes Arbeitsprogramm
Schlagwörter: Polyedergraphen, Zerlegungen, Kreise, Färbungen

„Struktureigenschaften von Graphen“

Projektleiter: Prof. J. Harant
Partner/Förderinstitution: STAKI Budapest, Ungarn / Projektbezogenes Personenaustauschprogramm (PPP) mit Ungarn des DAAD, Fördersumme: 11.800 DM
Laufzeit: 01.01.2000 bis 31.12.2001
Schlagwörter: Graphenparameter

Leistungsangebote:

- Struktureigenschaften von Graphen
5.4.2 Institut für Physik

Institutsleiter: Univ.-Prof. Dr. rer. nat. habil. Peter Scharff
Tel.: (03677) 69 3602 Fax: (03677) 69 3205
E-mail: peter.scharff@tu-ilmenau.de

C - Stellenstruktur: 5 C4, 3 C3

5.4.2.1 Fachgebiet Theoretische Physik I

Fachgebietsleiter: Prof. Dr. rer. nat. habil. Klaus Handrich
Tel.: (03677) 69 3707 Fax: (03677) 69 3271
E-mail: klaus.handrich@physik.tu-ilmenau.de

Forschungsgebiete:

Detaillierte Computersimulation stochastischer Prozesse
- Bewegung Brownscher Teilchen (Testteilchen) in einem verdünnten klassischen Gas von
 Medienteilchen - Korrelationsfunktionen, Langevin - Gleichung, Fluktuationen - Dissipa-
 tions - Theorem II, asymmetrische Brownsche Teilchen
- Simulation der Diffusion von adsorbierten Medienteilchen auf rotierenden Testteilchen

Rechnungen zu Elementaranregungen in amorphen Festkörpern
- Untersuchungen zu Spinwellen (Magnonen) in amorphen Ferromagnetaten
- Untersuchungen zu Gitterschwingungen (Phononen) in amorphen Festkörpern
- Rechnungen zu kurzwelligen (rotonenähnlichen) Magnonen und Phononen in amor-
 phen Festkörpern, Vergleich mit Messergebnissen
- Rechnungen zu anharmonischen Realkristallen
- Untersuchung des Einflusses von Gitter - Anharmonizitäten auf Linienbreiten, Frequenz-
 verschiebungen und Temperaturabhängigkeit des Infrarot - Absorptionsspektrums von
 kristallinen Festkörperrn mittels Greenfunktionen
- Rechnungen zur Phonon - Phonon - Wechselwirkung auf der Basis der Greenschen
 Funktionen

Promotionen:

„Gerichtete Bewegung aus dem Chaos bei asymmetrischer Wechselwirkung unter Berück-
 sichtigung der Translations - Rotations - Kopplung“, D. Lehmkuhl, 2002

Publikationen:

Günther, B.; Pfeiffer, I.: „Phononische Selbstenergie anharmonischer Realkrystalle”, Arbeits-
 kreis Festkörperphysik bei der DPG, Frühjahrstagung, Regensburg, 11. - 15.03.2002, Ta-
 gungsband (DF 3.9), S. 132

Handrich, K.; Öttking, R.: „Super Debye Beitrag zur spezifischen Wärme amorpher Festkör-
 per“, Arbeitskreis Festkörperphysik bei der DPG, Frühjahrstagung, Regensburg, 11.-
 15.03.2002, Tagungsband (DY 46.37), S. 153
5.4.2.2 Fachgebiet Experimentalphysik I

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Gerhard Gobsch
Tel.: (03677)69 3700 Fax: (03677)69 3173
E - mail: gerhard.gobsch@physik.tu-ilmenau.de

Forschungsgebiete:

Besondere Schwerpunkte sind:

Anorganische Halbleiter mit Schwerpunkt Gruppe - III - Nitride
- Experimentelle Bestimmung, quantitative Analyse und Modellierung elektrooptischer Eigenschaften von Halbleiterstrukturen auf der Basis von Nitridhalbleitern und SiC
- UV - Photodetektoren und Transistoren auf der Basis von Nitridhalbleitern
- Selbstkonsistente Modellierung von Halbleibelementstrukturen
- Quantentrog- und Quantenpunktstrukturen auf der Basis von III - V - Halbleitern
- Epitaktische Chalkopyrithalbleiter für photovoltaische Anwendungen

Organische Halbleiter
- Experimentelle Analyse der elektrooptischen Eigenschaften von konjugierten Polymeren für polymerelektronische Applikationen in Korrelation zu den Herstellungsbedingungen
- Polymer - C_{60} - Gemische mit ultraschnellem Elektronentransfer für photovoltaische Anwendungen
- Herstellung und Charakterisierung einfacher Plastiksolarzellen

Grundlagenuntersuchungen zur Solarenergienutzung - Charakterisierung solarthermischer Komponenten und Systeme

Publikationen:

Forschungsprojekte:

gemeinsam mit dem Zentrum für Mikro- und Nanotechnologien (ZMN) Ilmenau:

„Netzwerk Polymere Solarzellen“ - Machbarkeit der seriellen Fertigung von flexiblen Dünnschichtsolarzellen aus organischen Funktionspolymeren“

Projektleiter: Prof. G. Gobsch
Partner/Förderinstitution: BMBF, Technische Universität Ilmenau, Fraunhofer Institut für Solare Energiesysteme (ISE), Freiburg
Laufzeit: 01.01.2002 bis 31.12.2003
Schlagwörter: Plastiksolarzelle

„GaN - basierende UV - Detektoren für die Siliziumtechnologie“ (UV - SENS)

Projektleiter: Prof. O. Ambacher, Dr. R. Goldhahn
Partner/Förderinstitution: TMWFK, Technische Universität Ilmenau (Koordinator), IL Metronik Sensortechnik GmbH, Ilmenau, CiS - Institut für Mikrosensorik gGmbH Erfurt
Laufzeit: 01.04.2002 bis 31.03.2004
Schlagwörter: UV - Sensoren

„Untersuchungen zur Entwicklung von polymeren und organischen Mischschichten für Solarzellen“ (ORSOL)

Projektleiter: Prof. O. Ambacher in Kooperation mit Prof. G. Gobsch
Partner/Förderinstitution: TMWFK, Technische Universität Ilmenau (Koordinator)
Laufzeit: 01.09.2002 bis 31.08.04
Schlagwörter: Plastiksolarzelle

Leistungsangebote:

- Spektrallellipsometrie (0.8...5.5 eV)
- Photolumineszenz und Photolumineszenzanregung (T = 2...300K)
- Photolumineszenz - Mapping (2“ - Wafer, T = 20...300K)
- Modulationsspektroskopie (Photo- /Elektroreflexion, T = 2...300K)
- Magnetotransportmessungen (bis 9 Tesla)
- Komplexe Prüfung solarthermischer und photovoltaischer Systeme

Spezialausstattung:

- Komplexer Prüfstand zur Messung der relevanten Parameter solarthermischer und photovoltaischer Komponenten und Systeme bei gleichzeitiger Bestimmung aller notwendigen meteorologischen Daten
- Spektrallellipsometer bei veränderlichem Einfallswinkel (VASE) im Energiebereich 0.8 eV \(\leq E \leq 5.5 \text{ eV} \)
- Modulationsspektrometer: Elektroreflexion (ER), Photoreflexion (PR) im Temperaturbereich 1.5 K \(\leq T \leq 300 \text{ K} \)
- Photolumineszenz (PL): 1.5 K ≤ T ≤ 300 K
- PL - Mapping - Messplatz: 20 ≤ T ≤ 300K, max. Waferdurchmesser 2Zoll
- Supraleitender Magnet für Magnetotransportmessungen bis 9 Tesla
- Photoinduzierte Absorption/Reflexion (PIA): 5K ≤ T ≤ 300K
- Komplexer Prüfstand für solarthermische und photovoltaische Systeme und Komponenten bei gleichzeitiger Messung aller notwendigen meteorologischen Daten

Schlagwörter: Halbleiter, Nanostrukturen, Quantengraben- und Quantenpunktstrukturen, Modulationsspektroskopie, Photolumineszenz, Spektrallellipsometrie, Magnetooptik, Solarthermie, Photovoltaik

5.4.2.3 Fachgebiet Technische Physik II / Polymerphysik

Fachgebietsleiter:
Univ.-Prof. Dr. rer. nat. habil. Bernd Stühn
Tel.: (03677)69 3671 Fax: (03677)69 3770
E-mail: bernd.stuehn@physik.tu-ilmenau.de

Forschungsgebiete:
- Strukturbildungsphänomene in Polymeren
- dielektrische Relaxation in flüssigkristallinen Blockcopolymeren
- polymerstabilisierte Mikroemulsionen
- Röntgenkleinwinkelstreumethoden
- NMR an Polymeren
- Strukturen in elektrisch leitfähigen Polymeren

Publikationen:

Forschungsprojekte:

„Segmentdynamik und Relaxation in mikrophasenseparierten Polymersystemen“

Projektleiter: Prof. B. Stühn
Partner/Förderinstitution: BMBF, Fördersumme 191.000 DM
Laufzeit: 1.4.1999 bis 31.3.2001
Schlagwörter: Segmentdynamik, Relaxation

„Struktur und Mechanismen der Strukturbildung in Multiskalensystemen“

Projektleiter: Prof. B. Stühn
Partner/Förderinstitution: BMBF, Fördersumme 301.096 DM
Laufzeit: 1.4.2001 bis 31.3.2004
Schlagwörter: Multiskalensystem

„Phasenverhalten, Ordnung und Dynamik von flüssigkristallin/isotropen Diblockcopolymeren“

Projektleiter: Prof. B. Stühn
Partner/Förderinstitution: Prof. Gronski, Inst. f. Makromolekulare Chemie, Univ. Freiburg, DFG, Fördersumme 153.000 DM
Laufzeit: 1.6.2000 bis 31.5.2003
Schlagwörter: Polymere, flüssigkristalline Polymere, Blockcopolymere, Mikroemulsionen, Röntgenstreueung, Neutronenstreueung, Kleinwinkelstreueung, dielektrische Spektroskopie, Kernmagnetische Resonanz,

„Dielektrische Relaxation in gefüllten Elastomeren“

Projektleiter: Prof. B. Stühn
Partner/Förderinstitution: Continental AG, Hannover
Laufzeit: 25.10.2001 bis 25.04.2002
Schlagwörter: Nanocomposite, Schichtsilikate, Reifengummi

“Control of membrane permeability with novel types of amphiphilic macromolecules“

Projektleiter: Prof. B. Stühn
Partner/Förderinstitution: Volkswagenstiftung
Laufzeit: 2002 bis 2004
Schlagwörter: Zellmembran, Permeabilität, amphiphile Makromoleküle

Spezialausstattung:

- Anlage für Röntgenkleinwinkelstreuung bei Temperaturen bis 200 °C
- Röntgenstrahlexperimentation
- Anlage für dielektrische Spektroskopie im weiten Temperatur- und Frequenzbereich
- NMR Spektrometer 300 MHz
5.4.2.4 Fachgebiet Technische Physik I

Fachgebietsleiter: Univ.-Prof. Dr. rer. nat. habil. Jürgen A. Schäfer
Tel.: (03677)69 3609 Fax: (03677)69 3205
E-mail: juergen.schaefer@tu-ilmenau.de

Forschungsgebiete:

Das Fachgebiet widmet sich der Forschungsthematik der Oberflächenwissenschaften (sur-face science). Die Aufgabe besteht insbesondere darin, die Vielfalt von Festkörperoberflä-
chen, Grenzflächen und dünnen Schichten und ihre Eigenschaften unter vielen verschiede-
nen Blickwinkeln im Detail zu studieren. Ihr Beitrag wird umso bedeutsamer, je weiter die
Miniaturisierung in Richtung Nanotechnologie fortschreitet.
In diesem Zusammenhang seien beispielsweise die organisch - anorganische Grenzfläche,
der mechanische Kontakt zwischen makroskopischen und mikroskopischen Festkörperober-
flächen einschließlich biologischer Systeme sowie das Wachstum und die Charakterisierung
von Kohlenstoffschichten, insbesondere von C60 - Molekülen oder Nanoröhren genannt.
Neben diesen Arbeiten beschäftigen wir uns mit den Verbindungshalbleitern Siliziumkarbid
und den Gruppe III - Nitriden, die alle eine große Bandlücke aufweisen und sich daher für
Anwendungen als elektronische Bauelemente für hohe Temperaturen und/oder höchste
Frequenzen sowie für die Sensorik eignen. In diesem Zusammenhang spielen auch elektri-
sche Kontakte, basierend z. B. auf Metallkarbiden, eine entscheidende Rolle, genauso wie
das epitaktische Wachstum von Isolationsschichten.

Schwerpunkte der Forschung sind:

- Prozessierung und Charakterisierung ultradünner Schichten
- Oberflächen- und Grenzflächenphänomene auf atomarer Skala
- strukturelle, elektronische, vibronische Eigenschaften von Halbleitern mit großer
 Bandlücke - SiC und Gruppe III - Nitride
- Dotierungsprofile in Halbleitern
- Strukturbildung organischer Schichten
- C60 - Nanoröhren, Nanodrähte
- Wechselwirkung von Wasserstoff mit Siliziumoberflächen
- Mikrotribologie der Mikromechanik
- UHV Tribologie
- Technische Eigenschaften von Leuchtstoffröhren

Habilitationen:

„Photonische Kristalle“, U. Rossow, TU Ilmenau, 2001

„Hartstoffschichten“, M. Scherge, TU Ilmenau, 2001

„Kolloidale Suspensionen als Modellsysteme der Physik“, S. Tautz, TU Ilmenau, 2001

Publikationen:

Scherge, M.; Schaefer, J. A.: „Macro and Microtribology - Similar Results different Origins?“
Tribotest journal 7 - 3, March 2001, (7) pp. 245 - 253

F. S. Tautz, M. Eremtchenko, Y. Shostak, J. A. Schaefer, M. Sokolowski, V. Sklover, E. Um-
bach: “Strong electron - phonon coupling at a metal/organic interface: PTCDA/Ag(111).”

Forschungsprojekte:

„Hochaufgelöste Elektronenenergieverlustspektroskopie an modifizierten Siliziumkarbid - und Galliumarsenid - Schichten“

Projektleiter: Prof. J. A. Schäfer

Partner/Förderinstitution: DFG; Fördersumme: 24.000 Sachmittel, 1 wiss. Mitarbeiter und ½ wiss. Mitarbeiterstelle für 2 Jahre

Laufzeit: Mai 1998 bis 31. Juli 2003

Schlagwörter: SiC - Oberflächen, GaAs - Oberflächen, Phononen, Plasmonen, hochauflösende Elektronenenergieverlustspektroskopie

„Symmetrieeigenschaften und Dispersion der Schwingungen des Wasserstoffs auf Si(100) und Si (110) - Oberflächen“

Projektleiter: Prof. J. A. Schäfer

Partner/Förderinstitution: DFG; Fördersumme: 15.000 , ½ Mitarbeiterstelle für 2 Jahre und persönliche Leihgaben der DFG

Laufzeit: Jan 2000 bis 31. Dez 2003

Schlagwörter: Dispersionsverhalten, Oberflächenphononen, Siliziumoberflächen, hochauflösende Elektronenenergieverlustspektroskopie

„Theoretische und experimentelle Untersuchung der oberflächenlokalisierten Phononen und Plasmonen an reinen und adsorbatbedeckten kubischen und hexagonalen SiC Oberflächen“

Projektleiter: Prof. J. A. Schäfer

Partner/Förderinstitution: DFG; Fördersumme:12.800 und ½ Mitarbeiterstelle für 2 Jahre

Laufzeit: Juni 2001 bis Dez 2004

Schlagwörter: Phononen, Plasmonen, SiC - Oberflächen, hochauflösende Elektronenenergieverlustspektroskopie, kubische SiC - Oberflächen, hexagonale SiC - Oberflächen

Projektleiter: F. S. Tautz, Mitantragsteller: Prof. J. A. Schäfer

Partner/Förderinstitution: Universität Würzburg, Fachgebiet Experimentelle Physik II, Internationale Universität Bremen; School of Engineering and Science, Fördersumme: 33.000 (einschließlich wiss. MA)
Laufzeit: Mai 2001 bis April 2003
Schlagwörter: Pentacene, Fullerene , metallische Oberflächen, Halbleiteroberflächen, hochauflösende Elektronen, Energieverlustspektroskopie (HREELS), Beugung langsamer Elektronen (LEED), Photoelektronenspektroskopie (UPS, XPS); Rastertunnelmikroskopie (STM)

„Mikrotribologie von selbstorganisierten organischen Monoschichten“

Projektleiter: Prof. J. A. Schäfer
Partner/Förderinstitution: DFG, Fördersumme: 23.500 , 1 wiss. Mitarbeiter für zwei Jahre
Laufzeit: Jan 2002 bis Dez 2003
Schlagwörter: Monoschichten auf Silizium, Mikrosystemtechnik, Mikrotribologie von Mikroschichten

„Tribologische Eigenschaften“ (Projekt B 5) im SFB 622 Nanopositionier- und Nanomessmaschinen der Deutschen Forschungsgemeinschaft

Projektleiter: Prof. G. Jäger
Partner/Förderinstitution: Fakultäten Maschinenbau und Elektrotechnik und Informationstechnik; Fördersumme: 43.000 , 1 wiss. Mitarbeiter und stud. Hilfskraft (400 h pro Jahr)
Laufzeit: Feb 2002 bis Jan 2005
Schlagwörter: Werkstoffpaarungen, tribologisches Verhalten, Nanopositionier- und Messmaschinen; Schmiermittel, Reibungsprozess, Präzision von Bewegungen

„Verbesserung der technischen Eigenschaften von Hochspannungsleuchtröhren“

Projektleiter: Prof. J. A. Schäfer, Dr. G. Hartung
Partner/Förderinstitution: TMWFK, Neon - Böhm GmbH & Co. KG Ilmenau, Fördersumme: 201.000 einschließlich 1 wiss. Mitarbeiter
Laufzeit: 01.04.2000 bis 31.03.2002
Schlagwörter: Gas- und Plasmaanalyse, Entladungsgas; Elektrodenoberflächen; Aktivierungsschicht, Lichtausbeute, Ausfallrate, Optimierung der Elektroden, Massenspektrometrie, Entladungsgas

„Wachstumskinetik und elektrische Eigenschaften niedermolekularer organischer Funktionsschichten für die Anwendung in Feldeffekttransistoren!“

Projektleiter: Prof. J. A. Schäfer
Partner/Förderinstitution: TMWFK - Projekt im Zentrum für Mikro- und Nanotechnologien (ZMN), Fördersumme: 214.000 , 1 wiss. Mitarbeiter und ½ technischer Mitarbeiter
Laufzeit: Juli 2002 bis Dez 2004
Schlagwörter: dünne Schichten, Vakuumdeposition, Funktionseigenschaften organischer Schichten, Strukturanalyse, Wachstumskinetik, Grenzflächenwechselwirkungen
Leistungsangebot:

Prozessierung und Charakterisierung von ultradünnen Schichten, technischen und einkristallinen Oberflächen hinsichtlich:
- chemischer Zusammensetzung,
- struktureller, elektronischer und vibronischer
- sowie mikro- und nanomechanischer Eigenschaften

Spezialausstattung:

- Rastersondenmikroskopie (STM, AFM)
- Photoemissionselektronenmikroskopie (PEEM)
- Elektronenspektroskopie nach Anregung mit Licht oder Elektronen unterschiedlicher Energie (XPS, UPS, EELS)
- Hochauflösende Elektronen-Energieverlustspektroskopie (HREELS)
- Beugung langsamer und schneller Elektronen (LEED, RHEED)
- Augerelektronenspektroskopie (AES)
- Mikroreibungs- und Verschleißmessung
- Massenspektrometrie

5.4.2.5 Fachgebiet Chemie

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Peter Scharff
Tel.: (03677)69 3602 Fax: (03677)69 3271
E - mail: peter.scharff@tu-ilmenau.de

Forschungsgebiete:

Fullerene und Kohlenstoff - Nanoröhren
- Herstellung von Fullerenen und C - Nanoröhren,
- Präparation nanostrukturierter Materialien ausgehend von Fullerenen und C - Nanoröhren
- Endo- und exohedrale Dotierung von Fullerenen
- Polymerisation von Fullerenen
- Untersuchungen zum thermischen Abbau von Fullerenen

Graphitinterkalationsverbindungen (GIV)
- Präparation und Charakterisierung von GIV mit Akzeptoren und Donatoren
- Untersuchung superdichter Alkali - GIV
- Herstellung nanostrukturierter Materialien auf Basis von Akzeptor- und Donor - GIV

Präparative Anorganische Chemie
- Synthese und Charakterisierung von binären und ternären Metallnitraten
- Synthese und Charakterisierung von kovalenten Metallperchloraten

Elektrochemie
- Präparation und Untersuchung von Fullerendervaten
- Untersuchung von GIV hinsichtlich ihrer Eignung als aktives Elektrodenmaterial in galvanischen Zellen
- Untersuchung zum Bildungs- und Abbaumechanismus von Fullerendervaten, GIV, kovalenten Nitraten und Perchloraten
- Elektrochemische Impedanzmessungen an GIV und Fullerenen
- Cyclische Voltammetriemessungen an GIV und Fullerenen
Gassensorik und Gasanalytik zum Nachweis von flüchtigen organischen Verbindungen
- Gassensoren mit zeolithischen Filtrern/Membranen
- Spurenanalyse flüchtiger organischer Verbindungen mit GS - MS und Gassensoren

Heterogene Katalyse und Gassensorik an/mit oxidischen Materialien
- Synthese, Modifizierung und Charakterisierung von ausgewählten Zeolithen
- Untersuchung katalytischer Reaktionen an Zeolithen für gassensitive Schichten und katalytische Deckschichten

Gastrennende mikroporöse Membranen für die Gassensorik
- Hydrothermalwachstum von zeolithischen Membranen
- Untersuchungen zum Transport (Diffusion, Permeation) von Gasen durch zeolithische Membranen

Promotionen:
„Zeolithische Filter und Membranen in der Gassensorik“, Dirk Nipprasch, 15.11.02

Publikationen:

Forschungsprojekte:

ORSOL

Projektleiter: Prof. O. Ambacher
Partner/Förderinstitution: TMWFK, Fördersumme 104.000
Laufzeit: 01.09.2002 bis 31.08.2004
Schlagwörter: Solarzelle
Netzwerk erneuerbarer Energieforschung: Polymere Solarzelle - Machbarkeit der seriellen Fertigung von flexiblen Dünnschichtsolarzellen aus organischen Funktionspolymeren

Projektleiter: Prof. Dr. G. Gobsch
Partner/Förderinstitution: BMBF, Fördersumme 1.350.000
Laufzeit: 01.01.2002 bis 31.12.2003
Schlagwörter: Dünnschichtsolarzelle

Leistungsangebote:
- Herstellung von Kohlenstoff - Nanostrukturen und Derivaten
- Elektromagnetische Untersuchungen
- Analytik mit AAS, HPLC, GC - MS

Spezialausstattung:
Elektrochemie (Impedanzmessung)
Fulleren- und Nanoröhrengeneratoren

5.4.2.6 Fachgebiet Theoretische Physik II/Computational Physics

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Philipp Maß
Tel.: (03677)69 3612 Fax: (03677)69 3271
E - mail: philipp.maass@tu-ilmenau.de

Forschungsgebiete:
- Transportvorgänge und Relaxationsvorgänge in Festkörpern
- Kinetik von Phasentransformationen in Kondensierter Materie
- Nukleations- und Wachstumsprozesse auf Oberflächen
- Anwendungen der Statistischen Physik auf physiologische Zeitreihen in der Medizin

In den Jahren 2001 und 2002 waren zentrale Forschungsthemen:

Wachstum dünner Filme in der Molekularstrahlepitaxie
- Monte - Carlo - Simulationen, Skalentheorien sowie die numerische Lösung speziell entwickelter Ratengleichungen zur Keimbildung und zum Wachstum von Clustern auf Oberflächen; Nukleation von stabilen Keimen auf bereits bestehenden Inseln an einer Oberfläche (second layer nucleation); Ursachen für die Entstehung rauer oder glatter Filmformologien; Einfluss von Adatom - Wechselwirkungen auf Nukleationsprozesse

Ionentransport in Festkörperelektrolyten
- Entwicklung mikroskopischer Theorien basierend auf Hopping - Modellen zur Erklärung stochiometrischer Effekte und dispersiver Transporteigenschaften in ionenleitenden Gläsern und Kristallen, Polymerlektrolyten sowie Festkörpern mit hoher Defektkonzentration

Polymerstrukturierung auf Oberflächen
- Untersuchungen zur Phasenseparationskinetik inkompatibler Polymermischungen auf strukturierten Oberflächen im Rahmen semi - mikroskopischer Modelle; Bestimmung optimaler Bedingungen zur Translation von Mikro- und Nanostrukturen in dünne Polymerfilme
Dichtefunktionaltheorie für Gittersysteme
- Herleitung exakter und approximativer Dichtefunktionale zur Berechnung von Oberflächenphasen, Benutzungsübergängen und Confinement - Effekten in Festkörpern; Anwendungsbereiche betreffen metallische Legierungen, adsorbierte Filme im Submonolagen - Bereich, Interkalationsverbindungen, kristalline ionic Leiter u. a.

