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Chapter 1

Introduction

Computational complexity is concerned with the classi�cation of problems with
respect to their complexity. To give a sense to this statement we have to explain
some parts of it. If we refer to problems we usually mean decision problems. Does
a given object belongs to a certain set or not?

To solve such problems means that we have an algorithm deciding whether a
given input x belongs to the set or not.

This gives us a possibility to measure how di�cult such a decision problem is,
but only with respect to the algorithm used. We measure how many resources the
algorithm needs for its decision, depending on the length of the input x.

To achieve this in a reasonable way, a computational model is necessary. In 1936
Turing [Tur36] developed a universal computational model, the so-called Turing
machine. We distinguish two versions, a deterministic and a nondeterministic one.

Which resources are usually considered? One possibility is to measure how much
time an algorithm needs. For this purpose we count the number of steps carried out
by the appropriate Turing machine, from the input up to the �nal con�guration.
This allows us to classify problems with regard to the running time of a solving al-
gorithm. In this manner, we only get upper bounds for the complexity of a problem.
Optimal lower bounds are harder to determine and sometimes this is impossible.

As an example, we consider the class P, �rstly de�ned by Edmonds [Edm65].
This is the class of all sets that can be decided by a deterministic polynomial-time-
bounded Turing machine. That means, for every set in P there exists an appropriate
Turing machine that for every input x carries out at most p(|x|) many steps, for
some polynomial p. The sets in P are considered as feasible problems. Many natural
and nontrivial problems are contained in P, including �nding a maximum matching
in a general graph [Edm65], linear programming [Kha79] and the problem of testing
whether an integer is prime [AKS02].

Furthermore, there exists the class NP � the class of all sets that can be accepted
by a nondeterministic polynomial-time-bounded Turing machine. All problems in
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2 Chapter 1. Introduction

P are in NP, too, of course. However, the $1,000,000 question1 is: are there sets
in NP that are not in P. Nearly all complexity theoreticians would guess that NP
contains more sets than P. There are a lot of candidates for such problems. Many of
them have the property that they are the �hardest� problems of NP, in the following
sense: If only one of these hard problems is in P, then it follows that P = NP. One
such problem is the Traveling Sales Person Problem: A sales person wants to visit
a number of cities. Is there a route shorter than a given length?

The question whether P = NP has been the starting point of long and intensive
research. This research gave rise to a lot of new questions. Many other classes of
problems than P and NP were observed allowing a deep understanding of this area.
There were many attempts to answer the P = NP question, but this problem has
been unsolved by today.

Beside decision problems, relations play an important role in computational
complexity. Not only do they appear as tools but also as objects of research
themselves. The complexity of relations has received much attention in the last
decade. This development was essentially in�uenced by Selman in the early nineties
(see [Sel94, Sel96]).

Many di�erent classes of relations and � as a special case � classes of functions
were studied. To mention two classes of relations: FP � the class of all functions com-
putable by a deterministic polynomial-time-bounded Turing machine and NPMV �
the class of relations computable by a nondeterministic polynomial-time-bounded
Turing machine [BLS84, BLS85]. Exact de�nitions will be given in Chapter 3.

We follow [Wec00] and [HW00] to de�ne classes of relations. The crucial point of
this systematic approach is to base the de�nition of relation classes on well-studied
complexity classes instead of the computation of Turing machines. This approach
to classes of relations does not only lead to natural and intuitive notations. It also
allows us to prove very general theorems, special cases of which are widely spread
over the literature.

Following [Wec00], we de�ne the operators rel and fun which transform a com-
plexity class to a class of relation or a class of functions:

• r ∈ rel · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[r(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}],

• f ∈ fun · C ⇐⇒ f ∈ rel · C ∧ (∀x ∈ Σ∗)[||f(x)|| ≤ 1].

First we prove some general results. To give an example: The well-known
projection theorem carries over to classes of relations. We will show that even
1 See http://www.claymath.org/Millennium_Prize_Problems to �nd out how to earn this
money.

http://www.claymath.org/Millennium_Prize_Problems
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though fun · NP and fun · coNP are incomparable with respect to set inclusion un-
less NP = coNP, their counterparts containing only total functions, funt · NP and
funt · coNP, satisfy funt · NP ⊆ funt · coNP.

We point out a possibility to use relations as oracles. To ask an relation r as an
oracle for a word x means to obtain one element of the set r(x). Note that for the
same question di�erent answers are possible.

We use the so-called operator method to carry over certain properties from the
underlying complexity class to the classes of relations. The operator method was
already successfully applied to other scenarios [VW93, HW00] to argue that the
inclusions not proven here are unlikely to hold.

Two more examples:

rel · P ⊆c fun · P =⇒ NP = UP.

rel · PNP ⊆c FPNP =⇒ PNP = NPNP.

One type of inclusion for which the operator method fails, will be treated using
nonuniform complexity classes. This allows for the following result.

rel · Πp
k ⊆c fun · Πp

k =⇒ PH = ZPPΣp
k+1 .

rel · Σp
k ⊆c fun · Σp

k =⇒ PH = ZPPΣp
k .

In the second part of this thesis, we study so-called easy-languages. These are
languages having easily computable solution relations. That means, it is easy to
compute on which path a corresponding nondeterministic Turing machine accepts.

This research starts from a result of Borodin and Demers [BD76]. They showed
that under a hypothesis most complexity theoreticians would suppose to be true, it
follows that there exist easily decidable sets, yet it is hard to compute why, i. e. it
is hard to compute the corresponding solution relation.

Following [HRW97], we de�ne two complexity classes, Easy∀ and Easy∃. The
class Easy∀ contains all languages for which every accepting nondeterministic Turing
machine possesses a solution function from FPt. For Easy∃ only one Turing machine
is required to have an easy solution function.

At �rst we are interested in what happens if we do not demand for a solution
function but a function computing only one bit of an accepting path. Furthermore,
we study whether it makes a di�erence which bit is concerned. It will turn out that
it makes no di�erence.

Further, we ask which languages we obtain if we modify the de�nition of Easy∃
and allow other solution relations instead of the functions from FPt. We de�ne the
operators wsol and ssol mapping from classes of functions to complexity classes.
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The classes wsol · R and ssol · R contain all languages that can be accepted by
nondeterministic Turing machines having a weak or a strong solution relation, from
R, respectively. The di�erence between wsol and ssol lies in the treatment of words
not belonging to the language in question. For languages in wsol · R, the solution
relations are not de�ned and for languages in ssol · R, the solution relations are
required to indicate whether a given word does not belong to the language.

We prove the following results among others.

wsol · FP = P ssol · FP = P
wsol · fun · P = UP ssol · fun · P = UP ∩ coUP
wsol · fun · UP = UP ssol · fun · UP = UP ∩ coUP
wsol · fun · NP = NP ssol · fun · NP = NP ∩ coNP



Chapter 2

Preliminaries

In this chapter we de�ne basic concepts of computational complexity that are used
in this thesis. Almost everything can be found in a standard book on computational
complexity theory, for instance [WW86, BDG88, BDG90, Pap94]. We assume that
the reader is familiar with the meaning and notation of the basic set theoretic and
logical concepts and introduce only the most important things.

2.1 Words and Languages
Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers and N+ = N − {0} the
set of all positive natural numbers. Let Pol denote the set of all polynomials in one
variable over N.

In complexity theory we study the complexity of sets of words over a �nite
alphabet. Without loss of generality we use Σ = {0, 1} as our alphabet. For two
words u and v we de�ne the concatenation of u and v as the word uv. For a word
w and a language A we de�ne the concatenation as well, wA = {wu : u ∈ A}. For
letters a ∈ Σ let a0 = ε and an+1 = aan for all n ∈ N, where ε denotes the empty
word. We de�ne Σ0 = {ε} and Σi+1 = {uv : u ∈ Σ ∧ v ∈ Σi}. The set Σ∗ =

⋃
i∈N

Σi

is the set of all �nite words over Σ. The length |u| of a word u is the unique i ∈ N
such that u ∈ Σi. For an element w ∈ Σ∗, w = a1a2a3 . . . an, ai ∈ Σ, we de�ne
biti(w) = ai and lsb(w) = an.1

We de�ne some special subsets of Σ∗. The set Σ≤n =
⋃
i≤n

Σi of all words of length

at most n and the set Σ<n =
⋃
i<n

Σi of all words shorter than n.
Let ≤lex denote the standard quasi lexicographical ordering on Σ∗ de�ned as

follows. For two words u and v it holds that u ≤lex v if and only if |u| < |v|, or
1 The abbreviation lsb stands for least signi�cant bit.

5



6 Chapter 2. Preliminaries

|u| = |v| and there exist three words w, u′, v′ ∈ Σ∗ such that u = w0u′ and v = w1v′.
A language A over Σ is a subset of Σ∗. For a language A we de�ne A≤n = A∩Σ≤n,

A<n = A ∩ Σ<n and A=n = A ∩ Σn. The cardinality of a set A is denoted by ||A||.
The set FINITE is the set of all �nite languages

FINITE = {L ⊆ Σ∗ : ||L|| < ∞}.

The characteristic function cA of a language A is de�ned as

cA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

The complement A of a language A in Σ∗, is the set of words not being in A,
A = Σ∗ − A.

We often need to map pairs of words to words. Let 〈. , .〉 be a pairing func-
tion having the standard properties such as being polynomial-time computable and
polynomial-time invertible. We overload the notation 〈. . .〉 to also denote pairing
functions mapping from Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
k

to Σ∗ for k ≥ 2, N× N to Σ∗ and Σ∗ × N to

Σ∗ that are also computable and invertible in polynomial time.
Additional to the standard quanti�ers ∃ and ∀, we use the symbol ∃!! to express

that there exists something exactly once.
In structural complexity theory sets of languages � so-called complexity classes �

are studied. There is a large number of quite useful operators that map complexity
classes to complexity classes. Those of them that are used in this thesis will be
de�ned below.

For a complexity class C the class of all complements of languages in C is denoted
by coC, coC = {A : A ∈ C}. For a complexity class C, ∃ · C is the set of all languages
L such that there exists a language C ∈ C and a polynomial p ∈ Pol such that for
all x ∈ Σ∗,

x ∈ L ⇐⇒ (∃y ∈ Σ∗ : |y| ≤ p(|x|))[〈x, y〉 ∈ C].

Analogously we de�ne ∀ · C to be the set of all languages L such that there exist
a language C ∈ C and a polynomial p ∈ Pol such that for all x ∈ Σ∗,

x ∈ L ⇐⇒ (∀y ∈ Σ∗ : |y| ≤ p(|x|))[〈x, y〉 ∈ C].

For classes of sets C1 and C2,

C1 ∧ C2 = {A ∩B : A ∈ C1 ∧ B ∈ C2}
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and

C1 ∨ C2 = {A ∪B : A ∈ C1 ∧ B ∈ C2}
and

C1 C2 = {A−B : A ∈ C1 ∧ B ∈ C2}.
For a set A we de�ne proj21(A) = {x ∈ Σ∗ : (∃y ∈ Σ∗)[〈x, y〉 ∈ A]} and for a class

C we de�ne A ∈ π2
1 · C ⇐⇒ (∃B ∈ C)[A = proj21(B)].

We will need some more operators that will be de�ned later.
In this thesis we will provide �gures that illustrate the inclusion structure of the

studied complexity classes. Since ⊆ is a partial order on the power set of Σ∗ we will
use Hasse diagrams.

2.2 Turing Machines and Reductions
The underlying computational model is the multi-tape Turing machine. A more
formal de�nition can be found in [WW86]. Due to the generally accepted thesis of
Church that the intuitively computable functions are the same as the Turing com-
putable ones, we can describe algorithms sometimes in an intuitive way. Polynomial-
time Turing machines are Turing machines that on every input x carry out at most
polynomially many steps before they reach a �nal state. We consider determinis-
tic and nondeterministic polynomial-time Turing machines, DPTMs and NPTMs,
respectively.

A DPTM M accepts a language L if and only if on every input x ∈ Σ∗, M halts
on input x in an accepting con�guration if and only if x ∈ L.

Without loss of generality, every con�guration of a nondeterministic Turing ma-
chine that is not �nal has exactly two succeeding con�gurations. Let M be a non-
deterministic Turing machine and x an input. The tree of all con�gurations on this
computation is denoted by M(x). The root of this tree is the start con�guration
and every inner node has its two succeeding con�gurations as children.

A computation path is a path in the computation tree from the root to any
leaf. Such a path is represented by a 0-1-word. For this purpose the succeeding
con�gurations of any con�guration are identi�ed by 0 and 1, respectively. The set
of all accepting paths of a computation M(x) is denoted by accM(x). A NPTM M
accepts a language L if and only if on every input x ∈ Σ∗, x ∈ L if and only if
there exists an accepting path of M(x). The language L(M) is the set of all inputs
accepted by some DPTM or NPTM M .

A normalized computation is a nondeterministic computation if all paths of the
computation tree have the same length. If for every input the corresponding compu-
tation of a nondeterministic Turing machine is normalized than we call this machine
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normalized. Without loss of generality all Turing machines are assumed to be nor-
malized in this thesis.

We can provide a Turing machine M with an oracle A as an additional resource.
Such an oracle Turing machine MA has a special query tape in order to test member-
ship of words to a set A, called the oracle. Whenever the machine reaches a special
query state it receives the answer �Yes� if the word on the query tape belongs to A
and receives �No� otherwise. This answer requires only one step in the computation.

So we can interpret an oracle Turing machine as a Turing machine with a sub-
routine testing membership for A. The resources needed by this subroutine are
irrelevant.

Reductions are the standard method to compare languages with regard to com-
plexity. We will need many-one reductions [Kar72] (also known as Karp reductions)
and Turing-reductions [Coo71] (also known as Cook reductions).

De�nition 2.2.1 Let A and B be two languages.

(1) A language A is said to be many-one reducible to a language B (A≤p
m B) if

and only if there exists a polynomial-time computable total function f such
that for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∈ B.

(2) A language A is said to be Turing-reducible to a language B (A≤p
T B) if and

only if there exists an oracle-DPTM M such that

A = L(MB).

We de�ne the completeness of a language with respect to a reduction ≤p
ω as

above and a complexity class C. A set A is called ≤p
ω-complete for C if and only if

(1) A ∈ C, and
(2) (∀X ∈ C)[X ≤p

ω A].

A class C is closed under ≤p
ω reductions, if for all sets A and B,

(A ≤p
ω B ∧ B ∈ C) =⇒ A ∈ C.

We say that a set is trivial if it is the empty set ∅ or Σ∗, and otherwise we call it
nontrivial. We often need a complexity class C to be closed under intersection and
union, respectively, with P sets. Note that this property is ensured by C being closed
under≤p

m reductions and containing nontrivial sets. From now on, let a complexity
class be a class of sets containing nontrivial sets.
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2.3 Important Complexity Classes
The complexity of computations of sets can be compared on the basis of resources
which the corresponding Turing machine needs. The main resources we consider are
space and time.

The complexity class P is the set of all languages that can be decided by a deter-
ministic polynomial-time Turing machine. Analogously, the complexity class NP is
the set of all languages that can be accepted by a nondeterministic polynomial-time
Turing machine. The class NP contains≤p

m-complete sets. The standard example is
the set of all satis�able boolean formulas SAT.

For a complexity class C, the classes PC and NPC are the sets of languages that
can be decided by a deterministic polynomial-time oracle Turing machine (DPOM)
or accepted by a nondeterministic polynomial-time oracle Turing machine (NPOM),
respectively, with some oracle from C.

2.3.1 The Polynomial Hierarchy
To provide a generalization of the classes P and NP, the polynomial hierarchy was
de�ned by Meyer and Stockmeyer [MS73, Sto77]. In addition to Meyer and Stock-
meyer, Wrathall proved several important properties [Wra77].

De�nition 2.3.1 [MS73, Sto77]

(1) ∆p
0 = Σp

0 = Πp
0 = P

(2) For k ≥ 1, ∆p
k = PΣp

k−1, Σp
k = NPΣp

k−1, and Πp
k = coΣp

k.

(3) The polynomial hierarchy is de�ned as

PH =
⋃

k∈N
Σp

k.

