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1  Introduction 

 

Human glioma cells express a variety of voltage-gated ion channels including Na+ 

and K+ channels. Different types of K+ currents have been reported, namely voltage-

gated K+ currents [1], inwardly rectifying K+ currents [2] and large-conductance KCa 

channels [1,3]. BK channel currents were frequently observed suggesting an 

ubiquitous expression of these channels in cultured glioma cells [4]. Despite their 

stable expression in glioma cells a functional role of BK channels has not been 

identified. Here we addressed the question whether BK channels are involved in the 

migration and proliferation of the human astrocytoma cell line 1321N1. This study 

deals with the question whether a specific channel plays a role for the pathobiology 

of human brain tumors  

 

1.1  Pathology and epidemiology of gliomas 

 

Tumors of glial origin are the most common primary brain tumors and make up more 

than 40 % of all CNS neoplasms. They occur with two incidence peaks, one in 

childhood and one between the fourth and fifth decade. Glioblastoma also occurs 

between the 6th and 7th decade.  

The WHO has proposed a classification system which distinguishes four different 

histologic subforms [5]. A higher grade in this classification system signifies more 

mitoses, more vascular proliferations, giant cells and areas of necrosis. Strikingly 

even the histologically relatively well-differentiated grade II astrocytomas show a 

marked tendency to diffusely infiltrate the brain. In other words even a tumor, which 

appears well differentiated under the microscope, can be biologically highly malignant 

due to the tumor cells capacity to actively migrate along structures within the 

neuropil. It is not a rare event to find glioma cells not only in the infiltration zone near 

the tumor nucleus but also in areas very distant from the tumor center. Surgical 

resection will therefore always leave tumor cells behind. To make matters worse, the 

remaining tumor after surgery shows the inherent tendency to progress to a more 

malignant phenotype. All these phenomena, the migratory potential, the diffuse 

extension and the potency of malignant progression, account for the low survival 

rates even after all therapeutic modalities have been utilized                                                    
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( 5yr postsurgigal survival: 10 – 50 % for astrocytoma grade II versus almost 0 % for 

glioblastoma multiforme ) [6]. 

 

 

1.2  Focus of glioma research 

 

In the past, much effort has been shown in the investigation of molecular biological 

events occurring at the various stages of glioma progression. Many relevant 

underlying genetic alterations have been identified. For instance, tumor suppressor 

gene p53 inactivation has been found to be an early genetic event of initial glioma 

generation. Other chromosomal changes do not correlate with tumor initiation but are 

related to glioma progression, malignant transformation, and higher recurrency rates.  

Namely the passage from a well-differentiated picture to anaplastic astrocytoma is 

marked by allelic losses of chromosome 9p, 13q and 19q.  

Recently on the other hand a molecular benefit marker could be identified. Loss of 

heterozygosity of chromosome 19q and 1p in oligodendroglial tumors are correlated 

with sensitivity for chemotherapy and longer recurrency-free intervals [7]. To date, 

however, it is not clear whether this marker does also mean better prognosis for the 

patients. Its possible relevance for astrocytic tumors is under current investigation. 

The putative tumor suppressor genes and the genes responsible for 

chemotherapeutic sensitivity are not yet well characterized.  

 

Autocrine and paracrine signals from the microenvironment of the tumor are 

translated into a cellular response by cell – surface receptors. A role in the initiation 

and progression of neoplasia was attributed to members of the tyrosin kinase 

receptor family not only in experimental models of neoplasia but also in human 

cancer. Many investigations have dealt with the role of overamplification of growth 

factor genes and their receptors which can be frequently observed in glioma : The 

platelet derived growth factor ( PDGF ) and the epidermal growth factor ( EGF ) are 

the two best studied. The appearance of EGF receptor overamplification is a step in 

tumor progression from anaplastic astrocytoma to glioblastoma [8, 9]. About 40 % of 

glioblastomas display EGF receptor overamplification [10, 11]. The level of 

overexpression correlates with the tumor grade. PDGF gene and receptor have been 

also found in many glioma cell lines as well as in many surgical specimen [12-14]. 
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There is much hope that further molecular biological investigations will achieve 

identification of genetic markers that are still more closely linked to prognosis or other 

important factors. 

 

Apart from this very promising molecular genetic research on glial tumors focus has 

also been laid on cell biological aspects. These include among others the 

investigation of distinct steps of the cell signalling cascade and alterations in the cell 

membrane properties. In the latter respect, ion channels are very central to be 

studied. Since the patch-clamp method is available, voltage-gated ion channels have 

been studied intensively. These studies have the great advantage over molecular 

biological and histologic investigations that they allow a functional characterization of 

a single protein in real time under relatively physiological conditions. Thus they 

provide insights into the dynamic electrical activity of the cell membrane and how the 

cell responds to environmental stimuli that influence the cells membrane properties. 

Much can be deduced from those types of studies.  

 

 

1.2.1  Voltage-gated ion channels in human gliomas  

 

It became clear in recent years that the glial cell is not a passive element of the brain 

but a very active one [15]. As one reflection of their active role in the brain glial cells 

are outfitted with a variety of voltage-gated ion channels, which they use to buffer the 

ion concentration of the extracellular fluid. Another key finding is that glial cells have 

a spectrum of growth factor receptors [16] through which mitogenes can stimulate the 

cells. Throughout life glial cells can reenter the proliferative cycle and replace dead 

tissue [17]. The proliferative zone and source for this replacement of cells is the 

subependymal layer from where the cells migrate to the area of injury. This 

regeneration of dead tissue by glial cells has been termed reactive gliosis. Naturally 

cells with such a high proliferative capacity are also occasionally prone to malignant 

degeneration. 

In more recent times, voltage-gated ion channels were studied in glioma cell lines or 

primary glioma cultures and, in few laboratories, also in cells from living human tumor 

tissue slices. The first reports of voltage-gated ion channels in human astrocytomas 

were published in the late 80s. Brismar and Collins described six astrocytoma cell 
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lines in which four different channel types were present: Inward rectifying K+ 

channels, large conductance KCa (BK) channels, delayed rectifier K+ channels and 

voltage-gated Na+ channels [1, 2].  

 

Na+ channels  

In tissue slices and early primary cultures of brain tumors several investigators found 

high Na+ channel densities [18-21]. In some cells their density was so high that the 

cells even displayed the ability to generate action potentials. These findings came as 

a surprise because before that only cell lines had been studied and cultured cells 

displayed only a small fraction of the Na+ currents seen in slices. For some unknown 

reason glioma cells lost or downregulated their sodium channels during culture 

passage. Recently we were able to show that NGF can induce Na+ channels via 

autocrine loops among tumor cells and thus provide a model of how Na+ currents are 

regulated [22]. The present hypothesis is that high Na+ channel densities seen in 

tumor cells in vivo are maintained by constant stimulation from NGF in the 

microenvironment. It is still controversial whether such tumor cells play a role in 

tumor-associated epilepsy [23]. Moreover it is unclear which role Na+ channels play 

in the malignant behaviour of the tumor. We will not further discuss Na+ channels in 

this work since they have already been topic of our recent publication [22].  

 

K+ channels 

While Na+ channels in excitable cells are responsible for action potential generation 

voltage-gated K+ channels are key molecules for maintainance of the resting 

membrane potential and for repolarisation following the action potential. Following 

membrane depolarization K+ permeability increases as voltage-gated K+ channels 

open and thus repolarisation is achieved.  

In nonexcitable cells their role to date has not been conclusively determined. Like in 

excitable cells K+ channels have been found to stabilize the membrane potential 

following depolarizing events. Moreover voltage-gated K+ channels are thought to be 

involved in volume regulatory mechanisms [24]. These channel-dependent cell 

functions are important in proliferation and migration of cells.  

In the following we first will give a short overview on the current knowledge and some 

hypotheses regarding the role of K+ channels in cell proliferation and secondly 

comment on their putative role in cell migration. 
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1.2.2  Voltage-gated K+ channels and cell proliferation  

 

Three lines of evidence point to an essential role for K+ channels for the progression 

of cells through the G1 phase of the cell cycle, i.e., (i) K+ channel blockers inhibit 

mitogenesis, (ii) mitogens increase K+ channel activity or expression, and (iii) K+ -

channel openers stimulate cell proliferation. 

Evidence for the involvement of K+ channels in proliferation now exists for a large 

variety of cell types. There is now also some idea of how channel block might 

influence proliferation – at least two hypotheses have been put forward  (for review 

see: [25]).   

 

The first major theory assumes that K+ channels sustain and fine–tune the 

membrane potential changes necessary for proliferative activity. Tumor cells were 

shown to be generally strongly depolarized compared to nonmalignant cells [26]. In 

order to enter the cell cycle cells have to take a hyperpolarizing step that leads to 

Ca2+ influx. An increase of [Ca2+]i is the trigger for the transition from G1 to S phase 

during mitosis. An electrical driving force sustains Ca2+ influx across a hyperpolarized 

cell membrane. It has been shown that K+ channels sustain this electrochemical 

driving force. The pathway for the Ca2+ entry has not yet been elucidated but in C6 

glioma cells it was observed that it is a non selective cation channel ( NSCC )[27]. A 

hyperpolarized membrane potential is also a prerequisite for IP3 production and thus 

intracellular Ca2+ release [28].  Similar observations to those in melanoma cells were 

made in a study on colon cancer cells where K+ channel inhibitors blocked Ca2+ entry 

and proliferation. In that study K+-ATP channels sustained the electrochemical driving 

force for Ca2+ [29].  

