Neue Möglichkeiten und Anwendungen der Phasenmodulation ultrakurzer Laserimpulse

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät
der Friedrich-Schiller-Universität Jena

von Diplomphysiker Martin Hacker
geboren am 8.11.1974 in Gotha
Gutachter:

1. Dr. habil. Thomas Feurer
 Department of Chemistry,
 Massachusetts Institute of Technology, Cambridge

2. Prof. Dr. Andreas Tünnermann
 Institut für Angewandte Physik
 Friedrich-Schiller-Universität Jena

3. Prof. Dr. Andrew M. Weiner
 School of Electrical and Computer Engineering
 Purdue University, West Lafayette

Tag der letzten Rigorumsprüfung: 18.07.2003
Tag der öffentlichen Verteidigung: 30.10.2003
Für Johannes, geboren am 5.12.2002
Inhaltsverzeichnis

Einleitung

1 **Grundlagen**

 1.1 Erzeugung ultrakurzer Laserimpulse ... 4
 1.2 Beschreibung ultrakurzer Laserimpulse ... 5
 1.2.1 Komplexe Darstellung des elektrischen Feldes 5
 1.2.2 Leistung, Energie und Intensität ... 9
 1.2.3 Laserimpulsmodell ... 10
 1.3 Propagation in linearen optischen Systemen 12
 1.4 Dispersionskontrolle ... 13
 1.5 Programmierbare Impulsformung .. 13
 1.6 Dreiwellenmischung ultrakurzer Impulse 16
 1.7 Diagnostik ultrakurzer Laserimpulse .. 19
 1.8 Femtosekundensimulationsumgebung Lab2 22

2 **Iterativer Fourier-Transformationsalgorithmus** 24

 2.1 Einführung ... 24
 2.2 Schema .. 25
 2.3 Konvergenz des Algorithmus .. 27
 2.4 Anwendungsbeispiele ... 29

3 **Dispersionskontrolle phasenmodulierender Resonatoren** 33

 3.1 Einführung ... 33
 3.2 Gires-Tournois-Interferometer (GTI) ... 34
 3.2.1 Beschreibung der Phasenmodulation ... 34
 3.2.2 Impulszugkompression am GTI .. 39
 3.2.2.1 Experimentelle Demonstration ... 39
 3.2.2.2 Auflösungsbedingung ... 43
 3.2.2.3 Optimale GTI-Parameter ... 45
 3.3 Kompression mit GTI-Sequenzen ... 49
 3.4 Anwendungen .. 52
 3.4.1 Intensitätsverringerung ... 52
 3.4.2 Adressierung und Codierung optischer Informationen 54
 3.4.3 GTI-Kompensation durch eine GTI-Sequenz 55

4 **Kontrolle nichtresonanter Zweiphotonenprozesse** 58

 4.1 Einführung ... 58
 4.2 Frequenzverdopplung phasenmodulierter Impulse 59
INHALTSVERZEICHNIS

4.2.1 Sinusförmige Phasenmodulation 59
 4.2.1.1 Theoretische Betrachtung 59
 4.2.1.2 Experimentelle Untersuchung 61
4.2.2 Quadratische Phasenmodulation 65
4.2.3 Kubische Phasenmodulation 65
4.3 Nichtresonante atomare Zweiphotonenanregungen 66
4.4 Schmalbandige Summen- und Differenzfrequenzmischungen 68
4.5 Spektrale Fokussierung 72
4.6 Nichtresonante molekulare Zweiphotonenanregungen 75

5 Reflektiver hochauflösender Impulsformer 78
 5.1 Einführung .. 78
 5.2 Hochauflösender Phasenmodulator 79
 5.2.1 Prinzip .. 79
 5.2.2 Demonstration der Impulsformung im Ultraviolett 81
 5.3 Konzept eines reflektiven Amplituden- und Phasenmodulators 86

Zusammenfassung .. 88
Literaturverzeichnis .. 90
Anhang: SHG sinusförmig phasenmodulierter Impulse 101
Abkürzungen und Formelzeichen 104
Ehrenwörtliche Erklärung 107
Lebenslauf ... 108
Danksagung .. 109
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>kHz-Titan-Saphir-Lasersystem</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>4f-Aufbau zur FOURIER-Filterung</td>
<td>14</td>
</tr>
<tr>
<td>1.3</td>
<td>Transmission eines LC-SLM</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Varianten des SFM-FROG</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>SHG mit ungeschwächter und geschwächter Fundamentaler</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Iterativer FOURIER-Transformationsalgorithmus</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Konvergenz des Algorithmus</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Erläuternde Skizze</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Optimierungsbeispiel</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Verlauf einer Optimierung</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Anwendung des Algorithmus zur eindimensionalen Impulsformung</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Anwendung des Algorithmus zur zweidimensionalen Impulsformung</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Vielstrahlinterferenz am GTI</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Amplitudenteilung am Strahlteiler</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Phasenmodulation durch ein GTI</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Aufbau zur Kompensation eines GTI</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Impulszug, erzeugt von einem GTI</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Vorkompensierter Impuls nach Reflexion am GTI</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>GTI-Kompensationsphase</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Verstimmtes GTI</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>Kompensierbarer GTI-Parameterbereich</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Spitzenintensitätsverringerung am GTI</td>
<td>46</td>
</tr>
<tr>
<td>3.11</td>
<td>Impulszüge für verschiedene Reflektivitäten</td>
<td>48</td>
</tr>
<tr>
<td>3.12</td>
<td>Intensitätsverringerung durch GTI und durch dispersive Spiegel</td>
<td>49</td>
</tr>
<tr>
<td>3.13</td>
<td>Impulszug nach GTI-Sequenz</td>
<td>50</td>
</tr>
<tr>
<td>3.14</td>
<td>Vorkompensierter Impuls nach GTI-Sequenz</td>
<td>50</td>
</tr>
<tr>
<td>3.15</td>
<td>Selektive Kompression</td>
<td>51</td>
</tr>
<tr>
<td>3.16</td>
<td>Konzept zur Intensitätsverringerung in einer optischen Faser</td>
<td>53</td>
</tr>
<tr>
<td>3.17</td>
<td>Intensitätsverlauf in einer vorkompensierten Faser mit und ohne GTI</td>
<td>53</td>
</tr>
<tr>
<td>3.18</td>
<td>Anwendung der selektiven Kompression zur Adressierung</td>
<td>54</td>
</tr>
<tr>
<td>3.19</td>
<td>GTI-Kompensation durch GTI-Sequenz</td>
<td>56</td>
</tr>
<tr>
<td>3.20</td>
<td>GTI-Strecker und GTI-Kompressor</td>
<td>57</td>
</tr>
<tr>
<td>3.21</td>
<td>GTI-Vorkompensation verstärkter Impulse in einem CPA-System</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Diagnostik für frequenzverdoppelte phasenmodulierte Impulse</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Kreuzkorrelations von Fundamentalen- und SH-Impulsen</td>
<td>63</td>
</tr>
<tr>
<td>Abschnitt</td>
<td>Titel</td>
<td>Seite</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>4.3</td>
<td>Modulationsfrequenzabhängigkeit von SH-Spektren</td>
<td>63</td>
</tr>
<tr>
<td>4.4</td>
<td>Modulationsamplitudenabhängigkeit von SH-Spektren</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Kubische Phasenmodulation bei der SHG</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Energie niveau diagramm einer TPF in Cäsium im Vergleich zur SHG.</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Kontrolle der TPF in Cäsium im Vergleich zur SH.</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Spektrale Phasenkoordination</td>
<td>70</td>
</tr>
<tr>
<td>4.9</td>
<td>Einzelimpuls-CARS-Anregung</td>
<td>71</td>
</tr>
<tr>
<td>4.10</td>
<td>Spektrale SH-Fokussierung durch Phasenmodulation</td>
<td>74</td>
</tr>
<tr>
<td>4.11</td>
<td>Spektrale SH-Fokussierung durch Amplitudinenmodulation</td>
<td>74</td>
</tr>
<tr>
<td>4.12</td>
<td>Fokussierte SH-Spektren</td>
<td>75</td>
</tr>
<tr>
<td>4.13</td>
<td>Kontrolle der TPF von Farbstoffen</td>
<td>76</td>
</tr>
<tr>
<td>4.14</td>
<td>Kontrast bei breitbandig angeregter TPF</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Reflektiver Phasenmodulator</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>MEMS-SLM</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Reflektivität der Aluminiumlegierung</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimenteller Aufbau zur direkten Impulsformung im UV</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>THz-Impulzüge im UV</td>
<td>84</td>
</tr>
<tr>
<td>5.6</td>
<td>Dispersionskompensation im UV</td>
<td>85</td>
</tr>
<tr>
<td>5.7</td>
<td>Auslenkungsmuster am MEMS-SLM</td>
<td>85</td>
</tr>
<tr>
<td>5.8</td>
<td>Interferometrischer Amplituden- und Phasenmodulator</td>
<td>86</td>
</tr>
</tbody>
</table>
Einleitung

Die Kombination extrem kurzer Impulsdauern und hoher Spitzenintensitäten ist die Voraussetzung für die Erzeugung von Attosekundenimpulsen innerhalb extremer nichtlinearer optischer Prozesse [12], die derzeit die kürzesten vom Menschen erzeugten Ereignisse darstellen [13].

Da die Phasenmodulation den großen Vorteil bietet, die Impulsenergie nicht zu verringern, wird ihr in vielen Anwendungen der Impulsformung der Vorzug gegeben.

Das Hauptanwendungsgebiet der Impulsformung, insbesondere durch Phasenmodulation, ist derzeit die Kompression ultrakurzer Laserimpulse [17, 18, 19, 20, 21, 22] bzw. die Dispersionskontrolle in unterschiedlichsten optischen Systemen, wie Laserverstärkern [23, 24, 25, 26, 27, 28, 29], optisch parametrischen Verstärkern [30] und
EINLEITUNG

Lichtleitfasern [31, 32]. Eine von der Dispersionskontrolle abgeleitete Anwendung ist die Dispersionsmessung mittels phasenmodulierender Impulsformer [33].

Da ultrakurze Laserimpulse die Beobachtung schnellster Vorgänge in Quantensystemen erlauben, sind sie prinzipiell auch für deren Kontrolle geeignet [34, 35]. Dazu bietet sich neben der Wahl der spektralen Parameter auch die zeitliche Strukturierung der Impulse an.

Die derzeit wohl anspruchsvollste Aufgabenstellung besteht darin, Impulse so zu formen, dass damit eine kohärente Kontrolle molekularer Wellenpaketdynamik möglich wird (coherent control), um beispielsweise das Ergebnis einer Photodissoziation steuern zu können [36].

Wegen der sehr komplexen Zusammenhänge zwischen der zeitlichen Impulsstruktur und der Reaktion von Quantensystemen [37] werden die Impulsformer deshalb bevorzugt in selbstlernenden Systemen eingesetzt [38].

Beispiele dafür sind die Kontrolle von Photodissoziations- und Ionisationsprozessen [39, 40, 41, 42], die Kontrolle der Erzeugung hoher Harmonischer [43, 44], die selektive und optimierte Farbstoffanregung [45, 46, 47], die Kontrolle von RYDBERG-Zuständen [48] und die Steuerung des Energieübergangs in biologischen Molekülen [49].

Weitere Anwendungsgebiete der Impulsformung sind die Erzeugung spezifischer Impulsformen [50, 51] zur Informationsübertragung mittels codierter Impulse [52, 53, 54, 55], zur Kontrolle der Niveaubesetzung in resonanten atomaren Systemen [56, 57, 58, 59, 60], zur Steuerung von Zwei- und Mehrphotonenprozessen [54, 61, 62, 63, 64, 65, 66, 67, 68] und der impulsiv stimulierten RAMAN-Streuung [69].

An Bedeutung gewinnt auch die kombinierte räumliche und zeitliche Impulsformung [70, 71, 72, 73], deren Hauptanwendungsgebiet die Anregung und Kontrolle von Phonon-Polariton-Wellenpaketen in ionischen Kristallen [74] ist.

Bei den Anwendungen der Phasenmodulation ultrakurzer Laserimpulse zur Kontrolle linearer und nichtlinearer optischer Systeme bestehen derzeit folgende offene Fragen:

1. Wie kann mit geringem Aufwand diejenige Phasenmodulation ermittelt werden, die einen Impuls derart modifiziert, dass er einen vorgegebenen Intensitätsverlauf bestmöglich approximiert?

Die Lösung dieser Aufgabe ist besonders für die Erzeugung spezifischer Impulsformen unter Echtzeitbedingungen und bei der zweidimensionalen Impulsformung wichtig. Konventionelle Lösungsansätze bestehen in der Anwendung rechenintensiver Optimierungsalgorithmen.
2. Kann eine Dispersionskontrolle komplizierter linearer optischer Systeme, wie z.B. phasenmodulierender Resonatoren, erreicht werden und welche neuen Anwendungen lassen sich gegebenenfalls aus dieser Möglichkeit ableiten?

4. Besteht doch eine Möglichkeit, die für die kohärente Kontrolle von Molekülen besonders wichtigen direkten Phasen- und Amplitudenmodulationen im Ultraviolett zu erzeugen?

In den einzelnen Kapiteln der vorliegenden Arbeit sollen diese Problemstellungen nach einer kurzen Darstellung der Grundlagen und entsprechend der gewählten Reihenfolge bearbeitet werden.
Kapitel 1

Grundlagen der Formung ultrakurzer Laserimpulse

1.1 Erzeugung ultrakurzer Laserimpulse

Noch stabiler und anwendungsfreundlicher sind Femtosekundenfaseroszillatoren und -verstärker, beispielsweise auf Basis Er- und Yb-dotierter Fasern [84]. Hierbei werden überwiegend nichtlineare Polarisations- und Dispersionseffekte (Solitonen) zur Modenkopplung ausgenutzt [85]. Allerdings sind die Ausgangsleistungen solcher Laser im Vergleich zu verstärkten Festkörperlasern noch gering.

Für diese Arbeit stand ein kHz-Titan-Saphir-Lasersystem zur Verfügung, das aus einem Femtosekundenlaserzosillator (Coherent MIRA 900) und einem Verstärker (Quantronix ODIN) besteht, der nach dem CPA-Prinzip arbeitet (chirped pulse amplification). Das Schema dieses Verstärkersystems entspricht weitgehend dem in Ref. [86] vorgestellten und ist in Abb. 1.1 dargestellt. Die Femtosekundenimpulse

Abb. 1.1: Schema des verwendeten CPA-Systems (Quantronix ODIN).

1.2 Beschreibung ultrakurzer Laserimpulse

1.2.1 Komplexe Darstellung des elektrischen Feldes

Ausgangspunkt der theoretischen Betrachtungen in dieser Arbeit sind monochromatische, ebene, elektromagnetische Wellen der Frequenz ν, die sich in einer Raumdimension z in homogenen, isotropen, dielektrischen Medien ausbreiten. Diese Wellen sind Lösungen der aus den Maxwell-Gleichungen resultierenden Wellengleichungen [87].

Die Struktur des elektrischen Feldes einer solchen Welle mit der reellen Amplitude

\[E(z, t) = E_0 \exp \left(\frac{i k z - \omega t}{c} \right) \]

Die Repetitionsrate des Lasersystems kann bei Bedarf durch rotierende Blenden (chopper) weiter gesenkt werden, z.B. auf 50 Hz.
E_0, der Kreisfrequenz $\omega = 2\pi \nu$, der Wellenzahl $k(\omega) = \frac{\omega}{c_0} n(\omega)$ und der Phase ψ ist

\[E(z,t) = E_0 \cos(\omega t - k(\omega) z - \psi). \]

(1.1)

Hierbei ist c_0 die Vakuumlichtgeschwindigkeit und $n(\omega)$ die frequenzabhängige Brechzahl des Mediums. Die Überlagerung derartiger monochromatischer Wellen ist immer noch eine Lösung der Wellengleichung, also auch eine zeitliches Feld

\[E(z,t) = \int_0^\infty E_0(\omega) \cos(\omega t - k(\omega) z - \psi(\omega)) \ d\omega. \]

(1.2)

Das elektrische Feld $E(z,t)$ ist, wie alle messbaren Größen, reellwertig. Besonders für lineare Operationen ist die Verwendung komplexer Größen aber von Vorteil. Deshalb definiert man mit Hilfe der komplexen FOURIER-Transformation ein komplexes Spektrum der elektrischen Feldstärke [81]:

\[\tilde{E}(\omega) = \mathcal{F}\{E(t)\} = \int_{-\infty}^{\infty} E(t)e^{-i\omega t} \ dt \]

(1.3)

Hierbei wurde die räumliche Abhängigkeit vernachlässigt, da in dieser Arbeit nur zeitliche und spektrale Aspekte ultrakurzer Laserimpulse betrachtet werden. Der komplexe Charakter einer Größe wird hier und im Folgenden durch eine Tilde ausgedrückt.

Das reelle zeitabhängige elektrische Feld erhält man aus der inversen FOURIER-Transformation des komplexen spektralen elektrischen Feldes:

\[E(t) = \mathcal{F}^{-1}\{\tilde{E}(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{E}(\omega)e^{i\omega t} \ d\omega \]

(1.4)

Damit $E(t)$ reell sein kann, muss dabei gelten $\tilde{E}(\omega) = \tilde{E}^*(-\omega)$.

Um auf spektrale Beiträge bei negativen Frequenzen verzichten zu können, wird ein komplexes spektrales Feld eingeführt:

\[\tilde{E}^+(\omega) = \begin{cases} \tilde{E}(\omega) & \text{für } \omega \geq 0 \\ 0 & \text{für } \omega < 0 \end{cases} \]

(1.5)
Das korrespondierende komplexe zeitliche Feld ist

\[\tilde{E}^+(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{E}^+(\omega)e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{0}^{\infty} \tilde{E}(\omega)e^{i\omega t} d\omega. \quad (1.6) \]

Demzufolge gilt

\[\tilde{E}^+(t) = \mathcal{F}^{-1}\{\tilde{E}^+(\omega)\} \quad \text{und} \quad \tilde{E}^+(\omega) = \mathcal{F}\{\tilde{E}^+(t)\}. \quad (1.7) \]

In gleicher Weise lassen sich Felder \(\tilde{E}^-(\omega) \) und \(\tilde{E}^-(t) \) für die ausschließliche Verwendung negativer Frequenzen einführen, wodurch das komplexe spektrale Feld und das reelle zeitliche Feld folgendermaßen rekonstruiert werden können:

\[\tilde{E}(\omega) = \tilde{E}^+(\omega) + \tilde{E}^-(\omega) \quad E(t) = \tilde{E}^+(t) + \tilde{E}^-(t) \quad (1.8) \]

Das komplexe elektrische Feld \(\tilde{E}^+(t) \) wird gewöhnlich als Produkt einer reellen Feldeinhüllenden \(\mathcal{E}(t) \) und einer Phasenfunktion dargestellt.

Nimmt man an, dass nennenswerte spektrale Anteile immer nur in einem kleinen Intervall \(\Delta \omega \) um eine Trägerfrequenz \(\omega_0 \) vorliegen und die Beziehung

\[\frac{\Delta \omega}{\omega_0} \ll 1 \quad (1.9) \]

gilt, so bietet sich die Möglichkeit einer zusätzlichen Auftrennung der Phasenfunktion in einen die Trägerfrequenz \(\omega_0 \) beinhaltenden Term und eine zeitabhängige Phase \(\phi(t) \), woraus folgt [81]:

\[\tilde{E}^+(t) = \frac{1}{2} \mathcal{E}(t)e^{i\phi(t)}e^{i\omega_0 t} \quad (1.10) \]

Als Trägerfrequenz \(\omega_0 \) wird gewöhnlich die Schwerpunktsfrequenz \(\int (\mathcal{E}(\omega))^2 d\omega \int (\mathcal{E}(\omega))^2 d\omega \) verwendet [81]. Die Ableitung der zeitlichen Phase

\[\frac{\partial \phi(t)}{\partial t} = \omega(t) - \omega_0 \quad (1.11) \]

cann als zeitliche Änderung der Frequenz innerhalb des Impulses aufgefasst werden. Daher wird \(\omega(t) \) auch als momentane Frequenz bezeichnet.

Steigt \(\omega(t) \) mit der Zeit an, so spricht man von einer positiven Frequenzmodulation, andernfalls von einer negativen.

Die zeitabhängige Phase \(\phi(t) \) und die reelle Feldeinhüllende \(\mathcal{E}(t) \) werden dann zu einer komple xen elektrischen Feldeinhüllenden zusammengefasst:

\[\tilde{\mathcal{E}}(t) = \mathcal{E}(t)e^{i\phi(t)} \quad (1.12) \]
Unter Verwendung der Beziehungen Gl. 1.7, Gl. 1.10 und Gl. 1.12 ergibt sich

\[\tilde{E}^+(\omega) = \mathcal{F}\{\tilde{E}^+(t)\} = \int_{-\infty}^{\infty} \frac{1}{2} \tilde{E}(t)e^{-i(\omega-\omega_0)t} \, dt \text{ bzw.} \]

\[\tilde{E}^+(\omega_0 + \Omega) = \int_{-\infty}^{\infty} \frac{1}{2} \tilde{E}(t)e^{-i\Omega t} \, dt. \]

(1.13)
(1.14)

Damit lässt sich bezüglich der relativen Kreisfrequenz \(\Omega = \omega - \omega_0 \) die komplexe spektrale Feldeinhüllende

\[\tilde{E}(\Omega) = 2\tilde{E}^+(\omega_0 + \Omega) = \mathcal{F}\{\tilde{E}(t)\} \]

definieren, die in dieser Arbeit der Ausgangspunkt der meisten theoretischen Betrachtungen ist. Aus der Definition der komplexen FOURIER-Transformation Gl. 1.3 folgt, dass eine komplexe Konjugation der spektralen Feldeinhüllenden

\[\tilde{E}^*(\Omega) = \mathcal{F}^\ast\{\tilde{E}(t)\} = \mathcal{F}\{\tilde{E}^*(-t)\} \]

(1.15)
(1.16)
einer komplexen Konjugation und zeitlichen Umkehr der zeitlichen Feldeinhüllenden entspricht.

Es ist zu beachten, dass die Voraussetzung dieser Betrachtungsweise, Gl. 1.9, nur berechtigt ist, wenn die Änderungen von \(\tilde{E}(t) \) und \(\phi(t) \) innerhalb einer optischen Schwingungsperiode \(\tau_0 = 2\pi/\omega_0 \) klein sind und

\[\left| \frac{d}{dt} \tilde{E}(t) \right| \ll \omega_0 \left| \tilde{E}(t) \right| \]

(1.17)
gilt [81]. Ist diese Bedingung erfüllt, so spricht man auch von der Näherung einer langsam veränderlichen Einhüllenden (slowly varying envelope approximation, SVEA).

1.2.2 Leistung, Energie und Intensität

Die momentane Leistung $P(t)$ eines Laserimpulses kann vom POYNTING-Theorem abgeleitet werden und ist in einem linearen, dispersionsfreien, isotropen, homogenen Medium der Brechzahl n gegeben durch [81]:

$$P(t) = \varepsilon_0 c_0 n \int_F dS \frac{1}{\tau_0} \int_{t-\tau_0/2}^{t+\tau_0/2} E^2(t')dt' \quad (1.18)$$

Hierbei ist $\tau_0 = 2\pi/\omega_0$ die Dauer einer optischen Schwingungsperiode, ε_0 die Dielektrizitätskonstante und $\int_F dS$ symbolisiert die Integration über den Strahlquerschnitt F. Ist die Zeitkonstante eines Photodetektors τ_D klein im Vergleich zur Dauer eines Laserimpulses, so kann $P(t)$ direkt gemessen werden.

Die Zeitkonstanten der schnellsten derzeit verfügbaren Photodetektoren, wie Streak-Kameras und Photodioden, liegen im Bereich von etwa $\tau_D = 0.5$ bis 10 ps. Damit sind die Einhüllenden von Femtosekundenlaserimpulsen nicht mehr direkt auflösbar und man misst stattdessen einen zeitlichen Verlauf, der der Faltung zwischen dem Impuls und der zeitlichen Impulsantwortfunktion des Detektors entspricht. Den praktisch messbaren Verlauf erhält man näherungsweise, indem man in Gl. 1.18 τ_0 durch τ_D ersetzt [81].

Die Impulsenergie erhält man durch zeitliche Integration von Gl. 1.18:

$$W = \int_{-\infty}^{\infty} P(t)dt \quad (1.19)$$

Die auf die Fläche bezogene momentane Leistung ist die zeitabhängige Intensität

$$I(t) = \varepsilon_0 c_0 n \frac{1}{\tau_0} \int_{t-\tau_0/2}^{t+\tau_0/2} E^2(t')dt' \quad . \quad (1.20)$$

Unter Berücksichtigung der SVEA und der Beziehung $\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin^2(x)dx = \frac{1}{2}$ ergibt sich

$$I(t) = \frac{1}{2} \varepsilon_0 c_0 n \hat{E}(t)\hat{E}(t)^* \quad \text{bzw.} \quad I(t) \propto \hat{E}(t)\hat{E}(t)^* \quad . \quad (1.21)$$

Mit Hilfe des PARSEVAL-Theorems

$$\int_{-\infty}^{\infty} |\hat{E}(t)|^2dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{E}(\Omega)|^2d\Omega \quad , \quad (1.22)$$
das hier dem Energieerhaltungssatz gleichwertig ist, kann weiterhin eine spektrale Intensität
\[I(\Omega) = \frac{\varepsilon_0 c \Omega}{4\pi} \tilde{E}(\Omega) \tilde{E}(\Omega)^* \text{ bzw. } I(\Omega) \propto \tilde{E}(\Omega) \tilde{E}(\Omega)^* \quad (1.23) \]
eingeführt werden, die beispielsweise mit einem integrierenden Detektor in einem ideal auflösenden Spektrometer messbar wäre.

Detektoren, die im Vergleich zur Laserimpulsdauer über sehr große Zeiträume integrieren, liefern Signale
\[S_m \propto \int_{-\infty}^{\infty} I^m(t) dt , \quad (1.24) \]
wobei \(m \) die Ordnung des genutzten Absorptionsprozesses angibt bzw. die Anzahl der an einem elementaren Absorptionsvorgang beteiligten Photonen.

Beispielsweise stellt eine für Strahlung bei 800 nm zweiphotonenleitfähige Siliziumkarbidphotodiode (SiC) einen nichtlinearen Detektor mit \(m = 2 \) dar [89].
Für \(m = 1 \) hängt das Signal nur von der auf die Fläche bezogenen Impulsenergie \(W \) bzw. der Durchschnittsintensität ab. Für nichtlineare Detektoren mit \(m > 1 \) treten aber zusätzliche Abhängigkeiten des Signals vom zeitabhängigen Intensitätsverlauf \(I(t) \) auf, die auch Rückschlüsse auf die zeitliche Struktur der Laserpulse erlauben [90].

1.2.3 Laserimpulsmodell

Das zeitliche Feld eines GAUSS-Impulses der Amplitude \(\tilde{E}_0 \) ist
\[\tilde{E}(t) = \tilde{E}_0 \exp \left(-\left(\frac{t}{\tau_G} \right)^2 \right) , \quad (1.25) \]
Der Parameter τ_G steht mit der Halbwertsdauer τ_H (FWHM) des zeitlichen Intensitätsverlaufs in folgender Beziehung

$$\tau_G = \tau_H / \sqrt{2 \ln 2}.$$ \hfill (1.26)

Wird durch FOURIER-Transformation von $\tilde{E}(t)$ die spektrale Intensitätsverteilung berechnet und deren Halbwertsbreite $\Delta\Omega_H$ bestimmt, so lässt sich das Zeit-Bandbreite-Produkt bestimmen:

$$\tau_H \cdot \Delta\Omega_H = 4 \ln 2$$ \hfill (1.27)

Dieses sagt aus, dass zur Realisierung einer bestimmten Impulsdauer eine gewisse spektrale Bandbreite benötigt wird.

