Quantitative Expressionsanalyse der beiden p16-Transkripte p16$^{\text{INK4a}}$ und p19$^{\text{ARF}}$ in Lymphozyten von CML-Patienten

Dissertation

zur Erlangung des akademischen Grades
doctor medicinae (Dr.med.)

vorgelegt dem Rat der Medizinischen Fakultät
der Friedrich-Schiller-Universität Jena

von Dirk Franke
geboren am 22.11.1977 in Ilmenau
Inhaltsverzeichnis

INHALTSVERZEICHNIS ... 2

1 EINLEITUNG ... 5

1.1 KLINIK DER CHRONISCH MYELOISCHEN LEUKÄMIE (CML) ... 5
 1.1.1 Allgemeine Betrachtungen zur chronischen myeloischen Leukämie .. 5
 1.1.2 Klinisches Erscheinungsbild der CML .. 6
 1.1.3 Mögliche Ursachen zur Entstehung einer CML ... 7

1.2 ZELLZYKLUS UND P16 ... 7
 1.2.1 Der Zellzyklus ... 7
 1.2.2 Zellzyklus und molekulare Veränderungen bei CML .. 10
 1.2.3 Spezielle Bedeutung der beiden p16-Transkripte ... 13
 1.2.4 Strukturelle Aspekte der beiden p16-Transkripte ... 15

2 ZIELSETZUNG .. 20

3 MATERIAL UND METHODEN .. 23

3.1 MATERIALIEN ... 23
 3.1.1 Zytogenetischer Bedarf ... 23
 3.1.2 Molekulargenetischer Bedarf ... 24
 3.1.3 Zusätzliche Materialien für die FISH ... 25

3.2 METHODEN .. 26
 3.2.1 Bearbeitung und Haltbarmachen des Patientenmaterials .. 26
 3.2.2 RNA-Präparation .. 27
 3.2.3 Reverse Transkription ... 31
 3.2.4 Konzentrationsbestimmung der cDNA mit Hilfe des Photo-spektrometers 32
 3.2.5 Ethanolfällung der cDNA ... 34
 3.2.6 Amplifikation und Quantifizierung der p16-cDNA ... 35
 3.2.7 Fluoreszenz-In-Situ-Hybridisierung (FISH) ... 43
 3.2.8 Methylierungsspezifische PCR (MSP) .. 46
 3.2.9 Sequenzierung .. 50

4 ERGEBNISSE .. 55

4.1 PROBENAUSWAHL .. 55

4.2 RNA-ISOLATION .. 55

4.3 REVERSE TRANSKRIPTION ... 56

4.4 PCR ... 56
 4.4.1 PCR am Thermocycler PTC 200 ... 56
 4.4.2 PCR am Lightcycler ... 58
 4.4.3 Betrachtung des Expressionsmusters ... 60
4.4.4 Quantitative Analysen und statistische Auswertungen ... 66
4.4.5 Verlaufskontrollen .. 74
4.5 FISH .. 80
4.6 METHYLIERUNGSUNTERSUCHUNG .. 82

5 DISKUSSION ... 84
5.1 ERGEBNISSE DER PCR .. 84
5.1.1 Gesunde Probanden ... 84
5.1.2 Material von Patienten mit aufgetretener Blastenkrise ... 84
5.1.3 Material von Patienten mit vorliegender chronischer Phase 85
5.1.4 Gesamtüberblick .. 87
5.2 FISH ... 91
5.3 MSP ... 92
5.4 VERLAUFSKONTROLLEN .. 94
5.5 ALLGEMEINE GRENZEN DER METHODEN .. 96

6 ZUSAMMENFASSUNG .. 98

7 LITERATURANGABEN ... 100

8 ANHANG: SEQUENZEN .. 107
8.1 p16ININKA\textsubscript{A}-mRNA, ISOFORM 1, HUMAN ... 107
8.2 p16INKA\textsubscript{A}-mRNA, ISOFORM 4 (ENTSPRICHT P14ARF), HUMAN 107
8.3 p16INKA\textsubscript{A}/ARF-GEN (9p21); NUR CDKN2A, 5´ZUM ORF 108
8.4 HOMO SAPIENS CDNA VON GAPDH mRNA .. 109
8.5 PRIMER .. 110

9 ABBILDUNGSVERZEICHNIS ... 111

10 TABELLENVERZEICHNIS ... 114
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL</td>
<td>Y-Kinase nach Abelson Murine Leukemia Virus</td>
</tr>
<tr>
<td>ARF</td>
<td>Alternative reading frame</td>
</tr>
<tr>
<td>BCR</td>
<td>Breakpoint cluster region</td>
</tr>
<tr>
<td>BK</td>
<td>Blastenkrise</td>
</tr>
<tr>
<td>CAK</td>
<td>Cycline activating kinase</td>
</tr>
<tr>
<td>CAS</td>
<td>Cellular apoptosis susceptibility protein</td>
</tr>
<tr>
<td>CDK</td>
<td>Cycline dependent kinase</td>
</tr>
<tr>
<td>CDK-I</td>
<td>Inhibitor der CDK</td>
</tr>
<tr>
<td>CRKL</td>
<td>v-crk-like protein</td>
</tr>
<tr>
<td>CroP</td>
<td>Crossing point</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>E2F</td>
<td>Elongationsfaktor</td>
</tr>
<tr>
<td>FKS</td>
<td>fetales Kälberserum</td>
</tr>
<tr>
<td>GAP</td>
<td>GTP-ase activating protein</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>HTH</td>
<td>Helix-turn-helix</td>
</tr>
<tr>
<td>INK4a</td>
<td>Inhibitor of kinase 4a</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LC</td>
<td>Lightcycler</td>
</tr>
<tr>
<td>LOH</td>
<td>Loss of homocigocity</td>
</tr>
<tr>
<td>LOI</td>
<td>Loss of imprinting</td>
</tr>
<tr>
<td>MAPK</td>
<td>MAP-Kinase</td>
</tr>
<tr>
<td>MDM2</td>
<td>Double minute 2</td>
</tr>
<tr>
<td>MEK</td>
<td>Extracellular signal-regulated kinase (MAPK)</td>
</tr>
<tr>
<td>MSP</td>
<td>Methylierungsspezifische PCR</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>pRb</td>
<td>Retinoblastomgenprodukt</td>
</tr>
<tr>
<td>Raf</td>
<td>S-T-Kinase</td>
</tr>
<tr>
<td>SH2</td>
<td>Src homology domain 2</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitogen activated kinase</td>
</tr>
<tr>
<td>SSC</td>
<td>standard saline citrate</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducers and activators of transcription</td>
</tr>
<tr>
<td>SWI/SNF</td>
<td>Komplex mit ATPaseaktivität zur Chromatinumformung</td>
</tr>
<tr>
<td>Aminosäuren</td>
<td>Einbuchstabencode</td>
</tr>
</tbody>
</table>

Für die Proteine p14ARF (human) und p19ARF (bei Mäusen) wurde vereinfachend nach dem Erstbeschreiber die Bezeichnung p19ARF oder ARF verwendet.
1 Einleitung

Aufgabe der vorliegenden Arbeit war, eine quantitative p16-Expressionsanalyse beider Transskripte an Lymphozyten von CML-Patienten durchzuführen, um vorhandene Zusammenhänge zwischen der Krankheitsprogression und p16-Expression zu erkennen. Es zeigte sich, dass das p16-Expressionsmuster (qualitativ) als auch die Konzentrationen (quantitativ) der beiden mRNAs im Verlauf der Erkrankung, teilweise abhängig vom Krankheitsstadium, variieren können.

1.1 Klinik der chronisch myeloischen Leukämie (CML)

1.1.1 Allgemeine Betrachtungen zur chronischen myeloischen Leukämie

Die CML gehört zur Gruppe der monoklonal proliferativen Erkrankungen des myeloischen Systems, in deren Verlauf es zu einer ungehemmten Vermehrung einer (einzelnem) hämatopoetischen Stammzelle kommt. Der konventionelle Blutausstrich imponiert durch das massive Vorhandensein von zumeist unreifen, großkernigen

1.1.2 Klinisches Erscheinungsbild der CML

beträgt die Fünfjahresüberlebensrate 5 bis 60 %. Die Blastenkrise wird auch bei einer aufgetretenen Remission meist nicht länger als ein Jahr überlebt.

1.1.3 Mögliche Ursachen zur Entstehung einer CML

Beim LOH -loss of heterocygocity- kommt es zum Verlust eines Allels beispielsweise durch Mutationen (Heterozygotie). Falls von einer solchen Veränderung zum Beispiel ein Tumorsuppressorgen betroffen ist, kann dies zur Entstehung eines Tumorleidens führen, falls es durch ein weiteres Ereignis zur Inaktivierung des noch vorhandenen Allels kommt.

Im Gegensatz zur mutations-/deletionsbedingten Tumorgenese wurde in der letzten Zeit der Einfluss der Geninaktivierung durch Methylierung (Imprinting: LOI) immer häufiger in tumorgenetischen Untersuchungen diskutiert. Dieser Mechanismus spielt mit hoher Wahrscheinlichkeit keine nebensächliche Rolle.

1.2 Zellzyklus und p16

1.2.1 Der Zellzyklus

vorhanden, bleibt das Fortschreiten im Zellzyklus aus und die Zelle tritt in die G₀-Phase ein. Mit Erreichen dieser Stufe geht bei den meisten Zellen eine funktionelle Reifung beziehungsweise Differenzierung einher. Wird jedoch durch das Einwirken wachstumsfördernder Substanzen auf die Zelle ein spezifischer Restriktionspunkt (point of no return) erreicht, tritt die Zelle unwiderruflich in die S-Phase ein. Dabei erfolgt die identische Reduplikation der DNA, wodurch die für die Mitose erforderlichen Zwei-Chromatid-Chromosomen entstehen. Ein weiterer Kontrollpunkt befindet sich in der zweiten Hälfte der sich anschließenden G₂-Phase. Im G₂-Abschnitt wird der zytoplasmatisch lokalisierte Spindelapparat ausgehend vom Zentriolenpaar ausgebaut, die Synthese bestimmter Histone angekurbelt und die Auflösung der Kernmembran eingeleitet. Als Folge dieser Vorgänge wird der Eintritt in die M-Phase (Mitose=Prophase, Metaphase, Anaphase, Telophase) gewährleistet. Der korrekte Ablauf der Mitose ist durch einen weiteren Metaphasenkontrollpunkt gesichert. Stark vereinfacht gesehen wird zu den einzelnen Kontrollpunkten die Zelle auf Vollständigkeit und Korrektheit der abgelaufenen Prozesse geprüft und im Falle einer Inkorrektetheit der Zellzyklus angehalten (Abbildung 1.2).

Auf molekularer Ebene ist dieses komplexe Geschehen noch nicht vollständig aufgeklärt. Molekularbiologische Mediatoren sind hauptsächlich die bereits erwähnten zyklinabhängigen Kinasen, deren Zykline sowie Aktivatoren und Inhibitoren der Kinasen.

Für das Überschreiten des G₁/G₀-Kontrollpunktes ist die Aktivierung der CDK4, -6 (teilweise auch CDK2) durch die Zykingruppe D (Abbildung 1.1) notwendig. Als Target konnten E₂F selbst und Mitglieder der pRB-Familie ermittelt werden, bei deren Phosphorilierung E₂F freigesetzt wird. Eine Azetylierung von pRb durch die

1.2.2 Zellzyklus und molekulare Veränderungen bei CML

Zu den molekularen Markern, die im Zusammenhang mit der chronischen myeloischen Leukämie beschrieben worden sind, zählt das Philadelphiachromosom. Hierbei handelt es sich um eine Translokation, die die Chromosomen 9 und 22 erfasst. Im Zuge dieser Vereinigung entsteht das Fusionsgen BCR/ABL. Nach Auswertung der Daten mehrerer Studien konnte man das BCR/ABL-Genprodukt als molekulare Ursache für die Entstehung einer CML identifizieren, obwohl es nicht bei allen Patienten auf der Metaphasenplatte zu finden ist. (Faderl et al., 1999). Wie der Name bereits andeutet, kommt es zum Zusammenlagern von Teilen des BCR-Gens (Chromosom 22, 22q11) und des ABL-Gens (Chromosom 9, 9q34). Das zelluläre Protoonkogen c-ABL kodiert für eine Tyrosinkinase, welche potenziell in das Signaling-Netzwerk des Zellzyklus eingreifen kann. Die c-ABL mRNA kann infolge eines alternativen Splice-Mechanismus zwei Formen für das Exon 1 aufweisen (Exon 1a und 1b). Die resultierenden Proteine weisen keine gravierenden Unterschiede auf. Beide beinhalten hochkonservierte Domänen, wie zum Beispiel die Aktinbindungsdomäne, die auch eine PKC-Bindungsstelle beherbergt. Die zirka 145 kDa großen Proteine differieren
strukturell und funktionell nur unwesentlich voneinander und sind hauptsächlich nukleär lokalisiert, obwohl die Resultate von in-vitro Experimenten eine Beteiligung an intranukleären als auch cytoplasmatischen Regelungsprozessen erkennen lassen.

Durch die Translokation und die daraus resultierende Entstehung des Philadelphiachromosoms erfolgt die Fusion der beiden beschriebenen Gene. Der Bruch auf dem Chromosom 22 tritt am häufigsten im Bereich der Introns zwischen Exon 12 und 16, der major breakpoint cluster region (p210), auf. Seltenere Bruchstellen befinden sich zwischen den beiden alternativen Exons 1a und 1b. Sie werden als minor breakpoint cluster region (p190) und micro (p230) breakpoint cluster region bezeichnet.

Ein Zusammenhang zwischen dem Auftreten der verschiedenen BCR-ABL-Genprodukte und einem bestimmten klinischen Erscheinungsbild konnte ermittelt werden (Tabelle 1.1; Faderl et al., 1999).

<table>
<thead>
<tr>
<th>AUTOR</th>
<th>BCR-ABL-PHÄNOTYP</th>
<th>KLINISCHE PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pane (Pane et al., 1996)</td>
<td>p230</td>
<td>Chronisch neutrophilische Leukämie, Thrombozytose</td>
</tr>
<tr>
<td>Melo (Melo et al., 1994)</td>
<td>p190</td>
<td>Monozytose</td>
</tr>
</tbody>
</table>

Das BCR/ABL-Genprodukt zeigt in mehr oder weniger stark ausgeprägtem Umfang die Eigenschaften der Ausgangsgenprodukte. Der für die maligne Transformation vermutlich wichtigste Faktor ist die Tyrosinkinaseaktivität (Y-Kinase). Hierdurch wird es der entarteten Zelle ermöglicht, an verschiedenen Knotenpunkten des zellulären
Signaling-Network zu intervenieren (Faderl et al., 1999). Verstärkend wirkt auch noch die Tatsache, dass im Gegensatz zur nukleär lokalisierten, nativen c-ABL-Kinase das BCR/ABL-Enzym im zytoplasmatischen Kompartiment auffindbar ist. Das komplexe Eingreifen des BCR/ABL-Proteins in die Regulationsmechanismen soll in Abbildung 1.3 verdeutlicht werden.

Die Kinaseaktivität des BCR/ABL-Fusionsproteins stammt vom cABL-Anteil, während Strukturen zur Aktivierung des Enzyms zum BCR-Anteil gehören. Weitere wichtige funktionelle Bestandteile sind: eine Oligomerisierungsdomäne (BCR), die Grb2-
bindende Domäne, eine SH2-Domäne (BCR - zur Interaktion mit c-myc), die "major site of Y-autophosphorylation" (ABL), die Aktinbindungsdomäne (ABL) und eine weitere SH3-Domäne zum Anlagern an pY oder P-reiche Proteinareale (Faderl et al., 1999). Neben dem bisher erwähnten Einfluss auf die Signaltransduktion vieler Wachstumsfaktoren scheint das chimere BCR/ABL-Protein Adhäsionsvorgänge zu Stromazellen (zum Beispiel des Knochenmarkes) zu beeinflussen. In neueren Untersuchungen (Verfaillie, 1998) konnte ein Zusammenhang zwischen einer verminderten ß-Integrinaffinität und dem massiven Ausschwämmen unreifer Blutzellen aufgezeigt werden (Lundell et al., 1996). Durch das gezielte Ausschalten des BCR/ABL-Chimers mit Hilfe von Antisensetechniken ist in vitro eine Verstärkung der adhären ten Eigenschaften geeigneter Modellzellen beobachtet worden (Bhatia and Verfaillie, 1998; Shet et al., 2002). Der Tyrosinkinaseinhibitor Gleevec™ (Novartis) wirkt nach einem vergleichbaren Prinzip. Er soll durch selektives Ausschalten der BCR/ABL-Y-Kinase die Krankheit zum Stillstand bringen oder zumindest deren Progression verhindern. Dieses Beispiel verdeutlicht nochmals die wesentliche Rolle des BCR/ABL-Fusionsproteins und insbesondere dessen Proteinkinaseaktivität für die Wirkstofffindung und für das Arzeneimitteldesign (La Rosee et al., 2002; Fischer et al., 2002).

1.2.3 Spezielle Bedeutung der beiden p16-Transkripte

Abbildung 1.4: Das stark vereinfachte Schema zeigt die Aktivität der spezifischen Kinasen zu den entsprechenden Zeitpunkten im Zellzyklus.

Im Mittelpunkt der weiteren Betrachtungen soll die Ankyrin-Motiv-Gruppe, insbesondere der Vertreter p16 stehen. Der p16^{INK4a}/p19^{ARF} Genlokus befindet sich auf dem kurzen Arm des Chromosoms 9 (9p21) in der multiple tumor supressor gen region. Durch einen alternativen Splicemechanismus können aus der prä-mRNA zwei verschiedene mRNAs entstehen, die α-mRNA und die β-mRNA. Das α-Transkript entsteht aus 3 kodierenden Exons (ex1:125b; ex2:307b; ex3:12b). Das Exon 1β befindet sich zirka 1,5 kb upstream vom Exon 1α, während für die Exons 2β und 3β nur ein Ein-basen-downstream-frameshift existiert. Die Translation der α-mRNA führt zum p16^{INK4a}, die der β-mRNA zu p19^{ARF}. Beide entstandenen Proteine greifen in unterschiedlicher Weise regulierend auf das
Fortschreiten des Zellzyklus ein. Während die Proliferationshemmung der \(\alpha \)-Form (p16\(^{INK4a} \)) durch die CDK-I-Funktion zu Stande kommt und somit einen Eingriff in die pRb-Kaskade darstellt, kommt der wachstumshemmende Einfluss der \(\beta \)-Form durch eine Involvierung in den p53-abhängigen Zellteilungsstop zum Ausdruck (Carnero et al., 2000).

1.2.4 Strukturelle Aspekte der beiden p16-Transkripte

Aus der folgenden Darstellung soll die Bedeutung der beiden p16-Transkripte nochmals hervorheben und zum Verständnis der molekularen Wirkungsweise der Proteine beitragen. Die sich ergebende zentrale Rolle der Proteine (Integratorfunktion) soll verdeutlichen, warum p16 im Mittelpunkt vieler wissenschaftlicher Arbeiten steht.

1.2.4.1 Aktivierungsmechanismen der zyklinabhängigen Kinasen

Die Aktivierung der zyklinabhängigen Kinasen (CDKs) ist ein Multistep-Prozess, bei dem die Zykline eine Hauptrolle spielen (Tabelle 1.2). Es existiert eine Vielzahl von CDK-Typen, die sich beinahe ausschließlich durch ihre Affinität zu ihren Aktivatoren, den Zyklinen, unterscheiden. Weiterhin existieren ebenfalls einige Subtypen von Zyklinen. Beim Zyklin D ist zum Beispiel eine weitere Untergliederung in gegenwärtig mindestens drei Untergruppen möglich (Krauss: „Biochemie der Signaltransduktion“, Kap.7).

