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Abstract
A design and a method of data analysis is presented which yield
(a) estimates of the average causal effect of a treatment variable on a 

response variable in the sense of Rubins approach to causality
(b) estimates of the variance of the individual causal effects and 
(c) of the covariance between pretest and individual causal effects. 
(d) It is shown how to include variables in the analysis that explain the 

interindividual differences in the individual causal effects of the 
treatment variable on the response variable. 

All this is based on a specific design with random assignment of units to the 
treatment conditions, assessing a pretest and introducing some 
additional assumptions which, however, can be tested in the analysis as 
well.



My view of the world in an experimental study
Table 1. Individual causal effects, equal and unequal treatment probabilities. 
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u1 1/8 82  68  14 1/2 8/9 

u2 1/8  89    81    8 1/2 7/9 

u3 1/8 101   89  12 1/2 6/9 

u4 1/8 108    102    6 1/2 5/9 

u5 1/8 118     112     6 1/2 4/9 

u6 1/8 131      119        12 1/2 3/9 

u7 1/8 139        131         8 1/2 2/9 

u8 1/8 152       138           14 1/2 1/9 

  Individual causal laws Good design Bad design 
 Average causal laws: 

( | ) ( | , ) ( )uCUE Y X x E Y X x U u P U u= = = = ⋅ =∑
  

  

Good design implies: E(Y | X = x) reflect average causal laws  

Bad design implies: E(Y | X = x) do not reflect average causal laws 

E(Y | X = x) := uΣ  E(Y | X = x, U = u) ⋅ P(U = u | X = x) E(Y | X = x) := uΣ  E(Y | X = x, U = u) ⋅ P(U = u | X = x) 



1. The Single-Unit Trial

We consider the following single-unit trial: sample a unit (or 
person) from a given set of units (the population), observe 
its assignment (or assign it) to one of two treatment 
conditions and register the outcome. 

The set of possible outcomes of the single-unit trial described 
above might be of the form: 

Ω = ΩU × ΩX × IR .
Notation:

U: Ω→ ΩU Person variable or unit variable
X: Ω→ ΩX treatment variable, with values 0 and 1
Y: Ω→ IR Outcome variable



2.  Individual and Average Causal Effects I

Define the random variables f0(U): Ω→ IR and f1(U): Ω→ IR 
by:

f0(u) = E(Y | X = 0, U = u)    
for all values u of U

and 
f1(u) = E(Y | X = 1, U = u) − E(Y | X = 0, U = u)

for all values u of U
Then:

E(Y | X , U ) = f0(U) + f1(U)⋅X



2.  Individual and Average Causal Effects II

Definition 1  
f1(u) =:  Individual causal effect of unit u
E [ f1(U)] =:  Average causal effect

f0(U) =: η0 Expected outcome variable under “control”
f0(U) + f1(U) =: η1 Expected outcome variable under 

“treatment”
These two variables, η0 and η1 replace Rubins “potential outcome 

variables”. 



Causal Unbiasedness

Definition 2.  The regression E(Y | X ) as well as its values 
E(Y | X = 0) and E(Y | X = 1) are called causally unbiased if 
the following equations hold: 

E(Y | X = 0) = E [f0(U)]
E(Y | X = 1) = E [f0(U)] + E [f1(U)]

Corollary 1.  If E(Y | X ) is causally unbiased, then:  
ACE = E(Y | X = 1) − E(Y | X = 0)



Identification of the Average Causal Effect I

The following equations are always true (X with values 0 and 1):
E(Y | X ) = α0 + α1⋅X 

and
E(Y | X ) = E [E(Y | X , U ) | X ]

= E [ f0(U) | X ] + E [ f1(U) | X ] ⋅ X .
These equations show that the slope α1 of the linear regression E(Y | X ) = 