A second mechanism that might require membrane hyperpolarisation as its driving 

force, could be the Na+-dependent transport of metabolic substrates and ions into the 

cells [30].  

 

Rouzaire-Dubois et al. [31, 32] have proposed an alternative theory. According to 

these authors interference with a volume regulatory mechanism is responsible for 

the inhibition of proliferation by K+ channel antagonists. Their study of C6 glioma cells 

found an inverse relationship between the rate of proliferation and cell volume. 
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Increasing the cell volume and abolishing regulatory volume decrease by the 

application of broad-spectrum channel blockers ( TEA, NPPB and CS2+ ) or 

hypertonic media significantly slowed the proliferation rate of the cells. Two 

hypotheses were put forward to explain the effect: Either cell swelling may decrease 

the concentration of cell-regulating proteins or alternatively lead to cytoskeleton 

rearrangements that might interfere with a multitude of cell functions [31, 32].  

 

There is now evidence that K+ channel blockers inhibit proliferation by arresting 

proliferating cells in the G1 phase of the cell cycle rather than by a nonspecific 

slowing of the cell cycle. This has been established by flow cytometric studies of 

several specific markers of the G1 phase in MCF-7 human breast cancer cells [33] 

[34], in the GH3 pituitary cell line [35] and in spinal cord astrocytes [36]. For an 

extensive review also see Wonderlin and Strobl  [25]. It was postulated that blocking 

K+ channels inhibits a Ca2+ influx, which is crucial for a Ca2+ and calmodulin 

dependent phosphorylation of the cell cycle protein pp34. This protein is necessary 

for the cell cycle progression through the so-called START restriction point between 

the G1 and S phase [37]. 

 

The most convincing studies linking a specific channel to proliferation are the 

ones that have used the high affinity blockers to inhibit proliferation. High affinity 

toxins have the advantage that they do not interact with other targets than the 

specific channels they are designed for and do not enter cells [38-40]. A definite link 

between a specific channel type and G1 progression so far has been established for 

the Kv1.3 channels by using the specific blocker MGTX [38]. Recently there have also 

been clues that KATP channels might play a role [33, 41]. Three studies so far have 

demonstrated that a specific block of BK channels led to an inhibition of proliferation. 

[35, 42, 43]. What is intriguing about the involvement of KATP and KCa channels is that 

they are gated by intracellular ligands thus linking intracellular metabolic processes 

with membrane properties. In BK channels, as we shall discuss in further detail later, 

might constitute such a link between membrane potential and Ca2+ signalling since 

they are gated by intracellular Ca2+ [44]. 

 

K+ channel blockers inhibit mitogenesis but on the other hand K+ channel openers 

stimulate cell growth. It was observed that minoxidil potentiates the mitogenic effects 
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of fetal calf serum in vitro on NIH 3T3 fibroblasts by opening K+ channels and is also 

able to potentiate the mitogenic effects of the growth factors platelet-derived growth 

factor and insulin-like growth factor 1 [45]. Moreover acetylcholin an activator of BK 

channels induced proliferation of human glioma cell lines [46].  

 

Taken together these studies constitute strong evidence for a crucial role of K+ 

channels in proliferation. A completely nonspecific effect of these various K+ channel 

modulators is very unlikely due to the fact that their chemical structures differ greatly 

from each other. 

 

 

Glioma cells  

The role of K+ channels in cell proliferation of gliomas was first investigated in a 

human astrocytoma cell line [47]. The authors of this study demonstrated that K+ 

channel inhibitors were effective inhibitors of brain tumor cell growth by interfering 

with the intracellular Ca2+ signalling mechanisms through membrane depolarisation. 

Chin et al. presented more evidence that K+ channels play a role in the proliferative 

activity of malignant astrocytoma cell lines in 1997 [48]. The authors found two types 

of K+ currents in the two cell lines they studied: BK channels and a 4-AP sensitive 

outward rectifier current. K+ channel blockers could inhibit proliferation but only the 

nonspecific agents 4-AP and TEA were used. From these studies it is unclear if 

specific channels are essential for growth. 

 

Indirect evidence that BK channels play a role in proliferation of glioma cells comes 

from studies done on reactively proliferating astrocytes. While large inwardly 

rectifying currents are a marker of differentiated glial cells, proliferating cells 

downregulate inward rectifying K+ currents and upregulate outward rectifying K+  

currents. The high level of Kir currents in differentiated glial cells guaranties a stable 

hyperpolarized membrane potential while proliferating glial cells have a less stabile, 

more depolarized membrane potential [36, 49, 50]. More precicely G1 arrested glial 

cells displayed increased outward rectifying K+ currents [36]. In one study it was 

observed that these increased outward rectifying K+ currents were mediated by BK 

channels linking proliferative activity in glial cells to one specific type of ion channel 

[49]. In addition IBTX, a specific BK channel blocker, blocked proliferation of reactive 
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retinal astrocytes however only when the membrane was depolarized with 15 mM 

[K+]e [43, 51]. The exact functional aspects of K+ channel activity remain unresolved. 

However the available data suggest a role of BK channels for growth factor 

stimulated proliferation such as elevated [K+]e which may occur in areas of tumor 

necrosis or ischemic regions where [K+]e can reach values of up to 135 mM 

compared to the normal 5 mM. Raising the [K+]e depolarizes the cell membrane and 

consequently increases the activity of BK channels [5]. Earlier, moderately elevated 

[K+]e was shown to be linked to BK channel activity and DNA synthesis of normal glial 

cells [43]. Here, we tested the influence of an elevated [K+]e on the proliferation of the 

astrocytoma cell line 1321N1. 

 

In summary, it is conceivable that BK channels are involved also in glioma 

proliferation. Since they are ubiquitously present in glioma cell lines it is intriguing to 

characterize their physiological properties and study their function with the specific 

blocker IBTX.  

 

1.2.3  Voltage-gated K+ channels and cell migration 

 

Data on the physiology of migration have been gathered from a vast array of different 

cell types. The key players, which bring about cell propagation are the cytoskeleton, 

surface receptors for extracellular matrix proteins and ion channels. In the migrating 

cell these components interplay in a complex and still poorly understood manner         

( Figure 1 ). Migrating cells are polarized and have a flat leading end and a rounded 

retracting end. What has so far been established is that actin is depolimerized at the 

rear of the cells; the actin framents are then transported to the leading edge where 

they are again polimerized. The enzymes involved in actin filament depolymerisation 

are Ca2+ dependent [52] [53]. Thus at the rear pole of the cell actin depolimerisation 

requires Ca2+ -oszillations and at the same time RVD ( regulatory volume decrease ) 

is brought about by cyclic activity of KCa channels (for review see: [24]). The interplay 

between ion channels, cell volume and actin polimerisation was experimentally 

disclosed in MDCK cells ( Madin-Darby canine kidney cells ). Schwab and 

Oberleithner showed that about 20 % of the cellular K+ leave MDCK-F canine kidney 

cells during oscillating KCa channels bursts. K+ is accompanied by Cl- and HCO3 and 

water leading to a shrinking of the cells [53-55]. Moreover cell swelling as well as  the  
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Figure 1 – Interplay of ion channels and the cytoskeleton in cell locomotion.                                               
A) Ca2+ activated K+ channels in migrating cells are functionally polarized towards the rear. Their 
activation causes the rear end of the cell to shrink  and retract because water is expelled together with 
K+ ( RVD – regulatory volume decrease ). This in turn causes a depolymerization of the actin 
cytoskeleton (see B). At the front pole the lammelopodium can extend because actin filaments are 
reassembled there (see B). Moreover the influx of ions through largely unknown pathways causes this 
region to swell thus propulsing the cell body  ( RVI – regulatory volume increase ).  
B) Mechanism of actin turnover in the cell interior of a migrating cell. Actin depolimerization at the rear 
end of the cell requires oscillations of  [Ca2+]i because it involves Ca2+ dependent enzymes. These 
oscillations of  [Ca2+]i have been experimentally detected only at the rear end of the migrating cells and 
were shown to be driven by a cyclic activity of Ca2+ activated K+ channels.  
Hypothetically BK channels could play a significant role in both RVD ( regulatory volume decrease ) 
and in eliciting the calcium oscillations, which cause actin depolimerization.  

[ Modified according to [24 and [53]. 
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inhibition of RVD with the K+ channel blocker CHTX induces actin depolimerisation 

[55]. In the extending processes where actin is polymerized Na+/H+ exchangers and 

nonselective cation channels are activated and lead to a regulatory volume increase 

which again induces regulatory actin disassembly [24]. After the cell has thus 

retracted its rear end and extended the front pole the chain of events is repeated. 

This complex mechanics requires asymmetric distribution of channels and it was 

indeed shown by Reinhardt et al. (1998) that K+ channels are functionally polarized 

towards the rear end in migrating cells [56]. Likewise the Ca2+ spiking activity is 

polarized being highest at the rear where actin polimerization depends on it.  

 

Glioma cells 

There is now a large fund of data on the biological properties of invasive cells, which 

supports the multistep process which tumor invasion of healthy tissue is. 

Moleculargenetic investigations have made out that the events during invasion are 

similar to processes in the developing tissues. During malignant alteration cells 

therefore aquire a fetal genetic profile. In general invasive behaviour is constituded 

by alterations of specific cell properties that are distinct from the general pattern of 

genetic alterations in non-migrating malignant cells. Genes that have been 

associated specifically with invasion in melanoma cells and glioma cells are 

18A2/mts1, nm 23 and very recently p311 [57-61]. For a review of the multitude of 

characteristic genetic alterations, which have also been identified in invasive glioma, 

cells see: [62, 63].  