So for instance ∆p
1 = P, Σp

1 = NP, and ∆p
2 = PNP. The concept polynomial

hierarchy will be used simultaneously for the complexity class PH and the hierarchy
formed by the classes Σp

k, Πp
k, and ∆p

k, k ≥ 1.
The inclusion structure of the polynomial hierarchy is shown in Figure 2.1.
The operators ∃ and ∀ can be used to characterize the Σp

k and Πp
k levels of the

polynomial hierarchy. It is known that ∃ · Σp
k = Σp

k, ∃ · Πp
k = Σp

k+1, ∀ · Σp
k = Πp

k+1,
and ∀ · Πp

k = Πp
k for all k ≥ 1.
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P

NPcoNP

∆p
2

Σp
2Πp

2

∆p
3

Σp
3Πp

3

∆p
4

PH

...

Figure 2.1: The Polynomial Hierarchy

With ∃ · P = NP and ∀ · P = coNP we get:

Σp
k = ∃ · ∀ · ∃ · · · · Q·︸ ︷︷ ︸
k alternating operators

P,

where Q = ∃ if k is odd and Q = ∀ if k is even. Similarly,

Πp
k = ∀ · ∃ · ∀ · · · · Q·︸ ︷︷ ︸
k alternating operators

P,

where Q = ∀ if k is odd and Q = ∃ if k is even.
All classes of the polynomial hierarchy are closed under many-one reductions

and contain many-one complete sets.
It is not known whether the polynomial hierarchy is �nite. But there are many

conditions under which the polynomial hierarchy collapses. In particular, the poly-
nomial hierarchy satis�es the upward collapse property [Sto77].
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For every k ≥ 1,

(1) Σp
k = Πp

k =⇒ PH = Σp
k.

(2) Σp
k = Σp

k+1 =⇒ PH = Σp
k.

(3) ∆p
k = Σp

k =⇒ PH = ∆p
k.

Much more can be said about the polynomial hierarchy. We refer the interested
reader to any textbook on complexity theory, for instance [WW86, BDG88, BDG90,
Pap94].

2.3.2 The Boolean Hierarchy
The structure of the complexity classes below ∆p

2 has been receiving much attention.
One hierarchy, the boolean (or hausdor�) hierarchy, is of interest for our work. It
has been introduced by a number of authors using a variety of de�nitions [Wec85,
CH86, KSW87, CGH+88, CGH+89].

Hausdor� proved [Hau14] that for a set-ring S the boolean closure BC(S) consists
of all di�erences of nested sets from S.2

Lemma 2.3.2 [Hau14] Let S be a set-ring.

BC(S) = {A1 \ A2 \ . . . \ Ak−1 \ Ak : Ak ⊆ Ak−1 ⊆ . . . ⊆ A1 ∧
A1, . . . , Ak ∈ S ∧ k ∈ N+}.

The concept of di�erences of nested sets can be used to de�ne the hausdor� or
boolean hierarchy.

De�nition 2.3.3

(1) For all k ≥ 1,

BHk(NP) = {A1 \ A2 \ . . . \ Ak−1 \ Ak : Ak ⊆ Ak−1 ⊆ . . . ⊆ A1 ∧
A1, . . . , Ak ∈ NP}.

(2) The hausdor� or boolean hierarchy over NP is de�ned as

BH(NP) =
⋃

k≥1

BHk(NP).

The classes BHk(NP) and coBHk(NP) form its k-th level.
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P

NPcoNP

BH2(NP)coBH2(NP)

BH3(NP)coBH3(NP)

BH

∆p
2

...

Figure 2.2: The Boolean Hierarchy

We will refer to the boolean hierarchy over NP as the boolean hierarchy and use
the classical notation for it. That means BC(NP) = BH(NP) = BH and BHk(NP) =
BHk. So for instance BH2 is exactly the class DP [PY84].

The inclusion structure of the boolean hierarchy is shown in Figure 2.2.
The boolean hierarchy is a well-studied object, a few papers shall be mentioned,

[Wec85, CH86, KSW87, CGH+88, CGH+89].
As in the case of the polynomial hierarchy, we do not know whether the boolean

hierarchy is �nite. But the boolean hierarchy possesses the upward collapse property.
In particular, for all k ≥ 1,

(1) BHk = coBHk =⇒ BH = BHk.

(2) BHk = BHk+1 =⇒ BH = BHk.

2 For the sake of simplicity, we write A1\A2\. . .\Ak−1\Ak instead of A1\(A2\(. . .\(Ak−1\Ak) . . .)).
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2.4 Miscellaneous
The concept of Turing machines is a uniform model of computation. Following
Schnorr [Sch76] we can use Turing machines in a nonuniform way. We use the
de�nition of Karp and Lipton [KL80]:

De�nition 2.4.1 Let F bet a set of functions mapping from N to Σ∗ and let C be
a complexity class. The nonuniform complexity class C/F is the set of all languages
A for which there exist a set C ∈ C and a function f ∈ F such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ 〈x, f(|x|)〉 ∈ C.

We denote the set of all polynomial-length bounded functions by poly,

poly = {f ∈ F : (∃p ∈ Pol)(∀n ∈ N)[|f(n)| ≤ p(n)]}.

The set F is the set of all functions and particularly contains noncomputable
functions.

Furthermore we need the complexity classes UP de�ned in [Val76], RP and ZPP
de�ned in [Gil77].

A language L belongs to UP if there exists an NPTM M having no accepting
path for each x 6∈ L and accepting on exactly one path for each x ∈ L. For a
language L from RP there exists an NPTM M not accepting for all x 6∈ L and
accepting on at least 50% of the paths for each x ∈ L.

It seems that the class RP is not closed under complement. We denote RP∩coRP
by ZPP. Note that UP, RP and ZPP are promise classes.





Chapter 3

Function and Relation Classes

In this chapter we present a uniform de�nition for classes of functions and relations.
We completely analyze the inclusion structure of such classes. In order to compare
classes of relations and functions with respect to the existence of re�nements, we
extend the so-called operator method [VW93, HW00] to make it applicable to such
cases. Our approach sheds new light on well-studied classes like NPSV and NPMV,
allows to give simpler proofs for known results, and shows that the spectrum of func-
tion and relation classes closely resembles the spectrum of well-known complexity
classes.

3.1 Introduction
In his in�uential papers �A Taxonomy of Complexity Classes of Functions� [Sel94]
and �Much Ado about Functions� [Sel96], Selman started a line of research that
studies the structural complexity of classes of relations and functions. In this paper
an important role is played by the function class NPSV and the relation class NPMV
(see [BLS84, BLS85]). A function f is in NPSV if and only if there exists a nondeter-
ministic polynomial-time Turing machine (NPTM) M such that for all x ∈ Σ∗, f(x)
is the only output made on any path of M(x) if f(x) is de�ned, and M(x) outputs no
value if f(x) is unde�ned. NPSV stands for nondeterministically polynomial-time
computable �single-valued functions�. Since NPTMs have the ability to compute dif-
ferent values on di�erent computation paths, it is natural to de�ne a class that takes
advantage of this. A relation r is in NPMV if and only if there exists an NPTM M
such that for all x ∈ Σ∗, 〈x, y〉 ∈ r, if and only if y is output on some computation
path of M(x).1 NPMV stands for nondeterministically polynomial-time computable
�multi-valued functions�. The classes NPMV and NPSV have played an important
role in studying the possibility of computing unique solutions [HNOS96]. Other pa-
1 The literature uses the notation r(x) 7→ y.

15
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pers have studied the power of NPMV and NPSV when used as oracles [FHOS97]
and complements of NPMV relations [FGH+96].

Even though NPMV and the notion of relations are well-established in theoretical
computer science, we will take a mathematical point of view and call the objects in
NPMV and similarly in any class rel · C relations.

In this chapter we take a systematic approach to classes like fun · NP and rel · NP.
Our approach to classes of functions and relations does not only lead to natural and
intuitive notations. It also allows to prove very general theorems, special cases of
which are widely spread over the literature. We mention that a systematic approach
to function and relation classes yields obvious notational bene�ts (see in [HV95])
and has been successfully taken for classes of median functions in [VW93] and for
classes of optimization functions in [HW00].

The crucial point of this systematic approach is to base the de�nition of rela-
tion classes on well-studied complexity classes instead of the computation of Turing
machines. We will focus on function and relation classes being de�ned over the poly-
nomial hierarchy, though our results apply to a wide variety of complexity classes.
Following Wechsung [Wec00] we de�ne general operators fun and rel. For a com-
plexity class C let

(1) r ∈ rel · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}].

(2) f ∈ fun · C ⇐⇒ f ∈ rel · C ∧ (∀x ∈ Σ∗)[||f(x)|| ≤ 1].

One can easily see that rel · NP = NPMV and fun · NP = NPSV. Interestingly
enough, also rel · P and fun · P have appeared in the literature before, denoted by
NPMVg and NPSVg [Sel96], respectively. The class rel · coNP has been studied in
detail in [FGH+96], dubbed as complements of NPMV relations.

Our approach sheds new light on a wide variety of seemingly isolated results
involving the mentioned function and relation classes. For instance, the di�erence
hierarchy based on NPMV as considered in [FHOS97] is the �rel-version� of the
boolean hierarchy (over NP), i. e., for all k, NPMV(k) = rel · BHk. After proving
a number of inclusion relations we use the so-called operator method that has al-
ready been successfully applied to other scenarios [VW93, HW00] to argue that the
inclusions we did not prove are unlikely to hold. We extend the operator method to
make it applicable to the case of comparing classes of functions and relations.

The chapter is organized as follows. After giving the most relevant de�nitions
in Section 3.2 we prove general results regarding the inclusion relations of classes of
functions and classes of relations in Section 3.4. The interaction of operators as ∃,∀,
and others with our operators fun and rel is studied in section 3.5. This enables
us to use the operator method for our purposes in Section 3.6 and we completely
analyze the inclusion structure of classes of functions and classes of relations that
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are based on P, NP and coNP. In particular, not only do we give the positive
inclusion results all of which follow from the theorems of Section 3.4, but we also
show that the positive results given are the best to be expected, under reasonable
complexity theoretic assumptions. The latter is achieved by exploiting the modi�ed
operator method and the results from section 3.5. As an example, it turns out that
even though fun · NP and fun · coNP are incomparable with respect to set inclusion
unless NP = coNP, their counterparts containing only total functions, funt · NP and
funt · coNP, satisfy funt · NP ⊆ funt · coNP. In Section 3.7 we generalize an idea
from [HNOS96] and obtain some structural consequences for inclusions for which
the operator method fails.

3.2 Basic De�nitions
A relation r over Σ∗ is a subset of Σ∗, i. e. x and y are in relation r if and only
if 〈x, y〉 ∈ r. The domain of r is dom(r) = {x ∈ Σ∗ : (∃y ∈ Σ∗)[〈x, y〉 ∈ r]} and
the range of r is range(r) = {y ∈ Σ∗ : (∃x ∈ Σ∗)[〈x, y〉 ∈ r]}. For all x ∈ Σ∗, let
r(x) = {y ∈ Σ∗ : 〈x, y〉 ∈ r}.

For two relations r1 and r2 we de�ne the concatenation r1 · r2 as follows

r1 · r2 = {〈x, uv〉 : 〈x, u〉 ∈ r1 ∧ 〈x, v〉 ∈ r2}.

We de�ne the concatenation of two classes of relations R1 and R2 as well,

R1 ·R2 = {r1 · r2 : r1 ∈ R1 ∧ r2 ∈ R2}.

For relations r1 and r2, r1 is called a re�nement of r2 if and only if dom(r1) =
dom(r2) and r1 ⊆ r2. If r1 is a re�nement of r2 and r1 is a function we write
r1 ¹ref r2. Let R1 and R2 be classes of relations, we de�ne R2 ⊆c R1 if and only if
every relation r2 ∈ R2 has a re�nement r1 ∈ R1.

Following [VW93] the operator U is de�ned as follows: A ∈ U · C if and only if
there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

(a) ||{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1 and

(b) x ∈ A ⇐⇒ ||{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1.

It is not hard to see that U · P = UP and U · NP = NP.
The following classes of functions and relations will be of interest.

De�nition 3.2.1

(1) The function class FP is the set of all partial functions computed by determin-
istic polynomial-time Turing machines.
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For any complexity class C let

(2) FPC (FPC) be the set of all functions that can be computed by deterministic
polynomial-time oracle Turing machines with adaptive (nonadaptive/parallel)
oracle queries to an oracle from C,

(3) [Wec00] r ∈ rel · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[r(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}],

(4) [Wec00] f ∈ fun · C ⇐⇒ f ∈ rel · C ∧ (∀x ∈ Σ∗)[||f(x)|| ≤ 1],

(5) [HW00] f ∈ max · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[f(x) = max{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}],

(6) [HW00] f ∈ min · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[f(x) = min{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}],

(7) [WT92] f ∈ # · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[f(x) = ||{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}||].

Note that the classes min · C and max · C may contain partial functions in con-
trast to the original de�nition in [HW00]. This is due to the fact that we use the
de�nition that the minimum and the maximum of the empty set is not de�ned.

Clearly, for all classes C closed under ≤p
m reductions, rel · C and fun · C are in

fact subsets of C, rel · C being a set of (polynomially length-bounded) relations and
fun · C a set of (polynomially length-bounded) functions. For any relation class R
de�ned above, the subset of all total functions or relations will be denoted with the
additional subscript t, Rt.

In regard to computing a relation r, we want to point out that instead of deciding
membership to r, we are interested in computing r(x) for any given x.

Note that by de�nition FP, fun · C, max · C, and min · C are sets of functions
mapping from Σ∗ to Σ∗, whereas in contrast # · C is a set of functions mapping from
Σ∗ to N. In order to study the inclusion structure between fun · C and rel · C on the
one hand and # · C on the other hand, we have to look at the �mapping-from-Σ∗-
to-N� version of fun · C and rel · C. Of course this does not pose a serious problem
since there exist easily, i. e., polynomial-time, computable and invertible bijections
between Σ∗ and N allowing us to take either view at the objects in fun · C or rel · C for
complexity classes C having nice closure properties. In light of this comment, recall
that max · C and min · C have originally been de�ned as sets of functions mapping
from Σ∗ to N [HW00].

For some complexity classes C, fun · C and rel · C are well-known classes and have
been studied in the literature before.
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Proposition 3.2.2

(1) rel · P = NPMVg.

(2) rel · NP = NPMV.

(3) rel · coNP = coNPMV.

(4) fun · P = NPSVg.

(5) fun · UP = UPF.

(6) fun · NP = NPSV.

For instance NPMV, NPSV, NPMVg, and NPSVg have been de�ned and studied
in [Sel96], coNPMV was de�ned in [FHOS97] and UPF can be found in [BGH90]. A
di�erent framework for de�ning and generalizing function classes has been considered
in [KSV98].

We de�ne the following operators on classes of relations. This is a generalization
of the de�nition in [Hem03], where some of these operators were de�ned on classes
of functions.

De�nition 3.2.3 For any class R of relations let

(1) (see also [VW93]) A ∈ U · R ⇐⇒ cA ∈ R,

(2) A ∈ Sig · R ⇐⇒ (∃r ∈ R)(∀f ¹ref r)(∀x ∈ Σ∗)
[x ∈ A ⇐⇒ f(x) ∈ Σ∗ − {ε}],

(3) A ∈ SIG · R ⇐⇒ (∃r ∈ R)(∀f ¹ref r)(∃p ∈ Pol)(∀x ∈ Σ∗)[(
f(x) ≤lex 1p(|x|)) ∧ (

x ∈ A ⇐⇒ f(x) <lex 1p(|x|))],

(4) A ∈ C≥ · R ⇐⇒ (∃r ∈ R)(∃g ∈ FPt)(∀f ¹ref r)(∀x ∈ Σ∗)
[x ∈ A ⇐⇒ f(x) ≥lex g(x)],

(5) A ∈ C= · R ⇐⇒ (∃r ∈ R)(∃g ∈ FPt)(∀f ¹ref r)(∀x ∈ Σ∗)
[x ∈ A ⇐⇒ f(x) = g(x)],

(6) A ∈ C≤ · R ⇐⇒ (∃r ∈ R)(∃g ∈ FPt)(∀f ¹ref r)(∀x ∈ Σ∗)
[x ∈ A ⇐⇒ f(x) ≤lex g(x)],

(7) A ∈ ⊕ · R ⇐⇒ (∃r ∈ R)(∀f ¹ref r)(∀x ∈ Σ∗)
[x ∈ A ⇐⇒ the least signi�cant bit of f(x) is 1].
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The for-all-re�nements quanti�er allows us to state Theorem 3.6.2 which will
be the key lemma for the operator method. We would not be able to prove The-
orem 3.6.2 if we used the existence quanti�er instead. If R is a class of functions,
the for-all-re�nements quanti�er is super�uous. Note that the operators de�ned
above can easily be modi�ed to apply to classes of functions that map to N. For
instance, in the de�nition of Sig one has to change �f(x) ∈ Σ∗ − {ε}� to �f(x) > 0�
or in the de�nition of ⊕ one has to change �the least signi�cant bit of f(x) is
1� to �f(x) ≡ 1 mod 2� (see [HW00]). Note that in general U · C = U · # · C
(see also [HVW95]). It follows, for instance, U · coNP = U · PNP or equivalently
U · coNP = UPNP, since it is known that # · coNP = # · PNP [KST89].