α0 + α1⋅X is the average causal effect if 
E [f0(U) | X ] = E [f0(U)] Weak

and 
E [f1(U) | X ] = E [f1(U)] Ignorability



Identification of the Average Causal Effect II

Theorem 1.  Weak ignorability implies causal unbiasedness of 
the regression E(Y | X ) and, therefore,

ACE = E(Y | X = 1) − E(Y | X = 0) = α1

Theorem 2. Sufficient conditions for weak ignorability and, 
therefore, for causal unbiasedness are: 
Independence of U and X
Unit-treatment homogeneity: E(Y | X, U) = α0 + α1⋅X 
Independence of X and (η0, η1)    (= Rubins Ignorability)
Unconfoundedness of the regression E(Y | X )  (see Def. 3)



Identification of the Average Causal Effect III

Definition 3. The regression E(Y | X ) is called unconfounded if 
for each value x of X: 
P(X = x | U = u) = P(X = x),    for all values u of U, 

or
E(Y | X = x, U = u) = E(Y | X = x),    for all values u of U.



4. The Single-Unit Trial With a Covariate
We consider the following single-unit trial: sample a unit from 

a given set of units (the population), observe a covariate (a 
pretreatment variable), observe the assignment of the unit to 
one of two treatment conditions and register the outcome. 

The set of possible outcomes of the single-unit trial described 
above might be of the form: 

Ω = ΩU × ΩZ × ΩX × IR .
Notation:

U: Ω→ ΩU Person variable or unit variable
Z: Ω→ ΩZ covariate or pretreatment variable
X: Ω→ ΩX treatment variable, with values 0 and 1
Y: Ω→ IR Outcome variable



5.  Conditional Average Causal Effects 

Aside from 
E(Y | X, U ) = f0(U) + f1(U)⋅X

we can now also consider 
E(Y | X, Z ) = g0(Z) + g1(Z)⋅X .

We can define:
E[ f1(U) | Z = z] =: CACE Conditional average causal effect

of X on Y given a value z of the covariate Z



Identification of the Conditional Average Causal Effect I

The following equations are always true:
E(Y | X, Z ) = g0(Z) + g1(Z)⋅X (1)

and
E(Y | X, Z ) = E [E(Y | X, Z, U ) | X, Z ] (2)

If we assume
– E(Y | X, Z, U ) = E(Y | X, U ) ???
– E [f0(U) | X, Z ] = E [f0(U) | Z ] Conditional
– E [f1(U) | X, Z ] = E [f1(U) | Z ] weak ignorability

then defining  g0(Z) := E [f0(U) | Z ] and   g1(Z) := E [f1(U) | Z ]
shows that the slopes g1(z) of the conditional linear regression (1) are the 

conditional average causal effects of X on Y given Z = z.



Identification of the Conditional Average Causal Effect II

Theorem 3.  Conditional weak ignorability and ??? imply conditional causal 
unbiasedness of the regression E(Y | X, Z) and, therefore,

CACE = E(Y | X = 1, Z = z) − E(Y | X = 0, Z = z) = g1(z) 
for each value z of Z

and   E[g1(Z)] = E[ f1(U) ] = ACE.

Theorem 4. Sufficient conditions for conditional weak ignorability and, 
therefore, for conditional causal unbiasedness are: 
Conditional independence of U and X given Z
Conditional unit-treatment homogeneity: E(Y | X, Z, U) = g0(Z) + g1(Z) ⋅X 
Conditional independence of X and (η0, η1) given Z (= Rubins
Ignorability)
Conditional unconfoundedness of the regression E(Y | X, Z)  (see Def. 5)



Identification of the Conditional Average Causal Effect III

Definition 5.  The regression E(Y | X, Z ) is called conditionally unconfounded
given Z if for all values z of Z the following proposition holds: 

For each value x of X: 
(a) P(X = x | Z = z, U = u) = P(X = x | Z = z),    for all values u of U, 
or
(b) E(Y | X = x, Z = z, U = u) = E(Y | Z = z, X = x),    for all values u of U.
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Rubin: Unit homogeneity
Table 1. Illustration of a homogeneous population 