Langsame Nichtgleichgewicht - Dynamik in komplexen Systemen
- Analytische Rechnungen und Computersimulationen zur Alterungsdynamik komplexer Nichtgleichgewichtssysteme; Aufstellung und Verifizierung verallgemeinerter Fluktuation - Dissipation - Theoreme; theoretisches Verständnis von Verjüngungs- und Gedächtniseffekten in Experimenten mit Temperatursprüngen, zyklischen Temperaturvariationen und externen Feldmodulationen

Statistische Analyse und Modellierung physiologischer Signale
- Analyse zeitlicher Korrelationen und raum - zeitlicher Muster in physiologischen Signalen mit Methoden der Statistischen Physik zur Vereinfachung und Verbesserung medizinischer Diagnose - und Therapieverfahren; Entwicklung einer computergestützten Methode zur Identifikation der anaeroben Schwelle; Konstruktion von Hardwarekonfigurationen zur Datenextraktion von Überwachungsmonitoren auf Intensivstationen (EKG, Blutdruck, Sauerstoffsättigung, etc.); Analyse der physiologischen Daten mit speziell entwickelten Computerprogrammen

Weitere Informationen unter: http://www.physik.tu-ilmenau.de/theo2/theophys.html

Promotionen:
- „Transport and Aging in Glassy Systems“, Rinn, Bernd, 2001
- „Coarse - Grained Models for the Kinetics of Polymeric Systems“, Eurich, Frank, 2002

Publikationen:
Forschungsprojekte:

„Laterale Strukturbildung an Grenzflächen in Ginzburg - Landau - artigen Modellen“

- **Projektleiter:** Prof. Ph. Maaß
- **Partner/Förderinstitution:** Projekt im SFB 513 „Nanostrukturen an Grenzflächen und Oberflächen“ an der Universität Konstanz, DFG, Fördersumme 84.000
- **Laufzeit:** 01.01.1999 bis 31.12.2001
- **Schlagwörter:** Phasenseparation, steife partielle Differentialgleichungen, Ordnungsparameterevolutionen, wandinduzierte spinodale Entmischung

„Polymere an Oberflächen“

- **Projektleiter:** Prof. Ph. Maaß
- **Partner/Förderinstitution:** Projekt im European Graduate College „Soft Condensed Matter“ (Grenoble - Konstanz - Strasbourg), DFG, Fördersumme 71.000
- **Laufzeit:** 01.07.2001 bis 30.06.2004
- **Schlagwörter:** Ellipsoidmodelle, Block - Copolymer - Systeme, Phasendiagramme, Oberflächenstruktur - Polymer - Translation, Entmischungskinetik, Mikrophasenseparation

„Dynamik superparamagnetischer Kolloide und Nanocluster auf Oberflächen“

- **Projektleiter:** Prof. Ph. Maaß
- **Partner/Förderinstitution:** Projekt im SFB 513 „Nanostrukturen an Grenzflächen und Oberflächen“ an der Universität Konstanz, DFG, Fördersumme 121.000
- **Laufzeit:** 01.01.2001 bis 31.12.2004
- **Schlagwörter:** dielektrische Relaxation, Dipolsysteme, Muon - Spinpräzession, lokale Magnetfeld - Fluktuationen, magnetische Anisotropieeffekte

Leistungsangebote:

- Numerische Methoden zur Simulation von Systemen mit langreichweitigen Wechselwirkungen
- Fortgeschrittene Monte - Carlo - Algorithmen
- Spezielle Verfahren zur Zeitreihenanalyse

Spezialausstattung:

- Rechencluster mit Linux - Workstations
5.4.2.7 Fachgebiet Experimentalphysik II / Umweltphysik

Fachgebietsleiter: Univ.-Prof. Dr. rer. nat. habil. Thomas Leisner
Tel.: (03677)69 3671 Fax: (03677)69 3770
E-mail: thomas.leisner@tu-ilmenau.de

Forschungsgebiete:

Folgende Aufgabenstellungen wurden bearbeitet:
- Stabilität hochgeladener Aerosolpartikel
- Entwicklung von Mikro-Photographietechniken in Teilchenfallen
- Entwicklung von kompakten Teilchenfallen für die Infrarot- und die Raman-Mikroskopie
- Raman-spektroskopische Kennzeichnung von DLC-Schichten

Publikationen:

Forschungsprojekte:

„Entwicklung von Mikro-Spektroskopie - Techniken zur Analyse von levitierten Einzel-Aerosol-Partikeln“

Projektleiter: Prof. Th. Leisner
Partner/Förderinstitution: Fa. Bruker GmbH
Laufzeit: 1999 bis 2002
Schlagwörter: Mikroramanspektroskopie, Aerosole, Mikroinfrarotspektroskopie, levitierte Partikel
„Atmosphärische Diagnostik: Mikrospektroskopie an Einzelpartikeln“

Projektleiter: Prof. Th. Leisner
Partner/Förderinstitution: Deutsche Bundesstiftung Umwelt, Fördersumme 150.000
Laufzeit: 1999 bis 2002
Schlagwörter: levitierte Partikel, Mikrospektroskopie

„Coulomb - Stabilität hochgeladener Teilchen“

Projektleiter: Prof. Th. Leisner, Prof. Dr. Bernd Huber, CEA Grenoble
Partner/Förderinstitution: DAAD, Fördersumme 30.000
Laufzeit: 1999 bis 2002
Schlagwörter: Mikrotröpfchen, Cluster, Coloumbstabilität

Spezialausstattung:
- Paulfallen - Messplätze mit Klimakammern zur Untersuchung levitierter Aerosolpartikel
- Infrarot - Fouriertransform - Spektrometer IFS 66 mit IR - Mikroskop und Stepp - scan - Technik, Wellenzahlbereich von 7000 cm\(^{-1}\) bis 20 cm\(^{-1}\)
- Raman - Fouriertransform - Spektrometer (Ramanmodul FRA 106)
- Photoakustische Messzelle, ATR - Einrichtungen
- Raman - Tripelmonochromator T 64000 mit Mikroskop
- Kurzzeit - Mikroskop

Leistungsangebote:
- Ramanspektroskopie
- Infrarotspektroskopie

5.4.2.8 Fachgebiet Physikalische Chemie/Mikroreaktionstechnik
Stiftungsprofessur der Deutschen Bundesstiftung Umwelt

Fachgebietsleiter: Univ. - Prof. Dr. rer. Nat. habil. Michael Köhler
Tel.: (03677)69 3629 Fax: (03677)69 3179
E - mail: michael.koehler@tu-ilmenau.de

Forschungsgebiete:
- Entwicklung von Chipreaktoren
- Untersuchung nanotechnischer und mikrochemischer Prozesse in Chipreaktoren und auf Chipoberflächen
- Entwicklung und Testung von Chipreaktor - Anordnungen zur umweltschonenden Durchführung chemischer Synthesen, Analysen sowie von Forschungs- und Ausbildungsexperimenten
- Entwicklung und Erprobung von Chipreaktoren und Experimentanordnungen für PCR, Mikrokalorimetrie, Mikrothermostatierung, kombinatorische Chemie und miniaturisiertes Screening in Zusammenarbeit mit dem IPHT Jena
Publikationen:

Forschungsprojekte:

"Mikroreaktorik für High - Throughput - Einzelzellkultivierungen von Mikroorganismen (MINIKULT)"
darin Teilprojekt des FG (Unterauftrag) bezüglich der mikroreaktionstechnischen Charakterisierung von Modulen

Teilprojektleiter: Prof. M. Köhler
Partner/Förderinstitution: Förderung durch BMBF/VDI/, Fördersumme 12.782
Laufzeit: 09/2002 bis 08/2005
Schlagwörter: Chipreaktoren, Zelltechnik, Nanofluidik

"Entwicklung einer mikrotechnischen Anordnung zur Untersuchung des Schadstofftransports durch Mikro- und Nanopartikel"

Projektleiter: Prof. M. Köhler
Partner/Förderinstitution: Förderung durch DBU, Promotionsstipendium J. Wagner
Laufzeit: 10/2002 bis 09/2005
Schlagwörter: Chipreaktoren, Schadstofftransport, Mikropartikel, Nanopartikel

Leistungsangebote:

Forschungs- und Entwicklungsleistungen im Bereich miniaturisierter chemischer und biochemischer Methoden, Laborautomatisierung, Nanobiotechnologie
Institut für Medien- und Kommunikationswissenschaft

Institutsleiter: Univ. - Prof. Dr. phil. habil. Gerhard Vowe
Tel.: (03677) 69 4654 Fax: (03677) 69 4695
E-mail: gerhard.vowe@tu-ilmenau.de

C - Stellenstruktur: 4 C4, 3 C3

Forschungsgebietsleiter: Univ. - Prof. Dr. phil. habil. Gerhard Vowe
Tel.: (03677) 69 4654 Fax: (03677) 69 4650
E-mail: gerhard.vowe@tu-ilmenau.de

Forschungsgebiete:

Im Fachgebiet wird das Spannungsverhältnis von Politik und Medien untersucht, und zwar in seiner wechselseitigen Beziehung - als Medienpolitik und als politische Kommunikation. Dabei liegt der Forschungsschwerpunkt auf den Online-Medien, also auf denjenigen Medien, deren technische Basis von der Konvergenz aus Telekommunikation, Computer und Rundfunk gebildet wird.

Publikationen:

Forschungsprojekte:

„Unterschiede in der politischen Kommunikation zwischen Personen mit und ohne Online-Zugang. Empirische Untersuchung der individuellen Online-Nutzung im politischen Kontext“

Projektleiter: Prof. G. Vowe / M. Emmer M.A.
Partner/Förderinstitution: DFG, Fördersumme: 50.000
Laufzeit: 2001 bis 2003
Schlagwörter: Internet, politische Partizipation, Befragung, Rational Choice

„Qualitätsmerkmale und Qualitätsbewertung des Radios“

Projektleiter: Prof. G. Vowe / Dr. J. Wolling
Partner/Förderinstitution: TLM, Fördersumme: 45.000
Laufzeit: 2001 bis 2003
Schlagwörter: Qualitätsforschung, Methodenkombination, Rezeption

„Das Thema "Thema"

Projektleiter: Dr. Christoph Kuhlmann
Laufzeit: 2001 bis 2004
Schlagwörter: Kommunikationstheorie, Modellbildung, Inhaltsanalyse, Agenda - Setting, Rezeptions- und Wirkungsforschung

Leistungsangebote:
- Durchführung von Telefoninterviews
- Durchführung von Quantitativen Inhaltsanalysen
- Durchführung von Focus Groups

Spezialausstattung:
- CATI (Computer Assisted Telephone Interviewing) Equipment

5.4.3.2 Fachgebiet Medienwissenschaft

Fachgebietsleiter: Univ.-Prof. Dr. phil. Martin Löffelholz
Tel.: (03677)69 4703 Fax: (03677)69 4695
E-mail: martin.loeffelholz@tu-ilmenau.de

Forschungsgebiete:
- Kommunikatorforschung: Journalismus, Organisationskommunikation, Öffentlichkeitsarbeit

- Globalisierung: Transkulturelle Medienkommunikation im Kontext der Globalisierung
 In einer sich globalisierenden Welt ermöglichen traditionelle Massenmedien, aber auch neue Online - Medien Kommunikation über nationale und kulturelle Grenzen hinweg. Das FG Medienwissenschaft überprüft in diesem Zusammenhang die bisherigen, eng
auf Nationalstaaten bezogenen Konzepte der Kommunikationswissenschaft und entwickelt Vorschläge für eine theoretische Neuorientierung. Im Rahmen empirischer Untersuchungen werden die Bedingungen, Strukturen und Funktionen medialer Aussagenproduktion international vergleichend sowie im Hinblick auf die Globalisierung von Journalismus, Öffentlichkeitsarbeit und Organisationskommunikation untersucht. Im Zentrum steht der Vergleich mit ausgewählten europäischen Ländern, den USA sowie asiatischen Kulturen.

- Krisenkommunikation: Mediale Kommunikation in Krisen- und Kriegssituationen

- Medieninnovation: Bedingungen und Konsequenzen der Evolution innovativer Medien
 Seit ihren Anfängen wird die Kommunikationswissenschaft mit innovativen Medien konfrontiert. Derzeit steht das Internet als netzbasiertes, integrativ verknüpftes Medium zweiter Ordnung im Mittelpunkt. Von einer theoretischen Modellierung der Dynamik öffentlicher Kommunikation ist die Kommunikationswissenschaft gleichwohl - trotz einer Vielzahl von Einzelarbeiten - weit entfernt. Das FG Medienwissenschaft analysiert daher die vorhandenen theoretischen Konzepte zur Beschreibung des medialen Wandels, um eine Alternative zur reduktionistischen Betrachtung der Medienevolution zu erarbeiten, also die simplifizierenden, modernisierungstheoretischen Ansätze, in denen die Veränderung der Medienkommunikation allein auf technische Innovationen reduziert wird, zu überwinden.

Publikationen:

K. - D. Altmeppen, W. Hömberg editors, Journalistenausbildung für eine veränderte Medienwelt, Diagnosen, Institutionen, Projekte, Wiesbaden: Westdeutscher Verlag, 2002, 190 Seiten

A. Hepp, M. Löffelholz, editors, Grundlagentexte zur transkulturellen Kommunikation, Konstanz: UVK (UTB), 2002, 600 Seiten

Forschungsprojekte:

„AMACE“

Projektleiter: Prof. M. Löffelholz, C. Schlüter
Partner/Förderinstitution: BMBF, Fördersumme 28121,48
Laufzeit: 01.01.2001 bis 31.12.2003
Schlagwörter: multimedia learnig environments, multimediale Lernmodule,

"Online - Journalismus: Die Transformation aktueller Medienkommunikation. Theoretische und empirische Eingrenzung eines Medienbereichs im Wandel."

Projektleiter: Prof. M. Löffelholz, Thorsten Quandt
Partner/Förderinstitution: DFG, Fördersumme 8.180, 67
Laufzeit: 10/2001 bis 10/2002
Schlagwörter: Online - Journalismus, Transformation des Journalismus,

"Online - Journalismus: Transnationale Vergleiche zwischen amerikanischen und deutschen Online - Journalisten" (TransCoop - Projekt)

Projektleiter: Prof. M. Löffelholz, Th. Quandt, Th. Hanitzsch, K. - D. Altmeppen
Partner/Förderinstitution: Alexander - von - Humboldt - Stiftung, Fördersumme 38.000
Laufzeit: 2002 bis 2004
Schlagwörter: Einstellungen, Online - Journalisten, Innovationen im Journalismus

Leistungsangebote:

- Analysen von Organisations- und Unternehmenskommunikation
- Analyse und Evaluation von Kommunikationsstrategien und -strukturen (WWW, Print - , audiovisuelle Medien)
- Weiterbildungsangebote für Kommunikationsberufe
- Vorträge und Seminare zu den Arbeits- und Forschungsgebieten des Fachgebietes
- Erstellung von Print- und Webdokumenten

Spezialausstattung:

- Lehrredaktion Print-/Webpublishing; neun Layout- und Redaktionsarbeitsplätze für praxisnahe Print -, Online - und Multimedia - Produktionen

5.4.3.3 Fachgebiet Kommunikationswissenschaft

Fachgebietsleiter: Univ. - Prof. Dr. phil. Paul Klimsa
Tel.: (03677)69 4731 Fax: (03677)69 4724
E-mail: paul.klimsa@tu-ilmenau.de

Forschungsgebiete:

- Information und Lernen mit Multimedia und Internet
- Multimediale Informations- und Kommunikationssysteme
- Digitale Medien in Prozessen sozialer Kommunikation
- Multimediale Lernumgebungen für die Hochschullehre
- Soziale Aspekte der Mobilkommunikation
- Metaphern in Benutzeroberflächen
- Gestalterische Methoden bei der Produktion multimedialer Lernsoftware

Publikationen:

Forschungsprojekte:

"Multimediare Lernumgebungen für die Hochschullehre"

Projektleiter: Prof. P. Klimsa
Partner/Förderinstitution: BMBF, Fördersumme 120.000 + 1,5 BAT II a
Laufzeit: 01.01.00 bis 31.12.03
Schlagwörter: Multimedia, Lernen, Online - Seminare

"Die Nutzung von Metaphern in Edutainmentsoftware für Kinder im Grundschulalter"

Projektleiter: Nicole Kleeberg
Partner/Förderinstitution: Eigenfinanzierung
Laufzeit: seit 01.04.2000
Schlagwörter: Schnittstelle, Softwareentwicklung, Lernsoftware, Kinder

„SMS - Kommunikation im Internationalen Vergleich“

Projektleiter: Prof. P. Klimsa/Dr. Nicola Döring in Kooperation mit Prof. Dr. Goban - Klass (Polen) und Carla Colona (Peru)
Partner/Förderinstitution: Eigenfinanzierung, TMWK, Fördersumme ca. 5.000
Laufzeit: 01.11.02 bis 31.12.03
Schlagwörter: Mobil - Kommunikation, Handy - Nutzung, SMS, Jugendliche

"Begleitforschung der Medienbrücke - Evaluation des Gemeinschaftsprojektes des MDR und der TV Polska"

Projektleiter: Prof. P. Klimsa
Partner/Förderinstitution: Eigenfinanzierung und DAAD (beantragt)
Schlagwörter: EU - Osterweiterung, nationale Stereotypen, Evaluation, Online - Informationssysteme

Leistungsangebote:
- Labor für die Medienproduktion Online und Offline
- Betreuung der Website der Fachgruppe “Methoden und Evaluation” in der Deutschen Gesellschaft für Psychologie DGP's [http://www.dgps.de/fachgruppen/methoden/]

5.4.3.4 Fachgebiet Medienkonzeption/Digitale Medien

Fachgebietsleiter: Univ. - Prof. Dr. habil. Helmut M. Niegemann
Tel.: (03677)69 4703 Fax: (03677)69 4695
E - mail: helmut.niegemann@uni-erfurt.de

Forschungsgebiete:
Das Fachgebiet Medienkonzeption/Digitale Medien befasst sich mit der systematischen Entwicklung multimediator Informations- und Lernangebote und deren Grundlagen. Die Forschung betrifft schwerpunktmäßig folgende Themen:
- Effizienz hochinteraktiver multimediator Lernumgebungen
- Konzeption und Entwicklung multimediator Lernumgebungen
- Evaluation multimediator Lernumgebungen (Methoden, Kriterien)
- Usability - Testing (Methoden, Kriterien)
- Motivationale, emotionale und kognitive Wirkungen des Lernens mit Medien

Publikationen:

Forschungsprojekte:
“MEDIN” Multimediales Fernstudium Medizinische Informatik
Projektleiter: Prof. H. M. Niegemann und M. Deimann
Partner/Förderinstitution: BMBF und Konsortium aus 4 deutschen Unis, Konsortialführung Medizinische Universität zu Lübeck, Prof. M. Herczeg
Schlagwörter: E - Learning, Medizininformatik

„MILE” Multimedia Learning Environment
Projektleiter: Prof. H. M. Niegemann und K. Aslanski
Partner/Förderinstitution: BMBF und Konsortium aus 4 deutschen Unis und Universität Salzburg; Konsortialführung TU Ilmenau, Prof. E. Wagner und Prof. H. Niegemann

Schlagwörter: E - Learning, didaktische Konzeption, Evaluation

„E - LEN“ European E-Learning Network

Projektleiter: Prof. H. M. Niegemann, Silvia Hessel
Partner/Förderinstitution: 8 Europäische Universitäten/ EU Sokrates - Programm
Laufzeit: ab 01.11.2002
Schlagwörter: E - Learning, design patterns

Spezialausstattung:
- Usability – Labor

5.4.3.5 Fachgebiet Technik- und Wirtschaftsgeschichte

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. et Dr. phil. habil. A. Kirpal
Tel.: (03677)69 4694 Fax: (03677)69 46 77
E - mail: Alfred.Kirpal@tu-ilmenau.de

Forschungsgebiete:
- Mediengeschichte, insbesondere Rundfunkgeschichte
 - Rundfunk im Nationalsozialismus, vor allem unter technischer Sicht
 - Rundfunk im geteilten Deutschland nach 1945
- Untersuchung der Technik-, Wissenschafts- und Wirtschaftsdarstellung in Medien aus historischer und aktueller Sicht
- Kommunikation technisch bedingter Krisen, Risiken und Katastrophen
- Kommunikation technischer, wissenschaftlicher und wirtschaftlicher Sachverhalte für Laien
- Technikreflexion und Technikakzeptanz in Medien
- Wissenschafts- und Techniksendungen im DDR - Fernsehen
- Technische Bedienungsanleitungen als Marketinginstrument in der Elektronikbranche