Wird ein entsprechend Gl. 1.25 definierter GAUSS-Impuls zusätzlich phasen- bzw. frequenzmoduliert, so wird das Zeit-Bandbreite-Produkt überschritten.

Die Gültigkeit von Gl. 1.27 ist demnach ein Kriterium, ob ein GAUSS-Impuls phasenmodulationsfrei ist oder nicht.

Ist er es, so spricht man auch von einem bandbreitebegrenzten Impuls.

Das Konzept des Zeit-Bandbreite-Produkts gilt generell für alle Impuliformen, wobei der explizite Zahlenwert aber vom Impulsmodell abhängt [81].

Ist ein Impuls phasenmoduliert, so empfiehlt sich eine Beschreibung seines spektralen Feldes durch eine Amplituden- und eine Phasenfunktion:

$$\tilde{E}(\Omega) = |\tilde{E}(\Omega)| e^{-i\Phi(\Omega)}$$ \hfill (1.28)

Das negative Vorzeichen im Exponenten wurde gewählt, damit entsprechend Gl. 1.1 eine Propagation in positive z-Richtung zu einer positiven Zusatzphase führt.

Die spektrale Phase $\Phi(\Omega)$ kann in eine Reihe um $\Omega = 0$ entwickelt werden:

$$\Phi(\Omega) = \sum_{m=0}^{\infty} \frac{\Omega^m}{m!} \Phi_{(m)} \quad \text{mit} \quad \Phi_{(m)} = \left. \frac{\partial^m \Phi(\Omega)}{\partial \Omega^m} \right|_{\Omega=0}$$ \hfill (1.29)

Die Dispersionsordnungen $\Phi_{(m)}$ beinhalten unterschiedliche Auswirkungen der Phasenmodulation auf den Impuls. So entspricht beispielsweise $\Phi_{(0)}$ einer absoluten Phasenverschiebung, $\Phi_{(1)}$ einer Laufzeit, $\Phi_{(2)}$ einer quadratischen Phasenmodulation, die den Impuls streckt, und $\Phi_{(3)}$ einer kubischen Phasenmodulation, die Vor- oder Nachimpulse verursachen kann.

Ein linear frequenzmodulierter GAUSS-Impuls (linear chirp) lässt sich leicht mit einer komplexen Impulseinhüllenden

$$\Gamma = a - ib$$ \hfill (1.30)
über
\[\hat{\mathcal{E}}(t) \propto e^{-\Gamma t^2} \quad \text{und} \quad \hat{\mathcal{E}}(\Omega) \propto e^{-\frac{\Omega^2}{2\Omega}} \]
beschreiben. Entsprechend Gl. 1.25 legt \(a = 1/\tau_G^2 \) dabei die Dauer des bandbreitebegrenzten Impulses und \(b \) das Vorzeichen und die Stärke der linearen Frequenzmodulation fest. Aus Gl. 1.28 bis 1.31 folgt dann, dass eine lineare Frequenzmodulation einer rein quadratischen Phasenmodulation entspricht, wobei gilt:
\[\Phi_{(2)} = \frac{\partial^2 \Phi(\Omega)}{\partial \Omega^2} \bigg|_{\Omega=0} = \frac{b}{2(a^2 + b^2)} \] (1.32)

1.3 Propagation in linearen optischen Systemen

Durchquert ein Laserimpuls ein lineares optisches System, so wird seine anfängliche spektrale Feldhüllende \(\hat{\mathcal{E}}_1(\Omega) \) so modifiziert, dass sich die spektrale Feldhüllende \(\hat{\mathcal{E}}_2(\Omega) \) ergibt. Der Quotient der Feldhüllendenden entspricht einer komplexen Transferfunktion
\[\hat{H}(\Omega) = |\hat{H}(\Omega)|e^{-i\Delta \Phi(\Omega)} = \frac{\hat{\mathcal{E}}_2(\Omega)}{\hat{\mathcal{E}}_1(\Omega)} , \] (1.33)
die sämtliche Propagationseffekte in linearen optischen Medien und Strukturen beschreibt. Hierbei ist \(|\hat{H}(\Omega)| \) als reelle Amplituden- und \(\Delta \Phi(\Omega) \) als reelle Phasenmodulation anzusehen.

Nichtabsorbierende, homogene, dispersive, lineare Medien führen demnach für eine spektrale Komponente der relativen Kreisfrequenz \(\Omega \) eine spektrale Phasenmodulation
\[\Delta \Phi(\Omega) = \frac{\omega_0 + \Omega}{c_0} n(\omega_0 + \Omega) D \] (1.34)
ein, \(n(\omega_0 + \Omega) \) die frequenzabhängige Brechzahl und \(D \) der zurückgelegte geometrische Weg ist.

Wie in Abschnitt 1.2.3 erläutert wurde, entspricht die erste Ableitung \(\Phi_{(1)} \) einer solchen Phasenmodulation der bisherigen Laufzeit des Impulses durch das Medium. Die Gruppengeschwindigkeit des Impulses im Medium ist demnach \(v_G = D/\Phi_{(1)} \). Betrachtet man die Laufzeit als frequenzabhängig und leitet sie ab, so erhält man [88]
\[\Phi_{(2)} = \frac{\partial \Phi_{(1)}(\Omega)}{\partial \Omega} \bigg|_{\Omega=0} = D \frac{\partial}{\partial \Omega} \left(\frac{1}{v_G} \right)_{\Omega=0} = -D \frac{1}{v_G^2} \frac{\partial v_G}{\partial \Omega} \bigg|_{\Omega=0} . \] (1.35)

Die quadratische Phasenmodulation \(\Phi_{(2)} \) ist demnach ein Maß für die durch das Medium verursachte Gruppengeschwindigkeitsdispersion (GVD).
1.4 Dispersionskontrolle

Zunehmend lösen programmierbare, phasenmodulierende Impulsformer [16] die klassischen Mittel zur Dispersionskontrolle ab oder ergänzen sie [22,25,20,28,100]. Der große Vorteil der programmierbaren Impulsformer besteht neben der Variabilität in der Möglichkeit, viele Dispersionsordnungen unabhängig beeinflussen zu können.

1.5 Programmierbare Impulsformung

Ist man in der Lage, eine beliebige komplexe Transferfunktion \(\hat{H}(\Omega) \) zu erzeugen, so kann entsprechend Gl. 1.33 ein Laserimpuls auch beliebig geformt werden, solange im Zielimpuls keine spektralen Komponenten benötigt werden, die im Eingangsimpuls fehlen.

Die verbreitetsten Systeme zur Erzeugung solcher Transferfunktionen nutzen entweder die gesteuerte Doppelbrechung in akustooptischen Kristallen (*acousto-optic programmable dispersive filter*, AOPDF) [21] oder die Filterung spektraler Impulsanteile in einer FOURIER-Ebene mit Hilfe eines räumlichen Lichtmodulators (*spatial light modulator*, SLM) [16].

Die erste Methode hat gegenüber der zweiten den großen Nachteil, dass sie eine sehr geringe Modulationseffizienz (5...10 %) aufweist und der Modulator infolge der fehlenden räumlichen Verteilung der Laserimpulse wesentlich stärker belastet wird als die Modulatoren bei der FOURIER-Filterung.

Weiterhin existiert noch die Technik der Impulsformung mit direkter Übertragung eines räumlichen Profils in den Zeitbereich (*direct space-to-time pulse shaper*). Dieses Verfahren ist technisch vorteilhaft, da es nur sehr wenige optische Komponenten benötigt. Andererseits muss das gewünschte Ausgangssignal mit einem Spalt sepa-
riert werden, was zu einem Energieverlust führt [53].

Die am häufigsten verwendete Technik ist die der FOURIER-Filterung in einem so genannten 4f-Aufbau.

Als Modulatoren eignen sich Flüssigkristallmatrizen (LC-SLM) [101], akustooptische Kristalle (AO-SLM) [27] oder auch deformierbare Membranspiegel (micro-machined deformable mirror, MMDM) [20]. Sie unterscheiden sich wesentlich in ihren Eigenschaften und Anwendungsbereichen. Eine kurze Übersicht dazu bietet die Tabelle 1.1. Dabei ist zu beachten, dass mit LC-SLM nur in Kombination mit mindestens einem Polarisator Amplitudenmodulationen erzielt werden können. Zur gleichzeitigen, unabhängigen Amplituden- und Phasenmodulation sind Doppelmodulatoren [102] oder zwei aufeinander folgende folgende 4f-Aufbauten notwendig [103]. Bei Verwendung eines MMDM wird nur die Hälfte des in Abb. 1.2 dargestellte Aufbaus benötigt [20], da in diesem Fall eine Spiegelung an der FOURIER-Ebene erfolgt.
Abgesehen von den AO-SLM wird die Gesamttransmission eines Impulsformers hauptsächlich durch die Effizienz der diffraktiven Bauelemente bestimmt. Für LC-Impulsformer mit Beugungsgittern beträgt sie typischerweise etwa 60 % [101].

Der Einsatz konventioneller programmierbarer Impulsformer [17,102,105,53,21] ist bislang auf die Spektralbereiche des sichtbaren Lichtes (VIS) und des nahen Infrarots (NIR) beschränkt. Dies ist hauptsächlich im begrenzten Transparenzbereich üblicher Modulatormaterialien begründet. Die in LC-SLM eingesetzten Flüssigkristalle beginnen bei Wellenlängen unterhalb von etwa 410 nm zu absorbieren und werden dadurch geschädigt [106]. Dies wird anhand der in Abb. 1.3 gezeigten spektralen Transmissionsverläufe einer nicht entspiegelten LC-Testzelle (A) und eines für 800 nm entspiegelten, kommerziell erhältlichen LC-SLM (B) deutlich.

Im Infrarot (IR) nimmt dagegen mit der Dispersion auch die doppelbrechende Wirkung der Flüssigkristallmoleküle ab, die die Voraussetzung für die einstellbare Phasenmodulation ist [14]. Deshalb liegt die langwellige Grenze für LC-Impulsformer bei etwa 2 μm. Das in AO-SLM zumeist verwendete TeO₂ hat zwar einen etwas
weiteren Transparenzbereich von 350 nm bis 2.3 μm [107], doch werden darauf basierende Impulsformer [27] wegen ihrer meist schlechten Effizienz im Vergleich zu LC-SLM seltener eingesetzt (vgl. Tabelle 1.1).

Bei der FOURIER-Filtertechnik treten prinzipiell an die Größe und Art der zeitlichen Formung gekoppelte räumliche Strahlprofilmodifikationen auf [110]. Deren Auswirkungen können aber vernachlässigbar klein gehalten werden, indem man den Strahl durchmesser im Verhältnis zu den Abmessungen des Aufbaus genügend groß wählt. Da diese Bedingung in den Experimenten in dieser Arbeit weitgehend erfüllt ist, werden räumliche Effekte der zeitlichen Impulsformung grundsätzlich vernachlässigt.

1.6 Dreiwellenmischung ultrakurzer Impulse

Mit Hilfe eines Mediums, das eine Nichtlinearität zweiter Ordnung (χ²-Prozess) besitzt, können drei monochromatische Wellen miteinander gemischt werden, für die der Energieerhaltungssatz ω₃ = ω₁ + ω₂ gilt [14]. Spezialfälle dieser Dreiwellenmischung sind die Summenfrequenzmischung (SFM) mit ω₃ = ω₁ + ω₂, die Differenzfrequenzmischung (DFM) mit ω₂ = ω₃ − ω₁ und die Erzeugung der zweiten Harmonischen bzw. die Frequenzverdopplung mit ω₃ = 2ω₁, ω₂ = ω₁ (second harmonic generation, SHG).

Geeignete Medien für derartige Mischungen sind beispielsweise nichtlineare Kristalle wie Beta-Bariumborat (BBO) oder Lithiumtriborat (LBO). Diese Medien sind doppelbrechend, was zu unterschiedlichen Ausbreitungsgeschwindigkeiten ordentlich und außerordentlich polarisierten Lichtes führt und zur Phasenanpassung (phase matching) zwischen den Wellen ausgenutzt wird. Dabei ist zu beachten, dass in derartigen anisotropen Medien die Richtung des Energieflusses nicht zwangsläufig parallel zur Ausbreitungsrichtung der ebenen Wellen ist. Dies führt bei der Lichtausbreitung beispielsweise zu einem zunehmenden lateralen Versatz zwischen einem ordentlich und einem außerordentlich polarierten Strahl (spatial walk-off) [14, 87].
Da hier im Wesentlichen nur dünne Kristalle betrachtet werden, wird dieser Effekt im Folgenden vernachlässigt und es wird von ebenen Wellen ausgegangen, die durch Gl. 1.1 ausreichend beschrieben werden.

Die aus der Theorie der Dreiwellenmischung gekoppelter ebener, monochromatischer Wellen resultierenden Beziehungen (coupled-wave theory of three-wave mixing) [14] können in folgender Weise auf die Mischung der Spektren dreier ultrakurzer Laserimpulse erweitert werden [81]:

\[\partial_z \tilde{E}_1 (\Omega_1) \propto -i \int_{-\infty}^{\infty} \tilde{E}_3 (\Omega_3) \tilde{E}_2^* (\Omega_3 - \Omega_1) e^{-i\Delta k(\Omega_3, \Omega_1) z} d\Omega_3 \]
\[\partial_z \tilde{E}_2 (\Omega_2) \propto -i \int_{-\infty}^{\infty} \tilde{E}_3 (\Omega_3) \tilde{E}_1^* (\Omega_3 - \Omega_2) e^{-i\Delta k(\Omega_3, \Omega_2 - \Omega_3) z} d\Omega_3 \]
\[\partial_z \tilde{E}_3 (\Omega_3) \propto -i \int_{-\infty}^{\infty} \tilde{E}_1 (\Omega_1) \tilde{E}_2 (\Omega_3 - \Omega_1) e^{+i\Delta k(\Omega_3, \Omega_1) z} d\Omega_1 \]

Hierbei sind \(\tilde{E}_1 (\Omega_1) \), \(\tilde{E}_2 (\Omega_2) \) und \(\tilde{E}_3 (\Omega_3) \) die komplexen spektralen Feldeinhüllenden der Impulse mit den zentralen Kreisfrequenzen \(\omega_1 \), \(\omega_2 \) und \(\omega_3 \). Beim Spezialfall einer kollinearen SHG ist zu beachten, dass die Eingangsfelder für \(\omega_1 = \omega_2 \) bei gleicher Polarisation zunächst interferieren und das resultierende Feld symmetrisch in \(\tilde{E}_1 (\Omega_1) \) und \(\tilde{E}_2 (\Omega_2) \) aufgeteilt wird.

Die Fehlanpassung (phase mismatch) der Wellenzahlen \(k_1 \), \(k_2 \) und \(k_3 \) ist

\[\Delta k (\Omega_3, \Omega_1) = k_1 (\omega_1 + \Omega_1) + k_2 (\omega_2 + \Omega_3 - \Omega_1) - k_3 (\omega_1 + \omega_2 + \Omega_3) \]

und der bislang im Kristall zurückgelegte geometrische Weg ist \(z \).

Gilt für mindestens zwei der drei spektralen Feldeinhüllenden \(\partial_z \tilde{E} \ll \tilde{E} \), d.h. sind die Konversionseffizienzen klein, so spricht man von der Näherung einer ungeschwächten Fundamentalen (non-depleted fundamental approximation).

Im Falle eines dünnen Kristalls mit \(\Delta k (\Omega, \Omega') z \ll 1 \) und bei gültiger Näherung ungeschwächter Fundamentalen vereinfacht sich Gl. 1.38 nach Integration über den gesamten im Kristall zurückgelegten geometrischen Weg für eine SFM zu [81]

\[\tilde{E}_3 (\Omega_3) \propto \int_{-\infty}^{\infty} \tilde{E}_1 (\Omega_1) \cdot \tilde{E}_2 (\Omega_3 - \Omega_1) d\Omega_1 . \]
Im Zeitbereich folgt aus Gl. 1.40 unter Verwendung des Faltungstheorems für FOURIER-Transformationen [14] die einfachen Beziehung

\[\tilde{E}_3(t) \propto \tilde{E}_1(t) \cdot \tilde{E}_2(t). \] (1.41)

Für eine DFM mit ungeschwächten Fundamentalen ergibt sich bei analoger Integration von Gl. 1.37 die Beziehung

\[\tilde{E}_2(\Omega_2) \propto \int_{-\infty}^{\infty} \tilde{E}_3(\Omega_3) \cdot \tilde{E}_1^*(\Omega_3 - \Omega_2) \, d\Omega_3. \] (1.42)

Daraus folgt unter Verwendung des Korrelationstheorems für FOURIER-Transformationen [14] für den Zeitraum die Beziehung

\[\tilde{E}_2(t) \propto \tilde{E}_1^*(t) \cdot \tilde{E}_3(t). \] (1.43)

Die stark vereinfachten Beschreibungen Gl. 1.40 bis 1.43 beschreiben Zweiphotonenprozesse, da in der Nähe rung einer ungeschwächten Fundamentalen davon ausgegan gen wird, dass jeweils zwei Fundamentalenphotonen kombiniert werden, ohne dass Photonen aus dem Mischspektrum diesen Prozess beeinflussen.

Diese Beziehungen enthalten keine Bestandteile, die die Umstände einer speziellen technischen Ausführung der Dreiwellenmischung berücksichtigen, wie beispielsweise die Art des Kristalls. Sie beschreiben aber viele allgemeine, bei der Frequenzkonversion geformerter Laserimpulse in dünnen Kristallen auftretende Effekte, weshalb sie im Folgenden verwendet werden.

Soll ein in bestimmter Weise geformerter Impuls \(\tilde{E}_3(t) \) durch SFM im Ultraviolett erzeugt werden, so können die dazu zu mischenden Impulse \(\tilde{E}'_1(t) \) und \(\tilde{E}'_2(t) \) prinzipiell über Gl. 1.41 ermittelt werden. Es bedarf allerdings einer weiteren Nebenbedingung, um eine eindeutige Bestimmung zu erlauben. Dazu kann einer der Eingangsimpulse \(\tilde{E}'_1(t) \) oder \(\tilde{E}'_2(t) \) festgelegt werden oder es wird von ihrer Gleichheit ausgegangen. Letzteres ist besonders für die SHG als Spezialfall der SFM sinnvoll. Für den ersten Fall ergibt sich aus Gl. 1.41 die Beziehung

\[\tilde{E}'_1(t) \propto \frac{\tilde{E}_3(t)}{\tilde{E}'_2(t)} \text{ bzw. } \tilde{E}'_2(t) \propto \frac{\tilde{E}_3(t)}{\tilde{E}'_1(t)}. \] (1.44)

und für den zweiten Fall

\[\tilde{E}'_1(t) = \tilde{E}'_2(t) \propto \sqrt{\tilde{E}_3(t)}. \] (1.45)
Die zur Erzeugung von $\tilde{E}_1'(\Omega) = \mathcal{F}\{\tilde{E}_1'(t)\}$ und $\tilde{E}_2'(\Omega) = \mathcal{F}\{\tilde{E}_2'(t)\}$ notwendigen Transferfunktionen $\tilde{H}_1(\Omega)$ und $\tilde{H}_2(\Omega)$ erhält man unter Verwendung der vor der Modulation zur Verfügung stehenden Laserimpulse $\tilde{E}_1(\Omega)$ und $\tilde{E}_2(\Omega)$ über die Beziehung

$$\tilde{H}_1(\Omega) = \frac{\tilde{E}_1'(\Omega)}{\tilde{E}_1(\Omega)} \quad \text{bzw.} \quad \tilde{H}_2(\Omega) = \frac{\tilde{E}_2'(\Omega)}{\tilde{E}_2(\Omega)}$$

(1.46)

Im Fall einer DFM kann in gleicher Weise vorgegangen werden, wenn als Ausgangspunkt Gl. 1.43 verwendet wird.

Es ist zu beachten, dass die Methode, geformte Laserimpulse über Dreiwellenmischung in ansonsten schwer zugängliche Frequenzbereiche zu transferieren, im Allgemeinen eine kombinierte Amplituden- und Phasenmodulation der Eingangsimpulse erfordert, und dass die Effizienz des nichtlinearen Mischungsprozesses von der gewünschten Modulation abhängig ist.

1.7 Diagnostik ultrakurzer Laserimpulse

Ultrakurze Laserimpulse im Femtosekundenbereich können mittels elektronischer Detektoren, wie Photodioden, nicht mehr direkt zeitlich aufgelöst werden. Deshalb kommen Korrelationstechniken zur Anwendung, bei denen der zu charakterisierende Impuls mit einem Referenzimpuls in einem nichtlinearen optischen Medium wechselt. Dabei entsteht ein Korrelationssignal, das in Abhängigkeit der zeitlichen Verzögerung zwischen beiden Impulsen spektral integriert oder frequenzaufgelöst aufgenommen wird.

Im ersten Fall spricht man von der Messung einer Korrelationsfunktion, im zweiten von der Aufnahme einer frequenzaufgelösten Korrelationsfunktion (*frequency resolved optical gating*, FROG). Zum Teil werden auch mehrstufige Korrelationen genutzt (*triple correlation*) [111].

Ein guter Überblick über die verschiedenen Varianten der FROG-Technik wird
Abb. 1.4: Prinzip des SFM-, DFM- und SHG-FROG: Der zu charakterisierende Impuls \(I_1(t) \) wird mit einem Impuls \(I_2(t) \) in einem nichtlinearen Kristall unter Erzeugung der Summen- oder Differenzfrequenz gemischt. Die dabei erzeugten Spektralanteile werden in Abhängigkeit der Impulsverzögerung \(\tau \) als zweidimensionale Funktion \(I_{\text{FROG}}(\omega, \tau) \) aufgenommen. Sind der zu untersuchende Impuls \(I_1(t) \) und der Referenzimpuls \(I_2(t) \) verschieden, so handelt es sich a) um einen Kreuzkorrelations-FROG, ansonsten b) um einen Autokorrelations-SHG-FROG. Wird \(I_{\text{FROG}}(\omega, \tau) \) rechnerisch oder mittels geeigneter Detektoren spektral integriert, so erhält man die Kreuzkorrelationsfunktion \(KKF(\tau) \) bzw. die Autokorrelationsfunktion \(AKF(\tau) \). Wird über die Verzögerungen \(\tau \) integriert, so erhält man das Mischfrequenzspektrum \(I_{\text{Sig}}(\Omega) \). Die dargestellten schematischen Impulsverläufe \(I_1(t) \) und \(I_2(t) \) sollen kubisch phasenmodulierte Impulse repräsentieren. Der Referenzimpuls \(I_2 \) sei bandbreitebegrenzt.

In [112] gegeben, weshalb an dieser Stelle auf deren Diskussion verzichtet wird.

Im Rahmen dieser Arbeit werden zur Impulscharakterisierung ausschließlich integrale oder frequenzaufgelöste Auto- und Kreuzkorrelationen verwendet, die bei der SFM in nichtlinearen Kristallen (BBO) entstehen. Die Mischung des zu charakterisierenden Impulses \(\hat{E}_1(t) \) mit dem um \(\tau \) verzögerten Referenzimpuls \(\hat{E}_2(t) \) liefert entsprechend Gl. 1.41 ein Signal

\[
\hat{E}_{\text{Sig}}(t, \tau) \propto \hat{E}_1(t) \cdot \hat{E}_2(t - \tau) .
\]

(1.47)

Wird dieses frequenzaufgelöst mit einem Spektrometer in Abhängigkeit der Verzögerungszeit \(\tau \) detektiert, so erhält man das Signal [113]:

\[
I_{\text{FROG}}(\Omega, \tau) \propto |\hat{E}_{\text{Sig}}(\Omega, \tau)|^2 = |\mathcal{F}\{\hat{E}_{\text{Sig}}(t, \tau)\}|^2
\]

(1.48)
Dieses FROG-Signal hat die Struktur eines Spektrogramms der elektrischen Feld-einhüllenden \(\hat{E}_1(t) \)

\[
I_{\text{FROG}}(\Omega, \tau) \propto \left| \int_{-\infty}^{\infty} \hat{E}_1(t) \cdot g(t - \tau) e^{-i\Omega t} dt \right|^2,
\]

wobei \(g(t - \tau) = \hat{E}_2(t - \tau) \) die Torfunktion repräsentiert.

Spektrogramme sind sehr anschauliche Darstellungsformen komplexer Wellenstrukturen. Die bekannteste Spektrogrammdarstellung ist die Notenschreibweise akustischer Frequenzen.

Aus dem FROG-Signal können unter Verwendung geeigneter Algorithmen die Amplituden- und Phasenstruktur des Impulses \(\hat{E}_1(t) \) ermittelt werden \([112, 113, 114]\). In dieser Arbeit wird das FROG-Signal allerdings ausschließlich zur Veranschaulichung komplexer Impulsstrukturen verwendet und nur hinsichtlich der Gewinnung bestimmter Informationen interpretiert.

Durch Integration des FROG-Signals bezüglich der Verzögerungszeit \(\tau \) erhält man unter Verwendung von Gl. 1.40 und Gl. 1.48 beispielsweise das Spektrum

\[
I_{\text{Sig}}(\Omega) = \int_{-\infty}^{\infty} I_{\text{FROG}}(\Omega, \tau) d\tau \propto \left| \int_{-\infty}^{\infty} |\hat{E}_1(\Omega_1)| |\hat{E}_2(\Omega - \Omega_1)| d\Omega_1 \right|^2.
\]

Dieses Spektrum entspricht demjenigen, das man bei der Mischung zweier bandbreitebegrenzter Impulse \(|\hat{E}_1(\Omega)|, |\hat{E}_2(\Omega)| \) ohne Zeitverzögerung erhalten würde. Anhand dieses Spektroms können deshalb Aussagen dahingehend getroffen werden, ob eine Amplituden- oder eine Phasenmodulation des zu charakterisierenden Impulses vorliegt.

Wird das FROG-Signal spektral integriert bzw. mit einem spektral integrierenden Detektor aufgenommen, so erhält man die Kreuzkorrelationsfunktion

\[
KKF(\tau) = \int_{-\infty}^{\infty} I_{\text{FROG}}(\Omega, \tau) d\Omega = \int_{-\infty}^{\infty} I_1(t) I_2(t - \tau) dt,
\]

der Intensitätsverläufe \(I_1(t) = |\hat{E}_1(t)|^2 \) und \(I_2(t) = |\hat{E}_2(t)|^2 \). Bei Kenntnis der zeitlichen Struktur des Referenzzimpulses \(I_2(t) \) lässt sich daraus durch Entfaltung der zeitliche Intensitätsverlauf des zu charakterisierenden Impulses \(I_1(t) \) ermitteln. Ist der Referenzzimpuls \(I_2(t) \) zeitlich kurz gegenüber \(I_1(t) \), so entspricht die Kreuzkor-
relationsfunktion näherungsweise dem zeitlichen Intensitätsverlauf

\[KKF(\tau) \approx \int_{-\infty}^{\infty} I_1(t)\delta(t-\tau)dt = I_1(\tau). \]

(1.52)

Wird als Referenzipuls ein Duplikat des zu charakterisierenden Impulses verwendet, so erhält man statt der Kreuzkorrelationsfunktion entsprechend Gl. 1.51 die Autokorrelationsfunktion \(AKF(\tau) = \int_{-\infty}^{\infty} I_1(t)I_1(t-\tau)dt. \)

1.8 Femtosekundensimulationsumgebung LAB2

Um einen Eindruck der mit dem Simulationspaket LAB2 gegebenen Möglichkeiten zu vermitteln, zeigt Abb. 1.5 die mit der Routine depleted nonlinear crystal berechneten SH-Spektren von Femtosekundenimpulsen eines typischen Titan-Saphir-Lasers in Abhängigkeit von der Dicke des verwendeten BBO-Kristalls und von der Eingangsintensität. Diese LAB2-Routine löst das Differentialgleichungssystem Gl. 1.36 bis 1.38 unter Verwendung konkreter Materialdaten numerisch [115].