Die CDKs bestehen aus zwei Hauptdomänen. Beim Anlagern der Zykline an ihre spezifische Bindungsstelle, die sich im Bereich der PSTAIR-Region (hochkonservierte Struktur, die die Grundlage der hohen Zyklinspezifität darstellt) befindet, kommt es zur Rotation der C-terminalen Domäne um den N-terminalen Molekülbereich. Dabei wird das katalytisch aktive E51 näher zum aktiven Zentrum verlagert, wodurch die Kinaseaktivität dieses Heterodimers um einige Zehnerpotenzen erhöht wird. Eine weitere strukturelle Veränderung der CDK, die durch die Assoziation mit dem Zyklin bewirkt wird, ist die Transformation der \(\alpha L12 \)-Helix in eine \(\beta \)-sheet-Struktur. Das Ausschwenken der das aktive Zentrum blockierenden T-loop muss ebenfalls als Zusammenlagerungseffekt betrachtet werden. Hierbei erfolgt eine Surfaceexposition des T160, wodurch dieses für eine Phosphorilierung durch die zyklinaktivierende Kinase (CAK) zugänglich wird. Dieser Schritt ist ebenfalls ein wichtiger Punkt für die Gesamtaktivierung der CDK. Ein weiterer nicht zu vernachlässigender Faktor der Kinaseaktivität ist der nichtphosphorilierte Zustand der beiden Residues Y15 und T14.
im Aktiven Zentrum. Dieser Prozess wird durch die Kinase Wee1 beziehungsweise durch die Phosphatase cdc25 katalysiert. Die CDK ist nur dann aktiv, wenn ausnahmslos alle erwähnten Punkte erfüllt sind. Im Rahmen dieser Aktivität ist eine Phosphorilierung des Retinoblastomgenproduktes (pRb) beziehungsweise seiner Äquivalente p130/p107 möglich, welche eine Freisetzung des an pRb gebundenen Faktors E2F bewirkt. Folge dieser Freisetzung ist ein proliferationsstimulierender Effekt (Byeon et al., 1998; Sherr, 1996).

Tabelle 1.2: Überblick zur Aktivierung der CDKs.

<table>
<thead>
<tr>
<th>BEDINGUNG</th>
<th>MEDIATOR</th>
<th>FOLGE</th>
<th>AKTIVITÄT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagerung des Zyklin an PSTAIR-Region</td>
<td>Zyklinc</td>
<td>Rotation der Hauptdomänen</td>
<td>Voraussetzung zur Aktivierung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Umwandlung der αL12-Helix in ein β-Faltblatt</td>
<td>Auswinken der T-Loop</td>
</tr>
<tr>
<td>T160</td>
<td>CAK</td>
<td>Phosphorilierung</td>
<td>Voraussetzung zur Aktivierung</td>
</tr>
<tr>
<td>pT14 / pY15</td>
<td>cdc25</td>
<td>Deposphorilierung</td>
<td>Voraussetzung zur Aktivierung</td>
</tr>
<tr>
<td>T14 / Y15</td>
<td>Wee1</td>
<td>Phosphorilierung</td>
<td>Inaktivierung</td>
</tr>
</tbody>
</table>

1.2.4.2 Der hemmende Einfluss von p16INK4a

1.2.4.3 Bau des p16INK4a – Ankyrinmotivgruppe

Bei der p16-α-Form handelt es sich um ein kurzes, einfach zusammengesetztes Protein. Hauptbestandteil sind vier Helix-Turn-Helix Motive (Ankyrinmotive; Abbildung 1.5), die mittels dreier Loops miteinander verbunden sind. Die Loops stehen in etwa senkrecht zur helikalen Achse (Abbildung 1.6) und scheinen flexibel zu sein, weshalb eine aufklärende Röntgenstrukturanalyse keine informativen Daten liefern konnte. Es wird gemutmaßt, dass diese beweglichen Schleifen auch die Kontaktstellen zur CDK sein
Abbildung 1.5: Überblick zur Struktur von p16INK4a.

Abbildung 1.6: Die senkrechte Ausrichtung der Loops zwischen den HTH-Motiven zu den helikalen Achsen.

1.2.4.4 Die Wirkung des ß-Transkriptes p19ARF

Abbildung 1.7: Stark vereinfachte Skizze des Proteins MDM2. Im c-terminalen Bereich befindet sich ein Molekülbereich zum Anlagern an p19ARF. In der zentralen Region ist die Transaktivierungsdomäne, die eine bestimmte intrinsische Aktivität aufweisen könnte (vorausgesetzt es handelt sich nicht ausschließlich um einen Hemmer des nukleär-zytoplasmatischen Transportes). Am N-terminus befindet sich die p53-bindende Domäne.

Für die hemmende Wirkung ist die alleinige Reaktion des Proteinanteils, der dem Exon 1ß entstammt, von Bedeutung (Zhang et al., 1998). Publikationen zu röntgenkristallografischen Untersuchungen der p19ARF-Struktur sind zum gegenwärtigen Zeitpunkt noch nicht erschienen.
2 Zielsetzung

Aus einigen wissenschaftlichen Untersuchungen am Blut beziehungsweise am Knochenmark von an CML erkrankten Personen konnte gezeigt werden, dass die Expression der beiden p16-Transkripte nicht identisch war (Serra et al., 1995; Sill et al., 1995). Eine Untersuchung von Iolascon (Iolascon et al., 1998) hatte zum Ergebnis, dass normale Lymphozyten alle bekannten CDK-I, ausgenommen p16, exprimieren. Es wurde in 4/10 chronischen CML-Phasen p16-mRNA gefunden, während in 9/10 untersuchten Proben aus der Akzellerationsphase keine p16-Expression nachweisbar war. Weiterhin konnte die Arbeitsgruppe feststellen, dass nur in 20% der untersuchten Proben ein alleiniges Auffinden der p19ARF-mRNA möglich war. Das relativ seltene Auffinden der α-mRNA während der chronischen Phase führte Iolascon hauptsächlich auf die Inaktivierung durch GC-Methylierung zurück, den p16INK4a-Mangel im Verlauf der Blastenkrise soll eine Deletion zugrunde liegen. Andere Autoren (Guran et al.,
1998; Ogawa et al., 1994; Serra et al., 1995; Klangby et al., 1998; Sill et al., 1995; Quesnel et al., 1996b) beschreiben hauptsächlich die mutations- und deletionsbedingte Inaktivierung von INK4a in lymphoiden Blastenkrisen bei CML. Die Reexpression des α-Transkriptes in leukämischen Tumorzellexressionen führte zur Wachstumshemmung (Schoppmeyer et al., 1999; Quesnel et al., 1996a).

In eigenen Versuchen zum qualitativen p16-Nachweis am Thermocycler unter Anwendung verschiedener Primerpaare konnte gezeigt werden, dass in vier verschiedenen Tumorzellexressionen (Colo 320; Colo 620; G292; SkMel 58) die beiden p16-Transkripte stabil auf verschiedenen Niveaus exprimiert wurden. In beiden Colo-Linien konnte nur die mRNA-Expression des ARF gezeigt werden, während der Quotient p16^{INK4a}/p19^{ARF} für G292 beziehungsweise SkMel58 1 und 1,5 betrug. Diese Erkenntnisse ließen den Schluss zu, dass auch in den Lymphozyten von CML-Patienten, insbesondere in den transformierten Zellen, möglicherweise feste p16-Mengenverhältnisse (p16^{INK4a}/p19^{ARF}) herrschen können.

eine Progressionsvorhersage des Krankheitsgeschehens und damit auch eine Differenzierung beim Einsatz der bestehenden Therapiemöglichkeiten machbar. In einigen ausgewählten Fällen, in denen der Nachweis spezifischer p16-mRNA nicht gelingt, werden weitere Untersuchungen durchgeführt, um eventuelle weitere genetische Veränderungen, die als zum p16-Verlust ursächlich angesehen werden können, zu erfassen (FISH, MSP).
3 Material und Methoden

3.1 Materialien

3.1.1 Zytogenetischer Bedarf

3.1.1.1 Geräte

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank</td>
<td>Heraeus 6000 (37°C, 5%CO₂)</td>
</tr>
<tr>
<td>Kolbenhubpipetten</td>
<td>Gilson Pipetman (verschiedene Grössen); Gilson Medical Electronics S.A., Villiers-le-Bel (Frankreich)</td>
</tr>
<tr>
<td>Kühlkombination</td>
<td>Liebherr</td>
</tr>
<tr>
<td>Laminarbox</td>
<td>Heraeus LaminAir HBB2448</td>
</tr>
<tr>
<td>Neubauer Zählkammer</td>
<td>Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen (Deutschland)</td>
</tr>
<tr>
<td>Pasteurpipetten</td>
<td>VOLAC DisposableGlass PasteurPipetts 150mm Ref:D180; John Poulten LTD, Essex (England)</td>
</tr>
<tr>
<td>Phasenkontrastmikroskop</td>
<td>Axiovert 135; Zeiss, Jena (Deutschland)</td>
</tr>
<tr>
<td>Pipettierhilfe für große Volumina</td>
<td>Acuboy; TecNoMara, Wallisellen (Schweiz)</td>
</tr>
<tr>
<td>Zentrifuge</td>
<td>1. Megafuge 1.0; Heraeus</td>
</tr>
<tr>
<td></td>
<td>2. Millipore Microcentrifuge MC-13; Amicon Bioseperations, Inc., Beverly-MA (USA)</td>
</tr>
<tr>
<td></td>
<td>3. Universal 30RF; Andreas Hettich GmbH+Co KG, Tuttlingen (Deutschland)</td>
</tr>
</tbody>
</table>

3.1.1.2 Chemikalien und sonstiges Zubehör

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.dest.</td>
<td>Aqua ad inyectabilia 10ml; B.Braun Melsungen AG, Melsungen (Deutschland)</td>
</tr>
<tr>
<td>Bechergläser</td>
<td>Verschiedene Grössen; Brand GmbH+CO KG, Wertheim (Deutschland)</td>
</tr>
<tr>
<td>Kolchizin</td>
<td>Colcemide; Biochrom AG, Berlin (Deutschland)</td>
</tr>
<tr>
<td>EDTA-/Heparinblut beziehungsweise Knochenmark</td>
<td>PPN Tube, sterile, 15ml, 150mm, Schraubverschluss, blau; GreinerBio-One GmbH, Frickenhausen (Deutschland)</td>
</tr>
<tr>
<td>Fixativ</td>
<td>1 Volumenteil (VOLT) Eisessig (Essigsäure 100%, p.a.; Carl Roth GmbH+Co KG, Karlsruhe (Deutschland)+3 VOLT Methanol (J.T.Baker B.V.; Deventer (Holland))</td>
</tr>
<tr>
<td>FKS</td>
<td></td>
</tr>
<tr>
<td>Handschuhe</td>
<td>Powder Free Non-Sterile Latex Examination Gloves; Ansell, Melaka (Malaysia)</td>
</tr>
<tr>
<td>hypotone Lösung (KCl)</td>
<td></td>
</tr>
<tr>
<td>Kulturläppchen</td>
<td>Filter Top Flaschen 50ml, GreinerBio-One GmbH, Frickenhausen (Deutschland)</td>
</tr>
<tr>
<td>Markierstift/Bleistift</td>
<td>handelsüblich</td>
</tr>
<tr>
<td>Nährmedium</td>
<td>RPMI 1640 Medium with Glutamax-I; GIBCO, Rockville (USA)</td>
</tr>
<tr>
<td>Objektträger</td>
<td>SuperFrost; Menzel-Flaschen, Braunschweig (Deutschland)</td>
</tr>
<tr>
<td>ARTIKEL</td>
<td>HERSTELLER</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Phytohemagglutinin</td>
<td>Phytohemagglutinin (PHA-L); Biochrom KG, Berlin (Deutschland)</td>
</tr>
<tr>
<td>Präzisionswischtücher</td>
<td>Kimwipes Lite; Kimberly-Clark Corporation, Hakle-Kimberly Deutschland GmbH, Mainz (Deutschland)</td>
</tr>
<tr>
<td>Zellschaber</td>
<td>Cell Scraper, 23cm, steril; Brand GmbH+CO KG, Wertheim (Deutschland)</td>
</tr>
</tbody>
</table>

3.1.2 Molekulargenetischer Bedarf

3.1.2.1 Geräte

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminiumkühlblock mit Zentrifugenadaptern</td>
<td>Roche Diagnostics GmbH; Mannheim (Deutschland)</td>
</tr>
<tr>
<td>Eis / Eismaschine</td>
<td>Eismaschine; Ziegra-Eismaschinen, Isernhagen (Deutschland)</td>
</tr>
<tr>
<td>Gelelektrophoreseeinheit mit Stromversorgung</td>
<td>1. Serva Feinbiochemica GmbH & Co., Heidelberg, (Deutschland)</td>
</tr>
<tr>
<td></td>
<td>2. Elektrophoresis Power Supply ST305; GIBCO BRL, Rockville (USA)</td>
</tr>
<tr>
<td>Lightcycler</td>
<td>Roche Diagnostics GmbH; Mannheim (Deutschland)</td>
</tr>
<tr>
<td>Peltier Thermocycler</td>
<td>Peltier Thermal Cycler PTC 200; MJ Research, Waltham-MA (USA)</td>
</tr>
<tr>
<td>Photometer mit Quarzglasküvetten</td>
<td>UVIKON Spectralphotometer 930; Kontron Instruments, Herts (England)</td>
</tr>
<tr>
<td>Sequenzierautomat</td>
<td>DNA Sequencer 4000L; LI-COR Biosciences GmbH, Bad Homburg (Deutschland)</td>
</tr>
<tr>
<td>Speedvac/Brutschrank</td>
<td>SpeedVac DNA100; Thermo Savant, Holbrook-NY (USA)</td>
</tr>
<tr>
<td>Thermoblock</td>
<td>DRI-Block DB3D; Techne Corporation, Minneapolis-MN (USA)</td>
</tr>
<tr>
<td>Tiefkühlschrank (-70 °C)</td>
<td>Heraeus; Heraeus Sepatech GmbH, Osterode (Deutschland)</td>
</tr>
<tr>
<td>UV-Emitter mit Dokumentationseinheit</td>
<td>1. UV Emitter TFX53M</td>
</tr>
<tr>
<td></td>
<td>2. DocuGel-V</td>
</tr>
<tr>
<td></td>
<td>3. Mitsubishi Videoprinter</td>
</tr>
<tr>
<td></td>
<td>4. Kamera</td>
</tr>
<tr>
<td>Waage</td>
<td>1. Kern 510-33; Gottl.Kern&Sohn, Albstadt (Deutschland)</td>
</tr>
<tr>
<td></td>
<td>2. Sartorius BP61; Sartorius AG, Göttingen (Deutschland)</td>
</tr>
<tr>
<td>Wasserstrahlpumpe</td>
<td>Eigenbau</td>
</tr>
</tbody>
</table>

3.1.2.2 Chemikalien und sonstiges Zubehör

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M NaOH</td>
<td>Natriumhydroxid Plätzchen p.a.; Merck, Darmstadt (Deutschland)</td>
</tr>
<tr>
<td>6M Ammoniumazetatlösung</td>
<td>Sodium Acetate; Sigma-Aldrich Chemie GmbH; Deisenhofen (Deutschland)</td>
</tr>
<tr>
<td>Agarose</td>
<td>NuSieve 3:1 Agarose; FMC BioProdukts, Rockland-ME (USA)</td>
</tr>
<tr>
<td>Alkohol 100%, 70%</td>
<td>Ethanol p.a.; Merck, Darmstadt (Deutschland)</td>
</tr>
<tr>
<td>APS (10%-ig)</td>
<td>Ammonium Persulfate; Sigma-Aldrich Chemie GmbH, Deisenhofen (Deutschland)</td>
</tr>
<tr>
<td>Betain</td>
<td>150mM Betain; Sigma-Aldrich Chemie GmbH; Deisenhofen (Deutschland)</td>
</tr>
</tbody>
</table>
3.1.3 Zusätzliche Materialien für die FISH

3.1.3.1 Geräte

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizplatte</td>
<td>IKA RCTbasic; Janke + Kunkel GmbH&Co. KG, Staufen (Deutschland)</td>
</tr>
<tr>
<td>feuchte Kammer</td>
<td>Kunststoffobjektträgerbehälter mit angefeuchten Tüchern</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>Memmert WB14; Memmert GmbH&Co. KG, Schwabach (Deutschland)</td>
</tr>
<tr>
<td>Fluoreszenzmikroskop mit Kamera und Filtern</td>
<td>Zeiss; Jena (Deutschland)</td>
</tr>
</tbody>
</table>

3.1.3.2 Chemikalien und sonstiges Zubehör

<table>
<thead>
<tr>
<th>ARTIKEL</th>
<th>HERSTELLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-fach SSC</td>
<td>Ultra Pure 20xSSC; Life Technologies TM, GIBCO; Paisley (Schottland)</td>
</tr>
<tr>
<td>4-fach SSC/Tw</td>
<td>4xSSC; 0,1%Tween 20; Sigma-Aldrich chemie GmbH; München (Deutschland)</td>
</tr>
</tbody>
</table>
3.2 Methoden

Im Folgenden werden die Methoden gemäß ihrem zeitlichen Ablauf beschrieben. Sie
beinhalten die aufgelisteten Schritte:

1. Bearbeitung und Haltbarmachen des Patientenmaterials
2. RNA-Präparation
3. Reverse Transkription
4. Konzentrationsbestimmung der cDNA
5. Amplifikation und Quantifikation der p16-cDNA
6. Fluoreszenz-in-situ-Hybridisierung
7. Methylierungsspezifische PCR

3.2.1 Bearbeitung und Haltbarmachen des Patientenmaterials

Aus den durch Punktion gewonnenen Heparinblut oder Heparinknochenmark (in einem
Fall Leukozytenaphareseblut) müssen zunächst die Lymphozyten präpariert und
anschließend fixiert werden, um das Material zu konservieren und somit für alle
Reaktionen gleichwertiges Ausgangsmaterial zu erhalten. Das frische Material wurde
zunächst etwa 20 Minuten auf einem Mischer gerollt. In der Zwischenzeit konnten die
benötigten Kulturflaschen vorbereitet werden. Dazu wurden 10ml eines 10% FKS
enthaltenden Mediums (Gibco RPMI 1640 Medium with Glutamax-I with 25 mM
HEPES; 10000 U/ml Penicillin; 10000 µg/ml Streptomycin; 60 ml FKS) in die Gefäße

Danach können die Zellen durch leichtes Klopfen von den Gefäßoberflächen abgelöst und geerntet (Überführung in 15 ml Falcons) werden. Nach einer 5-minütigen Zentrifugation bei 400 • g wird der Überstand vorsichtig mit Pasteurepipetten verworfen und die Hypotoniebehandlung mit 10 ml KCl (0,559 g KCl/100 ml A.bidest.) begonnen. Um die Wirkung vollständig zu gewährleisten, lässt man nach gutem Durchmischen den Ansatz bei Raumtemperatur zirka 20 Minuten stehen.

Jetzt muss der Fixationsprozess begonnen werden. Dazu gibt man 1 ml Fixativ (Eisessig:Methanol = 1:3; gekühlt) hinzu und schwenkt die Falcons vorsichtig, bis ihr Inhalt gleichmäßig dunkelrot erscheint. Nach nochmaligem Zentrifugieren (400 • g; 5 Minuten) wird der Überstand erneut abpipettiert und dreimal mit 10 ml Fixativ gewaschen. Nach dieser Aufreinigung darf das Zellpellet keine rötliche Verfärbung aufweisen (bei Bedarf mehrmals waschen). Das Pellet kann man nun mit 1 ml Fixativ versetzen, aufwirbeln und die Zellsuspension in ein 1,5 ml Safe-lock-tube überführen. Die Proben können bei -20 °C bis zum weiteren Gebrauch gelagert werden.

Um eine Aussage über die Qualität der fixierten Lymphozyten treffen zu können, besteht die Möglichkeit, einen aufgetropften Objektträger im Phasenkontrastmikroskop zu begutachten.

3.2.2 RNA-Präparation

Zur schnellen und zuverlässigen RNA-Isolation hat sich bei diesen Untersuchungen der Qiagen RNeasy Mini-KIT bewährt. Hauptbestandteil dieses KITs ist eine auf Silicagelbasis produzierte Affinitätsmatrix, die die hohe Selektivität und den geringen Zeitaufwand der Methode gewährleistet. Durch die bereitgestellten Puffer auf der Grundlagelage der Guanidin-Isothiozyanat-Technik besteht die Möglichkeit, selektiv besonders längere RNA anzureichern und an die Membran zu binden.