Publikationen:

Leistungsangebote:

- Erstellung von Medienangeboten für Unternehmen zur technikbezogenen externen Unternehmenskommunikation
- Beratung bei der Erarbeitung regionaler Stadt- und Tourismusmarketingkonzepte
- Analyse und Erarbeitung kundenspezifischer Bedienungsanleitungen technischer Geräte (vor allem elektrische und elektronische Geräte im Alltag)

5.4.3.6 Fachgebiet Medienmanagement

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Andreas Will
Tel.: (03677)69 4708 Fax: (03677)69 4650
E - mail: andreas.will@tu-ilmenau.de

Forschungsgebiete:

Publikationen:

Forschungsprojekte:

„Management von Medienevents“

Projektleiter: Dipl. - Soz. Marco Höhn
Partner/Förderinstitutionen: Me, Myself & Eye, RTL2, Brainpool, Antenne Thüringen, Südwestrundfunk, RTL (angefragt)
Laufzeit: 01.04.2002 bis 01.04.2004
Schlagwörter: Fernsehen, Hörfunk, Event, Eventmarketing, Einzelfallstudien

„Interaktive Breitbanddienste: Entwicklungsperspektiven und Erfolgspotentiale für interaktive Informations- und Unterhaltungsangebote“

Projektleiter: Prof. A. Will
Partner/Förderinstitutionen: intern
Laufzeit: 01.07.2002 bis 30.03.2003
Schlagwörter: Internetökonomie, TIME - Konvergenz, Breitbanddienste

„Prognosen zur Durchsetzung von digitalem Hörfunk (Digital Audio Broadcasting - DAB). Ursachen und Folgen der Diskrepanz zwischen vermuteter und faktischer Entwicklung“

Projektleiter: Prof. A. Will (mit Prof. G. Vowe)
Laufzeit: 01.12.2002 bis 30.06.2003
Partner/Förderinstitutionen: Thüringer Landesmedienanstalt
Schlagwörter: Hörfunk, Digitalisierung, Digital Audio Broadcasting, Digitalradio

Leistungsangebote:

- Vorträge und Seminare zu den Arbeits- und Forschungsgebieten
- Weiterbildungsangebote für Medienberufe

Spezialausstattung:

- PC - Labor
5.4.3.7 Fachgebiet Multimediale Anwendungen

Fachgebietsleiter: Univ. - Prof. Dr. phil. nat. Rüdiger Grimm
Tel.: (03677)69 4735 Fax: (03677)69 4724
E - mail: ruediger.grimm@tu-ilmenau.de

Forschungsgebiete:

- Anwendungen im Internet
- IT- und Multimedia Security
- Electronic Commerce
- Elektronische Zahlungssysteme und Finanzdienstleistungen

Promotionen:

„Die elektronische Form und das Präsentationsproblem.“ Pordesch, Ulrich, 2000

Publikationen:

Forschungsprojekte:

„Testlabor E - Commerce“

Projektleiter: Prof. R. Grimm und Andreas Fasel
Partner/Förderinstitutionen: intern
Laufzeit: 1.4.2001 bis 31.3.2003
Schlagwörter: E - Commerce - Anwendung, E - Payment - Systeme

„DaMiT - Data Mining Tutor“

Projektleiter: Prof. R. Grimm, Barbara Schulz - Brünken
Partner/ Förderinstitution: BMBF und Konsortium aus 10 deutschen Unis, Konsortialführung Universität Saarbrücken, Prof. Siekmann, Fördersumme 169.835,02
Laufzeit: 1.3.2001 bis 31.8.2003
Schlagwörter: generisches Tutorsystem, Zahlungssysteme und Zugriffskontrolle
„XML und E - Commerce“

Projektleiter: Prof. R. Grimm, Jana False
Partner/ Förderinstitution: Software AG Darmstadt
Laufzeit: ab 01.07.2002
Schlagwörter: Sprachentwicklung XML, E - Commerce, IT - Security

Spezialausstattung:

- Testlabor E - Commerce
5.5 Fakultät für Wirtschaftswissenschaften

Anspricht: 98684 Ilmenau, Helmholtzplatz 3 (Oeconomicum)

Dekan: Univ. - Prof. Dr. rer. pol. habil. Hermann Kallfaß
Tel.: (03677)69 4000 Fax: (03677)69 4200
E - mail: dekan-ww@tu-ilmenau.de

Prodekan: Univ. - Prof. Dr. rer. pol. Dirk Stelzer
Tel.: (03677)69 4040 Fax: (03677)69 4204
E - mail: dirk.stelzer@tu-ilmenau.de

5.5.1 Institut für Betriebswirtschaft

Institutsleiter: Univ. - Prof. Dr. sc. oec. Rolf Dintner
Tel.: (03677)69 4010 Fax: (03677)69 4201
E - mail: rolf.dintner@tu-ilmenau.de

C - Stellenstruktur: 1 C4, 5 C3

5.5.1.1 Fachgebiet Rechnungswesen/Controlling

Fachgebietsleiter: Univ. - Prof. Dr. sc. oec. Rolf Dintner
Tel.: (03677)69 4010 Fax: (03677)69 4201
E - mail: rolf.dintner@tu-ilmenau.de

Forschungsgebiete:
- Moderne Controllingkonzepte für KMU
- Controlling - Steuerung von und durch neue Medien

Promotionen:
„Erfolgszielorientierte Steuerung werbefinanziertem Content - Distribution“, Köcher, Anette, 2001

„Planungs- und Kontrollsysteme in großen Handwerksbetrieben als Sonderfall der Planung und Kontrolle in mittelständigen Betrieben“, Nägle, Tobias, 2001

„Marketing - Leistungsmessung dargestellt am Beispiel von Fachmedienunternehmen“, Kiene, Gerald, 2002

Publikationen:
Brösel, Gerrit: Medienrechtsbewertung, Der Wert audiovisueller Medienrechte im dualen Rundfunksystem, DUV, Wiesbaden, 2002, Monografie

Köcher, Anette: Controlling der werbefinanzierten Medienunternehmung, Eul Verlag, Lohmar, 2002, Monografie
Forschungsprojekte:

„Teilprojekt der GET - Up - Initiative, Teilprojekt 1: Gründungsmanagement“

Projektleiter: Prof. R. Dintner
Partner/Förderinstitution: Verbundprojekt des BMBF und des TMWFK, Fördersumme 449.442 (Gesamtsumme GET UP - Initiative an der TU Ilmenau)
Laufzeit: April 2001 bis März 2005
Schlagwörter: Instrumenten zur Existenzgründung, Existenzgründungsberatung, wissenschaftlich fundiertes Gründungswissen

„Teilprojekt der GET - Up - Initiative, Teilprojekt 2: Mitarbeiter der Gründungsprofessur für Medienunternehmen“

Projektleiter: Prof. R. Dintner
Partner/Förderinstitution: Verbundprojekt des BMBF und des TMWFK, Fördersumme 449.442 (Gesamtsumme GET UP - Initiative an der TU Ilmenau)
Laufzeit: April 2001 bis März 2005
Schlagwörter: Entrepreneurship für Medienunternehmen, wissenschaftlich fundiertes Gründungswissen

Leistungsangebote:

- Beratung zu den Problembereichen Rechnungswesen und Controlling (insbesondere Kosten- und Leistungsrechnung)
- Unternehmensanalysen (im Hinblick auf Controlling)
- Beratung zur problemadäquaten Anwendung moderner Controllingkonzepte und Controllingsysteme, (rechnungswesenorientierte) Informationsversorgungssysteme

Spezialausstattung:

- (Rechnungswesen-) Software der DATEV u.a.
- Management - Informationssystem - Software von Corporate Planning
5.5.1.2 Fachgebiet Produktionswirtschaft/Industriebetriebslehre

Fachgebietsleiter: Univ. - Prof. Dr. oec. habil. Herfried Schneider
Tel.: (03677)69 4010 Fax: (03677)69 4201
E - mail: herfried.schneider@tu-ilmenau.de

Forschungsgebiete:
- Management und Engineering komplexer Produktionssysteme
- Formulierung, Bewertung und Umsetzung von Produktionsstrategien unter den Bedingungen der Globalisierung und des e-Business
- Kostenorientierte Produktentwicklung/Kostenprognose in frühen Entwicklungsstadien neuer Erzeugnisse
- Hybrides Produktionsplanungs- und -steuerungskonzept für heterogen strukturierte Produktionssysteme auf der Grundlage eines generalisierten Modellansatzes (Production Authorization Card System nach Buzacott/Shanthikumar)
- Produktion von Dienstleistungen als Bestandteil komplexer Leistungsbündel

Publikationen:

Forschungsprojekte:

„Workflow Control in Discrete Manufacturing - a General Model for Heterogeneous Manufacturing Systems“
Projektleiter: Prof. H. Schneider
Partner/Förderinstitution: Prof. John A. Buzacott, York University, Toronto/ Canada
Laufzeit: 2002 bis 2003
Schlagwörter: Produktionsplanung und -steuerung, heterogene Produktionsstrukturen, generalisiertes KANBAN - System

„Medienprojektmanagement - eine multimediale Lehr- und Lerneinheit“
Projektleiter: Prof. H. Schneider, Dr. rer. pol. A. Braßler
Partner/Förderinstitution: TMWFK, Fördersumme: 231.600
Laufzeit: 2002 bis 2003
Schlagwörter: Lehr- und Lernsoftware, Betriebswirtschaftslehre, akademische Aus-/Weiterbildung

„Kooperationskonzepte für verteilte Produktionssysteme“

Projektleiter: Prof. H. Schneider, Dipl. - Wirtsch. - Ing. H. Fischäder
Partner/Förderinstitution: div. Unternehmen
Laufzeit: stetig

„Simulationsbasierte Auftrags- und Materialflusssteuerung“

Projektleiter: Prof. H. Schneider, Dipl. - Wirtsch. - Ing. T. Rücker
Partner/Förderinstitution: Voith GmbH Heidenheim u.a.
Laufzeit: stetig

5.5.1.3 Fachgebiet Marketing

Fachgebietsleiter: Univ. - Prof. Dr. sc. oec. Karl - Heinz Hoppe
Tel.: (03677)69 4010 Fax: (03677)69 4201 E - mail: karl-heinz.hoppe@tu-ilmenau.de

Forschungsgebiete:
- Internationales Marketing
- Marketing in transformierenden Wirtschaftssystemen
- Internationalisierungsstrategien mittlerer Unternehmen
- Internationalisierung in Bildungsmärkten
- Marketing mit und für neue Medien
- Anwaltsmarketing

Publikationen:

Forschungsprojekte:

„Konzeption des Internationalen Marketing: Europäische Sichtweise“

Projektleiter: Prof. K. - H. Hoppe, Dr. K. Pezoldt; Prof. W. Sutuirin
Partner/Förderinstitution: St. Petersburger Staatliche Universität, Russland, DAAD,
Laufzeit: September 2000 bis Dezember 2005
Schlagwörter: internationales Marketing, osteuropäische Märkte

5.5.1.4 Fachgebiet Finanzwirtschaft/Investition

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Ralf Trost
Tel.: (03677)69 4024 Fax: (03677)69 4218
E - mail: ralf.trost@tu-ilmenau.de

Forschungsgebiete:
- Rating für kleine und mittlere Unternehmen (KMU)
- Investor Relations für kleine und mittlere Unternehmen (KMU)
- Investor Relations beim Börsengang
- Investor Relations in Start - Ups
- Bewertung von innovativen Produkten, Geschäftsfeldern und Unternehmen
- Neo - institutionalistische Analyse der Finanzierung von KMU
- Kreditrisikomanagement und Kreditrisikomodelle
- Analyse der Creditspreads bei Anleihen

Promotionen:

„Zur Finanzierung kleiner und mittlerer Unternehmen (KMU) - Eine neo - institutionalistische Analyse unter besonderer Berücksichtigung der Innovationsfinanzierung“, Niederöcker, Bettina, 2001

Publikationen:

Niederöcker, B., Finanzierungsalternativen in kleinen und mittleren Unternehmen, Wiesbaden 2002, Monografie (Dissertation)

Forschungsprojekte:

„Bewertungskriterien für technologieorientierte Geschäftskonzepte - Investor Relations für junge Unternehmen“

Projektleiter: Dr. B. Lindemann
Partner/Förderinstitution: BMBF (03EX012D), TMWFK (B607-99010), Fördersumme ca. 250.000 DM
Laufzeit: Juli 1999 bis Dezember 2001
Schlagwörter: Investor Relations, junge Unternehmen

Leistungsangebote:

- Ratings und Investor Relations - Spiegel für KMU

5.5.1.5 Fachgebiet Unternehmensführung

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Dietrich von der Oelsnitz
Tel. (03677)69 4066 Fax: (03677)69 4219
E - mail: d.oelsnitz@tu-ilmenau.de

Forschungsgebiete:

- Marktorientierter Unternehmenswandel
- ressourcenorientierte Unternehmensführung (Resource - Based View)
- Wissensmanagement
- Personalmanagement

Publikationen:

Forschungsprojekte:

"Comp Net - Car - Competence Networks in Car Industry Supply Chains" (Competence Networks in Car Industry Supply Chains)

Projektleiter: Prof. D. von der Oelsnitz
Partner/Förderinstitution: Thüringer Ministerium für Wirtschaft, Arbeit und Infrastruktur (TMWAI), Institut der Wirtschaft Thüringens GmbH, TU Ilmenau Fachgebiet Wirtschaftsinformatik II, Fördersumme 50.000
Laufzeit: April 2002 bis Dezember 2003
Schlagwörter: Automobilindustrie, Kooperationsplattform CompNet - Car

Leistungsangebote:

- Beratungsleistungen

5.5.1.6 Fachgebiet Steuerlehre/Prüfungswesen

Fachgebietsleiter: Univ.-Prof. Dr. rer. pol. habil. Günther Strunk
Tel.: (03677)69 4498 Fax: (03677)69 4499
E-mail: guenther.strunk@tu-ilmenau.de

Forschungsgebiete:

Publikationen:

5.5.2 Institut für Wirtschaftsinformatik

Institutsleiter: Univ. - Prof. Dr. - Ing. habil. Peter Gmilkowsky
Tel.: (03677)69 4050 Fax: (03677)69 4205
E - mail: peter.gmilkowsky@tu-ilmenau.de

C - Stellenstruktur: 3 C4, 1 C3

5.5.2.1 Fachgebiet Wirtschaftsinformatik I

Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Peter Gmilkowsky
Tel.: (03677)69 4050 Fax: (03677)69 4205
E - mail: peter.gmilkowsky@tu-ilmenau.de

Forschungsgebiete:

- Modellierung und Simulation von Produktionssystemen:
 - Agentenbasierte Simulation und Steuerung von Produktionssystemen
 - Einsatz von genetischen Algorithmen zur Lösung industrieller Steuerungsprobleme
 - Parallele und verteilte Simulation von Produktionssystemen
 - Schnelle Simulationsalgorithmen durch Modellaggregation
 - Modellierung von Produktionssystemen mittels Bayes’scher Netze
 - Wissensbasierte Parametrisierung von Planungsverfahren
 - Einsatz von Softcomputing - Tools zur Planung und Steuerung von Produktionssystemen
 - Fuzzy - Sets und genetische Algorithmen in der Fertigungssteuerung

- Unternehmenskommunikationssysteme:
 - Evolutionäre Planung von Computernetzwerken unter Performibility - Aspekten
 - Planung von unternehmensweiten Datennetzwerken mittels Metaheuristiken
Promotionen:

„Simulationsbasierte Reihenfolgeplanung in der Halbleiterindustrie“, Thiel, Matthias, 2001

„Ein Beitrag zu Theorie und Praxis datengetriebener Modellgeneratoren zur Simulation von Produktionssystemen“, Eckardt, Frank, 2002

„Reduktion von Simulationsmodellen zur simulationbasierten Optimierung in der Termin- und Kapazitätsplanung“, Völker, Sven, 2002

„Parallele und Verteilte Simulation bei der Steuerung komplexer Produktionssysteme“, Schulz, Roland, 2002

Publikationen:

Forschungsprojekte:

„Simulationsbasierte Arbeitsvorgabe und Terminierung für die Waferfab (SiMART)“

Projektleiter: Prof. P. Gmilkowsky, Dr. rer. nat. L. Mönch
Partner/Förderinstitution: X - FAB Semiconductor Foundries GmbH, Fördersumme ca. 50.000
Laufzeit: 1999 bis 2004
Schlagwörter: Halbleiterproduktion, Steuerung, Multiagentensystem, Simulation

"FabMAS- ein System zur Steuerung des Wafer - Fertigungsprozesses auf der Grundlage autonomer und kooperativer Softwareagenten"

Projektleiter: Prof. P. Gmilkowsky, Dr. rer. nat. L. Mönch
Partner/Förderinstitution: DFG, Fördersumme ca. 100.000
Laufzeit: 2002 bis 2003
Schlagwörter: agentenbasierte Simulation
„Wissensbasierte Parametrisierung von Produktionsplanungsverfahren“

Projektleiter: Prof. P. Gmilkowsky, Dr. - Ing. L. Schmidt, X - CASE GmbH
Partner/Förderinstitution: Finanzierung: Haushalt/ X - Case GmbH,
Landesgraduiertenförderung des Freistaates Thüringen (bis 15.08.2001), Personalkosten (2 Jahre) werden von X - CASE GmbH getragen (halbe Personalstelle Dipl. - Wirtschaftsinformatiker), Fördersumme ca. 44.000 (Personalkosten, X - Case GmbH)
Laufzeit: August 2001 bis August 2003
Schlagwörter: PPS, entscheidungsunterstützende Systeme, Tools

"Evolutionäre Planung von Computernetzwerken unter Performibility - Aspekten"

Projektleiter: Prof. P. Gmilkowsky, Dipl. - Wirtsch. - Inf. D. Reichelt
Partner/Förderinstitution: Finanzierung: Haushalt
Laufzeit: 2000 bis 2005
Schlagwörter: R/3 - System, Internet, Zugriffsverfahren, Performancemesung, Benchmarks

"Parallelisierbare Scheduling - Verfahren als Bausteine für ein Multiagentensystem"

Projektleiter: Prof. P. Gmilkowsky, Dr. rer. nat. L. Mönch, Dipl. - Wirtsch. - Ing. Ilka Habenicht
Partner/Förderinstitution: Finanzierung Haushalt
Laufzeit: November 2000 bis 2005
Schlagwörter: Fertigungssteuerung, Multiagentensysteme

"Einsatz Bayes'sche Netze in der Fertigungssteuerung"

Projektleiter: Prof. P. Gmilkowsky, Dipl. - Wirtsch. Inf. T. Munkelt
Partner/Förderinstitution: Finanzierung Haushalt, Landesgraduiertenförderung des Freistaates Thüringen (bis 15.08.2001)
Laufzeit: 1997 bis 2003
Schlagwörter: Fertigungssteuerung; Bayes'sche Netze

Leistungsangebote:
- Simulation und Steuerung von Produktionssystemen,
- Unternehmenskommunikationssysteme; Unternehmensnetze

Spezialausstattung:
- Hochleistungsfähige PC - Technik unter Windows, Linux und Unix; Produktives SAP R/3 - Ausbildungssystem auf der Grundlage einer SAP - Hochschullizenz
5.5.2.2 Fachgebiet Operations Research und Wirtschaftsstatistik

Fachgebietsleiter: Univ. - Prof. Dr. sc. oec. Martin Boeselt
Tel.: (03677)69 4049 Fax: (03677)69 4204
E - mail: martin.boeselt@tu-ilmenau.de

Forschungsgebiete:

- Finanzmarktmodelle, Statistische Analysen
- Mehrdimensionale Statistik, Angewandte Optimierungen

Publikationen:

Böselt, Martin: Statistik - Übungsbuch Aufgaben, Hinweise und Lösungen, 2. Auflage,

Forschungsprojekte:

Mitarbeit am Projekt “Computational Aspects of Statistical Confidentiality (CASC)”

Projektleitung: Niederländisches Statistisches Amt in Voorburg
Partner/Förderinstitution: EUROSTAT Luxemburg, Statistikämter und Universitäten aus
Italien, Großbritannien, Spanien, Niederlande und Deutschland
Verantwortlich für den Teil der TU Ilmenau: Prof. Dr. Karl Luhn,
Fördersummevolumen 56.507
Laufzeit: 2000 bis 2003
Schlagwörter: statistische Geheimhaltung

Leistungsangebote:

- Beratung zur Anwendung der Statistik und der Optimierung in der Praxis

5.5.2.3 Fachgebiet Informations- und Wissensmanagement

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Dirk Stelzer
Tel.: (03677)69 4040 Fax: (03677)69 4204
E - mail: dirk.stelzer@tu-ilmenau.de

Forschungsgebiete:

Das Informationsmanagement für digitale Güter umfasst unter anderem folgende Themen: Geschäftsmodelle und IV - Architekturen für Elektronische Marktplätze, Zahlungssysteme für digitale Güter, Sicherheitsaspekte digitaler Güter, Entwicklungsparadigmen für digitale Güter.

Darüber hinaus wird Forschung und Lehre insbesondere zu folgenden Themenbereichen betrieben:
IV - Unterstützung zwischenbetrieblicher Geschäftsprozesse
- Wissensmanagement und Qualitätsmanagement.