Invasive behaviour generally requires two capacities from the tumor cells, namely cell 

motility and the ability to modify the environment. Mechanisms that go along with 

glioma cell invasiveness which have been identified so far are alterations in cell 

adhesion molecules [64, 65]), extracellular matrix proteins and their surface receptors 

[64-66] and secretion of proteolytic enzymes [67-69]. Primary brain tumors tend to 

invade along existing anatomical structures in the brain. They diffusely spread into 

the white matter in the hemisphere along nerve fibers, blood vessels, and the 

Virchow Robin spaces and between pial and arachnoid spaces [66]. The gaps they 

have to permeate are very narrow ( 20 nm ) and as a consequence cells have to 

undergo a profound volume decrease. Little attention has been paid to the adaptative 

mechanisms that enable glioma cells to reduce their volume. For normal astrocytes it  
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Figure 2 –  Transwell assay to study cell migration  
A) Transwell assay to study cell migration through 8µm pores. Migration occurs from high cell density 
in the upper compartment towards a low cell density in the lower compartment of the well through 
small pores. For cell counting the upper surface is cleared of cells with a cotton swab. The cells 
depicted here are SH-SY5Y neuroblastoma cells photographed with an electron microscope.  
B) Cells that have migrated through the pores adhere to the lower surface of the membrane.  
C) Putative mechanisms for cell volume regulation following experiments with osmotic stress ( see 
[24]. RVD ( regulatory volume decrease ) is thought to be caused by Cl-efflux, K+ efflux or alternatively 
by aminoacid efflux. RVI ( regulatory volume increase ) is thought to follow activation of the Na+/H+ 
exchanger or of NSCC ( non selective cation channels ).   
K+ channel activators interfere with cell migration by permanently shrinking the cell, whereas K+ 

channel blockers influences cell migration through permanent cell swelling thus inhibiting the 
adaptative volume changes during cell locomotion (see Figure 1). 
D) Schematic of a Transwell assay ( Boyden Chamber ). 

A 
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 Upper surface 
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was shown that RVD ( regulatory volume decrease ) is mediated via K+, Cl-, amino 

acid and polyol efflux, K+ permeability being the rate limiting step [70, 71]. Likewise in 

glioma cells the regulatory volume decrease is probably a consequence of mainly K+ 

and Cl- efflux through ion channels. To date however only few studies exist on the 

role of ion channels in glioma migration. Soroceanu et al. (1998) [72] recently 

proposed that Cl- channels are upregulated in glioma cells and chloride efflux brings 

about cell shape changes. Indeed several ion channel blockers inhibited transwell 

permeation in that study. The authors concluded that chloride channels were key 

players in RVD of glioma cells because they used CLTX assuming it to be a high 

affinity chloride channel blocker. Unfortunately all the other blockers tested were 

relatively unspecific. Recently however CLTX was found not to block chloride 

channels [73]. The theory that voltage gated chloride channels alone are responsible 

for volume regulatory mechanisms is therefore questionable. In fact all the blockers 

used in their study also block K+ channels, namely of the BK type. It might therefore 

well be that BK channels are the actual key players in transwell permeation of glioma 

cells (  Figure 2  ). 

 

Another study on glioma cell migration strongly implicates a role for BK channels as 

their permanent activation with acetylcholine effectively inhibited migration [46]. This 

is in accordance with the work of Schwab et al. (1999) [55] who could inhibit MDCK 

cell migration by both permanent activation and permanent inhibition of KCa channels. 

They conclude that migration requires cyclic channel activity [55]. However the study 

did not investigate the effects of IBTX, which specifically blocks BK channels.  

 

Because BK channels can be activated by Ca2+ oscillations and rearrangements of 

the cytoskeleton and because they conduct large K+ currents when they are 

activated, they hypothetically are ideal candidates for fast, effective adaptative 

volume changes during cell migration. No study so far has directly investigated the 

role of BK channels with a specific blocker in glioma migration so this became the 

second focus of the present study.  
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1.3  BK channels – structure, pharmacology and regulation 

 

KCa channels can be grouped into three categories: Small conductance ( SK ), 

intermediate conductance ( IK ) and big conductance ( BK ) types. These differ not 

only in their conductance values but also in voltage dependence, Ca2+ sensitivity and 

pharmacology. The small ( SK ) and intermediate ( IK ) conductance KCa channels 

are not voltage sensitive and are activated by submicromolar [Ca2+] which means 

they are both much more Ca2+ sensitive than BK channels. BK channels are 

completely blocked by 1 mM TEA SK and IK channels are relatively insensitive to the 

drug. SK channels are sensitive to apamin. IK channels are blocked by CHTX and 

clotrimazole. 

 

BK channels are found in neurons where they control the action potential waveform 

and the cell excitability. Neonexcitable cells where their function is less clear also 

express them. 

Notably the gene coding for BK channels is a single gene located on chromosome 10 

at band 22.3. Chromosome 10 rearrangements are very common in                           

glioblastoma [74, 75]. 

 

The channels are composed of four α - β heterodimers each consisting of an α and β 

subunit [76, 77] ( Figure 3 ). The larger α subunit is homologous to the pore forming 

subunits of other K+ channels [78]. The smaller β subunit shows no homology with 

other ion channel subunits [79]. 

The isolated α subunit has ion conduction properties but coupling to the β subunit 

has dramatic effects on voltage- and Ca2+ -dependent gating of the channel structure 

in that it shifts the current voltage curve to the left and increases Ca2+ sensitivity [80]. 

The isolated β subunit does not have ion conduction properties. 

The average single channel conductance in symmetrical [K+] ( 140 mM ) ranges from 

150 to 650 pS. There is a high selectivity for K+ ions, and the channels are essentially 

impermeable to cesium ions.  
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Figure 3 – Structure, pharmacology and regulation of BK channels.  
A) BK channels consist of 4 heterodimers each composed of an α- and a β-subunit. The four α -
subunits consist of six transmembrane segments, form the channel pore and conduct K+ ions alone. 
The β-subunit accounts for the channels Ca2+ sensitivity ( modified according to [76] ). 
B) BK channels may be functionally colocalized with voltage–gated Ca2+ channels, which may provide 
the Ca2+ peaks required for BK channel gating [132].  
C) BK channels are regulated by many factors including growth factors, the PKA ( protein kinase A ), 
PKC ( protein kinase C ), oxidation and the intracellular pH. They are also regulated by the actin 
cytoskeleton. The channels are highly selective for K+ ions and are impermeable for CsCl. The binding 
site for blockers is at the S5 – S6 linker rather far away from the voltage sensor in the pore [124].  
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Since BK channels are both voltage and ligand gated the question arises whether or 

not only one of these is sufficient for channel activation. It was suggested that voltage 

is the prime activator because it was observed that at nanomolar [Ca2+] strong 

depolarizations can activate BK channels and they can even open in response to 

depolarization without the requirement of Ca2+ [81-83]. This raises the question 

whether in resting cells BK channels are at all active around the resting membrane 

potential. 

 

Besides by membrane depolarisation however they can be activated by many other 

conditions – both intra– and extracellular stimuli. Activation can also occur by all 

external factors that elevate [Ca2+]i such as many growth factors, by channel protein 

phosphorylation, interaction with the cytoskeleton, high intracellular pH and oxidative 

reactions [4, 44, 80, 84-93]. As it was shown for instance for human endothelial cells, 

growth factors strongly stimulate BK channel activity [94]. At nanomolar Ca2+ levels 

these channels were also activated after stimulation with bradykinin or acetylcholine 

via an increase of [Ca2+]i [46]. In vivo such stimulatory mediators are very likely to be 

present in the environment of the glioma cells, because tumor cells have been shown 

to secrete neurotransmitters and different growth factors [10]. In gliomas, one of the 

most important and best-studied growth factors is the epidermal growth factor (EGF). 

The following chapter gives a short overview on EGF and links it to proliferation and 

migration of glioma cells and to BK channels. That all these environmental and 

intracellular factors can modulate BK channels suggests that when several factors 

act in concert in vivo significant channel activity might also be found at typical resting 

membrane potentials in nonexitable cells, eg., cells that are not depolarized to very 

positive potentials during an action potential. It was one of the aims of this study to 

investigate, whether significant BK channel activity does occur around typical resting 

membrane potentials in 1321N1 human astrocytoma cells. 

 

 

1.4  Epidermal growth factor (EGF) in gliomas – role for cell proliferation, cell 

motility and activation of BK channels 

 

The gene for the EGF receptor (EGFR) has been mapped to chromosome 7 and was 

named erbB1 [95]. Its overamplification occurs during the transition from astrocytoma 
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to glioblastoma and can be found in 40 % of all cases of glioblastoma. EGF reacts 

only with this receptor. EGFR is autophosphorylated in response to coupling with the 

ligand thus activating a cascade of other intracellular events [96]. 

Glioma cells can synthesise EGF and the cells crosstalk in autocrine loops. 

Proliferation could be inhibited by the disruption of such loops with antisense against 

the receptor DNA [12, 97, 98].  