Dieses Beispiel wurde gewählt, da es auch die Bedeutung der Näherung ungeschwächter Fundamentalenimpulse veranschaulicht (vgl. Abschnitt 1.6).

Deutlich sichtbar ist in Abb. 1.5 a), dass im Falle geringer Eingangsintensitäten ein quadratisches Ansteigen der phasenangepassten Teile des SH-Spektrums auftritt. In diesem Fall sind die Konversionseffizienzen gering und die Fundamentalenimpulse werden nicht nennenswert geschwächt, weshalb keine Sättigungseffekte auftreten. Für große Kristalldicken ist erkennbar, dass die Flügel der Spektren durch Rückkonversion wieder abgebaut werden.

Die spektrale Form wird hier durch den aus der Integration des Differentialgleichungssystems im Falle ungeschwächter Fundamentalenimpulse resultierenden Term \(\text{sinc}^2\left(\frac{1}{2} \Delta k z\right) \) [14] dominiert.

²LAB2 wurde von Feurer, Schmidt, Stobrawa und Hacker entwickelt [91], wobei letzterer insbesondere für die Kristallroutinen verantwortlich ist.
Abb. 1.5: Abhängigkeit theoretischer SH-Spektren frequenzverdoppelter Impulse eines Titan-Saphir-Lasers von der Dicke des verwendeten BBO-Kristalls: a) für den Fall ungeschwächter Fundamentenimpulse bei 1 µJ/cm² Eingangsfluenz und b) für den Fall geschwächter Fundamentenimpulse bei 5 mJ/cm² Eingangsfluenz. Die Fundamentenimpulse besitzen eine Zentralwellenlänge von 800 nm und eine Halbwertsbandbreite von 25 nm.

Abb. 1.5 b) zeigt für den Fall größerer Eingangsintensitäten die sättigende Wirkung der Schwächung der Fundamentenimpulse. Diese betrifft besonders die zentralen Spektralkomponenten des SH-Spektrums, was zu einer Anhebung der modulierten Flügel des Spektrums führt.

Die im Simulationspaket Lab2 zusammengefassten Bausteine besitzen kompatible Schnittstellen, die eine Kombination dieser Bausteine zu komplexeren Systemen erlauben. Damit sind Simulationen ganzer Femtosekundenexperimente einschließlich der Diagnostik möglich.

In dieser Arbeit wurden alle numerischen Berechnungen im Zusammenhang mit ultrakurzen Laserimpulsen mit Hilfe von Lab2 durchgeführt.
Kapitel 2

Iterativer FOURIER-
Transformationsalgorithmus

2.1 Einführung

Wie in Abschnitt 1.5 erläutert wurde, ist es mit Hilfe der FOURIER-Filtertechnik prinzipiell möglich, jeden gegebenen Laserimpuls in einen anderen umzuformen, wenn letzterer keine zusätzlichen Frequenzkomponenten benötigt. Dazu ist im Allgemeinen eine kombinierte Amplituden- und Phasenmodulation mittels eines idealen Impulsformers notwendig. Die dabei zu erzeugende komplexe spektrale Transferfunktion ergibt sich aus dem Quotienten der spektralen elektrischen Feldstärkeamplitude des Zielimpulses \(\tilde{E}_2(\Omega) \) und des vorliegenden Eingangsimpulses \(\tilde{E}_1(\Omega) \):

\[
\tilde{H}(\Omega) = \left| \tilde{H}(\Omega) \right| e^{-i\Delta\phi(\Omega)} = \frac{\tilde{E}_2(\Omega)}{\tilde{E}_1(\Omega)}
\] (2.1)

Der Modulator muss also gleichzeitig die Amplitudenmodulation \(\left| \tilde{H}(\Omega) \right| \) und die Phasenmodulation \(\Delta\phi(\Omega) \) erzeugen können.

Da im Rahmen der FOURIER-Filtertechnik eine Amplitudenmodulation nur durch Abschwächung spektraler Komponenten erfolgen kann, ist diese mit einem modulationsabhängigen Verlust an Laserimpulsenergie verbunden. Solange keine Modifikation des Impulsspektrums notwendig ist, wird deshalb meist rein phasenmodulierenden Impulsformern der Vorzug gegeben.

Bei der Verwendung dieser Impulsformer stellt sich aber oft die Aufgabe, diejenige Phasenmodulation \(\Delta\phi(\Omega) \) zu bestimmen, die einen vorgegebenen Eingangsimpuls derart moduliert, dass dieser möglichst gut einen ebenfalls vorgegebenen Intensitätsverlauf \(I_2(t) \propto |\tilde{E}_2(t)|^2 \) approximiert. Dies ist insbesondere für die Intensitätsverläufe nicht trivial, die nach Gl. 2.1 Transferfunktionen mit \(\left| \tilde{H}(\Omega) \right| \neq 1 \) ergeben.
Das Problem besteht also darin, eine Funktion $\Delta \Phi(\Omega)$ zu finden, für die gilt:

\[
\int_{-\infty}^{\infty} \left(\left| \mathcal{F}^{-1}\{\hat{E}_1(\Omega) e^{i\Delta \Phi(\Omega)}\} \right|^2 - \left| \hat{E}_2(t) \right|^2 \right)^2 dt \approx \text{Min}
\]

(2.2)

Diese Aufgabe wurde bisher meist mittels selbstlernender Optimierungsalgorithmen gelöst, die vorgegebene Phasenmodulationen mehr oder weniger zufällig variieren und diese dann hinsichtlich ihrer Fähigkeit testen, den gewünschten Impulsverlauf zu approximieren [16]. Derartige Algorithmen, wie beispielsweise genetische Algorithmen (GA) [116], evolutionäre Strategien (ES) [117] oder Algorithmen, die Abkühlungsprozesse simulieren (simulated annealing, SA) [38, 118], sind sehr rechenintensiv und konvergieren nicht immer stabil zu einer befriedigenden Lösung.

Zur Lösung dieses Problems wird im Folgenden ein iterativer Algorithmus adaptiert [119], der ursprünglich von GERCHBERG und SAXTON zur Berechnung von Phasenverläufen aus räumlichen Intensitätsverläufen entwickelt wurde [120, 121, 122]. Weitere Anwendungsbereiche des Algorithmus sind die Konstruktion speckle-freier, computergenerierter Hologramme [123], die Berechnung von Phasenobjekten zur räumlichen Strahlformung [124] oder die Ermittlung des zeitlichen Impulsprofils ultrakurzer Laserimpulse aus Autokorrelationsmessungen [125]. Im Bereich der Femtosekundenimpulscharakterisierung wurden ähnliche Algorithmen auch zur Bestimmung von Phasenverläufen aus frequenzaufgelösten Korrelationen verwendet [112].

2.2 Schema

Abb. 2.1 stellt das Schema des adaptierten GERCHBERG-SAXTON-Algorithmus dar.

Das Prinzip besteht darin, in einem iterativen Prozess sowohl im Frequenz- als auch im Zeitraum konsequent die elektrische Feldstärkehüllende entsprechend der vorliegenden Randbedingungen solange zu ersetzen, bis die optimierte Phasenfunktion sich einem stabilen Fixpunkt hinreichend genähert hat.

Wie sich zeigt, konvergiert die Phasenfunktion sehr schnell und stabil zu einer befriedigenden Lösung ohne die zwingende Notwendigkeit zufälliger Variationen, wie bei GA, ES und SA. Werden zusätzlich zufällige Modifikationen verwendet, beispielsweise in Form einer zufällig gewählten Startphase, so können sich prinzipiell verschiedene Lösungen einstellen.

Diese werden jedoch, soweit bekannt, nur durch Mehrdeutigkeiten in den Randbedingungen infolge von Symmetrien verursacht [120]. Beispielsweise kann die Lösung für die Streckung eines im Zeitbereich symmetrischen Ausgangsimpulses in einer positiven oder einer negativen Frequenzmodulation bestehen.

Im Einzelnen wird zur Durchführung des Algorithmus der über die reelle spektrale
Feldseinhüllende $|\tilde{\mathcal{E}}(t)|$ und die spektrale Phase $\Phi(\Omega) = -\arg \left(\tilde{\mathcal{E}}(\Omega) \right)$ vorgegebene Laserimpuls zunächst einer inversen FOURIER-Transformation unterworfen. Dadurch erhält man die zum Ausgangsimpuls gehörende reelle zeitliche Feldstärke-inhüllende $C(t)$ und die zeitliche Phase $\Theta(t)$.

Die Feldseinhüllende $C(t)$ wird nun durch die Wurzel aus dem gewünschten Intensitätsverlauf $I(t)$ ersetzt. Hierbei ist keine Normierung notwendig, da im Verlauf des Algorithmus nur Phasenfunktionen beibehalten werden, aber sämtliche Amplituden im Frequenz- und Zeitraum immer wieder ersetzt, d.h. renormiert, werden.

Anschließend wird der modifizierte Impuls durch FOURIER-Transformation in den Frequenzraum überführt. Hier wird die nun vorliegende spektrale Feldseinhüllende $B(\Omega)$ durch die Amplitude $|\tilde{\mathcal{E}}(\Omega)|$ des vorgegebenen Laserspektrums ersetzt. Dann wird mit der nächsten Iteration des Algorithmus begonnen, d.h. wiederum eine inverse FOURIER-Transformation durchgeführt.

Als Abbruchbedingung des Algorithmus empfiehlt sich die Unterschreitung einer minimalen Änderung zwischen den sich in zwei aufeinander folgenden Iterationen einstellenden Phasenfunktionen oder approximierenden Intensitätsverläufen. Die absolute Größe der Abweichung zwischen dem approximierenden Intensitätsverlauf und der Zielfunktion ist als Abbruchkriterium ungeeignet, da die beste erzielbare Approximationsqualität von der jeweiligen Kombination aus gegebenem Laserspektrum und gewünschter Zielfunktion abhängt.

Das Ergebnis des Algorithmus ist die Differenz der sich einstellenden Phasenfunktion
$\Psi (\Omega)$ und der Eingangsphase $\Phi (\Omega)$:

$$\Delta \Phi (\Omega) = \Psi (\Omega) - \Phi (\Omega)$$

(2.3)

2.3 Konvergenz des Algorithmus

Dass ein derartiges Vorgehen zu einer Verringerung der Abweichung zwischen der Zielimpulsform und dem approximierenden zeitlichen Intensitätsverlauf führen muss, kann analog des Beweises von GERCHBERG und SAXTON für das räumliche Problem [120] gezeigt werden:

Zunächst werden die spektralen Amplituden und Phasen des elektrischen Feldes als Darstellung von Vektoren $\vec{g}_\Omega = (B (\Omega) , \Psi (\Omega))$ in Polarkoordinaten aufgefasst. In entsprechender Weise wird auch das zeitliche elektrische Feld über $\vec{g}_t = (C (t) , \Theta (t))$ zusammengefasst. Die Vektoren \vec{g}_t ergeben sich aus der inversen FOURIER-Transformation aller Vektoren \vec{g}_Ω und umgekehrt, d.h.

$$\vec{g}_t = \mathcal{F}\{\vec{g}_\Omega\}$$

(2.4)

$$\vec{g}_\Omega = \mathcal{F}^{-1}\{\vec{g}_t\}.$$

(2.5)

Abb. 2.2 zeigt in Teil a) einen beliebigen Vektor \vec{g}_Ω im Frequenzraum, sowie in Teil b) einen entsprechenden Vektor \vec{g}_t im Zeitraum. An diesen soll die Wirkung einer Iteration des Algorithmus auf alle Vektoren \vec{g}_t und \vec{g}_Ω erläutert werden.

![Diagramm](image.png)

Abb. 2.2: Fehlerverkleinerung in einer Iteration des Algorithmus: Mit einer ersten Korrektur werden die das zeitliche elektrische Feld repräsentierenden Vektoren \vec{g}_t in ihrem Betrag entsprechend der vorgegebenen Zielfunktion $|\vec{E}_2(t)|$ im Zeitraum b) angepasst. Die den resultierenden Vektoren \vec{h}_t im Frequenzraum a) entsprechenden Vektoren \vec{h}_Ω werden dann bezüglich der spektralen Feldeinhüllenden $|\vec{E}_1(\Omega)|$ des Eingangslaserimpulses korrigiert. Diese zweite Korrektur kann nicht größer sein als die erste, weshalb eine Iteration immer zu einer Verbesserung und der Annäherung an einen stabilen Endzustand führt.
Zu Beginn einer Iteration des Algorithmus werden die Beträge aller Vektoren \tilde{g}_Ω über die spektralen Feldamplituden des Eingangslaserimpulses $|\tilde{E}_1(\Omega)|$ festgelegt. Deshalb müssen alle möglichen Phasenlagen eines Vektors \tilde{g}_Ω in Abb. 2.2 a) einen Kreis mit dem Radius $|\tilde{E}_1(\Omega)|$ bilden. Ein mittels Gl. 2.4 im Zeitraum erhaltener Vektor \tilde{g}_t wird im Allgemeinen in seinem Betrag von der gewünschten Zielamplitude $|\tilde{E}_2(t)|$ abweichen. Durch Addition eines Vektors \tilde{v}_t erhält man den in seinem Betrag korrigierten Vektor \tilde{h}_t.

Da bei dieser ersten Korrektur die Phase $\Theta(t)$ erhalten bleibt, gilt $\tilde{g}_t \parallel \tilde{v}_t$ und $\tilde{v}_t \parallel \tilde{h}_t$. Werden alle Vektoren \tilde{g}_t in gleicher Weise in ihren Beträgen modifiziert, so ergeben sich im Frequenzraum analog zu Gl. 2.5 die korrespondierenden Vektoren

$$\tilde{h}_\Omega = \mathcal{F}^{-1}\{\tilde{h}_t\}.$$ \hspace{1cm} (2.6)

Diese können wiederum in ihrem Betrag von der vorgegebenen Amplitude $|\tilde{E}_1(\Omega)|$ abweichen. Sie müssen deshalb mittels der Vektoren \tilde{d}_Ω korrigiert werden (2. Korrektur). Wegen der Linearitätseigenschaft der FOURIER-Transformation gilt dabei

$$\tilde{h}_\Omega = \mathcal{F}^{-1}\{\tilde{g}_t + \tilde{v}_t\} = \mathcal{F}^{-1}\{\tilde{g}_t\} + \mathcal{F}^{-1}\{\tilde{v}_t\}.$$ \hspace{1cm} (2.7)

$$\tilde{h}_\Omega = \mathcal{F}^{-1}\{\tilde{g}_t\} + \mathcal{F}^{-1}\{\tilde{v}_t\}.$$ \hspace{1cm} (2.8)

Aufgrund Gl. 2.5 folgt daraus

$$\tilde{h}_\Omega = \tilde{g}_\Omega + \tilde{v}_\Omega$$ \hspace{1cm} (2.9)

$$\tilde{v}_\Omega = \mathcal{F}\{\tilde{v}_t\}.$$ \hspace{1cm} (2.10)

An dieser Stelle empfiehlt sich, ohne Beschränkung der Allgemeinheit, die Nutzung der FOURIER-Transformation bezüglich der absoluten Frequenz $\nu = \Omega/2\pi$, um das Auftreten unübersichtlicher Vorfaktoren zu vermeiden. Damit ergibt sich aus dem PARSEVAL-Theorem

$$\int_{-\infty}^{\infty} |\tilde{v}_t|^2 \, dt = \int_{-\infty}^{\infty} |\tilde{v}_\nu|^2 \, d\nu.$$ \hspace{1cm} (2.11)

Wegen $\tilde{g}_t \parallel \tilde{v}_t$ gilt

$$\int_{-\infty}^{\infty} |\tilde{v}_t|^2 \, dt = \int_{-\infty}^{\infty} \left(|\tilde{g}_t| - |\tilde{E}_2(t)| \right)^2 \, dt.$$ \hspace{1cm} (2.12)

Daher können beide Seiten der Gl. 2.11 in gleicher Weise als Maß für die Abweichung der approximierenden Funktion von der Zielfunktion im Zeitraum dienen. Entsprechend des Beweises in Abb. 2.3 (vgl. Abb. 2.2 a)) gilt immer $|\tilde{d}_\nu| \leq |\tilde{v}_\nu|$, woraus folgt, dass auch $\int_{-\infty}^{\infty} |\tilde{d}_\nu|^2 \, dt \leq \int_{-\infty}^{\infty} |\tilde{v}_\nu|^2 \, dt$ gilt.

Das bedeutet, dass die zweite in einer Iteration durchgeführte Korrektur kleiner gleich der ersten Korrektur ist.
Deshalb kann eine Iteration nur zu einer Verbesserung und zu einer Annäherung an einen stabilen Zustand führen.

Wie bei allen Optimierungsalgorithmen kann ein solcher Zustand aber immer auch ein lokales Optimum sein. Bei numerischen Implementierungen des Algorithmus ist zu beachten, dass infolge der diskretisierten Feldverläufe und endlichen Zeit- und Frequenzfenster Störungen der strengen Konvergenz auftreten können, die die generelle Einsatzfähigkeit des Algorithmus aber nicht einschränken.

2.4 Anwendungsbeispiele

Die Anwendung des Algorithmus soll anhand des folgenden Beispiels näher erläutert werden: Ein bandbreitebegrenzter Laserimpuls mit einer Bandbreite von 25 nm (FWHM) bei einer Zentralwellenlänge von 800 nm soll so phasenmoduliert werden, dass eine Sequenz von fünf Impulsen entsteht, wobei jeweils die Spitzenintensität eines Teilimpulses 50 % derjenigen des Vorgängerimpulses entsprechen soll.

Abb. 2.4 a) zeigt den angenommenen Ausgangslaserimpuls mit ca. 40 fs Dauer, die angestrebte Impulssequenz und den mit Hilfe des Algorithmus gefundenen, approximierenden Impulsverlauf. Die zugehörige Phasenmodulation in Bezug auf das Impulsspektrum ist in Abb. 2.4 b) dargestellt. Die Wirkung einer solchen Phasenstruktur im Zeitraum ist mit derjenigen vergleichbar, die ein Gitter mit asymmetrischem Teilungsprofil (blazed grating) bei der räumlichen Beugung entfaltet [87].

Wie Abb. 2.5 zeigt, ist der Algorithmus in der Lage, schon nach etwa 150 Iterationen einen komplexen Phasenverlauf zu ermitteln, der die als Ziel angenommene Impulssequenz sehr gut approximiert.

Weitere Beispiele für theoretische Approximationen vorgegebener zeitlicher Intensitätsverläufe sind in Abb. 2.6 dargestellt.

Ein Vergleich des Algorithmus mit alternativen Ansätzen, wie einem GA oder SA-Verfahren, zeigt, dass der Algorithmus bei durchaus vergleichbaren Ergebnissen um mindestens ein bis zwei Größenordnungen schneller konvergiert als die alternativen Ansätze [119]. RUNQUIST et al. [126] gelangten später unabhängig zur gleichen Erkenntnis und setzten den Algorithmus erfolgreich zur Impulsformung ein.

Abb. 2.5: Fortschritt bei der Verringerung des mittleren quadratischen Fehlers zwischen der Zielfunktion und dem approximierenden Impulsverlauf mit wachsender Iterationszahl für das in Abb. 2.4 gezeigte Beispiel. Die Kurve ist auf den Startwert normiert. Der Ausgangspunkt ist ein bandbreitebegrenzter Impuls.

Die Schnelligkeit des Algorithmus macht ihn besonders interessant für die Berechnung von Phasenmodulationen zur Erzeugung komplexer raumzeitlicher Impulsformen. Abb. 2.7 zeigt entsprechende Beispiele der zweidimensionalen Impulsformung [73]. Wichtige Anwendungen solcher Impulsformen sind die Erzeugung und Kontrolle kohärenter Phonon-Polariton-Anregungen in ionischen Kristallen [127].
Iterativer Fourier-Transformationsalgorithmus

Abb. 2.6: Beispiele für Anwendungen des Algorithmus zur theoretischen Approximation verschiedener vorgegebener zeitlicher Intensitätsverläufe durch Phasenmodulation eines bandbreitebegrenzten Impulses von etwa 50 fs Halbwertsdauer: Approximation a) eines gestreckten Impulses von 400 fs Halbwertsdauer, b) eines Doppelimpulses und c) eines Dreifachimpulses mit linear ansteigender Intensität der Teilimpulse [119].
Abb. 2.7: Experimentelle Anwendung des Algorithmus [119] durch Vaughan et al. [73] zur Erzeugung benutzerdefinierter, zweidimensionaler Impulsformen (a),(b). Durch binäre Phasenmuster wurde die pseudoräumliche Impulsform (c) erzeugt. Dargestellt sind jeweils die Kreuzkorrelationen der Impulsformen.
Kapitel 3

Dispersionskontrolle phasenmodulierender Resonatoren

3.1 Einführung

Ein Hauptanwendungsgebiet phasenmodulierender Impulsformer ist die Dispersionskontrolle, wobei das Ziel im Allgemeinen in der bestmöglichen Impulskompresion am Ausgang oder an bestimmten Punkten eines optischen Systems besteht [17, 18, 19, 20, 21, 22]. Dazu wurden bislang mit den Impulsformern meist einfache, durch Taylor-Reihen bis zur vierten Ordnung (vgl. Gl. 1.29) beschreibbare Phasenmodulationen erzeugt, um beispielsweise die Restdispersion konventioneller Strecker-Kompressor-Kombinationen in CPA-Verstärkern zu minimieren [23, 24, 25, 26, 27, 28, 29]. Es existieren allerdings auch lineare optische Komponenten, die eine wesentlich kompliziertere Dispersionsstruktur aufweisen. Beispiele hierfür sind phasenmodulierende Resonatoren, deren bekanntester Vertreter das Gires-Tournois-Interferometer (GTI) ist [96].

Phasenmodulierende Resonatoren werden schon seit längerem zur Kompression ultrakurzer Laserimpulse eingesetzt [96, 128, 129, 130, 131, 98]. Dazu werden aber bislang ausschließlich Ausführungen verwendet, deren freier Spektralbereich größer ist, als die Bandbreite der Laserimpulse\(^1\). In diesem Fall reduziert sich die effektiv wirksame Phasenmodulation im Wesentlichen auf eine zweite und eine dritte Dispersionsordnung.

Im folgenden Kapitel soll nun dargestellt werden, dass mittels hochauflösender, phasenmodulierender Impulsformer auch eine Dispersionskontrolle phasenmodulieren-

\(^1\)Dieses Konzept stammt ursprünglich aus dem Bereich der Radartechnik, in dem dispersive Laufzeitketten zur Impulshorung eingesetzt werden, deren Verzögerungszeiten den Impulslängen entsprechen [88, 132]
der Resonatoren möglich ist, deren freier Spektralbereich deutlich kleiner ist als die Laserbandbreite. Dazu wird erstmals ein vorkompensierter Impulszug mit einem GTI komprimiert [133]. Weiterhin wird experimentell gezeigt, dass auch eine Vorkompensation von GTI-Sequenzen möglich ist.

3.2 **GIRES-TOUROIS-Interferometer (GTI)**

3.2.1 Beschreibung der Phasenmodulation

\[
\tilde{E}_i(\Omega) \sim \tilde{r}_2 + \tilde{t}_1 e^{i(\delta + \varphi_{M_2})} + \tilde{r}_1 \tilde{t}_1 e^{i2(\delta + \varphi_{M_2})} + \ldots
\]

Abb. 3.1: Vielstrahlinterferenz am GTI: Die einfallende Welle \(\tilde{E}_i \) wird vom Strahlteiler \(M_1 \) teilweise direkt reflektiert, während der transmittierte Anteil in den von \(M_1 \) und dem Vollspiegel \(M_2 \) gebildeten Resonator der Dicke \(D \) eingekoppelt wird. Dieser Anteil läuft unter einem Winkel \(\theta \) im Resonator um und wird schrittweise wieder ausgekoppelt. Nacheinander ausgekoppelte Teilwellen sind aufgrund unterschiedlicher optischer Wege jeweils um \(\delta + \varphi_{M_2} \) phasenverzögert, wobei \(\varphi_{M_2} \) die Phasenverschiebung bei der Reflexion an \(M_2 \) ist. Die Überlagerung aller vom GTI ausgehenden Teilwellen bildet die ausfallende Welle \(\tilde{E}_r \). Die komplexen Reflexionskoeffizienten des Strahlteilers für Amplituden sind \(\tilde{r}_l \), die entsprechenden Transmissionskoeffizienten \(\tilde{t}_l \), wobei \(l = 1 \) den Einfall von der Resonatorkavität und \(l = 2 \) den Einfall vom Strahlteilersubstrat her bezeichnet. Die Brechzahl im Resonator ist \(n \).

In Abb. 3.1 sind die Verhältnisse bei der Vielstrahlinterferenz an einem GTI dargestellt. Eine einfallende monochromatische Welle \(\tilde{E}_i(\Omega) \) wird zunächst an einem verlustfreien Strahlteiler \(M_1 \) in einen reflektierten und einen transmittierten Anteil
aufgeteilt. Letzterer wird in den vom Strahlteiler M_1 und einem vollständig reflektierenden Spiegel M_2 gebildeten Resonator eingekoppelt und nach jedem Umlauf teilweise wieder ausgekoppelt. Die Überlagerung aller ausgekoppelten Teilwellen bildet die insgesamt vom GTI reflektierte Welle $\tilde{E}_r(\Omega)$. Da im idealen GTI keine Verluste auftreten, haben die Amplituden der ein- und auslaufenden Wellen gleiche Beträge. Verluste oder Dispersionseffekte infolge des zweimaligen Durchgangs durch das Strahlteilersubstrat können beim in Abb. 3.1 dargestellten GTI separat betrachtet werden und sind deshalb hier vernachlässigt. Die Länge des Resonators ist D und das Medium in ihm besitzt die Brechzahl n. Der interne Einfallswinkel der Welle im Resonator ist θ. Der Strahlteiler M_1 besitzt komplexe Transmissionskoeffizienten \tilde{t}_l und Reflexionskoeffizienten \tilde{r}_l, die auch etwaige Phasenverschiebungen enthalten. Der Index $l = 1, 2$ gibt an, ob der Übergang vom Strahlteilersubstrat her erfolgt ($l = 2$) oder nicht ($l = 1$). Der vollständig reflektierende Spiegel verursacht bei jeder Reflexion eine Phasenverschiebung φ_{M_2}. Abgesehen von den Phasenverschiebungen an M_1 und M_2 besitzen zwei aufeinander folgende, vom Resonator ausgehende Teilwellen eine relative Phasenverzögerung [134] von

$$\delta = 2Dn\frac{\omega_0}{c_0}\cos \theta,$$

wobei ω_0 die zentrale und Ω die relative Kreisfrequenz im Laserspektrum ist.

Die Größen δ, φ_{M_2}, \tilde{r}_l, \tilde{t}_l, θ und n sind prinzipiell frequenzabhängig. Sie werden hier aber der Übersichtlichkeit halber nicht als Funktionen von Ω formuliert, zumal sie, bis auf δ, nur eine geringe Frequenzabhängigkeit im Bereich üblicher Laserbandbreiten zeigen.