3.3 Relations as Oracles
We mention classes of relations computed in polynomial time with access to an
oracle. If the oracle is a relation, we use the oracle in a di�erent way from the case
of a standard set oracle. Let f be a function. For a Turing machine M with access
to f as an oracle, we write M (f). This is like a common oracle Turing machine
with the following di�erence. If the machine asks the oracle about a word x then it
receives the value f(x) instead of a �Yes/No� answer. If x 6∈ dom(f), the machine
receives the special symbol ⊥.

Using this, we can de�ne the classes FPR, PR and NPR.

De�nition 3.3.1 Let r be a relation, and R be a class of relations.

(1) FPr = {g : (∃M () : M () is a DPOM )(∀f ¹ref r)[M (f) computes g]}.
(2) FPR =

⋃
r∈R

FPr.

(3) Pr = {L : (∃M () : M () is a DPOM )(∀f ¹ref r)[L(M (f)) = L]}.
(4) PR =

⋃
r∈R

Pr.

(5) NPr = {L : (∃M () : M () is a NPOM )(∀f ¹ref r)[L(M (f)) = L]}.
(6) NPR =

⋃
r∈R

Pr.

Note that this de�nition involves classes for which the oracle is from a class of
functions, since every function f has a unique re�nement, namely f itself.

The above de�nition for FPR and PR, respectively, di�ers from that de�nition
given in [FHOS97].
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The authors gave the following de�nitions:

FPr = {s : (∃g ¹ref s)(∃M () : M () is a DPOM)(∀f ¹ref r)[M (f) computes g]}.
FPR =

⋃
r∈R

FPr.

This implies that noncomputable relations are contained in FPFP.
Let K an arbitrary nondecidable set, for instance the Halting problem. We de�ne

the following relation

r = cK ∪ Σ∗ × {2}.

The constant function f(x) ≡ 2 is obviously a re�nement of r and of course
contained in FPFP. But the relation r is noncomputable, at least in the following
sense.

A relation r is called computable, if and only if there exists a Turing machine M
which for every input x outputs the set r(x).

Note that every relation r satisfying ||{x : ||r(x)|| ≥ 2}|| = ∞ contains uncount-
ably many re�nements, thus some of them are noncomputable.

For these reasons, we use De�nition 3.3.1 to avoid such problems.
A third possibility to de�ne such classes would be to replace the for-all-re�nement

quanti�er by the existence quanti�er in De�nition 3.3.1.

3.4 General Results
As already mentioned, our de�nition of the operators fun and rel captures a number
of well-known function and relation classes. We will now state quite general results
regarding the operators fun and rel.

Clearly fun and rel (and also funt and relt) are monotone (with respect to set in-
clusion) operators mapping complexity classes to relation or function classes. More-
over, the two operators rel and fun preserve the inclusion structure of the complexity
classes they are applied to.

Theorem 3.4.1 Let C1 and C2 complexity classes both being closed under≤p
m reduc-

tions. The following statements are equivalent:

(1) C1 ⊆ C2.

(2) rel · C1 ⊆ rel · C2.

(3) fun · C1 ⊆ fun · C2.
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Proof The implications (1) → (2) and (2) → (3) are obvious. We show (3) → (1):
Let C1 and C2 be complexity classes such that C1 is closed under≤p

m reductions.
Suppose fun·C1 ⊆ fun·C2. Let A ∈ C1. De�ne a function f to be f = {〈x, 1〉 : x ∈ A}
and note that f ∈ C1 since C1 is closed under≤p

m reductions. Clearly f ∈ fun · C1.
By our assumption fun · C1 ⊆ fun · C2 it follows that f ∈ fun · C2.

Hence there exist a set B in C2 and a polynomial p such that for all x ∈ Σ∗,

f(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

It follows that for all x ∈ Σ∗, x ∈ A ⇐⇒ 〈x, 1〉 ∈ B. In other words, A≤p
m B and

thus, since C2 is closed under≤p
m reductions, A ∈ C2. ❏

It follows from Theorem 3.4.1 that rel · P ⊆ rel · NP∩rel · coNP and that rel · NP
and rel · coNP are incomparable with respect to set inclusion unless NP = coNP.
Note that when replacing fun and rel by funt and relt, respectively, in the above
theorem only the implications (1) → (2) and (2) → (3) hold. See Corollary 3.4.7 for
example.

Observation 3.4.2
For classes of relations R and S it holds that R ⊆c S =⇒ Rt ⊆c St.

Thus all inclusions that hold between classes of partial relations do also hold
between the corresponding classes of total relations. However, some inclusions be-
tween classes of total functions do not carry over to their partial counterparts un-
less some unlikely complexity class collapses occur. For instance we will see that
funt · NP ⊆ funt · coNP, yet fun · NP 6⊆ fun · coNP unless NP = coNP.

A �rst link between classes of relations on the one side and classes of sets on the
other side is given in the following theorem.

Theorem 3.4.3 For any complexity class C being closed under≤p
m reductions and

any set A,

(1) A ∈ ∃ · C if and only if A = dom(r) for some relation r ∈ rel · C.
(2) A ∈ U · C if and only if A = dom(f) for some function f ∈ fun · C.

Proof (1) Let r be a binary relation over Σ∗, C be a complexity class being closed
under≤p

m reductions, and A ∈ ∃ · C.
Suppose r ∈ rel · C. Hence, there exist a set B ∈ C and a polynomial p such that

for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.
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By de�nition, dom(r) = {x : (∃y)[〈x, y〉 ∈ r]}. But note that for all x, y ∈ Σ∗,

〈x, y〉 ∈ r ⇐⇒ |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B.

It follows that dom(r) ∈ ∃ · C.
Assume A ∈ ∃ · C. Hence, there exist a set B ∈ C and a polynomial p such that

for all x ∈ Σ∗,

x ∈ A ⇐⇒ (∃y ∈ Σ∗)[|y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B].

De�ne

r = {〈x, y〉 : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}
and observe that r ∈ rel · C and also dom(r) = A.

The proof of (2) is the same as above and thus omitted. ❏

In [FGH+96], the authors noted that rel · coNP is surprisingly powerful since
rel · coNP relations are almost as powerful as relations from rel · Σp

2.
We strengthen this to the claim that the well-known projection theorem carry

over to classes of relations.

Theorem 3.4.4
If a complexity class C is closed under≤p

m reductions then rel · ∃ · C ⊆ π2
1 ·rel · C.

Proof Let r ∈ rel · ∃ · C. Hence there exist a set A ∈ ∃ · C and a polynomial p such
that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ A}.
It follows that there also exist a set B ∈ C and a polynomial q such that for all
x, y ∈ Σ∗,

〈x, y〉 ∈ A ⇐⇒ (∃z : |z| ≤ q(|〈x, y〉|))[〈x, y, z〉 ∈ B].

Hence, for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ (∃z : |z| ≤ q(|〈x, y〉|))[〈x, y, z〉 ∈ B]}.
De�ne

B′ = B ∩ {〈x, y, z〉 : |y| ≤ p(|x|) ∧ |z| ≤ q(|〈x, y〉|)}.
Clearly, B′ ∈ C. Let q′ be a polynomial such that for all x, y, z ∈ Σ∗ satisfying
|y| ≤ p(|x|) and |z| ≤ q(|〈x, y〉|) it holds that |〈y, z〉| ≤ q′(|x|).
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De�ne a relation s such that for all x ∈ Σ∗,

s(x) = {〈y, z〉 : |〈y, z〉| ≤ q′(|x|) ∧ 〈x, y, z〉 ∈ B′}.

Note that s ∈ rel · C. However, for all x ∈ Σ∗, r(x) = proj21(s(x)). It follows that
r ∈ π2

1 ·rel · C. ❏

Corollary 3.4.5

(1) rel · NP ⊆ π2
1 ·rel · P.

(2) [FGH+96] rel · Σp
2 ⊆ π2

1 ·rel · coNP.

Theorem 3.4.6 Let C be a complexity class being closed under≤p
m reductions.

funt · C ⊆ funt · co(U · C).

Proof Let f ∈ funt · C. Hence there exist a set A ∈ C and a polynomial p such
that for all x ∈ Σ∗,

〈x, y〉 ∈ f ⇐⇒ |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ A.

Or equivalently, since f is a total function we have:

〈x, y〉 6∈ f ⇐⇒ (∃y′ : y 6= y′ ∧ y′ ≤ p(|x|))[〈x, y′〉 ∈ A].

Since C is closed under ≤p
m and f is a total function the right side of the last

equivalence is an U · C predicate. So we have that f ∈ funt · co(U · C) ❏

Corollary 3.4.7

(1) funt · NP ⊆ funt · coNP

(2) funt · Σp
2 ⊆ funt · Πp

2

Note that in contrast fun · NP ⊆ fun · coNP ⇐⇒ NP = coNP.
Historically, classes like FP and in general F∆p

k = FPΣp
k−1 , k ≥ 1, have been

among the �rst function classes studied in complexity theory. We will now see how
these classes relate to classes fun · C and rel · C.
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Theorem 3.4.8 Let C be a complexity class being closed under≤p
m reductions.

(1) funt · C ⊆ (FPt)
U·C∩co(U·C).

(2) fun · C ⊆ rel · C ⊆c FP∃·C.

Proof (1) Let f ∈ funt · C. Hence there exist a set A ∈ C and a polynomial p such
that for all x ∈ Σ∗, 〈x, y〉 ∈ f ⇐⇒ |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ A.

We de�ne a set B as follows:

B = {〈〈x, 0i〉, a〉 : x ∈ Σ∗ ∧ a ∈ {0, 1} ∧
(∃y : y ∈ Σ∗ ∧ |y| ≤ p(|x|) ∧ biti(y) = a)[〈x, y〉 ∈ A]}.

Since f is a total function it holds that B ∈ U · C. From

〈〈x, 0i〉, a〉 6∈ B ⇐⇒ (∃y : y ∈ Σ∗ ∧ |y| ≤ p(|x|) ∧ |y| < i)[〈x, y〉 ∈ A] ⊕
(∃y : y ∈ Σ∗ ∧ |y| ≤ p(|x|) ∧ biti(y) 6= a)[〈x, y〉 ∈ A]

it follows that B ∈ U · C too and so B ∈ co(U · C).
We can compute f(x) in polynomial-time by submitting the following queries

〈〈x, 01〉, 0〉, 〈〈x, 01〉, 1〉, 〈〈x, 02〉, 0〉, 〈〈x, 02〉, 1〉, . . . , 〈〈x, 0p(|x|)〉, 0〉, 〈〈x, 0p(|x|)〉, 1〉

in parallel to the oracle B. This shows funt · C ⊆ (FPt)
U·C∩co(U·C).

(2) The inclusion fun · C ⊆ rel · C is obvious. It remains to show rel · C ⊆c FP∃·C.
Let r ∈ rel · C. Hence there exist a set A ∈ C and a polynomial p such that for

all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ A}.

We de�ne

B = {〈x, y〉 : (∃z ∈ Σ∗)[〈x, z〉 ∈ r ∧ z ≤lex y]}.

Since C is closed under≤p
m reductions, B ∈ ∃ · C. Now we can compute a re�nement

of r. For a given x we query B in a binary search manner to �nd the lexicographically
smallest string y ∈ r(x). ❏

Theorem 3.4.9

(1) For all k ∈ N, F∆p
k ⊆ fun ·∆p

k

(2) [HHN+93] FPNP∩coNP ⊆ fun · NP
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Proof (1) is obvious.
(2) Let f ∈ FPA with A ∈ NP∩coNP. Hence we have NPTMs M1 and M2 for A

and A, respectively. In a Turing machine M that computes f with oracle A we can
substitute a question to the oracle by running the machines M1 and M2 in parallel.
On accepting paths of M1 we continue in the same way as with a �Yes� answer from
the oracle and on accepting paths of M2 we continue in the same way as with a �No�
answer from the oracle. This Turing machine computes f nondeterministically and
shows f ∈ fun · NP. ❏

In [FHOS97] the power of rel · NP and fun · NP oracles has been studied. We
prove some generalized results.

Theorem 3.4.10 Let C be a complexity class.

(1) FPC ⊆ FPfun·C ⊆ FPrel·C = FP∃·C.

(2) FPC ⊆ FPfun·C ⊆ FPrel·C

Proof (1) We will show the inclusions and equalities from left to right. Let f ∈
FPC via a DPOM M and an oracle B ∈ C.

De�ne a function g = {〈x, 1〉 : x ∈ B}. Note that g ∈ fun · C and for all x ∈ Σ∗,
x ∈ B if and only if g(x) = 1. By modifying M in the obvious way it is clear that a
DPOM with oracle g can compute f .

The inclusion FPfun·C ⊆ FPrel·C is obvious.
It remains to show FPrel·C = FP∃·C. Let f ∈ FPrel·C. Hence there exist a DPOM

M and a relation r ∈ rel · C such that M with oracle r computes f . Note that
for all inputs x, and all queries q generated by M(x), and for all of the possibly
di�erent answers the oracle may give to a query �? ∈ r(q)�, M(x) computes the
same value f(x).

Informally put, by Theorem 3.4.12 we know that r has a re�nement g, that is
even a function in min · C. Recall that M (g) by de�nition computes f . We use a
binary search strategy to �nd g(q) for any query q (generated by M(x)) with the
help of an ∃ · C oracle. More formally, let B ∈ C and p be a polynomial such that
for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

De�ne the set

D = {〈x,w〉 : (∃z : |wz| ≤ p(|x|))[〈x,wz〉 ∈ B]}.

Obviously, D ∈ ∃·C. Observe that any query �f(q) =?� made during a computation
by M can be replaced by a series of queries to D, where we query D in a binary
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search manner to �nd the lexicographically smallest string ω such that ω ∈ r(q). It
is not di�cult to see that M can be modi�ed in a way to query D instead of r and
still compute the same function f .

Now suppose that f ∈ FP∃·C via a DPOM M and a set D ∈ ∃ · C. Hence there
exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

x ∈ D ⇐⇒ (∃y : |y| ≤ p(|x|))[〈x, y〉 ∈ B].

We de�ne a relation r such that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

Clearly, any query q made by M to the oracle D can be replaced by a query
�? ∈ r(q)�. If the latter returns a string then q ∈ D, and if the latter returns
the special symbol that signals r(x) = ∅ then q /∈ D.

(2) It is not di�cult to see that the �rst two proofs above also work for the case
that all queries are made in parallel. ❏

Theorem 3.4.11 Let C be a complexity class.

(1) rel · (Prel·C) = rel · (P∃·C).
(2) rel · (NPrel·C) = rel · (NP∃·C).

Proof The proof is analogous to the proof of Theorem 3.4.10. ❏

Other types of well-studied classes of functions are classes of optimization and
counting functions.

Theorem 3.4.12 Let C be a complexity class being closed under≤p
m reductions and

intersection.

(1) max · C ∩min · C = fun · C ⊆ rel · C.
(2) rel · C ⊆c min · C ⊆ fun · (C ∧ ∀ · coC).

(3) rel · C ⊆c max · C ⊆ fun · (C ∧ ∀ · coC)

Proof (a) max · C ∩min · C = fun · C:
Let C be a complexity class being closed under intersection. Let f ∈ fun · C.

Hence there exist a set B ∈ C and a polynomial p such that for all x ∈ dom(f),

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1
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and f(x) is the unique string y, |y| ≤ p(|x|), such that 〈x, y〉 ∈ B. Obviously, for
every x ∈ dom(f),

f(x) = max{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B} and
f(x) = min{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

For all x /∈ dom(f), we have

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 0.