3.2.2.1 Ablaufplan

1. Bestimmung der Zelldichte mit Hilfe der Neubauer-Zählkammer

Mit Hilfe einer Pipette kann nun ein Tropfen der Zellsuspension an die Stelle zwischen Deckglas und Zählkammer pipettiert werden. Durch die Kapillarwirkung füllt sich der Spalt zwischen Deckglas und Kammerboden. Noch bevor die bearbeitete Zellösung an den Rändern des Kammerteils überquellen kann, muss die Pipettenspitze bereits wieder beiseite gezogen werden. Sind Luftblasen sichtbar oder ist die Flüssigkeit über die Ränder in die Rinnen überquollen, so muss die Kammer gereinigt und erneut beschickt werden.

Das Auszählen setzt genaue Kenntnis über die Grenzlinien der verwendeten Zählkammern voraus. Damit Zellen, die auf oder an Begrenzungslinien liegen, nicht doppelt gezählt oder bei der Zählung übergangen werden, halte man sich an bestimmte Regeln:

- Gezählt werden alle Zellen innerhalb des definierten Messbereiches
- Mitgezählt werden die an 2 Seiten, z.B. an der linken und oberen Maßlinie, an- oder aufliegenden Zellen
- Dies gilt auch für die Art des eigentlichen Zählvorganges, der mäanderförmig erfolgen soll
- Bei allen Kammerzählungen muss die Blende des Kondensators am Mikroskop weitgehend geschlossen sein.
• Die Differenz der gezählten Zellen in den Großquadraten und Gruppenquadraten darf nicht mehr als 10 Zellen betragen.
• Bei allen Zellzählungen müssen Doppelbestimmungen durchgeführt werden. Nach dem Auszählen des oberen Zählnetzes wird als Kontrolle in gleicher Weise noch das untere Zählnetz ausgezählt. Dabei ist darauf zu achten, dass die Kammer nicht eingetrocknet ist. Dies kann vermieden werden, wenn die untere Kammer erst kurz vor der Auszählung gefüllt und nach der Sedimentationszeit ausgezählt wird.
• Die Differenz zwischen den Summen der Auszählung beider Zählnetze darf nicht mehr als 10 Zellen betragen. Der Mittelwert der Zählungen wird dann in die Berechnungsformel eingesetzt bzw. mit dem entsprechenden Faktor multipliziert.

Die nach diesen Grundregeln bestimmte Zellzahl muss anschließend noch auf SI-Standard gebracht werden.

2. Abnehmen von zirka 10^6 bis 10^7 Zellen aus der Suspension
Nach erneuter Aufwirbelung des Pellets durch vorsichtiges Schütteln oder Auf-und-Ab-Pipettieren erfolgt je nach bestimmter Zelldichte die Entnahme von etwa 50 bis 120 µl aus der Zellsuspension.

3. Aufreinigen der fixierten Lymphozyten
Die fixierten Zellen können durch Zentrifugation bei 10000 • g für 5 Minuten wieder separiert werden. Anschließend wird der Überstand dekantiert und das Pellet für etwa eine Minute bei Raumtemperatur getrocknet. Im Folgenden muss das Zellpellet erneut mit Alkohol (pro analysi) gewaschen werden. Dazu gibt man 1 ml Alkohol zu den Zellen, schwenkt das Cap zwei-bis dreimal vorsichtig und zentrifugiert anschließend erneut für 5 Minuten bei 10000 • g. Nach dem Verwerfen des Überstandes und kurzer Trockenphase (bei Raumtemperatur) kann man mit Schritt 4 beginnen.

4. Lysebehandlung
Die Lyse des Materials bereitet meist keine größeren Probleme, da die fixieren Zellen ohnehin schon sehr empfindlich auf Milieuveränderungen reagieren. Der noch mit β-Mercaptoethanol (Denaturieren von Proteinen) zu versetzende Lysepuffer RLT (700 µl) wird direkt auf die Probe gegeben und danach das Tube für ungefähr eine Minute gevortex. In den meisten Fällen ist nach dieser Behandlung kein Pellet mehr sichtbar. Die im Ausnahmefall noch existierenden Zellklumpen kann man mit Hilfe einer QiaAmp Shreddercolumn (Qiagen) oder durch die mehrmalige Passage einer 20G Kanüle auflösen.
Das homogenisierte Ausgangsmaterial kann nun mit 700 µl 70 %-igen Alkohol (pro analysi) vorsichtig gemischt werden (Schwenken, Auf-und-Ab-Pipettieren).

5. Anbinden der RNA an die Qiagensäulchen

6. Waschen der gebundenen RNA

7. Elutionsschritt

Vor der weiteren Probenaufarbeitung sollte das bereits in ein neues, beschriftetes 1,5ml Tube gesetzte Säulchen etwa 1 Minute geöffnet bei Raumtemperatur inkubiert werden, da so die Alkoholkontamination reduziert werden kann. Die Elution kann in zwei Schritten durchgeführt werden. Hierzu erwies es sich als vorteilhaft, zweimal 15 µl, auf 50 ºC erwärmtes, sterilfiltriertes Wasser (aqua ad injectabilia; Braun) zu verwenden und die Probe bei maximaler Drehzahl für 3 Minuten zu zentrifugieren. Danach kann die Säule entsorgt und der RNA-haltige Durchfluss weiterverarbeitet werden.
8. Aufreinigung
Diese Behandlung der RNA brachte keine Verbesserung der Ergebnisse. Deshalb wurde der Schritt 8 nicht für alle Reaktionen durchgeführt.

3.2.3 Reverse Transkription
Zur Verbesserung der Bedingungen für das weitere Arbeiten mit der RNA erfolgt deren Umschreibung in DNA. Für diese Reaktion wurde die GIBCO Superscript-II-Polymerase benutzt. Dieses Enzym ist im Set mit einem 5-fach FirstStrandBuffer und DDT erhältlich.
Das Grundprinzip der Reaktion ist eine lineare Umschreibung.

3.2.3.1 Ablaufplan
1. Denaturieren der RNA
9,5 µl der totalen RNA werden in ein dickes 0,5 ml-Eppendorfkap pipettiert. Nach der Zugabe von 2,5 µl Random-Hexamere (c_stock=50 ng/µl) müssen die Proben für 10 Minuten bei 70 °C inkubiert werden. Dadurch ist es möglich, sich bereits formierte Tertiärstrukturen aufzuschmelzen und günstige Bedingungen für das optimale Anlagern der Randomprimer zu schaffen. Durch das nachfolgende Abkühlen auf 4 °C (zirka 1 Minute auf Eis stellen) kann die Reformation der komplexen Gebilde verhindert werden. Zu diesem Zeitpunkt sollte demnach linearisierte RNA mit teilweise schon angelagerten Primern im Cap vorliegen.
2. Präinkubation
Zum gekühlten Produkt des ersten Schrittes pipettiert man jetzt 7 µl des eisgekühlten Mastermixes (Tabelle 3.1).

Tabelle 3.1: Die Zusammensetzung des Mastermixes für die Präinkubation der RT.

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCl₂</td>
<td>25 mM</td>
<td>2</td>
</tr>
<tr>
<td>5xFirstStrandBuffer</td>
<td>5-fach</td>
<td>2</td>
</tr>
<tr>
<td>DDT</td>
<td>0.1 mM</td>
<td>2</td>
</tr>
<tr>
<td>NTP</td>
<td>10 mM</td>
<td>1</td>
</tr>
</tbody>
</table>

Nach der Zufuhr erfolgt eine weitere Inkubation bei 25 °C für 5 Minuten.

3. Elongation
Die so vorbereitete Reaktion wird jetzt durch die Zugabe von 1 µl RNA-abhängiger DNA-Polymerase gestartet (Tabelle 3.2).

Tabelle 3.2: Das Protokoll der RT-Elongation dargestellt. Es besteht lediglich aus einem Zyklus.

<table>
<thead>
<tr>
<th>TEMPERATUR (°C)</th>
<th>DAUER (MINUTEN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>forever</td>
</tr>
</tbody>
</table>

Die entstandene cDNA wird nun weiterverarbeitet oder bei 4 °C bis zur Weiterverarbeitung gelagert.
Die für die Reaktion erforderliche reverse Transkriptase ist mit dem pol-Genprodukt des MMLV (Moloney Murine Leukemia Virus), das gentechnisch aus E.coli gewonnen wird, vergleichbar. Das Enzym enthält keine RNaseH-Aktivität.

3.2.4 Konzentrationsbestimmung der cDNA mit Hilfe des Photographeters
Um einen Fixpunkt für die durchzuführende Quantifizierung zu erhalten, wurde eine photometrische Konzentrationsabschätzung der gewonnenen cDNA herangezogen. Die OD-Werte, welche von vornherein schon nur einen Schätzwert darstellen, sind durch noch in der cDNA-Lösung enthaltene Reagenzen der RT (dNTP, Enzym ...) zusätzlich verfälscht. Da aber sämtliche Proben nach dem gleichen Ablaufplan bearbeitet wurden,
wird von einem systematischen Fehler ausgegangen, der in die folgende Berechnung nur unwesentlich eingeht.

Die Grundlage der Messung stellt das Lambert-Beer’sche Gesetz dar.

\[E = \varepsilon_0 \cdot \varepsilon_r \cdot c \cdot d \]

\(E \) = Extinktion
\(\varepsilon_0 \) = absoluter Extinktionskoeffizient
\(\varepsilon_r \) = relativer Extinktionskoeffizient
\(c \) = Konzentration der Lösung
\(d \) = Schichtdicke

Es gilt zur Vereinfachung:

\[\varepsilon = \varepsilon_0 \cdot \varepsilon_r \]

Daraus folgt:

\[E = \varepsilon \cdot c \cdot d \]

Aus der Umstellung nach \(c \) ergibt sich:

\[c = \frac{E}{1/(\varepsilon \cdot d)} \quad \text{mit} \quad \varepsilon=\text{konst.}; \quad d=\text{konst.} \quad 1/(\varepsilon \cdot d)=k; \quad k=\text{Konstante} \]

\[c = E \cdot k \]

Zur weiteren Vereinfachung des Verfahrens können für \(k \) gerundete Werte eingesetzt werden. Zur Bestimmung einer DNA-Konzentration gilt \(k=50 \), für RNA gilt \(k=40 \).

Da aufgrund des beschränkten mengenmäßigen Vorhandenseins der gewonnenen DNA-Lösung eine Verdünnung zur Absorptionsmessung notwendig ist, geht ein weiterer Faktor in die Gleichung ein.

\[c = E \cdot k \cdot k_v \]

\(k_v \) = Verdünnungsfaktor

Die bereits erwähnte Messgenauigkeit des Photometers wirkt sich ebenfalls einschränkend auf die Aussagefähigkeit der Messung aus. Je nach Alter und Qualität des Messsystems und der Küvetten, kann die Aussagekraft der Ergebnisse beeinträchtigt sein. Da bei der vorliegenden Untersuchung jedoch nur vergleichende Aussagen (zwischen den einzelnen Proben) getroffen werden sollen, kann man diesem Fehler (als systematische Komponente) eine geringere Bedeutung zuordnen.

Da mit Hilfe der Absorption bei \(\lambda = 280 \text{ nm} \) eine näherungsweise Bestimmung der Proteinkonzentration möglich ist, können auch Aussagen zum Reinheitsgrad der cDNA getroffen werden. Für die Beurteilung wird der Quotient \(Q = \text{OD}_{260 \text{ nm}} / \text{OD}_{280 \text{ nm}} \) genutzt. Bei dieser Untersuchung sind Proben mit einem Wert \(Q < 1.2 \) ausgeschlossen worden, weil hier mit starker Proteinverunreinigung zu rechnen ist. Sollten die Q-Werte 1.7 überschritten haben, so bestand eine mögliche Kontamination mit RNA. Solche Isolate wurden ebenfalls verworfen.

3.2.5 Ethanolfällung der cDNA

Mit dem Anwenden der Ethanolfällung wurde das Ziel verfolgt, die Proben aufzureinigen und noch zusätzlich zu konzentrieren. Diese Reinigungs methode zeichnet sich besonders durch ihre Schnelligkeit und Zuverlässigkeit aus.

3.2.5.1 Ablaufplan

Zuerst müssen 18 bis 20 µl der cDNA in ein festes 0,5 ml-Cap überführt und 2 µl NaOH (1M) zugegeben werden.

Nach hinreichend intensivem Mischen muss eine zehnminütige Inkubation bei Raumtemperatur erfolgen (Denaturierung). Danach beginnt der eigentliche Fällungsprozess der DNA.
Daraufhin werden 24 µl Ammoniumazetat (6M) und 144 µl Ethanol (p.a.) zupipettiert und die Proben bei -24 °C für etwa eine Stunde gekühlt. Mit diesem Schritt wird das Ziel verfolgt, die Fällungsausbeute nochmals zu erhöhen. Die Zweckmäßigkeit dieser Maßnahme wird immer noch in der Literatur kontrovers diskutiert, jedoch kann nach Meinung des Autors die Fällungseffektivität leicht erhöht werden.

Die gekühlte DNA wird dann bei 11000 U/min für 20 Minuten zentrifugiert und anschließend der Überstand verworfen. Ein deutlich erkennbares DNA-Pellet ist in den meisten Fällen nicht zu sehen.

Das Trocknen der DNA sollte in einer speed-vac (auf der niedrigsten Stufe, 15 Minuten) erfolgen. Der Trockenschritt darf nicht zu intensiv sein, da sonst Probleme beim Resolvieren auftreten können.

Zuletzt wird die DNA auf einen Rollenmixer für etwa eine halbe Stunde gerollt, um das komplette Auflösen des "Pellets" sicherzustellen. Als Lösungsmittel können 16 µl Wasser oder TE-Puffer (für längeres Lagern günstiger) verwendet werden.

3.2.6 Amplifikation und Quantifizierung der p16-cDNA

Auf Grund dieser Platzierung bleibt der Polymerase nicht genug Zeit, das Intron (etwa 300 Basen mehr) mit umzuschreiben.

Um das optimale (komplementäre) Anlagern der Primer möglich zu machen, muss man initial und vor jedem Zyklus eine Denaturierung der DNA vornehmen. An die Einzelstränge lagern sich anschließend die Primer an (Annealing). Dabei wird die Spezifität durch die Temperatur (Annealingtemperatur) und die Dauer (Annealingzeit) bestimmt. Aufgrund der anschließenden Temperaturerhöhung kommt es zur Aktivierung der Polymerase und die Neusynthese der Ziel-DNA kann vom Primer aus beginnen (komplementär zur vorhandenen DNA; Elongation). Die für die Kettenverlängerung benötigten Bausteine (dNTP, Magnesiumionen zu deren
Komplexierung und Nutzbarmachung für die Polymerase) müssen selbstverständlich zugefügt werden. Mit der Vollendung der Elongation ist ein Zyklus komplettiert und der nächste kann mit der Denaturierung beginnen. Es entstehen demnach je nach Anzahl der Zyklen im Idealfall mehrere Zehnerpotenzen an Kopien.

\[N_n = N_0 \cdot 2^n + N_0 \]
\[N_0 = \text{Ausgangskopieenzahl} \]
\[N_n = \text{Endkopieenzahl} \]
\[n = \text{Zyklenzahl} \]

Da jedoch sehr häufig Hemmstoffe und Kontaminanten die Ansätze verunreinigen, wird eine Verdoppelung der DNA-Menge pro Zyklus nicht erreicht (schwache unspezifische Reaktionen spielen auch eine nicht untergeordnete Rolle). Je nach Optimierungsgrad der PCR kann die Basis der Exponentialgleichung Werte zwischen 1,2 und 1,9 annehmen (meist um 1,5).

\[N_n = N_0 \cdot (1+E)^n + N_0 \]
\[E = \text{Effizienz der PCR} \quad (0 < E \leq 1) \]

Es gilt: \(\lim_{n \to \infty} \frac{N_0}{N_n} = 0 \) (aus praktischen Gründen gilt diese Vereinfachung auch schon für kleinere \(n \)).

\[N_n = N_0 \cdot (1+E)^n \]

\[N_n = N_0 \cdot (1+E)^n \]
\[\log(N_n) = \log(N_0) + n \cdot \log(1+E) \]

Dieser Bereich ist für quantitative Untersuchungen von besonders hohem Interesse, da das Erreichen dieser Phase besonders stark von der Konzentration der Ziel-DNA

Das Erkennen dieses Sachverhaltes ist mit der konventionellen PCR im Thermocycler nicht (oder nur unter sehr großem Aufwand) möglich. Hierfür sind Methoden erforderlich, die es dem Experimentator ermöglichen, die DNA-Konzentration nach

![Graph](image)
jedem Zyklus der Polymerasekettenreaktion zu bestimmen. Eine solche online-Detektion ist sehr einfach durch die Nutzung des Lightcyclers (Roche) durchführbar. Mit diesem Gerät hat man die Möglichkeit, die Menge an doppelsträngiger DNA (dsDNA) nach jedem Reaktionszyklus zu bestimmen, eine Anwendung, die mit herkömmlicher PCR im Thermocycler nur durch zyklenweises Abbrechen der Reaktionen durchführbar war. Das Messprinzip beruht auf einem Fluoreszenzfärstoff, der nach Anlagerung an dsDNA zum fluoreszieren gebracht werden kann. Je nach gemessener Intensität kann somit auf die Menge enthaltener DNA Rückschluss gezogen werden. Mit diesem Detektionsverfahren kann man lediglich die Menge doppelsträngiger DNA-Moleküle bestimmen, worunter die Spezifität des Systems stark leidet. Zur Beurteilung der gewonnenen Daten ist es daher unerlässlich, die Schmelzkurvenanalyse auszuwerten. Dabei wird die Temperatur in den Kapillaren um etwa 0,1 °C/s erhöht und kontinuierlich das Fluoreszenzsignal gemessen. Wird der Schmelzpunkt (besser: Schmelzbereich) eines spezifischen oder auch unspezifischen PCR-Produktes erreicht, sinkt das Fluoreszenzniveau der Probe dramatisch ab. Der Schmelzbereich eines Produktes wird hauptsächlich durch seine Länge sowie dessen GC-Gehalt vorgegeben. Zur groben mathematischen Schmelzpunktbestimmung kann man folgende Formel (Baldino, Jr. et al., 1989) nutzen:

\[T_m = 81,5 + 16,6 \cdot \lg(P) + 0,41 \cdot (\%GC) - (675/n) - (\%Fehlpaarungen) - 0,63(\%FA) \]

\[T_m = \text{Schmelztemperatur} \]
\[P = \text{Konzentration monovalenter Kationen (positiv=P)} \]
\[\%GC = \text{prozentualer Anteil der Basen G und C im Produkt} \]
\[n = \text{Anzahl der Basen im Produkt} \]
\[\%Fehlpaarungen = \text{prozentualer Anteil fehlgepaarter Basen} \]
\[\%FA = \text{prozentualer Anteil von Formamid im Puffer} \]

Zur Vereinfachung der Auswertung und Verbesserung der Anschaulichkeit kann man die Änderungsgeschwindigkeit des Fluoreszenzsignals in Abhängigkeit von der Temperatur \((\mathrm{d}F/\mathrm{d}T, \text{mit } T=\text{Temperatur})\) graphisch darstellen. Im Graphen der ersten Ableitung äußert sich eine Konzentrationsänderung durch das Auftreten eines lokalen Maximums (Schmelzpeak, Abbildung 3.2; Abbildung 3.3).

Abbildung 3.2: Die graphische Darstellung einer Schmelzkurve.
Abbildung 3.3: Die Transformation der Daten aus Abbildung 3.2 ergibt diese dF/dT-Temperatur-Kurve mit Schmelzpeaks bei etwa 95 °C.

3.2.6.1 Aufbau des Lightcyclers

Der Roche Lightcyclersystem besteht aus dem eigentlichen Lightcycler und einem Computer als Steuerungs- und Auswerteeinheit.