Demnach gilt für die reflektierte Welle

$$\tilde{E}_r(\Omega) = \tilde{E}_i(\Omega) \cdot \left(\tilde{r}_2 + \tilde{t}_1 \tilde{t}_2 e^{-i(\delta + \varphi_{M_2})} \sum_{m=0}^{\infty} \tilde{r}_1^m e^{-im(\delta + \varphi_{M_2})} \right)$$

(3.2)

$$= \tilde{E}_i(\Omega) \cdot \left(\tilde{r}_2 + \tilde{t}_1 \tilde{t}_2 e^{-i(\delta + \varphi_{M_2})} \frac{1}{1 - \tilde{r}_1 e^{-i(\delta + \varphi_{M_2})}} \right)$$

(3.3)

$$= \tilde{E}_i(\Omega) \cdot \frac{\tilde{r}_2 + (\tilde{t}_1 \tilde{t}_2 - \tilde{r}_1 \tilde{r}_2) e^{-i(\delta + \varphi_{M_2})}}{1 - \tilde{r}_1 e^{-i(\delta + \varphi_{M_2})}}.$$

(3.4)

Zur weiteren Vereinfachung der Beziehung müssen die in Abb. 3.2 dargestellten generellen Verhältnisse bei der Teilung einer Welle an einem verlustfreien, aber ansonsten beliebigen Strahlteiler betrachtet werden, für den gilt $\tilde{r}_1 + \tilde{l}_1 = 1$. Dies schließt auch dielektrische Vielschichtsysteme ein, die komplizierte, frequenzabhängige Phasenverschiebungen verursachen können.

Wird die Wellenausbreitung bei einem solchen linearen optischen System zeitlich um-
Abb. 3.2: a) Eine Welle der Amplitude 1 wird durch einen rückseitenentspiegelten, verlustfreien Strahlteiler in einen von der Substrateite des Strahlteilers reflektierten Amplitudenanteil \(\tilde{r}_2 \) und einen transmittierten Amplitudenanteil \(\tilde{t}_2 \) aufgeteilt. b) Wird die Zeitrichtung dieses Vorgangs umgekehrt, so müssen diese Anteile derart transmittiert und reflektiert werden, dass sich wieder der Ausgangszustand ergibt. Die komplexen Konjugationen sind notwendig, da Phasenverzögerungen auf dem Hinweg die Rolle von Phasenvorläufen auf dem Rückweg übernehmen.

gekehrt, müssen sich die transmittierten und reflektierten Anteile derart überlagern, dass der Ausgangszustand wieder erreicht wird. Hierbei ist zu beachten, dass bei einer derartigen Zeitumkehr die Phasenverzögerung einer Welle in einen Phasenvorlauf umgewandelt wird. Dies wird durch die Verwendung der komplex konjugierten Amplitudenreflexions- und -transmissionskoeffizienten des Hinweges berücksichtigt. Aus diesen Betrachtungen resultieren die Beziehungen

\[
\tilde{r}_2^* \tilde{r}_2 + \tilde{t}_2^* \tilde{t}_1 = 1 \quad (3.5)
\]

\[
\tilde{r}_2^* \tilde{r}_2 + \tilde{t}_2^* \tilde{t}_1 = 1 \quad (3.6)
\]

\[
\tilde{r}_2^* \tilde{t}_2 + \tilde{r}_1 \tilde{t}_2 = 0 \quad (3.7)
\]

\[
\tilde{r}_2 \tilde{t}_2^* + \tilde{r}_1^* \tilde{t}_2 = 0 \quad (3.8)
\]

Aus Gl. 3.5 und 3.6 folgt

\[
\tilde{t}_2^* \tilde{t}_1 - \tilde{t}_2^* \tilde{t}_1 = 0 \quad (3.9)
\]

Unter Verwendung von Gl. 3.6 bis 3.9 erhält man die wichtige, auch als verallgemeinerte Stokesche Reversibilitätsbedingung [135] bezeichnete Beziehung

\[
\tilde{t}_2 \tilde{t}_1 - \tilde{r}_2 \tilde{r}_1 = \frac{\tilde{t}_2}{\tilde{t}_2^*} = e^{i \text{arg}(\tilde{\ell}_2)} = \frac{\tilde{r}_2}{\tilde{r}_1^*} \quad (3.10)
\]

Damit ergibt sich für die Transferfunktion eines beliebigen GTI aus Gl. 3.4

\[
\tilde{H}_{GTI}(\Omega) = |\tilde{H}_{GTI}(\Omega)| e^{-i \Delta \phi_{GTI}(\Omega)} = \frac{\tilde{E}_\\tau(\Omega)}{\tilde{E}_1(\Omega)} = \frac{\tilde{r}_2 - \tilde{r}_1 e^{-i (\delta + \varphi_{M_2})}}{1 - \tilde{r}_1 e^{-i (\delta + \varphi_{M_2})}} \quad (3.11)
\]

\[
= \tilde{r}_2 - \tilde{r}_1 e^{-i (\delta + \varphi_{M_2})} \quad (3.12)
\]
Dabei können M_1 und M_2 auch durch komplizierte dielektrische Vielschichtsysteme mit nennenswerter eigener Dispersion realisiert sein. Es lässt sich leicht prüfen, dass mit Gl. 3.12 weiterhin die Bedingung für eine verlustfreie Reflexion, $|\tilde{H}_{GTI}(\Omega)|^2 \equiv 1$, erfüllt ist.

Sollen dispersionsarme dielektrische Vielschichtsysteme mit hochbrechenden Deckschichten als Reflektoren in einem Resonator eingesetzt werden, der selbst mit einem niedrigbrechenden Medium gefüllt ist, so können für TE- bzw. s-polarisierte Wellen näherungsweise die folgenden Phasensprüinge bei den Reflexionen an M_1 und M_2 angenommen werden [14]:

$$\varphi_{M_2} = \pi$$ \hspace{1cm} (3.13)

$$\arg(\tilde{r}_1) = \varphi_{\tilde{r}_1} = \pi$$ \hspace{1cm} (3.14)

$$\arg(\tilde{r}_2) = \varphi_{\tilde{r}_2} = 0$$ \hspace{1cm} (3.15)

Daraus folgt $\tilde{r}_2 = -\tilde{r}_1 = -\tilde{r}_1^\ast$ und Gl. 3.12 vereinfacht sich zu

$$\tilde{H}_{GTI}(\Omega) = \frac{-\tilde{r}_1^\ast - e^{-i\delta}}{1 + \tilde{r}_1 e^{-i\delta}}.$$ \hspace{1cm} (3.16)

Aus Gl. 3.16 erhält man dann unter Verwendung der Intensitätsreflektivität des Strahlteilers $R = |r_1|^2$ die für die meisten Zwecke ausreichende Beschreibung der durch ein GTI verursachten Phasenmodulation [96, 98, 81]:

$$\Delta\Phi_{GTI}(\Omega) = \arctan \left(\frac{(R - 1) \sin \delta}{2\sqrt{R} - (R + 1) \cos \delta} \right).$$ \hspace{1cm} (3.17)

Da das Vorzeichen des Quotienten keine eindeutige Zuordnung der Phase zu einem Quadranten der komplexen Zahlenebene erlaubt, kann die bei einfacher Ausführung der Gl. 3.17 erhaltene Phasenfunktion Unstetigkeiten enthalten. Sind beispielsweise der Zähler und der Nenner des Arguments des Arkustangens negativ, so dürfen diese Vorzeichen nur gekürzt werden, wenn dies durch ein Hinzufügen von $+\pi$ oder $-\pi$ zur resultierenden Phase berücksichtigt wird.

Werden aber die Vorzeichen von Real- und Imaginärteil hinsichtlich der Phasenlage in der komplexen Zahlenebene korrekt interpretiert und auch 2π-Sprünge entfernt, so kann der Phasenverlauf stetig gemacht werden.

Abb. 3.3 a) zeigt die theoretische Phasenmodulation durch ein GTI als Funktion der Phasenverzögerung δ für verschiedene, aber über den gesamten Spektralbereich konstante Strahlteilerreflektivitäten R. Zur Vereinfachung wird angenommen, dass die Brechzahl des Resonatormediums und der interne Winkel über den betrachteten Spektralbereich ebenfalls konstant sind. Die Phasenverzögerung δ ist auf eine belie-
bige Interferenzordnung m bezogen.
Offensichtlich bestehen die Phasenmodulationen immer aus einem festen linearen Anteil und aus Modulationen, deren Amplituden mit der Strahlteilerreflektivität zunehmen.

Abb. 3.3: a) Theoretische Phasenmodulation eines GTI als Funktion der Phasenverzögerung δ für verschiedene Strahlteilerreflektivitäten R. Die Phasenverzögerung δ ist hierbei auf die m-te Interferenzordnung des Interferometers bezogen. Das Resonatormedium wurde als dispersionsfrei angenommen und die Phasenverläufe wurden stetig gemacht. b) Theoretische Phasenmodulationen nach Subtraktion des linearen und konstanten Phasenanteils, die nur noch Informationen über die Form, aber nicht mehr über die zeitliche Verzögerung des Impulszuges enthält.

Betrachtet man Abb. 3.3 und Gl. 3.17 für den Grenzfall $R = 0$, so erkennt man, dass die Phasenmodulation durch die Funktion $\delta - \pi$ beschrieben wird. Dieser Zusammenhang gilt prinzipiell auch für den Fall eines dispersiven Resonatormediums, wobei die Funktion δ dann aber aufgrund der Wellenlängenabhängigkeit der Brechzahl n und des internen Winkels θ eine zusätzliche Krümmung aufweist. Die zeitliche Verzögerung eines Impulses entspricht der Ableitung des linearen Phasenanteils nach der Kreisfrequenz Ω an der Stelle der Schwerpunktsfrequenz, die in den meisten Fällen der Zentralfrequenz $\Omega = 0$ entspricht. Daraus folgt im Rahmen der obigen Näherung

$$\tau_{\text{GTI}} = \left. \frac{\partial \delta}{\partial \Omega} \right|_{\Omega = 0} \approx \frac{2Dn \cos \theta}{c_0}.$$ \hspace{1cm} (3.18)

Das bedeutet, dass die Impulsverzögerung am GTI für alle Strahlteilerreflektivitäten $R < 1$ konstant ist und der Resonatorumlaufzeit τ_{GTI} entspricht. Im Grenzfall $R = 1$ tritt erwartungsgemäß keine Verzögerung auf, da die Phasenmodulation in eine Stufenfunktion übergeht, die nach Entfernung von 2π-Sprüngen einer linearen Phase mit Anstieg 0 gleichwertig ist.
Da die Impulsverzögerung und konstante Phasenanteile für die folgenden Betrachtungen ohne Bedeutung sind, bietet es sich an, die linearen und konstanten Phasen-
Dispersionskontrolle phasenmodulierender Resonatoren

...anteile zu subtrahieren:

\[\Delta \phi_{\text{GTI}}(\Omega) = \Delta \phi_{\text{GTI}}(\Omega) - \Omega \tau_{\text{GTI}} + \pi \]

(3.19)

Abb. 3.3 b) zeigt die so gewonnenen theoretischen Phasenverläufe, die nur noch Informationen über die Form des Impulszugs enthalten.

3.2.2 Impulszugkompression am GTI

Besteht die Möglichkeit, durch Phasenmodulation einen Impulszug zu erzeugen, dessen spektrale Phase der konjugierten Phasenantwort eines GTI entspricht, so kann das GTI zur Kompression dieses Impulszuges verwendet werden. Im Zeitraum entspricht dies der bemerkenswerten Möglichkeit, einen speziellen Impulszug erzeugen zu können, der im GTI aufgesammelt und anschließend als einzelner, bandbreitebegrenzter Impuls emittiert wird.

3.2.2.1 Experimentelle Demonstration

Im Folgenden wird experimentell gezeigt, dass ein hochauflösender Impulsformer dazu geeignet ist, die zur Kompensation eines GTI benötigte Phasenmodulation mit genügend hoher Qualität darzustellen. Abb. 3.4 zeigt den dazu verwendeten Aufbau: Ein hochauflösender, phasenmodulierender Impulsformer [101] (Jenoptik SLM-S 640/12, vgl. Abschnitt 1.5) wird zum Aufprägen derjenigen Phase verwendet, die durch das GTI wieder kompensiert werden kann. Das verwendete GTI besteht aus einem nahezu 100 % rektierenden Spiegel \(M_2 \) und einem Strahlteiler \(M_1 \) mit 68 % Rektivität. Der Abstand der Spiegel wurde mittels Glasfolien von circa 50 \(\mu \)m Dicke festgelegt. Die Resonatorkavität selbst ist luftgefüllt. Die Laserimpulse werden mit einem Titan-Saphir-Laserschleuder vom Typ MIRA 900 bei einer Zentralwellenlänge von 805 nm erzeugt. Die Bandbreite beträgt 25 nm und die Impulsdauer 38 fs (jeweils Halbwertsbreite).

Abb. 3.5 zeigt das Ergebnis der FROG-Messung eines solchen Impulszuges. Der zeitliche Abstand zwischen zwei aufeinander folgenden Impulsenchos beträgt etwa 350 fs. Dies entspricht einer optischen Weglänge eines Resonatorumlaufs von 105 \(\mu \)m. Unter Annahme der Hälfte dieses Wertes als Spiegelabstand \(D=52.5 \mu \)m und einer den Herstellerangaben entsprechenden Rektivität von \(R \approx 68 \% \) wurde mittels Gl. 3.17
eine theoretische Kompensationsphase berechnet. Nach diesem ersten Ansatz wird
die Kompensationsphase noch hinsichtlich ihrer Parameter \(R \) und \(D \) optimiert.
Dies wird mit einem selbstlernenden Algorithmus erreicht, der eine Kombination
aus einer Simplex-Downhill-Methode und einem Simulated-Annealing-Algorithmus
ist \([136]\). Als Rückkopplungssignal wird die Energie der in einem 100 \(\mu \)m dicken BBO-
Kristall erzeugten zweiten Harmonischen verwendet. Dieses ist ein Zweiphotonen-
signal entsprechend Gl. 1.24, das mit der Annäherung an die bandbreitebegrenzte
Dauer ansteigt, da auch die Spitzenintensität ansteigt.
Um gegebenenfalls die Korrektur der spektralen Kalibrierung des Impulsformers zu
erlauben, wurde auch die Zentralfrequenz des Laserspektrums \(\omega_0 \) als zusätzlicher
optimierbarer Freiheitsgrad angeboten.
Die Resultate einer derartigen Optimierung bestätigen die mit \(D = 52.1 \, \mu \)m und
\(R = 68.2 \, \% \) zuvor gemachten Annahmen.

Abb. 3.6 zeigt das Ergebnis der FROG-Messung für eine erfolgreiche Kompression
des vorkompensierten Impulses durch das GTI. Das Spektrum der zweiten Harmoni-
schen ist nun eindeutig geglättet und die Pulsechos werden effizient unterdrückt,
so dass ihre Intensitäten kleiner 0.9 \(\% \) der Spitzenintensität des Impulses sind.

Abb. 3.7 zeigt das Spektrum der Fundamentalen a) vor und b) nach dem GTI, sowie
b) die optimierte Kompensationsphase. Die nahezu identischen Fundamentalspektren
bestätigen, dass die Verluste bei den Resonatorumläufen vernachlässigbar klein
sind und das Interferometer tatsächlich eine reine Phasenmodulation erzeugt.
Das Verhältnis der maximalen spektralen Intensitäten in den FROG-Diagrammen
(Abb. 3.5 und 3.6) von etwa 1:2 wird hauptsächlich durch die Spektrometerauflösung
von etwa 1 nm festgelegt.

Die Integration aller Spektralkomponenten für jede Verzögerungszeit \(\tau \) in den FROG-
Diagrammen ergibt Autokorrelationsfunktionen (vgl. Abschnitt 1.7), die in sehr
guter Übereinstimmung mit dem für \(R = 68 \, \% \) theoretisch erwarteten Spitzen-
Abb. 3.5: Ergebnis einer SHG-FROG-Messung für einen am GTI reflektierten, zuvor bandbreitebegrenzten Impuls. Die Projektionen zeigen das modulierte Spektrum der zweiten Harmonischen bei einer Verzögerungszeit $\tau = 0$ und die zeitliche Verteilung der maximalen spektralen Intensitäten (vgl. Abb. 1.4). Für unsere Bedingungen entspricht letztere der Autokorrelationsfunktion des durch das GTI erzeugten Impulszuges.

Es ist zu beachten, dass die in Abb. 3.5 und 3.6 auf die Zeitachse projizierten spektralen Spitzenintensitäten in ihrer Form den erwähnten Autokorrelationsfunktionen entsprechen, da die Einhüllenden der Spektren zu jedem Zeitpunkt GAUSS-förmig sind und deshalb das Integral proportional zur Spitzenintensität ist.

Abb. 3.6: Ergebnis einer SHG-FROG-Messung für einen vorkompensierten Impuls nach der Reflexion am GTI. Die Intensitäten sind bezüglich der Spitzenintensitäten in Abb. 3.5 normiert.

intensitätsverhältnis von 1:1.5 stehen.

Bei der demonstrierten Kompression zeigt sich, dass die Strahlteilerreflektivität R bei der Abstimmung der Kompensationsphasenparameter auf die tatsächlichen Ver-
Abb. 3.7: Fundamentalenspektrum a) vor und b) nach der Reflexion am GTI. Die Kurve c) zeigt die optimierte Kompensationsphase. Der bezüglich der Frequenz lineare Phasenanteil wurde subtrahiert, da eine Kompensation der Impulsverzögerung im Interferometer nicht beabsichtigt ist (vgl. Abb. 3.3).

Abbildungen zeigen Unterschiede in den Signalen vor und nach der Reflexion am GTI. Die Kurven a) und b) illustrieren die vor und nach der Reflexion erfolgte Veränderung des Spektrums. Der Kurve c) entspricht die optimierte Kompensationsphase. Der lineare Phasenanteil wurde subtrahiert, da eine Kompensation der Impulsverzögerung im Interferometer nicht beabsichtigt ist. Die Kurven zeigen die normierte spektrale Intensität über der Wellenlänge λ in nm.

Unter standardisierten Bedingungen spielt genaue Genauigkeit von einigen Prozent eine untergeordnete Rolle. Im Gegensatz dazu müssen die Resonatorlängen \(D \) mindestens bis auf 10 nm genau abgestimmt werden, um eine befriedigende Kompression zu erreichen. Um dies zu veranschaulichen, wurde in Abb. 3.8 die theoretische Abhängigkeit eines Zweiphotonensignals entsprechend Gl. 1.24 von der Übereinstimmung der wirklichen und der vorkompensierte Resonatorlänge für ein konkretes Beispiel dargestellt. Darin zeigt sich, dass das Signal stark oszilliert und zusätzlich eine Einhüllende existiert, die die Amplituden der Oszillationen mit der Verstimmung abfallen lässt.

Die Oszillationen markieren unterschiedliche Ordnungen der Vielstrahlinterferenz am GTI und besitzen deshalb Abstände, die der halben Zentralwellenlänge entsprechen. Der Bereich einer konstruktiven Interferenz besitzt in diesem Fall eine Halbwertsbreite von etwa 45 nm, was in guter Übereinstimmung mit den experimentell beobachteten Genauigkeitsanforderungen für eine akzeptable Abstimmung steht. Die komplizierte, nichtmonotone Struktur der in Abb. 3.8 gezeigten Abhängigkeit begründet, warum so aufwändige Algorithmen, wie eine Kombination aus einer Simplex-Downhill-Methode und einem Simulated-Annealing-Algorithmus, für die Optimierung der Phasenparameter eingesetzt werden müssen.

Aus Gl. 1.16 folgt, dass eine komplexe Konjugation des spektralen Feldes eines Impulses einer Umkehr seines zeitlichen Intensitätsverlaufs entspricht. Zur Vorkompensation eines GTI müssen also Impulszüge erzeugt werden, die den zeitlich umgekehrten Impulszügen entsprechen, die bei der Reflexion bandbreitebegrenzter Impulse am GTI entstehen würden. Dies bedeutet aber auch, dass notwendigerweise eine unendliche Anzahl von „Vor“-Echos zu erzeugen wäre, was aber nicht möglich ist.
Abb. 3.8: Theoretische Abhängigkeit des Zweiphotonensignals von der Abstimmung des Parameters D einer GTI-Kompensationsphase auf die als Beispiel angenommene Resonatorlänge von 50 μm eines zu kompensierenden GTI. Teil a) zeigt die Einhüllende der Abhängigkeit im Bereich 0 . . . 200 μm, Teil b) den exakten Verlauf innerhalb des in Teil a) durch gestrichelte Linien markierten Bereichs. Die Reflektivitätsparameter waren für das GTI und die Kompensationsphase jeweils $R = 38.2\%$. Die angenommenen, GAUSS-förmigen Impulse besitzen eine bandbreitebegrenzte Halbwertsdauer von 50 fs und eine Zentralwellenlänge von 800 nm.

In unserem Fall begrenzt die endliche Auflösung des räumlichen Lichtmodulators das für Vorimpulserzeugung zugängliche Zeitfenster [110]. Die Kompensationsqualität ist zwar durch Erhöhung der Auflösung beliebig steigerbar, aber es kann prinzipiell keine perfekte Kompensation erzielt werden.

Glücklicherweise entschärft der exponentielle Abfall der Echoamplituden dieses Problem weitgehend. Trotzdem ist es notwendig, einen hochauflosenden Impulsformer zu verwenden, der die Asymmetrie innerhalb einer Periode der kompensierenden Phasenmodulation in ausreichender Qualität wiedergeben kann (vgl. Abb. 3.7). Dies ist notwendig um einen einseitigen Impulszug erzeugen zu können, der nur aus „Vor“-Echos und dem direkten Reflex besteht.

3.2.2.2 Auflösungsbedingung

In diesem Abschnitt soll untersucht werden, welche GTI mit einem Impulsformer gegebener spektraler Auflösung noch mit befriedigender Qualität kompensiert werden können.

Voraussetzung einer ausreichenden Kompensation ist, dass der Impulsformer zumindest in der Lage ist, die steilsten Anstiege im benötigten Kompensationsphasenverlauf wiederzugeben. Aufgrund der 2π-Periodizität der Phase können Impulsformer unter Verwendung von 2π-Sprün gen (wrapping) auch sehr steile lineare Phasen-
verläufe darstellen. Die steilsten Anstiege sind diejenigen, bei denen die sich ergebende periodische Sprungfunktion die Nyquist-Frequenz erreicht, d.h. genau zwei Abtastpunkte pro Periode vorliegen. Deshalb ist der größte darstellbare Phasenanstieg

$$\phi_{1,IF} = \frac{\pi}{\Delta\Omega_{IF}},$$

wobei $\Delta\Omega_{IF}$ der spektralen Auflösung des Impulsformers entspricht.

Die zur Kompensation eines GTI benötigten Phasenanstiege erhält man durch die Ableitung von Gl. 3.19:

$$\frac{\partial \Delta\phi_{GTI}}{\partial \Omega} = \tau_{GTI}\left(\frac{R - 1}{2\sqrt{R}\cos\delta - R - 1} - 1\right)$$

Aus einer Extremwertbetrachtung folgt, dass die größten Anstiege an den Stellen $\delta = 2\pi m, m = 0, 1, 2, \ldots$ vorliegen (vgl. Abb. 3.3 a) und b)). Damit ergibt sich für die größte kompensierbare Resonatorumlauflaufzeit τ_{Max} die Bedingung

$$\tau_{Max} \Delta\Omega_{IF} = \pi\left(\frac{R - 1}{2\sqrt{R} - R - 1} - 1\right)^{-1} = \pi\frac{1 - \sqrt{R}}{2\sqrt{R}}.$$ (3.22)

Eine weitere Bedingung für eine ausreichende Wiedergabe der Kompensationsphase ist, dass die spektrale Auflösung des Impulsformers nicht kleiner sein darf, als der kleinste Abstand zwischen zwei Extrema des Phasenverlaufs (vgl. Abb. 3.3 b)). Die Lage der Extrema erhält man durch die Bestimmung der Nullstellen von Gl. 3.21:

$$\delta_{Ext} = 2\pi m \pm \arccos \sqrt{R}, \quad m = 1, 2, \ldots$$

Daraus folgt für den kleinsten Abstand zweier Extrema

$$\Delta\delta_{Ext} = 2\arccos \sqrt{R}.$$ (3.24)

Dieser Abstand muss über Gl. 3.1 mit der spektralen Auflösung des Impulsformers $\Delta\Omega_{IF}$ korrespondieren, woraus Bedingungen für die maximal kompensierbare Resonatorlänge D_{Max} und, unter der Näherung eines dispersionsfreien Resonatormediums, für die Resonatorumlauflaufzeit τ_{Max} resultieren:

$$\frac{2D_{Max}}{c_0} \frac{n \cos \theta}{\Delta\Omega_{IF}} = 2\arccos \sqrt{R}$$

$$\tau_{Max} \Delta\Omega_{IF} \approx 2\arccos \sqrt{R}.$$ (3.25, 3.26)

Abb. 3.9 zeigt für einen hochauflösenden Impulsformer [101] den aus den obigen Begrenzungen resultierenden Bereich kompensierbarer GTI-Parameter. Es wird an-

3.2.2.3 Optimale GTI-Parameter

Für die Applikation eines GTI als Kompressorelement ist es wünschenswert, dieses dahingehend zu optimieren, dass das Verhältnis der Spitzenintensitäten von komprimiertem und unkomprimiertem Impuls maximal wird. Dazu betrachten wir die Umkehrung der Kompression, d.h. die Erzeugung von phasenmodulierten Impulsen am GTI, da hierbei das gleiche Verhältnis vorliegt.

Berechnet man den zeitlichen Intensitätsverlauf eines bandbreitebegrenzten Impulses nach Reflexion am GTI und bestimmt dessen Maximalwert, so erhält man die in Abb. 3.10 a) dargestellten Abhängigkeiten von der Resonatorlänge und der Strahlteilerreflektivität R.

Wie zu erwarten ist, oszilliert die Spitzenintensität, solange die Resonatorlänge D kleiner ist, als die der Halbwertsimpulsdauer τ_H entsprechende geometrische Ausdehnung des Impulses $c_0 \tau_H$ in Ausbreitungsrichtung. In diesem Fall ist der freie Spektralbereich des Interferometers kleiner als die Laserbandbreite und die den Resonator verlassenden Teilimpulse können sich noch interferometrisch überragen. Deshalb entspricht eine Oszillationsperiode der halben Trägerwellenlänge.
Abb. 3.10: a): Spitzenintensität des durch Reflexion am GTI modifizierten Impulses in Abhängigkeit von der Resonatorlänge D und der Strahlteilerreflektivität R. Ausgegangen wird von einem bandbreitebegrenzten, GAUSS-förmigen Impuls mit einer Zentralwellenlänge von 800 nm und einer Dauer von $\tau_H \approx 50$ fs. Die Resonatorlänge ist auf die geometrische Ausdehnung dieses Impulses $c_0\tau_H$ bezogen. b): Zeitliche Intensitätsverläufe für eine Resonatordicke von $\frac{1}{3}c_0\tau_H$ in Abhängigkeit der Strahlteilerreflektivität R. Alle Spitzenintensitäten sind bezüglich des Falls $R = 100\%$ normiert.

Bei einer klassischen Anwendung eines GTI zur Dispersionskontrolle in einem Laser [83] beträgt die Resonatordicke beispielsweise $D = 0.15 \cdot c_0\tau_H$, wobei eine kleine Strahlteilerreflektivität von $R \approx 3.5\%$ störende Intensitätsoszillationen bei der Dispersionseinstellung vermindert.

Für Resonatorlängen

$$D > c_0\tau_H$$ \hspace{1cm} (3.27)

entstehen jedoch Züge weitgehend separater Teilimpulse mit vernachlässigbarer gegenseitiger Überlappung. Die Spitzenintensitäten streben dabei Grenzwerten zu, die nur noch von der gewählten Strahlteilerreflektivität R abhängen.

GTI, die die Bedingung Gl. 3.27 erfüllen, werden im Folgenden auch als dichte GTI bezeichnet.