The human astrocytoma cell line 1321N1, which was used here, is known to have a 

high density of EGF receptors but it has not been studied whether receptor 

stimulation has any effect on proliferation or migration in these cells. Investigation of 

other glioma cell lines shows that in some EGF is a potent mitogen and in some a 

potent motogen. It is unknown in which context EGF stimulates proliferation and in 

which context it enhances cell propagation and also the exact cell biological 

mechanisms following receptor stimulation remain unresolved.  

 

Chen et al. [99] demonstrate that EGF stimulates cell motility and proliferation 

through separate signalling pathways. Kinase negative receptor mutants elicited cell 

movement whereas kinase positive receptor mutants stimulated proliferation [99]. To 

date details of the events that lead to enhanced proliferation on the one hand and 

enhanced motility on the other hand remain obscure ( for a broad review see: [100] ). 

There is general understanding that cells cannot proliferate and migrate at the same 

time ( ‘go or grow’ ). Cell temporarily arrest in cell cycle to migrate and only after 

having migrated do they reenter the cell cycle [101].   

 

Proliferation 

Recent research hints that the mechanism by which EGF stimulates cell 

proliferation might be a modulation of the membrane potential. Pandiella et al. 

(1989) [102] demonstrate that the effect of acute EGF application to cells 

overexpressing EGFR was a rapid hyperpolarisation followed by persistent swings of 

the membrane potential. The authors identified KCa channels as mediators of the 

EGF action [102]. It is known that membrane hyperpolarization is required for 

progression through the G1 phase of the cell cycle. The involvement of BK channels 

in the cells response to EGF action described for fibroblasts and lymphocytes could 

also be the trigger mechanism for astrocytoma cell growth following mitogenic 

stimulation with EGF. If this is the case then it should also be possible to inhibit 
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growth factor induced proliferation with specific blockers of BK channels. 

Interestingly, in endothelial cells growth factor-induced proliferation was shown to be 

blocked by the specific BK channel blocker IBTX [42]. The same was observed in 

Muller glial cells for EGF induced proliferation [43]. In summary, there is ample 

evidence that during the chain of events following mitogen stimulation BK channels 

are upregulated and crucial for proliferation. However, no details about the 

mechanism are discovered yet and it has not been determined in which contest and 

in which cells growth factor stimulation activates BK channels. 

 

Motility 

Cell motility increases with the rate of malignancy but can also be stimulated by 

adding EGF to the cells‘ environment [13, 14, 103-107]. To date we do not 

understand by which mechanism the EGF enhances motility. The modulation of BK 

channels through EGF-mediated [Ca2+]i oscillations could be the mechanism for EGF 

induced glioma motility as it might facilitate periodic cell swelling and shrinking. It is 

thus possible that BK channels are also involved in cell locomotion. On the other 

hand EGF might also halt glioma migration if it premanently activates BK channels 

and induces cell proliferation (‘go or grow’) like it was seen with acetylcholine [46].  

What effect exactly EGF has on 1321N1 cells in unknown. 
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2  Aim of the study 

 

The human astrocytoma cell line 1321N1, which is characterized by a stable 

expression of BK channels, was investigated. One aim was to  characterize these 

channels electrophysiologically and study their pharmacology. A second aim of this 

study was to investigated whether BK channels are active at physiological membrane 

potentials in 1321N1 astrocytoma cells because this is a prerequisite for a functional 

role of these channels. Furthermore it was of interest to which extent BK channel 

gating would be facilitated by physiological [Ca2+]i. Moreover the functional role of BK 

channels is unknown to date. In order to investigate the putative role of BK channels 

for the tumor biology, we tested the effect of BK channel blockers on the proliferation, 

motility and transwell filter permeation ( volume regulation ) of human glioma cells. 

The study was also aimed to determine which types of growth stimulatory mediators 

excert their effect through BK channel modulation. Especially the effects of 

moderately elevated [K+]e on one hand and chronic exposure to EGF on the other 

hand on proliferation and electrophysiological properties of an astrocytoma cell line 

were investigated.  
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3  Materials and Methods 

 

3.1  Cell culture 

 

1321N1 cells were purchased from the European Collection of Cell Cultures 

(Salisbury, U.K). Cells were cultured in 5 ml culture flasks ( Greiner, Germany ) with 

Modified Essential Medium ( MEM ). The Medium contained Earls Salts, L–

glutamine, 10 % Fetal Calf Serum ( FCS ) and 1 % gramicidin. A change of the 

culture medium was performed every 48 hours. Cultures were kept at 37 C in a fully 

humidified atmosphere of 5 % CO2 in air. For both electrophysiological and cell 

proliferation studies cells cells from in between passage 10 and 20 were used. 

 

 

3.2  Proliferation assay 

 

For proliferation experiments cells were seeded in 24 well tissue plates at a density of 

20,000 per well. For 12 hours cells were allowed to become adherent in 10 % FCS. 

For the following days cells were incubated in medium containing either 5 or 20 mmol 

K+ with or without BK channel blocker ( 100 nM Ibtx or 1 mM TEA ). High K+ medium 

was established by adding 10µl of a sterile 1 M KCl stock solution per 10ml medium. 

10µl of a 10µM IBTX stock solution were or 10µl of a 100 mM TEA stock solution 

were added respectively. The modified medium was changed daily. After 6 days cells 

were trypsinized ( 0,2 % Trypsine ) and resuspended in 1 ml MEM. Cells were  

counted under a light microscope with 10x magnification in a Fuchs – Rosenthal 

chamber. Per well five squares of the chamber were counted. In the experiments 

where blockers were applied all values were normalized to the control value in order 

to show the cell number in presence of a blocker as percentage of the controls. 

Statistical significance was assumed if the means were statistically different at the 

0.01 level. Each experiment was performed three times.  
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3.3  Electrophysiological investigations 

 

For all experiments cells were plated on untreated glass coverslips at a density of 

40,000 per well and were allowed to become adherent in 10 % FCS for 12 hours. All 

measurements were performed between the days 2 – 6. The medium was changed 

every 48 hours. 

Single-channel currents and whole-cell currents were measured with the patch clamp 

technique. Patch pipettes were pulled from borosilicate glass with a 2 step-puller                   

( Narishige ) and polished to a resistance of 3 – 5 MΩ.  

All signals were low-pass filtered at 10 kHz and digitized with a sampling rate of 50 

kHz. Pulsing and recording were performed with the ISO2 software ( MFK, 

Niedernhausen, Germany ). The cell capacitance was determined with ramp pulses 

using a routine implemented in the software. 

 

3.3.1  Whole-cell recordings 

 

The bath solution for whole-cell recordings contained (in mM): 150 NaCl, 5 KCl, 2 

CaCl2, 1 MgCl2, 5 HEPES, pH 7.4 and 10 glucose. IBTX ( 1µl/ml ) and TEA ( 1µl/ml) 

were added from 10 µM and 100 mM stock solution to yield final concentrations of 

100nM and 1mM, respectively. IBTX was obtained from Bachem ( Germany ) and 

TEA was obtained from Sigma ( Germany ). 

Pipettes were filled with a solution composed of (in mM): 130 KCl, 1 CaCl2, 2 MgCl2, 

10 EGTA, 10 HEPES, pH 7.4. Therefore a free [Ca2+] of 10 nM was calculated. 

Alternatively a pipette solution with 1 µM free Ca2+ was used which had the following 

composition (in mM): 130 KCl, 5 NaCl, 1 CaCl2, 2 MgCl2, 10 Hepes and 1,09 EGTA. 

To supress all K+ outward currents the pipette solution contained 130 mM CsCl 

instead of KCl ( Figure 4 ). 

 

3.3.2  Single-channel recordings 

 

Determination of the unitary slope conductance was done in symmetrical KCl 

solution. The pipette solution was the same as for whole-cell experiments. 

The bath solution contained (in mM): 130 KCl, 5 NaCl, 2 CaCl2, 1 MgCl2, 10 HEPES 

and 10 glucose. 
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In the cell-attached configuration current traces of 100 ms duration were recorded at 

different pipette potentials. The mean current was calculated for each pipette 

potential from at least 20 current traces. ( Figure 4 ) 

 

3.3.3  Excised-patch recordings 

 

The pipette solution for inside – out experiments contained (in mM): 130 KCl, 1 

CaCl2, 2 MgCl2, and 10 HEPES, pH 7.4. The bath solution contained 13KCl, 117 

NaCl, 10Hepes and 1EGTA, pH 7.4. The bath solution with 100 nM free [Ca2+] was 

established by adding 141µl of a 0.1M CaCl2 stock solution per 100 ml. The bath 

solution with 1µM free [Ca2+] was established by adding 944µl of an 0.1M CaCl2 

stock solution per 100 ml. In the bath solution with 1mM free [Ca2+], EGTA was 

omitted and 0.1ml of an 1M CaCl2 stock solution was added per 100 ml. The open 

probabilities were obtained by calculating the average current in 100 traces of 100 

ms duration and relating this current to the maximum current at the high [Ca2+] of 

1mM ( Figure 4 ). 

 

3.3.4  Data analysis 

 

Currents were analyzed with the ANA3 software ( MFK Niedernhausen, Germany ). 

Statistical calculations and curve fits were done with Origin ( Version 6.1 ). Graphs 

were created with Corel ( Version 9 ).  

All data are presented as means +/- SEM unless noted otherwise. 

The concentration of half maximal block (IC50) of the whole-cell current by TEA was 

obtained by fitting the Hill equation 

 

I/Imax = (1 - A) / (1 + ( [ TEA ] / IC50)n + A        (1) 

 

to the data points. I is the actual current, Imax the maximum current in the absence of 

TEA, A is a parameter for the unblockable current component, n is the Hill coefficient, 

IC50 is the [TEA] generating half maximal block. 