Publikationen:

Forschungsprojekte:

„Unterstützung einer Unternehmensgründung im Rahmen des Förderprogramms EXIST - SEED auf dem Gebiet der Internet - Informationsdienstleistungen: Technologieprovider für Landessportverbände (Förderkennzeichen 03ESGD04)“

Projektleiter: Prof. D. Stelzer
Partner/Förderinstitution: BMBF, milon.de Informationsdienste GmbH, Fördersumme 58277,05
Laufzeit: 2001 bis 2002
Schlagwörter: Internet - Informationsdienstleistungen, Informationsmanagement für digitale Güter, Unternehmensgründung, Technologieprovider

„Erfolgsfaktoren elektronischer B2B - Marktplätze“

Projektleiter: Prof. D. Stelzer, Dipl. Wirtsch. - Inf. D. Fischer
Partner/Förderinstitution: Finanzierung Haushalt
Laufzeit: 2000 bis 2003
Schlagwörter: Erfolgsfaktoren, elektronische Marktplätze, E - Business, B2B

„Evaluierung von Werkzeugen zur Unterstützung des betrieblichen Wissensmanagements“

Projektleiter: Prof. D. Stelzer
Partner/Förderinstitution: intelligent views GmbH, ontoprise GmbH, Siteforum Europe AG, Finanzierung Haushalt
Laufzeit: 2002 bis 2005
Schlagwörter: Evaluierung, Wissensmanagement, Werkzeuge
„Entwicklung und Evaluierung eines Online - Werkzeugs zur Ermittlung der Qualität der Lehre“

Projektleiter: Dipl. Wirtsch. - Inf. D. Fischer; Prof. D. Stelzer
Partner/Förderinstitution: Finanzierung Haushalt
Laufzeit: 2002 bis 2003
Schlagwörter: Evaluierung, Befragung, Qualität der Lehre

„Information Retrieval in verteilten Strukturen“

Projektleiter: Dr. - Ing. B. Markscheffel, Prof. D. Stelzer
Partner/Förderinstitution: Finanzierung Haushalt
Laufzeit: 2002 bis 2005
Schlagwörter: Information Retrieval, Suchmaschinen, Visualisierung, Topic Maps

Leistungsangebote:

Kooperationsprojekte zu folgenden Themenbereichen:
- Informationsmanagement
- Wissensmanagement
- Qualitätsmanagement
- Informationsmanagement für digitale Güter

5.5.2.4 Fachgebiet Wirtschaftsinformatik II

Fachgebietsleiter: Univ. - Prof. Dr. rer. nat. habil. Stefan Kirn
Tel.: (03677)69 4047 Fax: (03677)69 4219
E- mail: stefan.kirn@tu-ilmenau.de

Forschungsgebiete:
- Intelligente Softwareagenten
- Vernetzung im Gesundheitswesen, Telemedizin
- eGovernment
- Mass Customization
- Dienstleistungsinformatik

Publikationen:

Kirn, St. (Gastherausgeber): Agententechnologie - Kooperierende Softwareagenten im betrieblichen Einsatz. Themenheft 2/2001 der Zeitschrift WIRTSCHAFTSINFORMATIK.

Forschungsprojekte:

DFG - Schwerpunktprogramm “Intelligente Softwareagenten & betriebswirtschaftliche Anwendungsszenarien”

Projektleiter: Prof. St. Kirn (Programmkoordinator)
Partner/Förderinstitution: DFG, Fördersumme ca. 10 Mio. für 6 Jahre (allerdings für das Gesamtprogramm, Anteile der TU Ilmenau sind anschließend dargestellt in den einzelnen Projekten)
Schlagwörter: Agententechnologie, agentenbasierte Logistik - Informationssysteme

“ADAPT - Adaptive Multiagent Process Planning & Coordination (in Healthcare)” im Rahmen von SPP 1038

Projektleiter: Prof. St. Kirn, Dipl. - Wirtsch. - Inf. Ch. Heine
Partner/Förderinstitution: DFG, Klinik für Innere Medizin 2 der Universitätsklinik Jena, Bereich Gastroenterologie der Universitätsklinik Würzburg, Fördersumme: ca. 150.000
Schlagwörter: Softwareadaptivität, verteiltes Planen krankenhausbetrieblicher Prozesse

“RealAgentS - Realistic Agent Application Scenarios” im Rahmen von SPP 1038

Projektleiter: Prof. St. Kirn, Dipl. - Wirtsch. - Ing Ch. Anhalt
Partner/Förderinstitution: DFG, Fördersumme ca. 150.000
Schlagwörter: Programm - Management

“Koordinatorenfond” im Rahmen von SPP 1038

Projektleiter: Prof. St. Kirn
Partner/Förderinstitution: DFG, Fördersumme ca. 180.000
Schlagwörter: Programm - Management

“EwoMacs - Entwicklung und Optimierung der Logistikstrukturen für Mass Customization in der Schuhindustrie” http://www.ewomacs.de/

Projektleiter: Prof. St. Kirn, Dipl. - Inf. I. J. Timm
Partner/Förderinstitution: BMBF, Selve AG, Adidas - Salomon AG, Danzas AEI GmbH, Fraunhofer Institut Fabrikbetrieb und -automatisierung (IFF), Technische Universität München, IFB logistics & process consulting GmbH, IWT GmbH, Fördersumme ca. 250.000
Laufzeit: 01.05.2002 bis 31.10.2004
Schlagwörter: Mass Customization, agentenbasierte Simulation, Supply Chain Management

“Agentcities.NET Project” http://www.agentcities.org/EUNET/

Projektleiter: Prof. St. Kirn, Dipl. - Wirtsch. - Inf. M. Petsch
Partner/Förderinstitution: EU (IST), DFKI Saarbrücken, British Telecom (England), IST Information Society Technologies, Fördersumme 10.000
Laufzeit: 01.08.2002 bis 31.07.2005
Schlagwörter: Agententechnologie, Agent Hospital

“Comp Net - Car - Competence Networks in Car Industry Supply Chains”

Projektleiter: Prof. St. Kirn, Dipl. - Kfm. A. J. Dietrich
Partner/Förderinstitution: Thüringer Ministerium für Wirtschaft, Arbeit und Infrastruktur (TMWAI), Institut der Wirtschaft Thüringens GmbH, TU Ilmenau Fachgebiet Unternehmensführung, Fördersumme: 60.000
Schlagwörter: Automobilindustrie, Kooperationsplattform CompNet - Car

“AgentLink II” http://research.ecs.soton.ac.uk/projects/agentlink2.html

Projektleiter: Prof. St. Kirn
Partner/Förderinstitution: EU (IST), Fördersumme 5.000 EUR
Laufzeit: 01.08.2001 bis 31.07.2003
Schlagwörter: Agententechnologie

5.5.3 Institut für Volkswirtschaftslehre

Institutsleiter: Univ. - Prof. Dr. rer. pol. habil. Lothar Wegehenkel
Tel.: (03677)69 4030 Fax: (03677)69 4203
E - mail: lothar.wegehenkel@tu-ilmenau.de

C - Stellenstruktur: 2 C4, 1 C3

5.5.3.1 Fachgebiet Wirtschaftstheorie

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Lothar Wegehenkel
Tel.: (03677)69 4030 Fax: (03677)69 4203
E - mail: lothar.wegehenkel@tu-ilmenau.de

Forschungsgebiete:
- Arbeitsmarkt und dezentrale solar geprägte Energiesysteme
- Evolutorisiche Ökonomik, Institutionenökonomik, Medienökonomie
- Naturschutz, Neue politische Ökonomie, Ökonomische Analyse des Rechts
- Property Rights - Theorie, Theorie öffentlicher Güter, Umweltökonomie
Promotionen:

Forschungsprojekte:

„Universelles internetgestütztes Regelungssystem für die Haustechnik“, Reg. - Nr. B 309-010008

Projektleiter: Prof. Dr. sc. oec. B. Bley
Partner/Förderinstitution: MetraLabs GmbH Ilmenau, VTI Thüringer Verfahrenstechnisches Institut für Energie und Umwelt e.V.
TMWFK, Fördersumme ca. 105.000 für TU Ilmenau
Laufzeit: 2001 bis 2003
Schlagwörter: Haustechnikregelsystem, dezentrale Energiebörse, regenerative Energietechnik

5.5.3.2 Fachgebiet Wirtschaftspolitik

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. habil. Dipl. - Ing. Hermann H. Kallfaß
Tel.: (03677)69 4032 Fax: (03677)69 4203
E - mail: hermann.kallfass@tu-ilmenau.de

Forschungsgebiete:

Industrieökonomik:
- Analysen zu den Einflüssen neuer Techniken auf die Marktstrukturen und Markter- zesse
- Untersuchungen zu den Wirkungen alternativer Regulierung auf die Marktprozesse und die Marktergebnisse in Net industrien
- Studien zu den Effekten erlaubter und verbotener Subventionen auf die Wettbewerbsprozesse
- Effizienzwirkungen alternativer Regulierungskonzepte bei Krankenhausdienstleistungen

Wettbewerbspolitik:
- Wandel der Antitrustpolitik in den USA
- Einsatz der Instrumente der Wettbewerbspolitik in Deutschland und in der EU im Ver- gleich
- Konzepte einer internationalen Wettbewerbsordnung
- Wettbewerb und Regulierung im Hörfunk
- Ordnungen für einen Wettbewerb auf Märkten für Krankenhausdienstleistungen

Wirtschaftspolitik:
- Regionalpolitik in der EU
- Räumliche Angleichungs- und Differenzierungsprozesse in Deutschland und in der EU
- Bestimmungsgründe und Wirkungen von Rent Seeking und Korruption

Publikationen:

5.5.3.3 Fachgebiet Finanzwissenschaft

Fachgebietsleiter: Univ. - Prof. Dr. rer. pol. Fritz Söllner
Tel. (03677)69 26 57 Fax: (03677)69 1229
E - mail: fritz.soellner@tu-ilmenau.de

Forschungsgebiete:
- Steuerpolitik
- Finanzausgleich und Finanzverfassung
- Umweltpolitik
- Dogmengeschichte
- Entscheidungstheorie

Forschungsgebiete:
- Zur Relevanz der Cumulative Prospect Theory für die Erklärung von Entscheidungsverhalten unter Unsicherheit
- Ähnlichkeiten vs. Unähnlichkeiten in Partnerschaften - einige theoretische Erklärungsansätze zur Deutung eines anthropologischen Phänomens
- Kinderlastenausgleich vs. Einwanderungsförderung - differierende Strategien zur nachhaltigen Stabilisierung umlagefinanzierter Sozialversicherungssysteme
- IWF - Stabilisierungsprogramme und Financial Programming
- Steuerpolitik und Steuerverwaltung in Russland - Die Rolle von Selbstverpflichtungen in der Umweltpolitik

Publikationen:

5.5.4 Institut für Rechtswissenschaft

Institutsleiter: Univ. - Prof. Dr. jur. habil. Joachim Weyand
Tel.: (03677)69 4020 Fax: (03677)69 4202
E - mail: joachim.weyand@tu-ilmenau.de

C - Stellenstruktur: 1 C4, 1 C3

5.5.4.1 Fachgebiet Zivilrecht

Fachgebietsleiter: Univ. - Prof. Dr. jur. habil Joachim Weyand
Tel.: (03677)69 4020 Fax: (03677)69 4202
E - mail: joachim.weyand@tu-ilmenau.de

Forschungsgebiete:
- Deregulierung des Arbeitsmarktes und Personalpolitik der Unternehmen
- Gründung von Unternehmen (unter besonderer Berücksichtigung der Existenzgründung von Hochschulangehörigen)
- Nachfolgeregelungen im KMU
- Rechtsschutz für Computerprogramme (Patentrecht, Urheberrecht) und Arbeitnehmererfinderrecht
- Rechtsfragen des Internets (insbes. Vertragsschluss, Zertifizierungsschutz, elektronisches Geld) und des Einsatzes neuer Medien am Arbeitsplatz
- Lebenslanges Lernen, Akademische Weiterbildung, Kooperation von Bildungsträgern

Promotionen:
„Der Einfluss der europäischen Niederlassungsfreiheit auf den Gestaltungsrahmen betriebswirtschaftlicher Standortentscheidungen von Kapitalgesellschaften“, Geiger, Christiane, 2002

Publikationen:

Weyand, Joachim: Tarifliche Ausschlussfristen, Köln 2002, Verlag Recht und Praxis, 228 Seiten

Weyand, Joachim: Betriebsänderungen, Interessenausgleich und Sozialplan, Köln 2001, Deubner Verlag, 128 Seiten

Weyand, Joachim: Die elektronische Form im Arbeitsrecht, Newsletter Arbeitsrecht 2001, Heft 10, 12 Seiten

241
Forschungsprojekte:

„Teilprojekt GET - UP (Gründungsprofessur)“

Projektleiter: Prof. J. Weyand
Partner/Förderinstitution: Verbundprojekt des BMBF und des TMWFK, Fördersumme 1,5 Mill. DM (verteilt auf 5 Jahre, pro Jahr 300.000 DM)
Schlagwörter: Existenzgründung, Gründernetzwerk, Medienunternehmen

„Lernende Region Ilm - Kreis“

Projektleiter: Prof. J. Weyand
Partner/Förderinstitution: Projektträger DLR, Förderinstitution BMBF, Fördersumme 25.000
Schlagwörter: Medienkompetenz; Lernen, Kultur und Umweltbildung; Beratung

5.5.4.2 Fachgebiet Öffentliches Recht

Fachgebietsleiter: Univ. - Prof. Dr. jur. habil. Frank Fechner
Tel.: (03677)69 4072 Fax: (03677)69 4202
E - mail: frank.fechner@tu-ilmenau.de

Forschungsgebiete:

Verschiedene Forschungsschwerpunkte liegen im gesamten Öffentlichen Recht, insbesondere im Staats- und Verwaltungsrecht, wie auch im öffentlich - rechtlichen Wirtschaftsrecht:

- Recht der Presse, des Rundfunks und der Neuen Medien insbesondere Fragen der staatlichen Regulierung.
- Urheberrecht, Recht des Jugendschutzes, Medienwettbewerbsrecht, sowie europarechtliche und völkerrechtliche Fragen des Medienrechts.
- Rechtswegfragen und zivilrechtliche Ansprüche gegenüber den Medien.

Publikationen:

6. Zentrale Einrichtungen
6.1 Universitätsbibliothek

Anschrift:
Universitätsbibliothek
Langewiesener Str. 37 (Campus - Center)
98693 Ilmenau

Leiter:
Dipl.-Ing. Gerhard Vogt
Tel.: (03677) 69 4701 Fax: (03677) 69 4700
E-mail: direktion@bibliothek.tu-ilmenau.de

Dienstleistungsspektrum:

Die UB Ilmenau arbeitet eng mit den anderen Thüringer Hochschulbibliotheken zusammen, ist Mitglied des Gemeinsamen Bibliotheksverbundes und Teil des gesamten deutschen Bibliothekswesens.

Die UB stellt ihre Dienstleistungen in der Hauptbibliothek im Campus - Center, in der Curiebibliothek im Stadtbereich sowie über das Internet zur Verfügung.

Hauptbibliothek:
98693 Ilmenau, Langewiesener Str. 37 (Campus - Center)
Tel.: (03677) 694531

Öffnungszeiten:
Mo bis Fr 8.15 - 20.00 Uhr
Sa 9.00 - 17.00 Uhr
(01.08. - 15.09.: Mo bis Sa 9.00 - 17.00 Uhr)

Curiebibliothek:
98693 Ilmenau, Weimarer Str. 25 (Curiebau)
Tel.: (03677) 693282

Hier befinden sich Bücher und Fachzeitschriften der Gebiete Mathematik, Physik, Chemie.

Öffnungszeiten:
Mo bis Do 8.15 - 12.00 Uhr und 13.00 - 18.00 Uhr
Fr 8.15 - 12.00 Uhr
(01.08. - 15.09.: Mo bis Do 9.00 - 12.00 Uhr und 13.00 - 16.00 Uhr, Fr 9.00 - 12.00 Uhr)
Abb. 6: Dienstleistungsspektrum der UB Ilmenau

Entwicklungen der letzten Jahre:

Der Berichtszeitraum war stark davon geprägt, dass weltweit Literatur zunehmend in elektronischer Form bereitgestellt wird. So wurde das Angebot an Elektronischen Zeitschriften, Datenbanken und ausleihbaren Medien wesentlich erweitert, und neue, elektronisch gestützte Dienstleistungen wurden in das Angebot der UB aufgenommen. Auch im konventionellen Bereich der Printmedien wurden Verbesserungen dadurch erreicht, dass Bestände konzentriert, saniert und sachlich geordnet aufgestellt wurden.

Besonders zu erwähnen sind folgende Schwerpunkte:

- Einbindung des Ilmenauer Angebots an elektronischen Zeitschriften in das deutschlandweite Datenbanksystem „Elektronische Zeitschriftenbibliothek“,
- Aufbau eines campusweit zugänglichen Angebots an Online- und CD-ROM-Datenbanken,
- Einrichtung einer Mediothek mit ausleihbaren CDs und CD-ROMs
- Übergang von der Zettel- zur Online-Fernleihe,
- Einrichtung eines großen Magazinbereichs im ehemaligen Umformer-Gebäude, umfassende Sanierung des Zeitschriftenbestandes,
- Konsolidierung der Ausleihmodalitäten, verbunden mit dem Aufbau von Handapparaten für Professoren.

Für die Umsetzung dieser Schwerpunkte wurden in erheblichem Umfang interne Arbeitsabläufe optimiert und neue IuK - Technologien eingeführt: Über einen HBFG - Antrag konnte neue Server- und Client - Technik beschafft werden, die gesamte Literaturerwerbung wurde auf ein automatisiertes Erwerbungsmodul umgestellt, und für die Qualifizierung des Bibliothekspersonals wurde ein hausinternes Schulungsprogramm realisiert.

6.2 Universitätsrechenzentrum

Anschrift: Universitätsrechenzentrum
Helmholtzring 9
98693 Ilmenau

Leiter: Dipl. - Math. Günter Springer
Tel.: (03677)69 2642 Fax: (03677)69 1208
E - mail: guenter.springer@rz.tu-ilmenau.de

Öffnungszeiten: Mo bis Do 7.00 - 15.45 Uhr
Fr 7.00 - 14.30 Uhr

Darüber hinaus ist die zentrale Auskunft des Universitätsrechenzentrums während des Semesters in der Regel von sonntags 12.00 Uhr bis samstags 20.00 Uhr durchgehend besetzt.

Entwicklungen der letzten Jahre:

Das Universitätsrechenzentrum, als Zentrale Einrichtung der Universität hat die Aufgabe, die für die universitäre Forschung und Lehre notwendige informations-, kommunikations- und multimediatechnische Infrastruktur bereitzustellen. Darüber hinaus ist es Kompetenzzentrum für den Betrieb und die Entwicklung der o.g. Bereiche. Dies gilt nicht nur für die Universität sondern auch darüber hinaus, so z. B. für die Stadt, die Region und zum Teil auch für die anderen Hochschulen des Freistaates.

Zur Realisierung anspruchsvoller Forschungsthemen stehen zahlreiche Server für Aufgaben zur Informationsvermittlung und zur Bearbeitung rechenintensiver Probleme zur Verfügung.

Im letzten Jahr wurden die Bereiche Multimedia, Hörsaal- und Seminarraumtechnik sowie die telefonische Kommunikation in das Universitätsrechenzentrum integriert, um in diesen Bereichen moderne Konzepte durchgehend umsetzen zu können.

6.3 Patentinformationszentrum und Online - Dienste (PATON)

Anschrift: 98693 Ilmenau, Langewiesener Str.37 (Campus - Center)

Leiter: Prof. Dr. - Ing. habil. Reinhard Schramm
Tel.: (03677)69 4573 Fax: (03677)69 4538
E - mail: paton@paton.tu-ilmenau.de

Charakteristik des PATON:

Das PATON ist als Informations- und Schulungszentrum der TU Ilmenau zugleich Zentrale des Thüringer Patentnetzes der Hochschulen. Darin ist seine Funktion als offizielles Patentinformationszentrum und Patentannahmestelle des Freistaates Thüringen eingeschlossen.

Die Entwicklung und Bereitstellung neuer Informations- und Analysemethoden auf der Basis von Patent- und Nichtpatentliteratur für die Forschungstätigkeit der Thüringer Hochschuleinrichtungen und für die Wirtschaft ist eine Kernaufgabe des PATON geblieben.
Mit der Realisierung weiterer patentrelevanter Aufgaben, insbesondere mit dem Aufbau der Patentverwertungsagentur ab August 2002, hat sich das PATON vom Patentinformationszentrum zu einem umfassenden Patentzentrum entwickelt, das die technologische Kette „Patentinformation - Patenberatung - Patentförderung - Patentannahme - Patentverwertung“ absichert.
Es begünstigt die Forschungstätigkeit der Thüringer Hochschuleinrichtungen, verbessert den Schutz und die wirtschaftliche Nutzung ihrer Forschungsergebnisse und stärkt die Kooperation mit der Wirtschaft.

Struktur des PATON

- Recherche- und Analysedienste
- Patentbibliothek (einschließlich Erfinderförderung und Patentannahme)
- Patentverwertungsagentur
Forschungsrelevante Arbeitsergebnisse des PATON:

- Grundlagenforschung für das Patent- und Literaturanalysesystems PATONanalist
- Aufbau des Internet - Patentdatenbanksystems PATONbase
- Erweiterung des Internet - Volltextlieferdienstes für Patentschriften PATONline um die Patentfonds Frankreichs, Großbritanniens und der ehemaligen DDR
- Erweiterte Recherche- und Analyseleistungen durch verknüpfte Nutzung von Wissenschafts-, Technik-, Patent-, Wirtschafts- und Rechtsdatenbanken
- Schaffung der Patentverwertungsagentur für die Thüringer Hochschulen und außeruniversitären Forschungseinrichtungen durch Ausbau des bestehenden Verwertungsbüros
- Weiterentwicklung der jährlichen Konferenz PATINFO auf dem Gebiet der Patentinformation

Equipment des PATON und seine Nutzung:

Ein leistungsfähiger Fileserver - Cluster stellt den Kern des PATON Volltext - Patentarchivs dar. Er wird durch mehrere Webserver für die Bereitstellung von verschiedenen Internetdiensten und durch zwei Datenbankserver zur Speicherung von Verwaltungsdaten und bibliographischen Patentdaten ergänzt.

Um der erhöhten Nutzung des Recherchesaals (Datenbankrecherchen u.a.), der Zunahme komplexer Auftragsrecherchen (Patentanalysen u.a.) und dem Schulungsbedarf gerecht zu werden, wurde die technische Ausstattung der betroffenen Abteilungen erneuert.

Veröffentlichungen des PATON:

Proceedings „PATINFO“:

PATINFO 2001
PATINFO 2002

Fachartikel und Vorträge:

Nachfolgend sind einige charakteristische Beispiele angeführt:

Schramm, Reinhard; Bartkowski, Adam; Höhne, Margit: PATONline - a regional patent center as a part of the program for stimulation of innovative activities, In: Management, Zielona Góra 5 (2001) 1, S. 93 - 108

Geplante forschungsrelevante Entwicklungen des PATON:

- Entwicklung des Patent- und Literaturanalysesystems PATONanalyst für professionelle Informationsvermittler zur Durchführung rechnergestützter Analysen
- Erweiterung des Datenbanksystems PATONbase um ein Patentanalysemodul zur selbständigen Durchführung von Standardanalysen durch die Datenbanknutzer
- Erweiterung des Volltextarchivs PATONline durch zusätzliche Länderfonds sowie durch die Erhöhung der Retrospektivität
- Entwicklung des nutzer- und unternehmensspezifischen Datenbanksystems PATONprofil
- Softwareentwicklung zur Einbindung der PATON - Dienste in betriebliche Intranets
- Weiterentwicklung der Methodik der Patentverwertungsagentur in Kooperation mit dem Thüringer Ministerium für Wirtschaft, Arbeit und Infrastruktur und dem Erfinderzentrum Thüringen
- Weiterentwicklung der Internetdienste des PATON als Zentrale des Thüringer Patentnetzes der Hochschulen für die Thüringer Hochschulen
- Realisierung des Systems „Automatische Generierung eines Technik/Wissenschaft - Qualitätsportfolios“ im Rahmen des DFG-Projektes Patentmanagement (Universität Bremen, Otto - Beisheim - Hochschule Vallendar
7. Fakultätsübergreifende Einrichtungen
7.1 Zentrum für Mikro- und Nanotechnologien

Direktor: Prof. Dr. - Ing. habil. Theodor Doll
Tel.: (03677)69 3402 Fax: (03677)69 3499
E-mail: theodor.doll@tu-ilmenau.de

Forschungsbetrieb für 9 Fachgebiete aus drei Fakultäten.