Für die Anwendung des GTI als Kompressorelement ist dieser Resonatorlängenbereich von besonderem Interesse, da hier das Spitzenintensitätsverhältnis nicht mehr von der genauen Einstellung der Resonatorlänge des GTI abhängt.

In einem solchen dicken GTI wird ein Laserimpuls zunächst am Strahlteiler als direkter Reflex teilweise reflektiert. Der verbleibende Rest tritt in den Resonator ein und läuft in diesem um, wobei bei jedem Umlauf jeweils ein durch die Transmission $T = 1 - R$ des teil durchlässigen Spiegels festgelegter Anteil den Resonator wieder verlässt. Der Zeitabstand zwischen zwei aufeinandergelungen, den Resonator verlassenden Impulsanteilen ist durch die Resonatorumlaufzeit τ_{GTI} festgelegt.

Auf diese Weise bildet sich nach dem direkten Reflex ein Zug von Impulsechos aus, die in ihrer Spitzenintensität exponentiell abfallen. Aus der Betrachtung der Anzahl
von Reflexions- und Transmissionsvorgängen lässt sich die relative Intensität jedes einzelnen Teilimpulses im Impulszug bestimmen. Während für den direkten Reflex gilt
\[I_{\text{direkt}} \propto R, \quad (3.28) \]
fällt die Spitzenintensität \(I_m \) der Impulsechos \((m = 1, 2, \ldots)\) exponentiell ab:\[I_m \propto (1 - R)^2 R^{m-1} \quad (3.29) \]

Abb. 3.10 b) zeigt für ein dickes GTI die Abhängigkeit der Form des Impulszuges von der Strahlteilerreflektivität \(R \). Offensichtlich wird die Spitzenintensität für große \(R \) durch die Intensität des direkten Reflexes bestimmt und nimmt direkt proportional mit \(R \) ab. Für kleine \(R \) steigt die Spitzenintensität dann aber mit der Intensität des ersten Impulsechos wieder an. Demnach gibt es eine Strahlteilerreflektivität, bei der die Spitzenintensität des Impulszuges minimal wird.

Abb. 3.11 zeigt die mittels Gl. 3.28 und 3.29 berechneten Spitzenintensitäten des direkten Reflexes und der folgenden vier Impulsechos in Abhängigkeit von der Strahlteilerreflektivität \(R \).

Soll das Verhältnis der Spitzenintensitäten vor und nach einer Reflexion am GTI optimiert werden, so muss \(R \) so gewählt werden, dass der direkte Reflex und das erste Impulsecho die gleiche Spitzenintensität aufweisen. Dies ist der Fall, wenn
\[R = \frac{3 - \sqrt{5}}{2} \quad (3.30) \]
gewählt wird.\(^5\)

Mit einem einzelnen GTI kann somit im Bereich \(D > c_0 \tau_H \) ein maximales Spitzenintensitätsverhältnis zwischen komprimiertem und unkomprimiertem Impuls von \(1/R \approx 2.6 \) erzielt werden [133].

Wie bei genauer Betrachtung von Abb. 3.10 a) zu erkennen ist, kann die Spitzenintensität bei Verwendung dünner GTI für bestimmte Resonatorlängen etwas stärker

\(^5\)Bei einem einzelnen GAUSS-Impuls liegt aus Symmetriegründen der zeitliche Schwerpunkt \(\int I(t) \, dt / \int I(t) \, dt \) immer an der Stelle \(t = 0 \). Nutzt man diese Tatsache zur Berechnung des zeitlichen Schwerpunkts des aus GAUSS-Impulsen bestehenden Impulszuges, so erhält man unter Verwendung von Gl. 3.28 und 3.29 das mit Gl. 3.18 konsistente Ergebnis:
\[\frac{\int I(t) \, dt}{\int I(t) \, dt} = \frac{\sum_{m=1}^{\infty} I_m \, m \, \tau_{\text{GTI}}}{I_{\text{direkt}} + \sum_{m=1}^{\infty} I_m} = \frac{\sum_{m=1}^{\infty} (1 - R)^2 R^{m-1} \, m \, \tau_{\text{GTI}}}{R + \sum_{m=1}^{\infty} (1 - R)^2 R^{m-1}} = \tau_{\text{GTI}} \]

Offensichtlich ist der zeitliche Schwerpunkt des Impulszuges unabhängig von der Strahlteilerreflektivität \(R \) und seine Position entspricht genau einer Resonatorumlaufzeit \(\tau_{\text{GTI}} \).

\(^5\)Es ist anzumerken, dass das damit realisierte Verhältnis zwischen der Reflektivität \(R = 38.2 \% \) und der Transmission \(T = 61.8 \% \) dem Goldenen Schnitt entspricht.

abgesenkt werden als bei der Verwendung eines optimalen dicken GTI. Dafür ist das dünne GTI allerdings nicht nur vorzukompensieren, sonder muss im Gegensatz zu dicken GTI in seiner Resonatordicke D auch noch exakt auf das Laserspektrum abgestimmt sein. Wie Abb. 3.12 zeigt, würde die Spitzenintensität sofort fast auf den maximal möglichen Wert ansteigen, wenn die Resonatordicke D nur um Bruchteile eines μm vom optimalen Wert abweicht oder sich das Laserspektrum entsprechend verschieben würde.

In Abb. 3.12 wird auch die Wirkung dicker und dünner GTI mit der eines typischen dispersiven Spiegels [137] mit einer GVD von -100 fs² verglichen. Man stellt fest, dass nahezu 20 Reflexionen an einem solchen Spiegel benötigt würden, um eine vergleichbare Spitzenintensitätsabsenkung zu bewirken. Diese hohe Zahl notwendiger Reflexionen ist technisch ungünstig, hätte aber andererseits den Vorteil, dass die Vorkompensation beispielsweise über den Strecker eines CPA-Systems realisierbar wäre.

Somit ist gezeigt, dass vorkompensierte dicke GTI ein deutlich größeres Spitzenintensitätsverhältnis bei der Kompression ermöglichen als bekannte dispersive Spiegel und in diesem Zusammenhang technisch besser zu handhaben sind als dünne GTI.
3.3 Kompression mit GTI-Sequenzen

Da in der linearen Optik Phasenmodulationen wechselwirkungsfrei überlagert werden können, muss das in Abschnitt 3.2.2 für ein GTI demonstrierte Verfahren auch für eine Sequenz mehrerer GTI durchführbar sein. Allerdings hatte der vorkompensierte Impuls eine wesentlich komplexere Struktur als bei einem einzelnen GTI. Dies ist darin begründet, dass innerhalb des nun vorliegenden Mehrfachresonators sekundäre Echos mit unterschiedlichen Verzögerungszeiten auftreten.

Trotzdem muss die Kompression eines solchen Impulses erreichbar sein, wenn die vorkompensierende Phasenmodulation die konjugierte Phasenantwort der GTI-Sequenz in ausreichender Qualität wiedergibt.

Um dies zu demonstrieren, wird analog zum vorherigen Experiment zunächst ein bandbreitebegrenzter Impuls durch eine GTI-Sequenz modifiziert und anschließend mittels des Impulsformers eine Vorkompensation des Impulses durchgeführt.

Die GTI-Sequenz besteht aus zwei luftgefüllten GTI mit einer Strahlteilerreflektivität von $R = 38\%$ und Resonatorlängen von $D_1 = 9.5\,\mu m$ und $D_2 = 52.9\,\mu m$.

Abb. 3.13 zeigt das Ergebnis einer FROG-Messung der Impulse nach der GTI-Sequenz ohne und Abb. 3.14 mit Vorkompensation.

Wie erwartet, besitzt der von der GTI-Sequenz erzeugte Impulszug aufgrund von Sekundärechos eine sehr komplizierte Struktur. Abb. 3.14 zeigt, dass es trotzdem gelingt, den Impuls so vorzukompensieren, dass eine weitgehende Kompression nach der GTI-Sequenz erzielt wird.
Wie bei einem einzelnen GTI sind bei einer GTI-Sequenz die Resonatorlängen mit einer Genauigkeit von mindestens 10 nm abzustimmen, während die Strahlteilerreflektivitäten R weitgehend unkritisch sind. Soll die Vorkompensationsphase auf eine Sequenz von m GTI abgestimmt werden, so müssen deshalb im Wesentlichen deren Resonatorlängen D_m optimiert werden. Die Abhängigkeit des für eine Optimierung als Rückkopplungssignal geeigneten Zweiphotonensignals entspricht somit näherungsweise einer m-dimensionalen Funktion. Wird bezüglich des Punktes der optimalen Resonatorlängen (D_1, D_2, \ldots, D_m) eine einzelne Resonatorlänge variiert, so erhält man aus dieser m-dimensionalen Funktion eine Schnittkurve, deren Struktur derjenigen in Abb. 3.8 entspricht. Diese Schnittkurven zeigen das bereits diskutierte nichtmonotone Verhalten mit star-
Abb. 3.15: Theoretisches Beispiel für eine selektive Kompression: a) Ein Laserimpuls wird mit einer Phasenmodulation derart vorkompensiert, dass er in einer GTI-Sequenz mit drei Resonatoren der Längen \(D_1 = 40 \text{ m}, D_2 = 50 \text{ m} \) und \(D_3 = 60 \text{ m} \) komprimiert wird. Mit anderen GTI-Sequenzen b)-d), die um 10 % abweichende Resonatorlängen aufweisen, wird keine Decodierung erreicht. Gezeigt ist jeweils der zeitliche Verlauf des codierten Impulses, sowie der nach dem ersten, zweiten und dritten GTI. Die Reihenfolge der Resonatoren innerhalb einer GTI-Sequenz spielt für das effektive Kompressionsergebnis keine Rolle.

ken Oszillationen. Trotzdem sind in einem gewissen Bereich um die optimale Resonatorlänge nahezu vollständige Kompressionen erzielbar (Abb. 3.8 a)), wenn die Resonatorlänge auf ein Oszillationsmaximum abgestimmt wurde (vgl. Abb. 3.8 b)). Andererseits zeigt sich, dass bei Variation der Resonatorlängen um nur etwa 10 % keine nennenswerte Kompression mehr erzielt wird, was anhand des in Abb. 3.15 dargestellten theoretischen Beispiels veranschaulicht wird.

In diesem wird die Kompression eines vorkompensierten Impulses durch eine GTI-Sequenz von drei exakt abgestimmten Resonatoren (Abb. 3.15 a)) mit dem Ergebnis verglichen, dass bei der Verwendung von GTI-Sequenzen mit um 10 % verstimmten Resonatorlängen erzielt wird (Abb. 3.15 b)-d)). Offensichtlich tritt bei Verwendung der verstimmten Resonatoren keine erkennbare Kompression mehr auf.

Demzufolge ist die Kompression mit GTI-Sequenzen als sehr selektiv zu betrachten.
3.4 Anwendungen

3.4.1 Intensitätsverringerung

Die demonstrierte Möglichkeit, phasenmodulierte Impulszüge mittels geeigneter Resonatorstrukturen komprimieren zu können, lässt sich beispielsweise zur Absenkung von Spitzenintensitäten in optischen Systemen nutzen.

Dies soll im Folgenden anhand eines in Abb. 3.16 dargestellten Beispiels näher erläutert werden:

Ein kurzer Laserimpuls von 50 fs Halbwertsdauer wird mit Hilfe eines Impulsformers und eines Prismenstreckers so vorkompensiert, dass er nach Durchgang durch eine optische Faser an deren Ausgang vollständig komprimiert ist. Unter Vernachlässigung nichtlinearer Propagationseffekte wird zur Vorkompensation hauptsächlich eine relativ große negative quadratische Phasenmodulation benötigt, die einer linearen Frequenzmodulation entspricht. Der Prismenstrecker wird an sich nur benötigt, wenn diese quadratische Phasenmodulation die Grenze des Arbeitsbereichs des Impulsformers überschreitet, d.h. bei ihrer Darstellung die NYQUIST-Bedingung verletzt würde. Diese Frequenzmodulation wird nun nach und nach in der Faser bis zu deren Ausgang wieder abgebaut, wobei die Spitzenintensität bis zu ihrem Maximalwert ansteigt. Soll nun der Faserausgang hinsichtlich der dort auftretenden Spitzenintensitäten entlastet werden, so kann, entsprechend des in Abb. 3.16 dargestellten Vorgehens, ein GTI nachgeschaltet werden, das ebenfalls mittels des Impulsformers vorkompensiert wird. Abb. 3.17 zeigt theoretische Verläufe der Spitzenintensitäten innerhalb der Faser für die Fälle mit und ohne Vorkompensation eines GTI.

Abb. 3.16: Vorschlag zur Anwendung des Verfahrens zur Spitzenintensitätsabsenkung in einer vorkompensierten optischen Faser.

Abb. 3.17: Theoretische Spitzenintensitätsverläufe innerhalb einer entsprechend Abb. 3.16 vorkompensierten optischen Faser mit und ohne Vorkompensation eines nachgeschalteten GTI für verschiedene Resonatordicken D bei konstanter Strahltrefferaktivität $R = 38.2\%$. Es wird angenommen, dass die Faser aus Quarz (SQ 1) besteht, eine Länge von 1 m besitzt und hinsichtlich aller Dispersionsordnungen vorkompensiert ist. Die betrachteten Impulse haben eine Zentralwellenlänge von 800 nm und besitzen eine bandbreitebegrenzte Halbwertsdauer von 50 fs. Die unterbrochene Linie markiert die größte zu erwartende Intensitätsabschwächung um den Faktor 2.6.

die Gitter eines konventionellen Gitterkompressors zu entlasten, so sind folgende Aspekte zu berücksichtigen:

Erstens ist, wie im Abschnitt 3.2.2.1 schon erwähnt, die Kompensationsqualität immer durch die endliche spektrale Auflösung des verwendeten Impulsformers begrenzt. Dies bedeutet, dass prinzipiell immer auch „Reste“ von Impulsechos vorliegen. Diese können als Vor- und Nachimpulse, besonders für bestimmte Anwendungen in der Hochintensitätslaserphysik mit ultrakurzen Impulsen, problematisch sein. Zu erwähnen sind hier vor allem die Plasma- und Röntgenstrahlungserzeugungsexperimente, die sehr sensitiv gegenüber Vorimpulsen sind [138, 8]. Im Einzelfall ist demnach abzuwagen, ob die verfügbare spektrale Auflösung eine ausreichende Unterdrückung der Echos gewährleisten kann.
Zweitens ist zu berücksichtigen, dass die erwähnten Intensitätsüberhöhungen infolge der Überlagerung der GTI-Kompensationsphase mit starken Frequenzmodulationen im Bereich des Verstärkers problematisch sein können. Diese können beispielsweise über Selbstphasenmodulationseffekte zu periodischen Amplitudenmodulationen führen, die eine RekompRESSION mit einem GTI verhindern würden [104].

3.4.2 Adressierung und Codierung optischer Informationen

Die in Abschnitt 3.3 diskutierte Möglichkeit einer selektiven Kompression mit GTI-Sequenzen lässt sich beispielsweise zur Adressierung und Codierung von Informationen in einem optischen Netzwerk nutzen. Dazu ist das Konzept gemäß eines Vorschlags von WEINER et al. [52] für die Realisierung eines optischen Netzwerkes mit Codierungsteilung (code-division multiple-access, CDMA) geeignet. Dabei codiert ein Sender ultrakurze Laserimpulse mittels eines phasenmodulierenden Impulsformers und die Empfänger decodieren die verschlüsselten Impulse durch Aufprägen der konjugierten Phasenmodulation. Die decodierten und somit komprimierten Impulse werden dann mittels eines optisch nichtlinearen Detektors mit Schwellwertverhalten registriert. WEINER et al. [52] schlagen zur Decodierung die gleichen Impulsformer vor, wie sie zur Codierung verwendet wurden. Stattdessen könnten entsprechend Abb. 3.18 aber auch wesentlich einfacher und effizientere GTI-Sequenzen zur Decodierung eingesetzt werden (vgl. Abschnitt 3.3).

![Diagramm](https://example.com/diagram.png)

Abb. 3.18: Anwendung der selektiven Kompression vorkompensierter Impulse in GTI-Sequenzen zur Adressierung und Codierung in einem sternförmigen optischen Netzwerk.

Der Sender würde weiterhin aus einem Impulsformer bestehen, der die Impulse mit derjenigen GTI-Kompensationsphase verschlüsselt, deren Parameter \((D_1, \ldots, D_m)\) exakt den Resonatorlängen in der GTI-Sequenz des gewünschten Empfängers entsprechen.
Bei diesem Empfänger würde der Impuls in gleicher Weise wie bei Verwendung von Impulsformern komprimiert und mittels eines nichtlinearen Detektors mit Schwellwertverhalten registriert.

Alle Empfänger mit einem abweichenden Satz von Resonatorlängen verursachen zusätzliche Phasenmodulationen, die die Spitzenintensität der Impulse weiter absenken und die Detektoren nicht ansprechen lassen. Wie in Abschnitt 3.2.2 diskutiert, reichen dazu Resonatorlängenvariationen von etwa 10 % aus.

Der Satz der Resonatorlängenparameter der Kompensationsphase \((D_1, \ldots, D_m) \) hat somit die Bedeutung einer Adresse im optischen Netzwerk.

Werden die Resonatorlängen der GTI, beispielsweise durch Verwendung piezoelektrischer Aktuatoren, variabel gestaltet, so lässt sich die Adressierung der Empfänger zusätzlich dynamisch ändern.

Der Einsatz von GTI-Sequenzen zur Ersetzung aufwändiger Impulsformer ist prinzipiell auch in linearen optischen Netzwerken möglich [55].

3.4.3 GTI-Kompensation durch eine GTI-Sequenz

Könnte in den bisher vorgestellten Konzepten der phasenmodulierende Impulsformer durch weniger aufwändige, effizientere, passive optische Elemente ersetzt werden, so wäre dies für die technische Umsetzung von großem Vorteil (vgl. Abschnitt 1.5).

Hat man zwei gleiche GTI und variiert die Dicken geringfügig, so kann ein Zustand erreicht werden, bei dem sich die Maxima der spektralen Phasenmodulation des einen mit den Minima des anderen überlagern. Wegen des asymmetrischen Phasenverlaufs innerhalb einer Periode kann so aber prinzipiell nur eine teilweise Kompensation erzielt werden. Nimmt man jedoch weitere GTI hinzu, so kann die Kompensation verbessert werden.

Offensichtlich ist in den in diesem Kapitel vorgestellten Konzepten ein Ersatz des Impulsformers durch GTI-Sequenzen möglich.

Damit wäre auch eine unproblematische GTI-Vorkompensation hochintensiver, verstärkter Laserimpulse möglich. Abb. 3.21 zeigt ein damit realisierbares Konzept zur Entlastung des Gitterkompressors eines CPA-Systems, bei dem die in Abschnitt 3.4.2 erwähnten möglichen Wechselwirkungen zwischen der GTI-Kompensationsphase und dem Verstärkungsprozess ausgeschlossen werden.

Spielen die prinzipiell nicht vollständig behebbaren Vor- und Nachimpulse eine untergeordnete Rolle (z.B. bei der Materialbearbeitung), so könnten damit beispielsweise die benötigten Abmessungen der Kompressorgitter verringert werden.
Abb. 3.20: Strecker-Kompressor-Kombination, die ausschließlich durch GTI realisiert ist. Die eingezeichneten theoretischen zeitlichen Intensitätsverläufe und spektralen Phasen entstammen dem in Abb. 3.19 gezeigten Beispiel. Das GTI und die GTI-Sequenz können auch vertauscht werden.

Kapitel 4

Kontrolle nichtresonanter Zweiphotonenprozesse

4.1 Einführung

Zweiphotonenanregungen gehören zu den am häufigsten genutzten nichtlinearen Prozessen. Beispiele sind die Frequenzverdopplung oder die Zweiphotonenmikroskopie \[5\].

Im folgenden Kapitel soll deshalb die Frage diskutiert werden, wie sich Phasenmodulationen ultrakurzer Laserimpulse innerhalb nichtresonanter Zweiphotonenprozesse auswirken und wie sie sich zu deren Kontrolle einsetzen lassen.

Insbesondere die Frequenzverdopplung phasenmodulierter Impulse ist ein wichtiges Hilfsmittel zur kontrollierten Anregung von molekularen Systemen, die im UV absorbieren \[39\], weshalb ein genaues Verständnis der dabei auftretenden Effekte von großem Interesse ist.

Bislang beschränkten sich die theoretischen Untersuchungen der breitbandigen Frequenzverdopplung auf amplitudenmodulierte Impulse \[140,141\] und solche, die durch bestimmte niedrige Dispersionsordnungen in einfacher Weise phasenmoduliert sind \[142\].

Deshalb wird hier ein Modell der Frequenzverdopplung sinusförmig, d.h. periodisch phasenmodulierter Laserimpulse vorgestellt \[62\], experimentell verifiziert und seine Beziehung zu kubischen Phasenmodulationen diskutiert. Dieses Modell ist besonders geeignet, um Effekte zu verstehen, die bei der Frequenzverdopplung phasenmodulierter Impulszüge auftreten, wie die Induzierung von Amplitudenmodulationen.

Durch verschiedene Arbeiten ist bekannt, dass schmalbandige Zweiphotonenprozesse sensitiv gegenüber Symmetrie- und Periodizitätseigenschaften der Phasenmodulation der anregenden Laserimpulse sind und sich dies zur Kontrolle der darüber angeregten optischen Systeme ausnutzen lässt \[59,68,63,57,54,143,139\].

4.2 Frequenzverdopplung phasenmodulierter Impulse

4.2.1 Sinusförmige Phasenmodulation

4.2.1.1 Theoretische Betrachtung

Im folgenden Beispiel wird ein sinusförmig phasenmodulierter Eingangsnullimpuls mit der spektralen Feldeinhullenden

\[\tilde{E}_1 (\Omega_1) \propto e^{-\left(\frac{t}{\Delta t} \right)^2} e^{i \varphi \cos(\Delta t + \phi)} \] \hspace{1cm} (4.1)

angenommen, wobei \(\varphi \) die Modulationsamplitude und \(\psi \) eine beliebige konstante Phase ist. Ohne Beschränkung der Allgemeinheit wird die sinusförmige Phasenmodulation mittels eines Kosinusterms mit Phasenverschiebung \(\psi \) beschrieben, um einen Vergleich mit der Literatur zu erleichtern. Die Modulationsfrequenz ist durch die Größe \(\Delta t \) symbolisiert, da die sinusförmige Phasenmodulation im Zeitbereich einem Impulszug entspricht, dessen Teilimpulse durch einen zeitlichen Abstand \(\Delta t \) separiert sind. Zu einer theoretischen Beschreibung dieses Impulszuges gelangt man, indem die Phasenmodulation unter Beachtung von \(\cos \phi = \sin \left(\frac{n}{2} - \phi \right) \) mit Hilfe von BESSEL-Funktionen erster Gattung und \(m \)-ter Ordnung [144] dargestellt wird:

\[e^{i \varphi \cos \phi} = \sum_{m=-\infty}^{\infty} J_m (\varphi) e^{im \left(\frac{n}{2} - \phi \right)} \] \hspace{1cm} (4.2)

Damit ergibt sich aus Gl. 4.1 nach FOURIER-Transformation die zeitliche Feldinhullende des Impulszuges

\[\tilde{E}_1 (t) \propto \sum_{m=-\infty}^{\infty} J_m (\varphi) e^{im \left(\frac{n}{2} - \phi \right) - \frac{1}{4} (m \Delta t + t)^2 \Delta \Omega_1^2} . \] \hspace{1cm} (4.3)
Bei einer Frequenzverdopplung wird die zeitliche Feldeinhüllende des Eingangsimpulses quadriert

$$\tilde{E}_2(t) \propto \tilde{E}_1^2(t)$$ (4.4)

bzw. die zugehörige spektrale Feldeinhüllende entsprechend Gl. 1.40 einer Faltung

$$\tilde{E}_2(\Omega_2) \propto \int_{-\infty}^{\infty} \tilde{E}_1(\Omega_1) \tilde{E}_1(\Omega_2 - \Omega_1) \, d\Omega_1$$ (4.5)

unterworfen.

Durch Einsetzen von Gl. 4.1 in 4.5 und Berücksichtigung von Gl. 4.2 erhält man den analytischen Ausdruck für die komplexe spektrale Einhüllende des elektrischen Feldes der zweiten Harmonischen eines sinusförmig phasenmodulierten Laserimpulses (siehe Anhang):

$$\tilde{E}_2(\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} \sum_{m=-\infty}^{\infty} \alpha_m \quad \text{mit}$$

$$\alpha_m = J_m \left(2 \varphi \cos \left(\frac{\Delta t \Omega_2}{2} + \psi \right) \right) e^{\left(\frac{1}{2} \ln 2 \right)(m \Delta t \Delta \Omega_1)^2}$$ (4.6)

Offensichtlich wird die Beziehung durch diejenigen Terme dominiert, die Bessel-Funktionen niedriger Ordnung enthalten, da die Terme α_m mit m exponentiell in ihrem Beitrag abfallen.

Die spektrale Breite $\Delta \Omega_1$ ist mit der auf die Wellenlänge bezogenen spektralen Halbwertsbreite $\Delta \lambda_H$ näherungsweise wie folgt verknüpft:

$$\Delta \Omega_1 \approx \frac{2 \pi c_0}{\lambda^2} \frac{\Delta \lambda_H}{\sqrt{2 \ln 2}}$$ (4.7)

Ein typisches Titan-Saphir-Laserspektrum mit $\Delta \lambda = 20$ nm bei 800 nm Zentralwellenlänge entspricht deshalb einem $\Delta \Omega_1 \approx 50$ THz. Offensichtlich wird damit für Modulationsfrequenzen der Größenordnung von $\Delta t \approx 0.1$ ps der den Bessel-Term erster Ordnung dämpfende Exponentialterm mit $\exp \left(-\frac{1}{8} (50 \text{ THz} \cdot 0.1 \text{ ps})^2 \right) \approx 5 \%$ schon recht klein.

Wenn also $\Delta t \cdot \Delta \Omega_1$ genügend groß ist, kann $\tilde{E}_2(\Omega_2)$ daher durch den die Bessel-Funktion nullter Ordnung enthaltenden Summanden genähert werden. Daraus folgt das Ergebnis:

$$\tilde{E}_2(\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} J_0 \left(2 \varphi \cos \left(\frac{\Delta t \Omega_2}{2} + \psi \right) \right)$$ (4.8)

Mit dieser Näherung wird eine rein amplitudenmodulierte spektrale Feldeinhüllende beschrieben. Eine sinusförmige Phasenmodulation wird demnach bei der Frequenz-
verdopplung nahezu vollständig in eine Amplitudenmodulation überführt. Ein qualitatives Kriterium für den Gültigkeitsbereich dieser Näherung ist durch die Beziehung

\[\Delta \Omega_1 \Delta t > \sqrt{-8 \ln p} \]

gegeben, die aus Gl. 4.6 folgt und in der \(p \) das Verhältnis \(|\alpha_1|/|\alpha_0|\) festlegt.
Soll beispielsweise bei einer Fundamentalenbandbreite von 25 nm bei 800 nm Zentralwellenlänge der Beitrag von \(\alpha_1 \) kleiner 1 % desjenigen von \(\alpha_0 \) sein, so muss \(\Delta t > 100 \, \text{fs} \) gelten.

4.2.1.2 Experimentelle Untersuchung

Um die theoretisch erwarteten Eigenschaften des frequenzkonvertierten Impulses, wie die Abhängigkeit des Spektrums von der Modulationsfrequenz \(\Delta t \) und der Modulationsamplitude \(\varphi \), experimentell untersuchen zu können, wurden der in Abb. 4.1 dargestellte Aufbau und ultrakurze Laserimpulse aus einem Titan-Saphir-Laser mit einer Bandbreite von etwa 25 nm (FWHM) bei einer Zentralwellenlänge von 810 nm verwendet. Die Impulse hatten eine Dauer (FWHM) von etwa 50 fs und eine Energie von 0.8 mJ bei einer Repetitionsrate von 1 kHz.