 
U 
Person 
variable 

Y1 
Potential outcome 
under treatment 

Y0 
Potential outcome 
under control 

Y0  − Y1 
Individual 
causal effect 
 

u1 110 100 10 
u2 110 100 10 
u3 110 100 10 
u4 110 100 10 
u5 110 100 10 
u6 110 100 10 
u7 110 100 10 
u8 110 100 10 
Mean 110 100 10 
 



Rubin: Sampling with heterogenous units 1
Table 1. Example illustrating individual and average causal effects  

(a) Experiment with non-comparable groups  

U 
Person 
variable

Y1 
Potential outcome 
under treatment 

Y0 
Potential outcome 
under control 

Y1 − Y0 
Individual 
causal effect 

u1 82 68 14 
u2 89 81 8 
u3 101 89 12 
u4 108 102 6 
u5 118 112 6 
u6 131 119 12 
u7 139 131 8 
u8 152 138 14 
Mean 105.5 115.5 10 

Note. The red numbers are selected.  
 



Rubin: Sampling with heterogenous units 2

(b) Experiment with comparable groups 
U  

Person 
variable 

Y1 
Potential outcome 
under treatment 

Y1 
Potential outcome 
under control 

Y1 − Y0 
Individual 
causal effect 

u1 82 68 14 
u2 89 81 8 
u3 101 89 12 
u4 108 102 6 
u5 118 112 6 
u6 131 119 12 
u7 139 131 8 
u8 152 138 14 
Mean 115 105 10 

 
Note. The red numbers are selected.  
 



Rubin: Ignorability
 
  U 

 Person 
Variable 

Y1 
Potential outcome 
under treatment 

Y0 
Potential outcome 
under control 

Y1 − Y0 
Individual 
causal effect 

P(X = 1 | Y0, Y1)   
treatment  
probability  in 
experiment 1 
 

P(X = 1 | Y0, Y1)    
treatment  
probability in 
experiment 2 
 

u1 85 74 11 3/4 8/9 
u2 85 74 11 1/4 7/9 
u3 101 89 12 1/2 6/9 
u4 108 102 6 1/2 5/9 
u5 118 112 6 1/2 4/9 
u6 131 119 12 1/2 3/9 
u7 139 131 8 1/2 2/9 
u8 152 138 14 1/2 1/9 

Mean 115 105 10   
 
 



Rubin: Propensity
 

 U 
 Person 
Variable 

Y1 
Potential outcome 
under treatment 

Y0 
Potential outcome 
under control 

Y1 − Y0 
Individual 
causal effect 

P(X = 1 | U)    
treatment  
probability  in 
experiment 1 
 

P(X = 1 | U)    
treatment  
probability in 
experiment 2 
 

u1 85 74 11 1/2 8/9 
u2 85 74 11 1/2 7/9 
u3 101 89 12 1/2 6/9 
u4 108 102 6 1/2 5/9 
u5 118 112 6 1/2 4/9 
u6 131 119 12 1/2 3/9 
u7 139 131 8 1/2 2/9 
u8 152 138 14 1/2 1/9 

Mean 115 105 10   
 
 



Table 1. Individual causal effects. 
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u1  82  68  14   
u2   89    81    8   
u3  101   89 12   
u4  108    102    6   
u5  118     112     6   
u6  131      119        12   
u7  139        131         8   
u8  152        138           14   

  Individual causal laws   
    

  

 

Beyond Rubin 1:  Expected outcomes



Beyond Rubin 2 : Individual distributions
Table 1. Individual causal effects and treatment probabilities. 