Labor Schichtherstellung:
Laborleiter: Dr. - Ing. T. Stauden
Tel.: (03677)69 3409
E-Mail: thomas.stauden@tu-ilmenau.de

Labor Strukturanalytik:
Laborleiter: Dr. - Ing. habil. L. Spieß
Tel.: (03677)69 3403
E-mail: lothar.spiess@tu-ilmenau.de

Labor Oberflächenanalytik:
Laborleiter: Dr. rer. nat. S. Krischok
Tel.: (03677)69 3405
E-mail: stefan.krischok@tu-ilmenau.de

Labor Halbleitermesstechnik:
Laborleiter: Dr. - Ing. S. Scheinert
Tel.: (03677)69 3222
E-mail: susanne.scheinert@tu-ilmenau.de

Labor Prozessmesstechnik:
Laborleiter: Dr. - Ing. E. Manske
Tel.: (03677)69 1250
E-mail: eberhard.manske@tu-ilmenau.de

Labor Mikrosystemtechnik:
Laborleiter: Dipl. - Ing. M. Kallenbach
Tel.: (03677)69 3424
E-mail: matthias.kallenbach@tu-ilmenau.de

Labor Aufbau- und Verbindungstechnik/ Hybridtechnik:
Laborleiter: Dr. - Ing. K. - H. Drue
Tel.: (03677)69 3429
E-mail: karl-heinz.drue@tu-ilmenau.de

Spezialausstattung:

Aufbau- und Verbindungstechnik:
- Leiterplattentechnik
- komplette Siebdruck-, Dickschicht- und Mehrlagenkeramiktechnologie
- Hybridisierung (SMD-, Draht- und Flip - Chip - Montage)
Präparation:
- direkt schreibende Elektronenstrahlolithographie (genehmigt)
- Molekularstrahlepitäxie
- Sputtern und Aufdämpfen
- chemische Gasphasenabscheidung (MOCVD) (genehmigt)
- Oxidation und Diffusion
- schnelle thermische Prozesse (RTP)
- Ein- und Zweiseitenlithographie
- nass- und trockenchemische Strukturierung
- anodisches Bonden und Silizium - Direktbonden

Messtechnik:
- Kapazitäts-/Spannungsmessplatz
- Hallmessplatz
- Schaltkreisparameterextraktionsmessplatz
- Vielfachsondentaster bis 400 °C
- optisches Laserprofilometer
- Anlage zur Messung innerer mechanischer Spannungen

Analytik:
- Augerelektronenspektrometer
- Photoelektronenspektrometer
- Rastersondenmikroskop (Luft/Ultrahochvakuum)
- metrologisches Atomkraftmikroskop
- analytisches Rasterelektronenmikroskop
- analytisches 200kV - Transmissionselektronenmikroskop
- Röntgendiffraktometer

Forschungsprojekte:

Forschungsschwerpunkte:

- Nanoelektronik / Nanoperipherik:
 Die Vision Nanoelektronik und Nanoperipherik zielt auf diese komplexen Systeme, in denen Si - Komponenten nur noch teilweise die Charakteristik prägen werden. Mit der Molekular- und Polymerelektronik sind weitere Kompetenzen für künftige Anschlussdichten von >1/100 nm² sowie in der aufkommenden Problematik „einzelmolekularer Grenzflächen“ vorhanden. In der Halbleiter - Mikroelektronik werden zunehmend low - k Materialien wie Polymere als Passiv- und Interconnectsubstrat eingesetzt werden. Basierend auf den LTCC - Erfahrungen können nanoskalig vorstrukturierte Substrate entwickelt werden, die sich in gleicher Technologie für Photonische Kristallstrukturen,
hochdichte, passive Komponenten und höchstgepackte elektrische Arrayanschlüsse eignen.

- **Life Science MEMS:**

- **Nanosystems:**

- **Adaptive Werkstoffe:**
7.2 Fakultätsübergreifendes Institut für Werkstofftechnik

Leiter: Univ. - Prof. Dr. - Ing. habil. H. Kern
Tel.: (03677)69 2450 Fax: (03677)69 1597
E-mail: heinrich.kern@tu-ilmenau-de

C - Stellenstruktur: 3 C 4, 3 C 3

Fachgebiete der Fakultät für Maschinenbau:
(siehe 5.3.7.1 und 5.3.7.2 Fakultät für Maschinenbau)

„Metallische Werkstoffe und Verbundwerkstoffe“
Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. H. Kern

„Glas- und Keramiktechnologie“
Fachgebietsleiterin: Univ. - Prof. Dr. - Ing. Dr. rer. oec. D. Hülsenberg

Fachgebiete der Fakultät für Elektrotechnik und Informationstechnik:
(siehe 5.1.6.1 - 5.1.6.4 Fakultät für Elektrotechnik und Informationstechnik)

„Elektrochemie und Galvanotechnik“
Fachgebietsleiterin (k): apl. Prof. Dr. - Ing. habil. Chr. Jakob

„Werkstoffe der Elektrotechnik“
Fachgebietsleiter: Univ. - Prof. Dr. - Ing. habil. Dr. rer. nat. Ch. Knedlik

„Plasma- und Oberflächentechnik“
Fachgebietsleiterin (k): apl. Prof. Dr. - Ing. habil. G. Nutsch

„Werkstofftechnologie“
Fachgebietsleiterin (k): apl. Prof. Dr. - Ing. habil. Chr. Jakob

Forschungsgebiete:

Die Inhalte der Forschung des Instituts für Werkstofftechnik sind in engem Zusammenhang mit den Forschungsschwerpunkten der TU Ilmenau zu sehen.

Im Bereich der Mikroelektronik und -systemtechnik werden zunehmend Werkstoffe erforderlich, die neben den Eigenschaften, die für die elektronische Funktion notwendig sind, spezielle Eigenschaften, z. B. mechanische, thermische oder magnetische Eigenschaften, aufweisen.

Diesbezüglich wurden z.B. galvanisch erzeugte Fe Co Ni - Legierungsschichten mit magnetischer Funktion oder neue Werkstoffe für die Hochtemperaturelektronik auf der Basis von SiC entwickelt.

Im Zeitraum von 2001 bis 2002 wurde eine Vielzahl von Einzelprojekten bearbeitet, die sich zum überwiegenden Teil diesen Forschungsschwerpunkten zuordnen lassen.

Die detaillierte Darstellung der erreichten Forschungsergebnisse enthalten die Abschnitte 5.1 Fakultät für Elektrotechnik und Informationstechnik sowie 5.3 Fakultät für Maschinenbau.
8. Forschungsförderung und Technologietransfer

Die bedeutendsten Forschungsergebnisse und ausgewählte Einzelprojekte dieser Drittmittelforschung werden im Kapitel 4.3 und in den Kapiteln der Fakultäten dieses Forschungsberichtes umfassend vorgestellt.

8.1 EU - Forschungsförderung

Besonders erwähnenswert sind Projekte, deren Koordination durch Wissenschaftler der TU Ilmenau erfolgt:

- DEMAND - Enhancement of Technologies and Data Fusion Algorithms for Test and Demonstration of Multisensor Landmine Detection Techniques
- COST P6 MFD - Magneto Fluid Dynamics

Vier Wissenschaftler der TU Ilmenau wurden von der EU als Gutachter zur Evaluierung von Projektvorschlägen berufen.

Die Einwerbung von EU-Forschungsmitteln wurde durch das TMWFK mit dem "EU - Referenten - Modell Thüringen" gefördert. Der EU - Forschungsreferent an der TU Ilmenau unterstützt als kompetenter Ansprechpartner die Wissenschaftler bei der EU - Antragstellung und dem Projektmanagement.
EU - geförderte internationale Forschungsprojekte mit Laufzeit in den Jahren 2001 und 2002 mit Beteiligung von Wissenschaftlern der TU Ilmenau sind in der folgenden Übersicht chronologisch nach Beginn zusammengestellt:

LABDILEIT: Laboratory for Distance - Learning based on Internet Technology (ALFA-II)
Dr. Frank Schwierz, Fak. EI - Festkörperelektronik (10/2002 - 09/2004)

FULCE: Functional Liquid Crystal Elastomers (IHP)
Prof. Dr. H. Wurmus, Fak. MB - Mikrosystemtechnik (09/2002 - 08/2006)

DigISQUID: Digital High-Tc SQUID Sensors for Non Destructive Evaluation in Unshielded Environment (GROWTH)
Prof. Dr. H. Uhlmann, Fak. EI - Elektromagnet. Felder (08/2002 - 07/2006)

INTAS-01-686: Development of Ultra Low Noise Superconducting Devices for High Frequency Detection - II (INTAS)
Prof. Dr. H. Uhlmann, Fak. EI - Elektromagnet. Felder (06/2002 - 05/2004)

AGENTCITIES.NET: Testbed for a Worldwide Agent Network (IST)
Prof. Dr. S. Kirn, Fak. WW - Wirtschaftsinformatik (04/2002 - 04/2003)

SCENET-II: Thematic Network on Superconductivity (GROWTH)
Prof. Dr. H. Uhlmann, Fak. EI - Elektromagnet. Felder (04/2002 - 03/2006)

FLASiC: Flash Lamp supported Deposition of 3C-SiC Films (GROWTH)
Dr. Jörg Pezoldt, Fak. EI - Nanotechnologie (03/2002 - 02/2005)

REASON: Research and Training Action for System on Chip Design (IST)

DEMAND: Enhancement of three existing technologies and data fusion algorithms for the Demonstration of Multisensor Antipersonnal landmine Detection techniques (IST)
Dr. Jürgen Sachs, Koordinator, Fak. EI - Elektronische Messtechnik (02/2001 - 07/2003)

SMAC: Smart Control of Waste Water Systems (EESD)
Prof. Dr. H. Puta, Fak. IA - Dynamik u. Simulation ökologischer Systeme (03/2001 - 02/2004)

CASC: Computational Aspects of Statistical Confidentiality (IST)
Prof. Dr. K. Luhn, Fak. WW - Operations Research u. Wirtschaftsstatistik (01/2001 - 12/2003)

AGENTLINK-II: Continuation of a Network of excellence in agent - based computing (IST)
Prof. Dr. S. Kirn, Fak. WW - Wirtschaftsinformatik (01/2001 - 12/2003)

WIREGONE: WIRE - less monitoring Online of strain and temperature (GROWTH)
Prof. Dr. W. Buff, Fak. EI - Halbleitersensorik (09/2001 - 12/2004)

THEIERE: Thematic Harmonization in Electrical and Information Engineering in Europe (ERASMUS)

EUTIST-IMV IMTEX: Image guided distortion measurement for control of a weft straightening machine (IST)

COST P6 - MFD: Magneto Fluid Dynamics Action P6 (COST)
Prof. Dr. André Thess, Koordinator, Fak. MB, Thermo- u. Fluidodynamik (02/2000 - 07/2003)

SCENET: European Network on Superconductivity, Node Simulation and Design (GROWTH)
Prof. Dr. H. Uhlmann, Fak. EI - Allgemeine u. Theoretische Elektrotechnik (02/2000 - 01/2001)

HIDEF: High Definition Video Extensometer (CRAFT)

DEMINE: Improved Surface Penetrating Radar Detector for Humanitarian Demining (Esprit)
Dr. Jürgen Sachs, Koordinator, Fak. EI - Elektronische Messtechnik (03/1999 - 02/2002)

INTAS-1001: Graph Colourings (INTAS)
Prof. Dr. H. Walther, Koordinator, Fak. MN, Diskrete Mathematik und Algebra (01/1999 - 12/2001)
INTAS-731: Development of Ultra Low Noise Superconducting Devices for High Frequency Detection (INTAS)
Prof. Dr. H. Uhlmann, Fak. EI - Allgemeine u. Theoretische Elektrotechnik (11/1998 - 09/2001)

8.2 Transferspektrum der Technischen Universität

Die zentrale Abteilung zur Steuerung, Koordinierung und Förderung der Drittmittelforschung für die TU Ilmenau ist die Transferstelle (Abteilung Forschungsförderung und Technologietransfer - FuT) als umfassende Kontakt-, Beratungs- und Vermittlungsstelle zwischen der Universität/den Wissenschaftlern und der Wirtschaft/Industrie sowie den öffentlichen Fördermittel- und Zuwendungsgebern (Bundes- und Landesministerien, DFG, AiF, Stiftungen, EU - Institutionen).

Durch die Arbeit der Transferstelle werden die Wissenschaftler und die Wissenschaftsbereiche u.a. über die landes-, bundes- und europaweiten Forschungsförderprogramme, über die Teilnahmebedingungen, die Antragsformalitäten und Termine informiert und bei der (administrativen) Antragstellung umfassend unterstützt. Es wird für die vertragliche Vorbereitung und rechtliche Absicherung, einschließlich Schutzrechte, des Wissens-, Technologie- und Personaltransfers Sorge getragen. Mit der Organisation und Durchführung von Messebeteiligungen wird zur Präsentation innovativer Ergebnisse, der Akquisition neuer Forschungsprojekte und zur Partnersuche für gemeinsame Forschungsaufgaben für die Wissenschaftler der Universität wesentlich beigetragen. Im Berichtszeitraum betraf das folgende Messeteilnahmen, vielfach auf Gemeinschaftsständen der Thüringer Forschungseinrichtungen:

- CeBIT, Hannover
- Learntec, Karlsruhe
- Opo, Erfurt
- Materialica, München
- Glasstec, Düsseldorf
- SolarEnergy, Berlin
- Hannover Messe Industrie, Hannover
- Medica, Düsseldorf
- Powtech, Nürnberg
- Sensor, Nürnberg
- Tage der Forschung, Ilmenau

Das Arbeitsspektrum der TU - Transferstelle an der Schnittstelle zwischen Universität und Wissenschaftlern sowie den Fördermittelgebern, Kooperationspartnern und Institutionen im Umfeld der Universität ist in der folgenden Grafik visualisiert:

257
Transferinstrumente

Direct kontakte zu Firmen, Kamern und Verbänden
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Leistungsangebote / Vorträge
- Förderprogramme / Daten-Netze
- Branchen-Workshops
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Direktkontakte zu Firmen, Kamern und Verbänden
- Transferinstrumente
- Transferformen
- Management- und Dienstleistungszentrum
- Vertrags- und Auftragsforschung
- Direktkontakte zu Firmen, Kamern und Verbänden
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Leistungsangebote / Vorträge
- Förderprogramme / Daten-Netze
- Branchen-Workshops
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Direktkontakte zu Firmen, Kamern und Verbänden
- Transferinstrumente
- Transferformen
- Management- und Dienstleistungszentrum
- Vertrags- und Auftragsforschung
- Direktkontakte zu Firmen, Kamern und Verbänden
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Leistungsangebote / Vorträge
- Förderprogramme / Daten-Netze
- Branchen-Workshops
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Direktkontakte zu Firmen, Kamern und Verbänden
- Transferinstrumente
- Transferformen
- Management- und Dienstleistungszentrum
- Vertrags- und Auftragsforschung
- Direktkontakte zu Firmen, Kamern und Verbänden
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Leistungsangebote / Vorträge
- Förderprogramme / Daten-Netze
- Branchen-Workshops
- Forschungs- / Transferkataloge
- Messen / Ausstellungen / Tage der Forschung
- Veröffentlichungen / Patente
- Kolloquien / Symposien / Foren
- Direktkontakte zu Firmen, Kamern und Verbänden
- Transferinstrumente
- Transferformen
- Management- und Dienstleistungszentrum
- Vertrags- und Auftragsforschung
- Direktkontak...
Abb. 8: Drittmittelforschungsvolumen TU Ilmenau 1998 - 2002

Abb. 9: Drittmittelforschungsvolumen TU Ilmenau 2002 - nach Fakultäten
Abb. 10: Drittmittelforschungsprojekte TU Ilmenau 1998 - 2002

Abb. 11: Beschäftigte aus Drittmitteln an der TU Ilmenau 1998 - 2002
9. Forschungs- und Transfereinrichtungen im Umfeld der Universität
9.1 Institut für Mikroelektronik- und Mechatroniksysteme gGmbH (IMMS)

Als Bindeglied zwischen Forschung und industrieller Nutzung versteht sich das IMMS sowohl als Berater, aber auch als Forschungspartner und Dienstleister und entwickelt strategisch Kompetenzen auf folgenden Gebieten:

Mechatronik:
- Direktantriebssysteme, Antriebe für besondere Einsatzbedingungen
- komplexe mechatronische Systeme

System Design:
- Digitale Signalverarbeitung / Industrielektronik
- Embedded Software / Automotive Systeme, Busse und vernetzte Systeme

Schaltungstechnik / Mikroelektronik:
- Mix - Signal Systeme, ADC/DAC, DSP basierte Systeme, Sensor - Interfaces, Optoelektronik, Magnetosensorik, HF - Schaltungstechnik, Modellierung & Simulation, Anwendung von SOI - Technologie
Industrielle Elektronik und Messtechnik:

- Smart - Power - Systeme, Schaltnetzteile, Batteriemanagement, Messtechnik
- HF - Messtechnik, Mix - Signal - Test, Besondere Testverfahren

9.2 Fraunhofer Anwendungszentrum für Systemtechnik

Das Anwendungszentrum Systemtechnik Ilmenau (AST) des Fraunhofer - Instituts für Informations- und Datenverarbeitung Karlsruhe (IITB):

Gründung: März 1995
Leitung: Univ. - Prof. Dr. - Ing. habil. Jürgen Wernstedt
Mitarbeiter: 16
Betriebsaufwand: 1,2 Mio. EUE (2003)

Die Kompetenzgebiete sind:

Das Wissenschaftsgebiet der Systemtechnik (im Sinne von systems engineering) befasst sich mit der:

- rechnergestützten Erfassung, Selektion und Aufbereitung von Informationen,
- Erstellung von Modellen von Signalen und Systemen
- Entwicklung optimaler und robuster Regelungen
- Erarbeitung von Entscheidungsstrategien und -vorschlägen für den Entwurf, die Steuerung/Führung und die Vorhersage von komplexen dynamischen Vorgängen für technische und nichttechnische Prozesse.

Die erfolgreiche Arbeit des Anwendungszentrums wird wesentlich durch die Zusammenarbeit mit den Fachgebieten des Institutes für Automatisierungs- und Systemtechnik (Prof. Puta, Prof. Sawodny, Prof. Wernstedt) getragen.

Als Geschäftsfelder werden entwickelt:

Die Geschäftsfelder der Fraunhofer - Anwendungszentrum Systemtechnik Ilmenau ordnen sich in die des IITB Karlsruhe ein und ergänzen diese. Die eigenen Schwerpunkte liegen auf den Geschäftsfeldern:

I. Ressourcenmanagement:

- Modellierung, Simulation und Betriebführung von Wasserversorgungs- und Abwasserbereitungssystemen
- Modellierung, Simulation und Führung von Energieversorgungssystemen (Elektro, Fernwärme, Gas)
II. Regelungstechnik / Mechatronik
- Regelung von flexiblen Manipulatoren und Robotern mit großen Arbeitsräumen
- Trajektoriengenerierung und Bahnplanung flexibler Manipulatoren

III. Umwelt- und Ökosysteme:
- Modellierung, Simulation und Führung von Wassermengen und -qualität in Flüssen, Seen, Talsperren

Strategische Projektpartner 2002/2003 des Fraunhofer - Anwendungszentrums Systemtechnik Ilmenau waren und sind:
- Bundesanstalt für Wasserbau Karlsruhe
- VA TECH SAT GmbH & Co Wien (A)
- Versorgungsbetriebe in Kommunen und Regionen
- Liebherr-Werke GmbH Nenzing (A)
- IVECO AG, Ulm

Weiter Informationen unter: www.ast.iitb.fhg.de

Projekte wurden und werden insbesondere in Deutschland, aber zunehmend in Europa, den USA und in China realisiert.

9.3 Fraunhofer - Institut für Digitale Medientechnologie IDMT

Leitung: Univ. - Prof. Dr. - Ing. Karlheinz Brandenburg
Tel.: (03677)69 4341 oder (03677)69 4342
Fax: (03677)69 4399
Internet: http://www.emt.iis.fraunhofer.de

Die Arbeitsgebiete des Fraunhofer IDMT konzentrieren sich auf drei Schwerpunkte:

Technologie der Unterhaltungselektronik:

Die technische Innovation, die den Entwicklungen in der Abteilung zugrunde liegt, ist die Aufhebung des Prinzips der Audiowiedergabe über festgelegte Kanäle. Die bisher üblichen Mehrkanalverfahren, die in zahlreichen Produkten der Unterhaltungsindustrie eingesetzt werden haben den Nachteil, dass die korrekte Aufstellung der Lautsprecher selbst in professionellen Anwendungen nicht immer möglich ist. Auch die räumliche Schallwiedergabe natürlicher und virtueller Umgebungen gelang bisher nur unbefriedigend.

Audiocodierung:

Die Codierung von Audiosignalen für spezielle Anwendungen und die Entwicklung von Geschäftsmodellen für den sicheren Vertrieb von virtuellen Gütern sind die Themen der Abteilung Audio - Applikationen.

rung entwickelte »Ultra Low Delay« Codec hat eine Verzögerung von nur noch etwa sechs Millisekunden, ohne dabei wesentliche Einbußen in der Kompressionsrate und der Audioqualität hinnehmen zu müssen.