Zunächst werden die Fundamentalenimpulse mittels einer als Strahlteiler verwendeten Glasplatte in einen Hauptimpuls und einen Referenzimpuls aufgeteilt. Der Hauptimpuls wird in einen hochauflösenden, rein phasenmodulierenden Impulsformer \[101\] (Jenoptik SLM-S 640/12, vgl. Abschnitt 1.5) gesandt, während der Referenzimpuls von der nachfolgenden Impulsdagnostik benötigt wird. Nach Aufprägen einer sinusförmigen Phasenmodulation mit einer Modulationsfrequenz \(\Delta t \) bei einer Modulationsamplitude \(\varphi \) wird der Hauptimpuls entweder direkt mittels eines Kreuzkorrelators zeitlich charakterisiert oder mittels eines BBO-Kristalls frequenzverdoppelt (100 oder 500 \(\mu \text{m} \) Dicke). Der frequenzverdoppelte Impuls kann dann mittels eines Spektrometers spektral oder mittels eines weiteren Kreuzkorrelators zeitlich charakterisiert werden.

Für die zeitliche Charakterisierung des phasenmodulierten Fundamentalenimpulses wird dieser im Kreuzkorrelator in einem 100 \(\mu \text{m} \) dicken BBO-Kristall unter Erzeugung der zweiten Harmonischen (SHG) mit dem Referenzimpuls gemischt. Das SHG-Signal in Abhängigkeit von der zeitlichen Verzögerung der Impulse zueinander entspricht dem Kreuzkorrelationssignal, welches in guter Näherung dem zeitlichen Intensitätsverlauf des phasenmodulierten Fundamentalenimpulses entspricht. Lediglich feine zeitliche Details können infolge der unvermeidlichen zeitlichen Faltung mit dem Referenzimpuls nur etwas verschmiert wiedergegeben werden.

Der Kreuzkorrelator für die frequenzverdoppelten Impulse funktioniert in nahezu gleicher Weise, nur wird hier die dritte Harmonische in einem 300 \(\mu \text{m} \) dicken BBO-
Kristall erzeugt (THG) und als Korrelationssignal verwendet.

Die zur zeitlichen Charakterisierung des Fundamentalen- und des SH-Impulses gewonnenen Kreuzkorrelationen sind in Abb. 4.2 dargestellt. Kurve a) stellt die Kreuzkorrelation des Referenzimpulses mit dem sinusförmig phasenmodulierten Fundamentalenimpuls dar, Kurve b) diejenige mit dem zugehörigen frequenzverdoppelten Impuls. Um einen direkten Vergleich der beiden Kurven zu erlauben, wurde die Kurve des Fundamentalenimpulses quadriert.

Als Modulationsamplitude wurde \(\varphi = 1.2 \text{ rad} \) gewählt, um einen Zustand mit maximalem Modulationskontrast im SH-Spektrum für die nachfolgenden spektralen Untersuchungen zu realisieren\(^1\). Die Modulationsfrequenz betrug \(\Delta t = 1000 \text{ fs} \). Die relative Phase hat keinen Einfluss auf diese Kurven bzw. den zeitlichen Intensitätsverlauf und wurde deshalb auf \(\psi = 0 \text{ rad} \) gesetzt.

In Übereinstimmung mit der aufgeprägten spektralen Phasenmodulation zeigt der resultierende Dreifachimpuls eine zeitliche Separation von exakt 1000 fs. Den Erwartungen entsprechend (Gl. 4.4) stimmt der zeitliche Intensitätsverlauf des frequenzverdoppelten Impulses (Kurve b)) mit dem quadrierten Intensitätsverlauf des Fundamentalenimpulses (Kurve a)) sehr gut überein.

\(^1\)Diese Modulationsamplitude entspricht in guter Näherung der ersten Nullstelle von \(J_0(2\varphi) \). Damit wird erreicht, dass das Argument der Bessel-Funktion in Gl. 4.8 den Bereich von 0 bis zu dieser Nullstelle abdeckt und damit Werte im Bereich von 1 bis 0 entstehen.
Die gegenüber dem Fundamentaleinimpuls vergrößerten zeitlichen Breiten der SH-Teilimpulse können auf den für die SHG verwendeten 500 μm dicken BBO-Kristall zurückgeführt werden. Im Gegensatz zum 100 μm dicken BBO-Kristall, der das vollständige Fundamentalspektrum akzeptieren kann, reduziert der 500 μm dicke Kristall die Bandbreite auf etwa die Hälfte. Trotz der damit etwas reduzierten zeitlichen Auflösung wurde dieser Kristall eingesetzt, um eine ausreichende Impulsenergie für eine nachfolgende unproblematische Kreuzkorrelation der zweiten Harmonischen zu gewährleisten.

Die Ergebnisse der spektralen Untersuchung der Impulse bei der zweiten Harmonischen sind in den Abb. 4.3 und 4.4 dargestellt. Abb. 4.3 zeigt die Abhängigkeit der spektralen Form von der Modulationsfrequenz Δt in Teil a) für eine antisymmetrische Sinus- und in Teil b) für eine symmetrische Kosinusphasenmodulation. Um die Sinus- oder die Kosinusphasenmodulation einzustellen, wurde die absolute Phase im Exponenten von Gl. 4.1 für a) ψ = π/2 und für b) ψ = 0 gewählt. Die Modulationsfrequenz wurde in einem Bereich von Δt = 0…1000 fs variiert. Als Modulationsamplitude wurde wiederum φ = 1.2 rad gewählt, um einen maximalen Modulationskontrast zu gewährleisten.

Abb. 4.2: Gemessene Intensitätskreuzkorrelationen des Referenzimpulses mit a) dem sinusförmig phasenmodulierten Fundamentaleinimpuls und b) dem frequenzverdoppelten Impuls. Kurve a) stellt hierbei das Quadrat der gemessenen Werte dar. Die Phasenmodulationsamplitude betrug φ = 1.2 rad, die absolute Phase ψ = 0 rad und die spektrale Modulationsfrequenz Δt = 1 ps.

Abb. 4.3: Gemessene SH-Spektren frequenzverdoppelter Fundamentaleinimpulse, die a) eine antisymmetrische Sinus- und b) eine symmetrische Kosinusphasenmodulation tragen, in Abhängigkeit von der Modulationsfrequenz Δt = 0…1000 fs bei einer festen Modulationsamplitude φ = 1.2 rad. Die absolute Phase beträgt in a) ψ = π/2 und in b) ψ = 0. Ein weißer Bildpunkt entspricht einer normierten spektralen Intensität von 0 und ein schwarzer Bildpunkt von 1.
Es zeigt sich, dass im Fall der Sinusphasenmodulation SH-Spektren mit maximalem Modulationskontrast vorliegen, die, wie erwartet, bei der zentralen Spektralkomponente, d.h. 405 nm, ein Modulationsmaximum besitzen. Im Fall der Kosinusmodulation liegt das für die zentrale Spektralkomponente erwartete Modulationsminimum nur im Bereich $\Delta t > 100$ fs vor. Dieses Verhalten bestätigt, dass die für die vorliegenden Impulsparameter (25 nm Bandbreite, 810 nm Zentralwellenlänge) abgeschätzte Grenze des Gültigkeitsbereiches der Näherung Gl. 4.8 mit $\Delta t \approx 100$ fs mit den tatsächlichen Bedingungen übereinstimmt.

Die Abnahme des Modulationskontrastes zu höheren Modulationsfrequenzen hin ist hauptsächlich auf die begrenzte Auflösung des verwendeten Spektrometers zurückzuführen, da mit dem Kreuzkorrelator noch bis in den Bereich von $\Delta t > 10$ ps Impulszüge nachweisbar sind, deren Strukturen der spektralen Modulation entsprechen.

Abb. 4.4 a) zeigt die gemessene Abhängigkeit des SH-Spektrums von der Modulationsamplitude φ bei fester Modulationsfrequenz $\Delta t = 130$ fs und Kosinusmodulation mit $\psi = 0$ rad. Daraus entnommen ist die Abhängigkeit der Intensität der zentralen Spektralkomponente bei 405 nm von der Modulationsamplitude φ, die in Abb. 4.4 b) zusammen mit der theoretisch erwarteten Abhängigkeit dargestellt ist.

Offensichtlich liegt eine gute Übereinstimmung zwischen den experimentellen und theoretischen Werten vor. Es bestätigt sich die Erwartung, dass ein maximaler Modulationskontrast nur dann erzielt wird, wenn die Modulationsamplitude φ so gewählt ist, dass 2φ einer Nullstelle der BESSEL-Funktion J_0 entspricht.
4.2.2 Quadratische Phasenmodulation

Für die Frequenzverdopplung eines entsprechend Gl. 1.31 quadratisch phasenmodulierten bzw. linear frequenzmodulierten, GAUSS-förmigen Fundamentalenimpulses gilt im Rahmen der durch Gl. 1.41 beschriebenen Dreifachmischung

$$\hat{E}_{\text{SHG}}(t) \propto \hat{E}^2(t) \propto e^{-I_{\text{SHG}}t^2} \; \text{mit} \; I_{\text{SHG}} = 2\Gamma. \quad (4.10)$$

Daraus folgt $b_{\text{SHG}} = 2b$ und $\Phi_{(2),\text{SHG}} = \Phi_{(2)}/2$.

Diese Art von Phasenmodulation bleibt offensichtlich während des Mischprozesses bis auf einen Faktor 2 erhalten [142] und die spektrale Intensitätsverteilung entspricht derjenigen bei der Frequenzverdopplung bandbreitebegrenzter Fundamentalempulse.

4.2.3 Kubische Phasenmodulation

Zur Behandlung kubischer Phasenmodulationen bei der Frequenzverdopplung bietet es sich an, diese als einen Spezialfall der sinusförmigen Phasenmodulation zu betrachten, für die im vorigen Abschnitt mit Gl. 4.6 auch eine exakte analytische Beschreibung hergeleitet wurde. Dies ist möglich, da in der Reihenentwicklung der sinusförmigen Phasenmodulation

$$\varphi \sin (\Delta t \Omega) = \varphi \Delta t \Omega - \frac{\varphi}{3!} \Delta t^3 \Omega^3 + \frac{\varphi}{5!} \Delta t^5 \Omega^5 - \ldots \quad (4.11)$$

für kleine Argumente $\Delta t \Omega$ die kubische Phasenmodulation als dominierender Term auftritt. Der lineare Phasenterm ist von geringer Bedeutung, da er lediglich die Bedeutung einer Laufzeit hat.

Somit kann eine kubische Phasenmodulation $\Phi_{(3)}$ entsprechend Gl. 1.29 näherungsweise durch eine sinusförmige Phasenmodulation mit der Modulationsamplitude $\varphi = -\Phi_{(3)}/\Delta t^3$ beschrieben werden, wenn die Modulationsfrequenzen Δt die Bedingung $\Delta t \Omega \ll 1$ erfüllen.

Die Gültigkeit dieser Näherung ist anhand Abb. 4.5 ersichtlich, in der die spektrale Intensität und Phase der zweiten Harmonischen eines kubisch phasenmodulierten Impulses mit denen zweier sinusförmig phasenmodulierter Impulse verglichen wird. Für $\Delta t/\Omega \approx 10\%$ liegt eine sehr gute Übereinstimmung zwischen der Näherung (Kurve C) und dem exakten Verlauf (Kurve B) vor, während für $\Delta t/\Omega \approx 40\%$ schon eine deutliche Abweichung der Näherung erkennbar ist (Kurve D). Zusammenfassend kann festgestellt werden, dass kubische Phasenmodulationen bei der Frequenzverdopplung im Wesentlichen erhalten bleiben, aber eine Verringerung der spektralen Bandbreite der zweiten Harmonischen bewirken.
Abb. 4.5: Theoretische spektrale Intensität und Phase der zweiten Harmonischen eines bandbreitebegrenzten Impulses (A), eines mit $\Phi_{(3)} = 10^5 \text{ fs}^3$ kubisch phasenmodulierten Impulses (B) und sinusförmig phasenmodulierter Impuls mit $\Phi_2(\Omega) = \varphi \sin(\Delta t \Omega)$ und $\varphi = -\Phi_{(3)}/\Delta t^3$ bei $\Delta t = 10 \text{ fs}$ (C) bzw. $\Delta t = 40 \text{ fs}$ (D). Lineare Phasenanteile wurden subtrahiert. Ausgegangen wird jeweils von GAUSS-förmigen Fundamentalinimpulsen mit 25 nm Halbwertsbandbreite und einer Zentralwellenlänge von 800 nm.

4.3 Nichtresonante atomare Zweiphotonenanregungen

Die theoretische Beschreibung der Wahrscheinlichkeit P_2 eines nichtresonanten Zweiphotonenübergangs in einem atomaren System entspricht derjenigen für die Intensität der zentralen Spektralkomponente ($\Omega_2 = 0$) eines mittels Gl. 4.5 beschriebenen SH-Spektrums [59,145], d.h.

$$P_2 \propto |\tilde{E}_3(\Omega)|^2 \propto \int_{-\infty}^{\infty} \tilde{E}_1(\Omega_1) \tilde{E}_1(-\Omega_1) d\Omega_1$$ \hspace{1cm} (4.12)

Die zentrale Spektralkomponente des SH-Spektrums kann daher als ein Modell des atomaren Übergangs betrachtet werden, das beispielsweise dazu geeignet ist, die Auswirkungen von Phasenmodulationen zu untersuchen.

Meshulach und Silberberg [59] haben eine derartige atomare Zweiphotonenanregung mit sinusförmig phasenmodulierten Impulsen theoretisch beschrieben und erfolgreich zur kohärenten Kontrolle der Zweiphotonenfluoreszenz von Cäsium-Atomen in der Dampfphase experimentell eingesetzt. Bei der theoretischen Beschreibung in Ref. [59] wurde zwar ein rechteckförmiges Spektrum des anregenden Impulses vorausgesetzt, doch ergeben sich daraus Ergebnisse, die mit Gl. 4.8 konsistent sind.

In Abb. 4.6 sind zur Veranschaulichung die Energie niveaudarstellungen der Zweiphotonenfluoreszenzanregung von Cäsium und eines SHG-Prozesses in einem Verdopplerkristall (hier BBO) gegenübergestellt.

Zur eigentlichen Kontrolle wurde die Möglichkeit ausgenutzt, mittels entsprechend Gl. 4.1 sinusförmig phasenmodulierter Laserimpulse eine konstruktive oder destruk-
KONTROLLE NICHTRESONANTER ZWEIPHOTONENPROZESSE

Abb. 4.6: a) Energieniveauschema der $6S_{1/2}-8S_{1/2}$-Zweiphotonenfluoreszenzanregung (TPF) von Cäsium. Da alle Signale kürzer als einige ps sind, kann keine Dynamik aufgrund der Hyperfeinaufspaltung der Niveaus $6S_{1/2}$ und $8S_{1/2}$ beobachtet werden [59]. b) Energieniveauschema eines Verdopplerkristalls (BBO) zur Erzeugung einer Spektralkomponente ω_{SH}. Zu ihrer Erzeugung tragen alle Spektralannteile ω_1, ω_2 bei, für die gilt $\omega_1 + \omega_2 = \omega_{SH}$, und die im Bereich der spektralen Akzeptanz des Kristalls liegen. Dicke BBO-Kristalle mit sehr schmalen spektralen Akzeptanzen können daher als Modell der atomaren Zweiphotonenanregung betrachtet werden.

tive Interferenz bei der Zentralfrequenz eines virtuellen SH-Spektrums bzw. bei der atomaren Absorptionslinie zu erzeugen. Dies ist möglich, da die die Zweiphotonenanregung beschreibende Faltung Gl. 4.12 auf die Symmetrie der Phasenmodulation des Eingangsspektrums empfindlich reagiert: Ist die Phasenmodulation antisymmetrisch ($\psi = \pi/2$ bzw. sinusschwingende Modulation), so vereinfacht sich Gl. 4.12 unter Berücksichtigung von Gl. 4.8 zu

$$P_2 \propto \left| J_0 \left(2\varphi \cos \left(0 + \frac{\pi}{2} \right) \right) \right|^2 = 1 \quad (4.13)$$

und es liegt keine Abhängigkeit des Signals von der Phasenmodulationsamplitude φ vor. Wird eine symmetrische Phasenmodulation verwendet ($\psi = 0$ bzw. kosinusförmige Modulation), so resultiert

$$P_2 \propto \left| J_0 \left(2\varphi \cos (0) \right) \right|^2 = \left| J_0 (2\varphi) \right|^2 \quad (4.14)$$

mit einer deutlichen Abhängigkeit von der Modulationsamplitude φ.

Die experimentell ermittelten Abhängigkeiten sind in Abb. 4.7 a) für Cäsium (Cs) und b) für einen BBO-Kristall dargestellt. Die Kurven in Abb. 4.7 a) für Cs geben die Ergebnisse von Meshulach und Silberberg [59] wieder. Die Kurven in Abb. 4.4 b) für den BBO-Kristall wurden Abb. 4.4 b) entnommen bzw. für die asymmetrische Modulation unter gleichen Messbedingungen aufgenommen. Die Kurven für die symmetrische Phasenmodulation entsprechen jeweils sehr gut der theoretischen Voraussage durch Gl. 4.14.

Die systematische Abweichung der Kurve für den asymmetrischen Fall ist für Abb. 4.7 a) hauptsächlich auf eine begrenzte Auflösung und Zentrierungsgenaug-
Abb. 4.7: a) Ergebnis von Meshulach und Silberberg [59] zur Abhängigkeit des Zweiphotonenfluoreszenzsignals (TPF) in Cäsium von der Modulationsamplitude sinusförmig phasenmodulierter Fundamentaleimpulse. b) Zentrale Komponente $I_{SH}(Q = 0)$ des Spektrums eines in einem BBO-Kristall frequenzverdoppelten, sinusförmig phasenmodulierten Fundamentaleimpulses in Abhängigkeit von der Modulationsamplitude φ. Die Quadrate zeigen in a) und b) die Abhängigkeit für eine antisymmetrische Phasenmodulation ($\psi = \pi/2$), die Kreise für eine symmetrische ($\psi = 0$). Die Linien sind nach Gl. 4.13 für den antisymmetrischen Fall (gestrichelt) und nach Gl. 4.14 für den symmetrischen Fall (durchgezogen) berechnet. Die gepunktete Linie in b) erhält man für den antisymmetrischen Fall bei Annahme einer Spektrometauflösung von 0.5 nm.

keit der Phasenmodulation bezüglich der Mitte des Anregungsspektrums zurückzuführen [59]. Für den Abfall der entsprechenden Kurve in Abb. 4.7 b) kommt als wesentlicher Faktor die begrenzte Auflösung des verwendeten Spektrometers in Betracht.

Da analog zur Darstellung Abb. 4.4 a) auch für antisymmetrische Modulationen die Breite von spektralen Intensitätsmaxima mit wachsender Modulationsamplitude φ abnimmt, führt dies zu einem Absinken des über den Auflösungsbereich des Spektrometers integrierten Signals.

Die gepunktete Linie in Abb. 4.7 b) wurde theoretisch für das Auflösungsvermögen des verwendeten Spektrometers von 0.5 nm ermittelt und erklärt die gemessene Kurve in ausreichendem Maße.

4.4 Schmalbandige Summen- und Differenzfrequenzmischungen

Bei der im vorigen Abschnitt diskutierten Zweiphotonenanregung handelt es sich bei genauer Betrachtung um den Spezialfall einer SFM, bei der die kombinierbaren Photonen einem Laserspektrum entsprechen.

Im weiteren Sinne können aber alle Dreieinwellenmischungsprozesse, bei denen eines der drei beteiligten Felder \hat{E}_1, \hat{E}_2 und \hat{E}_3 keine Amplitude besitzt, als Zweiphotonen-
prozess interpretiert werden. Dies betrifft somit auch Summen- und Differenzfreq-
quenzprozesse, bei denen der Energieerhaltungssatz für die Kreisfrequenzen der be-
teiligten Photonen $\omega_3 = \omega_1 + \omega_2$ bzw. $\omega_2 = \omega_3 - \omega_1$ lautet.
Die Wahrscheinlichkeiten durch derartige Prozesse induzierter, atomarer Übergänge
kann analog zu Gl. 4.12 aus Gl. 1.36 abgeleitet werden. Man erhält somit für die
Wahrscheinlichkeit eines durch SFM angeregten Übergangs

$$P_{SFM} \propto |\tilde{E}_3(0)|^2 \propto \left| \int_{-\infty}^{\infty} \tilde{E}_1(\Omega) \tilde{E}_2(-\Omega) d\Omega \right|^2$$

(4.15)

und für diejenige als Resultat einer DFM

$$P_{DFM} \propto |\tilde{E}_2(0)|^2 \propto \left| \int_{-\infty}^{\infty} \tilde{E}_3(\Omega) \tilde{E}_1^*(\Omega) d\Omega \right|^2$$

(4.16)

Die Beziehung Gl. 4.15 hat die Struktur einer spektralen Faltung und Gl. 4.16 die
einer spektralen Korrelation.
Offensichtlich ergeben sich bei derartigen Integrationen dann maximale Signale,
was sich die Phasen korrespondierender Spektralanteile kompensieren, wobei die
komplexe Konjugation in Gl. 4.16 zu berücksichtigen ist.
Damit ergeben sich Bedingungen für die Maximierung der Übergangswahrschein-
lichkeiten für

SFM: $\Phi_1(\Omega) = -\Phi_2(-\Omega)$ Antisymmetrie

DFM: $\Phi_1(\Omega) = \Phi_3(\Omega)$ Identität bzgl. Zentralfrequenzen

(4.17)

(4.18)

Die Antisymmetriebedingung wurde im vorangehenden Abschnitt durch Verwen-
dung sinusförmiger Phasenmodulationen erfüllt und damit die Wahrscheinlichkeit
der Zweiphotonenanregung bei Summenfrequenzprozessen maximiert.
Durch Verwendung kosinusförmiger, d.h. symmetrischer Phasen konnte das Signal
minimiert werden.
Alternativ zu sinusförmigen Phasenmodulationen können auch Sprungfunktionen
zur Erzeugung antisymmetrischer Phasenverläufe benutzt werden [63]. Es ist zu
beachten, dass bei resonanten Zweiphotonenanregungen abweichende Ergebnisse er-
halten werden [57], wobei die grundsätzliche Herangehensweise aber die gleiche ist.
Anwendung findet die Bedingung Gl. 4.17 auch zur Korrelation der spektralen Pha-
sen ober- und unterhalb der Zentralwellenlänge im Spektrum eines Laserimpulses.
ZHENG et al. [54, 143, 139] schlagen beispielsweise eine solche Phasenkorrelation in
langen, effizienten SHG-Kristallen mit schmalen spektralen Akzeptanzen zur Im-
KONTROLLE NICHTRESONANTER ZWEIPHOTONENPROZESSE

\begin{equation}
C_1 \neq C_2
\end{equation}

\begin{equation}
C_1 = C_2
\end{equation}

\begin{equation}
C_1 = \{\phi_1, \phi_2, ..., \phi_N\}
\end{equation}

\begin{equation}
C_2 = \{\phi_1, \phi_2, ..., \phi_N\}
\end{equation}

\begin{equation}
\phi_{m, n} \left(\Omega \right)
\end{equation}

\begin{equation}
\psi_{m, n} \left(\Omega \right)
\end{equation}

\begin{equation}
P_{\text{SHG}} \propto \sum_{m=1}^{N} \exp(i\phi_m) \exp(i\phi_{-m})
\end{equation}

pulsdecodierung in optischen Netzwerken vor. Dazu wird das Spektrum des Laserimpulses zunächst in \(2N\) Kanäle geteilt, die bezüglich der Zentralwellenlänge mit \([-N, ..., -1, 1, ..., N]\) durchnummeriert werden.

Wird angenommen, dass das Laserspektrum rechteckförmig ist, so vereinfacht sich Gl. 4.15 zu

\begin{equation}
P_{\text{SHG}} \propto \sum_{m=1}^{N} \exp(i\phi_m) \exp(i\phi_{-m})
\end{equation}

wobei \(\phi_m\) die Phase im Kanal \(m\) bezeichnet.

Wie in Abb. 4.8 erläutert, werden nun die Phasen \(\phi_m\) binär mit den Zuständen 0 und \(\pi\) belegt und die Kanäle ober- und unterhalb der Zentralwellenlänge werden zu Codewörtern \(C_1 = \{\phi_{-1}, ..., \phi_{-N}\}\) und \(C_2 = \{\phi_1, ..., \phi_N\}\) zusammengefasst. Offensichtlich resultiert ein maximales Signal \(P_{\text{SHG}}\), wenn \(C_1 = C_2\) vorliegt, d.h. wenn die Phasenmuster bezüglich der Zentralwellenlänge symmetrisch sind. Dies steht nicht im Widerspruch zu Bedingung Gl. 4.17, da wegen \(\exp(i\pi) = \exp(-i\pi)\) symmetrische und antisymmetrische Zustände nicht zu unterscheiden sind.

Werden Sätze von Binärcodierungen verwendet, die in ihrer bipolaren Form, d.h. unter Verwendung der Zustände -1 und +1, orthogonal sind, so wird für alle anderen Kombinationen von Codewörtern \(C_1 \neq C_2\) das SHG-Signal minimal [54]. Ein solcher Satz sind beispielsweise 8 HADAMARD-Codes der Länge 8.

Abb. 4.8 zeigt ebenfalls das Prinzip der damit realisierbaren optischen Netzwerke: Ein Sender belegt das Codewort \(C_1\) und ein Empfänger vergleicht dieses dann mit seiner Kennung \(C_2\). Liegt Übereinstimmung vor, so kann der Empfänger die für ihn bestimmte Information entschlüsseln.
Abb. 4.9: Einzelimpuls-CARS-Anregung: Ein Molekül besitzt zwei Schwingungsniveaus, die um Ω_R separiert sind. Zwei Photonen ω_3 und ω_1 aus einem anregenden Laserspektrum $I(\omega)$ bewirken die Bevölkerung des oberen Niveaus mittels eines Differenzfrequenzprozesses über ein virtuelles Niveau. Unter Verwendung eines weiteren Photons ω'_3 aus dem Laserspektrum wird die Emission eines Photons ω_{CARS} bewirkt, dass kurzwelliger ist, als alle Bestandteile des anregenden Spektrums und welches das separierbare CARS-Signal darstellt.

Die Bedingung Gl. 4.18 spielt eine wichtige Rolle bei dem kohärent kontrollierten Einzelimpuls-CARS-Verfahren (coherent anti Stokes Raman scattering, CARS) entsprechend des Vorschlags von Dudovich et al. [68]. Das Anregungsschema ist in Abb. 4.9 dargestellt und kann in zwei Zweiphotonenprozesse zerlegt werden. Zunächst erfolgt eine DFM zur Besetzung des oberen Schwingungsniveaus. Die beteiligten Photonen ω_3 und ω_1 stammen hierbei aus einem Laserspektrum und es gilt der Energieerhaltungssatz $\Omega_R = \omega_3 - \omega_1$, wobei Ω_R die Kreisfrequenz der Schwingung des Moleküls ist. Anschließend erfolgt bei Anregung mit weiteren Photonen ω'_3 die Emission von Photonen ω_{CARS}, die kurzwelliger sind als alle im Laserspektrum vorkommenden Spektralanteile (SFM). Diese Photonen stellen das separierbare CARS-Signal dar, dessen Kontrast durch zusätzliche Formung des Laserspektrums erhöht werden kann (Abb. 4.9). Seine spektrale Struktur wird durch eine Faltung des anregenden Laserspektrums mit der Besetzung des oberen Schwingungsniveaus festgelegt.