Note that the maximum and the minimum of the empty set are not de�ned.
It follows that f ∈ max · C ∩min · C.
Now suppose f ∈ max · C ∩ min · C. Hence there exist sets C1, C2 ∈ C and

polynomials p1, p2 such that for all x ∈ Σ∗,

f(x) = max{y : |y| ≤ p1(|x|) ∧ 〈x, y〉 ∈ C1} and
f(x) = min{y : |y| ≤ p2(|x|) ∧ 〈x, y〉 ∈ C2}.

De�ne the set B to be

B = {〈x, y〉 : 〈x, y〉 ∈ C1 ∩ C2} ∩ {〈x, y〉 : |y| ≤ min{p1(|x|), p2(|x|)}}
and let p be a polynomial satisfying for all n, p(n) ≥ max{p1(n), p2(n)}. Observe
that B ∈ C and that for all x ∈ dom(f),

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1

and f(x) is the unique string y, |y| ≤ p(|x|), such that 〈x, y〉 ∈ B. For all x /∈ dom(f)
we have

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 0.

It follows that

f(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.
Hence f ∈ fun · C.

(b) The statements fun · C ⊆ rel · C, rel · C ⊆c max · C and rel · C ⊆c min · C are
obvious.

(c) max · C ∪min · C ⊆ fun · (C ∧ ∀ · coC):
Let f ∈ max · C (the case f ∈ min · C is analogous). Hence there exist a set

B ∈ C and a polynomial p such that for all x ∈ Σ∗,

f(x) = max{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.
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Equivalently we can state for all x ∈ Σ∗,

f(x) = y ⇐⇒ 〈x, y〉 ∈ B ∧ (∀z : y <lex z ∧ |z| ≤ p(|x|))[〈x, z〉 /∈ B].

The right hand side of the above equivalence clearly describes a predicate from
C ∧ ∀ · coC and thus f ∈ fun · (C ∧ ∀ · coC). ❏

At the end we will take a quick look at the connection between fun-rel classes
and classes of counting functions. Note that classes # · C are by de�nition classes of
total functions. Since # · C contains functions mapping from Σ∗ to N we now look
at the mapping-from-Σ∗-to-N version of fun · C and rel · C.
Theorem 3.4.13 Let C be a complexity class being closed under≤p

m reductions.

(1) funt · C ⊆ # · C.
(2) relt · C ⊆c # · ∃ · C.

Proof (1) Let f ∈ funt · C and let B ∈ C be a set and p be a polynomial such that

f = {〈x, y〉 : y ≤ 2p(|x|) ∧ 〈x, y〉 ∈ B}.

De�ne a set D to be

D = {〈x, y, z〉 : 〈x, y〉 ∈ B ∧ y ≤ 2p(|x|) ∧ 0 ≤ z < y}.

Since C is closed under≤p
m reductions we conclude D ∈ C. It follows that there exists

a polynomial r such that for all x ∈ Σ∗,

f(x) = ||{w : w ≤ 2r(|x|) ∧ 〈x, w〉 ∈ D}||.

Hence f ∈ # · C.
(2) According to Theorem 3.4.12 we have relt · C ⊆c max · C and hence relt · C ⊆c

max · ∃ · C. It was shown in [HW00] that max · ∃ · C ⊆ # · ∃ · C. ❏

Theorem 3.4.14 For any complexity classes C,K closed under≤p
m reductions,

# · K ⊆ funt · C ⇐⇒ # · coK ⊆ funt · C.

Proof We have to prove only one direction. Let f ∈ # · K. Hence there exists a
polynomial p and a set B ∈ K such that

f(x) = ||{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}||.
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We de�ne

g(x) = ||{y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 6∈ B}||.

Obviously, g ∈ # · coK and f(x) = 2p(|x|) − g(x). By our assumption we have
g ∈ funt · C and there exist a polynomial q and a set D ∈ C such that

g(x) = z ⇐⇒ z ≤ 2q(|x|) ∧ 〈x, z〉 ∈ D.

The set

D′ = {〈x, z〉 : z ≤ 2q(|x|) ∧ 〈x, 2p(|x|) − z〉 ∈ D}

is also from C, since C is closed under≤p
m reductions. So we have

f(x) = z ⇐⇒ 2p(|x|) − 2q(|x|) ≤ z ≤ 2p(|x|) ∧ 〈x, z〉 ∈ D′.

Without loss of generality, p(n) < q(n) for all n and since z ∈ N:

f(x) = z ⇐⇒ z ≤ 2p(|x|) ∧ 〈x, y〉 ∈ D′.

It follows that f ∈ funt · C. ❏

3.5 Operators on Function and Relation Classes
In this section our focus is on the interaction of various operators with classes of the
form fun · C or rel · C where C is a complexity class.

Theorem 3.5.1 Let C, C1, and C2 be complexity classes. Let C be closed under≤p
m.

(1) rel · (C1 ∧ C2) = rel · C1 ∧ rel · C2.

(2) rel · (C1 ∨ C2) = rel · C1 ∨ rel · C2.

(3) rel · (C1 ∩ C2) = rel · C1 ∩ rel · C2.

(4) rel · (C1 ∪ C2) = rel · C1 ∪ rel · C2.

(5) rel · (coC) = co (rel · C).
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Proof (1). Suppose r ∈ rel · (C1 ∧ C2). Hence there exist a set B ∈ C1 ∧ C2 and
a polynomial p such that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

Thus there also exist sets C1 ∈ C1 and C2 ∈ C2 such that B = C1 ∩ C2. De�ne
relations r1 and r2 such that for all x ∈ Σ∗,

r1(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ C1}

and

r2(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ C2}.

Clearly r1 ∈ rel · C1 and r2 ∈ rel · C2.
It follows that for all x ∈ Σ∗, r(x) = r1(x) ∩ r2(x) and thus r = r1 ∩ r2. This

shows r ∈ rel · C1 ∧ rel · C2.
Now let r ∈ rel · C1 ∧ rel · C2. Hence there exist relations s1 ∈ rel · C1 and

s2 ∈ rel · C2 such that r = s1 ∩ s2. Let D1 ∈ C1, D2 ∈ C2, and p1, p2 ∈ Pol such that
for all x ∈ Σ∗,

s1(x) = {y : |y| ≤ p1(|x|) ∧ 〈x, y〉 ∈ D1}

and

s2(x) = {y : |y| ≤ p2(|x|) ∧ 〈x, y〉 ∈ D2}.

De�ne

D′
1 = {〈x, y〉 : |y| ≤ min{p1(|x|), p2(|x|)} ∧ 〈x, y〉 ∈ D1}.

Since C1 is closed under≤p
m reductions we have D′

1 ∈ C1. Let q be a polynomial such
that q(n) ≥ max{p1(n), p2(n)}. Note that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D′
1 ∩D2}.

Hence r ∈ rel · (C1 ∧ C2).
(2) can be shown quite similarly to (1).
(3). Let r ∈ rel · (C1 ∩ C2). Hence there exist a set B ∈ C1 ∩ C2 and a polynomial

p such that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

It follows that r ∈ rel · C1 and r ∈ rel · C2 via B and p.
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Now let r ∈ rel · C1 ∩ rel · C2. Let C1 ∈ C1, C2 ∈ C2, and p1, p2 be polynomials
such that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p1(|x|) ∧ 〈x, y〉 ∈ C1}

and

r(x) = {y : |y| ≤ p2(|x|) ∧ 〈x, y〉 ∈ C2}.

De�ne

B = C1 ∩ {〈x, y〉 : |y| ≤ min{p1(|x|), p2(|x|)}}.

Note that

B = C2 ∩ {〈x, y〉 : |y| ≤ min{p1(|x|), p2(|x|)}}.

Since C1 and C2 are closed under≤p
m reductions we conclude B ∈ C1 ∩ C2. Let p be

a polynomial such that p(n) ≥ min{p1(n), p2(n)} for all n. It follows that for all
x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

This shows r ∈ rel · (C1 ∩ C2).
(4) can be shown quite similar to (3).
(5). Let r ∈ rel · (coC). Hence there exist a set D ∈ coC and a polynomial q such

that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}.

Hence, for all x ∈ Σ∗,

r(x) = Σ≤q(|x|) − {y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}.

Since D ∈ C we obtain r ∈ co(rel · C).
Now suppose r ∈ co(rel · C). Hence there exist a relation s ∈ rel · C and a

polynomial q such that for all x ∈ Σ∗,

r(x) = Σ≤q(|x|) − s(x).

It follows that there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

s(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.
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Hence, for all x ∈ Σ∗,

r(x) = Σ≤q(|x|) − {y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

De�ne

D = {〈x, y〉 : |y| ≤ min{p(|x|), q(|x|)} ∧ 〈x, y〉 /∈ B} ∪
{〈x, y〉 : p(|x|) ≤ |y| ≤ q(|x|)}.

Note that D ∈ coC since C and thus also coC are closed under ≤p
m reductions. It

follows that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}.

Hence r ∈ rel · (coC). ❏

The above theorem shows that set theoretic operators and the operator rel can
be interchanged. It follows that the di�erence hierarchy over NPMV as de�ned
in [FHOS97] is nothing but the �rel� equivalent of the boolean hierarchy over NP.

Corollary 3.5.2 For all k ∈ N+,NPMV(k) = rel · (BHk).

Applying Theorem 3.4.1 we obtain:

Corollary 3.5.3

(1) [FHOS97] For all k ∈ N+, rel · (BHk) = rel · (BHk+1) if and only if BHk =
BHk+1.

(2) [FHOS97] co(rel · coNP) = rel · NP.

We will now turn to the operators U , Sig, SIG, C≥, C=, C≤ and ⊕.

Proposition 3.5.4 For k ∈ N+ and for every op ∈ {U , Sig, SIG,C≥,C=,C≤,⊕},

op ·F∆p
k = ∆p

k.

The proof is obvious and thus omitted.
The following results can be found in [Hem03].
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Theorem 3.5.5 [Hem03] Let C be a complexity class being closed under ≤p
m and

≤p
ctt reductions.

(1) U ·min · C = U ·mint · C = coC.

(2) C≥ ·mint · C = ∀ · coC.

(3) C≥ ·min · C = ∀ · coC ∧ ∃ · C.

(4) Sig ·mint · C = coC.

(5) Sig ·min · C = coC ∧ ∃ · C.

(6) C= ·mint · C = C= ·min · C = C ∧ ∀ · coC.

(7) ⊕ ·min · C = ⊕ ·mint · C = P∃·C.

(8) U ·max · C = U ·maxt · C = C.

(9) C≥ ·max · C = C≥ ·maxt · C = ∃ · C.

(10) Sig ·max · C = Sig ·maxt · C = ∃ · C.

(11) C= ·max · C = C= ·maxt · C = C ∧ ∀ · coC.

(12) ⊕ ·max · C = ⊕ ·maxt · C = P∃·C.

The results for the operators SIG and C≤ on max-classes are the same as for the
operators Sig and C≥ on min-classes, respectively, and vice versa.

Lemma 3.5.6

(1) SIG ·mint · C = ∃ · C.
(2) SIG ·min · C = ∃ · C.
(3) SIG ·maxt · C = coC.
(4) SIG ·max · C = coC ∧ ∃ · C.

(5) C≤ ·mint · C = ∃ · C.
(6) C≤ ·min · C = ∃ · C.
(7) C≤ ·maxt · C = ∀ · coC.
(8) C≤ ·max · C = ∃ · C ∧ ∀ · coC.

The proof is analogous to the proof of Theorem 3.5.5 which can be found in [Hem03]
and is thus omitted.

If we apply operators to classes of total functions we get the following results:
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Theorem 3.5.7 Let C be a complexity class closed under≤p
m reductions and union.

(1) U · funt · C = U · fun · C = C ∩ coC.
(2) C≥ · funt · C = C≤ · funt · C = U · C ∩ co(U · C).

(3) Sig · funt · C = SIG · funt · C = coC ∩ U · C.
(4) C= · funt · C = C ∩ co(U · C).

(5) ⊕ · funt · C = U · C ∩ co(U · C).

Proof (1). Let A ∈ U · fun · C. Hence cA ∈ fun · C or equivalently cA ∈ funt · C. It
follows that there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1,

x ∈ A ⇐⇒ 〈x, 1〉 ∈ B, and
x /∈ A ⇐⇒ 〈x, 0〉 ∈ B.

It follows A ∈ C ∩ coC.
Now let A ∈ C ∩ coC. De�ne

B = {〈x, 1〉 : x ∈ A} ∪ {〈x, 0〉 : x ∈ A}.

Since C is closed under≤p
m reductions and under union, it follows cA ∈ funt · C via

the set B ∈ C (and the polynomial p(n) ≡ 1).
(2). We prove only the equation C≥ · funt · C = U · C ∩ co(U · C). The proof of

the other one is analogous.
Let A ∈ C≥ · funt · C. Hence there exist functions f ∈ funt · C and g ∈ FPt such

that for all x ∈ Σ∗, x ∈ A ⇐⇒ f(x) ≥lex g(x).
De�ne

D = {〈x, y〉 : y ≥lex g(x) ∧ 〈x, y〉 ∈ f}

and

E = {〈x, y〉 : y <lex g(x) ∧ 〈x, y〉 ∈ f}.

Note that for all x ∈ Σ∗, on the one hand,

||{y : 〈x, y〉 ∈ D}|| ≤ 1, and
||{y : 〈x, y〉 ∈ E}|| ≤ 1,



36 Chapter 3. Function and Relation Classes

and on the other hand,

x ∈ A ⇐⇒ ||{y : 〈x, y〉 ∈ D}|| = 1, and
x /∈ A ⇐⇒ ||{y : 〈x, y〉 ∈ E}|| = 1.

Clearly, D, E ∈ C since C is closed under≤p
m reductions. It follows that A ∈ U · C ∩

co(U · C).
Now suppose that A ∈ U · C ∩ co(U · C). Hence there exist sets B, D ∈ C and

polynomials p and q such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1,

||{y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}|| ≤ 1,

and

x ∈ A ⇐⇒ ||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1, and
x /∈ A ⇐⇒ ||{y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}|| = 1.

De�ne

B′ = B ∩ {〈x, y〉 : |y| ≤ p(|x|)}, and
D′ = D ∩ {〈x, y〉 : |y| ≤ q(|x|)}.

Note that B′, D′ ∈ C since C is closed under≤p
m. Let

B′′ = {〈x, y1q(|x|)+1〉 : 〈x, y〉 ∈ B′}

and observe that B′′ ∈ C.
Let r be a polynomial such that r(n) ≥ max{p(n), q(n)} for all n. De�ne E =

B′′ ∪D′ and note that for all x ∈ Σ∗,

||{y : |y| ≤ r(|x|) ∧ 〈x, y〉 ∈ E}|| = 1.

De�ne a function f such that f(x) is the unique string y such that |y| ≤ r(|x|) and
〈x, y〉 ∈ E. Clearly, E ∈ C and f ∈ funt · C. Now observe that for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ≥lex 1q(|x|)+1.

It follows that A ∈ C≥ · funt · C.
(3). We prove only the equation Sig · funt · C = coC ∩ U · C. The proof of the

other one is analogous.
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Let A ∈ Sig · funt · C. Hence there exists a function f ∈ funt · C such that for all
x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∈ Σ∗ − {ε}.
It follows that there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1,

x ∈ A =⇒ 〈x, ε〉 /∈ B, and
x /∈ A =⇒ 〈x, ε〉 ∈ B.

Hence, for all x ∈ Σ∗,

x ∈ A ⇐⇒ 〈x, ε〉 /∈ B, and also
x ∈ A ⇐⇒ (∃y : y 6= ε)[〈x, y〉 ∈ B].

Since C is closed under≤p
m reductions we have A ∈ coC. From the fact that for

all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1,

it follows that A ∈ U · C.
Now let A ∈ coC ∩ U · C. Hence there exist a set B ∈ C and a polynomial p

witnessing A ∈ U · C. De�ne

B′ = {〈x, 1y〉 : 〈x, y〉 ∈ B}.
Clearly, B′ ∈ C since C is closed under≤p

m reductions. De�ne

B′′ = {〈x, ε〉 : x /∈ A} ∪ B′.