Der angeschlossene Computer mit der Lightcycleranalysesoftware macht eine relativ einfache Auswertung der gesammelten Daten möglich. Die Software bietet Fluoreszenz-
Zyklus-Kurven an, mit deren Hilfe die quantitativen Bestimmungen stark vereinfacht werden können, Schmelzkurven und dF/dT-Zyklus-Kurven.

Abbildung 3.4: Vereinfachtes Schema zum Bau des Lightcyclers (Roche).

3.2.6.2 Auswertung der einzelnen Lightcyclerläufe

Das mitgelieferte automatische Quantifikationsprogramm wurde nicht genutzt, da es für die vorliegenden Untersuchungen zu störanfällig und das eindeutige Nachvollziehen der Rechenschritte des Programms nicht immer möglich gewesen war.

Anhand dieser Standards (in diesem Fall GAPDH) kann man eine Standardkurve ermitteln lassen. Betrachtet man das Erreichen der Crossing line (CroP) in Abhängigkeit vom dekadischen Logarithmus der Ausgangskonzentration (der cDNA), ergibt sich durch Extrapolation der Punkte ein linearer Zusammenhang. Zu beachten ist, dass zu den Extremwerten hin diese Linearität nicht mehr angenommen werden kann.

Mit Hilfe der ermittelten Geraden ist es nun möglich, nach den Prinzipien der vergleichenden PCR die Quantifizierung vorzunehmen (an Hand der CroP).

3.2.6.3 Ablaufplan

Den Mastermix wurden lediglich drei Komponenten zugefügt, da nicht in allen Kapillaren der gleiche Primer, die gleiche cDNA oder verschiedene Konzentrationen an cDNA vorliegen sollen (Tabelle 3.3).

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>VOLUMEN (EINFACH)</th>
<th>VOLUMEN (12-FACH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>11,6µl</td>
<td>139,2µl</td>
</tr>
<tr>
<td>Magnesiumionen</td>
<td>2,4µl</td>
<td>28,8µl</td>
</tr>
<tr>
<td>SYBRgreen reaction mix</td>
<td>2,0µl</td>
<td>24,0µl</td>
</tr>
<tr>
<td></td>
<td>=16µl</td>
<td>=12 x 16µl</td>
</tr>
</tbody>
</table>

Tabelle 3.3: Die Zusammensetzung des Mastermixes für die LC-PCR.

Erst jetzt gibt man in jede Kapillare genau 1 µl des reversed- und forward-Primers (10 µM stock; 0,5 µM).

Für jede Reaktion wurden 2 µl cDNA eingesetzt, wobei die geschätzte Konzentration in etwa 1 ng/µl bis 10 mg/µl (stock) betrug. Photospektrometrisch war keine Bestimmung mehr möglich.

Die Kapillaren werden samt Zentrifugenadapter in einer Zentrifuge platziert und für 30 s bei 2000 U/min zentrifugiert, mit dem Ziel, den Mix vollständig in die Reaktionskapillaren zu befördern.

Beim Laden der Proben auf das Samplekarussell ist große Vorsicht geboten, da auf Grund der hohen Fragilität der Glaskapillaren ganze Ansätze schon vor Reaktionsbeginn unbrauchbar gemacht werden können.

Es hat sich als günstig erwiesen, den Lightcycler schon vor dem Ansetzen der Reaktion vollständig zu programmieren (s.LightCycler Operators Manual, Roche). Es sollte jetzt nur noch der Speicherpfad eingegeben und die Richtigkeit der Probenbezeichnung überprüft werden. Die Reaktionsprotokolle sind in Abschnitt 4.4.2 zu sehen.

Diese Reaktion wurde in mehr als 150 Versuchen optimiert.

3.2.7 Fluoreszenz-In-Situ-Hybridisierung (FISH)

Diese Methode dient der Bestimmung möglicher, größerer Deletionen, Duplikationen oder Translokationen. Mit Hilfe speziell markierter Sonden kann durch Hybridisierungstechniken die Lokalisation komplementärer DNA-Bereiche festgestellt werden. Da es sich bei den Sonden um DNA-Moleküle einer Länge von meist mehr als 1000 b handelt, lassen sich die Grenzen der FISH schon erahnen. Fehler, die Deletion,
Translokation, Inversion oder Duplikation nur weniger Basen beinhalten, lassen sich nicht oder nur unter sehr großem Aufwand darstellen. Demnach entgehen besonders kleinere - aber nicht weniger folgenreiche - Veränderungen der Diagnostik.

Einen Störfaktor stellt die Kreuzhybridisierung der zentromerspezifischen Sonden an verschiedenen Chromosomen dar. Sie kann nur nach der Beurteilung vieler Hybridisierungssignale sicher als Artefakt erkannt werden.

3.2.7.1 Ablaufplan

Im Verlauf des weiteren Procedere wurde der Objektträger mit Pepsin behandelt, um die Proteine der Leukozyten zu verdauen. Dazu wurden 100 ml einer 10 mM HCl-Lösung auf 37 °C im Wasserbad erwärmt und mit 500 µl Pepsinlösung (stock c=20 mg/ml) gemischt. Der zu bearbeitende Objektträger (OT) muss für 5 Minuten im Enzymmix inkubiert und folgend 5 Minuten in 1-fach-PBS gewaschen werden.

Das bis dahin vorbereitete Präparat musste zur Postfixation mit 100 µl einer formaldehydhaltigen Lösung (500 µl Paraformaldehyd+450 µl 1-fach PBS+50 µl Magnesiumchlorid) für eine Zeitdauer von 10 Minuten behandelt werden. Anschließend wurde der OT 5 Minuten lang in 1-fach PBS gewaschen und nachfolgend für je 3
Minuten in einer aufsteigenden Ethanolreihe (70 %, 95 %, 100 %) dehydriert. Es folgte eine ausgiebige Lufttrocknung.

Die notwendige Denaturierung konnte mit 100 µl 70%-igen Formamid (unter einem Deckglas) auf einer 70 °C warmen Heizplatte (für 3 Minuten) durchgeführt werden. Die OT wurden nach diesem Schritt sofort mit Hilfe der Ethanolreihe dehydriert (70 %(-20 °C), 95 %, 100 %) und erneut luftgetrocknet.

Zur eigentlichen Hybridisierung der DNA mit den Sonden wurde ein Mastermix hergestellt (Tabelle 3.4):

Tabelle 3.4: Zusammensetzung des Mastermixes für die FISH

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridisolpuffer</td>
<td>7,0µl</td>
</tr>
<tr>
<td>A.bidest</td>
<td>2,0µl</td>
</tr>
<tr>
<td>DNA-Sonde</td>
<td>1,0µl</td>
</tr>
</tbody>
</table>

Nach der Erwärmung der Sonden (Denaturierung) auf 70 °C (für 5 Minuten) wurden 10 µl auf jeden OT pipettiert, mit einem Deckglas abgedeckt, mit Fixogum luftdicht versiegelt und in einer feuchten Kammer bei 37 °C über Nacht im Brutschrank gelagert. Um eine Auswertung der FISH vornehmen zu können, musste die hybridisierte DNA nochmals gewaschen und zur besseren Beurteilung der Chromosomen gegengefärbt werden. Der Waschgang erfolgte in auf 66 °C vorgewärmten 0,4 x SSC in 2 Minuten. Längere Sonden müssen bei 70 °C gewaschen werden. Ein zweiter Waschgang erfolgt bei Raumtemperatur für 1 Minute in 4-fach SSC/TW. Nach nochmaligen kurzzeitigen Inkubieren in 1-fach PBS muss der OT in der Ethanolreihe wiederum denaturiert werden. Das weitere Bearbeiten, insbesondere die Lufttrocknung der Präparate, musste nach Möglichkeit unter Lichtabschluss erfolgen, da sonst die Signalintensität der Sonden verringert sein kann.

Die bereits erwähnte Gegenfärbung erfolgte durch Aufpipettieren von 20 µl DAPI-Lösung (1 ml Vectashield+4 µl DAPI-Stocklösung) auf den Objektträger mit sofortigem Abdecken mittels eines Deckglases. Das Präparat kann so bearbeitet bei 4 °C für einen langen Zeitraum gelagert werden.

Die Beurteilung der Objektträger sowie die Aufnahme der Fluoreszenzsignale wurden am Lichtmikroskop durchgeführt. Der verwendete kommerzielle Sondenmix beinhaltet 2 verschieden markierte Polynukleotide. Die längere, etwa 170 kb zählende Sequenz, reagiert spezifisch mit 9p21 (MTS-R) und der kürzere DNA-Abschnitt hybridisiert mit

3.2.8 Methylierungsspezifische PCR (MSP)

Abbildung 3.5: Die Abbildung zeigt die Sequenzveränderungen durch die Bisulfitumsetzung anhand einer theoretisch denkbaren, frei erfundenen Promotorsequenz. Wie aus dem Schema deutlich wird, kann man auch im Groben über die Methylierungsmuster Aussagen treffen. Sind zum Beispiel die ersten 5GpC der Targetsequenz nicht alle methyliert, werden in der umgesetzten DNA keine Bereiche mit TTTTT gefunden. Somit können die designierten Primer schlechter (im Idealfall gar nicht) binden und somit auf dem Gel keine Banden zu finden sein.

Die methylierungsspezifische PCR ist eine Methode, die sich die chemische Umsetzung modifizierter DNA zu Nutze macht. Wie bei der Mehrzahl der Gene spielt auch beim p16-Gen die Promotormethylierung vermutlich eine wesentliche Rolle für dessen Inaktivierung. Um diese Methylierung biochemisch erfassen zu können, etablierte
Herman et al. (Herman et al., 1996) die Methode der MSP. Dabei wird der Fakt ausgenutzt, dass unmethylierte Cytosinbasen unter der Präsenz von Hydroquinon und Natriumbisulfit in Thyminbasen umgewandelt werden. Im Zuge dieser Umsetzung wird die Nukleotidsequenz ebenfalls verändert (Abbildung 3.5). Unter dieser Voraussetzung können im Promotorbereich Primer gesetzt werden, die entweder nur ihr methyliertes, ihr unmethyliertes oder ihr nicht umgesetztes Target erkennen. Demzufolge kann in einer nachfolgenden PCR mit diesen Primerpaaren durch eine Analyse der PCR-Produkte (Agarose/PAA-Gelelektrophorese) auf den Methylierungszustand rückgeschlossen werden.

3.2.8.1 Ablaufplan

1. DNA-Isolation

Zur endgültigen Elution wurden in 2 Arbeitsgängen jeweils 25 µl Wasser (50 °C warm, DNnasefrei, steril) direkt auf die Membran pipettiert und anschließend für 5 Minuten bei 13000 • g zentrifugiert. Die auf diesem Wege erhaltene DNA konnte nach Kontrolle mehrerer voneinander verschiedener Proben als nur geringgradig verunreinigt betrachtet werden, und deshalb war es möglich, den DNA-haltigen Durchfluss direkt, ohne weitere Aufreinigung, weiter zu verarbeiten.

2. Bestimmung der DNA-Konzentration mit dem Photospektrometer (Kapitel 3.2.4)

3. Bisulfitumsetzung

4. Aufreinigung

Das Eluat ist im nachfolgenden zweiten Schritt nochmals mit Ethanol (p.a.) ausgefällt (s. oben) worden.

5. Ermittlung der DNA-Konzentration
Hierbei wurde sich wieder der photometrischen Konzentrationsbestimmung bedient.

6. MSP
Zum Einsatz in die methylierungsspezifische PCR wurde aufgereinigte DNA verwendet. Dieses aufwendige Prozedere war notwendig, um die Ionenlast der Proben zu minimieren. Zur Kontrolle der Bisulfitumsetzung wurden von jeder DNA 3 Reaktionen angesetzt. Das erste Primerpaar sollte sich ausschließlich mit hoher Affinität an die DNA anlagern, wenn die Zielsequenz im unmethylierten Zustand vorlag (Rimerpaar uf/ur, s. Tabelle 8.1). Für das Vorliegen der Target-DNA im methylierten Zustand sollte die Primerkombination mu/ml für die Amplifikation optimal sein. Nur beim Vorhandensein unmethylierter DNA konnten die Primer wu/wl hochaffin an das Template binden und somit große Mengen an PCR-Produkt liefern.

Pipettierschema (Tabelle 3.6):

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUFFER</td>
<td>10-FACH</td>
<td>2,5µL</td>
</tr>
<tr>
<td>A.BIDEST.</td>
<td>13,1µL</td>
<td></td>
</tr>
<tr>
<td>dNTP</td>
<td>10MM</td>
<td>1,2µL</td>
</tr>
<tr>
<td>MAGNESIUMIONEN</td>
<td>25MM</td>
<td>1,µL</td>
</tr>
<tr>
<td>POLYMERASE (GOLD STAR)</td>
<td></td>
<td>0,2µL</td>
</tr>
<tr>
<td>BETAIN</td>
<td>150MM</td>
<td>2,5µL</td>
</tr>
<tr>
<td>PRIMER FORWARD</td>
<td>10µM</td>
<td>1µL</td>
</tr>
<tr>
<td>PRIMER REVERSED</td>
<td>10µM</td>
<td>1µL</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>2,0µL</td>
</tr>
</tbody>
</table>

Der hergestellte Reaktionsmix wurde nach folgendem Protokoll inkubiert (Tabelle 3.7):

<table>
<thead>
<tr>
<th>SCHRITT</th>
<th>TEMPERATUR</th>
<th>DAUER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>95°C</td>
<td>5:00 Minuten</td>
</tr>
<tr>
<td>Schmelzen</td>
<td>95°C</td>
<td>0:45 Minuten</td>
</tr>
<tr>
<td>Annealing</td>
<td>65°C</td>
<td>0:45 Minuten</td>
</tr>
<tr>
<td>Rampe</td>
<td>2,5°C/ Sekunde bis 72°C</td>
<td>0:45 Minuten</td>
</tr>
<tr>
<td>Elongation</td>
<td>72°C</td>
<td>1:00 Minuten</td>
</tr>
<tr>
<td>Zyklen</td>
<td>32 Stück</td>
<td></td>
</tr>
<tr>
<td>Finale Kettenverlängerung</td>
<td>72°C</td>
<td>10:00 Minuten</td>
</tr>
</tbody>
</table>
Das im Mix enthaltene PCR-Produkt konnte ohne weitere Bearbeitung weiterverarbeitet werden.

7. Auswertung

Die Auswertung erfolgte durch elektrophoretische Auftrennung der DNA-Fragmente. Dazu wurde ein GelStar-gefärbtes, 3%-iges Agarosegel verwendet. Der auf SYBRgreen-basis produzierte DNA-Farbstoff zeigt eine höhere Sensitivität als das herkömmliche Ethidiumbromid. Auch soll das vom Farbstoff ausgehende Gefahrenpotential bedeutend geringer sein.

Zum Auftragen wurden 25 µl PCR-Produkt mit 6 µl Loadmix gemischt und komplett auf das Gel gebracht. Nach der einstündigen Elektrophorese bei 120 V und Raumtemperatur konnten die Banden auf dem UV-Transluminator sehr gut beurteilt werden. Die Dokumentation erfolgte fotografisch (Tabelle 3.8).

<table>
<thead>
<tr>
<th>PRIMERPAAR</th>
<th>METHYLIERUNGszustand</th>
<th>FRAGMENTLÄNGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>uf/ur</td>
<td>unmethyliert</td>
<td>151b</td>
</tr>
<tr>
<td>mf/mr</td>
<td>methyliert</td>
<td>150b</td>
</tr>
<tr>
<td>wf/wr</td>
<td>nicht umgesetzt</td>
<td>140b</td>
</tr>
</tbody>
</table>

An Hand des Bandenmusters konnte nun Rückschluss auf die DNA-Methylierung geschlossen werden.

3.2.9 Sequenzierung

Zur Sicherstellung der Spezifität verwendeter Primer wurde eine Sequenzierung der PCR-Produkte vorgenommen. Dazu wurde das Reaktionsprodukt aus dem Lightcycler auf ein 1%-iges Agarosegel (in TAE-Puffer) aufgetragen und die entstandenen Produkte bei einer Spannung von 120 V eine Stunde lang elektrophoretisch aufgetrennt. Nach dem ersten Betrachten des ethidiumbromidgefärbten Gels auf dem UV-Emittor konnten die spezifischen Banden bei 150 bp (für p16(INK4a)) sowie 197 bp (für p19ARF) identifiziert und isoliert (durch Ausschneiden) werden. Dabei ist hauptsächlich auf eine minimale Strahlungsexposition der Banden zu achten, da UV-Licht die DNA sehr schnell zerstören kann.

Das Aufschließen der isolierten Gelbanden erfolgte unter Verwendung des Millipore Ultrafree-DA KITs, der Bedienungsanleitung folgend. Das entstandene Filtrat ist allerdings zu diesem Zeitpunkt noch stark mit PCR-Hemmstoffen (vermutlich Puffer-

Tabelle 3.9: Vorschrift für die Herstellung der Mastermixes für die Amplifikation

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Puffer</td>
<td>10-fach</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>Magnesiumionen</td>
<td>25 mM</td>
<td>1,6 µl</td>
</tr>
<tr>
<td>DNTP</td>
<td>10 mM</td>
<td>1,0 µl</td>
</tr>
<tr>
<td>Polymerase (Taq)</td>
<td>5 U/µl</td>
<td>0,25 µl</td>
</tr>
<tr>
<td>Wasser</td>
<td></td>
<td>16,16 µl</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>2 µl</td>
</tr>
<tr>
<td>Primer u1 oder u2</td>
<td>10 µM</td>
<td>0,75 µl</td>
</tr>
<tr>
<td>Primer l</td>
<td>10 µM</td>
<td>0,75 µl</td>
</tr>
</tbody>
</table>

Das PCR-Programm beinhaltete folgende Schritte (Tabelle 3.10):

Tabelle 3.10: Darstellung des TC-Programms für die Amplifikation

<table>
<thead>
<tr>
<th>SCHRITT</th>
<th>DAUER</th>
<th>TEMPERATUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>5 Minuten</td>
<td>94°C</td>
</tr>
<tr>
<td>Schmelzen</td>
<td>1 Minute</td>
<td>94°C</td>
</tr>
<tr>
<td>Annealing</td>
<td>2 Minuten</td>
<td>64°C</td>
</tr>
<tr>
<td>Elongation</td>
<td>3 Minuten</td>
<td>72°C</td>
</tr>
<tr>
<td>Zyklen</td>
<td>30 Stück</td>
<td></td>
</tr>
<tr>
<td>Kühlung</td>
<td>For ever</td>
<td>4°C</td>
</tr>
</tbody>
</table>

Die sich nun anschließende Sequenzierung zeigt teilweise Übereinstimmungen mit der PCR. Es müssen mehrere Zyklen aus Denaturierung, Annealing und Elongation eingebaut werden. Im Gegensatz zur PCR werden hier zusätzlich zu den dNTPs Stoppnukleotide eingesetzt. Nach dem Einbau eines solchen ddNTPs ist es der

Ebenfalls einfach zu erklären ist die Tatsache, dass zu jedem Ansatz lediglich ein Stoppnukleotid zugegeben werden kann. Die Ursache liegt im Grundprinzip der verwendeten Sequenziermethode nach Sanger (Sanger and Coulson, 1975), bei der zur Gelbandendetektion IRD800-markierte (reversed) Primer genutzt werden. Aus dem Bandenmuster der sich anschließenden PAA-Gelelektrophorese kann die Sequenz rückwärts direkt abgelesen werden.

Pipettierschema (Tabelle 3.11):

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer</td>
<td>3,5-fach</td>
<td>7,2µl</td>
</tr>
<tr>
<td>Wasser</td>
<td></td>
<td>2,8µl</td>
</tr>
<tr>
<td>Primer p16JAPI2s</td>
<td>1µM</td>
<td>1,0µl</td>
</tr>
<tr>
<td>Enzym</td>
<td></td>
<td>1,0µl</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>4,0µl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>~16µl Mastermix</td>
</tr>
</tbody>
</table>

Zu den schon vorgelegten 2 µl des jeweiligen Stoppnukleotidmixes wurden 4 µl Mastermix gegeben und danach die Proben bis zum Einbringen in den Thermocycler auf Eis gelagert.