Half maximal activation with 10 nM and 1µM pipette Ca2+ as well as half maximal 

activation of currents after chronic EGF exposure was calculated according to Tsen – 

Crank  [74]. To begin with the I/V curves for each patch are plotted from the  
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Figure 4 – Synopsis of patch – clamp techniques employed in this study. 
A) Cell attatched recording under depolarizing conditions ( chemical clamp ) in symmetrical [K+]. Under 
these conditions the actual membrane potential is equal to the clamped potential. 
B) Whole cell recording. [Ca2+]i is either 10nM or 1µM.  
C) Excised patch recording. [K+] in the bath and in the pipette were chosen so that log [K+]i /[K

+]o = - 1. 
The pipette solution contained 130 mM KCl and the bath solution contained 13 mM KCl. The resulting 
equilibrium potential was calculated as +58 mV. 
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measured peak currents at each clamped voltage. Then the conductance G is 

calculated with the following formula :  

 

       G = I / ( Vm – Vrev )  (2) 

 

Vm is the clamped  potential and Vrev is the calculated reversal potential under the 

imposed ionic gradients ( - 84mV ). These data are again plotted.  

Following plotting they are fit with a Bolzman function (3) to estimate Gmax.  

 

                   y = ( A1 – A2 ) / ( 1 + e(x+xo)/dx ) + A2 (3) 

 

A1 is the bottom asymptote and A2 is the top asymptote. 

From these data the normalized conductances ( G/Gmax ) are calculated. These 

values are plotted against the clamped potential and then again fitted using a 

Bolzman function. This last operation yields the voltage of half maximal BK channel 

activation ( V ½ ). [74]   

 

 

3.4  Migration studies  

 

3.4.1  Boyden-Chamber migration assay 

 

The bottom compartments of the dishes ( Corning – Costar, Germany ) were 

incubated with 600 µl of standard MEM with 10 % FCS with or without blocker. A cell 

suspension with a density of 40,000 cells/ml was filled into the upper compartment 

either with or without addition of a blocker. Cells were allowed to migrate for 12 

hours. Then the membrane was washed with PBS, incubated in May–Grünwald stain 

for 5 minutes, washed again with PBS and finally incubated in Giemsa stain for 20 

minutes. Filter membranes were then left to dry for 48 hours after which they were 

cut out with a scalpell and embedded in neutral balsam ( xylol based ) on a glass 

side. In each experiment 5 control wells were compared to 5 wells with blocker. Each 

experiment was repeated three times. For each well 5 fields were counted under a 
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microscope with 10 x magnification using a standard calculator to facilitate counting. 

Means were normalized with respect to the controls. 

 

3.4.2  Time-lapse videomicroscopy 

 

Cells were seeded into 8 cm Petri dishes in a density of 5,000 cells/ml and allowed to 

adhere for 12 hours. Then they were placed under the video–microscope and 

monitored for 12 hours. Per dish five fields could be monitored during the period and 

the distance the cells had travelled were later measured offline with standard 

software. For each channel modulator 20 cells were studied. 20 control cells 

incubated in standard MEM with 10 % FCS were also studied.  

 

 

3.5  Statistical analysis 

 

To test for significant differences we used a non-paired t test ( p < 0.01 ). Statistical 

analysis was performed with the software Origin v.6.1 (Microcal). 

For proliferation experiments, Transwell assays and timelapse studies statistically 

significant differences were defined if a non–paired t–test yielded significantly 

different means at a p < 0.01. 
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4  Results 

 

4.1  The human astrocytoma 1321N1 cell line display different morphological      

cell types in culture 

 

After seeding the cells in the presence of 10 % FKS for 24 hours cells became 

adherent to the glass coverslips. There were two types of cells, i.e., (i) cells of a flat, 

fibroblast like shape and (ii) round cells without processes. After 48 hours in culture 

the majority of cells were flat and only very few round cells were interspersed. The 

same picture was observed whether cells were grown with serum or under serumfree 

conditions. Even under serumfree conditions cells remained viable for at least 6 days. 

( Figure 5 ) 

 

 

4.2  Human astrocytoma 1321N1 cells show BK currents, which are active   

under physiological conditions 

 

4.2.1  Whole-cell recordings 

 

All control measurements were performed on cells grown for 2 to 6 days under serum 

free conditions ( n=30 ). 

The resting membrane potential was measured after switching to the current clamp 

mode as being - 23 +/- 2 mV  ( n=30 ). Series resistance and cell capacitance were 

recorded in the voltage clamp mode. Values obtained were 919 +/- 122 MΩ for the 

membrane resistance ( n=30 )  and 27 +/- 1 pF ( n=30 ) for the cell capacitance. With 

10 nM pipette [Ca2+] and voltage steps from – 60 mV to + 180 mV at a holding 

potential of – 60 mV control cells ( n=30 ) displayed a uniform activation course of 

voltage-dependent outward currents. These currents activated rapidly within less 

than 10 ms and did not deactivate in the 100 ms pulse. Strong depolarizations were 

necessary to elicit them as they activated at values > + 60 mV only ( n=30 )                            

( Figure 6 ). 

The currents were established to be K+ currents by using CsCl as pipette solution 

that completely abolished the K+ currents ( Figure 6 ). 
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Figure 5 – Morphology of 1321N1 cells during 6 days in culture.  
After culturing the cells for 24 hours in the presence of 10 % FBS most of the cells adhered to the 
glass coverslips. Early serum depriviation prevents adhesion. 
A) During the initial 48 hours in culture many round cells are found.  
B) After this period most of the cells change their shape to a flat shape with long processes.                            
C) After 6 days in culture in the presence of 10% FBS the cell density increases markedly. Under 
serum free conditions the same morphological picture is observed but the cell density does not 
increase as much as in the presence of 10% FBS. 
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Figure 6 – Basic properties of voltage dependent currents in 1321N1 cells.  
A) Whole cell recordings from a single 1321N1 cell with a 10 nM KCl or a CsCl based pipette solution. 
K+- outward currents were abolished by CsCl.  
B) With 1 µM [Ca2+]i the current amplitude was markedly increased and the current noise was 
reduced. 
C) I -V plot of the steady state currents illustrated in A and B. With 10 nM [Ca2+]i the voltage dependent 
currents activated only at potentials > 50 mV ( n = 28 ). With 1 µM [Ca2+]i the I-V curve was shifted to 
the left ( n = 6 ). 
D) Normalized conductances ( G/Gmax ) are plotted against the membrane potential for 10 nM ( n = 
30 )  and 1 µM ( n = 6 ) [Ca2+]i. The curves were constructed as described in Materials and Methods. 
The datapoints were fit with a Bolzman function ( 3 ). Halfmaximal activation ( V ½ ) occurs at 243 ± 72 
mV with 10 nM [Ca2+]i ( n = 28 ) and  68 ± 1 mV at 1 µM [Ca2+]i  ( n = 6 ).  
All recordings were performed with voltage steps of 50 ms duration from – 60 mV to + 180 mV at a 
holding potential of – 60 mV. 
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[Ca2+]i in glioma cells was reported to lie between 10 nM and 1 µM [46]. We therefore 

investigated I/V relationships with the two different [Ca2+]i ( 10 nM and 1 µM ) in the 

pipette solution. All recordings were started later than 3 minutes after formation of the 

whole-cell patch to allow Ca2+ to fully equilibriate between pipette and cell interior.  

With 1 µM Ca2+ the current noise was markedly decreased. Since both mean open 

time and open probability depend on Ca2+ this may reflect a stabilization of the open 

state with increasing intracellular Ca2+ [87].  

We calculated points of half maximal activation applying the method described by 

Tsen–Crank et al. [74] ( see Materials and Methods ). With 10 nM intracellular Ca2+, 

the voltage at which channels were 50% open ( V ½ ) was + 241 ± 72 mV ( n = 28 ) 

with 1 µM intracellular Ca2+ half maximal activation occurred at  + 68 ± 1 mV ( n = 6 ). 

The voltage required to activate the BK channels was 42 ± 1 mV per e-fold increase of 

the current at 1 µM internal Ca2+ and 59 ± 11 mV e-fold increase of the current at 10 nM 

internal Ca2+ ( slope of the Boltzmann fit ). 

 

Next we tested the ability of BK channel blockers to inhibit the whole-cell currents of 

1321N1 cells. We used the specific BK channel blocker IBTX, a scorpion toxin first 

described by Galvez et al. [108] and TEA in a concentration of 1 mmol/l where it is a 

specific blocker of BK channels [109]. Whole-cell currents were elicited from a holding 

potential of –60 mV by pulses to voltages between –180 and +180 mV in 20 mV steps 

before and after bath application of IBTX ( Figure 7A ). The IV-relationship constructed 

from the steady-state current amplitudes during the test pulses shows an inhibiton of 

outward currents in the presence of 100 nM IBTX, especially at potentials > +80 mV. 

IBTX inhibited the outward currents by 56 +/- 4 % at 140 mV; 61 +/- 4 % at 160 mV 

and 65 +/- 4 % at 180 mV ( n = 10 ). The IBTX block was completely reversible after 

several minutes washout time.  