Pe
rs

on
 v

ar
ia

bl
e 

U
 

 E(
Y 

| X
 =

 1
, U

 =
 u

) 
Ex

pe
ct

ed
 o

ut
co

m
e 

E(
Y 

| X
 =

 0
, U

 =
 u

) 
Ex

pe
ct

ed
 o

ut
co

m
e 

E(
Y 

| X
 =

 1
, U

 =
 u

) −
 

E(
Y 

| X
 =

 0
, U

 =
 u

) 
In

di
vi

du
al

 c
au

sa
l e

ff
ec

t 

 

 

u1  82  68  14   

u2   89    81    8   

u3  101   89  12   

u4  108    102    6   

u5  118     112     6   

u6  131      119        12   

u7  139        131         8   

u8  152       138           14   

  Individual causal laws   
    

  

 



Beyond Rubin 3: Individual and average causal laws
Table 1. Individual and average causal effects. 
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u1 1/8 82  68  14   

u2 1/8  89    81    8   

u3 1/8 101   89  12   

u4 1/8 108    102    6   

u5 1/8 118     112     6   

u6 1/8 131      119        12   

u7 1/8 139        131         8   

u8 1/8 152       138           14   

  Individual causal laws   
 Average causal laws:  

CUE(Y | X = x) = ( | , ) ( )u E Y X x U u P U u= = ⋅ =∑   
  

  

 



Beyond Rubin 4 :  A good design
Table 1. Individual causal effects and equal treatment probabilities. 
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u1 1/8 82  68  14 1/2  

u2 1/8  89    81    8 1/2  

u3 1/8 101   89  12 1/2  

u4 1/8 108    102    6 1/2  

u5 1/8 118     112     6 1/2  

u6 1/8 131      119        12 1/2  

u7 1/8 139        131         8 1/2  

u8 1/8 152       138           14 1/2  

  Individual causal laws Good design  
 Average causal laws:  

CUE(Y | X = x) = ( | , ) ( )u E Y X x U u P U u= = ⋅ =∑   
  

Good design implies: E(Y | X = x) reflect average causal laws  

 



Beyond Rubin 5 :  CUE and E(Y | X = x)
Table 1. Individual causal effects, equal and unequal treatment probabilities. 
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u1 1/8 82  68  14 1/2 8/9 

u2 1/8  89    81    8 1/2 7/9 

u3 1/8 101   89  12 1/2 6/9 

u4 1/8 108    102    6 1/2 5/9 

u5 1/8 118     112     6 1/2 4/9 

u6 1/8 131      119        12 1/2 3/9 

u7 1/8 139        131         8 1/2 2/9 

u8 1/8 152       138           14 1/2 1/9 

  Individual causal laws Good design Bad design 
 Average causal laws: 

( | ) ( | , ) ( )uCUE Y X x E Y X x U u P U u= = = = ⋅ =∑
  

  

Good design implies: E(Y | X = x) reflect average causal laws  

Bad design implies: E(Y | X = x) do not reflect average causal laws 

E(Y | X = x) := uΣ  E(Y | X = x, U = u) ⋅ P(U = u | X = x) E(Y | X = x) := uΣ  E(Y | X = x, U = u) ⋅ P(U = u | X = x) 



Beyond Rubin 6 :  Individual and average causal effects
U: Person or unit variable 
X: treatment variable, dichotomous with values 0 and 1 
Y: Outcome variable 
 
E(Y  | X ,  U )  = g0(U) + g1(U) ⋅ X 
 
g1(u) =: Individual causal effect of unit u 
E[g1(U)] =: Average causal effect  
 
The next equation is always true if X is dichotomous: 
  E(Y  | X ) = E[E(Y  | X ,  U ) | X  ]  
 = E[g0(U) | X  ] + E[g1(U) | X  ] ⋅ X . 
 