Es wurde nun eine zyklische Sequenzierung nach dem unten beschriebenen Muster durchgeführt (Tabelle 3.12):

<table>
<thead>
<tr>
<th>SCHRITT</th>
<th>TEMPERATUR</th>
<th>ZEITDAUER</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIALES DENATURIEREN</td>
<td>95°C</td>
<td>3:00 MINUTEN</td>
</tr>
<tr>
<td>SCHMELZEN</td>
<td>95°C</td>
<td>0:30 MINUTEN</td>
</tr>
</tbody>
</table>
ANNEALING 63°C 0:30 MINUTEN
ELONGATION 70°C 1:00 MINUTEN
ANZAHL DER ZYKLEN 30 STÜCK
Kühlen 4°C For ever

Die entstandenen Fragmente müssen danach elektrophoretisch aufgetrennt werden. Da, wie erwähnt, jeder Spur nur ein StoppNTP zugegeben wurde, benötigt man für eine Auswertung 4 Geltaschen (Slots; A, C, G, T). Beim Gel selbst handelt es sich um ein 41 Zentimeter langes, 6%iges Polyacrylamidgel (PAA-Gel).

Tabelle 3.13: Die Parameter einstellungen des LiCor-Gelbandendetektionssystems.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>EINSTELLUNGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannung</td>
<td>1500V</td>
</tr>
<tr>
<td>Stromstärke</td>
<td>37mA</td>
</tr>
<tr>
<td>Leistung</td>
<td>50W</td>
</tr>
<tr>
<td>Heizung</td>
<td>50°C</td>
</tr>
<tr>
<td>Frames</td>
<td>25 Stück</td>
</tr>
<tr>
<td>Signal Gain</td>
<td>440</td>
</tr>
<tr>
<td>Signal Offset</td>
<td>160</td>
</tr>
</tbody>
</table>

Die oben aufgeführte Tabelle (Tabelle 3.13) zeigt die Analysebedingungen an der Sequenziermaschine. Sie entsprechen in etwa den Empfehlungen des Benutzerhandbuches (LiCor Operators Manual).

Im Rahmen der Auswertung der Sequenzanalyse muss man generell mit falsch negativen Ergebnissen rechnen. Besonders häufig sind vermeintliche Mutationen nach mehrmaligen Amplifikationsschritten zu finden. Dies kann auch bei den vorliegenden Untersuchungen nach der doppelten Vermehrung der cDNA der Fall sein. Da die Fragestellung dieser Arbeit allerdings nicht die Mutationsuntersuchung beinhaltet erscheint dieser störende Einfluss als vernachlässigbar. Das Ergebnis des automatischen Auswerteprogramms wies auch nach manueller Korrektur nur zwei zusammenhängende, übereinstimmende Sequenzen von ungefähr 30b Länge auf. Es ergibt sich als Wahrscheinlichkeit für das zufällige Auftreten eines solchen Ereignisses (Z) folgende Lösung:

\[P(Z)=(P(B1) \cdot P(B2) \cdot \ldots \cdot P(B30))^2 \quad P(Bi)=\text{Wahrscheinlichkeit für das Auftreten der Base an Position } i \text{ bei voneinander unabhängigen Positionen} \]
Z = zufällige Folge liegt vor

\[P(Z) = \left(\sum_{i=1}^{30} P(i) \right)^2 \]

\[P(Z) = 0.25^{60} \]

\[P(Z) = 7.5 \cdot 10^{-37} \]

Es kann also geschlussfolgert werden, dass die Wahrscheinlichkeit für das zufällige Aufeinanderfolgen von 2 x 30b mit an Sicherheit grenzender Wahrscheinlichkeit ausgeschlossen werden kann. Hiermit konnte der Nachweis der Spezifität erbracht werden.
4 Ergebnisse

4.1 Probenauswahl

In die Untersuchung gingen Patientenproben ein, für die die Diagnose CML zytogenetisch (vorhandenes Philadelphiachromosom oder andere typische chromosomale Aberrationen) bestätigt werden konnte. Als Ausschlusskriterium galt ein Tumorzellanteil im Blut oder Knochenmark von unter 70 %. Die prozentualen Anteile der entarteten Zellen wurden im Vorfeld mittels FISH-Analyse im Rahmen der Routinediagnostik anhand der charakteristischen Signalkonstellation für das Philadelphiachromosom bestimmt.

4.2 RNA-Isolation

4.3 Reverse Transkription

Für die RT wurden zwei verschiedene KITs mit unterschiedlichen Primern getestet (Tabelle 4.1). Es zeigte sich deutlich, dass der GIBCO-KIT mit den unspezifischen RH-Primern (Randomhexamere) die beste Ausbeute lieferte, obwohl bei der Umschreibung mit Sensiscript-Polymerase (Qiagen) beziehungsweise spezifischen JAP-Primern oder Oligo-dT-Primern auch gute Ergebnisse erzielt werden konnten.

<table>
<thead>
<tr>
<th>PRIMER</th>
<th>SUPERSCRIPT II</th>
<th>SENSISCIPT</th>
<th>GESAMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomhexamere</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Oligo-dT-Primer</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>JAP l</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Es konnten wiederum fast alle entstandenen Transkripte zur weiteren Verwendung eingeplant werden.

4.4 PCR

4.4.1 PCR am Thermocycler PTC 200

Zur Überprüfung der Primer wurden mehrere Vorversuche an einem Thermocycler durchgeführt. Dabei wurden 2 Primerpaare getestet. Durch die Kombination u1/l beziehungsweise u2/l (Dr. v. Eggeling, Institut für Humangenetik, FSU Jena) konnte ein spezifisches Produkt erfolgreich amplifiziert werden. In einigen Versuchsserien wurde die Annealingtemperatur zwischen 56 °C und 65 °C variiert und wies bei etwa 63 °C einen Optimalbereich auf. Die Titration der Magnesiumionenkonzentration von 1 mM auf 5 mM (Endkonzentration) hatte nur eine geringfügige Verbesserung der Reaktionseffizienz zur Folge. Der Einsatz einer Konzentration (Optimum) von 1,6 mM wurde festgelegt. Für den Ansatz der PCR resultierte folgendes Pipettierschema (Tabelle 4.2):

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer</td>
<td>10-fach</td>
<td>2,5µl</td>
</tr>
<tr>
<td>Magnesiumionen</td>
<td>25mM</td>
<td>1,6µl</td>
</tr>
<tr>
<td>Polymerase (GoldStar)</td>
<td>5U/µl</td>
<td>0,25µl</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Das Pipettierschema für die p16-RCR am Thermocycler.
Auf die übliche "final extension" wurde verzichtet, da durch diesen Schritt keine wesentliche Verbesserung der Reaktionsergebnisse zu verzeichnen war. Die erwarteten Produktlängen konnten im Agarosegel nachgewiesen werden.

<table>
<thead>
<tr>
<th>REAGENZ</th>
<th>KONZENTRATION (STOCK)</th>
<th>VOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>dNTP</td>
<td>10mM</td>
<td>1,0µl</td>
</tr>
<tr>
<td>Primer u1 oder u2</td>
<td>10µM</td>
<td>0,75µl</td>
</tr>
<tr>
<td>Primer l</td>
<td>10µM</td>
<td>0,75µl</td>
</tr>
<tr>
<td>DNA</td>
<td></td>
<td>2,0µl</td>
</tr>
</tbody>
</table>

Abbildung 4.1: Gelphoto der aufgetrennten PCR-Produkte nach Taniguchi et al. (1999). In der ersten Spur befindet sich der Roche-Längenstandard Nr. V (M). In den folgenden sind die Banden für die mRNA der α-Form (1; 150 bp), der β-Form (2; 197 bp) und des Housekeepers GAPDH (3; 189 bp) zu sehen. Die spezifischen Banden weisen eine regelrechte Länge auf.
Tabelle 4.3: Das PCR-Protokoll für den Thermocycler nach Taniguchi.

<table>
<thead>
<tr>
<th>SCHRITT</th>
<th>TEMPERATUR</th>
<th>DAUER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>96°C</td>
<td>4:00 Minuten</td>
</tr>
<tr>
<td>Schmelzen</td>
<td>96°C</td>
<td>0:30 Minuten</td>
</tr>
<tr>
<td>Annealing</td>
<td>63°C</td>
<td>0:30 Minuten</td>
</tr>
<tr>
<td>Elongation</td>
<td>70°C</td>
<td>0:30 Minuten</td>
</tr>
<tr>
<td>Zyklen</td>
<td>30 Stück</td>
<td></td>
</tr>
</tbody>
</table>

Die PCR-Produkte beider Reaktionen konnten durch Sequenzierung eindeutig identifiziert werden. Unter Verwendung beider Primerpaare zeigten die Negativkontrollen (A. bidest. anstelle der DNA) in allen Fällen keine Reaktionen (keine Gelbanden). Als Test-cDNA ist die umgeschriebene RNA einer Tumorzelllinie (SkMel) verwendet worden.

4.4.2 PCR am Lightcycler

Für die JAP-Primer in Verbindung mit den GAPDH-Primern konnte durch das Absenken der Annealingtemperatur um 1°C eine nochmalige Verbesserung der Spezifität gezeigt werden, die allerdings mit dem ungenügenden Anlagern der GAPDH-Primer an ihre Targetsequenz verbunden war. Dieser Nachteil wurde durch die Verlängerung der Annealingzeit ausgeglichen. Vor dieser entscheidenden Veränderung wurde versucht, durch eine Präamplifikation mit 3 bis 6 Zyklen am Thermocycler die Reaktionsbedingungen weiterhin zu verbessern. Je mehr PA-Zyklen vorgeschaltet waren, desto besser war die eigentliche PCR am Lightcycler möglich. Der dabei eingehandelte Nachteil bestand in der Verschiebung der Relation der Target-cDNA im Ausgangsmaterial, der auf die unterschiedliche Amplifizierbarkeit (Reaktionseffizienz) der beiden cDNAs zurückzuführen war (Abbildung 3.1: Trotz der höheren Konzentration an α-mRNA erreichte die β-mRNA aufgrund ihrer besseren Amplifizierbarkeit eine größere Endkonzentration). Aus diesem Grunde erfolgte die intensive Suche nach anderen Optimierungsmöglichkeiten. Nach etwa 150 Versuchen wurde das Protokoll als optimal geeignet betrachtet (Tabelle 4.4).

Tabelle 4.4: Das optimierte Amplifikationsprogramm für den LC.

<table>
<thead>
<tr>
<th>SCHRITT</th>
<th>TEMPERATUR</th>
<th>DAUER</th>
<th>ÄNDERUNGSGESCHWINDIGKEIT DER TEMPERATUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präinkubation</td>
<td>95°C</td>
<td>7:00 Minuten</td>
<td>20 °C/s</td>
</tr>
<tr>
<td>Schmelzen</td>
<td>95°C</td>
<td>0:09 Minuten</td>
<td>20 °C/s</td>
</tr>
<tr>
<td>Totales Schmelzen</td>
<td>98°C</td>
<td>0:01 Minuten</td>
<td>20 °C/s</td>
</tr>
<tr>
<td>Annealing</td>
<td>63°C</td>
<td>0:09 Minuten</td>
<td>20 °C/s</td>
</tr>
<tr>
<td>Elongation</td>
<td>72°C</td>
<td>0:10 Minuten</td>
<td>18 °C/s</td>
</tr>
<tr>
<td>Messschritt</td>
<td>89°C</td>
<td>0:01 Minuten</td>
<td>20 °C/s</td>
</tr>
<tr>
<td>Zyklenzahl</td>
<td>45 Stück</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der eingefügte Messschritt bringt den Vorteil, dass eventuell entstandene unspezifische Produkte mit niedrigerer Schmelztemperatur (89 °C) zur Messtemperatur schon denaturiert vorliegen und somit der Detektion durch SYBRgreen entgehen, weil damit ausschließlich doppelsträngige DNA sichtbar gemacht werden kann (Anlagerung in die minor grove der Doppelhelix). Somit wurde die Qualität der Schmelzkurven erheblich verbessert.

Für die Analyse ergab sich folgendes Programm (Tabelle 4.5):

Es ließen sich dabei meist äquivalente Mengen der cDNA beider Transskripte nachweisen. In einigen Fällen konnte auch nur eine oder keine cDNA amplifiziert werden. Für den Nachweis von maximal einer RNA wurden die Experimente mehrfach wiederholt, wobei (im Rahmen der normalen Schwankungen) die Resultate im Allgemeinen bestätigt wurden.

4.4.3 Betrachtung des Expressionsmusters

Neben der eigentlichen quantitativen Analyse kann auch das p16-Expressionsmuster wichtige Zusammenhänge verdeutlichen.

4.4.3.1 Gesunde Probanden

Bei dem Material gesunder Personen (Negativkontrollen) handelte es sich um venöses Blut von Institutsmitarbeitern. Nach den beschriebenen Protokollen erfolgte die Zellkultur, die Fixation, die RNA-Isolation, die Transkription und die eigentliche LC-PCR.

Einen generellen Überblick für die genannten Zusammenhänge gibt die Abbildung 4.2.

Abbildung 4.2: Die normierten crossing points des α- und β-Transkriptes. Auf der Abszisse befinden sich die Werte des p16INK4a (u1NORM) und auf der Ordinate die des p19ARF (u2NORM).

Die Ermittlung der speziellen Parameter wurde mit der Lightcycler-DataAnalysis-Software (fit point-Methode) durchgeführt. Das Grundrauschen wurde auf ein Niveau unter 0,1 Floureszenzeinheiten festgelegt. Die Crossing line lag bei allen Auswertungen bei 0,2 Floureszenzeinheiten. In Folge dieser Generalisierung konnte die Vereinheitlichung der Analysebedingungen erreicht werden. Da die einzelnen Experimente wegen der Einbeziehung biologischer Systeme (Enzyme) einer gewissen Schwankungsbreite unterworfen sind, war es notwendig, weitere Normierungen anzuwenden. Mit Hilfe der bestimmten Standardkurve konnten die CroPs des Housekeepers der hypothetischen Konzentration von 200 ng/µl ermittelt werden, insofern diese Konzentration nicht schon vorlag. Der Mittelwert der gefundenen CroPs der jeweiligen Transkripte eines Experiments wurde anschließend durch den

Zur weiteren Auswertung wurde eine Untergliederung der Wertepaare nach folgenden klinischen Kriterien vorgenommen (Tabelle 4.6).

Tabelle 4.6: Einteilungskriterien der CML-Fälle.

<table>
<thead>
<tr>
<th>KRANKHEITSVERLAUF</th>
<th>KRITERIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blastenkrise</td>
<td>Auftreten von BK-Markern</td>
</tr>
<tr>
<td>Chronisch progradient</td>
<td>Fehlende BK-Marker; größere Anzahl an Ph-positiven Zellen</td>
</tr>
<tr>
<td>Chronisch</td>
<td>Fehlende BK-Marker; konstante Anzahl an Ph-positiven Zellen</td>
</tr>
<tr>
<td>Remission</td>
<td>Anteil an PH-positiven Zellen unterhalb der Nachweisgrenze oder Abnahme der Tumorzellen</td>
</tr>
</tbody>
</table>

Es mussten demnach fünf Probandengruppen zusammengestellt werden. In einem ersten Kollektiv sind alle gesunden Probanden vertreten. Die LC-PCR wurde mehrfach durchgeführt, und die Resultate waren vergleichbar. Abgesehen von einer Ausnahme exprimierten die peripheren Lymphozyten die mRNA des α-Transkriptes. In einem Fall konnte die ausschließliche Expression der $p19^\text{ARF}$-mRNA bestätigt werden. Allerdings waren die Ergebnisse einiger PCR nur schwach positiv und die Nachweisgrenze der Methode könnte erreicht worden sein (CroP>40).
4.4.3.2 Chronische Phasen mit Remissionstendenz

Abbildung 4.3: Die normierten crossing points des α- und β-Transkriptes. Auf der Abszisse befinden sich die Werte des $p16^{\text{INK4a}}$ ($u1\text{NORM}$) und auf der Ordinate die des $p19^{\text{ARF}}$ ($u2\text{NORM}$).

4.4.3.3 Chronisch-progredierter Verlauf

Alle Proben von Patienten, die sich zum Zeitpunkt der Entnahme im chronischen Krankheitsstadium befanden und in der Folgezeit eine Erkrankungsexazerbation zeigten, sind der dritten Gruppe zugeordnet worden. Unter den chronischen Fällen mit Progressionstendenz war das Verteilungsmuster der mRNAs wie folgt: α- und β-mRNA wurden gemeinsam in 13 von 14 Proben nachgewiesen. Die alleinige Bildung der α-mRNA war nur ein Mal vorzufinden. Das alleinige Auftreten der β-mRNA konnte nicht gezeigt werden (Abbildung 4.4).
Chronischer Verlauf mit Progressionstendenz

Abbildung 4.4: Die normierten crossing points des α- und β-Transkriptes. Auf der Abszisse befinden sich die Werte des p16INK4a (u1NORM) und auf der Ordinate die des p19ARF (u2NORM).

4.4.3.4 Vorliegen einer Blastenkrise

Abbildung 4.5: Die normierten crossing points des α- und β-Transkriptes. Auf der Abszisse befinden sich die Werte des p16INK4a (u1NORM) und auf der Ordinate die des p19ARF (u2NORM).
Der vierten Gruppe konnte das Blut oder Knochenmark aller derjenigen Patienten zugeteilt werden, die zum Entnahmezeitpunkt eine Blastenkrise aufgewiesen haben. In Lymphozyten, bei denen im Rahmen der zytogenetischen Routinediagnostik Marker einer Blastenkrise vorgefunden wurden, war der Nachweis von ausschließlich β-mRNA ebenfalls unmöglich. In 9 der 10 untersuchten Proben konnte das α- und das β-Transkript vorgefunden werden. In 2 Fällen konnte nur die mRNA des α-Transkriptes nachgewiesen werden (Abbildung 4.5).

4.4.3.5 Chronischer Verlauf ohne Änderungstendenzen

Abbildung 4.6: Die normierten crossing points des α- und β-Transkriptes. Auf der Abszisse befinden sich die Werte des p16INK4a (u1NORM) und auf der Ordinate die des p19ARF (u2NORM).
Abbildung 4.7: Prozentuale Verteilung des p16-Expressionsmusters innerhalb der spezifischen Patientengruppen. Der Zustand α-/β- war nicht aufzufinden.

Nach einer Anhebung der Grenzwerte zeigte sich eine Verschiebung des Expressionsmusters, wobei hauptsächlich die β-mRNA bei höheren Cut-offs nicht mehr detektiert werden konnte (Abbildung 4.7; Vergl. Abbildung 5.1).

4.4.4 Quantitative Analysen und statistische Auswertungen

Die Auswertung ergab folgende Resultate: Der Quotient (Q) aus α- und β-cDNA umfasste einen Wertebereich von 0,65<Q<1,18. Das bedeutet, dass für die Mehrzahl der Fälle (etwa 75%) Q<1 galt (Abbildung 4.8), also das definierte Fluoreszenzniveau früher

Abbildung 4.9: Die nichtnormierten CroPs der $p16^{ink4a}$-cDNA. Die Gruppe $\beta=0$ wies keine $p19^{trf}$-cDNA auf. Wiederum ist kein Unterschied innerhalb der Patienten zu erkennen, wohl aber der zwischen Patienten und Gesunden. Der u-Test lieferte eine statistische Signifikanz von $p=0.044$. Die außerhalb der Boxplots gelegenen Werte (Ausreißer) sind extra markiert.

Abbildung 4.10: Die nichtnormierten CroPs der β-cDNA. Unterschiede sind nicht zu erkennen, weder unter den Patienten noch zwischen Patienten und Gesunden.
Die genauere Betrachtung der Quotienten Q innerhalb der einzelnen Patientengruppen lieferte keine eindeutigen Aussagen. In der Gruppe mit aufgetretener Blastenkrise sind 2 Cluster gefunden worden (Q₁=1,06; Q₂=0,85). Bei den Patienten in der chronischen Phase reichte der Wertebereich von 0,9 bis 1,05, wobei gehäuft Brüche um 1,0 vorkamen. In Proben, die während eines Krankheitstadiums mit Remissionstendenzen entnommen wurden, betrug Q in etwa 0,8. Nur der Quotient eines Patienten überstieg 1,0. Material von Probanden mit progradierter Verlaufstendenz zeigten Q<1. Proben von Gesunden wiesen im Gültigkeitsbereich diffus verteilte Werte auf. Bei der Gesamtbetrachtung fiel ebenfalls auf, dass besonders hohe und niedrige Quotienten in allen Gruppen vorkamen. Q=0 und Q n.def. sind nicht berücksichtigt worden (Tabelle 4.7).