Figure 7B shows the inhibitory action of various concentrations of tetraethylammonium 

(TEA) at the potential of +180 mV. 1 mM TEA blocked the currents by 69 +/- 12 % at 

140 mV, 70 +/- 9 % at 160 mV and 71 +/- 6 % at 180 mV ( n = 3 ). In the presence of 

1 mM TEA the current noise was greatly reduced together with the current amplitude. 

This is consistent with less opening events of large conductance channels. The 

effects of TEA were completely reversible after complete washout of the drug. An 

increase of TEA  to 10 mM did not further reduce the current amplitude.  
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Figure 7 – Pharmacology of BK currents in 1321N1 cells.  
A) Whole cell currents and I-V relation from a single 1321N1 cell were inhibited > 70 % by the specific 
BK channel blocker IBTX in a concentration of 100nM.  
B) Whole cell currents from a single 1321N1 cell were blocked  with 0.01, 0.1, 1 and 10mM TEA 
respectively. TEA 1 mM blocked the currents by > 70 %.  
C) Dose response curve for BK current inhibition by TEA in n=3 cells at +160mV. Data points are 
means +/- SEM of the steady state current amplitude. Fitting the datapoints with the Hill equation (1) 
yielded an IC50 of 0.19mM TEA.    
D) BK current block by neither IBTX nor TEA 1 mM is voltage dependent. There were also no 
statistically significant differences in the amount of block between the two drugs ( IBTX : n = 10,           
TEA : n = 3 ).  
All whole-cell currents were elicited from a holding potential of -60 mV by pulses of 50 ms duration to 
voltages between –60mV and +180 mV in 20 mV steps. 
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Figure 7C illustrates the dose-response relation of TEA-induced reduction of outward 

currents in 1321N1 cells ( n = 3 ). The concentration of half maximal block ( IC50 ) was 

obtained by fitting the Hill equation (1) to the data points. The IC50 was determined to be 

0.19 mM. A similar voltage dependence of outward currents was observed in cells from 

other gliomas [4] and meningiomas [86] also at lower intracellular [Ca2+] of 10 or 20 

nM.There was no significant difference in between 1mM TEA and 100 nM IBTX 

potency at any voltage. 

In summary, the electrophysiological recordings and pharmacological experiments 

identify outward currents to be mediated by BK channels. 

 

4.2.2  Single-channel recordings  

 

Single-channel currents in cell-attached ( n =  10 ) and inside-out patches ( n = 3 ) 

from 1321N1 cells were investigated. With cell-attatched patch recordings the unitary 

slope conductance and the open probability at a certain clamped potential can be 

determined. Furthermore with this technique the cell remains intact and the channel 

activity at the ( unknown ) physiological [Ca2+]i can be recorded. Inside out patch 

recordings alow to study BK channel activity at the physiological membrane potential 

while at the same time [Ca2+]i ( the [Ca2+] in the bath solution ) can be varied as it is 

desired. 

 

Cell-attached recordings 

For cell attatched recordings cells ( n=10 ) were bathed in a solution containing a 

high [K+] (130 mM) which depolarizes the resting membrane potential toward values 

of about 0 mV ( chemical clamp ) [3, 110]. In other words: with such a depolarizing K+ 

solution little potential difference remains across the membrane because the 

chemical clamp eliminates any membrane potential generated by the cells K+ 

channels. The actual membrane potential ( Vm ) then is equal to the clamped 

potential added to the reversal potential for K+  ( - 84 mV ).  

Figure 8 shows the activity of BK channels in a cell-attached patch at depolarizing 

pulses. These channels were found in all patches ( n = 10 ). In cell-attached 

recordings currents were activated only at potentials positive to + 50 mV very similar 

to what can be observed in whole-cell experiments with 10 nM internal Ca2+. The 

unitary current was calculated by a Gaussian fit of amplitude histograms by means of  
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Figure 8 - Properties of single BK channels in 1321N1 human astrocytoma cells.  
A) Example of a cell-attached patch in a single cell at different depolarizing pulses from a holding 
potential of 0 mV at depolarizing conditions with a 140 mM KCl bath solution. The solid line marks the 
closed level.  
B) Single channel current amplitudes recorded from 10 cell-attached patches were averaged and 
plotted as function of voltage. The IV-relation is linear for potentials between +35 and +95 mV 
resulting in a slope conductance of 209 +/- 28 pS. The reversal potential was experimentally 
determined to be + 4 +/- 2 mV. 
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the ANA3 software. For each voltage a current can be plotted. The slope 

conductance was calculated by fitting the datapoints in the linear part of the I/V 

relation. 

We calculated a unitary slope conductance of 209 +/- 28 pS from single channel 

recordings ( n = 10 ). The reversal potential was experimentally determined to be + 4 

+/- 2 mV ( n = 10 ). The theoretical reversal potential for symmetrical solutions would 

be 0 mV.  The current–voltage relation is not linear at potentials > 120 mV as would 

be expected from Ohms law. At voltages > 140 mV the conductance decreases and 

finally even becomes negative. This is possibly an effect of a voltage dependent 

channel block by internal ions [110] ( Figure 8 ).  

 

Excised-patch recordings 

Excised-patch recordings were performed to demonstrate that BK channels are also 

active at the physiological membrane potential of – 20 mV and at physiological 

intracellular Ca2+ concentrations. The channel activity was determined with different 

Ca2+ concentrations in the bath. The resting membrane potential were determined 

previously in control cells (n = 30). The value was –23 ± 2 mV. In the excised patches 

the channel activity was recorded during pulses to –20 mV of 100 ms duration elicited 

from a holding potential of 0 mV. The pipette solution contained 130 mM KCl and the 

bath solution contained 13 mM KCl. The theoretical equilibrium potential for these ion 

concentrations was calculated to be +58 mV. Under these conditions it was possible 

to determine the channel activity at the normal resting potential of –23 mV while 

variing the intracellular free Ca2+ within the physiological range. Four different [Ca2+]i 

were tested: a Ca2+ free solution, as well as solutions 100 nM, 1 µM and 1 mM free 

Ca2+. When the Ca2+ free solution was added the channels closed completely after 

complete washout of Ca2+. The activity rapidly recovered after one of the solutions 

containing Ca2+ was added. For 0 Ca2+ the open probability was 0.0013 +/- 0.0008 

%, for 100 nM 0.0060 +/- 0.0032, for 1 µM 17.99 +/- 4.89 % and for 1 mM 81,20 +/- 

2.20 %. Figure 9 shows that within the range of physiological intracellular Ca2+ 

concentrations ( 100 nM – 1 µM ) there is a significant BK channel activity in resting 

1321N1 cells ( Figure 9 ).  
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Figure 9 – Excised patch recordings.  
The channel activity in three inside-out patches was recorded at -20 mV using an intracellular bath 
solution containg 13 mM K+ and different [Ca2+]. Within the range of physiological [Ca2+]i                               
(100 nM – 1 µM) there is a significant BK channel activity in resting 1321N1 cells. 
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4.3  Chronic exposure to EGF depolarizes 1321N1 cells and increases K+ 

outward currents. 

 

To investigate whether EGF like in other cells modulates BK mediated currents in 

1321N1 cells we cultured the cells for 4 – 6 days in serumfree medium with or without 

10 ng/ml EGF respectively. We observed that the cells exposed to EGF ( n = 24 ) 

were depolarized in comparison to the controls  ( [Ca2+]i = 10 nM; n = 28 ). The mean 

value of the membrane potential was - 23.2 ± 2.1 mV for the control cells vs. - 16.2 ± 

1.7 mV for the EGF treated cells     ( p < 0.01 ). Whole-cell currents were elicited from a 

holding potential of -60 mV by pulses to voltages between -180 and +180 mV in 20 mV 

steps. The IV-relationship constructed from the steady-state current amplitudes during 

the test pulses shows an augmentation of outward currents after chronic exposure to 

EGF, especially at potentials > + 80 mV compared to the controls. At the potential of 

+180 mV normalized currents were 105 ± 12 pA/pF in the controls and 264 ± 45 pA/pF 

in EGF treated cells which is an increase by 151 % in EGF treated cells.   

We calculated points of half maximal activation of BK channels for untreated cells at 

a [Ca2+]i = 10 nM and for cells, which were treated with EGF also at a [Ca2+]i = 10 nM 

applying the method described by Tsen–Crank et al. [74] ( see Materials and 

Methods ). After chronic EGF treatment  the voltage at which channels were 50% 

open ( V ½ ) was + 130 +/- 1 mV ( n = 24 ) whereas in the controls half maximal 

activation occurred at  + 241 ± 72 mV ( p = 0.001 ). The voltage required to activate 

the BK channels was 26  ± 1 mV at 1 µM internal Ca2+ and 59 ± 11 mV in the controls  

( slope of the Boltzmann fit ) ( Figure 10 ).  

 

 

4.4  Under particular conditions specific BK channel blockers inhibit  

proliferation of 1321N1 astrocytoma cells  

 

In a first set of experiments we investigated whether different culture conditions 

modified the growth rate of 1321N1 astrocytoma cells. We found that serum 

increased proliferation by 41 +/- 2 % as compared to cells grown in serumfree media 

( p = 0.01 ). Moreover, when the media contained 20 mM instead of 5 mM 

extracellular K+, cell proliferation was increased by 21 ± 3 % ( p = 0.01 )                                

( Figure 11 ). 
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Figure 10 – The effect of prolonged ( 6d ) EGF exposure on K+channel activity 
Whole-cell currents were elicited from a holding potential of -60 mV by pulses of 50 ms duration to 
voltages between -60 mV and +180 mV in 20 mV steps. 