Metadaten:

Eine weitere Anwendung für eine automatisierte Extraktion von Metadaten aus Audiosignalen ist die Melodieerkennung »Query by Humming«. Darunter versteht man die Suche nach einem Musiktitel in einer Datenbank auf der Grundlage einer gesungenen Melodie. Im vergangenen Jahr wurde die Leistung des in Ilmenau entwickelten Query by Humming Systems weiter verbessert. Mögliche Anwendungsgebiete sind die Melodieerkennung per Mobiltelefon, stand-alone Systeme für Plattenläden und Heimbereich oder die Suche im Internet.
9.4 tranSIT GmbH - Thüringer Anwendungszentrum für Software-, Informations- und Kommunikationstechnologien

- Beratung und Vermittlung von technologieorientierten Projekten und Fördermöglichkeiten
- Technologiepool zur Qualifizierung unternehmensspezifischer Vorhaben
- Vorbereitung und Präzisierung von Vorhaben der industriellen Forschung oder vorwettbewerblichen Entwicklung sowie der Anwendung innovativer IuK-Technologien
- Betreuung und Begleitung von Innovationsvorhaben sowie Finanzierungs- und Projektmanagement

Die tranSIT GmbH ist das Zentrum zur Beratung, Training, Demonstration und Applikation auf ihren Arbeitsschwerpunkten. Zusammen mit Partnern aus Wirtschaft und Forschung werden Projekte und Pilotvorhaben generiert und verwirklicht, zudem fungiert sie als Schnittstelle zu den Forschungseinrichtungen Thüringens, um so stets einen optimalen Wissens- und Technologietransfer gewährleisten zu können. Ihre Potentiale nutzt sie aber auch, um die Bildung von Unternehmensnetzwerken zu fördern. Im Rahmen der Bundesinitiative „Kompetenzzentren für elektronischen Geschäftsverkehr“ betreibt die tranSIT GmbH das „Thüringer Kompetenzzentrum e-Commerce“. Das Anliegen dieses Projektes ist die Verbesserung der Wettbewerbssituation kleiner und mittlerer Unternehmen und deren Vorbereitung auf zukünftige Märkte und Infrastrukturen.

9.5 Steinbeis Transferzentren

9.5.1 Steinbeis Transferzentrum „Qualitätssicherung und Bildverarbeitung“

Leiter:
Univ. - Prof. Dr. - Ing. habil. Gerhard Linß
Dr. - Ing. Peter Brückner
Tel. (03677)20 8066 Fax: (03677)20 8067
E - mail: stz@stz-ilmenau.de

Aufgabenprofil:
- Auftragsentwicklung von Hard- und Software der industriellen Bildverarbeitung
- Wiederholfertigung von Geräten der industriellen Bildverarbeitung
- Entwicklung und Aufbau von Sondermesseinrichtungen auf der Grundlage von -Lösungen der industriellen Bildverarbeitung
- Entwicklung von Lösungen zu statistischen Verfahren der Qualitätssicherung und zur rechnergestützten Qualitätssicherung - CAQ
- Beratung zu Fragen der Qualitätssicherung und der industriellen Bildverarbeitung
- Seminare und Personalschulung auf den Gebieten Qualitätssicherung, Bildverarbeitung und Fertigungsmesstechnik
- Durchführung von Lizenzlehrgängen der Deutschen Gesellschaft für Qualität
- Vorbereitung von Unternehmen auf die Zertifizierung nach DIN/EN/ISO 9000 ff.

Publikationen:

Forschungsprojekte:

„Aufbau von Messeinrichtung für Mehrschichtverbundrohre“

Partner/Förderinstitution: Firma UNICOR Suhl
Laufzeit: 2001
Schlagwörter: Präzisionsmessung, Fertigungsmesstechnik

„Anlage zur berührungslosen Prüfung geometrischer Merkmale an optischen Linsen mit automatischer Zuführung und Sortierung“

Partner/Förderinstitution: Firma Carl Zeiss Jena GmbH, Jena
Laufzeit: 2001 bis 2002
Schlagwörter: Bildverarbeitung, Präzisionssmesstechnik, Optik

Musterserie von Video - optischen Sensoren „VISCAN“

Partner/Förderinstitution: Carl Zeiss Oberkochen, Oberkochen
Laufzeit: 2001 bis 2002
Schlagwörter: Kamerasystem, Tasterwechsel, Software

„Optische Koordinatenmesstechnik- Intelligentes Training & Networking“

Partner/Förderinstitution: OKM Jena GmbH, Jena
Laufzeit: 2001 bis 2002
Schlagwörter: Qualifizierung, Messtechnik, Internet, Software
9.5.2 Steinbeis Transferzentrum „Federntechnik“

Leiter: Univ. - Prof. Dr. - Ing. habil. Hans - Jürgen Schorcht
Univ. - Prof. Dr. - Ing. habil. Mathias Weiß

Ansprechpartner: Dr. - Ing. Steffen Lutz
Tel.: (3677)69 1820
Fax: (3677)69 1259
E - mail: stz-federn@tu-ilmenau.de

Das STZ Federntechnik ist insbesondere auf dem Gebiet Technische Federn, von der Werkstoffauswahl über Berechnung, Fertigung bis zur Prüfung tätig. Darüber hinaus werden Problemstellungen des allgemeinen Maschinenbaus (Entwicklungsprojekte, Bauteilprüfungen, Steuerungsprobleme u.a.) bearbeitet.

Forschungsschwerpunkte:

Forschungs- und Entwicklungsaufgaben mit folgenden Inhalten wurden bzw. werden bearbeitet:

- Beratung und Dienstleistungen zu Entwurf, Fertigung und Einsatz von Federn,
- Erarbeiten federntechnischer Berechnungssoftware, Durchführen von Finite - Elemente - Berechnungen,
- Schwingungsuntersuchungen an Federn,
- Entwicklung und Einsatz von Messtechnik zur Ermittlung von Feder- und Materialkennwerten,
- Festigkeitsprüfungen an Federn sowie Baugruppen,
- Gleichmäßigkeitsuntersuchungen an Federdraht,
- Hochgeschwindigkeitsanalysen dynamisch beanspruchter Federn und Baugruppen,
- Recherche und Vergleich von Federdrahtmaterialien und Bewertung ihrer Verarbeitbarkeit,
- Beratung auf dem Gebiet der Steuersoftware - Entwicklung (PC - based Control),
- Automatisierungslösungen für den Maschinenbau,

Transferleistungen:

Beginnende im Jahr 2001 wurden bisher 44 Projekte in Form von Dienstleistungsverträgen bearbeitet. Davon wurden ca. 20 % gemeinsam mit Thüringer Firmen umgesetzt. Internationale gibt es gute Beziehungen zu einer Schweizer Firma, mit der vor kurzem bereits das dritte Projekt abgeschlossen wurde.
9.5.3 Steinbeis Transferzentrum „Mechatronik“

Leiter: Univ. - Prof. Dr. - Ing. habil. Eberhard Kallenbach
 Tel.: (03677)668500 FAX: (03677)668501
 E - mail: rolf.hermann@stw.tgz-ilmenau.de

Forschungsschwerpunkte:
- Entwurf elektromagnetischer und piezoelektrischer Antriebselemente
- Magnetische Messverfahren, Untersuchung
- Magnetische Werkstoffe
- Numerische Feldberechnung und Simulation von Antriebssystemen
- Steuerung von Antriebssystemen
- Magnetische Mikroaktoren

Transferleistungen:
- Bearbeitung von Drittmittelthemen an den Themenbereichen:
- Neuartige magnetische Aktoren, schnellwirkende Elektromagnete,
- Aktorsysteme für den Maschinenbau und die Antriebstechnik,
- magnetische Messung magnetischer Werkstoffe
- Beratung von KMU
- Leitung von Verbundprojekten (MAFK, IMODAS)
- Durchführung von Weiterbildungsveranstaltungen in Unternehmen
 (Design magnetischer Systeme)

Publikationen:

Internationale Zusammenarbeit:
- Zusammenarbeit mit der Staatlichen Technischen Universität Novocerkassk.
- Unterstützung von ausländischen Nachwuchswissenschaftlern mit Stipendien.
- Bearbeitung von Entwicklungsthemen ausländischer Firmen (Finnland, USA).
9.5.4 Steinbeis Transferzentrum „Fahrzeugtechnik“

Leiter: Univ. - Prof. Dr. - Ing. Klaus Augsburg
Tel: (03628)589 619 Fax: (03628)589 620 bzw.
Tel: (03677)69 3842 Fax: (03677)69 3840
E - mail: klaus.augsburg@tu-ilmenau.de

Das Steinbeis Transferzentrum Fahrzeugtechnik dient dem Transfer von Forschungsleistungen der Technischen Universität Ilmenau in kleine und mittelständige Unternehmen. Es bietet neben Beratungsleistungen die Übernahme Entwicklungsleistungen im materiellen und immateriellen Bereich an. Daneben unterstützt es die Lehre durch die Übernahme der Betreuung von studentischen Arbeiten und durch die Bereitstellung von materiellen Ausräustungen.

Dienstleistungsangebot:

- Beratung von Unternehmen
- Erstellung von Fachgutachten
- Übernahme von Prüfarbeiten
- Übernahme von Entwicklungsleistungen
- Aus- und Weiterbildung

Schwerpunkttthemen:

- Stationäre Prüfeinrichtungen - Konstruktion, Messtechnik, Steuerung
- Messtechnik in mobilen Systemen - Konzeption, Programmierung, Auswertung, Fahrversuche
- Simulation des Funktionsverhaltens mechanischer und mechatronischer Systeme – Finite Elemente, Mehrkörpersysteme, numerische Verhaltenssimulation
- Fahrwerkstechnik - by - wire - Systeme, Bremssysteme
- Antriebstechnik - Wirkungsgrad, Schwingungs- und Geräuschverhalten
- Mensch – Maschine - Schnittstelle - Optimierung von Komfortparametern

9.5.5 Steinbeis Transferzentrum „Interaktive Computersysteme/CAD“

Leiter: Prof. Dr. B. Brüderlin
Telephon (0361)550 4209 FAX(0361)550 42 85
E - mail: stz489@stw.de
Internet http://www.stw.de/stz/489.htm

Profil:
Das 1999 aus dem Fachgebiet Grafische Datenverarbeitung heraus gegründete Transferzentrum beschäftigt sich mit folgenden Themen:

Interaktive Computergraphik
- Objektorientierte, portable Benutzerschnittstellen und Werkzeuge
- Software für interaktives 3D Modellieren und CAD

Systementwicklung
- Prototypische Entwicklung geometrischer Entwurfssysteme/CAD
- Anwendung von Modellierkernsystemen ACIS, Parasolid, IRIT, OpenCascade
- Datenaustausch mit dem STEP - Standard
- Multidisziplinäre Problemlösung im Entwurf, Mechatronik
- Wissensbasierte (regelbasierte) Entwurfsoftware
Geometrisches Modellieren
- CAD Geometriesoftware für CAD Systeme
- Robuste Boole’sche Mengenoperationen auf geometrischen Körpern
- Berechnen von Freiformflächen und Kurven (B-Spline, NURBS)
- Geometrische Constraint - Solver
- Software für den Konzeptentwurf

Visualisierung, Virtuelle Realität, Augmented Reality
- Realistische Echtzeitgrafik / Real - Time Realistic Rendering
- Tesselierung n-dimensionaler Daten
- Bewertung von VR Hardware und Software
- Beratung bei der Entwicklung von VR Systemen
- Realistische Echtzeit - Visualisierung

Multimedia Präsentationen im Internet
- Technische on-line Dokumentation (Deutsch, Englisch)
10. TechnologieRegion Ilmenau und Science Park
10.1 Vorstellung der Region und ihre Perspektiven

- Informations- und Kommunikationstechnik,
- Mikrosystemtechnik / Mechatronik,
- Produktionstechnik und Logistik
- Mess- und Prüftechnik sowie
- Medizintechnik

Im Rahmen des Gesamtvorhabens Technologie Region Ilmenau ist der Aufbau des Technologie- und Forschungsparks Ilmenau (TFPI) ein Meilenstein zur weiteren Verbesserung der Infrastruktur und Rahmenbedingungen. Dabei kommt der Stärkung der endogenen Potenziale durch Existenzgründung, Ausgründung und Erweiterung eine besondere Rolle zu.

10.2 Rolle der TU Ilmenau

Die Voraussetzungen für eine solche Entwicklung sind am Standort Ilmenau ausgezeichnet, da neben der Grundlagenforschung vor allem die angewandte, praxis- und industrienahe Forschung und der damit vorhandene Wissens- und Technologietransfer in Industrie und Wirtschaft ein Markenzeichen der Universität sind. Gemeinsame Projekte mit Unternehmen bilden die Basis für die Einführung neuer Technologien und die Entwicklung neuer Produkte, insbesondere in den Zukunftsbereichen wie Mechatronik, Mikroelektronik, Mikrosystemtechnik, Bildverarbeitung, Medizintechnik, Informations- und Kommunikationstechnik sowie der Umwelttechnik.

Insbesondere durch den Übergang von Mikro- zu Nanometerstrukturen in vielen der oben genannten Bereiche wachsen die Herausforderungen an die Forschung. Die Technische Universität Ilmenau besitzt gerade auf diesem Gebiet eine hohe, fakultätsübergreifende Kompetenz, die ihren Ausdruck u. a. in der Errichtung eines Zentrums für Mikro- und Nanotechnologien fand.

Das „Zentrum für Mikro- und Nanotechnologien (ZMN)” (siehe Punkt 7.1) ist die wissenschaftliche Einrichtung der TU Ilmenau für Forschung und Lehre im Hochtechnologiebereich. Neben den spezifischen Arbeiten der beteiligten Fachgebiete Festkörperelektronik,

Zur Unterstützung dieser Unternehmen und zur Förderung weiterer Existenzgründungen in Verbindung mit der Umsetzung von Forschungsergebnissen wurde das Applikationszentrum (APZ) in Ilmenau in unmittelbarer Nähe der Technischen Universität errichtet.

Die Ausstattung des Applikationszentrums konzentriert sich auf ausgewählte Technologiebereiche, die einerseits eine hohe Relevanz für die Thüringer Wirtschaft besitzen und die andererseits wesentliche Kompetenzfelder der TU Ilmenau widerspiegeln. Damit ergänzt sich die Einrichtung mit dem Applikationszentrum Mikrotechnik und dem Bioinstrumentenzentrum (beide in Jena) und dem geplanten Kompetenzzentrum Mikrosystemtechnik in Erfurt Südost.

Die enge Zusammenarbeit der TU Ilmenau erstreckt sich weiterhin auf das Technologie- und Gründerzentrum, das An - Institut „Mikroelektronik- und Mechatronik - Systeme gGmbH (IMMS)“, die Steinbeis Transferzentren „Mechatronik“, „Qualitätssicherung und Bildverarbeitung“, „Federntechnik“, „Fahrzeugtechnik“, „Interaktive Computersysteme/CAD“, das „Anwendungszenrum Systemtechnik (AST)” des Fraunhofer Institutes für Informations- und Datenverarbeitung IITB Karlsruhe sowie auf das Fraunhofer Institut für digitale Medientechnologie (IDMT).

10.3 Applikationszentrum

Im Hochtechnologiebereich werden in fünf Jahren 80% des Umsatzes von anspruchsvollen Produkten erbracht, die heute noch nicht bekannt sind. Diese zukünftigen, forschungsin tensiven Produkte werden sich durch hohe Integration und Komplexität, Intelligenz und Lernfähigkeit, den Einsatz von neuen Werkstoffen und Produktionsverfahren sowie minimalen Energieverbrauch und umfassende Umweltverträglichkeit auszeichnen. Ihre Entwicklung erfordert interdisziplinäres Know - how, fachliche Kompetenz, effizienten Transfer von der Forschung über die Entwicklung in die Produktion, kurze Entwicklungszeiten, exzellente Infrastruktur und ein hohes Maß an Kooperationen.

Sich dieser zukunftssichernden Herausforderung zu stellen, wird insbesondere für kleine und mittelständische Unternehmen immer schwieriger. Selbst wenn neue Produktideen vorhanden sind, fehlen häufig entsprechend qualifiziertes Personal, eine geeignete technisch - technologische Infrastruktur, die dafür erforderlichen finanziellen Mittel oder geeignete Kooperationspartner.

Mit dem Applikationszentrum Ilmenau sind für die Bewältigung dieser Herausforderung exzellente Voraussetzungen vorhanden.

Auf dem Campus der Technischen Universität steht ein hervorragend ausgestattetes Technologiezentrum zur Verfügung, das eine enge Kooperation mit der anwendungsnahen universitären Forschung, eine schnelle Umsetzung auf Basis einer anspruchsvollen technisch-technologischen Ausstattung und eine ausgezeichnete Infrastruktur bietet.

- Mikrotechniken (Mikrosystemtechnik, Wafertechnologien, Mikroelektronik,)
- Schaltungs- und Hybridtechnik (Multilayer - LTCC - Techniken, Aufbau- und Verbindungstechnik, Laserstrukturierung verschiedener Substrate und Materialien)
- Bildverarbeitung (Farbbild- und -texturanalyse, Oberflächeninspektion von Mikrostrukturen, technische Diagnostik, bioinspirierte Techniken)
- Messtechnik (Nanomesstechnik, Lasermesstechnik, Wägetechnik)
- Leistungselektronik, Power - Quality - Management
- Medizintechnik (Nichtinvasive medizinische Diagnostik, Neurofeedback - Therapietechnik, Mikrozirkulationsdiagnostik, ophthalmologische Funktionsdiagnostik)

Das Applikationszentrum gliedert sich in drei miteinander verbundene Baukörper: Büro, Labor, Reinraum:

- Das Bürogebäude verfügt über 37 Büroräume mit Nettoflächen um 25 m². Im Bürogebäude befinden sich weiterhin drei große, voll ausgestattete Besprechungsräume, die auch zu einem großen Konferenzraum zusammengelegt werden können.
- Das Laborgebäude bietet 24 Räume von 24 bis 51 m². Alle Räume sind vorbereitet für universelle Medienversorgung (Elektro, auch mit Sonderspezifikationen; Klimatisierung; Prozesskühlwasser; Druckluft, technische Gase, Prozessabluft), sie verfügen zusätzlich über Glasfaseranschluss.
- Der Reinraum verfügt über 405 m² nutzbare Reinraumfläche. Das Layout und die eingesetzte Technik entsprechen modernstem Stand. Die Reinraumklasse lässt sich individuell
von Klasse 1 bis 10000 anpassen; eine flexibel adaptierbare Versorgung mit allen notwendigen Medien ist gegeben.

Das Applikationszentrum Ilmenau bietet seinen Nutzern weiterhin attraktive Gemeinschaftseinrichtungen zur gemeinsamen Nutzung:

- Elektronisches Messlabor mit umfangreicher Geräteausstattung für eine breite Aufgabenpalette
- Klimaprüflabor für Dauer- und Wechselbelastung
- Schwingungsprüflabor
- Werkstattraum.

Darüber hinaus steht den Nutzern eine umfangreiche gerätetechnische und technologische Ausstattung für unterschiedliche Technologiefelder und Branchen zur gemeinschaftlichen Nutzung zur Verfügung, wie z. B.:

- Mikrotechniken/ Wafertecnologien (DSP - Anlage, Ätz- und Reinigungsbank, Waferinspektionsystem, Partikelzähler)
- Schaltungs- und Hybridtechnik (Schaltungsentwurf, Dickschicht - Hybridtechnik, LTCC - Technologie)
- Bildverarbeitung (Spezialgeräte zur Bilderfassung und -auswertung)
- Mess- und Sensortechnik (Präzisionsmesstechnik für nichtelektrische Größen)
- Medizintechnik (Spezialausstattung zur Entwicklung medizintechnischer Geräte für Diagnostik, Monitoring und Therapie)
- Leistungselektronik (Hochstromversorgungs- und -messtechnik)

Eigentümer des Applikationszentrums Ilmenau ist die Stiftung für Technologie , Innovation und Forschung Thüringen (STIFT). Die Investition wurde mit Fördermitteln der EU cofinanziert; daher können günstige Mietkonditionen gewährt werden. Die Akzeptanz für dieses attraktive Angebot in der Zielgruppe (start-up`s, innovative kleine und mittelständische Unternehmen) ist hoch.

10.4 Technologie- und Gründerzentrum

Geschäftsführer: Dr. - Ing. Bernd Jakob
Tel.: (03677)6680 Fax:(03677)668 111
E - mail: jakob@tgz-ilmenau.de

Das Technologie- und Gründerzentrum Ilmenau (TGZ Ilmenau), eine Standortgemeinschaft innovativer Unternehmen, ist ein Instrument der regionalen Wirtschafts- und Technologieförderung.

Als Partner für Existenzgründer, technologieorientierte Unternehmen, Projektgruppen etablierter Unternehmen und unternehmerisch tätige Einrichtungen bietet es exzellente Standortvorteile in Verbindung mit qualifizierten Beratungs- und Dienstleistungen des Zentrums und seiner Partner. Besprechungs- und Konferenzräume, ergänzt durch Ausstel-
lungsflächen, können für Veranstaltungen und Präsentationen genutzt werden. Individualität, Flexibilität und Funktionalität der Mieteinheiten werden nahezu allen Nutzeranforderungen gerecht.

Das TGZ Ilmenau bietet insbesondere technologieorientierten Unternehmen folgende Leistungen an:

- Bereitstellung hochwertiger Büro-, Entwicklungs- und Produktionsräume neben dem Campus der TU Ilmenau
- Bedarfsgerechte Infrastruktur, insbesondere Zugang zur Breitband-Infrastruktur (G-WiN)
- Beratung, Service- und Dienstleistungen; Anregung und Vermittlung von Kontakten und Kooperationen
- Organisation und Durchführung von Konferenzen, Workshops, Weiterbildungsveranstaltungen, Hausmessen und Firmenpräsentationen
- Beratung und Auftragsbearbeitung durch leistungsfähige Unternehmen und Einrichtungen der Standortgemeinschaft des TGZ Ilmenau
- Beratungs- und Dienstleistungen für assoziierte Unternehmen des TGZ Ilmenau

Unterstützung der Unternehmen bei der Ausgründung aus dem TGZ Ilmenau

10.5 Existenzgründungen aus der TU Ilmenau

Die große Anzahl von technologieorientierten Unternehmen, die sich im Umfeld der Universität angesiedelt haben, zeigt, welch idealer Nährboden die Region Ilmenau für innovative Gründer ist. Die Firmenansiedlungen am „Oberen Ehrenberg“, auf dem Gelände des ehemaligen Glaswerkes (Industriepark „Am Vogelherd“), im Gewerbepark „Am Walde“, im Gewerbegebiet „An der B4“ bis hin nach Suhl und Arnstadt belegen die regionale Ausstrahlung der TU Ilmenau. In den vergangenen 10 Jahren haben sich ca. 100 technologieorientierte Unternehmen im Umfeld der TU angesiedelt, die von Absolventen bzw. Mitarbeitern der Universität gegründet wurden; somit konnten ungefähr 800 Arbeitsplätze geschaffen werden.

In Zusammenarbeit mit der Akademie für Weiterbildung an der TU Ilmenau werden Seminarreihe, die sich an alle gründungsinteressierten Studenten und Mitarbeiter der Universi-

An der Fakultät für Wirtschaftswissenschaften läuft momentan das Besetzungsverfahren für die Stiftungsprofessur „Entrepreneurship, insbesondere für technologieorientierte Medienunternehmen“. Diese Professur soll künftig insbesondere das Gründungsmanagement von technologieorientierten Medienunternehmen unterstützen.