<table>
<thead>
<tr>
<th>NOISE BAND</th>
<th>CROSSING LINE</th>
<th>VERLAUF</th>
<th>CROPαMW/GAP (200)</th>
<th>CROPβMW/GAP(200)</th>
<th>α/β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 0,2</td>
<td>BK</td>
<td>progredient</td>
<td>1,183 1,249 0,986</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chronisch</td>
<td>1,137 1,175 0,975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remission</td>
<td>1,088 1,269 0,848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>negativ</td>
<td>1,556 1,606 0,988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,3 0,5</td>
<td>BK</td>
<td>progredient</td>
<td>1,153 1,23 Var</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chronisch</td>
<td>1,11 1,178 1,035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remission</td>
<td>1,078 1,243 0,823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>negativ</td>
<td>1,518 1,697 Var</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,5 0,8</td>
<td>BK</td>
<td>progredient</td>
<td>1,188 1,259 1,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chronisch</td>
<td>1,192 1,404 0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remission</td>
<td>0,986 1,156 0,892</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>negativ</td>
<td>1,415 1,656 1,08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Testergebnisse des Vergleiches der Patientengruppen (chronischer Verlauf ohne Änderungstendenzen, chronischer Verlauf mit Progressionstendenz, chronischer Verlauf mit Remissionstendenz, Auftreten einer Blastenkrise, gesunde Probanden) sind in den folgenden Tabellen (Tabelle 4.8; Tabelle 4.9) dargestellt:
Tabelle 4.8: *Kruskal-Wallis-Test. Nullwerte sind mit einbezogen worden.*

<table>
<thead>
<tr>
<th></th>
<th>MWU1CROP</th>
<th>MWU2CROP</th>
<th>MWU1/GAP(200)</th>
<th>MWU2/GAP(200)</th>
<th>MWU1/U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadat</td>
<td>13,772</td>
<td>2,271</td>
<td>5,832</td>
<td>5,525</td>
<td>8,330</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische</td>
<td>,008</td>
<td>,686</td>
<td>,212</td>
<td>,238</td>
<td>,040</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MWU1CROP</th>
<th>MWU2CROP</th>
<th>MWU1/GAP(200)</th>
<th>MWU2/GAP(200)</th>
<th>MWU1/U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadat</td>
<td>14,783</td>
<td>2,128</td>
<td>7,215</td>
<td>8,289</td>
<td>7,092</td>
</tr>
<tr>
<td>df</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Asymptotische</td>
<td>,005</td>
<td>,712</td>
<td>,125</td>
<td>,082</td>
<td>,069</td>
</tr>
<tr>
<td>Signifikanz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die angezeigten Signifikanzen (insbesondere bei MWCroPu1) induzieren eine genauere Beleuchtung der Zusammenhänge mit Hilfe des u-Tests, durch dessen Auswertung sich genauere Aussagen treffen ließen (Tabelle 4.11; Tabelle 4.12).

Tabelle 4.10: *Die Ergebnisse des u-Tests. Die sich in Klammern befindenden Ausdrücke haben den Wert von 0,05 nur knapp verfehlt. Nullwerte gingen in die Berechnung mit ein. In der Tabelle sind die Parameter aufgeführt, für die eine statistisch gesicherte Signifikanz zwischen den beiden Gruppen (Zeile; Spalte) aufgezeigt werden konnte.*

<table>
<thead>
<tr>
<th>DIAGNOSE</th>
<th>CHRONISCH</th>
<th>PROGREDIENT</th>
<th>BK</th>
<th>REMISSION</th>
<th>GESUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRONISCH</td>
<td>0</td>
<td>(MWu1/u2)</td>
<td>keine</td>
<td>MWu1CroP</td>
<td>MWu1CroP; u1NORM</td>
</tr>
<tr>
<td>PROGREDIENT</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1CroP; MWu1/u2</td>
<td>keine</td>
<td>u1NORM; (MWu1CroP)</td>
</tr>
<tr>
<td>BK</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1/u2</td>
<td>Keine</td>
</tr>
<tr>
<td>REMISSION</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1CroP</td>
</tr>
<tr>
<td>GESUND</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 4.11: *Es wurden die Ergebnisse des u-Tests dargestellt. Die sich in Klammern befindenden Ausdrücke haben den Wert von 0,05 nur knapp verfehlt. Nullwerte gingen in die Berechnung nicht mit ein. Signifikant verschiedene Werte sind benannt.*

<table>
<thead>
<tr>
<th>DIAGNOSE</th>
<th>CHRONISCH</th>
<th>PROGREDIENT</th>
<th>BK</th>
<th>REMISSION</th>
<th>GESUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRONISCH</td>
<td>0</td>
<td>keine</td>
<td>keine</td>
<td>(MWu1CroP; MWu1/u2; u2NORM)</td>
<td>u1NORM; MWu1CroP</td>
</tr>
<tr>
<td>PROGREDIENT</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1CroP</td>
<td>keine</td>
<td>u1NORM; (MWu1CroP)</td>
</tr>
<tr>
<td>BK</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1/u2</td>
<td>u2NORM</td>
</tr>
<tr>
<td>REMISSION</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>MWu1CroP; (u1NORM)</td>
</tr>
<tr>
<td>GESUND</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
</tr>
</tbody>
</table>
Es zeigte sich deutlich, dass bei der Anhebung der Schwellwerte für die Positivität der jeweiligen Transkripte bei der Quantifizierung sich weniger Signifikanten ergaben (Tabelle 4.12):

Tabelle 4.12: u-Test mit Nullwerten und höherem Fluoreszenzniveau. Die in Klammern stehenden Werte haben 0,05 nur knapp verfehlt.

<table>
<thead>
<tr>
<th>DIAGNOSE</th>
<th>CHRONISCH</th>
<th>PROGREDIENT</th>
<th>BK</th>
<th>REMISSION</th>
<th>GESUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRONISCH</td>
<td>0</td>
<td>u1NORM</td>
<td>keine</td>
<td>keine</td>
<td>u1NORM</td>
</tr>
<tr>
<td>PROGREDIENT</td>
<td>s.o.</td>
<td>0</td>
<td>(MWu2CroP)</td>
<td>keine</td>
<td>(MWu1CroP)</td>
</tr>
<tr>
<td>BK</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>keine</td>
<td>Keine</td>
</tr>
<tr>
<td>REMISSION</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
<td>Keine</td>
</tr>
<tr>
<td>GESUND</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>s.o.</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MWU1/GAP(200)</th>
<th>MWU2/GAP(200)</th>
<th>MWU1CROP</th>
<th>MWU2CROP</th>
<th>MWU1/U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>4,950</td>
<td>1,366</td>
<td>10,696</td>
<td>,665</td>
<td>4,770</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>,084</td>
<td>,505</td>
<td>,005</td>
<td>,717</td>
<td>,029</td>
</tr>
</tbody>
</table>

Tabelle 4.14: Ergebnisse des u-Testes zur Unterscheidung der Patienten mit Blastenkrise von denen ohne akuter Krankheitsexazerbation. Der Berechnung liegt ein niedriger Schwellwert zugrunde.

<table>
<thead>
<tr>
<th></th>
<th>MWU1CROP</th>
<th>MWU2CROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>123,000</td>
<td>230,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>1251,000</td>
<td>1358,000</td>
</tr>
<tr>
<td>Z</td>
<td>-2,688</td>
<td>-.567</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,007</td>
<td>,571</td>
</tr>
</tbody>
</table>

Im Rahmen der weiteren Auswertung ist versucht worden, unter Verwendung der normierten crossing points der entsprechenden Kollektive eine Bezugsregel zwischen der „Menge“ des p16INK4a und p19ARF aufzustellen. Dazu wurde ein Diagramm erstellt (Abbildung 4.13). Die normierten CroPs für u1 lagen dabei auf der Abszisse, u2NORM (normierte CroPs für p19ARF) auf der Ordinate des Systems. Es erfolgte danach eine lineare Regressionsanalyse aller Probanden (alle untersuchten Proben) sowie der beschriebenen Gruppen.

Abbildung 4.13: Auftrag der normierten CroP-Werte (u1NORM: α-Transkript; u2NORM: β-Transkript). Der schwarz eingezeichnete Graph entspricht der Regressionsgeraden aller dargestellter Werte.

Für die anderen Gruppen ergaben sich nahezu identische Kurven (Tabelle 4.15).
Tabelle 4.15: Die die Regressionsgeraden der entsprechenden Analysegruppen mit dem zugehörigen Bestimmtheitsmaß als Ausdruck der Korrelation.

<table>
<thead>
<tr>
<th>DIAGNOSE</th>
<th>REGRESSIONSGERADE</th>
<th>BESTIMMTHEITSMASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronisch</td>
<td>$y = 0.7492x + 0.3396$</td>
<td>$R^2 = 0.5507$</td>
</tr>
<tr>
<td>Progredient</td>
<td>$y = 1.0829x + 0.0589$</td>
<td>$R^2 = 0.6040$</td>
</tr>
<tr>
<td>BK</td>
<td>$y = 0.7102x + 0.3831$</td>
<td>$R^2 = 0.8245$</td>
</tr>
<tr>
<td>Remission</td>
<td>$y = 0.7912x + 0.4307$</td>
<td>$R^2 = 0.8974$</td>
</tr>
<tr>
<td>Gesund</td>
<td>$y = 0.4610x + 0.8924$</td>
<td>$R^2 = 0.3800$</td>
</tr>
</tbody>
</table>

4.4.5 Verlaufskontrollen

Wie bereits angedeutet, wurden von vier Patienten einige Proben untersucht, die zu verschiedenen Zeitpunkten des Krankheitsverlaufs entnommen worden waren. Nach der Auswertung der Lightcyclerreaktionen konnte auf diese Weise die Konzentration der mRNA beider Transkripte im zeitlichen Verlauf beobachtet werden. Die Auswertung erfolgte nach dem in Abschnitt 3.2.6.2 beschriebenen Modus. Es wurden jeweils normierte und nicht normierte Werte betrachtet, um die Reaktionsergebnisse besser vergleichbar zu machen.
4.4.5.1 Patient 1

Abbildung 4.14: Die CroP-Wertepaare (p16INK4a und p19ARF) des Patienten 1 von zu verschiedenen Zeitpunkten im Krankheitsverlauf entnommenen Proben.

Die Erstdiagnose stellte man in der chronischen Phase, wobei die Tumorzellzahl nahezu 100% der untersuchten Zellen betrug (Ph⁺). BK-Marker waren zu keinem Zeitpunkt im Blut oder Knochenmark nachweisbar. Nach der PBSCT verringerte sich die Anzahl der Tumorzellen. Im weiteren Verlauf zeigte sich zumindest andeutungsweise ein Rezidiv (Punkt 3), wobei die mRNA-Level beider p16-Transkripte auf das Niveau der Erstdiagnosewerte absanken, anschließend wurde ein erneuter Anstieg deutlich. Unter der Therapie zeigte sich anschließend ein stetiges Absinken der Tumorlast von Werten um 70% auf ein nicht mehr sicher nachweisbares Niveau (Abbildung 4.14, Abbildung 4.15).

4.4.5.2 Patient 2

Abbildung 4.16: Es sind wiederum die CroP-Werte des Patienten 2 im Verlauf dargestellt.

4.4.5.3 Patient 3

Abbildung 4.18: Die nicht normierten Werte der crossing points des Patienten 3 in chronologischer Reihenfolge.

Abbildung 4.19: Es wurden die zur obigen Abbildung 4.18 äquivalenten normierten Punktepaare dargestellt.

4.4.5.4 Patient 4

Abbildung 4.20: Der chronologische Werteverlauf der ermittelten CroPs des Patienten 4.
Abbildung 4.21: *Es sind die normierten crossing points zur Abbildung 4.20 eingezeichnet.*

4.5 FISH

An einer kleinen Auswahl der Proben, bei denen nur eine p16-mRNA nachgewiesen werden konnte oder die Konzentration der cDNA im Bereich der Nachweissgrenze lag, wurde zum Nachweis größerer Deletionen beziehungsweise Translokationen die FISH durchgeführt. Die Lage der Sonden bei dieser Zweifarben-FISH soll in der Abbildung 4.22 gezeigt werden.

Es war somit möglich, die nukleäre Lokalisation der MTS-Region zum Zentromer des Chromosoms 9 zu bestimmen. Bei der Untersuchung wurden sowohl im Interphasekern als auch auf der Metaphasenplatte in allen untersuchten Proben vier Signale in relativer, räumlicher Nähe detektiert (jeweils zwei Zentromersignale und zwei 9p21-Signale, Abbildung 4.22 und Abbildung 4.23). Die Analyse ist nach dem im Methodenteil beschriebenen Protokoll durchgeführt worden (Kapitel 3.2.7.1). Änderungen am
Ausgangsprotokoll brachten keinerlei Vorteile. Die Untersuchungen waren bei allen ausgewählten Proben erfolgreich.

Abbildung 4.22: Es ist die grobe Lokalisation der beiden Sonden auf dem Chromosom 9 schematisch dargestellt. 9p21 wurde mit einem roten und das Centromer mit einem grünen Fluorochrom markiert.

4.6 Methylierungsuntersuchung

Das Arbeitsprotokoll der MSP wurde aus einer Veröffentlichung von Esteller (Esteller and Herman, 2002) entnommen und bedurfte keiner weiteren Modifikationen. Im Rahmen der Agarosegelelektrophorese kamen 3%-ige Agarosegele zum Einsatz. Es zeigte sich, dass auf Grund der Längen der PCR-Produkte die Auftrennung unter diesen Bedingungen optimal ausführbar war. Auf den Gelen waren dann unter Auftrag der gesamten Menge an PCR-Produkt die Banden eindeutig identifizierbar. Durch die Anwendung des DNA-Farbstoffes GelStar (auf SYBRgreenbasis) konnte die Nachweissensitivität (fast um das Vierfache) gesteigert werden.

5 Diskussion

5.1 Ergebnisse der PCR

5.1.1 Gesunde Probanden

Die Bestimmung der Referenzwerte für gesunde Probanden nach den unter Punkt 4.4.4 näher beschriebenen Verfahren zeigte deutlich, dass die mRNA des α-Transkriptes vermutlich in höherer Konzentration aufzufinden ist, als die des β-Transkriptes. Es existieren im vorliegenden Patientenkollektiv nur zwei Proben mit alleinigem Vorhandensein der α- und β-mRNA, wobei in den Lymphozyten einer dieser Proben die Menge der β-mRNA sehr nahe an der Ausschlussgrenze liegt und das Material eines Patienten ohne nachweisbare Bildung der betrachteten Kernsäure. Die Auswertung der entsprechenden Daten lässt somit das bevorzugte, aber nicht alleinige Auftreten der α-mRNA erkennen.

5.1.2 Material von Patienten mit aufgetretener Blastenkrise

sollten. Voraussetzung dafür ist jedoch die ordnungsgemäße Funktion des regulatorischen Signalnetzwerkes der entarteten Zelle; ein Fakt, der bekannterweise nicht beim Auftreten eines Blastenschubes vorliegen muss. Es ist nicht auszuschließen, dass bis zur Entstehung der akuten Krankheitsphase eine Anhäufung von genetischen Veränderungen stattgefunden hat, die beispielsweise negative Rückkopplungsmechanismen außer Kraft gesetzt haben (late events, klonale Expansion). Es wäre natürlich auch denkbar, den Mangel an (funktionsfähigen) p16-Proteinen im kausalen Zusammenhang mit dem progredienten Krankheitsverlauf zu sehen, da infolge des Mangels an p16\(^{INK4a}\) der Übergang zum akuten Stadium gewährleistet werden kann.

5.1.3 Material von Patienten mit vorliegender chronischer Phase

Bei dieser Patientengruppe musste eine weitere Untergliederung in drei Verlaufskategorien vorgenommen werden: chronische Phase mit Remissionstendenz, mit Progressionstendenz und chronische Phase ohne Änderungstendenzen.

In allen Gruppen erschien die p16\(^{INK4a}\)-mRNA wiederum in höheren Konzentrationen vorzuliegen. In fast allen untersuchten Fällen konnte mindestens das Vorliegen der
Messenger-RNA für das α-Transkript gezeigt werden. Unter zusätzlicher Zuhilfenahme des 0,5 FE-Grenzwertes konnten die Translationsmuster mit denen der gesunden Probanden oder den Blastenkrisen verglichen werden (Abbildung 5.1).

Unter Beachtung der aufgeführten Erkenntnisse kann man vereinfachend folgendes Schema erstellen:

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Expressionslevel der α-mRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td>hoch</td>
<td>chronisch ohne Änderung (α-/β+)</td>
</tr>
<tr>
<td>niedrig</td>
<td>chronisch mit Progressionstendenz und Remissionstendenz</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Stagingschema.

5.1.4 Gesamtüberblick

Von der Gesamtheit aller durchgeführten Reaktionen mussten einige Ergebnisse von der Auswertung und der damit verbundenen Einbeziehung in die Untersuchung ausgeschlossen werden. Neben dem Auftreten der unter Punkt 5.5 genannten Fakten hat das Vorhandensein von Kontaminationen auf Grund der Empfindlichkeit der Methode einen nicht unbedeutenden Einfluss auf die Reaktionsergebnisse. Schon geringste Mengen eingeschleppter DNA oder von Hemmstoffen können die Versuche negativ beeinflussen, wobei auch die Hemmung nur einer Reaktion denkbar ist. Auf die Verwendung von gestopften Pipettenspitzen, das Benutzen von Handschuhen (vom potentiellen Infektionsrisiko abgesehen) und der Arbeit unter einer Laminarbox kann nicht verzichtet werden. Das Herstellen der entsprechenden Verdünnungsreihen der DNA für die GAPDH-Primer birgt ebenfalls eine mögliche Ursache für die Nichtauswertbarkeit einer Reaktion, da die zu untersuchende mRNA schon von vornherein in geringsten Mengen vorliegt (fixierte Zellen), so dass beim insuffizienten Mischen (weniger als 8 bis 10 mal up-and-down-pipettieren) die cDNA nicht in den entsprechenden mengenmäßigen Verhältnissen auf die einzelnen LC-Kapillaren verteilt wird. Durch die Anwendung der Hot-Start-Technik konnte der Einfluss des schon vor der Reaktion auftretenden Misprimings und der eventuell auftretenden Amplifikation auf ein Minimum reduziert werden.

Bei der hier verwandten Methode konnten einige Resultate nicht als eindeutig positiv oder negativ bestimmt werden (s. Abschnitt 3.2.6.3). Im Rahmen der Auswertung wurde davon ausgegangen, dass das Vorhandensein eines minimalen Peaks (0,3FE) auf die vorhandene mRNA im Ausgangsmaterial hinweisen. Inwiefern dabei ein monallellischer Verlust in Betracht zu ziehen ist, bleibt offen. Im Prinzip müsste eine Abweichung von >1,0 vom Mittelwert aller crossing points auf das Vorliegen der halben beziehungsweise der doppelten Konzentration an spezifischer cDNA hinweisen.
Eine solche, auf rein mathematischen Ansätzen beruhende Herangehensweise kann nicht in Erwägung gezogen werden, da im Zuge der Fixation und der Lagerung der Zellsuspensionen (Auskangsmaterial) durchaus auch mRNA verloren gegangen sein kann. Verstärkend auf diese Tatsache wirkt sich ebenfalls das Handling mit nur sehr geringen Mengen an RNA (deren Empfindlichkeit gegenüber Wärme, RNasen) aus. Die Konzentration der aufgereinigten, umgesetzten cDNA (=totale RNA) bewegte sich im Bereich von Werten, die photometrisch nicht mehr korrekt bestimmbar waren. Um den Einfluss der Fixation genauer zu klären, wurden zwei vergleichende PCRs mit jeweils cDNA, gewonnen aus frischen und fixierten Zellen einer permanent transfizierten Sarkomzelllinie (SkMel), durchgeführt. Dabei konnten keine wesentlichen Unterschiede festgestellt werden.