Note that B′′ ∈ C since C is closed under≤p
m reductions and union. Observe that for

all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B′′}|| = 1.

De�ne a function f such that

f = {〈x, y〉 : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B′′}.
Clearly, f is polynomially length-bounded and thus f ∈ funt · C. It follows that for
all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ∈ Σ∗ − {ε},
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and thus A ∈ Sig · funt · C.
(4). Let A ∈ C= · funt · C. Hence there exist functions g ∈ FPt and f ∈ funt · C

such that for all x ∈ Σ∗, x ∈ A ⇐⇒ f(x) = g(x). It follows that there exist a set
B ∈ C and a polynomial p such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1,

x ∈ A ⇐⇒ 〈x, g(x)〉 ∈ B and
x ∈ A ⇐⇒ ¬(∃y : |y| ≤ p(|x|) ∧ y 6= g(x))[〈x, y〉 ∈ B].

Since C is closed under≤p
m reductions we have A ∈ C. Since for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1,

we have A ∈ co(U · C).
Now let A ∈ C ∩ co(U · C). Hence A ∈ coC ∩ U · C. By Claim 2 we have

A ∈ Sig · funt · C. Hence there exists a function f ∈ funt · C such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) >lex ε or equivalently
x ∈ A ⇐⇒ f(x) = ε.

This shows A ∈ C= · funt · C.
(5). Let A ∈ ⊕ · funt · C. Hence there exist functions f ∈ funt · C such that for

all x ∈ Σ∗, x ∈ A ⇐⇒ lsb(f(x)) = 1.
De�ne

D = {〈x, y〉 : lsb(y) = 1 ∧ 〈x, y〉 ∈ f} and
E = {〈x, y〉 : lsb(y) = 0 ∧ 〈x, y〉 ∈ f}.

Note that for all x ∈ Σ∗,

||{y : 〈x, y〉 ∈ D}|| ≤ 1,

||{y : 〈x, y〉 ∈ E}|| ≤ 1,

and

x ∈ A ⇐⇒ ||{y : 〈x, y〉 ∈ D}|| = 1,

x /∈ A ⇐⇒ ||{y : 〈x, y〉 ∈ E}|| = 1.

Clearly, D, E ∈ C since C is closed under≤p
m reductions. It follows that A ∈ U · C ∩

co(U · C).
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Now suppose that A ∈ U · C ∩ co(U · C). Hence there exist sets B,D ∈ C and
polynomials p and q such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1,

||{y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}|| ≤ 1,

and

x ∈ A ⇐⇒ ||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| = 1,

x /∈ A ⇐⇒ ||{y : |y| ≤ q(|x|) ∧ 〈x, y〉 ∈ D}|| = 1.

De�ne

B′ = B ∩ {〈x, y〉 : |y| ≤ p(|x|)} and
D′ = D ∩ {〈x, y〉 : |y| ≤ q(|x|)}.

Note that B′, D′ ∈ C since C is closed under≤p
m. Let

B′′ = {〈x, y1〉 : 〈x, y〉 ∈ B′} and
D′′ = {〈x, y0〉 : 〈x, y〉 ∈ D′}.

Observe that B′′, D′′ ∈ C.
Let r be a polynomial such that r(n) ≥ max{p(n), q(n)} for all n. De�ne

E = B′′ ∪D′′

and note that for all x ∈ Σ∗,

||{y : |y| ≤ r(|x|) ∧ 〈x, y〉 ∈ E}|| = 1.

De�ne a function f such that f(x) is the unique string y such that |y| ≤ r(|x|) and
〈x, y〉 ∈ E. Clearly, E ∈ C and f ∈ funt · C. Now observe that for all x ∈ Σ∗,

x ∈ A ⇐⇒ lsb(f(x)) = 1.

It follows that A ∈ ⊕ · funt · C. ❏

Similar results can be shown for classes of partial functions.
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Theorem 3.5.8 Let C be a complexity class closed under≤p
m reductions and union.

(1) C≥ · fun · C = C≤ · fun · C = U · C.
(2) Sig · fun · C = SIG · fun · C = U · C.
(3) ⊕ · fun · C = U · C.
(4) C= · fun · C = C.

Proof (1). Let A ∈ C≥·fun · C. Hence there exist functions g ∈ FPt and f ∈ fun · C
such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ≥lex g(x).

It follows that there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1 and
x ∈ A ⇐⇒ (∃y : y ≥lex g(x) ∧ |y| ≤ p(|x|))[〈x, y〉 ∈ B].

This shows that A ∈ U · C.
Now let A ∈ U · C. Hence there exist a set B ∈ C and a polynomial p such that

for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1 and
x ∈ A ⇐⇒ (∃y : |y| ≤ p(|x|))[〈x, y〉 ∈ B].

De�ne

f = {〈x, y〉 : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

Clearly, f is polynomially length bounded and thus f ∈ fun · C. Furthermore, for
all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ≥lex ε.

Hence A ∈ C≥ · fun · C.
The other equality from (1) and the equalities (2) and (3) can be shown quite

similarly.
(4). Let A ∈ C= · fun · C. Hence there exist functions g ∈ FPt and f ∈ fun · C

such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) = g(x).
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It follows that there exist a set B ∈ C and a polynomial p such that for all x ∈ Σ∗,

||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1 and
x ∈ A ⇐⇒ 〈x, g(x)〉 ∈ B.

Since C is closed under≤p
m reductions we have A ∈ C.

Now let A ∈ C. De�ne

f = {〈x, 1〉 : x ∈ A}.

Clearly, f ∈ C and f is polynomially length bounded via the polynomial p(n) ≡ 1.
Hence f ∈ fun · C and for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) = 1.

Thus A ∈ C= · fun · C. ❏

Similar results can be shown for classes of relations.

Theorem 3.5.9 Let C be a complexity class closed under≤p
m reductions.

(1) U · relt · C = C ∩ coC.
(2) C≥ · relt · C = ∃ · C ∩ ∀ · coC.
(3) C= · relt · C = C ∩ ∀ · coC.
(4) C≤ · relt · C = ∃ · C ∩ ∀ · coC.
(5) Sig · relt · C = coC ∩ ∃ · C.
(6) SIG · relt · C = coC ∩ ∃ · C.
(7) ⊕ · relt · C = ∃ · C ∩ ∀ · coC.

(7) U · rel · C = C ∩ coC.
(8) C≥ · rel · C = ∃ · C.
(9) C= · rel · C = C.
(10) C≤ · rel · C = ∃ · C.
(11) Sig · rel · C = ∃ · C.
(12) SIG · rel · C = ∃ · C.
(13) ⊕ · rel · C = ∃ · C.

The proof is similar to the last two proofs and thus omitted.
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3.6 The Inclusion Structure and Structural
Consequences

In this section we show that we can use the results of the previous section to de-
rive structural consequences for unlikely inclusions between classes of functions or
relations.
Observation 3.6.1 For any two relation classes R1 and R2 and any operator op ∈
{U , Sig, SIG,C≥,C=,C≤, ⊕} we have R1 ⊆ R2 =⇒ op · R1 ⊆ op · R2.

While this observation is immediate from the fact that all operators U , C≥, C=,
C≤, Sig, SIG, and ⊕ are monotone with respect to set inclusion, we are able to apply
the operator method to derive structural consequences for hypotheses like R1 ⊆c R2

instead of R1 ⊆ R2 as well.
Theorem 3.6.2 For any two relation classes R1 and R2 and any operator op ∈
{U , Sig, SIG,C≥,C=,C≤, ⊕} we have R1 ⊆c R2 =⇒ op · R1 ⊆ op · R2.
Proof Let R1 and R2 are two classes of relations, and op = C≥. (The proof for
the other operators is similar.) Suppose that R1 ⊆c R2 and let A ∈ C≥ · R1. Hence
there exist a relation r1 ∈ R1 and a function g ∈ FPt such that for all re�nements f
of r1 where f is a function, and for all x ∈ Σ∗,

x ∈ A ⇐⇒ f(x) ≥lex g(x).

By our assumption R1 ⊆c R2 we know that r1 has a re�nement r2 in R2. Obviously,
all re�nements of r2 are re�nements of r1. It follows that every re�nement f ′ of r2

where f ′ is a function is a re�nement of r1. Hence for all re�nements f ′ of r2 where
f ′ is a function, and for all x ∈ Σ∗,

x ∈ A ⇐⇒ f ′(x) ≥lex g(x),

and thus A ∈ C≥ · R2. ❏

Now we will make extensive use of the results from Sections 3.4 and 3.5 to
completely reveal the inclusion structure of function classes that are based on the
complexity classes P, NP and coNP.

Note that Figures 3.1 and 3.2 present the inclusion structure in form of Hasse-
diagrams of the partial orders ⊆ and ⊆c. A few of the given results have been shown
previously, funt · NP = FPNP∩coNP

t was mentioned in [HHN+93], rel · NP ⊆c FPNP is
already contained in [Sel96].

First we state straightforward corollaries that follow from the theorems proven
in Section 3.4. Note that these corollaries contain only a partial list of consequences
that follow from the theorems proven in Section 3.4. See Table 3.1 on page 51 for a
complete summary.
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FPt

funt · P

FPUP∩ coUP
t

funt · NP = FPNP∩ coNP
t

funt · coNP

funt · PNP FPUPNP ∩ coUPNP
t

FP

rel · P

rel · NP
rel · coNP

FPNP

rel · PNP

FPΣp
2

Figure 3.1: The left part shows the inclusion structure of classes of total functions rela-
tive to each other and relative to classes of deterministically polynomial-time computable
functions.
The right part shows the inclusion structure of classes of relations relative to each other
and relative to classes of deterministically polynomial-time computable functions. The
structure remains unchanged if every rel is replaced by fun or if every rel is replaced by
relt.

Corollary 3.6.3

(1) rel · P ⊆ rel · NP ∩ rel · coNP ⊆ rel · NP ∪ rel · coNP ⊆ rel ·DP ⊆ rel · PNP.

(2) [FHOS97] rel · NP ⊆ rel · coNP ⇐⇒ NP = coNP.

(3) fun · P ⊆ fun · NP ∩ fun · coNP ⊆ fun · NP ∪ fun · coNP ⊆ fun · PNP.

(4) fun · NP ⊆ fun · coNP ⇐⇒ NP = coNP.

(5) fun ·DP ⊆ fun · coNP ⇐⇒ NP = coNP.

(6) fun · NP ⊆ fun · P ⇐⇒ P = NP.

(7) rel · NP ⊆ rel · P ⇐⇒ P = NP.

The corollary follows from Theorem 3.4.1.
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fun · P

max · P

fun · NPfun · coNP

max · NPmax · coNP

fun ·DP

fun · Πp
2

funt · P

funt · NP relt · P # · P

funt · coNP relt · NP
# · NP

relt · coNP funt · PNP

relt · PNP

# · coNP = # · PNP

# · Σp
2

Figure 3.2: The left part shows the inclusion structure of classes of functions relative
to each other and relative to classes of maximization functions. The structure remains
unchanged if every max is replaced by min or every fun and every max is replaced by funt

and maxt, respectively.
The right part shows the inclusion structure of classes of total functions and relations
relative to each other and relative to classes of counting functions.

Corollary 3.6.4

(1) FPt ⊆ funt · P ⊆ (FPt)
UP∩coUP.

(2) [HHN+93] funt · NP = FPNP∩coNP
t .

(3) funt · NP ⊆ funt · coNP ⊆ (FPt)
UPNP∩coUPNP.

(4) [Sel96] rel · NP ⊆c FPNP.

(5) rel · coNP ⊆c FPΣp
2 .

The claims of this corollary are straightforward consequences of Theorem 3.4.6,
Theorem 3.4.8 and Theorem 3.4.9. For item (3) we use the previous mentioned fact
that U · coNP = UPNP.

Corollary 3.6.5

(1) fun · P = max · P ∩min · P.
(2) fun · NP = max · NP ∩min · NP.
(3) fun · coNP = max · coNP ∩min · coNP.
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(4) max · P ⊆ fun · coNP.
(5) max · NP ⊆ fun ·DP.

(6) max · coNP ⊆ fun · Σp
2.

(7) max ·DP ⊆ fun · Πp
2.

The claims follow immediately from Theorem 3.4.12. Item (4)�(7) remains true,
if we replace the operator max by the operator min. Analogous results hold for the
total versions of max and fun.

Corollary 3.6.6

(1) funt · P ⊆ # · P.
(2) funt · NP ⊆ # · NP.
(3) funt · coNP ⊆ # · PNP.

(4) relt · NP ⊆ # · NP

The corollary follows from Theorem 3.4.13.
The known inclusions as given in the previous corollaries are depicted in Fig-

ures 3.1 and 3.2.
All inclusions given are optimal unless some very unlikely complexity classes

collapses occur. As examples we will state a few such structural consequences in
the theorems below. Note that almost all results are immediate consequences of the
Theorems 3.5.7, 3.5.8 and 3.5.9 obtained by applying the so-called operator method.
(Observation 3.6.1 and Theorem 3.6.2)

A large number of inclusions hold if and only if NP = coNP. Note again, only
some examples will be shown here. For a complete summary see Table 3.1 on page 51.

Theorem 3.6.7 The following statements are pairwise equivalent:

(1) NP = coNP

(2) funt · coNP ⊆ rel · NP
(3) fun · NP ⊆ rel · coNP
(4) fun ·DP ⊆ max · NP
(5) relt · NP ⊆ relt · coNP
(6) fun · coNP ⊆ max · NP
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(7) rel · coNP ⊆c min · NP
(8) [FGH+96] max · NP ⊆ fun · NP
(9) [Sel94] FPNP ⊆ rel · NP
(10) [FGH+96] rel · NP ⊆ rel · coNP

Proof To see that items (2), (3) and (10) imply NP = coNP we use Observa-
tion 3.6.1 with the operator C=. For item (4) we use Observation 3.6.1 with the
operator U . Item (5) can be seen as follows:

Suppose relt · NP ⊆ relt · coNP and let A ∈ NP be a≤p
m-complete set. De�ne

r = {〈x, 1〉 : x ∈ A} ∪ {〈x, 0〉 : x ∈ Σ∗}

and observe that r ∈ relt · NP. Note that for all x ∈ Σ∗,

x ∈ A =⇒ r(x) = {0, 1} and
x /∈ A =⇒ r(x) = {0}.

By our assumption we conclude r ∈ relt · coNP and thus there exist a set B ∈ NP
and a polynomial p such that for all x ∈ Σ∗,

r(x) = {y : |y| ≤ p(|x|) ∧ 〈x, y〉 /∈ B}.

It follows that for all x ∈ Σ∗,

x ∈ A =⇒ 〈x, 1〉 /∈ B and
x /∈ A =⇒ 〈x, 1〉 ∈ B.

Hence A≤p
m B, implying NP = coNP. For item (6) we use Observation 3.6.1 with

the operator C≥, for item (7) the operator SIG and for item (8) and item (9) the
operator ⊕.

It is not hard to see that NP = coNP implies all items. ❏

Theorem 3.6.8 The following statements are pairwise equivalent:

(1) P = NP

(2) [Sel94] fun · NP ⊆ rel · P
(3) fun · NP ⊆ min · P
(4) max · P ⊆ rel · P
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(5) max · P ⊆ fun · P
(6) [Sel94] rel · P ⊆c FP

(7) [Sel94] rel · NP ⊆ rel · P
(8) rel · coNP ⊆ rel · P

Proof To see that the inclusions (2), (4), (5), (7) and (8) imply P = NP we use
Observation 3.6.1 and Theorem 3.6.2, respectively with the operator C=.

Item (6) is done using the operator Sig.
For item (3) we have to use two operators. Using operator U we get the conse-

quence NP ∩ coNP ⊆ P. Using operator C= we get the consequence NP = coNP.
Both together give the consequence P = NP.

The other direction is easy to be seen. ❏

We can prove that some previously known results can be relativized using the
operator method, at least in one direction.

Theorem 3.6.9

(1) [GS88] fun · P ⊆ FP ⇐⇒ P = UP.

(2) fun · PNP ⊆ FPNP =⇒ PNP = UPNP.

(3) [Sel94] rel · P ⊆c FP ⇐⇒ P = NP.

(4) rel · PNP ⊆c FPNP =⇒ PNP = NPNP.

(5) [Sel94] rel · P ⊆c fun · P =⇒ UP = NP.