Da die an der DFM beteiligten Impulsanteile dem gleichen Laserspektrum entstammen, gilt $\tilde{\Phi}_3(\Omega) = \tilde{\Phi}_1(\Omega + \Omega_R)$ und damit $\Phi_3(\Omega) = \Phi_1(\Omega + \Omega_R)$. Wird dies in die Bedingung Gl. 4.18 eingesetzt, so folgt für die Maximierung der Einzelimpuls-CARS-Anregung die Bedingung

$$\Phi_1(\Omega) = \Phi_1(\Omega + \Omega_R).$$

(4.20)

2Die Indizierung dieser Photonen wurde gegenüber [68] so angepasst, dass sie mit derjenigen in Gl. 4.15 bis 4.18 konsistent ist.
4.5 Spektrale Fokussierung

Wird ein symmetrisches Fundamentalenspektrum mit

\[\tilde{\mathcal{E}}_1 (\Omega_1) = \tilde{\mathcal{E}}_1 (-\Omega_1) = \left| \tilde{\mathcal{E}}_1 (\Omega_1) \right| e^{i\Phi(\Omega_1)} \]

vorausgesetzt, so lässt sich Gl. 4.5 für die zentrale Spektralkomponente des SH-Spektrums folgendermaßen vereinfachen:

\[\tilde{\mathcal{E}}_2 (0) \propto \int_{-\infty}^{\infty} \left| \tilde{\mathcal{E}}_1 (\Omega_1) \right|^2 e^{i2\Phi(\Omega_1)} d\Omega_1 \]

Broers et al. [79] stellten fest, dass diese gewichtete Integration über einen Phasenterm der theoretischen Beschreibung der räumlichen Lichtbeugung entspricht, bei der der Phasenterm aus den optischen Wegunterschieden verschiedener Lichtanteile resultiert. Broers et al. zeigen in Ref. [79], dass unter Annahme eines recht- eckförmigen Spektrums der Breite $\Delta \Omega$ und einer quadratischen Phasenmodulation $\Phi(\Omega_1) = \frac{\Phi_2}{2} \Omega_1^2$ die Gl. 4.22 in die Form

\[\tilde{\mathcal{E}}_2 (0) \propto \int_{-\Delta \Omega/2}^{\Delta \Omega/2} e^{i\Phi(\Omega_1) \Omega_1^2} d\Omega_1 \]

überführt werden kann. Diese besitzt die mathematische Struktur des komplexen Fresnel-Integrals 4 [87]

\[\int_0^{\Delta x} e^{i\pi x^2} dx = \int_0^{\Delta x} \left[\cos \left(\frac{\pi}{2} x^2 \right) + i \sin \left(\frac{\pi}{2} x^2 \right) \right] dx. \]

Auf dieser Analogie aufbauend, nutzen Broers et al. [79] räumliche Zonen- und Phasenplatten in der Fourier-Ebene eines gefalteten 4f-Aufbaus, um die spektrale Intensitätsverteilung im SH-Spektrum zu beeinflussen. Im Vergleich zu aus-

\[^3\] Diese entspricht einer linearen Frequenzmodulation.
\[^4\] Real- und Imaginärteil des Integrals sind die kartesischen Koordinaten der Cornu-Spirale [87].
schließlich quadratisch phasenmodulierten Impulsen sind damit spektrale Intensitätsüberhöhungen auf Kosten anderer Spektralanteile realisierbar.

Diese Möglichkeit wurde von Broers et al. [79] als „spektrale Fokussierung“ bezeichnet. Das dabei zugrunde liegende Prinzip besteht darin, dass die in Gl. 4.22 durch den Phasenterm $e^{i2\Phi(O_1)}$ verursachten destruktiven Anteile entweder mittels blockierender Zonenplatten gänzlich unterdrückt oder mittels Phasenplatten in konstruktive Anteile umgewandelt werden.

Die Zusammenhänge sollen anhand eines theoretischen Beispiels erläutert werden, bei welchem aber, ohne Beschränkung der Allgemeinheit, von einem Gauss-förmigen Fundamentalenspektrum anstatt eines rechteckförmigen ausgegangen wird:

Ein Fundamentalenimpuls von 20 nm Bandbreite (FWHM) bei 800 nm Zentralwellenlänge wird mit $\Phi_{(2)} = -3000$ fs2 quadratisch phasenmoduliert. Das Spektrum und der zugehörige Phasenverlauf sind in Abb. 4.10 dargestellt. Um sämtliche destruktive Phasenanteile bei der Erzeugung der zentralen Spektralkomponente der SH zu eliminieren, könnte als triviale Lösung eine Phasenplatte verwendet werden, die genau den inversen Phasenverlauf $\Delta\Phi(O_1) = -\Phi(O_1)$ des Fundamentalenimpulses wiedergibt. Dies würde aber lediglich einer einfachen Kompression des Impulses bis zur Bandbreitebegrenzung entsprechen.

Da der relevante Phasenterm $e^{i2\Phi(O_1)}$ aber π-periodisch ist, ist eine Maximierung der zentralen SH-Spektralkomponente mittels der ebenfalls in Abb. 4.10 dargestellten Phasenplatte mit

$$\Delta\Phi(O_1) = -\frac{1}{2} (2\Phi(O_1) \text{ modulo } 2\pi)$$ (4.25)

möglicher.

In scheinbarem Gegensatz zur Bedingung Gl. 4.17 wird ein symmetrischer Phasenverlauf zur Maximierung der zentralen Spektralkomponente eingesetzt.

Bei Betrachtung von Abb. 4.10 ist aber ersichtlich, dass die durch die gestrichelte Kurve dargestellte effektive Phasenmodulation, die der Summe aus durchgezogener und gepunkteter Kurve entspricht, wiederum ein binärer Phasenverlauf mit den möglichen Werten π und 2π ist.

Wie bereits im Abschnitt 4.4 erläutert, ist ein solcher Verlauf aber einem antisymmetrischen Verlauf gleichwertig.

Alternativ können, wenn auch mit geringerer Effizienz, destruktive Anteile mit einer Zonenplatte unterdrückt werden, deren Transmissionsfunktion in Abb. 4.11 dargestellt ist. Liegt $e^{i2\Phi(O_1)}$ im 2. oder 4. Quadranten der komplexen Zahlenebene ($\frac{1}{2}\pi < 2\Phi(O_1) < \pi$ und $\frac{3}{2}\pi < 2\Phi(O_1) < 2\pi$), so heben sich konstruktive und destruktive Wirkungen von Real- und Imaginärteil in Bezug auf die Erzeugung der zentralen SH-Komponente jeweils auf.

Wesentlich ist demnach die Unterdrückung der Spektralkomponenten mit Phasen im
Bereich \(\pi < 2\Phi (\Omega_1) < \frac{3}{2}\pi \), die komplexe Beiträge im 3. Quadranten erzeugen. Im vorliegenden Fall wurden die unterdrückenden FRESNEL-Zonen im Phasenbereich \(\frac{1}{2}\pi < 2\Phi (\Omega_1) < \frac{3}{2}\pi \) angelegt.

Die Wirkung dieser Modulationen ist in Abb. 4.12 dargestellt. Wie zu erwarten war, ist es mit beiden Modulationsvarianten möglich, die Intensität der zentralen Spektralkomponente bei der SHG phasenmodulierter Impulse anzuheben. Mittels der Phasenplatte gelingt prinzipiell bei der Erzeugung der zentralen SH-Spektralkomponente eine vollständige Umwandlung destruktiver in konstruktive Anteile, woraus für diese Spektralkomponente die gleiche Intensität resultiert, wie bei der Verwendung bandbreitebegrenzter Fundamentalschwingungen.

Abb. 4.10: Fundamentalspektrum (grau gefüllt) eines um 800 nm zentrierten Impulses mit 20 nm Bandbreite (FWHM). Die durchgezogene Kurve zeigt eine auf den Bereich von \([0, 2\pi]\) projizierte, quadratische Phasenmodulation mit \(\Phi(2) = -3000\) fs². Die gepunkte Kurve zeigt eine mit Gl. 4.25 berechnete Phasenplatte, die zur spektralen Fokussierung auf die zentrale Spektralkomponente bei einer SHG geeignet ist. Die gestrichelte, graue Kurve zeigt die effektiv wirksame Phasenmodulation, die eine diskrete Struktur aufweist.

Abb. 4.11: Transmissionsverlauf einer Zonenplatte (grau, gestrichelt), die das Spektrum des zuvor in Abb. 4.10 definierten Fundamentalschwingungs derart amplitudenmoduliert (graues Spektrum), dass damit ebenfalls eine spektrale Fokussierung auf die zentrale SH-Spektralkomponente erzielt wird.

Der Begriff der „spektralen Fokussierung“ suggeriert die Möglichkeit, spektrale Intensitäten bestimmter Spektralkomponenten auf Kosten anderer erhöhen zu können. Wichtig ist die Erkenntnis, dass das Verfahren aber ausschließlich die Auswirkungen einer bereits vorhandenen Phasenmodulation teilweise kompensiert. Es können in keinem Fall spektrale Intensitäten erzielt werden, die über diejenigen hinausgehen, die bei der Verwendung bandbreitebegrenzter Fundamentalschwingungen erzielt werden.
Wie bei den bereits diskutierten Ansätzen zur Kontrolle von Zweiphotonenprozessen durch phasenmodulierte Impulse erlaubt dieses Verfahren jedoch eine Strukturierung eines realen oder virtuellen Zweiphotonenspektrums, die eine selektive Anregung ermöglicht [79].

4.6 Nichtresonante molekulare Zweiphotonenanregungen

Wie in den vorigen Abschnitten gezeigt wurde, können im Gegensatz dazu Phasenmodulationen der Fundamentalenimpulse hohe kontrastreiche Amplitudenmodulationen im Anregungsspektrum bewirken.

Bedient man sich des Bildes eines virtuellen SH-Spektrums, das entsprechend Abb. 4.3 interferometrisch strukturiert ist, so besteht das dabei genutzte Kontrollprinzip in einer einfachen Verschiebung des einzelnen konstruktiven Interferenzmaximums bei
Abb. 4.13: Von Walowicz et al. [65] demonstrierte Kontrolle der laserinduzierten Zwei-photonenfluoreszenz von Coumarin 460 (Punkte) und Coumarin 535 (Kreise): In (a) sind die Anregungsspektren der Farbstoffe zusammen mit dem SH-Spektrum der bandbreite-begrenzten Laserimpulse dargestellt. Die experimentell (b) und theoretisch (c) erhaltenen Abhängigkeiten der TPF-Signale vom Parameter δ der sinusförmigen Phasenmodulation $\alpha \cos(\gamma \Omega - \delta)$ zeigen eine Verschiebung der Kurven für die beiden Farbstoffe, die aus der unterschiedliche Überlappung des virtuellen SH-Spektrums mit den Anregungsspektren resultiert. Die Modulationsfrequenz ist so niedrig ($\gamma = 20$ fs [146]), dass nur etwa eine Oszillation der Phasenfunktion unter dem Laserspektrum vorliegt. Die optimale Modulationsamplitude von $\alpha = 1.5\pi$ wurde experimentell ermittelt.

sehr niedrigen Modulationsfrequenzen (nur 1 Periode unter dem Laserspektrum [65]) in Bezug auf die unterschiedlichen Maxima der Anregungsspektren der verschiedenen Farbstoffe. Dies wird durch Variation des Parameters5 ψ erreicht, der den Übergang von einer sinus- zu sinusförmigen Phasenmodulation festlegt.

Als optimale Modulationsamplitude für einen maximalen Kontrast haben Walowicz et al. [65] experimentell den Wert von $1.5\pi \approx 4.7$ rad ermittelt. Im Fall der atomaren Zweiphotonenanregung betrug die optimale Modulationsamplitude 1.2 rad (vgl. Abb. 4.7). Offensichtlich reicht die bislang für atomare Systeme durchgeführte Modellierung [59] nicht mehr für ein volles Verständnis der Verhältnisse bei breitbandigen Zweiphotonenanregungen aus [146].

Im Gegensatz dazu erlaubt das in Abschnitt 4.2 hergeleitete Modell eine sehr gute Beschreibung der Zusammenhänge. Man erkennt dabei, dass im Falle von sinusförmigen Phasenmodulationen mit einer geringen Anzahl N von Perioden unter dem Laserspektrum ein Übergang zu kubischen Phasenmodulationen erfolgt, der exakt durch Gl. 4.6 beschrieben wird.

Wie in Abschnitt 4.2.3 diskutiert, führt eine Vergrößerung der kubischen Phasenmodulation zu einer Verringerung der Breite eines SH-Spektrums. Entsprechend zeigt Abb. 4.14, dass theoretisch für kleine N eine Steigerung der Modulationsamplitude φ zu einer Erhöhung des Kontrastes zwischen konstruktiver und destruktiver Interferenz bei der Zweiphotonenanregung mit sinusförmigphasenmodulierten Impulsen führt. Da ein realer Impulsformer mit endlicher spektraler Auflösung aber

5Nach Gl. 4.1 entsprechen die Parameter ψ, Δt und φ in dieser Arbeit den Parametern δ, γ und α in Ref. [65].
Abb. 4.14: Mittels Gl. 4.6 berechnete Abhängigkeit der spektralen Intensität bei einer destruktiven Interferenz von der Modulationsamplitude φ bei der Zweiphotonenanregung mit sinusförmig phasenmodulierten Laserimpulsen. Dargestellt sind Kurven für unterschiedliche Anzahlen von Perioden der Phasenmodulation unter dem Laserspektrum. Die Anzahl der Perioden ergibt sich aus der Halbwertsbreite des Laserspektrums $\Delta \omega_H$ und der Modulationsfrequenz Δt zu $N = \Delta t \Delta \omega_H / \sqrt{2 \ln 2}$. Der maximal erzielbare Kontrast zwischen konstruktiver und destruktiver Interferenz ist $I_{\text{max}} / I_{\text{min}}$ und nimmt für niedrige Periodenzahlen N monoton mit der Modulationsamplitude zu (vgl. Abb. 4.7).

Kapitel 5

Reflektiver hochauflösender Impulsformer

5.1 Einführung

Wie bereits in der Einleitung zu dieser Arbeit festgestellt wurde, sind geformte Impulse im Infrarot (IR) und speziell im Ultraviolett (UV) von großem Interesse, da sie sich besonders gut für die kohärente Kontrolle molekularer Dynamik eignen. Andererseits erlauben konventionelle Impulsformer bislang keine hochauflösende Impulsformung in diesen Spektralbereichen (vgl. Abschnitt 1.5).

Zur Aufhebung dieser Beschränkung wurde bisher versucht, konventionell geformte Impulse durch Frequenzkonversion in andere Spektralbereiche zu konvertieren [75, 78, 77].

Wie im vorigen Kapitel dargestellt wurde, sind dabei aber recht komplexe Wechselwirkungen zwischen Phasen- und Amplitudenmodulationen zu berücksichtigen, weshalb die Realisierung einer direkten, hochauflösenden Impulsformung in den bisher nicht zugänglichen Spektralbereichen von Vorteil wäre.

Im folgenden Kapitel wird deshalb eine Möglichkeit zur direkten, hochauflösenden Phasenmodulation ultrakurzer Laserimpulse im UV vorgeschlagen und experimentell demonstriert [147].

Basierend auf dieser Lösung wird anschließend ein Konzept für einen hochauflösenden kombinierten Amplituden- und Phasenmodulator entwickelt, der geeignet ist, den gesamten Spektralbereich vom tiefen Ultraviolett (DUV) bis zum nahen Infrarot (NIR) abzudecken.
5.2 Hochauflösender Phasenmodulator

5.2.1 Prinzip

Für die direkte FOURIER-Filterung im Spektralbereich vom DUV bis zum NIR bietet sich der Einsatz eines auf einem mikroelektromechanischen System (MEMS) basierenden Mikrospiegelmodulators als räumlicher Lichtmodulator (SLM) an. Abb. 5.1 zeigt einen geeigneten Aufbau zum Einsatz eines solchen MEMS-SLM. Dieser gefaltete 4f-Aufbau ist vom Einsatz deformierbarer Membranspiegel bekannt. Der Einfachheit halber ist in Abb. 5.1 als abbildendes optisches Element eine Linse dargestellt, die aber bei Bedarf auch durch ein geeignetes reflektives Element, wie einen off-axis-Paraboloiden, ersetzt werden kann.

Das verwendete MEMS-SLM ist ein Demonstrationsgerät, dass zur Zeit am Fraunhofer-Institut für Photonische Mikrosysteme (IPMS) in Dresden für Applikationen mit adaptiver Phasenfrontkorrektur entwickelt wird [148,149]. Ähnliche Systeme sind bislang ausschließlich zur räumlichen Phasenfrontkorrektur eingesetzt worden [150,151]. Das MEMS-SLM besteht aus unabhängig ansprechbaren Senkspiegelelementen, die durch Oberflächenstrukturierung während eines voll CMOS-kompatiblen Fertigungsprozesses direkt auf einer darunter liegenden, integrierten Steuerschaltung erzeugt werden (Abb. 5.3). Dies hat den großen Vorteil, dass bei ihrer Herstellung auf vorhandene Technologien der Mikroelektronik zurückgegriffen werden kann, die prinzipiell eine kostengünstige Produktion in großen Stückzahlen erlaubt.

Die Spiegel und die Stützpfeifen in Abb. 5.2 bestehen aus einer Aluminiumlegierung, die eine hohe Reflektivität vom DUV bis ins IR gewährleistet. Wie Abb. 5.3 zeigt, beträgt diese im Bereich von 200 bis 800 nm zwischen 85 % und 92 %.

\(^1\)CMOS - *complementary metal-oxide semiconductor*
Die Aktivierung eines Mikrospiegels geschieht durch Anlegen einer Signalspannung zwischen dem Senkelement und der Steuerelektrode, welche durch elektrostatische Kräfte eine Auslenkung des Spiegels in den Luftspalt verursacht (vgl. Abb. 5.2). Wegen des dadurch vergrößerten optischen Weges erfährt das einfallende Licht eine zur Auslenkung D proportionale Phasenverzögerung

$$\Delta \phi = 4\pi \frac{D}{\lambda}. \quad (5.1)$$

In der vorliegenden Ausführung haben die Spiegelelemente eine Größe von $40 \times 40 \, \mu m^2$ und die maximale Auslenkung eines Spiegelelementes beträgt etwa $450 \, nm$, weshalb Phasenmodulationen von 0 bis π für Wellenlängen kleiner als $900 \, nm$ realisiert werden können. Bei Größerung der Spiegelelemente sind prinzipiell auch größere Auslenkungen möglich.

Die kurzwellige Grenze des spektralen Arbeitsbereichs bei etwa $200 \, nm$ resultiert aus der abfallenden Reflektivität der Aluminiumlegierung und aus einer begrenzten Oberflächenplanarität mit einer mittleren quadratischen Abweichung der Größenordnung von $10 \, nm$ [152].

Im Gegensatz zu LC-SLM ist die Phasenmodulation durch einen Mikrospiegelmodulator unabhängig vom Polarisationszustand des Lichtes bei senkrechtem Einfall.

Obwohl die mechanische Schaltzeit eines Spiegelelementes nur etwa $10 \, \mu s$ beträgt, wird für einen vollständigen Programmiervorgang der CMOS-Adressierungsauflösung etwa $1 \, ms$ benötigt, was einer Bildwiederholrate von $1 \, kHz$ entspricht [148, 149].

Die derzeit verfügbare 8-Bit-Ansteuerungsauflosung, die einer Auslenkungsauflosung von $12 \, nm$ entspricht, und die effektive Programmierrate von $100 \, Hz$ sind durch das Ansteuergerät des MEMS-SLM festgelegt. Dieses wird aber in naher Zukunft 10 Bit Auflösung und Programmierraten im kHz-Bereich unterstützen [152].

Wegen der zweidimensionalen Anordnung der Mikrospiegel sind diese Modulato-
ren sowohl für die derzeit übliche eindimensionale, als auch für die an Bedeutung gewinnende zweidimensionale Impulsformung geeignet [72].

Abb. 5.3: Reflektivität der unstrukturierten Aluminiumlegierung, aus denen die Senkspiegelelemente des MEMS-SLM bestehen. Quelle: Ref. [152].

5.2.2 Demonstration der Impulsformung im Ultraviolett

Um die Anwendbarkeit der Modulatoren unter typischen Bedingungen zu testen, wurde ein Demonstrationsmuster des in Abb. 5.2 dargestellten Modulators mit 240 x 200 Elementen zur eindimensionalen Formung ultrakurzer Laserimpulse bei 404 nm verwendet. Dies schließt die Erzeugung von THz-Impulsfolgen und die Vorkompensation der Gruppengeschwindigkeitsdispersion eines Glasblocks ein.

Die Laserimpulse werden mittels eines Strahlteilers in zwei Anteile aufgeteilt, wovon einer (≈ 40 %) frequenzverdoppelt wird und der andere (≈ 60 %) als Referenzimpuls eine Verzögerungsstrecke durchläuft.

Die erzeugte zweite Harmonische hat eine Impulsenergie von etwa 2 μJ, eine Halbwertsbandbreite von 7 nm und einen Strahldurchmesser von etwa 5 mm. Sie wird zunächst an einem dichroitischen Laserspiegel reflektiert, um die restliche Fundamentalsestrahlung zu unterdrücken, und auf ein aluminiumbeschichtetes Beugungsgitter mit einer Liniendichte von 2400 Linien pro mm gesandt, woraus eine Winkeldispersion ihrer Spektralkomponenten resultiert.

Das UV-Spektrum wird anschließend mittels einer zylindrischen Quarzlinse von 57 mm Brennweite auf das MEMS-SLM fokussiert. Da der Abstand zwischen Gitter und Linse gleich dem zwischen Linse und SLM ist, bilden diese drei optischen Elemente einen gefalteten 4f-Nulldispersionskompressor mit einem Phasenmodulator in der Fourier-Ebene [16].
Die Phasenmodulation wird durch das Auslenkungsmuster des MEMS-SLM bestimmt, dass bei der Repetitionsrate von 50 Hz für jeden einzelnen auftreffenden Laserimpuls neu programmiert werden kann. Da zum Zeitpunkt dieser ersten Demonstration nur Beugungsgitter und Zylinderlin sen verfügbar waren, mit der die optimale Kombination von Liniendichte und Brennweite nicht realisiert werden konnte, nutzt das UV-Spektrum nur etwa ein Drittel des MEMS-SLM aus. Eine volle Ausnutzung und damit optimale Leistungsfähigkeit kann durch eine bessere Anpassung der Gitterdispersion oder der Brennweite der Zylinderlinse aber leicht erreicht werden.

Nach der Reflexion und Phasenmodulation durch das MEMS-SLM durchlaufen die UV-Impulse die Komponenten des Impulsformers in umgekehrter Reihenfolge, wobei eine leichte Verkippung des SLM senkrecht zur Spektralebene eine Trennung des auslaufenden Strahls vom einlaufenden am Ausgang des Impulsformers erlaubt. Das MEMS-SLM hat eine sehr hohe Übertragungseffizienz von 85 % für die zweite Harmonische. Die Abweichung dieses Wertes von der Reflektivität des Spiegelmaterials (≈ 90 % bei 404 nm, vgl. Abb. 5.3) ist hauptsächlich auf die räumliche Lichtbeugung zurückzuführen, die aus der permanenten Gitterstruktur aufgrund der

In einem ersten Funktionstest des Impulsformers wurde das Spektrum der zweiten Harmonischen vor und nach dem UV-Impulsformer verglichen. Dabei konnten keine spektralen Veränderungen beobachtet werden, unabhängig davon, ob der Modulator ein Muster darstellte oder nicht. Als zweiter Schritt wurde die zeitliche Struktur des UV-Impulses nach Durchgang durch den Impulsformer charakterisiert, indem die Kreuzkorrelationsfunktion mit dem verzögerten Referenzimpuls aufgenommen wurde.

Abb. 5.5 a) zeigt die Kreuzkorrelation für den abgeschalteten Modulator. Die Halbwertsbreite von etwa 80 fs zeigt im Vergleich zur Fundamentaleimpulsdauer von etwa 50 fs, dass die Restdispersion des zur Demonstration realisierten Impulsformers für die meisten Anwendungen ausreichend klein ist. Bei ±1940 fs treten Replikas des Impulses auf, die aus der oben erwähnten permanenten Gitterstruktur resultieren und die auch von Flüssigkristallmodulatoren her bekannt sind. Die Positionen dieser Impulsreplika markieren die Ränder des sinc\(^2\)-formigen, effektiven Zeitfensters, das für den Impulsformer in der dargestellten Ausführung zugänglich ist [110]. Durch eine optimierte Ausnutzung des Modulators ist eine Verdreifachung der Ausdehnung des zugänglichen Zeitfensters möglich.

Als erste typische Anwendung eines Impulsformers wurden nun mittels sinusformer Phasenmodulationen verschiedene THz-Impulszüge erzeugt. Solche Impulszüge sind beispielsweise für die optische Anregung von THz-Strahlung von Bedeutung [153, 127].

Abb. 5.5 b)-d) zeigt, dass die experimentell erzielten zeitlichen Impulsabstände sehr gut mit den theoretisch erwarteten Werten für die jeweilige sinusförmige Phasenmodulation übereinstimmen. Zusätzlich ist in Abb. 5.5 zu erkennen, dass sich die Form und scheinbare Position der Impulsreplika mit der Modulationsfrequenz ändert. Dies kann dadurch erklärt werden, dass die Replika ebenfalls Impulszüge mit sich ändernden zeitlichen Separationen darstellen. Deshalb werden auch Teile dieser Replika in das schon erwähnte sinc\(^2\)-förmige Zeitfenster [110] hinein verschoben und nehmen
Abb. 5.5: Gemessene Kreuzkorrelationsfunktionen der UV-Impulse a) für die Fall eines abgeschalteten Modulators und b-d) für die Fälle, dass der Modulator sinusförmige Phasenmodulationen mit einer Amplitude von $\pi/2$ und Periodenlängen von 16, 8, oder 4 Pixeln bereitstellt. Die dadurch erzeugten THz-Impulspakete haben theoretische Impulsfolgefrequenzen von

- b) $(119 \text{ fs})^{-1} = 8.4 \text{ THz}$
- c) $(238 \text{ fs})^{-1} = 4.2 \text{ THz}$
- d) $(476 \text{ fs})^{-1} = 2.1 \text{ THz}$

dabei in ihrer Amplitude zu.

Eine zweite typische Anwendung phasenmodulierender Impulserzeuger ist die Kompression der Dispersion optischer Medien, wie beispielsweise der Fenster eines Vakuumaufbaus. Als ein realistisches Beispiel wurde deshalb die GVD eines Glasblocks kompensiert (vgl. Abschnitt 1.3). Abb. 5.6 zeigt dazu die Halbwertsbreite der Kreuzkorrelationsfunktion der UV-Impulse mit dem Referenzimpuls nach Durchgang durch 17 mm BK-7-Glas in Abhängigkeit von der vom Impulserzeuger vorkompensierten quadratischen Phasenmodulation. Im Rahmen dieses Demonstrationsexperimentes wurde angenommen, dass die räumliche Verteilung der Spektralkomponenten in der Fourier-Ebene linear ist. Hier liefert diese Näherung aber gute Ergebnisse.

Es wird eine Kompression bis auf 78 fs Kreuzkorrelationsbreite erzielt, wobei die dazu nötige quadratische Phasenmodulation sehr gut mit dem theoretisch erwarteten Wert von $\phi_{(2)} = -2043 \text{ fs}^2$ übereinstimmt.