Bei der Quantifizierung galt es außerdem noch, die Menge eingesetzter Zellen zu berücksichtigen. Nur unter Zuhilfenahme der Neubauer-Zählkammer wurde diese Störgröße effektiv eliminiert. Der Reinheitsgrad der cDNA konnte durch mehrmalige, zufällige Kontrolle mittels PDH als auch noRT (für die RNA) gesichert werden.

Trotz der bisher aufgeführten Einschränkungen konnten doch eindeutige Erkenntnisse erarbeitet werden. Die PCR hatte die obig genannten Werte (Tabelle 4.7) zum Ergebnis. Es geht daraus eindeutig hervor, dass in dem Material fast aller Patienten und gesunder Probanden -wenn auch grenzwertig- α-mRNA identifizierbar war.

und der Crossing Line auf 0,2 FE vorgenommen, da hier auch geringe p16-mRNA-Mengen mit ausgewertet werden konnten.

Unter diesen Voraussetzungen konnten diese Zusammenhänge ermittelt werden:

- Konzentration der α-mRNA: gesunde Probanden < chronische Fälle mit Progressionstendenz < Material aus der Blastenkrise < chronische Fälle < chronische Fälle mit Remissionstendenz
- Konzentration der β-mRNA: gesunde Probanden < chronische Fälle mit Remissionstendenz < Material aus der Blastenkrise < chronische Fälle mit Progressionstendenz < chronische Fälle

Tabelle 5.2: Mögliche Erklärungen für die gefundene p16\(^{INK4a}\)-Expression. Die mRNA-Konzentration nimmt zeilenweise zu. Weitere Einflüsse sind nicht betrachtet worden.

<table>
<thead>
<tr>
<th>KRANKHEITSSTADTUM</th>
<th>AUSWIRKUNG AUF DEN ZELLZYKLUS (P16(^{INK4a}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesunde Probanden</td>
<td>keine verstärkte Hemmung erforderlich</td>
</tr>
<tr>
<td>chronische Phase mit Progressionstendenz</td>
<td>Hemmung erforderlich, weniger stark</td>
</tr>
<tr>
<td>BK</td>
<td>wenig erfolgreiche Hemmung, Exazerbation</td>
</tr>
<tr>
<td>chronische Phase ohne Änderungstendenz</td>
<td>Hemmung suboptimal erfolgreich</td>
</tr>
<tr>
<td>chronische Phase mit Remissionstendenz</td>
<td>Hemmung optimal erfolgreich</td>
</tr>
</tbody>
</table>

Diese Ergebnisse sind, wie bereits mehrfach angedeutet, nur bedingt auswertbar, da alle Patienten einem allgemein gültigen Therapieschema unterzogen wurden. Weiterhin konnten nur Mittelwerte betrachtet werden, die auf Grund der niedrigen Patientenzahl erheblichen Schwankungen unterworfen sind.

Aus der Tabelle (Tabelle 4.7) ist ersichtlich, dass die Verteilungsverhältnisse zwischen den gewählten Detektionsgrenzwerten für p16\(^{INK4a}\) eine Konstanz aufweisen, während bei der β-mRNA größere Schwankungen auftreten. Generell fällt jedoch die Kongruenz der Konzentrationsverteilungen auf. Da bei dieser Herangehensweise nur positive Reaktionen berücksichtigt wurden, gehen Kombinationen, wie beispielsweise α+/β-, nur in den Mittelwert für α ein. Der angegebene Mittelwert beinhaltet demnach alle sicher bestimmmbaren Werte, währenddessen Resultate, die als nicht positiv betrachtet werden
müssen, keine Berücksichtigung gefunden haben (Mittelwert aller sicher positiven Werte). Der angegebene Quotient α/β-mRNA umfasst den Mittelwert aller Quotienten, für die gilt $Q>0$ und deren Definition gegeben ist (α-mRNA und β-mRNA=0 entfällt). Folgender Sachverhalt ließ sich unter den genannten Bedingungen erkennen: Bei allen eingegangenen Proben war das α-Transkript höherexprimiert als die β-Form. Dies gilt auch für die nicht beide mRNAs enthaltenden Samples. Eine Ausnahme stellen lediglich vier Proben der Patientengruppe mit chronischem Verlauf dar, die allein nur die p19$^{\text{ARF}}$-mRNA aufwiesen. Daraus ließe sich (s. Abschnitt 4.4) schlussfolgern, dass p16$^{\text{INK4a}}$ vermutlich eine größere Bedeutung zukommt als dem alternativen Transkript, obwohl sich das β-RNA-Muster äquivalent zu α-Form verhält.

5.2 FISH

Die verwendete Sonde zählt mit einer Länge von 190kb zu denen mittlerer Länge. Sie überspannt die MTS-R auf dem Chromosom 9 (9p21), die neben den p16-Lokus auch die Gene für p15INK4b, D9S1749, D9S1747, D9S1748 und D9S1752 enthält. Bei einer solchen Größe erscheint der oben beschriebene Sachverhalt als sehr gut möglich. Im Falle des Fehlens eines Signals kann nicht eindeutig auf den Verlust eines Gens zurückgeführt werden, da auch kombinierte Deletionen denkbar sind, die beispielsweise p15INK4b und D9S1749 betreffen, obwohl das p16-Gen noch vollständig erhalten ist. Der Nachweis aller vier Signale pro Metaphasenplatte (Interphasenkern) gilt demnach nicht uneingeschränkt als Hinweis auf die Unversehrtheit der Gene. In diesem Fall
bedeutet das, dass zumindest keine größeren Veränderungen im Genom vorlagen, die eine verminderte Konzentration der p16-mRNA erklären würden.

5.3 MSP

Tabelle 5.3: Pathologische Methylierungszustände.

<table>
<thead>
<tr>
<th>SEQUENZ/GEN</th>
<th>METHYLIERUNGSGRAD</th>
<th>FOLGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumorsuppressorgen</td>
<td>hoch</td>
<td>inaktiv</td>
</tr>
<tr>
<td>gesamtes Genom</td>
<td>niedrig</td>
<td>Aktivierung vieler Gene</td>
</tr>
<tr>
<td>bestimmte Gene (LOI)</td>
<td>niedrig</td>
<td>Aktivierung der betroffenen Gene</td>
</tr>
<tr>
<td>parasitäre DNA</td>
<td>niedrig</td>
<td>Aktivierung</td>
</tr>
<tr>
<td>inaktivierte Gene (X-Chromosom)</td>
<td>niedrig</td>
<td>Aktivierung möglicherweise defekter Gene</td>
</tr>
</tbody>
</table>

Im Klartext bedeutet das, dass schon (theoretisch) ein methyliertes Cytosin ausreichend ist, um zumindest einen monoallelischen Verlust der Genaktivität herbeizuführen. Die Frage, inwiefern dieser Zusammenhang mit der MSP oder durch die Restriktionsfragmentanalyse nachweisbar ist, bleibt unklar. Es ist jedoch denkbar, eine bevorzugte Methylierungsregion zu finden, deren komplette Durchuntersuchung mit geringerem finanziellen und technischen Aufwand machbar ist.

5.4 Verlaufskontrollen

Lag zum Zeitpunkt der ersten Untersuchung ein hoher Anteil entarteter Zellen vor, so befanden sich in fast allen Proben die normierten Werte für das α- und das β-Transkript relativ eng beisammen auf einem im Vergleich gesehen niedrigen Level. Kam es hingegen zur baldigen Ausbildung einer BK, lagen beide Werte meist auf einem höheren Niveau. Aus den Verläufen wird ersichtlich, dass das enge Klustern der beiden Punkte bei einem niedrigen Level auf eine Progredienz der Erkrankung hindeutet. In der

Krankheitsverlauf können machbar sein. Nochmals sei erwähnt, dass trotz aller Euphorie noch weitere Untersuchungen zur Verlässlichkeit der getroffenen Aussagen anzustellen sind, da wegen der geringen Fallzahl noch mit einer hohen Fehlerbehaftung der Methode zu rechnen ist.

Der Vergleich mit den bei der quantitativen Analyse (Abschnitt 4.4.4) ermittelten Daten führt nicht zu verwertbaren Ergebnissen, da oft die Wertepaare in einem Überlappungsbereich der Boxplots (Abbildung 4.8 ff.) fallen.

5.5 Allgemeine Grenzen der Methoden

Generell bieten die dargestellten Ergebnisse und Auswertungen viele Möglichkeiten zur Diskussion. In das Hauptaugenmerk muss in jedem Fall das willkürliche Festlegen der Grenzwerte gerückt werden. Durch das Vermindern der Toleranzbreite für sicher positive Resultate der quantitativen PCR ergeben sich völlig veränderte Blickfelder, die sich nach genaueren Begutachten der Sachlage meist als ungeeignet zum CML-Staging erweisen.

Die LC-PCR kann nach der Auswertung mit der bereitgestellten Software ebenfalls falsch positive Ergebnisse liefern. Man kann zum Beispiel davon ausgehen, dass beim Erreichen der Crossing line erst nach dem vierzigsten Zyklus der PCR die Konzentration der Target-cDNA zu Reaktionsbeginn als grenzwertig, das bedeutet als nicht sicher bestimmbar angenommen werden muss. Man könnte das Eintreten eines solchen Zustandes als richtungsweisend ansehen, jedoch ist im Idealfall (E=1+1) mit einer 2^{40}-fachen (10^{12}-fach) Konzentration der Ziel-cDNA zu rechnen, die bei ausreichender Anzahl an Ausgangskopien einfach nachweisbar sein dürfte.

Ein weiterer wichtiger Aspekt, der im Zusammenhang mit der Datenauswertung beachtet werden muss, ist die nicht weiter zu minimierende Schwankungsbreite der einzelnen Reaktionen untereinander, die zu Schwierigkeiten bei der Zusammenfassung der Gruppen sowie der Auswertung der graphischen Darstellungen führte. Es konnte durch die Datennormierung zwar ein geringgradiger Ausgleich erzielt werden, die Fluktuationen sind aber noch deutlich zu erkennen. Hinzu kommt weiterhin, dass bei geringer Menge an spezifischer cDNA die Unterscheidung zwischen den natürlichen Schwankungen und dem Vorhandensein von nur sehr wenigen Kopien unter Berücksichtigung dieser Tatsachen enorm kompliziert ist.

Im Weiteren soll den zellulären Regulationsmechanismen der Proteinbiosynthese Beachtung geschenkt werden. In der vorliegenden Untersuchung konzentrierte sich das
6 Zusammenfassung

Der Quotient aus der p16INK4a- und der p19ARF-Konzentration überspannte einen Wertebereich von 0,65 bis 1,17. Dabei wiesen 75% der Patienten eine höhere Konzentration der INK4a-mRNA auf. Der Quotient zeigte beim Vergleich von gesunden und erkrankten Probanden keine Unterschiede, jedoch waren α- und β-Transkript bei CML-Patienten tendenziell höher konzentriert. Bei gesicherter Diagnose sprechen niedrige Konzentrationen von p16INK4a-mRNA für das Vorliegen einer Blastenkrise, während größere Mengen meist nicht auf das Vorliegen der akuten Exazerbation hindeuten (Kruskal-Wallis-Test: p=0,05; u-Test: p=0,07). Die Unterschiede zwischen gesunden Probanden und Patienten mit vorliegender Blastenkrise sind nicht signifikant. Für die β-mRNA gelten ähnliche Zusammenhänge. Es bestehen keine statistisch signifikanten Unterschiede, es erscheint jedoch als
annehmbar, dass sehr hohe Konzentrationen nur im Blastenschub oder bei gesunden Personen vorliegen.

7 Literaturangaben

8 Anhang: Sequenzen

8.1 p16INK4a-mRNA, Isoform 1, human

- NCBI-locus: NM_000077; GI:17738299
- Die komplementären Sequenzen der Primer sind rot gekennzeichnet (Tabelle 8.1).
- ORIGIN

\begin{verbatim}
 1 cccaaccttg ggcgaactca gttgtgccac attcgtaag tgctcggagt taatagcacc
 61 tcctcgcgac actcgctcaac ggctcctcct tgcctggaaa gatacccgcc tcctcccaga
121 ggatttgagg gacagggtcg gagggggctc ttccgccagc accggaggaa gaaagaggag
181 gggctggctg gtcaccagag ggtggggcgg accgcgtgcg ctcggcggct gcggagaggg
241 ggagagcagg cagcgggcgg cggggagcag catggagccg gcggcgggga gcagcatgga
301 gccttcgctg gcgtgctgct ccacgctgcc gcggggtggg tgggtggggc ggacccgggt
361 ggctgctgct cggcgggggc gcctggacacg ctggtggtgc tgcaccgggc cggggcgcgg
421 ctaaatagac atggcactgg atccctcaat tggattttagg ttttaatatc attttatatc
481 cagctacctg tggccctacct cggatctcct tggcttttagg ttttttagg ttttttagg
541 gagaattcgt tttatgatat aatagaaaat ttttttagg ttttttagg ttttttagg
601 ggggctgctg cggctgctgct cgcacgttgg gcctgctgct cggctgctgct cggctgctgct
661 cagcgtgctg gcggggggcc cggggggggg cggggggggg cggggggggg cggggggggg
721 cgcctctct cccccctctc cccccctctc cccccctctc cccccctctc cccccctctc
781 ctgatctgct cggctgctgct cggctgctgct cggctgctgct cggctgctgct cggctgctgct
841 ttttaatatc attttatatc attttatatc attttatatc attttatatc attttatatc
901 gcgcgggggg cggggggggg cggggggggg cggggggggg cggggggggg cggggggggg
961 cggggggggg cggggggggg cggggggggg cggggggggg cggggggggg cggggggggg
1021 ttcacaagc ctcctctctc cggctgctgct cggctgctgct cggctgctgct cggctgctgct
1081 tggcttttagg ttttttagg ttttttagg ttttttagg ttttttagg ttttttagg
1141 ctcctctctc cggctgctgct cggctgctgct cggctgctgct cggctgctgct cggctgctgct
1201 aaattttatatc attttatatc attttatatc attttatatc attttatatc attttatatc
\end{verbatim}

8.2 p16INK4a-mRNA, Isoform 4 (entspricht p14ARF), human

- NCBI-locus:NM_058195; GI:17738293
- Die komplementären Sequenzen der Primer sind rot gekennzeichnet (Tabelle 8.1).
8.3 p16INK4a/ ARF-Gen (9p21); nur CDKN2A, 5´ zum ORF

- Autor: S.K. Murthy et al.; unpublished
- NCBI-Locus: AF044170; GI:4105243

ORIGIN

\begin{verbatim}
1 atgcctgcag gtcgacttta gaacactgag cactttttct gttctaggaa ttatgacttt
61 gagaatggag tccgtccttc caatgactcc ctccccattt tcctatctgc ctacaggcag
121 aattctcccc cgtccgtatt aaataaacct catcttttca gagtctgctc ttataccagg
181 caatgtacac gtctgagaaa cccttgcccc agacagccgt tttacacgca ggaggggaag
241 gggaggggaa ggagagagca gtccgactct ccaaaaggaa tcctttgaac tagggtttct
\end{verbatim}
8.4 Homo sapiens cDNA von GAPDH mRNA

- Autor: K. Watanabe et al.; unpublished
- NCBI-Locus: AK026525; GI:10439402
- Die komplementären Sequenzen der Primer sind rot gekennzeichnet (Tabelle 8.1).
- ORIGIN

```plaintext
1 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa ctcctctgcc
61 ctcctgttgc acagtcagcc gcatcttctt ttgcgtcgcc agccgagcca catcgctcag
121 acaccatggg gaaggtgaag gtcggagtca acggatttgg tcgtattggg cgcctggtca
181 ccagggctgc ttttaactct ggtaaagtgg atattgttgc catcaatgac cccttcattg
241 acctcaacta catggtttac atgttccaat atgattccac ccatggcaaa ttccatggca
301 ccgccaaggg tcagaagggg aaggtttgca tcaatggaaa aaaaaaaat ctcctctgcc
361 acccagatccctcctaaac aatgtgtgccc agctcagcgt gctggagtcgt gcgttctccttc
421 ctgctcttct ccaccatgg gagaagggc atgcgttc ggcttcttgc tctccttcttc
481 ctcctctctt cgcctcttct ctggtgtgat ggccggtac aacatgtgaga
541 agtattctcag ctcctcctct ctggtgatat ttcctcctct cccttcctctt ctggtgatat
601 ctggtgatat ttcctcctct cccttcctctt ctggtgatat ttcctcctct cccttcctctt
661 atgcgttcgt gcgttcttct ccaccatgg gagaagggc atgcgttcgt gcgttcttctc
tgagggactg ggtcggaggg ggctcttccg ccagcaccgg aggaagaaag aggaggggct
721 ggcggctgcg ggcggcgggc ggcggctgcg ggcggcgggc ggcggctgcg ggcggcgggc
ggcggcgggc ggcggctgcg ggcggcgggc ggcggcgggc ggcggctgcg ggcggcgggc
ggcggcgggc ggcggctgcg ggcggcgggc ggcggcgggc ggcggctgcg ggcggcgggc
781 ggcggcgggc ggcggctgcg ggcggcgggc ggcggcgggc ggcggctgcg ggcggcgggc
```

8.4 Homo sapiens cDNA von GAPDH mRNA
8.5 Primer

Tabelle 8.1: Verwendete Primer.