(6) rel · PNP ⊆c fun · PNP =⇒ UPNP = NPNP.

Proof For the left-to-right implications we use the operator method applying the
operator Sig.

The other directions of (1) and (3) are easy to be seen. ❏

Items (2), (4) and (6) can be strengthened as the following theorem shows.
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Theorem 3.6.10

(1) fun · coNP ⊆ FPNP =⇒ PNP = UPNP.

(2) rel · coNP ⊆c FPNP =⇒ PNP = NPNP.

(3) rel · coNP ⊆c fun · PNP =⇒ UPNP = NPNP.

Proof
All claims follow by applying the operator method, by applying the operator C≥.

❏

Again, for a complete summary of such results see Table 3.1 on page 51.

3.7 Beyond the Operator Method
The operator method fails at some structural consequences for hypotheses like
rel · NP ⊆c fun · NP. Selman proved that this is equivalent to rel · P ⊆c fun · NP.
But we will obtain some consequences for such inclusions if we generalize an idea
from [HNOS96]. They showed that rel · NP ⊆c fun · NP implies a collapse of the
polynomial hierarchy to the class ZPPNP. This result was strengthened in [CCHO03]
to a collapse to SNP∩coNP2 . Theorem 3.7.1 remains true if we replace ZPPΣp

k+1 by
SΣp

k+1∩Πp
k+1

2 and ZPPΣp
k by SΣp

k∩Πp
k

2 , respectively.

Theorem 3.7.1 For all k ∈ N+,

(1) rel · Πp
k ⊆c fun · Πp

k =⇒ PH = ZPPΣp
k+1.

(2) rel · Σp
k ⊆c fun · Σp

k =⇒ PH = ZPPΣp
k .

Proof
We show

rel · Πp
k ⊆c fun · Πp

k =⇒ Σp
k+1 ⊆ (Σp

k+1 ∩ Πp
k+1)/poly.

Köbler and Watanabe [KW98] proved

Σp
k+1 ⊆ (Σp

k+1 ∩ Πp
k+1)/poly =⇒ PH = ZPPΣp

k+1 .

Let rel · Πp
k ⊆c fun · Πp

k and A ∈ Σp
k+1. We de�ne a relation r by

r(〈x, y〉) = {z : (z = x ∨ z = y) ∧ z ∈ A}.
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Obviously, it holds that r ∈ rel · Σp
k+1. It follows that there exist a set B ∈ Πp

k

and a polynomial p ∈ Pol with

z ∈ r(〈x, y〉) ⇐⇒ (∃u ∈ Σ∗ : |u| ≤ p(|〈x, y〉|))[〈z, u, x, y〉 ∈ B].

We de�ne another relation s by

s(〈x, y〉) = {z#u : |u| ≤ p(|〈x, y〉|) ∧ 〈z, u, x, y〉 ∈ B}.
Since B ∈ Πp

k, it holds that s ∈ rel ·Πp
k. Hence we have a re�nement f ∈ fun ·Πp

k

of the relation s. This function could be called a quasi-selector of A. We can de�ne
a graph G = (Σn, E) for every n ∈ N. A pair (x, y) ∈ Σn×Σn is an edge if and only
if f(〈x, y〉) starts with x:

(x, y) ∈ E ⇐⇒ (∃u ∈ Σ∗ : |u| ≤ p(|〈x, y〉|))[f(〈x, y〉) = x#u].

As in the case of Ko's proof that the P-selective sets are in P/poly [Ko83], we
use a well-known theorem about tournament graphs. These graphs always have a
dominating set of size logarithmic in the number of nodes. Hence there exists a set
D|x| ⊆ A=|x| with at most n elements satisfying

x ∈ A ⇐⇒ (∃y ∈ D|x|)(∃u ∈ Σ∗ : |u| ≤ p(|〈x, y〉|))[f(〈x, y〉) = x#u].

From A ∈ Σp
k+1 it follows that there exists a set C ∈ Πp

k and a polynomial q ∈ Pol
satisfying

y ∈ A ⇐⇒ (∃z ∈ Σ∗ : |z| ≤ q(|y|))[〈y, z〉 ∈ C].

We de�ne the set D as follows

B = {〈x,W,U〉 : W ⊆ Σ|x| ∧ ||W || ≤ |x| ∧ (∀w ∈ W )(∃z ∈ U)[〈w, z〉 ∈ C] ∧
(∃y ∈ W )(∃u ∈ Σ∗ : |u| ≤ p(|〈x, y〉|))[f(〈x, y〉) = x#u]}.

Since W has only |x| elements, the for-all quanti�er is harmless and we get B ∈ Σp
k+1.

Moreover, we will show that B ∈ Σp
k+1.

We can write B in the form

B = {〈x,W,U〉 :W ⊆ Σ|x| ∧ ||W || ≤ |x| ∧ (∀w ∈ W )(∃z ∈ U)[〈w, z〉 ∈ C] =⇒
(∀y ∈ W )(∀u ∈ Σ∗ : |u| ≤ p(|〈x, y〉|))[f(〈x, y〉) 6= x#u]}. (3.1)

If the hypothesis in the above inclusion is true, then it holds that W ⊆ A. But
the quasi-selector f has the following property

{x, y} ∩ A 6= ∅ =⇒ f(〈x, y〉) = x#u ∨ f(〈x, y〉) = y#v for some u and v.
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So we can write equation (3.1) in the form

B = {〈x,W,U〉 :W ⊆ Σ|x| ∧ ||W || ≤ |x| ∧ (∀w ∈ W )(∃z ∈ U)[〈w, z〉 ∈ C] =⇒
(∀y ∈ W )(∃v ∈ Σ∗ : |v| ≤ p(|〈x, y〉|))[f(〈x, y〉) = y#v]}.

This shows that B ∈ Σp
k+1 and hence B ∈ Σp

k+1 ∩ Πp
k+1. Let U|x| be a set such

that for every w ∈ D|x| there exists some z with 〈w, z〉 ∈ C. We de�ne the function
h as h(|x|) = (D|x|, U|x|) and get the equivalence

x ∈ A ⇐⇒ (x, h(|x|)) ∈ B.

This shows A ∈ (Σp
k+1∩Πp

k+1)/poly and hence Σp
k+1 ⊆ (Σp

k+1∩Πp
k+1)/poly. This

completes the proof of the �rst item.
The proof of the second item is analogous to this proof. ❏

3.8 Open Problems
We would like to �nd a structural consequence that follows from funt · coNP ⊆
# · NP. Note that mint · P ⊆ funt · coNP follows from Theorem 3.4.12 part 2.
Hence any structural consequence that follows from mint · P ⊆ # ·NP immediately
yields a structural consequence that follows from funt · coNP ⊆ # · NP. However
no structural consequence that follows from mint · P ⊆ # · NP is known today. So
proving a structural consequence that follows from funt · coNP ⊆ #·NP is potentially
easier.

Furthermore we want to �ll out Table 3.1 completely, since there are some cells
for which we have not been able to �nd structural equivalences.
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Chapter 4

Solution Relations

In this chapter we study so-called easy-languages. These are two kinds of languages:
One is required to have easily computable solution relations for at least one corre-
sponding NPTM, and the other must have easily computable solution relations for
all corresponding NPTMs. If we speak of solution relation, we mean a relation
that computes accepting paths of the corresponding NPTM. We analyze whether it
makes a di�erence to have a solution relation or a relation that computes only one
bit of a solution.

Furthermore we examine which languages can be accepted for a given class of
solution relations. For this purpose we study the power of solution relations from
classes as rel · NP, fun · NP or fun · UP.

4.1 Introduction
The analysis of the class NP is motivated by so-called projection and search prob-
lems.

The initial point is a problem a ⊆ Σ∗. For a given pair 〈x, y〉 we want to know
if it is in a. If 〈x, y〉 ∈ a then y is called a certi�cate for x.

For example, let

ham = {〈G, p〉 : p is a hamiltonian path in the �nite graph G}.

In this case, certi�cates are hamiltonian paths.
We have a one-to-one relation between such problems and nondeterministic

Turing machines in the following way:

〈x, y〉 ∈ a ⇐⇒ M accepts x along the path y.
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The question whether a given graph has a hamiltonian path is more frequent
than the above one. It can be described using the concept of projection.

We call the language A = proj21(a) the projection problem related to the prob-
lem a.

In our example: does a given graph have a hamiltonian path? Obviously every
decision problem a has a related projection problem A. But there are many decision
problems related to one and the same projection problem.

For practical applications the most interesting task is to compute a certi�cate y
for a given x. This is the so-called search problem. To solve a search problem means
to compute a solution relation.

De�nition 4.1.1 Let a be a problem, M a related nondeterministic Turing machine
and A = proj21(a) the projection of a.
A relation r is called a weak solution relation for A with respect to M if and only if

x ∈ A =⇒ ∅ 6= r(x) ⊆ accM(x).

x 6∈ A =⇒ r(x) = ∅.

A relation r is called a strong solution relation for A with respect to M if and only
if

x ∈ A =⇒ ∅ 6= r(x) ⊆ {1y : y ∈ accM(x)},
x 6∈ A =⇒ ∅ 6= r(x) ⊆ {0y : y ∈ Σ∗}.

Note that a weak solution relation r for A with respect to M is a re�nement of
accM and evidently dom(r) = A.

In the negative case of a strong solution relation, that is x 6∈ A, r(x) = 0 would
be enough. For technical reasons we allow an arbitrary word starting with 0.

It is possible that there are uncountably many solution relations for one prob-
lem a, namely if there are in�nitely many x with ||{y : 〈x, y〉 ∈ a}|| ≥ 2.

We intuitively know that solving a projection problem is easier than solving the
corresponding search problem, because knowing that a given graph has a hamilto-
nian path does not automatically yield a construction of such a path? On the other
hand � if we have an algorithm to compute a solution relation, then we can solve
the projection problem, too.

In practical applications, the computation of a solution relation is much more
interesting than solving the projection problem. So it is an interesting question
what the relationship between the complexity of solving the search problem and the
projection problem is.

It is known that for self-reducible problems the corresponding search problem
is Turing-reducible to the decision problem in polynomial time[BD76, Sch79]. This
property is known as search reduces to decision (see for instance [HNOS93]).
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But there is a negative result, too.
Borodin and Demers [BD76] proved the following result.

Theorem 4.1.2 [BD76] If P 6= NP ∩ coNP, then there exists a set A such that
(1) A ∈ P

(2) A ⊆ SAT, and

(3) there exists no function f ∈ FP that computes a satisfying assignment for all
F ∈ A.

This can be rephrased as follows. Under the above hypothesis which most com-
plexity theoreticians would assume to be true, it follows that there exist easily decid-
able sets, yet it is hard to compute why, i. e. it is hard to compute the corresponding
solution relation.

This chapter is organized as follows. We analyze languages for which it is easy to
compute (partial) certi�cates in Section 4.2. For this reason we distinguish between
languages for which every or at least one NPTM has easy (partial) certi�cates.
Further we examine which languages we get if we use solution relations from a
given class of relations. For this purpose we de�ne the operators wsol and ssol
in Section 4.3 and study some of their properties. In Section 4.4 we apply these
operators to relation classes as rel · NP and fun · NP.

4.2 Easy Languages
In [HRW97] complexity classes of the following form were studied. They contain
languages that have easily computable solution relations for either at least one or
for all corresponding NPTMs.

We are as well interested in solution relations for which only a part � e.g. one
bit � can easily be computed.

4.2.1 Easy∀
We start with languages for which every related NPTM allows for an easy com-
putation of the solution relation or parts of it. Therefor we de�ne the following
notations.

As introduced in [HRW97], we will say that an NPTM M has easy certi�cates,
if for each x ∈ L(M) some accepting path of M(x) can be computed by a function
f ∈ FPt. The class Easy∀ is the set of all languages for which every accepting
NPTM has easy certi�cates. If the n-th bit of an accepting path can be computed
in polynomial time then the language is in Easy

(n)
∀ .

This is stated more formally in De�nition 4.2.1.
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De�nition 4.2.1 Let L ⊆ Σ∗ be a set and n ∈ N+.

(1) [HRW97] L ∈ Easy∀ if and only if

(a) L ∈ NP, and
(b) (∀NPTM M : L(M) = L)(∃f ∈ FPt)(∀x ∈ L)[f(x) ∈ accM(x)]

(2) L ∈ Easy
(n)
∀ if and only if

(a) L ∈ NP, and
(b) (∀NPTM M : L(M) = L)(∃f ∈ FPt)(∀x ∈ L)(∃u, v ∈ Σ∗)[(

f(x) ∈ {0, 1} ∧ |uf(x)| = n ∧ uf(x)v ∈ accM(x)
)
∨(

(∀y ∈ accM(x))[|y| < n]
)]

Functions as used in De�nition 4.2.1 are called solution functions. Traditionally,
in the context of the class Easy∀, the solution functions are considered to be total.
This implies that f(x) is an arbitrary path if x /∈ L. The same note holds for
De�nition 4.2.7.

The following observation is a direct consequence of De�nition 4.2.1.

Observation 4.2.2 For all n ∈ N+ we have FINITE ⊆ Easy∀ ⊆ Easy
(n)
∀ ⊆ NP.

It is easy to see that Easy∀ ⊆ P.
Obviously one of the inclusions in Observation 4.2.2 has to be a proper inclusion,

since we know that FINITE 6= NP. For the class Easy∀, many properties are known.

(1) [HRW97] P 6= NP ⇐⇒ Easy∀ 6= NP.

(2) [BD76] P 6= NP ∩ coNP =⇒ Easy∀ 6= P.

(3) [FFNR96]

Easy∀ = P ⇐⇒ Σ∗ ∈ Easy∀
⇐⇒ relt · NP ⊆c FP
⇐⇒ P = NP ∩ coNP ∧ relt · NP ⊆c funt · NP

Let us �rst to concentrate on the Easy
(n)
∀ classes. Is there in fact a di�erence

between computing the �rst or the second bit of a solution? We can show that there
is no di�erence.
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Theorem 4.2.3 For all n ∈ N+, Easy
(1)
∀ = Easy

(n)
∀ .

Proof First we show that for all n ∈ N+ we have Easy
(n+1)
∀ ⊆ Easy

(n)
∀ .

Let L ∈ Easy
(n+1)
∀ and N be an NPTM with L(N) = L. We de�ne an NPTM

M so that on input x the machine M nondeterministically guesses one bit, and on
each of the two branches it continues simulating N on input x. Then L(M) = L
and hence there exists a function f ∈ FPt that computes the (n + 1)-th bit of an
accepting path of M . Obviously this function computes the n-th bit of an accepting
path of N . It follows that L ∈ Easy

(n)
∀ .

For the other direction we only show the case Easy
(1)
∀ ⊆ Easy

(2)
∀ . The general

case is analogous.
Let L ∈ Easy

(1)
∀ and M be an arbitrary NPTM with L(M) = L. We will now

describe an NPTM N with the following properties:

(1) L(N) = L, and

(2) if there exists an accepting path in M(x) whose second bit is 0 (or 1) then
there is an accepting path in N(x) whose �rst bit is 0 (or 1).

x

1

2

3

4

a1

a2

b1

b2

c1

b2

M :

x

1

3

2

4

a1b1

a2c1

a1b2

a2c2

N :

In its �rst step, the machine N guesses the second bit of an accepting path of the
machine M . In the second step, N simulates the �rst and the second step of M . This
is done in one step. (See the sketch above.) From the third step on, the machine N
works as the machine M .

Obviously, L(N) = L holds.
Since L ∈ Easy

(1)
∀ , there is a function f ∈ FPt, that for every x ∈ L computes the

�rst bit of an accepting path of N . The rearrangement and the slight modi�cations
of the computation tree of M ensure that this bit is the second bit of an accepting
path of M . ❏
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Since all classes Easy
(n)
∀ are equal, we denote these classes with Easy′∀.

Obviously, all �nite sets are in Easy′∀, but are there in�nite sets in Easy′∀? The
next lemma shows that even such simple sets as Σ∗ are probably not in Easy′∀,
otherwise we would have the unlikely equality NP ∩ coNP = P. It also strengthens
the implication Σ∗ ∈ Easy∀ =⇒ NP ∩ coNP = P that follows from the above
mentioned results from [BD76] and [FFNR96].