This equation shows that the slope α1 of the linear regression E(Y  | X ) = α0 + α1 ⋅ X 
is the average causal effect if 

     E[f0(U) | X  ] = E[f0(U)]    and   E[f1(U) | X  ] = E[f1(U)].      (0.1) 

Sufficient conditions for (0.1) are:  
(a) Independence of U and X.  
(b) Independence of X and (Y0, Y1),   (= Rubins Ignorability) 
 where Y0 := f0(U) and Y1 := f0(U) + f1(U)  



Pearl 1: His analysis of Rubins Causal Model

If
(a) X and U are independent (randomization) or
(b) E(Y | X, U ) = E(Y | X ) (unit homogeneity), 
then E(Y | X = 1) - E(Y | X = 0) is the causal effect of X on Y, i.e. PFE = ACE. 

Note that

 
( | ) ( | , ) ( | )uE Y X x E Y X x U u P U u X x= = = = ⋅ = =∑             

UU(a) (b) U: Person or unit variable

X: treatment variable

Y: Outcome

X Y X Y



Pearl 2: His analysis of Rubins Causal Model 

The causal effect of X on Y can be computed by: 
CUE(Y | X = 1) - CUE(Y | X = 0), where

 
( | ) ( | , ) ( )uCUE Y X x E Y X x U u P U u= = = = ⋅ =∑             

U

YX

U: Person or unit variable

X: treatment variable

Y: Outcome



Pearl 1 + 2: His analysis of Rubins Causal Model

(1) If (a) X and U are independent or (b) E(Y | X, U ) = E(Y | X ), then E(Y | X = 1) -
E(Y | X = 0) is the causal effect of X on Y, i.e. PFE = ACE. Note that

(2) The causal effect of X on Y can be computed by: 
CUE(Y | X = 1) - CUE(Y | X = 0), where

 
( | ) ( | , ) ( | )uE Y X x E Y X x U u P U u X x= = = = ⋅ = =∑             

 
( | ) ( | , ) ( )uCUE Y X x E Y X x U u P U u= = = = ⋅ =∑             

U

YX

U

YX

U

YX

1 (a) 1 (b) 2: neither
(a) nor (b)



Pearl 3: His analysis of Rubins Causal Model

If (a) E(Y | X, U, Z ) = E(Y | X, Z )    or (b)  P(X | U, Z ) = P(X | Z )
and 
E(Y | X, U, Z ) = E(Y | X, U ),

then the causal effect of X on Y can be computed by: 
CUE(Y | X = 1) - CUE(Y | X = 0), where

 
( | ) ( | , ) ( )zCUE Y X x E Y X x Z z P Z z= = = = ⋅ =∑             

U

Z

X Y

U

Z

X Y

(a) (b)



Beyond Rubin 6 : Unconfoundedness, Definition

      
 There are conditions under which, for each value x of X: 

    E(Y | X = x) := uΣ  E(Y | X = x, U = u) ⋅ P(U = u | X = x)        
   is equal to 

         uΣ  E(Y | X = x, U = u) ⋅ P(U = u). 
     
    

 

For each value  of :
    (  =  |  = ) = (  = )  

(  | )
   (  |  = ,  = ) = (  |  =

(1)

)  )  (2

x X
Unconfoundedness

P U u X x P U u u
of the regression

E Y X
E Y X x U u E Y X x u

⎫
⎪∀ ⎪
⎬
⎪
⎪∀ ⎭

or
 

   



Beyond Rubin 7: Unconfoundedness - Example
Table 2.  An example in which the treatment regression E(Y | X ) is unconfounded and cau-
sally unbiased but none of the other causality criteria discussed in this paper hold 
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u1 1/8 m  1/2   82  1/10 105  4/10 110 
u2 1/8 m  1/2   89  1/10 105  4/10 110 

u3 1/8 m  1/2 101  2/10 105  3/10 110 

u4 1/8 m  1/2 108  2/10 105  3/10 110 

u5 1/8 f  1/2 118  3/10 105  2/10 110 

u6 1/8 f  1/2 131  3/10 105  2/10 110 

u7 1/8 f  1/2 139  4/10 105  1/10 110 

u8 1/8 f  1/2 152  4/10 105  1/10 110 
 

Note: The (unconditional) probabilities for the three treatments are P(X  = x1) = 1/2,  

P(X = x2) = P(X = x3) = 1/4. 