Abb. 5.7 zeigt für eine Phasenmodulation dieser Größenordnung das Auslenkungsmuster im ausgenutzten mittleren Teil des Modulators. Wegen der diskreten Struk-
Abb. 5.6: Vorkompensation der GVD von 17 mm BK-7-Glas bei 404 nm: Abhängigkeit der Halbwertsbreite τ_K der Kreuzkorrelationsfunktion von der quadratischen Phasenmodulation $\Phi(2)$. In der gegenwärtigen Ausführung unterstützt der Impulsformer die Darstellung quadratischer Phasen mit ausreichender Qualität in einem Bereich von $\Phi(2) = \pm 3000 \text{ fs}^2$. Darüber hinaus treten Abtastverluste auf, da sich die Phasenanstiege dem Grenzwert von π/Pixel nähern. Durch die Wahl geeigneter optischer Komponenten lässt sich der unterstützte Bereich auf etwa $\Phi(2) = \pm 10000 \text{ fs}^2$ steigern.

Abb. 5.7: Programmiertes Auslenkungsmuster im ausgenutzten Teil des Modulators, dass einer quadratischen Phasenmodulation von $\Phi(2) \approx -2000 \text{ fs}^2$ bei 8-Bit Auflösung entspricht. Deutlich erkennbar sind die Phasensprünge, die zur Darstellung großer Phasenanstiege ausgenutzt werden.

tur der Phasenmodulation können dabei 2π-Phasensprünge ausgenutzt werden, die die im Vergleich zu deformierbaren Membranspiegeln geringen Maximalauslenkungen der Mikrospiegel kompensieren müssen. Derartige deformierbare Membranspiegel erlauben Auslenkungen von beispielsweise 9 μm [154], weshalb sie für reine Kompressionsaufgaben [20, 100] meist besser geeignet sind als Mikrospiegelmodulatoren. Andererseits erlauben sie aber nicht die Erzeugung komplexer Impulsformen, wie sie beispielsweise in Abb. 5.5 gezeigt werden. Komplexe Impulsformen und die Möglichkeit von Phasensprüngen haben sich aber u.a. als Schlüssel zur kohärenten Kontrolle von Quantensystemen erwiesen [49, 57], weshalb sich der auf Mikrospiegeln basierende Impulsformer besonders für derartige Anwendungen eignet.

Zusammenfassend kann festgestellt werden, dass das hier verwendete MEMS-SLM für eine Impulsformung im Spektralbereich von 900 nm bis 200 nm geeignet ist, eine hohe Effizienz aufweist, prinzipiell eine hohe Musterwechselrate im kHz-Bereich unterstützt und weitgehend unempfindlich bezüglich des Polarisationszustandes des zu modulierenden Lichtes ist. Die Modulatorauflösung von 240×200 Spiegelenelementen ist mit denjenigen kommerziell erhältlicher, hochauflösender Flüssigkristallmodulatoren vergleichbar [72, 110, 101].
5.3 Konzept eines reflektiven Amplituden- und Phasenmodulators

Werden nun zwei Abb. 5.1 entsprechende Aufbauten mit Hilfe eines Strahlteilers kombiniert, so kann über die Ausnutzung der Interferenz der zwei unabhängig phasenmodulierbaren Laserimpulse auch eine Amplitudenmodulation erzielt werden. Prinzipiell handelt es sich um eine gleichzeitige Realisierung einer Vielzahl von MICHelson-Interferometern, die einzeln einstellbar sind und jeweils nur den Spektralbereich beeinflussen, der das entsprechende Spiegellelementepaar abdeckt.

Abb. 5.8 zeigt eine mögliche Realisierung. Wird angenommen, dass der Strahlteiler die Feldamplituden jeder Spektralkomponente in die Anteile \(s_1 \) und \(s_2 \) aufteilt, so ergibt sich ein ausgangsseitiges spektrales elektrisches Feld

\[
\tilde{E}_2(\Omega) = s_1 s_2 \tilde{E}_1(\Omega) \cdot \left(\exp(-i\Psi_1(\Omega)) + \exp(-i\Psi_2(\Omega)) \right),
\]

wobei im Folgenden angenommen wird, dass die durch den Strahlteiler selbst verursachte Phasenmodulation schon in den Phasen \(\Psi_1(\Omega) \) und \(\Psi_2(\Omega) \) berücksichtigt ist.

Es soll nun bestimmt werden, welche Phasenmodulationen \(\Psi_1(\Omega) \) und \(\Psi_2(\Omega) \) mit den Spiegelarrays zu erzeugen sind, um eine vorgegebene Amplitudenmodulation
|H(Ω)| und eine Phasenmodulation ΔΦ(Ω) am Ausgang des interferometrischen Laserimpulsformers zu erzielen. Diese Modulationen sollen am Ausgang des Impulsformers ein spektrales elektrisches Feld
\[\hat{E}_2(Ω) = \hat{H}(Ω) \hat{E}_1 = \left|H(Ω)\right| \hat{E}_1(Ω) \exp(-iΔΦ(Ω))\] erzeugen, woraus sich unter Berücksichtigung von Gl. 5.2 die Beziehung
\[\left|\hat{H}(Ω)\right| = 2s_1s_2 \cos \left(\frac{\Psi_2(Ω) - \Psi_1(Ω)}{2}\right)\] ergibt [87].
Aus Gl. 5.2 und Gl. 5.3 folgt für die Phasenmodulation ΔΦ(Ω) die Beziehung
\[ΔΦ(Ω) = \frac{\Psi_1(Ω) + \Psi_2(Ω)}{2}\] Die Amplitudenmodulation einer Spektralkomponente kann demnach über Wegdifferenz im zugehörigen Teilspektrometer eingestellt werden, die Phasenmodulation aber über das arithmetische Mittel der Längen der beiden zugehörigen Interferometerarme.
Es ist festzustellen, dass die Beziehungen Gl. 5.4 und Gl. 5.5 mit denen übereinstimmen, die die simultane Amplituden- und Phasenmodulation mit Flüssigkristaldoppelpelmasken beschreiben [102].
Soll der interferometrische Impulsformer nun eine bestimmte Amplitudenmodulation |H(Ω)| und eine bestimmte Phasenmodulation ΔΦ(Ω) realisieren, so müssen durch die MEMS-SLM diejenigen Phasenmodulationen Ψ1(Ω) und Ψ2(Ω) erzeugt werden, die Gl. 5.4 und Gl. 5.5 erfüllen. Eine mögliche Kombination ist
\[Ψ_{1,2}(Ω) = ΔΦ(Ω) \mp \arccos \left(\frac{|H(Ω)|}{2s_1s_2}\right)\]
Diese Beziehungen gelten generell für die Realisierung einer gleichzeitigen Amplituden- und Phasenmodulation durch interferometrische Überlagerung zweier verschiedenen phasenmodulierter, aber ansonsten gleicher Impulse. Die technische Ausführung ist dabei nicht auf die in Abb. 5.8 dargestellte Variante beschränkt.
Es bleibt festzustellen, dass das hier vorgestellte Konzept geeignet ist, eine Phasen- und Amplitudenmodulation mindestens im Wellenlängenbereich von 200...900 nm zu ermöglichen, was u.a. einen exzellenten Ausgangs- punkt für zukünftige Experimente zur kohärenten Kontrolle molekularer Dynamik darstellt.
Zusammenfassung

In dieser Arbeit wurden neue Möglichkeiten und Anwendungen der Phasenmodulation ultrakurzer Laserpulse untersucht. Folgende Ergebnisse wurden erzielt:

- Es wurde ein Gerchberg-Saxton-Algorithmus aus dem Bereich der abbildenden Optik auf die Problematik der zeitlichen Impulsformung übertragen. Dieser Algorithmus wurde ursprünglich entwickelt, um Phaseninformationen aus räumlichen Intensitätsverteilungen zu rekonstruieren. Im Bereich der zeitlichen Impulsformung ermöglicht er die sehr schnelle Berechnung der Phasenmodulation, die einen Impuls so moduliert, dass er einen vorgegebenen zeitlichen Intensitätsverlauf approximiert. Durch die im Vergleich zu konventionellen Berechnungsmethoden drastische Senkung des Rechenaufwandes ist der adaptierte Algorithmus besonders für die kombinierte raumzeitliche Impulsformung von großer Bedeutung.

- Weiterhin wurde die Frequenzverdopplung phasenmodulierter Femtosekundenlaserpulse theoretisch und experimentell untersucht. Es wurde gezeigt, dass diese ein ausgezeichnetes Modellsystem für die selektive Anregung schmal- und breitbandiger nichtresonanter Zweiphotonenprozesse mit phasenmodulierten Laserimpulsen darstellt. Insbesondere wurden für sinusförmig und kubisch phasenmodulierte Impulse analytische Beschreibungen der Spektren der zweiten Harmonischen gewonnen und experimentell verifiziert. Dabei wurde der
Einfluss der phasenmodulierten Laserimpulse auf die Frequenzverdopplung und auf nichtresonante Zweiphotonenanregungen unter einheitlichen Gesichtspunkten diskutiert.

Literaturverzeichnis

LITERATURVERZEICHNIS

[41] **Pearson, B. J.; White, J. L.; Weinacht, T. C.; Bucksbaum, P. H.**

[42] **Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda Š.; Wöste, L.**

[44] **Christov, I. P.; Bartels, R.; Kapteyn, H. C.; Murnane, M. M.**

[45] **Brixner, T.; Damrauer, N. H.; Niklaus, P.; Gerber, G.**

[46] **Bardeen, C. J.; Yakovlev, V. V.; Squier, J. A.; Wilson, K. R.**

[47] **Buist, A. H.; Müller, M.; Ghauharali, R. I.; Brakenhoff, G. J.; Squier, J. A.; Bardeen, C. J.; Yakovlev, V. V.; Wilson, K. R.**

[48] **Weinacht, T. C.; Ahn, J.; Bucksbaum, P. H.**

[49] **Herek, J. L.; Wohlleben, W.; Cogdell, R. J.; Zeidler, D.; Motzkus, M.**

[50] **Efimov, A.; Schaffer, C.; Reitze, D. H.**

[51] **Brixner, T.; Oehrlein, A.; Strehle, M.; Gerber, G.**

[53] **Leaird, D. E.; Weiner, A. M.**

[54] **Zheng, Z.; Weiner, A. M.**

[106] Gussek, P., Jenoptik LOS GmbH, Jena, Persönliche Mitteilung

[146] Dantus, M., Michigan State University, East Lansing, Persönliche Mitteilung

[152] Gehner, A., Fraunhofer-Institut für Photonische Mikrosysteme, Dresden, Persönliche Mitteilung

Anhang:

SHG sinusförmig phasenmodulierter Impulse

Durch Einsetzen von Gl. 4.1 in 4.5 erhält man die komplexe spektrale Einhüllende des Feldes der zweiten Harmonischen

$$
\tilde{E}_2 (\Omega_2) \propto \int_{-\infty}^{\infty} e^{-\left(\frac{\Omega_1}{2\Delta} \right)^2} e^{i\varphi \cos(\Delta t \Omega_1 + \psi)} e^{-\left(\frac{\Omega_2 - \Omega_1}{2\Delta} \right)^2} e^{i\varphi \cos(\Delta t (\Omega_2 - \Omega_1) + \psi)} d\Omega_1 . \tag{7}
$$

Unter Verwendung des Additionstheorems für den Kosinus [144] und der Substitution

$$
\xi(\Omega_2) = 2\varphi \cos \left(\frac{1}{2} \Delta t \Omega_2 + \psi \right) \tag{8}
$$

lässt sich Gl. 7 folgendermaßen vereinfachen:

$$
\tilde{E}_2 (\Omega_2) \propto \int_{-\infty}^{\infty} e^{-\left(\frac{\Omega_1}{2\Delta} \right)^2} e^{-\left(\frac{\Omega_2 - \Omega_1}{2\Delta} \right)^2} e^{i\xi(\Omega_2) \cos(\Delta t (\Omega_1 - \frac{1}{2} \Omega_2))} d\Omega_1 . \tag{9}
$$

Durch Verwendung von Gl. 4.2 und $\Omega_1^2 + (\Omega_2 - \Omega_1)^2 = 2 (\Omega_1 - \frac{1}{2} \Omega_2)^2 + \frac{1}{2} \Omega_2^2$ ergibt sich aus Gl. 9 die Beziehung

$$
\tilde{E}_2 (\Omega_2) \propto e^{-\frac{\Omega_2}{\Delta \Omega_1}} \sum_{m=-\infty}^{\infty} J_m (\xi(\Omega_2)) e^{i\varphi m} e^{-\frac{\Omega_2}{\Delta \Omega_1}} e^{-im\Delta t (\Omega_1 - \frac{1}{2} \Omega_2)} d\Omega_1 . \tag{10}
$$
Die verbleibenden Exponentialterme werden nun mittels der Beziehung

\[
2 \left(\frac{\Omega_1 - \frac{1}{2} \Omega_2}{\Delta \Omega_1} \right)^2 + im \Delta t \left(\Omega_1 - \frac{1}{2} \Omega_2 \right) = \left(\frac{\sqrt{2}}{\Delta \Omega_1} \left(\Omega_1 - \frac{1}{2} \Omega_2 \right) + im \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right)^2 + \left(m \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right)^2
\]

quadratisch ergänzt und man erhält aus Gl. 10 die Beziehung

\[
\tilde{\mathcal{E}}_2 (\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} \sum_{m=-\infty}^{\infty} J_m (\xi (\Omega_2)) e^{i \frac{\pi}{2} m} e^{-\left(m \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right)^2}
\]

mit der Gl. 12 zu

\[
\zeta = \left(\frac{\sqrt{2}}{\Delta \Omega_1} \left(\Omega_1 - \frac{1}{2} \Omega_2 \right) + im \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right) \quad \text{mit} \quad d \zeta = \frac{\sqrt{2}}{\Delta \Omega_1} d \Omega_1 , \quad (13)
\]

Nun erfolgt eine Substitution

\[
\tilde{\mathcal{E}}_2 (\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} \left(\frac{\Delta \Omega_1}{\sqrt{2}} \right) \sum_{m=-\infty}^{\infty} J_m (\xi (\Omega_2)) e^{i \frac{\pi}{2} m} e^{-\left(m \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right)^2}
\]

umgeformt werden kann. Nach Integration von Gl. 14 und Vernachlässigung skalierender Vorfaktoren ergibt sich die Beziehung

\[
\tilde{\mathcal{E}}_2 (\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} \sum_{m=-\infty}^{\infty} J_m (\xi (\Omega_2)) e^{i m \pi} e^{-\left(m \Delta t \frac{\Delta \Omega_1}{2 \sqrt{2}} \right)^2} . \quad (15)
\]

Wird nun die Substitution Gl. 8 rückgängig gemacht, so erhält man den analytischen Ausdruck für die komplexe spektrale Einhüllende des elektrischen Feldes der zweiten Harmonischen eines sinusförmig phasenmodulierten Laserimpulses:

\[
\tilde{\mathcal{E}}_2 (\Omega_2) \propto e^{-\frac{1}{2} \left(\frac{\Omega_2}{\Delta \Omega_1} \right)^2} \sum_{m=-\infty}^{\infty} \alpha_m \quad \text{mit} \quad (16)
\]
\[\alpha_m = J_m \left(2 \varphi \cos \left(\frac{\Delta t \Omega_2}{2} + \psi \right) \right) e^{ \left(\frac{1}{2} \ln \pi - \frac{1}{2} (m \Delta t \Delta \Omega_1)^2 \right) } \]
Abkürzungen und Symbole

Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>akustooptisch</td>
</tr>
<tr>
<td>AOPDF</td>
<td>Filter mit akustooptisch gesteuerter Doppelbrechung</td>
</tr>
<tr>
<td>BBO</td>
<td>Beta-Bariumborat</td>
</tr>
<tr>
<td>CARS</td>
<td>kohärente Anti-STOKES-RAMAN-Streuung</td>
</tr>
<tr>
<td>CDMA</td>
<td>Schema eines Netzwerks mit Codierungsaufteilung</td>
</tr>
<tr>
<td>CPA</td>
<td>Verstärkung frequenzmodulierter Impulse</td>
</tr>
<tr>
<td>DFM</td>
<td>Differenzfrequenzmischung</td>
</tr>
<tr>
<td>DUV</td>
<td>tiefes Ultraviolett</td>
</tr>
<tr>
<td>ES</td>
<td>evolutionäre Strategie</td>
</tr>
<tr>
<td>FPI</td>
<td>FABRY-PEROT-Interferometer</td>
</tr>
<tr>
<td>FROG</td>
<td>frequenzaufgelöste Korrelation</td>
</tr>
<tr>
<td>FWHM</td>
<td>Halbwertsbreite</td>
</tr>
<tr>
<td>GA</td>
<td>genetischer Algorithmus</td>
</tr>
<tr>
<td>GTI</td>
<td>GIRES-TOURNOIS-Interferometer</td>
</tr>
<tr>
<td>GVD</td>
<td>Gruppengeschwindigkeitsdispersion</td>
</tr>
<tr>
<td>IR</td>
<td>infraroter Spektralbereich</td>
</tr>
<tr>
<td>LBO</td>
<td>Lithiumtriborat</td>
</tr>
<tr>
<td>LC</td>
<td>Flüssigkristall</td>
</tr>
<tr>
<td>MEMS</td>
<td>mikroelektromechanisches System</td>
</tr>
<tr>
<td>MMDM</td>
<td>deformierbarer Spiegel (micromachined deformable mirror)</td>
</tr>
<tr>
<td>NIR</td>
<td>nahes Infrarot</td>
</tr>
<tr>
<td>SA</td>
<td>Algorithmus, der einen Abkühlungsprozess simuliert (simulated annealing)</td>
</tr>
<tr>
<td>SESAM</td>
<td>Spiegel mit sättigbarem Halbleiterabsorber</td>
</tr>
<tr>
<td>SFM</td>
<td>Summenfrequenzmischung</td>
</tr>
<tr>
<td>SH, SHG</td>
<td>zweite Harmonische bzw. deren Erzeugung</td>
</tr>
<tr>
<td>Skt.</td>
<td>Skalenteil bzw. willkürliche Einheit</td>
</tr>
<tr>
<td>SLM</td>
<td>räumlicher Lichtmodulator (spatial light modulator)</td>
</tr>
<tr>
<td>SVEA</td>
<td>Näherung einer langsamen veränderlichen Einhüllenden</td>
</tr>
<tr>
<td>THG</td>
<td>Erzeugung der dritten Harmonischen</td>
</tr>
<tr>
<td>THz</td>
<td>10^{12} Hz</td>
</tr>
<tr>
<td>TPF</td>
<td>Zweiphotonenfluoreszenz</td>
</tr>
<tr>
<td>UV</td>
<td>ultravioletter Spektralbereich</td>
</tr>
<tr>
<td>VIS</td>
<td>sichtbarer Spektralbereich</td>
</tr>
</tbody>
</table>

104
Formelzeichen

\(a \) \quad \Re(\Gamma)

\(AKF(\tau) \) \quad \text{Autokorrelationsfunktion}

\(b \) \quad -\Im(\Gamma)

\(B(\Omega) \) \quad \text{spektrale Feldamplitude}

\(c_0 \) \quad \text{Vakuumlichtgeschwindigkeit}

\(C_1, C_2 \) \quad \text{Codierungen}

\(C(t) \) \quad \text{zeitliche Feldamplitude}

\(D \) \quad \text{Länge}

\(E(t) \) \quad \text{reelle zeitabhängige elektrische Feldstärke}

\(E_0 \) \quad \text{reelle Feldamplitude}

\(\tilde{E}(\Omega) \) \quad \text{komplexes Spektrum der elektrischen Feldstärke}

\(\tilde{E}^+(\omega), \tilde{E}^-(\omega) \) \quad \text{komplexes Spektrum der elektrischen Feldstärke bei positiven bzw. negativen Frequenzen}

\(\tilde{E}^+(t), \tilde{E}^-(t) \) \quad \text{inverse FOURIER-Transformierte von } \tilde{E}^+(\omega) \text{ bzw. } \tilde{E}^-(\omega)

\(\mathcal{E}(t), \tilde{\mathcal{E}}(t) \) \quad \text{reelle bzw. komplexe zeitliche Feldeinhüllende}

\(\tilde{\mathcal{E}}(\Omega) \) \quad \text{komplexe spektrale Feldeinhüllende}

\(\tilde{\mathcal{E}}_{\text{Sig}}(t, \tau), \tilde{\mathcal{E}}_{\text{Sig}}(\Omega, \tau) \) \quad \text{zeitliches und spektrales Korrelationssignal}

\(F \) \quad \text{Fläche}

\(\mathcal{F}\{\cdot\} \) \quad \text{komplexe FOURIER-Transformation}

\(\mathcal{F}^{-1}\{\cdot\} \) \quad \text{inverse komplexe FOURIER-Transformation}

\(\hat{H}(\Omega) \) \quad \text{komplexe spektrale Transferfunktion}

\(\Im(\cdot) \) \quad \text{Imaginärteil einer komplexen Zahl}

\(I(t), I(\Omega) \) \quad \text{zeitabhängige bzw. spektrale Intensität}

\(I_{\text{FROG}}(\Omega, \tau) \) \quad \text{FROG-Spektrogramm}

\(I_{\text{Sig}}(\Omega) \) \quad \text{zeitlich integriertes FROG-Spektrogramm}

\(J_m \) \quad \text{BESSEL-Funktionen erster Gattung und } m \text{-ter Ordnung}

\(k, \Delta k \) \quad \text{Wellenzahl, Phasenfehlanpassung}

\(\mathcal{K}KF(\tau) \) \quad \text{Kreuzkorrelationsfunktion}

\(l, m, N \) \quad \text{ganze Zahlen}

\(n, n(\omega) \) \quad \text{Brechzahl, frequenzabhängige Brechzahl}

\(p \) \quad \text{einheitenlose Konstante}

\(P(t) \) \quad \text{momentane Leistung}

\(P_2 \) \quad \text{Wahrscheinlichkeit eines Zweiphotonenübergangs}

\(\Re(\cdot) \) \quad \text{Realteil einer komplexen Zahl}

\(R \) \quad \text{Reflektivität}

\(\tilde{r} \) \quad \text{komplexe Amplitudenreflektivität}

\(S_m \) \quad \text{Signal eines Detektors mit optischer Nichtlinearität}

\(m \)-ter Ordnung

\(s_1, s_2 \) \quad \text{reelle Konstanten}

\(t, t' \) \quad \text{Zeiten}

\(\Delta t \) \quad \text{Modulationsfrequenz einer periodischen Phasenmodulation}

\(\tilde{t} \) \quad \text{komplexe Amplitudentransmission}

\(v_G \) \quad \text{Gruppengeschwindigkeit}

\(W \) \quad \text{Laserimpulsenergie}

\(x, y, z \) \quad \text{geometrische Längen}
\(\alpha_m \) Substitution
\(\Gamma \) komplexer Impulsparameter für GAUSS-Impulse
\(\delta \) Gangunterschied bzw. Phasenverzögerung
\(\delta(x) \) DIRAC-Funktion
\(\varepsilon_0 \) Dielektrizitätskonstante des Vakuums
\(\zeta \) Substitutionsvariable
\(\Theta \) zeitliche Phase
\(\theta \) Einfallswinkel
\(\lambda, \Delta \lambda \) Wellenlänge, Wellenlängenbereich
\(\nu \) absolute Frequenz
\(\xi, \varrho \) zugehörige spektrale Breite
\(\tau, \tau_D, \tau_G, \tau_{GTI}, \tau_H, \tau_K, \tau_0 \) Zeiten und Zeitkonstanten
\(\Phi_{(m)} \) m-te spektrale Dispersionsordnung
\(\Phi(\Omega), \Delta \Phi(\Omega) \) spektrale Phasen und Phasenmodulationen
\(\phi(t) \) zeitabhängige Phase ohne Trägerfrequenzanteil
\(\varphi \) Phasenmodulationsamplitude
\(\chi \) dielektrische Suszeptibilität
\(\Psi(\Omega) \) spektrale Phase
\(\psi, \psi(\omega) \) Phase, frequenzabhängige Phase
\(\Omega, \Delta \Omega \) auf \(\omega_0 \) bezogene relative Kreisfrequenz,
\(\omega, \omega(t) \) absolute Kreisfrequenz, momentane Kreisfrequenz
\(\omega_0 \) zentrale Kreisfrequenz, Trägerfrequenz
Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig, ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir bekannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen habe.

Martin Hacker
Lebenslauf

Persönliche Daten

Name: Martin Hacker
Geburtsdatum: 8. November 1974
Geburtsort: Gotha

Ausbildung

1981–1989 Polytechnische Oberschule
 Diplomarbeitsthema: „Erzeugung und zeitliche Modulation von fs-Laserpulsen bei 197 nm“

seit 1999 Doktorand und wissenschaftlicher Mitarbeiter am Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena

Martin Hacker
Danksagung

Die Untersuchungen für die vorliegende Arbeit wurden am Institut für Optik und Quantenelektronik (IOQ) in Jena durchgeführt. Ohne die Mitwirkung und Unterstützung vieler Mitarbeiter dieses Instituts wäre die Arbeit nicht möglich gewesen. Aus diesem Grunde möchte ich allen Kollegen und Mitarbeitern recht herzlich meinen Dank aussprechen. Besonderer Dank gilt

- Herrn Prof. Dr. Roland Sauerbrey für die Möglichkeit, diese Dissertation am IOQ anfertigen zu können, die motivierenden Gespräche und die stets gewährte freundliche Unterstützung,

- Herrn Dr. Thomas Feurer für die Einführung in das Gebiet der Femtosekundens-
 laserphysik, die fruchtbare Zusammenarbeit bei der Entwicklung von Lab2
 und die Verfügbarkeit als Ansprechpartner,

- Herrn Gregor Stobrawa für die exzellente Zusammenarbeit und Arbeitsteilung
 in Labor und Büro und beim Bau von Röhrenverstärkern,

- Herrn Ralf Netz für viele hilfreiche Diskussionen und Hinweise,

- Herrn Dr. Marcus Motzkus (MPQ Garching) und Herrn Dr. Mark Bischoff für
 die gute Zusammenarbeit,

- Herrn Dr. Andreas Gehner und Herrn Michael Wildenhain vom Fraunhofer-
 Institut für Photonische Mikrosysteme, Dresden, für die freundliche Bereit-
 stellung des Mikrospiegelmodulators,

- Herrn Peter Gussek und Frau Antje Geißler von der Jenoptik LOS GmbH für
 die gute Kooperation im Bereich der Flüssigkristallmodulatoren,

- Herrn Wolfgang Ziegler, Herrn Falk Ronneberger, Herrn Reiner Bark und
 Herrn Bernhard Klumbies für die umfassende technische Unterstützung

- sowie meiner Frau Antje für ihr Verständnis und ihre Unterstützung.
Ein GERCHBERG-SAXTON-Algorithmus aus dem Bereich der abbildenden Optik lässt sich auf die Problematik der zeitlichen Impulsformung übertragen. Damit ist eine sehr schnelle Berechnung derjenigen Phasenmodulation möglich, die einen Impuls so moduliert, dass er einen vorgegebenen zeitlichen Intensitätsverlauf approximiert. Durch die im Vergleich zu konventionellen Berechnungsmethoden drastische Senkung des Rechenaufwandes ist der adaptierte Algorithmus besonders für die kombinierte raumzeitliche Impulsformung von großer Bedeutung.

Die Frequenzverdopplung phasenmodulierter Femtosekundenlaserimpulse stellt ein ausgezeichnetes Modellsystem für die selektive Anregung schmal- und breitbandiger nichtresonanter Zweiphotonenprozesse mit phasenmodulierten Laserimpulsen dar. Für sinusförmig und kubisch phasenmodulierte Impulse können analytische Beschreibungen der Spektren der zweiten Harmonischen gewonnen werden, die experimentell verifizierbar sind. Der Einfluss der phasenmodulierten Laserimpulse auf die Frequenzverdopplung und auf nichtresonante Zweiphotonenanregungen kann unter einheitlichen Gesichtspunkten diskutiert werden.