       A) IV relations of cells grown in the presence of 10 ng/ml EGF ( < ) ( n = 24 )  and in its absence ( =)                      
( n = 28 ). Cells grown for 6 days under serumfree conditions show a marked increase of                       
voltage-dependent K+- outward currents when 10 ng/ml EGF was added during the cultivation period. 
Peak currents at + 180 mV were 105 ± 12 pA/pF for the controls and 264 ± 45 pA/pF in EGF treated 
cells ( 151 % increase ). 
B)  Whole cell recording of a control cell cultured for 6 days under serum free conditions compared to 
a whole cell recording of a cell cultured for 6 days in the presence of 10 ng/ml EGF  
C) Conductance voltage relation of cells grown in the presence of 10 ng/ml EGF ( 5 ) and in its 
absence ( =). Half maximal activation of these currents ocurred at much more positive potentials after 

cultivation in the presence of EGF ( + 130 +/- 1 mV ) than in its absence ( + 241 ± 72 mV ).  
D) Chronic exposure to EGF causes a marked membrane depolarization of 1321N1 cells. The mean 
value of the membrane potential was - 23.2 ± 2.1 mV for the control cells vs. - 16.2 ± 1.7 mV for the EGF 
treated cells.  
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Moderate elevation of [K+]e is thus a potent stimulus for  the proliferation of 

astrocytoma cells. This K+ dependent increase of proliferation could be completely 

abolished by the BK channel blockers 1 mM TEA and 100 nM IBTX. Data from three 

experiments were pooled and yielded a total inhibtion of proliferation by IBTX of 20 ± 

3 %. All three experiments were significantly different in themselves when compared 

to controls ( p = 0.01 ). Comparable results could be demonstrated with 1 mM TEA; 

the total inhibition of proliferation with 1 mM TEA for the three experiments was 30 ± 

4 %  (p = 0.01 ). Very strikingly, BK channel blockers were, however, ineffective 

when the medium contained only physiological [K+]e (5 mM) instead of 20 mM [K+]e  

(n = 3) (p =   0.01 ). The proliferation was increased only at moderately elevated [K+]e 

of about 10 – 30 mM but was significantly inhibited at concentrations above 50 mM. 

In single experiments we tested the influence of different [K+]e of 10, 40 and 100 mM 

on the proliferation of 1321N1 cells. Whereas 10 mM [K+]e increased the proliferation 

by about 4%; 40 mM and 100 mM [K+]e decreased the proliferation by about 19% and 

75%, respectively.  

 

 

4.5  Specific block of BK channels does not influence migration of 1321N1  

astrocytoma cells 

 

4.5.1  Boyden chamber migration assay 

 

To investigate whether BK channels have a role in the migratory potential of human 

glioma cells we first used the Boyden chamber migration assay ( Transwell assay ).  

Cells were plated on the upper surface of Transwell membranes with 8 µm pores. 

Migration was allowed to take place for 12 hours away from the high cell density in 

the upper compartement towards the lower compartment, which contained no cells. 

Channel blockers ( IBTX 100 nM, 1mM TEA, 5 mM TEA ) were dissolved in sterile 

destilled water and added to the upper as well as to the lower compartment. Sterile 

destilled water was added to the controls. All migration media contained 5 % FCS. 

For each well 5 HPF ( 10 x ) were counted in the lower compartment                                       

( Figure 12A ). Neither 100 nM IBTX nor 1 mM TEA had any effect on cell invasion in 

the Transwell migration assay  ( Figure 12 ).  
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Figure 11 - IBTX and TEA inhibit proliferation of 1321N1 cells at  elevated ( 20 mM ) [K+]

e
. 

A) An increased [K+]
e
 in the culture medium stimulates the proliferation of 1321N1 cells. The relative 

cell number at [K+]
e
 = 20 mM is 123 ± 4% in comparison to the cell number at [K+]

e
 = 5 mM.                           

( ∗ signifies p < 0.01; The error bars are ± SEM ). 
B) IBTX (100 nM) and TEA (1 mM) reduce the proliferation at [K+]

e
 = 20 mM by 21 ± 3% and 30 ± 4%, 

respectively ( ∗ signifies p < 0.01 The error bars are ± SEM ). 
C) IBTX and TEA have no effect on the proliferation at [K+]

e
 = 5 mM ( the error bars are ± SEM ). 

D) The proliferation is increased only at moderately elevated [K+]
e
 of about 10 – 30 mM. The relative 

cell number at [K+]
e
 = 5 mM and [K+]

e
 = 20 mM were taken from (A). Data at [K+]

e
 of 10, 40 and 100 

mM were taken from single experiments. 
 



 46

Cell numbers counted were 274 +/- 16 cells per HPF for the control group and                    

279 +/ - 19 cells per HPF for the group exposed to 100 nM IBTX ( p = 0.01 ). For the 

experiment with 1 mM TEA values were 431 +/- 15 cells per HPF for the control 

versus 440 +/- 20 cells per HPF for the TEA 1 mM group ( p = 0.01 ) TEA was 

however effective in a concentration of 5 mM. Cell numbers were 597 +/- 17 cells per 

HPF for the control group versus 283 +/- 17 cells per HPF in the group exposed to             

5 mM TEA ( p < 0.01 ) ( Figure 12C ). Mean inhibition from 6 wells was 52 +/- 6 %. 

 

 

4.5.2  Time–lapse videomicroscopy 

 

To further dissect tumor cell migration and the role of BK channels we studied the 

effects of IBTX ( 100 nM ) and TEA (1, 5 and 20 mM ) on migration velocity with a 

time–lapse videomicroscope. 

After allowing 1321N1 cells to become adherent for 30 h in a 8 cm Petri dish we 

applied fresh medium containing 5 % FCS and added 100 nM IBTX, 1 mM TEA,                 

5 mM TEA or 20 mM TEA in destilled water or destilled water alone to the controls. 

Per dish 5 cells could be studied for 6 hours. For each blocker 20 cells were recorded 

and compared to a single control group of 20 cells. The mean distance travelled 

during the 6 hours in the control group was 261.3 +/- 17.5 µm. There was no 

significant difference to the IBTX group ( 238.5 +/- 25.0 µm; p < 0.01 )                                  

( Figure 13A ). In the same experimental setting we also tested the effect of 1 mM 

TEA in the presence of which the cells travelled a mean distance of                        

213.3 +/-17.01µm. There was again no difference to the control group ( p < 0.01 ). 

Migrational velocity, however, was slowed significantly when TEA doses > 5 mM 

were applied. With TEA at 5 mM mean distance travelled was 185.07 +/- 13.28 µm. 

This distance was significantly shorter than the distance travelled by the controls                    

( p < 0.05 ). It meant a 29 +/- 5 % decrease in migrational velocity. With TEA at 20 

mM the mean distance travelled was 168.97 +/- 16.5 µm. Compared to the controls 

this is a 35 +/- 6 % decrease in migrational velocity ( p < 0.01 ) ( Figure 13A ). 
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Figure 12 – Transwell migration assay. 
A) Relative number of cells that have migrated through 8 µm pore size filters in the presence of a 
blocker relative to a control in the absence of the blocker. The y – axis represents the cell number on 
the lower filter surface normalized to the control. The data were averaged from three experiments. 
Only in the presence of [TEA] = 5 mM transwell migration was significantly inhibited whereas specific 
BK channel blockers were ineffective ( ∗ signifies p < 0.01; The error bars are SEM ). 
B,C) Representative microscopic fields of 1321N1 cells on the lower side of the membrane that have 
migrated through 8 µm pore size filters in the presence of 5 mM [TEA] ( C ) and absence of the 
blocker ( B ).  
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Figure 13 – Timelapse videomicroscopy. 
A) The rate rate of cell migration in the plane is not diminished by specifically blocking BK channels 
with 100 nM IBTX ( n = 20 ) or 1 mM TEA ( n= 20 ). The velocity of 1321N1 cell migration is only 
diminished significantly with [TEA] = 5 mM ( n = 20 ). [TEA] = 20 mM ( n = 20 ) did not further slow 
migration. The y – axis is the distance ( µm ) the cells travelled in the 6h study period. The error bars 
are SEM ( ∗ signifies p < 0.01 ). 
B) Two representative microscopic fields of 1321 cell movement tracked for 6h. The lines show the 
distance travelled by the cells during the 6h recording.  
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5  Discussion 

 

5.1  BK channels in normal and neoplastic cells  

   

BK channels are ubiquitous in excitable and nonexcitable cells. This underlines their 

fundamental role in coupling electrical and chemical signalling [88, 111]. In one study 

mRNA encoding for BK channels was found in eight examined representative regions 

of the human brain ( amygdala, caudate nucleus, cerebellum, corpus callosum, 

hippocampus, substantia nigra, subthalamic nucleus ) indicating that the channels 

are expressed in the entire brain [74]. Glial cells [112] as well as neurons [113-119] 

were observed to express BK channels. With radiolabelled probes which recognize 

all variants of the hslo gene – the gene that encodes for all human KCa channels – its 

expression was also detected in many nonneural tissues like the aorta, the spleen 

and the kidney [74]. Embryonic cells seem to also rely strongly on the activity of BK 

channels [120]. Moreover vascular smooth muscle cells, vascular endothelial cells 

[42, 91], pituitary cells [35] and adrenal chromaffine cells [121] are outfitted with BK 

channels. Human osteoblasts were also shown to have functional BK channels [122]. 