Beyond Rubin 8: Unconfoundedness – Equivalent Definition
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Unconfoundedness is equivalent to: 
 
For each W := f (U): 
 
        E(Y | X = x)  := wΣ  E(Y | X = x, W = w) ⋅ P(W = w)  
 
for each value x of X.       

      
     



Steyer 1992



Steyer, 1984



A formal theory of causality 0
(Steyer 1984, 1992)

[ (Ω, A, P) , E(Y | X)  ]

Probability space

Random variables on (Ω, A, P)
Y: Ω→ℜ (real-valued)
X: Ω→ΩX
must be „measurable“
i. e., all events associated with
X and Y are elements in A

Regression or conditional expectation,
i. e. that function of X, the values of
which are the conditional expected
values E(Y | X = x)

Regressive dependence of Y on X
E(Y | X ) ≠ E(Y )



A formal theory of causality 2 (Steyer, 1984, 1992)

[ (Ω, A, P),  E(Y | X ), (Ct, t ∈T), D ]

same as before

Monotonically nondecreasing family
of σ-algebras Ct⊂ A

D ⊂ A, a sub-σ-algebra of A.

C1 C2 C3
A

used to define preorderedness relation between
events and random variables.
[Random variables generate σ-algebras ⊂ A.]

used to define „potential confounders“ W
(random variables). Their generated σ-
algebra is a subset of D.

Pre-orderedness
W → X → Y



A formal theory of causality 3 (Steyer, 1984, 1992)

[ (Ω, A, P),  E(Y | X ) , (Ct, t ∈T), D ]

C3 = σ(U, X, Y)C2 = σ(U, X)C1 = σ(U)

D = C1 = σ(U)
Potential confounders W: 
measurable with respect to D

Pre-orderedness
U → X → Y



A formal theory of causality 4 (Steyer, 1984, 1992)    
Causality conditions

Strict Causality

E(Y | X, W ) = E(Y | X )    for each potential confounder W 

Strong Causality

E(Y | X, W ) = E(Y | X ) + f (W )    for each potential confounder W

Weak Causality (= Unconfoundedness)

If W is a potential confounder, then, for PX-almost every value x of X:

E(Y | X = x ) = ∫ E(Y | X = x,W = w) PW(dw)

i.e., if W is discrete:

E(Y | X = x) = ∑w E(Y | X = x, W = w)  P(W = w)



Sufficient conditions for Weak Causality (Steyer, 1992) 

1. Stochastic independence of X and D implies Weak Causality. [If D is defined to 
be generated by U, the random variable, the values of which are the observational
units drawn from the population, then this independence can be deliberately
created via random assignment of units to treatment conditions.]

2. Both, Strict and Strong Causality Conditions imply Weak Causality.



Applications

• Experimental design techniques such as randomization, 
conditional randomization etc.

• Data analysis techniques such as
Nonorthogonal Analysis of Variance
Analysis of Covariance
Computation of causal effects in structural equation models
Tests of confounding
Data mining for causal dependencies
….



Nonorthogonal Analysis of Variance
Table 1.  Example for a nonorthogonal analysis of variance design  

 
 Need for therapy  
 
Treatment 

strong 
 Z = z1 

medium  
Z = z2 

weak 
Z = z3 

total 

1   X = x1 120    (40) 110    (20)   60      (6)           (66)
2   X = x2 100    (14) 100    (80) 100    (14)         (108)
3   X = x3   80      (6)   90    (20) 140    (40)           (66)

total           (60)         (120)           (60)         (240)
 
Note. True cell means and, in parentheses, cell frequencies.  
 



Conclusions

• The mathematical structure of causal stochastic dependencies is now 
well-known 

• The theory of stochastic causality helps in deciding between 
competing strategies for data  analysis 

• The theory also leads to new ways of data analysis 
• Many statistical problems in these data analyses are not yet solved   
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