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEQUENZ</th>
<th>VERWENDUNG</th>
</tr>
</thead>
<tbody>
<tr>
<td>P16JAPI (Taniguchi et al. 1999)</td>
<td>5´-tgcccatactactgacctgg-3´</td>
<td>Lightcycler gemeinsamer antisense-Primer</td>
</tr>
<tr>
<td>P16JAPu1 (Taniguchi et al. 1999)</td>
<td>5´-ggagcagcatggagcctt-3´</td>
<td>Lightcycler INK4a-forward</td>
</tr>
<tr>
<td>P16JAPu2 (Taniguchi et al. 1999)</td>
<td>5´-ttcttggtgaccctccggatt-3´</td>
<td>Lightcycler ARF-forward</td>
</tr>
<tr>
<td>GAPDHf</td>
<td>5´-atgccagtgagcttcccgttcagc-3´</td>
<td>GAPDH-forward</td>
</tr>
<tr>
<td>GAPDHzr</td>
<td>5´-ggatctctgttggagacttggac-3´</td>
<td>GAPDH-antisense</td>
</tr>
<tr>
<td>P16Wf (Herman et al. 1996)</td>
<td>5´-cagaggtggggggcggagc-3´</td>
<td>MSP Wildtyp-forward</td>
</tr>
<tr>
<td>P16Wr (Herman et al. 1996)</td>
<td>5´-cgggcccgggagcctgg-3´</td>
<td>MSP Wildtyp-antisense</td>
</tr>
<tr>
<td>P16Mf (Herman et al. 1996)</td>
<td>5´-ttttagggtggggggcggagc-3´</td>
<td>MSP methyliert-forward</td>
</tr>
<tr>
<td>P16Mr (Herman et al. 1996)</td>
<td>5´-gacccgaacccgagcctgtaa-3´</td>
<td>MSP methyliert-antisense</td>
</tr>
<tr>
<td>P16Uf (Herman et al. 1996)</td>
<td>5´-ttttagggtggggggcggagc-3´</td>
<td>MSP unmethyliert-forward</td>
</tr>
<tr>
<td>P16Ur (Herman et al. 1996)</td>
<td>5´-caaccccaaaaaaccaaccataa-3´</td>
<td>MSP unmethyliert-antisense</td>
</tr>
</tbody>
</table>
9 Abbildungsverzeichnis

ABBILDUNG 1.1: DIE ZYKUSABHÄNGIGE EXPRESSION DER ZYKLINE. IHRE STEUERnde UND REGULIERende FUNKTION IN BEZUG ZUM ZELLZYKLUS WIRD ERKENNBAR. DIE VERSchiedenen ZYKLINE SIND FARBIG DARGESTELLt: ZYKLIN E (GRAu) zeigt einen scharfen Peak am ENDE von G1. DIE ZYKLIN-D-Konzentration entspricht dem schwarzen, ZYKLIN A dem rotEN und ZYKLIN B dem grünen GRAPHEN. ... 8

ABBILDUNG 1.2: DIE ZELLulären KONTROLLMECHANISMEN WÄHREND DES ZELLZyKLUS SIND ROT DARGESTELLt. IN DEN TEXTFELdERN SIND DIE Ablaufenden PROzesse für das FORTSCHREItEN DES ZYKLus (GRAPHISCH IM UHRZIEGERSINN) KURZ BESchRIEBEN. EIN ErStER KONTROLLPUNKt BEFINDET SICH IN DER G1-PHASE (G1/G0-KONTROLLPUNKt). WÄHREND DER S-PHASE ERFOlGT KEINE (BEKANNtE) KONTROLE. AM ENDE DER G2-PHASE SOWIE IM LETZTEN DRItTEL DER M-PHASE SIND Zwei WEItERE Schutzmechanismen. Es WIRD DEUTLICH, DASS DER KORREKTE Ablauf DES ZELLZyKLUS MehrFACH „ANALYSIERT“ WIRD UND POTENZIEll ENTARTETE ZELLEN ELIMINIEREN WERDEN KÖNNEN. ZYKLINE UND CDKs SPIELEN DABEI EINE WICHTIGE Rolle. ... 9

ABBILDUNG 1.3: EINE SCHLÜSSELROLLE DES BCR/ABL-PROTEINS BEI DER ZELlAKTIVIERUNG KOMMT DER Y-KINASEDOMÄNE ZU. SIE KANN DAS ADAPTERMOLEkül CRKL SPEZIFisch AKTIVIEREN UND SOMIT MEHRERE REAKTIONS KASKAden IN GANG SETZEN, WELCHE Einen maßgeblichen Anteil am IMMORTALISATIONSproZESS HABEN. CRKL DIENt HIERBEI ALS LINKER ZUR KINASE. DIE PAXILLINPHOSPHORILIERUNG KANN ZUR FELderrasEN INTERAKTION MIT AKTIN FÜHREN, WODURCH DIE ADHäsIONDEFekte der ENTARTETEN ZELLEN ERKLäRbar Wären. Im Zuge der CBL-AKTIVIERUNG ERFOlGT EBENFALLS EIN EINGRIFF IN DAS ZELLuläre AKTININTERAKTIONSVERMÖGEN. DER GENAUER MECHANISmus AUF DIE CAS-FAMILIE IST DERZEIT NOCH AKTUEller GEGENSTAND DER FORSCHUNG. WEItERE WICHTIGE EINGRIFFSMÖGLICHkeiten IN DEN ZELLZyKLUS SIND DIE DIREKTE AKTIVIERUNG DER RAS-Raf-KASKADE, DES JAK-STAT-MECHANISmus SOWIE DES P93c-FES-WEGES (PASTERNAK ET AL., 1998). ... 12

ABBILDUNG 1.4: DAS STARK VEREINFACHTE SCHEMA ZEIGT DIE AKTIVITÄT DER SPEZIFISCHEN KINASEN ZU DEN ENTSPREChenden ZEITPUNKTEN IM ZELLZyKLUS. ... 14

ABBILDUNG 1.5: ÜBERBLICK ZUR STRUKTUR VON P16INK4a ... 17

ABBILDUNG 1.6: DIE SENKRECHTE AUSRICHTUNG DER LOOPS ZWISCHEN DEN HTH-MOTiven ZU DEN HELIKalen Achsen. ... 17

ABBILDUNG 1.7: STARK VEREINFACHTE SKIZZE DES PROTEINS MDM2. IM C-TERMINALEN BEREICH BEFINDET SICH EIN MOLEkULBEREICH ZUM ANLAGERN AN P19ARF. IN DER ZENTRALen REGION IST DIE TRANAKTIVIERUNGSDOMÄNE, DIE EINE BESTIMMTE INTRINSISCHE AKTIVITÄT AUFWEISEn KöNNTE (VORAUSGESETZT ES HANDelt SICH NICHT AUSCHLIEßlich UM Einen Hemmer DES NUKLEÄR-ZYTOPLASMATISCHEn TRANSPORtEs). AM N-TERMINUS BEFINDET SICH Die P53-BINDEnDE DomäNE. 18

ABBILDUNG 3.1: FLUORESZENZ-ZYKLUS-KURVE. DAS EINFÜGEN EINER GERADEN PARALLEL ZUR ABSZISSE IM BEREICH DER LOGLIN PHASE ENTSPRicht DEN PRINZIPiEN DER REAL-TIME-PCR. QUANTITATIVE PCR DURCH GELBANDENANALySE würDE AUF Einer GERADEN PARALLEL ZUR ORdINATE ZUM 45. ZYKLUS ERFOlGEN. ... 37
ABBILDUNG 3.2: DIE GRAPHISCHE DARSTELLUNG EINER SCHMELZKURVE. ...39
ABBILDUNG 3.3: DIE TRANSFORMATION DER DATEN AUS ABBILDUNG 3.2 ERGIBT DIESE DF/dT-TEMPERATUR-
KURVE MIT SCHELZPEAKS BEI ETWA 95 °C. ..40
ABBILDUNG 3.4: VEREINFACHTES SCHEMA ZUM BAU DES LIGHTCYCLERS (ROCHE).41
ABBILDUNG 3.5: DIE ABBILDUNG ZEIGT DIE SEQUENZVERÄNDERUNGEN DURCH DIE BISULFITUMSETZUNG
ANHAND EINER THEORETISCH DENKBAREN, FREI ERFUNDENNEN PROMOTORSEQUENZ. WIE AUS DEM
SCHEMA DEUTLICH WIRD, KANN MAN AUCH IM GROBEN ÜBER DIE METHYLIERUNGSMUSTER AUSSAGEN
TREFFEN. SIND ZUM BEISPIEL DIE ERSTEN 5GpC DER TARGETSEQUENZ NICHT ALLE METHYLIERT,
WERDEN IN DER UMGESETZTEN DNA KEINE BEREICHE MIT TTTTT GEFUNDEN. SOMIT KÖNNEN DIE
DESIGNTEN PRIMER SCHLECHTER (IM IDEALFALL GAR NICHT) BINDEN UND SOMIT AUF DEM GEL KEINE
BANDEN ZU FINDEN SEIN. ..46
ABBILDUNG 4.1: GELPHOTO DER AUFGETRENnten PCR-PRODUKTE NACH TANIGUCHI ET AL.(1999). IN DER
ERSTEN SPUR BEFINDET SICH DER ROCHE-LÄNGENSTANDARD Nr.V (M). IN DEN FOLGENDEN SIND DIE
BANDEN FÜR DIE mRNA DER α-FORM (1; 150 BP), DER β-FORM (2; 197 BP) UND DES HOUSEKEEPERS
GAPDH (3; 189 BP) ZU SEHEN. DIE SPEZIFISCHEN BANDEN WEISEN EINE REGELRECHTE LÄNGE AUF:57
ABBILDUNG 4.2: DIE NORMIERTEN CROSSING POINTS DES α- UND β-TRANSKRIPTES. AUF DER ABSZISSE
BEFINDEN SICH DIE WERTE DES P16INk4a (U1NORM) UND AUF DER ORDINATE DIE DES P19ARF
(U2NORM).61
ABBILDUNG 4.3: DIE NORMIERTEN CROSSING POINTS DES α- UND β-TRANSKRIPTES. AUF DER ABSZISSE
BEFINDEN SICH DIE WERTE DES P16INk4a (U1NORM) UND AUF DER ORDINATE DIE DES P19ARF
(U2NORM).63
ABBILDUNG 4.4: DIE NORMIERTEN CROSSING POINTS DES α- UND β-TRANSKRIPTES. AUF DER ABSZISSE
BEFINDEN SICH DIE WERTE DES P16INk4a (U1NORM) UND AUF DER ORDINATE DIE DES P19ARF
(U2NORM).64
ABBILDUNG 4.5: DIE NORMIERTEN CROSSING POINTS DES α- UND β-TRANSKRIPTES. AUF DER ABSZISSE
BEFINDEN SICH DIE WERTE DES P16INk4a (U1NORM) UND AUF DER ORDINATE DIE DES P19ARF
(U2NORM).64
ABBILDUNG 4.6: DIE NORMIERTEN CROSSING POINTS DES α- UND β-TRANSKRIPTES. AUF DER ABSZISSE
BEFINDEN SICH DIE WERTE DES P16INk4a (U1NORM) UND AUF DER ORDINATE DIE DES P19ARF
(U2NORM).65
ABBILDUNG 4.7: PROZENTUALE VERTEILUNG DES P16-EXPRESSIOMSMUSTERS INNERHALB DER SPEZIFISCHEN
PATIENTENGRUPPEN. DER ZUSTAND α-/β- WAR NICHT AUFZUFINDEN. ..66
ABBILDUNG 4.8: DIE VEGLEICHBARKEIT DES QUOTIENTEN Q=MWu1/Crop/MWu2/Crop zwischen
PATIENTEN UND GESUNDEN PROBANDBEN. BEI DEN NEGATIVKONTROLLEN IST ZU BEACHTEN, DASS NUN
WENIGE PROBEN ZUR VERFÜGUNG STANDEN, VON DENEN AUCH EINIGE KEINE β-EXPRESSION ZEIGTEN.
DIE AUSERHALB DER BOXPLOTS GELEGENEN WERTE (AUSREIßER) SIND EXTRA MARKIERT.70
ABBILDUNG 4.9: DIE NICHTNORMIERTEN CROPS DER P16INk4a-cDNA. DIE GRUPPE β=0 WIES KEINE P19ARF-
cDNA AUF. WIEDERUM IST KEIN UNTERSCHIEDE INNENHALB DER PATIENTEN ZU ERKENNEN, WOHL ABER
DER ZWISCHEN PATIENTEN UND GESUNDEN. DER U-TEST LIEFERTE EINE STATISTISCHE SIGNIFIKANZ VON
P=0,044. DIE AUSERHALB DER BOXPLOTS GELEGENEN WERTE (AUSREIßER) SIND EXTRA MARKIERT...68
ABBILDUNG 4.10: **Die nichtnormierten CroPs der β-cDNA. Unterschiede sind nicht zu erkennen, weder unter den Patienten noch zwischen Patienten und Gesunden.**

ABBILDUNG 4.11: **Die Werteverteilung von P16INK4A in Patienten mit und ohne Blastenkrise sowie in gesunden Probanden, adäquat zum obigen U-Test. Die außerhalb der Boxplots gelegenen Werte (Ausreißer) sind extra markiert.**

ABBILDUNG 4.12: **Boxplot der nicht normierten Crossing point-Werte des β-Transkripts. Die außerhalb der Boxplots gelegenen Quotienten (Ausreißer) sind extra markiert.**

ABBILDUNG 4.13: **Auftrag der normierten Crop-Werte (U1NORM: α-Transkript; U1NORM: β-Transkript). Der schwarze eingekennzeichnete Graph entspricht der Regressionsgeraden aller dargestellter Werte.**

ABBILDUNG 4.14: **Die Crop-Werte paires (P16INK4A und P19ARF) des Patienten 1 von zu verschiedenen Zeitpunkten im Krankheitsverlauf entnommenen Proben.**

ABBILDUNG 4.15: **Die Werte des selben Patienten, die lediglich der Normierung unterzogen wurden (vergl. Abbildung 4.14).**

ABBILDUNG 4.16: **Es sind wiederum die Crop-Werte des Patienten 2 im Verlauf dargestellt.**

ABBILDUNG 4.17: **Die normierten CroPs der Abbildung 4.16. Die Darstellung erfolgte wiederum in chronologischer Reihenfolge.**

ABBILDUNG 4.18: **Die nicht normierten Werte der Crossing points des Patienten 3 in chronologischer Reihenfolge.**

ABBILDUNG 4.19: **Es wurden die zur obigen Abbildung 4.18 äquivalenten normierten Punktewerte dargestellt.**

ABBILDUNG 4.20: **Der chronologische Werteverlauf der ermittelten CroPs des Patienten 4.**

ABBILDUNG 4.21: **Es sind die normierten Crossing points zur Abbildung 4.20 eingezeichnet.**

ABBILDUNG 4.22: **Es ist die große Lokalisation der beiden Sonden auf dem Chromosom 9 schematisch dargestellt. 9p21 wurde mit einem roten und das Centromer mit einem grünen Fluorochrom markiert.**

ABBILDUNG 4.23: **Die detektierten FISH-Signale. Das Zentromer des Chromosoms 9 erscheint grün, der spezifische P16-Lokus rot.**

ABBILDUNG 5.1: **Die prozentuale Aufspaltung der aufgetretenen P16-Expressionsmuster. Zur Erstellung wurde ein Schwellwert von 0,5FE verwendet (vergleich: Abbildung 4.7).**
10 Tabellenverzeichnis

TABELLE 1.1: ZUSAMMENHANG ZWISCHEN DEM AUFTRETEN EINES BESTIMMTEN BCR/ABL-GENPRODUKTES UND EINEM KRANKHEITSVERLAUF. DIE ERSTBESCHREIBER SIND IN DER SPALTE AUTOR GENANNT.11

TABELLE 1.2: ÜBERBLICK ZUR AKTIVIERUNG DER CDKS ...16

TABELLE 3.1: DIE ZUSAMMENSETZUNG DES MASTERMIXES FÜR DIE PRÄINKUBATION DER RT ..32

TABELLE 3.2: DAS PROTOKOLL DER RT-ELONGATION Dargestellt. Es besteht lediglich aus einem ZYKLUS ..32

TABELLE 3.3: DIE ZUSAMMENSETZUNG DES MASTERMIXES FÜR DIE LC-PCR ..42

TABELLE 3.4: ZUSAMMENSETZUNG DES MASTERMIXES FÜR DIE FISH ..45

TABELLE 3.5: ES SIND IM FOLGENDEN DIE ANZAHL UND DIE DURCHFÜHRUNG DER WASSCHSCHRITTE Dargestellt. ...48

TABELLE 3.6: AUFLISTUNG DER BESTANDTEILE DES MASTERMIXES FÜR DIE MSP. DER ZUSATZ VON BETAIN soll die Spezifität der Reaktion nochmals erhöhen. ..49

TABELLE 3.7: DAS TC-PROGRAMM DER MSP AUFGELISTET. ..49

TABELLE 3.8: LÄNGE DER PCR-AMPLIFIKATE DR VERSCHIEDENEN MSP-PRIMERPAARE ..50

TABELLE 3.9: FORSCHRIFT FÜR DIE HERSTELLUNG DER MASTERMIXES FÜR DIE AMPLIFIKATION ..51

TABELLE 3.10: DARSTELLUNG DES TC-PROGRAMMS Für die AMPLIFIKATION ...51

TABELLE 3.11: ZUSAMMENSETZUNG DES MASTERMIXES DER ZYKLISCHEN SEQUENZIERUNG ..52

TABELLE 3.12: TC-PROGRAMM FÜR DIE ZYKLISCHE SEQUENZIERUNG ÜBERBLICKSARTIG ...52

TABELLE 3.13: Die Parameter einstellungen DES LICor-GELBANDE DETEKTIONSYSTEMS ...53

TABELLE 4.1: Zusammenhang zwischen der Menge des in der TC-PCR entstandenen Produktes unter Verwendung der Housekeeper primers in Abhängigkeit vom kit und den eingesetzten RT-PRIMERN. Es wird der bereits beschriebene Effekt nochmals verdeutlicht. ...56

TABELLE 4.2: Das Pipettierschema für die p16-RCR am Thermocycler ..56

TABELLE 4.3: Das PCR-Protokoll für den Thermocycler nach Taniguchi ..58

TABELLE 4.4: Das optimierte Amplifikationsprogramm für den LC ..59

TABELLE 4.5: Programm zur Ermittlung der Schmelzkurve am Lightcycler ..60

TABELLE 4.6: Einteilungskriterien der CML-Fallen ...62

TABELLE 4.7: Auflistung der Mittelwerte der Quotienten der jeweiligen CroP der RNA und den standardisierten CroP des GAPDH (200 ng/µl). α/β entspricht dem mittelwert der Quotienten aus den Spalten 4 und 5. (, var” bedeutet, dass kein eindeutiger mittelwert aufgrund der grossen streuung der wenigen einzelwerte bestimmbar ist.) ...69

TABELLE 4.8: KRUSKAL-WALLIS-Test. Nullwerte sind mit einbezogen worden. ...70

TABELLE 4.9: KRUSKAL-WALLIS-Test. Nullwerte sind nicht mit einbezogen worden. ..70

TABELLE 4.10: Die Ergebnisse des u-Tests. Die sich in Klammern befindenden Ausdrücke haben den Wert von 0,05 nur knapp verfehlt. Nullwerte gingen in die berechnung mit ein. In der Tabelle sind die Parameter aufgeführt, für die eine statistisch gesicherte Signifikanz zwischen den beiden Gruppen (Zeile; Spalte) aufgezeigt werden konnte. ..70
TABELLE 4.11: Es wurden die Ergebnisse des U-Tests dargestellt. Die sich in Klammern befindenden Ausdrücke haben den Wert von 0,05 nur knapp verfehlt. Nullwerte gingen in die Berechnung nicht mit ein. Signifikant verschiedene Werte sind benannt. "70

TABELLE 4.12: U-Test mit Nullwerten und höherem Fluoreszenzniveau. Die in Klammern stehenden Werte haben 0,05 nur knapp verfehlt. "71

TABELLE 4.15: Die die Regressionsgeraden der entsprechenden Analysegruppen mit dem zugehörigen Bestimmtheitsmaß als Ausdruck der Korrelation. "74

TABELLE 5.1: Stagingschema. "86

TABELLE 5.2: Mögliche Erklärungen für die gefundene P16-Ink4a-Expression. Die mRNA-Konzentration nimmt zeilenweise zu. Weitere Einflüsse sind nicht betrachtet worden. "90

TABELLE 5.3: Pathologische Methylierungszustände. "92

TABELLE 8.1: Verwendete Primer. "110
Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist,

Ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind,

mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Erstellung des Manuskripts unterstützt haben: PD Dr. Ferdinand von Eggeling und Prof. Dr. Uwe Claussen,

die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen,

dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und

dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Jena, den 05.11.2004
Lebenslauf

Persönliche Daten
Name: Dirk Franke
Geburtsdatum: 22.11.1977
Geburtsort: Ilmenau
Wohnanschrift: Neuhaus 12, 98693 Ilmenau
Staatsangehörigkeit: deutsch
Familienstand: ledig

Ausbildung
1991 – 1996 Goetheschule Ilmenau, Staatliches Gymnasium

Wehrdienst
02.09.1996 - 31.08.1997 StoSanZ VHH Ast Volkach, sPiBtl. 12

Hochschulausbildung
01.10.1997 - Friedrich-Schiller-Universität Jena Med. Fakultät
09/1999 Ärztliche Vorprüfung
08/2000 Erster Abschnitt der Ärztlichen Prüfung
01.04.2001 - Doktorand am Institut für Humangenetik, FSU
09/2003 Zweiter Abschnitt der Ärztlichen Prüfung
10/2003 - 09/2004 Praktisches Jahr
10/2004 Dritter Abschnitt der Ärztlichen Prüfung
11/2004 Approbation

Sonstiges
PC - Kenntnisse

Weiterbildungen
Elektronenmikroskopie
Subzelluläre Strukturen und allg.
Rational Drug Design (1 und 2)
Molekulare Strukturbioologie (2)
Laser in Biologie und Medizin / Laserschutzbeauftragter
Klinische Hämatologie und Onkologie

Sprachkenntnisse
Englisch, Russisch

Kenntnisse molekularbiologischer und molekulargenetischer Techniken und Verfahren

Jena, 05.11.2004
Danksagung

Mein besonderer Dank gilt Prof. Dr. U. Claussen und PD Dr. F. von Eggeling für die freundliche Überlassung des Promotionsthemas sowie für die uneingeschränkte Unterstützung bei der Durchführung meiner Arbeit.

Insbesondere danke ich meinen Eltern, ohne deren Unterstützung ein Studium oder gar eine Dissertation nicht möglich gewesen wäre.