Als Starthilfe stehen neben den bereits erwähnten Institutionen ebenfalls das Technologie- und Gründerzentrum Ilmenau (TGZI) sowie die Applikationszentrum High Development GmbH (APZ) zur Verfügung, welche mit geförderten Mieten und einer hervorragenden Infrastruktur eine gute Startposition für Existenzgründer und junge Unternehmen bilden.

Weitere Einrichtungen wie das Patentinformationszentrum und Online Dienste (PATON) der TU Ilmenau, das Erfinderzentrum Thüringen usw. bieten am Standort Gründern und Unternehmen Hilfe an. Mit dem Kommunikations- und Servicecenter (KSC) werden in Zukunft weitere Mietflächen für Büro und Produktion zur Verfügung stehen.

10.6 Kommunikations- und Servicecenter

Auf einer vermietbaren Fläche von ca. 10.000 m² werden variable Mieteinheiten verschiedener Größen für folgende Nutzungsmöglichkeiten zur Verfügung stehen:

- Flächen für Existenzgründer
- Konferenz- und Schulungsräume
- flexible Büroflächen als Großraum- oder Zellenbüro
- Dienstleistungen wie z.B.:
 - Unternehmensberatung
 - Buchhaltung
 - Callcenter
 - Personalvermittlung
 - Catering usw.
11. Schlagwortverzeichnis

<table>
<thead>
<tr>
<th>0</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Schrumpfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Bit - Mikrorechner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 stufige Kommissionierung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - Leitersysteme</td>
<td></td>
</tr>
<tr>
<td>3D - Bildverarbeitung</td>
<td>168, 169</td>
</tr>
<tr>
<td>3D - Präzisionsmessmaschine</td>
<td>179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 - Leitersysteme</td>
<td></td>
</tr>
<tr>
<td>4. Generation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D - Wandler</td>
<td></td>
</tr>
<tr>
<td>Abgasreinigung</td>
<td>183</td>
</tr>
<tr>
<td>Abschalten unter Last</td>
<td>89</td>
</tr>
<tr>
<td>Abschaltverhalten</td>
<td>89</td>
</tr>
<tr>
<td>Abwasserreinigungssysteme</td>
<td>101</td>
</tr>
<tr>
<td>Abwassersammel</td>
<td>101</td>
</tr>
<tr>
<td>AD - Wandler</td>
<td>190</td>
</tr>
<tr>
<td>Adaption</td>
<td>132</td>
</tr>
<tr>
<td>adaptiv rekursive Algorithmen</td>
<td>109</td>
</tr>
<tr>
<td>adaptive Antennen</td>
<td>40</td>
</tr>
<tr>
<td>adaptive Beleuchtung</td>
<td>145</td>
</tr>
<tr>
<td>adaptive bildgebende Systeme</td>
<td>106</td>
</tr>
<tr>
<td>adaptive Regelung</td>
<td>194</td>
</tr>
<tr>
<td>adaptive Signalverarbeitung</td>
<td>109</td>
</tr>
<tr>
<td>adaptive Werkstoffe</td>
<td>86, 91</td>
</tr>
<tr>
<td>adaptives Source - Tracking</td>
<td>107</td>
</tr>
<tr>
<td>Aerosoldynamik</td>
<td>192</td>
</tr>
<tr>
<td>Aerosole</td>
<td>210</td>
</tr>
<tr>
<td>Agenda - Setting</td>
<td>214</td>
</tr>
<tr>
<td>Agent Hospital</td>
<td>238</td>
</tr>
<tr>
<td>Agenten für e-Businesssysteme</td>
<td>114</td>
</tr>
<tr>
<td>Agenten für Informationssysteme</td>
<td>114</td>
</tr>
<tr>
<td>agentenbasierte Logistik - Informationssysteme</td>
<td>237</td>
</tr>
<tr>
<td>agentenbasierte Simulation</td>
<td>232, 238</td>
</tr>
<tr>
<td>Agententechnologie</td>
<td>237, 238</td>
</tr>
<tr>
<td>akademische Aus-/Weiterbildung</td>
<td>227</td>
</tr>
<tr>
<td>akademischer Neuaufbau</td>
<td>61</td>
</tr>
<tr>
<td>Thema</td>
<td>Seiten</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>akademischer Wiederaufbau</td>
<td>122</td>
</tr>
<tr>
<td>aktive Elektrode</td>
<td>107</td>
</tr>
<tr>
<td>Aktivierungsschicht</td>
<td>204</td>
</tr>
<tr>
<td>Akzenterkennung</td>
<td>47</td>
</tr>
<tr>
<td>allgemeine Schwachstellenbetrachtung</td>
<td>166</td>
</tr>
<tr>
<td>alternative Funksysteme</td>
<td>40</td>
</tr>
<tr>
<td>Alterungsverhalten</td>
<td>86</td>
</tr>
<tr>
<td>Aluminium - Reduktionszellen</td>
<td>193</td>
</tr>
<tr>
<td>amorphe gedruckte Schichten</td>
<td>56</td>
</tr>
<tr>
<td>amphiphile Makromoleküle</td>
<td>201</td>
</tr>
<tr>
<td>Analog - Digital Umsetzer</td>
<td>112</td>
</tr>
<tr>
<td>analog - digitale Baugruppen</td>
<td>51</td>
</tr>
<tr>
<td>Analog/Digital - Umsetzer (ADU)</td>
<td>52</td>
</tr>
<tr>
<td>Analyse</td>
<td>61</td>
</tr>
<tr>
<td>analytische Spielzeitberechnungen</td>
<td>166</td>
</tr>
<tr>
<td>anamorphotische Optik</td>
<td>148</td>
</tr>
<tr>
<td>Anfallsvorhersage</td>
<td>110</td>
</tr>
<tr>
<td>Ansteuerung</td>
<td>63</td>
</tr>
<tr>
<td>Antastunsicherheiten bis 10 nm</td>
<td>176</td>
</tr>
<tr>
<td>Antriebscharakteristik</td>
<td>76</td>
</tr>
<tr>
<td>Antriebssysteme</td>
<td>112, 151</td>
</tr>
<tr>
<td>Anwendungsmuster</td>
<td>113</td>
</tr>
<tr>
<td>Approximation</td>
<td>191</td>
</tr>
<tr>
<td>Arbeitsmarktchancen für Hochschulabsolventen</td>
<td>186</td>
</tr>
<tr>
<td>Arbeitsschutztextilien und -kleidung</td>
<td>80</td>
</tr>
<tr>
<td>Arbeitsstationen für Strukturierungsprozess</td>
<td>138</td>
</tr>
<tr>
<td>Architektur - Design</td>
<td>114</td>
</tr>
<tr>
<td>Architektur - Refactoring</td>
<td>114</td>
</tr>
<tr>
<td>audio - visuelle Integration</td>
<td>116</td>
</tr>
<tr>
<td>Audio und Video Streaming</td>
<td>51</td>
</tr>
<tr>
<td>auditorisches System</td>
<td>116</td>
</tr>
<tr>
<td>Aufbau Datenserver</td>
<td>47</td>
</tr>
<tr>
<td>augumentation</td>
<td>127</td>
</tr>
<tr>
<td>Ausbeuteoptimierung</td>
<td>60</td>
</tr>
<tr>
<td>Ausbildung</td>
<td>170</td>
</tr>
<tr>
<td>Ausfallrate</td>
<td>204</td>
</tr>
<tr>
<td>Auslegung</td>
<td>73, 74</td>
</tr>
<tr>
<td>Autofokussysteme</td>
<td>176</td>
</tr>
<tr>
<td>automatische Prüfplanararbeitung</td>
<td>170</td>
</tr>
<tr>
<td>automatisierte Kalibrierung</td>
<td>178</td>
</tr>
<tr>
<td>Automatisierung</td>
<td>138</td>
</tr>
<tr>
<td>Automobielelektronik</td>
<td>71</td>
</tr>
<tr>
<td>Automobilindustrie</td>
<td>230, 238</td>
</tr>
<tr>
<td>Autonome mobile Systemen</td>
<td>100</td>
</tr>
<tr>
<td>B2B</td>
<td>235</td>
</tr>
<tr>
<td>Bayes'sche Netze</td>
<td>233</td>
</tr>
<tr>
<td>Beanspruchungsanalyse</td>
<td>168</td>
</tr>
<tr>
<td>Bedienkonzepete</td>
<td>96</td>
</tr>
<tr>
<td>Bedienoberflächen</td>
<td>143</td>
</tr>
<tr>
<td>Bedienstrategien</td>
<td>143</td>
</tr>
<tr>
<td>Befragung</td>
<td>214, 236</td>
</tr>
<tr>
<td>Behaglichkeit</td>
<td>146</td>
</tr>
<tr>
<td>Belebungsbecken</td>
<td>101</td>
</tr>
</tbody>
</table>
Charakterisierung ... 85, 86, 87, 90, 91
Chipreaktor .. 212
Chipreaktoren ... 212
Cluster .. 211
CMOS - Farbkamera ... 58
CMOS - Sensoren .. 58
Coloumbstabilität ... 211
Common Radio Resource Management .. 119
CompNet - Car ... 230
Concept Modelling .. 166
Copyright - Schutz ... 51

<table>
<thead>
<tr>
<th>D</th>
<th>160</th>
</tr>
</thead>
</table>
| DAAD .. 160
| Darstellung ... 162
| data acquisition ... 128
| data acquisition technique .. 127
| data compression ... 128
| Data Mining ... 123
| Datenformanpassung .. 169
| Datenformate für Mikrostrukturen ... 170
| Datenfusion ... 43
| Datenstrukturen ... 124
| Datenträger ... 93
| Datenüberprüfung .. 51
| Dauermagnetmotor ... 74
| DC - Plasmatron .. 88
| Dehnungsmessung .. 168
| Demonstratoranwendung .. 49
| Design Autonomer Systeme .. 121
| design patterns ... 219
| Design/Konzeption .. 60
| Detektoren ... 65
dezentrale Energiebörse .. 239
| Diagnose ... 63, 73, 74
| Dialekterkennung ... 47
| Dialoggestaltung ... 47
| Dialyse .. 107
| Dickenschwankung von Bremsscheiben ... 174
| Dickschichttechnik ... 85
didaktische Konzeption .. 219
dielektrische Relaxation .. 209
dielektrische Spektroskopie ... 201
dielektrischer Verlustwinkel ... 46
| Dienstqualität ... 130
| Dienstgüte .. 130
| Dienstgüte (QoS) ... 49
| Diesel - Hochdruckeinspritzsysteme ... 173
| Differenzengleichung ... 190
| Diffusionsprozesse ... 193
| Digital Audio Broadcasting ... 221
digitale Bildverarbeitung ... 57, 58
digitale Displayschnittstellen .. 51
digitale Hochgeschwindigkeitswägagezelle ... 178
digitale Modulationsverfahren ... 45
<table>
<thead>
<tr>
<th>Funktionssimulation</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionsimaging der Netzhaut</td>
<td>107</td>
</tr>
<tr>
<td>Funktionseigenschaften organischer Schichten</td>
<td>204</td>
</tr>
<tr>
<td>Funktionalisierung</td>
<td>183</td>
</tr>
<tr>
<td>Funkkanalmessung</td>
<td>43</td>
</tr>
<tr>
<td>Fullerene</td>
<td>66, 204</td>
</tr>
<tr>
<td>Freiheitsgrade</td>
<td>150</td>
</tr>
<tr>
<td>freie Oberfläche</td>
<td>72</td>
</tr>
<tr>
<td>formal spezifikationssprachen</td>
<td>105</td>
</tr>
<tr>
<td>Flip - Chip - Montage</td>
<td>55</td>
</tr>
<tr>
<td>Fluidschwingungen</td>
<td>72</td>
</tr>
<tr>
<td>fluidtechnische Antriebe</td>
<td>103</td>
</tr>
<tr>
<td>flüssige Precursoren</td>
<td>89</td>
</tr>
<tr>
<td>flüssigkristalline Polymere</td>
<td>201</td>
</tr>
<tr>
<td>Flüssigmetall</td>
<td>86</td>
</tr>
<tr>
<td>Formal System Refinement</td>
<td>123</td>
</tr>
<tr>
<td>formale spezifikationssprachen</td>
<td>105</td>
</tr>
<tr>
<td>fotostrukturierte Gläser</td>
<td>182</td>
</tr>
<tr>
<td>fotostrukturierte Pasten</td>
<td>55</td>
</tr>
<tr>
<td>freie Oberfläche</td>
<td>72</td>
</tr>
<tr>
<td>Freiheitsgrade</td>
<td>150</td>
</tr>
<tr>
<td>Fullerene</td>
<td>66, 204</td>
</tr>
<tr>
<td>Funkkanaalmessung</td>
<td>43</td>
</tr>
<tr>
<td>Funkkanaalmodellierung</td>
<td>42</td>
</tr>
<tr>
<td>Funktechnik</td>
<td>45</td>
</tr>
<tr>
<td>Funktionalisierung</td>
<td>183</td>
</tr>
<tr>
<td>Funktionseigenschaften organischer Schichten</td>
<td>204</td>
</tr>
<tr>
<td>Funktionsimaging der Netzhaut</td>
<td>107</td>
</tr>
<tr>
<td>Funktionssimulation</td>
<td>138</td>
</tr>
<tr>
<td>fuzzy - adaptive Regelkonzepte</td>
<td>99</td>
</tr>
<tr>
<td>Fuzzy - Konzepte</td>
<td>100</td>
</tr>
<tr>
<td>GaAs - Oberflächen</td>
<td>203</td>
</tr>
<tr>
<td>Galliumnitrid</td>
<td>66</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Galvanik</td>
<td>83</td>
</tr>
<tr>
<td>Galvanotechnik</td>
<td>185</td>
</tr>
<tr>
<td>Gas - Sensor - Systemen</td>
<td>63</td>
</tr>
<tr>
<td>Gas- und Plasmaanalyse</td>
<td>204</td>
</tr>
<tr>
<td>Gelation</td>
<td>192, 193</td>
</tr>
<tr>
<td>Gelenkwelle</td>
<td>135, 157</td>
</tr>
<tr>
<td>Genauigkeit</td>
<td>138, 171</td>
</tr>
<tr>
<td>generalisiertes KANBAN - System</td>
<td>226</td>
</tr>
<tr>
<td>generisches Tutorsystem</td>
<td>222</td>
</tr>
<tr>
<td>geringere Schadstoffemissionen</td>
<td>178</td>
</tr>
<tr>
<td>Gestaltungsregeln</td>
<td>138</td>
</tr>
<tr>
<td>Getriebewirkungsgrad</td>
<td>173</td>
</tr>
<tr>
<td>Glasfaser/Glasmatrix - Komposite</td>
<td>182</td>
</tr>
<tr>
<td>Glaskomposite</td>
<td>185</td>
</tr>
<tr>
<td>Glaskristallisationstechnik</td>
<td>183</td>
</tr>
<tr>
<td>Glasschmelze</td>
<td>182</td>
</tr>
<tr>
<td>Glassubstrate</td>
<td>152</td>
</tr>
<tr>
<td>Glaswafer</td>
<td>138</td>
</tr>
<tr>
<td>Gleichstromanlagenschutz</td>
<td>89</td>
</tr>
<tr>
<td>globale Optimierung</td>
<td>191</td>
</tr>
<tr>
<td>GPR - Datenverarbeitung</td>
<td>42</td>
</tr>
<tr>
<td>Grafit</td>
<td>72</td>
</tr>
<tr>
<td>Granulierung</td>
<td>183</td>
</tr>
<tr>
<td>Graphenparameter</td>
<td>196</td>
</tr>
<tr>
<td>Graphentheorie</td>
<td>195</td>
</tr>
<tr>
<td>Grenzflächen</td>
<td>64</td>
</tr>
<tr>
<td>Grenzflächenwechselwirkungen</td>
<td>204</td>
</tr>
<tr>
<td>Grenzwerte</td>
<td>80</td>
</tr>
<tr>
<td>große Verfahrenbereiche</td>
<td>151</td>
</tr>
<tr>
<td>Ground Penetrating Radar</td>
<td>42, 43</td>
</tr>
<tr>
<td>Gründernetzwerk</td>
<td>242</td>
</tr>
<tr>
<td>Halbleiter</td>
<td>200</td>
</tr>
<tr>
<td>Halbleiter großer Bandlücke</td>
<td>65</td>
</tr>
<tr>
<td>Halbleiteroberflächen</td>
<td>204</td>
</tr>
<tr>
<td>Halbleiterproduktion</td>
<td>232</td>
</tr>
<tr>
<td>Halbleiterschalter</td>
<td>70</td>
</tr>
<tr>
<td>Halbleitertechnologie</td>
<td>185</td>
</tr>
<tr>
<td>Hallsensoren</td>
<td>150</td>
</tr>
<tr>
<td>Halogenlampen</td>
<td>141</td>
</tr>
<tr>
<td>Hamilton - Formalismus</td>
<td>61</td>
</tr>
<tr>
<td>Handy - Nutzung</td>
<td>217</td>
</tr>
<tr>
<td>Haptik</td>
<td>155</td>
</tr>
<tr>
<td>haptische Erkennungsprinzipien</td>
<td>143</td>
</tr>
<tr>
<td>haptisches Fernbedienungssystem</td>
<td>94</td>
</tr>
<tr>
<td>Hard- und Softwareentwicklung</td>
<td>180</td>
</tr>
<tr>
<td>Hardware/Software - Codesign</td>
<td>57</td>
</tr>
<tr>
<td>Hardwareimplementierung neuronaler Netze</td>
<td>51</td>
</tr>
<tr>
<td>Harmonischenerzeugung</td>
<td>46</td>
</tr>
<tr>
<td>Härte</td>
<td>83</td>
</tr>
<tr>
<td>Hartstoffe</td>
<td>83</td>
</tr>
<tr>
<td>Hartstoffschichten</td>
<td>141</td>
</tr>
<tr>
<td>Hashing</td>
<td>124</td>
</tr>
<tr>
<td>Haustechnikregelsystem</td>
<td>239</td>
</tr>
<tr>
<td>Thema</td>
<td>Seiten</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Multilayer</td>
<td>55</td>
</tr>
<tr>
<td>Multiagentensystem</td>
<td>232</td>
</tr>
<tr>
<td>MST - Baukasten</td>
<td>55</td>
</tr>
<tr>
<td>MPEG - 4</td>
<td>51, 93</td>
</tr>
<tr>
<td>Monte Carlo - Verfahren</td>
<td>192</td>
</tr>
<tr>
<td>Monitoring</td>
<td>109</td>
</tr>
<tr>
<td>Modulkonzept</td>
<td>139, 171</td>
</tr>
<tr>
<td>Module</td>
<td>186</td>
</tr>
<tr>
<td>Modellbasiertes Entwurf</td>
<td>49</td>
</tr>
<tr>
<td>Modellbildung</td>
<td>53, 121, 155, 214</td>
</tr>
<tr>
<td>Modellgestützte Simulation</td>
<td>101</td>
</tr>
<tr>
<td>Modellprädiktive Steuerung</td>
<td>117</td>
</tr>
<tr>
<td>Modellprädiktives Regelungskonzept</td>
<td>101</td>
</tr>
<tr>
<td>modulare Mikrosystemtechnik</td>
<td>150</td>
</tr>
<tr>
<td>modulare Prozessvisualisierung</td>
<td>70</td>
</tr>
<tr>
<td>Modularisierung</td>
<td>55</td>
</tr>
<tr>
<td>Modulationspektroskopie</td>
<td>200</td>
</tr>
<tr>
<td>Modulator/Demodulator</td>
<td>45</td>
</tr>
<tr>
<td>Modulatoren</td>
<td>190</td>
</tr>
<tr>
<td>Module</td>
<td>186</td>
</tr>
<tr>
<td>Modulkonzept</td>
<td>139, 171</td>
</tr>
<tr>
<td>Molekularstrahllepitaxie</td>
<td>66</td>
</tr>
<tr>
<td>Monitoring</td>
<td>109</td>
</tr>
<tr>
<td>Monitoring birnelektrischer Dynamik</td>
<td>110</td>
</tr>
<tr>
<td>Monoschichten auf Silizium</td>
<td>204</td>
</tr>
<tr>
<td>Monte Carlo - Verfahren</td>
<td>192</td>
</tr>
<tr>
<td>MPEG - 4</td>
<td>51, 93</td>
</tr>
<tr>
<td>MST - Baukasten</td>
<td>55</td>
</tr>
<tr>
<td>Multi-Agenten - Systemen</td>
<td>100</td>
</tr>
<tr>
<td>Multiagentensystem</td>
<td>232</td>
</tr>
<tr>
<td>Multiagentensystememen</td>
<td>233</td>
</tr>
<tr>
<td>Multidimensional Channel Sounding</td>
<td>42</td>
</tr>
<tr>
<td>Multilayer</td>
<td>55</td>
</tr>
<tr>
<td>Multilayertechnologien</td>
<td>53</td>
</tr>
<tr>
<td>Thema</td>
<td>Seite</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Multimedia</td>
<td>49, 93, 138, 164, 217</td>
</tr>
<tr>
<td>Multimedia - Anwendung (Video, Audio)</td>
<td>130</td>
</tr>
<tr>
<td>multimedia learnig environments</td>
<td>216</td>
</tr>
<tr>
<td>multimedia Produktinformationssysteme</td>
<td>113</td>
</tr>
<tr>
<td>Multimediakanwendungen</td>
<td>49</td>
</tr>
<tr>
<td>multimedia Lernmodule</td>
<td>216</td>
</tr>
<tr>
<td>multimedia Lernprogramme</td>
<td>58</td>
</tr>
<tr>
<td>multimedialen Informationskonzept</td>
<td>96</td>
</tr>
<tr>
<td>Multiskalensystem</td>
<td>201</td>
</tr>
<tr>
<td>Multistandard/Multiband Funkzugangsnetz</td>
<td>119</td>
</tr>
<tr>
<td>multimedia Komponenten</td>
<td>96</td>
</tr>
<tr>
<td>Muon - Spinpräzession</td>
<td>209</td>
</tr>
<tr>
<td>Musterbasierte Vorhersagestrategien</td>
<td>100</td>
</tr>
<tr>
<td>MW - Sende - Empfangseinrichtung</td>
<td>45</td>
</tr>
<tr>
<td>Nachklärbecken</td>
<td>101</td>
</tr>
<tr>
<td>nachleuchtende Systeme</td>
<td>145</td>
</tr>
<tr>
<td>Nano- und Pikofluidik</td>
<td>66</td>
</tr>
<tr>
<td>Nanocomposite</td>
<td>201</td>
</tr>
<tr>
<td>Nanofluidik</td>
<td>212</td>
</tr>
<tr>
<td>nanokristalline dichte Schichten</td>
<td>89</td>
</tr>
<tr>
<td>Nanomessmaschine</td>
<td>179</td>
</tr>
<tr>
<td>Nanomesstechnik</td>
<td>186</td>
</tr>
<tr>
<td>Nanopartikel</td>
<td>212</td>
</tr>
<tr>
<td>Nanopositionier- und Messmaschinen</td>
<td>204</td>
</tr>
<tr>
<td>Nanopositionier- und Messtechnik</td>
<td>180</td>
</tr>
<tr>
<td>nanoskalige Keramikpartikel</td>
<td>83</td>
</tr>
<tr>
<td>nanoskalige Teilchen</td>
<td>185</td>
</tr>
<tr>
<td>Nanostrukture</td>
<td>66, 195, 200</td>
</tr>
<tr>
<td>nanotechnische Systemkomponenten</td>
<td>143</td>
</tr>
<tr>
<td>Nanotechnologie</td>
<td>186</td>
</tr>
<tr>
<td>nationale Stereotypen</td>
<td>218</td>
</tr>
<tr>
<td>NC - Programmierung</td>
<td>166</td>
</tr>
<tr>
<td>NdFeB - Pulverbehandlung</td>
<td>89</td>
</tr>
<tr>
<td>NdFeB - Schichten</td>
<td>89</td>
</tr>
<tr>
<td>Netzmessungen und -analysen</td>
<td>81</td>
</tr>
<tr>
<td>Netznutzung</td>
<td>99</td>
</tr>
<tr>
<td>neue Technologie</td>
<td>62</td>
</tr>
<tr>
<td>Neurochips</td>
<td>116</td>
</tr>
<tr>
<td>Neuromorphologie Engineering</td>
<td>116</td>
</tr>
<tr>
<td>neuronale Netze</td>
<td>51, 100, 110</td>
</tr>
<tr>
<td>Neuwissenschaften</td>
<td>116</td>
</tr>
<tr>
<td>Neutronenstreuung</td>
<td>201</td>
</tr>
<tr>
<td>nichtlineare dynamische Modelle</td>
<td>99</td>
</tr>
<tr>
<td>nichtlineare Mikrowelleneigenschaften</td>
<td>46</td>
</tr>
<tr>
<td>nichtlineare Netzwerke</td>
<td>60</td>
</tr>
<tr>
<td>nichtlineare Regelungen</td>
<td>99</td>
</tr>
<tr>
<td>nichtlineare Steuerungen</td>
<td>99</td>
</tr>
<tr>
<td>nichtlineare Systeme</td>
<td>194</td>
</tr>
<tr>
<td>nichtmedikamentöse Therapieverfahren</td>
<td>110</td>
</tr>
<tr>
<td>Niederspannung</td>
<td>80</td>
</tr>
<tr>
<td>Niederspannungsschaltgeräte</td>
<td>89</td>
</tr>
<tr>
<td>Niederspannungssicherungen</td>
<td>76</td>
</tr>
<tr>
<td>Not- und Sicherheitsbeleuchtung</td>
<td>145</td>
</tr>
</tbody>
</table>