Lemma 4.2.4 Σ∗ ∈ Easy′∀ =⇒ NP ∩ coNP = P

Proof Suppose Σ∗ ∈ Easy′∀. It remains to show NP ∩ coNP ⊆ P.
Let L ∈ NP∩coNP via NPTMs NL and NL, that is, L(NL) = L and L(NL) = L.

We de�ne an NPTM M so that on input x, M guesses which NPTM is simulated.
To that e�ect M simulates NL or NL on input x. Then L(M) = Σ∗ and hence there
is a function f ∈ FPt that computes the �rst bit of an accepting path of M .

x

1

0

NL

NL

M :

We have (∀x ∈ Σ∗)[x ∈ L ⇐⇒ f(x) = 1] and hence L ∈ P. ❏

We can conclude a simple corollary.
Corollary 4.2.5

P ⊆ Easy′∀ =⇒ P = NP ∩ coNP

From this corollary it follows that

NP = Easy′∀ =⇒ P = NP ∩ coNP. (4.1)

This strengthens the implication

NP = Easy∀ =⇒ P = NP ∩ coNP

from [BD76]. Implication (4.1) should also be compared to the equivalence

NP = Easy∀ ⇐⇒ P = NP

from [HRW97] as stated above.
Since such easy sets as Σ∗ are probably not in Easy′∀ we ask: Are there only

�nite sets in Easy′∀? We do not know the answer. But we know the answer is as
di�cult as the question whether P 6= NP.
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Lemma 4.2.6 Easy′∀ = FINITE =⇒ P 6= NP

Proof From Easy′∀ = FINITE it follows that Easy∀ = FINITE and further we can
conclude that P 6⊆ Easy∀ and so we get NP 6= Easy∀. In [HRW97] it was shown that
NP 6= Easy∀ is equivalent to P 6= NP. ❏

4.2.2 Easy∃
For languages in Easy∀, every corresponding NPTM must have easy certi�cates. We
want to weaken this condition and now claim that only at least one corresponding
NPTM has easy certi�cates. For this reason we de�ne classes Easy∃ and Easy

(n)
∃ ,

analogously to the classes Easy∀ and Easy
(n)
∀ , respectively.

De�nition 4.2.7 Let L ⊆ Σ∗ be a set and n ∈ N+.

(1) [HRW97] L ∈ Easy∃ if and only if

(a) L ∈ NP, and
(b) (∃NPTM M : L(M) = L)(∃f ∈ FPt)(∀x ∈ L)[f(x) ∈ accM(x)]

(2) L ∈ Easy
(n)
∃ if and only if

(a) L ∈ NP, and
(b) (∃NPTM M : L(M) = L)(∃f ∈ FPt)(∀x ∈ L)(∃u, v ∈ Σ∗)[(

f(x) ∈ {0, 1} ∧ |uf(x)| = n ∧ uf(x)v ∈ accM(x)
)
∨(

(∀y ∈ accM(x))[|y| < n]
)]

Obviously, the following inclusions hold:

Observation 4.2.8

(1) P ⊆ Easy∃,

(2) Easy∀ ⊆ Easy∃,

(3) For all n ∈ N+, Easy′∀ ⊆ Easy
(n)
∃ , and

(4) Easy∃ ⊆ NP.

Recall Theorem 4.2.3. For the Easy
(n)
∃ classes, we can show that they are equal

to each other, too.
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FINITE

Easy∀

P = Easy∃ Easy′∀

NP = Easy′∃

Figure 4.1: The Classes Easy∃ and Easy∀

Theorem 4.2.9

(1) Easy∃ = P

(2) For all n ∈ N+, Easy
(n)
∃ = NP

Proof

(1) The inclusion P ⊆ Easy∃ holds by de�nition.
For the other direction, let L ∈ Easy∃ via the NPTM N and the function
fN ∈ FPt. Then there exists a DPTM M that recognizes L as follows. On
input x, M simulates the computation of N(x) along the path fN(x). If x ∈ L
we have fN(x) ∈ accN(x) and M accepts x. If x 6∈ L then fN(x) cannot be an
accepting path of N(x) and thus M rejects x.

(2) The inclusion Easy
(n)
∃ ⊆ NP holds for all n by de�nition.

For the other direction, let n ∈ N+ and L ∈ NP. Then there exists an NPTM
M with L(M) = L. We construct a new NPTM N in the following way. On
input x, the machine N makes n irrelevant guesses and simulates M . Obviously
L(N) = L holds. But for all x ∈ L we have 1nv ∈ accN(x) with v ∈ accM(x).
It follows that L ∈ Easy

(n)
∃ via the function f(x) = 1 for all x.

❏

Since all classes Easy
(n)
∃ are equal we denote these classes with Easy′∃.

The inclusion structure of the Easy-classes is shown in Figure 4.1.
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4.3 The Operators wsol and ssol
A good starting point for the analysis of the complexity of search problems is the
class Easy∃. This class can be seen as a special case of a more general concept.

De�nition 4.3.1 Let C be a set of NTMs and R be a set of relations. We de�ne

Easy∃(C,R) ={L ⊆ Σ∗ : (∃M ∈ C)(∃rM ∈ R)[L = L(M) ∧
rM is a weak solution relation for L with respect to M ]}.

In particular, we have for instance Easy∃ = Easy∃(NP,FPt).
In this de�nition we are interested in those C-machine which possess weak solu-

tion relations in R. Now we move the emphasis from C to R. For this purpose we
raise the question: In which way is the outcome in�uenced by R, independently of
the constraint given by C. Under this aspect we de�ne the operators wsol and ssol.

De�nition 4.3.2 For a class R of relations we de�ne
wsol · R = {L(M) : M is an NTM ∧ (∃r ∈ R)[r is a weak solution

relation for L with respect to M ]}
and
ssol · R = {L(M) : M is an NTM ∧ (∃r ∈ R)[r is a strong solution

relation for L with respect of M ]}.
Obviously Easy∃(C,R) ⊆ wsol · R holds for all C. De�nition 4.3.2 is a general-

ization of Easy∃. Theorem 4.4.1 shows for instance Easy∃ = wsol · FP.
An important aspect is the question which problems of a given complexity class

can be solved by which solution relations. That is, can we arrange the wsol classes
in known complexity classes?

We start with some elementary properties.
The �rst theorem shows that the operators wsol and ssol are monotone operators.

Theorem 4.3.3 Let R1 and R2 be two classes of relations.

R1 ⊆c R2 =⇒ wsol · R1 ⊆ wsol · R2

R1 ⊆c R2 =⇒ ssol · R1 ⊆ ssol · R2

Proof Let L ∈ wsol · R1. Hence there exists an NTM M with L(M) = L and a
relation r1 ∈ R1 which is a weak solution relation for L with respect to M . This
means that for all x ∈ L we have ∅ ⊂ r1(x) ⊆ accM(x). By our assumption there
exists a re�nement r2 ∈ R2 of r1. So we get for all x ∈ Σ∗,

x ∈ L =⇒ ∅ ⊂ r2(x) ⊆ r1(x) ⊆ accM(x),

x /∈ L =⇒ r2(x) ⊆ r1(x) = ∅.
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It follows that r2 is a weak solution relation for L with respect to M and thus
L ∈ wsol · R2.

The second proof is analogous to the �rst. ❏

The next theorem shows that some closure properties in the original relation
class carry over to the corresponding wsol and ssol class.

Theorem 4.3.4

(1) If for a class R of relations it holds that FPt · R ⊆ R, then the classes ssol · R
and wsol · R are closed under≤p

m-reductions.

(2) If a class R of relations is closed under concatenation, that is R·R ⊆ R, then
the classes ssol · R and wsol · R are closed under intersection.

Proof We will prove the wsol statements. The proofs for the ssol statements are
analogous.

(1) Let R be a class of relations satisfying FPt · R ⊆ R. Let A≤p
m B via the

function f ∈ FPt and let B ∈ wsol · R. We have to show that A ∈ wsol · R.
Since B ∈ wsol · R we have an NTM M for B. We describe a new NTM M ′

for A. On input x, the machine M ′ computes f(x) on all paths. Without loss of
generality all paths have length p(|x|) with p ∈ Pol. Afterwards M ′ simulates the
machine M with input f(x). Obviously, it holds that L(M ′) = A.

If r ∈ R is a weak solution relation for B with respect to M then

r′ = {〈x, 0p(|x|)y〉 : y ∈ r(x)}

is a weak solution relation for A with respect to M ′. Observe that dom(r′) = dom(r),
hence we have A ∈ wsol · R.

(2) Now let R be a class of relations which is closed under concatenation and let
A,B ∈ wsol · R via the NTMs MA,MB and the weak solution relations rA, rB ∈ R.

We construct an NTM M ′ for A ∩B.
On input x, the machine M ′ simulates MA(x). Afterwards, on every accepting

path of MA(x), M ′ simulates MB on input x. The machine M ′ accepts on some path
if both simulations were successful, and the output on this path is the concatenation
of both outputs of the machines MA and MB.

Obviously, it holds that L(M) = A ∩ B and the relation r = rA · rB is a weak
solution relation for A ∩B with respect to M ′. ❏

In general, the wsol classes are not closed under union. In Section 4.4 we will
show that wsol · fun · P = UP. It is known that UP being closed under union is
improbable.
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4.4 Some Special wsol and ssol Classes
Now we investigate which languages are obtained for a given class of solution re-
lations. In particular, we study the power of solution relations from classes like
rel · NP, fun · NP or fun · UP.

Theorem 4.4.1

wsol · FP = P

Proof First we show wsol · FP ⊆ P. Let L ∈ wsol · FP, hence there exists an
NTM M with L(M) = L and a function fM ∈ FP which is a weak solution function
for L with respect to M . Let p ∈ Pol be the polynomial time-bound for fM .

Now we describe a DPTM N for L. On input x, the machine N computes fM(x).
Simultaneously, N counts the number of steps it carries out. The input x is rejected
if after p(|x|) steps N has no result for fM(x). Otherwise, fM(x) is de�ned and
hence the path under consideration is an accepting path of M . In this case, the
machine N accepts the input x. This shows L(N) = L and hence L ∈ P.

For the other direction let L ∈ P. Hence there is a DPTM M with L(M) = L.
Obviously, there exists an NPTM N for L. The machine N behaves exactly as M
on all paths. The accepting behavior of N is as follows. If x ∈ L and hence the
machine M halts and accepts, then all paths of N are accepting paths. If x /∈ L
and hence the machine M halts and accepts, then all paths of N are nonaccepting
path. So if p ∈ Pol is the time function of M (and so of N) then

f(x) =

{
0p(|x|) if x ∈ L,
n. d. if x 6∈ L,

is a weak solution function for N . Clearly it holds that f ∈ FP. ❏

The next theorem shows that solution relations from rel · P are strong enough
for languages from NP.

Theorem 4.4.2

(1) wsol · rel · P = wsol · rel · UP = wsol · rel · NP = NP

(2) wsol ·max · P = wsol ·min · P = NP

Proof (1). From Theorem 4.3.3 it follows that

wsol · rel · P ⊆ wsol · rel · UP ⊆ wsol · rel · NP.

So it remains to show that NP ⊆ wsol · rel · P and wsol · rel · NP ⊆ NP.
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Let L ∈ NP. Hence there exists a set B ∈ P and a polynomial p ∈ Pol with

x ∈ L ⇐⇒ (∃y ∈ Σ∗ : |y| ≤ p(|x|))[〈x, y〉 ∈ B].

We de�ne a relation r as follows

r(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.
Since B ∈ P, it obviously holds that r ∈ rel · P. As mentioned earlier, there is an
NPTM M with 〈x, y〉 ∈ B ⇐⇒ M accepts x along path y. From L(M) = L and
accM(x) = r(x) it follows that r is a weak solution relation for L with respect to M .
So we get L ∈ wsol · rel · P and can conclude NP ⊆ wsol · rel · P.

Let L ∈ wsol · rel · NP. Hence there exists an NTM M and a weak solution
relation r ∈ rel · NP for L with respect to M . Since r ∈ rel · NP we have an NPTM
Mr which on input x ∈ L accepts and outputs at least one accepting path of M(x).
For x /∈ L the machine Mr does not accept the input x. Obviously it holds that
L(Mr) = L, and Mr is an NPTM. It follows that wsol · rel · NP ⊆ NP.

(2). We have to show two directions.
Let L ∈ NP and op ∈ {min, max}. Hence we have an NPTM M with L(M) = L.

We de�ne

r(x) = op{y : M accepts x along path y}.
Since M accepts x along path y is a P-predicate, we have r(x) ∈ op ·P and obviously
r is a weak solution relation for L with respect to M . Remember that the maximum
and the minimum of the empty set are not de�ned. It follows that L ∈ wsol · op ·P.

Let L ∈ wsol · op ·P for some op ∈ {min, max}. Hence we have an NTM M with
L(M) = L and a weak solution relation r ∈ op ·P. Since r is polynomially bounded,
so is M . Hence M is an NPTM and we can conclude L ∈ NP. ❏

Now we restrict the solution relations to functions and expect that we obtain a
(proper) subset of the languages from the previous case. This happens for solution
functions from fun · P and fun · UP.

Theorem 4.4.3

wsol · fun · P = wsol · fun · UP = UP

Proof From Theorem 4.3.3 it follows that wsol · fun · P ⊆ wsol · fun · UP.
It remains to show wsol · fun · UP ⊆ UP and UP ⊆ wsol · fun · P.
Let L ∈ wsol · fun · UP. Hence we have an NTM M with L(M) = L and a

weak solution function f ∈ fun · UP for L with respect to M . Since f ∈ fun · UP,
we have a UP-machine Mf which on input x ∈ L accepts on exactly one path and
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outputs an accepting path of M(x). For x /∈ L the machine Mf does not accept the
input x. Obviously it holds that L(Mf ) = L, and Mf is a UP-machine. It follows
wsol · rel · NP ⊆ UP.

Let L ∈ UP. Hence there exists a set B ∈ P and a polynomial p ∈ Pol with

x ∈ L ⇐⇒ (∃y ∈ Σ∗ : |y| ≤ p(|x|))[〈x, y〉 ∈ B] and
||{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}|| ≤ 1.

We de�ne a function f as follows

f(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}.

It follows that f ∈ fun · UP. As in the proof of 4.4.2, for the decision problem B
we have an NTM M such that 〈x, y〉 ∈ B ⇐⇒ M accepts x along path y. So we
have an NTM M with L(M) = L and accM(x) = f(x), hence f is a weak solution
relation for L with respect to M . It follows that L ∈ wsol · fun · UP, and we can
conclude UP ⊆ wsol · fun · UP. ❏

Interestingly enough, the solution functions from fun · NP are as powerful as the
solution relations from rel · NP. (See Theorem 4.4.2)

Theorem 4.4.4

wsol · fun · NP = NP

In order o prove Theorem 4.4.4 we need the concept of the UP-m-closure of NP.

De�nition 4.4.5 A language L is in RUP
m (NP) if and only if there exists a language

A ∈ NP and an NPTM M with:

x ∈ L =⇒ M(x) has exactly one accepting path α whose output is y, and y ∈ A.
x 6∈ L =⇒ M(x) does not accept.

The following lemma is well-known.

Lemma 4.4.6

RP
m(NP) = RUP

m (NP) = RNP
m (NP) = NP

The classes RP
m(NP) and RNP

m (NP) are de�ned similarly as RUP
m (NP).

Proof of Theorem 4.4.4 To show Theorem 4.4.4, due to Lemma 4.4.6 it su�ces
to show that RUP

m (NP) = wsol · fun · NP. We start with wsol · fun · NP ⊆ RUP
m (NP).
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Let L ∈ wsol · fun · NP. Then there exists an NPTM M and a function f ∈
fun · NP with dom(f) = L and

x ∈ L =⇒ M(x) accepts along path f(x).
x 6∈ L =⇒ M(x) does not accept.

If N is an NPTM computing the function f , we get

x ∈ L =⇒ (∃!!y) [N(x) has the output y ∧ M(x) accepts along path y.]︸ ︷︷ ︸
(∗)

x 6∈ L =⇒ N(x) does not accept.

Since (∗) is an NP-predicate we have L ∈ RUP
m (NP).

To prove the other direction, let L ∈ RUP
m (NP).