293
Notebook ... 130
Null- und Gegensystemregelung .. 70
numerische Falschlichtsimulation .. 147
numerische Feldberechnung .. 60
numerische Simulation .. 72

Oberflächenimpedanz .. 46
Oberflächenmodifikation .. 86, 91
Oberflächenmodifizierung ... 182
Oberflächenphononen ... 203
Oberflächenstruktur - Polymer - Translation ... 209
object recognition ... 127
objektbasiert ... 93
Objekterkennung ... 168, 169
objektive Perimetrie ... 110
OFET ... 64
Online - Informationssysteme ... 218
Online - Journalismus .. 216
Online - Journalisten .. 216
Online - Seminare .. 217
ophthalmologische Diagnostik .. 106, 107
Ophthalologie ... 110
Optik ... 267
optimaler Steuerungsentwurf .. 101
optimierte Stimulationsfolgen .. 107
Optimierung .. 60, 61, 62, 171
Optimierung der Elektroden ... 204
Optimierungsprobleme .. 191
optische Partikelanalyse .. 169
optische Sensoren .. 169
Ordnungsparameterevolutionen .. 209
Osteosynthese ... 162
osteuropäische Märkte .. 228

Panel - Link - Technologie ... 51
Parallelschaltung .. 64
Patchantennenarray .. 55
pattern recognition ... 127, 128
PC ... 130
PCA .. 130
PDA .. 117
Pentacene ... 204
Performancemessung ... 233
permanenterrege Motoren .. 74
Permeabilität .. 201
personal digital assistant .. 127
Personengruppenerkennung .. 47
Personenschutz .. 80
Phasendiagramme ... 209
Phasenseparation ... 209
Phononen ... 203
Photoelektronenspektroskopie (UPS, XPS) .. 204
<table>
<thead>
<tr>
<th>Q</th>
<th>296</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualifizierung</td>
<td>267</td>
</tr>
<tr>
<td>Qualität der Lehre</td>
<td>236</td>
</tr>
<tr>
<td>Qualitätsforschung</td>
<td>214</td>
</tr>
<tr>
<td>Qualitätsmodelle</td>
<td>133</td>
</tr>
<tr>
<td>Qualitätssicherung</td>
<td>169</td>
</tr>
<tr>
<td>Quantengrabene- und Quantenpunktstrukturen</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>296</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/3 - System</td>
<td>233</td>
</tr>
<tr>
<td>Radarantennen</td>
<td>45</td>
</tr>
<tr>
<td>randomisierte Algorithmen</td>
<td>124</td>
</tr>
<tr>
<td>Rapid Prototyping</td>
<td>140, 166</td>
</tr>
<tr>
<td>Rapid Tooling</td>
<td>140, 166</td>
</tr>
<tr>
<td>Rastertunnelmikroskopie (STM)</td>
<td>204</td>
</tr>
<tr>
<td>Rational Choice</td>
<td>214</td>
</tr>
<tr>
<td>Rauchschicht</td>
<td>145</td>
</tr>
<tr>
<td>Ruheimessung</td>
<td>147</td>
</tr>
<tr>
<td>Raum - Zeit Signalverarbeitung</td>
<td>40</td>
</tr>
<tr>
<td>Raumtemperatur</td>
<td>83</td>
</tr>
<tr>
<td>Rauschoptimierung</td>
<td>60</td>
</tr>
<tr>
<td>Rauschradar</td>
<td>45</td>
</tr>
<tr>
<td>realistische Performance - Evaluierung</td>
<td>42</td>
</tr>
<tr>
<td>Rechnerunterstützung</td>
<td>138</td>
</tr>
<tr>
<td>Recycling</td>
<td>183</td>
</tr>
<tr>
<td>Reduktion der Strahlungsleistung</td>
<td>40</td>
</tr>
<tr>
<td>Reflexblendenung und Schleierreflexion</td>
<td>146</td>
</tr>
<tr>
<td>Reflexions- und Streulichtberechnung</td>
<td>147</td>
</tr>
<tr>
<td>Regelung von Linearantrieben</td>
<td>70</td>
</tr>
<tr>
<td>Regelungstheorie</td>
<td>103</td>
</tr>
<tr>
<td>regenerative Energien</td>
<td>158</td>
</tr>
<tr>
<td>regenerative Energietechnik</td>
<td>239</td>
</tr>
<tr>
<td>Reibung</td>
<td>186</td>
</tr>
<tr>
<td>Reibungsprozess</td>
<td>204</td>
</tr>
<tr>
<td>Reifengummi</td>
<td>201</td>
</tr>
<tr>
<td>Reihenschlusskommutatormotor</td>
<td>73, 74</td>
</tr>
<tr>
<td>Reinforcement Lernen</td>
<td>117</td>
</tr>
<tr>
<td>Reinforcement Lernstrategien</td>
<td>117</td>
</tr>
<tr>
<td>Rekonstruktion freier Grenzflächen</td>
<td>61</td>
</tr>
<tr>
<td>Relaxation</td>
<td>201</td>
</tr>
<tr>
<td>Reluktanzmotor</td>
<td>74</td>
</tr>
<tr>
<td>Replikation</td>
<td>132</td>
</tr>
<tr>
<td>Requirements Engineering</td>
<td>114</td>
</tr>
<tr>
<td>Ressourcenmanagement</td>
<td>121</td>
</tr>
<tr>
<td>Restaurierung</td>
<td>93</td>
</tr>
<tr>
<td>Retroreflexion</td>
<td>145</td>
</tr>
<tr>
<td>Rezeption</td>
<td>214</td>
</tr>
<tr>
<td>Rezeptions- und Wirkungsforschung</td>
<td>214</td>
</tr>
<tr>
<td>Rissbewertungsverfahren</td>
<td>174</td>
</tr>
<tr>
<td>Rissentstehung</td>
<td>141</td>
</tr>
<tr>
<td>Roboternavigation</td>
<td>116</td>
</tr>
<tr>
<td>Robotik</td>
<td>103, 155</td>
</tr>
<tr>
<td>Robustheit</td>
<td>47</td>
</tr>
<tr>
<td>roentgenographische Texturanalyse</td>
<td>87</td>
</tr>
<tr>
<td>Sägen .. 185</td>
<td></td>
</tr>
<tr>
<td>Säugetiere .. 162</td>
<td></td>
</tr>
<tr>
<td>Schädelhirntrauma ... 109</td>
<td></td>
</tr>
<tr>
<td>Schadstofftransport .. 221</td>
<td></td>
</tr>
<tr>
<td>Schall- und Strahlungswirkung ... 80</td>
<td></td>
</tr>
<tr>
<td>Schallplatte .. 93</td>
<td></td>
</tr>
<tr>
<td>Schallquellenlokalisation ... 51</td>
<td></td>
</tr>
<tr>
<td>Schaltanlagen ... 80</td>
<td></td>
</tr>
<tr>
<td>Schaltanlagen und Verteiler .. 80</td>
<td></td>
</tr>
<tr>
<td>Schaltgeräte .. 81</td>
<td></td>
</tr>
<tr>
<td>Schaltentwurf .. 71</td>
<td></td>
</tr>
<tr>
<td>Schaltungsentwurf ... 51</td>
<td></td>
</tr>
<tr>
<td>Schaltverhalten von Sicherungsschmelzeinsätzen, ... 89</td>
<td></td>
</tr>
<tr>
<td>Schaltzustände .. 81</td>
<td></td>
</tr>
<tr>
<td>Schichtcharakterisierung metallischer Schichten .. 383</td>
<td></td>
</tr>
<tr>
<td>Schichten .. 185</td>
<td></td>
</tr>
<tr>
<td>Schichtsilikate ... 201</td>
<td></td>
</tr>
<tr>
<td>Schließfestigkeit ... 164</td>
<td></td>
</tr>
<tr>
<td>Schlickerguss ... 186</td>
<td></td>
</tr>
<tr>
<td>Schlaffolgerungen für Netzplanungen ... 81</td>
<td></td>
</tr>
<tr>
<td>Schmelzbadgeometrie .. 141</td>
<td></td>
</tr>
<tr>
<td>Schmelzen ... 183</td>
<td></td>
</tr>
<tr>
<td>Schmelzentegral .. 76</td>
<td></td>
</tr>
<tr>
<td>Schmelzsicherungen .. 89</td>
<td></td>
</tr>
<tr>
<td>Schmiermittel .. 204</td>
<td></td>
</tr>
<tr>
<td>Schmiermittel .. 204</td>
<td></td>
</tr>
<tr>
<td>Schmiermittelle .. 217</td>
<td></td>
</tr>
<tr>
<td>Druckfedern ... 135, 164</td>
<td></td>
</tr>
<tr>
<td>Schraubendruckfedern ... 135, 164</td>
<td></td>
</tr>
<tr>
<td>Schrittmotorantrieb .. 151</td>
<td></td>
</tr>
<tr>
<td>Schutz .. 63</td>
<td></td>
</tr>
<tr>
<td>Schutzeinrichtung ... 80</td>
<td></td>
</tr>
<tr>
<td>Schwebeigung .. 141</td>
<td></td>
</tr>
<tr>
<td>Schwingungen .. 64</td>
<td></td>
</tr>
<tr>
<td>Schwingungstechnik .. 155</td>
<td></td>
</tr>
<tr>
<td>Segmentdynamik ... 201</td>
<td></td>
</tr>
<tr>
<td>selbstnachführendes Laserinterferometer ... 179</td>
<td></td>
</tr>
<tr>
<td>Selbstregulation hirnelektrischer Prozesse ... 110</td>
<td></td>
</tr>
<tr>
<td>Selektivität ... 81</td>
<td></td>
</tr>
<tr>
<td>SEM und Thermographieuntersuchungen ... 56</td>
<td></td>
</tr>
<tr>
<td>Sensoren ... 86, 91, 162</td>
<td></td>
</tr>
<tr>
<td>Sensorik .. 66</td>
<td></td>
</tr>
<tr>
<td>Sensoroptimierung ... 61</td>
<td></td>
</tr>
<tr>
<td>Sensorschichten .. 85, 86</td>
<td></td>
</tr>
<tr>
<td>Serviceroboter ... 117</td>
<td></td>
</tr>
<tr>
<td>SF6 - Leistungsschalter ... 76</td>
<td></td>
</tr>
<tr>
<td>Shopping - Assistant ... 117</td>
<td></td>
</tr>
<tr>
<td>short - range RF link ... 68</td>
<td></td>
</tr>
<tr>
<td>SiC - Metallisierung ... 86, 91</td>
<td></td>
</tr>
<tr>
<td>SiC - Oberflächen ... 203</td>
<td></td>
</tr>
<tr>
<td>SiC MESFET ... 63</td>
<td></td>
</tr>
<tr>
<td>Sicherheit ... 145</td>
<td></td>
</tr>
<tr>
<td>Sicherungsleisten ... 89</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Sigma - Delta - Beamforming</td>
<td>107</td>
</tr>
<tr>
<td>Signalanalyse</td>
<td>109</td>
</tr>
<tr>
<td>Signalprozessoren</td>
<td>112</td>
</tr>
<tr>
<td>Signalseparierung</td>
<td>117</td>
</tr>
<tr>
<td>Signalverarbeitung</td>
<td>109</td>
</tr>
<tr>
<td>Silizium</td>
<td>185</td>
</tr>
<tr>
<td>Siliziumkarbid</td>
<td>66</td>
</tr>
<tr>
<td>Siliziumnitrid</td>
<td>186</td>
</tr>
<tr>
<td>Siliziumoberflächen</td>
<td>203</td>
</tr>
<tr>
<td>Siliziumprägewerkzeuge</td>
<td>153</td>
</tr>
<tr>
<td>Simulation</td>
<td>60, 61, 135, 139, 151, 171, 232</td>
</tr>
<tr>
<td>Simulation des Netzverhaltens</td>
<td>81</td>
</tr>
<tr>
<td>Simulation/Animation</td>
<td>121</td>
</tr>
<tr>
<td>Simultane Mehrgrößenmikrosensorsysteme</td>
<td>176</td>
</tr>
<tr>
<td>Smartpower</td>
<td>63</td>
</tr>
<tr>
<td>SMS</td>
<td>217</td>
</tr>
<tr>
<td>Software</td>
<td>267</td>
</tr>
<tr>
<td>Software - Komponenten</td>
<td>109</td>
</tr>
<tr>
<td>Software - Qualitätsmanagement</td>
<td>133</td>
</tr>
<tr>
<td>software design</td>
<td>128</td>
</tr>
<tr>
<td>Software Evaluation</td>
<td>123</td>
</tr>
<tr>
<td>Softwareadaptivität</td>
<td>237</td>
</tr>
<tr>
<td>Softwarearchitekture</td>
<td>114</td>
</tr>
<tr>
<td>Softwareentwicklung</td>
<td>217</td>
</tr>
<tr>
<td>Softwaremetriken</td>
<td>133</td>
</tr>
<tr>
<td>Solarthermie</td>
<td>200</td>
</tr>
<tr>
<td>Solarzelle</td>
<td>206</td>
</tr>
<tr>
<td>Space - Time - Signalverarbeitung</td>
<td>43</td>
</tr>
<tr>
<td>Space - Time Algorithmen</td>
<td>40</td>
</tr>
<tr>
<td>Spannungsabstieg</td>
<td>81</td>
</tr>
<tr>
<td>Spannungsanalysen</td>
<td>85, 87, 91, 92</td>
</tr>
<tr>
<td>Speckle - Verfahren</td>
<td>153</td>
</tr>
<tr>
<td>Spektrallellipsometrie</td>
<td>200</td>
</tr>
<tr>
<td>Sperrschichttemperaturmonitoring</td>
<td>70</td>
</tr>
<tr>
<td>spezielle Antastsysteme</td>
<td>176</td>
</tr>
<tr>
<td>spezielle Schaltkontakte/Einrichtungen</td>
<td>81</td>
</tr>
<tr>
<td>Sprachentwicklung XML</td>
<td>223</td>
</tr>
<tr>
<td>Sprachkorpora</td>
<td>47</td>
</tr>
<tr>
<td>Sprachsteuerung von Multimediaendgeräten</td>
<td>47</td>
</tr>
<tr>
<td>Stabilitäts- und Lebensdaueruntersuchungen</td>
<td>56</td>
</tr>
<tr>
<td>Stabilitätspakt Südosteuropa</td>
<td>61</td>
</tr>
<tr>
<td>statistische Geheimhaltung</td>
<td>234</td>
</tr>
<tr>
<td>Stehende - Wellen - Interferometer</td>
<td>176</td>
</tr>
<tr>
<td>steife partielle Differentialgleichungen</td>
<td>209</td>
</tr>
<tr>
<td>stereoskopische Blickrichtungserfassung</td>
<td>107</td>
</tr>
<tr>
<td>Steuerung</td>
<td>193, 232</td>
</tr>
<tr>
<td>Störlichtbogen</td>
<td>80</td>
</tr>
<tr>
<td>Störlichtbogenerfassung und -löschung</td>
<td>80</td>
</tr>
<tr>
<td>Störmindernde Filterung</td>
<td>47</td>
</tr>
<tr>
<td>Stoßbegrenzung</td>
<td>135, 157</td>
</tr>
<tr>
<td>strain measurement</td>
<td>68</td>
</tr>
<tr>
<td>Streulichtmessung</td>
<td>147</td>
</tr>
<tr>
<td>Strombegrenzung</td>
<td>81</td>
</tr>
<tr>
<td>Stromdichteverteilung</td>
<td>72</td>
</tr>
<tr>
<td>Stromhandel</td>
<td>99</td>
</tr>
<tr>
<td>Stromrichternetzrückwirkungen</td>
<td>71</td>
</tr>
</tbody>
</table>
Vakuumdeposition ... 204

Überspannungsschutz .. 70
Überspannungsschutzeinrichtungen .. 76
Übertragungssysteme .. 51

Ultra-Breitband - Elektronik ... 42
Ultrapräzisionskoordinatennmessmaschine ... 179
UMTS ... 40, 130
Umwelteinflüsse .. 145
Umweltfreundliche Leiterplatte .. 53
Unternehmensgründung .. 235
Usability Test .. 96
UV - Laserstrahlung ... 182
UV - Sensoren ... 146, 199
UV - strukturierbare Gläser ... 182
UW .. 40
UWB .. 43
UWB - Antennen .. 42
UWB - Elektronik ... 42, 43
UWB - Übertragungssysteme .. 43
UWB - Verstärker ... 43

Vakuumdeposition ... 204
Validation Interface ... 123
Validation of AI Systems .. 123
Verbindunglichkeit ... 132
Verbundwerkstoffe .. 185
Verfügbarkeit ... 132
Vergrauung des Leuchtstoffes .. 145
Verhaltenssimulation .. 173
Vermessungstechnik .. 169
Verringerung der Temperaturmessunsicherheit ... 180
Verschleißschutzschichten ... 87, 91
Verstärker ... 43
verteilte Softwaresysteme .. 133
verteiltes Planen krankenhausbetrieblicher Prozesse ... 237
verteiltes Ressourcenmanagement .. 132
Vertraulichkeit .. 132
Verzahnungsauslegung ... 173
Verzahnungsfehler .. 173
Verzögerungsleitungen ... 45
Videodaten .. 51
Videosequenzanalyse ... 117
Videosignalparameter .. 45
Vierbeiner ... 162
Virtual Prototyping ... 139
virtuelle Lernumgebung .. 49
Visualisierung ... 236
Visualisierung geschliffener Oberflächen .. 147
visuelle Personendetektion	... 116
visuelle Personenlokalisierung	... 116
visuelles Personentracking	... 116
Vokabular	... 47
VR/AR applications	... 127

| W |
Wachstumskinetik	... 204
wandinduzierte spinodale Entmischung	... 209
Wärmestrommessung	... 80
Wärmeewirkung	... 80
Wavelet- und DFT - Transformation	... 51
Web - based design	... 127
Web - based Training	... 49
web - basierte Ausbildungsmaterialien	... 120
weft straightening	... 127
weft straightening equipment	... 127
Wegmesssystem	... 150
Weiterbildung	... 138
Weiterbildungsangebote Thüringer Hochschulen	... 120
Wellenausbreitung	... 42, 45
Werkstoffe	... 186
Werkstoffkritik	... 86, 91
Werkstoffnormale	... 86, 91
Werkstoffpaarungen	... 204
Werkstoffprüfung	... 140
Werkzeug	... 120
Werkzeuge	... 235
Werkzeugentwicklung	... 153
werkzeugunterstützte Erstellung von Informationssystemen	... 113
Wettbewerbsfähigkeit	... 186
Widerstandsschicht	... 85
Widerstandsschweifen	... 141
Wiederverwendbarkeit	... 112
Wilkensonteiler	... 55
Windkraftanlagen	... 70
Wirbelsäule	... 162, 163
Wirbelstrom	... 72
Wirbelströme	... 72
Wireless LAN	... 130
Wirkprinzipien	... 135, 157
wiss. Nachwuchs	... 61
wissensbasierte Prüfplanararbeitung	... 170
wissenschaftlich fundiertes Gründungswissen	... 225
Wissensmanagement	... 235
WLAN	... 130
Wolframcarbidherstellung	... 85, 90
Worterkenntnung	... 47
Wortspotter	... 47

| Z |
Zahlungssysteme und Zugriffskontrolle	... 222
Zahnradgeräusche	... 173
Zeitreihenanalyse	... 117
Impressum:

Herausgeber: Der Rektor der Technischen Universität Ilmenau

Wissenschaftliche Redaktion und Layout:

Prof. Dr. - Ing. habil. Horst Puta, Prorektor für Wissenschaft
Dr. - Ing. Heiko Wittwer, Referent für Wissenschaft

Titellayout: grafik - design, Johanna Krapp, Ilmenau

Druck:

Auflage: 1000 Exemplare

Bezug über: Technische Universität Ilmenau
Referent für Wissenschaft, Dr. Heiko Wittwer
Tel. 03677-69 25 40, Fax 03677- 69 17 42
E - mail: heiko.wittwer@TU-Ilmenau.DE
98684 Ilmenau, PF 10 05 65

© TU Ilmenau 12/2003