Then there exists an NPTM M and a language A ∈ NP with

x ∈ L =⇒ (∃!!α)(∃!!y)[M(x) outputs y (and accepts) along α and y ∈ A].

x 6∈ L =⇒ ¬(∃α)(∃y)[M(x) outputs y (and accepts) along α].

We construct a new NPTM M ′ according to

M ′(x) accepts along α#y ⇐⇒ M(x) outputs y along α.

Then we can write

x ∈ L =⇒ (∃!!α)(∃!!y)[(x, α#y) ∈ Σ∗ × (Σ∗#A) ∧ M ′(x) accepts along α#y].

x 6∈ L =⇒ ¬(∃α)(∃y)[M ′(x) accepts along α#y].

We de�ne a function g for all x ∈ Σ∗ as follows:

g(x) =

{
α#y if (x, α#y) ∈ Σ∗ × (Σ∗#A) and M ′(x) accepts along α#y,
n. d. otherwise.

Obviously, it holds that g ∈ NP, and since g is a function, even g ∈ fun · NP.
Furthermore g is a weak solution function for L with respect to M ′. It follows that
L ∈ wsol · fun · NP. ❏

Note that the equation wsol · rel · NP = wsol · fun · NP does not imply that
rel · NP ⊆c fun · NP, since a solution relation from rel · NP and a solution function
from fun · NP for one and the same language can belong to di�erent Turing machines.
Of course they have the same domain.
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The equality wsol · fun · NP = RUP
m (NP) is not an isolated result. The following

table shows the results of the Theorems 4.4.1 and 4.4.3 in another light.

wsol · FP = P = RP
m(P)

wsol · fun · P = UP = RUP
m (P)

wsol · fun · UP = UP = RUP
m (UP)

wsol · fun · NP = NP = RUP
m (NP)

The situation for the ssol-classes is slightly simpler.

Theorem 4.4.7

ssol · rel · P = ssol · rel · UP = ssol · rel · NP = NP ∩ coNP

Proof From Theorem 4.3.3 it follows

ssol · rel · P ⊆ ssol · rel · UP ⊆ ssol · rel · NP.

At �rst we show ssol · rel · NP ⊆ NP ∩ coNP. Let L ∈ ssol · rel · NP, hence we
have an NTM M with L(M) = L and a strong solution relation r ∈ rel · NP. Since
r ∈ rel · NP we have an NPTM Mr with accMr(x) = r(x) for all x. We build two
NPTMs ML with L(ML) = L and ML with L(ML) = L. Both ML and ML work in
the same way as Mr but have di�erent accepting behavior. The machine ML accepts
exactly on those paths on which Mr accepts and outputs a string beginning with 1.
The machine ML accepts exactly on those paths on which Mr accepts and outputs
a string beginning with 0. So we have L, L ∈ NP and hence L ∈ NP ∩ coNP.

It remains to show NP ∩ coNP ∈ ssol · rel · P.
Let L ∈ NP ∩ coNP, hence we have an NPTM ML with L(ML) = L and an

NPTM ML with L(ML) = L. We de�ne for all x ∈ Σ∗:

rL = {〈x, 1y〉 : y ∈ accML
(x)},

rL = {〈x, 0y〉 : y ∈ accML
(x)},

r = rL ∪ rL.

Since rL, rL ∈ P and P is closed under union, we get r ∈ P. Obviously, r is a
relation and hence we obtain r ∈ rel · P. But r is a strong solution relation for L
with respect to ML and hence we have L ∈ ssol · rel · P. ❏
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For classes of functions we present the following result.

Theorem 4.4.8

(1) ssol · FP = P

(2) ssol · fun · P = ssol(fun · UP) = UP ∩ coUP

(3) ssol · fun · NP = NP ∩ coNP

Proof
(1), (2). These proofs are analogous to the proof of Theorem 4.4.1 and to the

proof of Theorem 4.4.7, respectively, and thus are omitted.
(3). From Theorem 4.3.3 and Theorem 4.4.7 it follows that ssol · fun · NP ⊆

NP ∩ coNP.
Now we show that NP ∩ coNP ⊆ ssol · fun · NP.
Let L ∈ NP ∩ coNP. From Theorem 4.4.4 it follows that L ∈ wsol · fun · NP.

Hence there exists an NPTM M and a weak solution function f ∈ fun · NP for L
with respect to M . We de�ne f1(x) = 1f(x) for all x ∈ L. Note that for all x ∈ Σ∗

the function f1(x) is de�ned if and only if f(x) is de�ned. Obviously, f1 is a function
from fun · NP.

De�ne f2 = {〈x, 0〉 : x 6∈ L}. Since L is a coNP language and f2 is a function,
we have f2 ∈ fun · NP.

Let g = f1∪f2. Since f1 and f2 are disjoint sets from NP, it follows that g ∈ NP,
and since g is a function, we obtain g ∈ fun · NP. Obviously, g is a strong solution
function for L with respect to M . ❏

4.5 Open Problems
From Corollary 4.2.5 we know that

P ⊆ Easy′∀ =⇒ P = NP ∩ coNP.

We do not know whether the converse direction holds. Furthermore we are interested
in structural consequences that follow from Easy′∀ ⊆ P and Easy′∀ ⊆ Easy∀.

One starting point for a proceeding research might be wsol and ssol operators
based on Easy∀ instead of Easy∃. Another possible alternative are modi�cations of
the concept of weak solution functions. We could require them to be total, such as
the solution functions at the Easy∃ and the Easy∀ classes.
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ssol · FP = P = wsol · FP

ssol · fun · UP = UP∩ coUP = ssol · fun · P

wsol · fun · UP = UP = wsol · fun · P coUP

ssol · rel · NP = ssol · rel · UP =

ssol · rel · P = ssol · fun · NP =

NP coNP

NP∩ coNP

wsol · rel · P = wsol · rel · UP =

wsol · fun · NP = wsol · rel · NP =

Figure 4.2: The wsol and ssol Classes
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Zusammenfassung

Die Klassi�zierung von Problemen bezüglich ihrer Komplexität ist der Kernpunkt
der Komplexitätstheorie. Natürlich müssen wir erklären, was wir unter Problemen
und deren Komplexität verstehen. Probleme sind für uns üblicherweise Entschei-
dungsprobleme, d. h. die Frage, ob ein gegebenes Objekt zu einer bestimmten Men-
ge gehört oder nicht. Ein solches Entscheidungsproblem zu lösen, bedeutet, einen
Algorithmus anzugeben, welcher zu einer gegebenen Eingabe x die Zugehörigkeit zu
der entsprechenden Menge entscheidet.
Damit haben wir auch eine Möglichkeit, die Komplexität eines Problems zu messen,
allerdings nur in Bezug auf den verwendeten Algorithmus. Wir messen, wieviele
Ressourcen der Algorithmus für seine Entscheidung benötigt, in Abhängigkeit von
der Eingabelänge.
Um Algorithmen exakt formulieren zu können, benötigen wir ein Berechnungsmo-
dell. Das Standardmodell in der Komplexitätstheorie ist das der Turingmaschine.
Dieses universelle Modell wurde 1936 von Turing [Tur36] entwickelt. Wir unter-
scheiden dabei eine deterministische und eine nichtdeterministische Variante.
Bei der Frage nach dem Ressourcenverbrauch gibt es verschiedene Varianten. Eine
Möglichkeit ist die Frage nach der benötigten Zeit. Dazu zählen wir die Anzahl der
Schritte, die eine passende Turingmaschine für ihre Entscheidung benötigt hat. Dies
erlaubt uns eine Klassi�zierung von Problemen nach der Laufzeit entsprechender
Lösungsalgorithmen. Man beachte, daÿ man durch die Angabe eines Lösungsalgo-
rithmus nur eine obere Schranke erhält. Der Beweis einer scharfen unteren Schranke
gestaltet sich oft schwierig und ist mitunter nicht möglich.
Als Beispiel betrachten wir die durch Edmonds [Edm65] eingeführte Komplexitäts-
klasse P. Diese Klasse enthält alle Mengen, welche durch eine deterministische po-
lynomialzeitbeschränkte Turingmaschine entschieden werden können. Das heiÿt, für
jede Menge A in P existiert eine entsprechende Turingmaschine, welche für jede
Eingabe x nach p(|x|) Takten ihre Entscheidung fällt. Dabei ist p ein zu A pas-
sende Polynom. Die Probleme in P werden üblicherweise als praktisch-machbare
Probleme betrachtet. Viele natürliche und nicht triviale Probleme gehören zu der
Klasse P, z. B. das Finden eines maximalen Matchings in Graphen [Edm65], lineare
Optimierung [Kha79] und der Test, ob eine gegebene natürliche Zahl eine Primzahl
ist [AKS02].



Eine weitere grundlegende Komplexitätsklasse ist NP. Die Klasse aller Mengen, die
durch eine nichtdeterministische polynomialzeitbeschränkte Turingmaschine akzep-
tiert werden können. O�ensichtlich sind alle Probleme aus P auch in NP. Die Frage,
ob es ein Problem aus NP gibt, welches nicht in P liegt, konnte trotz intensiver
Forschung noch nicht beantwortet werden, obwohl es viele Kandidaten dafür gibt.
Viele dieser Kandidaten besitzen die Eigenschaft, daÿ sie die schwersten Probleme in
NP sind. Damit ist gemeint, daÿ allein aus der Tatsache, daÿ eines dieser Probleme
in P liegt, folgen würde, daÿ P = NP gilt. Ein Beispiel eines solchen Problems
ist das Handlungsreisendenproblem. Ein Händler möchte einige vorgegebene Städte
besuchen � existiert eine Route, die eine vorgegebene Länge unterschreitet?
Die Frage, ob P = NP gilt, war der Ausgangspunkt eines ganzen Forschungsgebietes.
Viele neue Fragen wurden untersucht und gelöst. Eine groÿe Anzahl weiterer Kom-
plexitätsklassen wurden de�niert und studiert und erlaubten einen tiefen Einblick in
dieses Forschungsgebiet. Es gab viele Ansätze, die Frage, ob P = NP gilt, zu lösen,
aber bis heute ist die Antwort darauf unbekannt.
Neben Entscheidungsproblemen spielen Relationen eine wichtige Rolle in der Kom-
plexitätstheorie, nicht nur als Werkzeug, sondern auch als Forschungsobjekte selbst.
Diese noch sehr junge Forschungsrichtung wurde wesentlich durch die Arbeiten von
Selman [Sel94, Sel96] in den frühen neunziger Jahren beein�uÿt. Viele verschiede-
ne Klassen von Relationen und � als Spezialfall � Klassen von Funktionen wur-
den untersucht. Um nur zwei zu nennen: FP � die Klasse aller in deterministi-
scher Polynomialzeit berechenbarer Funktionen, NPMV � die Relationen, welche
durch eine nichtdeterministische Polynomialzeit-Turingmaschine berechnet werden
können [BLS84, BLS85]. Genaue De�nitionen enthält das Kapitel 3.
Bei der De�nition von Relationenklassen folgen wir [Wec00] und [HW00]. Der Kern-
punkt dieses systematischen Zugangs ist die De�nition von Relationenklassen basie-
rend auf gut bekannten Komplexitätsklassen anstatt auf der Berechnung von Turing-
maschinen. Dieser Zugang führt nicht nur zu natürlichen Bezeichnungen, er erlaubt
auch Beweise für sehr allgemeine Aussagen.
Zum Beispiel de�nieren wir [Wec00] folgend:

• r ∈ rel · C ⇐⇒ (∃B ∈ C)(∃p ∈ Pol)(∀x ∈ Σ∗)
[r(x) = {y ∈ Σ∗ : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ B}],

• f ∈ fun · C ⇐⇒ f ∈ rel · C ∧ (∀x ∈ Σ∗)[||f(x)|| ≤ 1].

Zunächst beweisen wir einige allgemeine Resultate. Zum Beispiel überträgt sich der
bekannte Projektionssatz von den Komplexitätsklassen auf Klassen von Relationen.
Bekannt war, daÿ eine Vergleichbarkeit der Klassen fun · NP und fun · coNP bezüg-
lich der Inklusion wahrscheinlich ist. Es konnte gezeigt werden, daÿ bei der Beschrän-
kung auf totale Funktionen, funt · NP und funt · coNP, die Inklusion funt · NP ⊆
funt · coNP gilt.



Wir zeigen auch eine Möglichkeit, wie man Relationen als Orakel verwenden kann.
Ein Frage x an ein Relationenorakel r liefert in diesem Fall ein Element der Menge
r(x). Zu klären ist dabei, wie man mit der Tatsache umgeht, daÿ bei gleichen Fragen
verschiedene Antworten geliefert werden können.
Um Eigenschaften der Komplexitätsklassen auf die Relationenklassen übertragen
zu können, nutzen wir die sogenannte Operatorenmethode, welche auch schon in
anderen Gebieten erfolgreich angewandt wurde [VW93, HW00]. Damit gelingt es für
fast alle Inklusionen, die wir nicht zeigen können, unwahrscheinliche Folgerungen zu
beweisen.
Zwei Beispiele:

rel · P ⊆c fun · P =⇒ NP = UP
rel · PNP ⊆c FPNP =⇒ PNP = NPNP

Ein Typ von Inklusionen, bei dem die Operatorenmethode keine Ergebnisse erzielt,
wird durch die Verwendung nicht uniformer Komplexitätsklassen behandelt. Dies
erlaubt den Beweis des folgenden Resultats:

rel · Πp
k ⊆c fun · Πp

k =⇒ PH = ZPPΣp
k+1 ,

rel · Σp
k ⊆c fun · Σp

k =⇒ PH = ZPPΣp
k .

Im zweiten Teil der vorliegenden Dissertation studieren wir sogenannte �easy-langua-
ges�, also in irgendeiner Form einfache Sprachen. Dabei handelt es sich um Sprachen
mit einfach zu berechnenden Lösungsrelationen. Das heiÿt, es gibt zu einer solchen
Sprache eine Relation, die akzeptierende Pfade einer entsprechenden Turingmaschine
berechnet.
Ein Resultat von Borodin und Demers [BD76] ist dabei der Ausgangspunkt dieser
Forschung. Sie zeigten, daÿ unter Annahme einer allgemein anerkannten Vermutung
eine Menge existiert, welche einfach zu entscheiden ist, für die es aber schwer zu
bestimmen ist, warum ein Element dazugehört. Dies bedeutet, daÿ es schwer ist
eine entsprechende Lösungsrelation zu berechnen.
Wie in [HRW97] eingeführt, de�nieren wir die zwei Komplexitätsklassen Easy∀ und
Easy∃. Die Klasse Easy∀ enthält alle Sprachen, für die jede nichtdeterministische
Turingmaschine, die eine solche Sprache akzeptiert, eine Lösungsfunktion aus FPt

besitzt. Für Easy∃ genügt es, wenn jeweils eine Turingmaschine eine solche leichte
Lösungsfunktion besitzt.
Zunächst interessieren wir uns dafür, was passiert, wenn wir nicht eine Lösungs-
funktion fordern, sondern eine Funktion, die nur ein Bit eines akzeptierenden Pfades
berechnet. Weiterhin untersuchen wir ob es einen Unterschied macht, um welches
Bit es sich dabei handelt. Dabei stellt sich heraus, daÿ es keine Rolle spielt.
Danach stellen wir uns die Frage, welche Sprachen wir erhalten, wenn wir die De�ni-
tion von Easy∃ abwandeln und andere Relationenklassen anstelle von FPt erlauben.



Dazu führen wir die Operatoren wsol und ssol ein. Die Klassen wsol · R und ssol · R
enthalten alle Sprachen, die durch eine nichtdeterministische Turingmaschine akzep-
tiert werden können, die eine schwache bzw. starke Lösungsrelation aus R besitzen.
Der Unterschied zwischen wsol und ssol besteht im Umgang mit Wörtern, die nicht
zu der betrachteten Sprache gehören. Bei wsol sind die Lösungsrelationen nicht de-
�niert, bei ssol müssen die Lösungsrelationen durch entsprechende Werte anzeigen,
wenn das übergebene Wort nicht zu der Sprache gehört.
Es ergeben sich dabei unter anderem die folgenden Resultate:

wsol · FP = P ssol · FP = P
wsol · fun · P = UP ssol · fun · P = UP ∩ coUP
wsol · fun · UP = UP ssol · fun · UP = UP ∩ coUP
wsol · fun · NP = NP ssol · fun · NP = NP ∩ coNP
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