On the other hand little or no expression was evident in the liver, the lungs and the 

heart [74]. 

Besides in normal tissue the presence of such channels has been demonstrated in 

neoplastic cells. An example for a non-neuronal tumor whith BK channels is the rat 

insulinoma [121]. BK channels are also present in benign and malignant tumors of 

the CNS. They have been well characterized in meningeoma cells [86] and were also 

observed in cultured N1E-115 mouse neuroblastoma cells [87]. BK channels are an 

ubiquitous finding in malignant glioma cells. Several studies have described them in 

various glioma cell lines [3, 4, 123]. Here we showed that 1321N1 human 

astrocytoma cells are outfitted with BK channels.  

While, as described above, it has been established that BK channels are common to 

almost all human tissue their functional role is only very vaguely characterized. 

Because these channels in some experimental settings were shown to require strong 

depolarizations for gating the question arises whether in nonexcitable cells they are 

at all functional. Furthermore it is unresolved whether these channels have a 

common cellular function irrespective of the cell type in which they occur, or whether 

they have specific functions in different cell types. Generally the question is whether 
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such an ubiquitous channel can have one single specific function in a certain subset 

of cells like neoplastic cells for instance. Even if these channels are ubiquitous they 

might be not functional and redundant in some cell types but essential for proper 

function or even survival in others. Therefore BK channels might well play an 

essential functional role in neopastic cells while being an item of peripheral 

importance in nonneoplastic cells. 

 

 

5.2  Properties of BK channels in 1321N1 human astrocytoma cells 

 

All KCa channels ( SK, IK and BK channels ) are encoded by a single gene on the 

long arm of the human chromosome 10 on band 10q22.3. This gene is known as the 

slo gene. The name is derived from a mutant form of Drosophila named Slowpoke 

where the gene was first identified. The mammalian variant is named mslo the 

human variant hslo. Several diverse mammalian BK channel types can be derived 

from this single gene by alternative splicing. The hslo mRNA family that encodes for 

BK channels in the brain is called hbr ( human brain ) and there are 9 isoforms ( hbr1 

– hbr9 ). Several isoforms were expressed in Xenopus oocytes and a significant 

variability in their electrophysiological properties was observed. For instance under 

identical conditions of Ca2+ and voltage the hbr5 ion channel had a much higher open 

probability than the hbr3 ion channel and it was 3 – 5 times more sensitive to Ca2+. 

Thus a cell can effectively modify chemical and electrical signalling by selectively 

expressing various subforms of BK channels. Fine-tuning of a cells’ chemical and 

electrical signalling cascades might be achieved when the various subtypes of these 

channels are coexpressed in a single cell [74]. This phenotypic pasticity of the 

channels explains differences in the properties of BK channels in 1321N1 cells and 

the properties of BK channels examined in other studies.  

 

5.2.1  Ca2+- and voltage-dependence of BK channels in 1321N1 human   

astrocytoma cells 

 

The channels we characterised in 1321N1 cells displayed typical features of BK 

channels. During whole cell recordings at a holding potential of  -60 mV when 

stepped from -80 to +180 mV 1321N1 cells showed a rapidly activating large outward 
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current that did not inactivate during the 100 ms pulse. The currents can be identified 

as K+ outward currents since they were not diminished when chloride in the bath 

solution was replaced by glutamate and since they were completely suppressed with 

CsCl in the pipette solution.  

 

Another typical feature of BK channels is their Ca2+ dependent gating. We performed 

recordings with 10 nM and 1 µM Ca2+ in the pipette because physiological [Ca2+]i in 

malignant glioma cells have been previously reported to lie in this range [46]. Raising 

[Ca2+]i from 10 nM to 1µM shifts the channels IV curve markedly to the left                  

( Figure 6C ). BK channels therefore combine the properties of voltage- and ligand-

gated ion channels. This raises the question whether both Ca2+ and depolarization 

are required to open the channel or whether only one of these suffices. Stefani et al. 

demonstrated that depolarization was able to open BK channels in a Ca2+ 

independent manner [83]. Therefore BK channels must have an intrinsic voltage 

sensor and it was speculated that voltage is the main activator of BK channels. The 

intrinsic voltage sensor is structurally similar to the voltage sensor in other voltage 

gated ion channels [124]. When micromolar Ca2+ is present BK channels switch from 

the Ca2+ independent mode to a Ca2+ modulated mode. In the latter mode much 

smaller gating currents were necessary to open the channels [83]. The channels Ca2+ 

sensitivity is determined by a separable C-terminal domain that is appended to the 

channels core and is unique to BK channels [125]. This separable domain is also 

referred to as the channels β – subunit [80, 88]. The position of the G-V relation along 

the voltage axis, which reflects the channels Ca2+ sensitivity is the only property, 

which is influenced by this subunit [88]. It was experimentally revealed that many 

different types of BK channels with very distinct properties can be assembled by 

combining different β -subunits with an α - subunit [125]. The channels other subunit 

is the α - subunit and is identical to the pore-forming subunit of other K+ channels 

[126]. Four of these subunits form the channel pore [124]. It does not necessarily 

need a β – subunit for a BK channel to function in vitro although the introduction of a 

β – subunit dramatically increases voltage and Ca2+ sensitivity. While it is clear that 

the regulation of the co-assembly will account for the functional diversity among 

members of the BK channel family the question remains whether in vivo the 

introduction of an β – subunit is optional [80].    
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A BK channel, which is insensitive to Ca2+, was observed in mouse early embryos 

[120]. Moreover BK channels in aortal endothelial cells lack a β – subunit [127]. On 

the other hand vascular smooth muscle cells are composed of both α - and β - 

subunits [128, 129]. These data clearly indicate that co-assembly of an α and β - 

subunit is not obligatory for BK channel function in vivo. By regulating the β - subunit 

expression a cell can specify the physiological properties of its BK channels just as 

much as it can do by expressing various splice variants of the α - subunit. BK 

channels in 1321N1 cells are very sensitive to raising [Ca2+]i and thus seem to be 

outfitted with a β - subunit. Whether BK channels in glioma cell lines generally are 

outfitted with a β-subunit is unknown so far. In a study comparable to ours the half 

maximal activation of BK channels in STTG–1 glioma cells was measured [4]. The 

value was + 65mV at 10 nM [Ca2+] and + 12 mV at 1 µM [Ca2+] while in 1321N1 cells 

we found half maximal activation to occur at +241 mV at 10 nM Ca2+ ] and + 68 mV at 

1 µM [Ca2+]. Therefore there seems to be a great variability in the Ca2+ sensitivity 

between different glioma cell lines. It has been shown that BK channels are active in 

glioma cells stimulated with acetylcholine [46] and bradykinin [4] both factors which 

induce a Ca2+ influx [46] [130]. Naturally the more sensitive glioma cells are to 

increases in [Ca2+]i, the more sensitive they are also to stimuli that induce a Ca2+ 

influx such as many other growth factors do. Finally if a modification in the β - subunit 

shifts the channels G-V relation along the voltage axis to the left then also 

unstimulated cells might display BK channel activity at the resting membrane 

potential. It would be interesting whether an increased Ca2+ sensitivity of BK channels 

achieved by the introduction of a modified β - subunit correlates with malignant 

behavior of glioma cells. 

 

The Ca2+ sensitivity of BK channels is relatively low in any case since [Ca2+]i has to 

be elevated to concentrations between 100 nM and 1 µM to activate them. It is 

noteworthy however that activation of BK channels does not require a marked 

elevation of the total cytosolic [Ca2+]. In fact it is sufficient to raise the submembrane 

[Ca2+]i near the β-subunit of the channels [3]. Ca2+ can be supplied from the 

extracellular space via Ca2+ channels closely colocalized with BK channels [131]. In 

chicken sympathic and parasympathic neurons KCa channels are functionally 

dependent to either L - or N – type Ca2+ channels. This was experimentally prooven 

with specific Ca2+ channel blockers which could diminish IKCa elicited by depolarizing 
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voltage steps because they blocked the concomitant Ca2+ influx through either L - or 

N – type Ca2+ channels required to gate IKCa [132].  In vivo in such excitable cells 

depolarization during the action potential causes a Ca2+ influx through voltage gated 

Ca2+ channels. Concentration peaks that are much higher than the measured 

average total cell [Ca2+]i may occur in close proximity to BK channels [133-136]. BK 

channels are thus activated and cause the after hyperpolarization following the action 

potential. In nonexcitable cells it is less clear which Ca2+ influx pathways form a 

functional unit with BK channels. In glioma cells a depolarizing stimulus, which opens 

voltage, gated Ca2+ channels and thus activates BK channels might be a growth – 

factor such as elevated [K+]e. For instance T – Type Ca2+ channels and BK channels 

interact in mediating growth factor induced proliferation in Müller glial cells [43].  The 

Ca2+ influx pathways that provide the Ca2+ necessary for BK channel gating in glioma 

cells are however still unknown.  

 

 

5.2.2  Pharmacology of BK channels 

 

BK channels were identified by blockade with the specific blocker IBTX and 1 mM 

TEA which at this concentration ( < 1 mM ) is known to be a specific BK channel 

blocker [109] [109, 110, 112]. K+ channels are divided into such with high TEA 

sensitivity ( Kd < 1 mM ), moderate TEA ( Kd = 10 mM ) sensitivity and low TEA 

sensitivity ( Kd > 50 mM ). However there are also TEA insensitive BK channels. [137] 

[138]. These differences in TEA senstivity can be explained on a molecular basis. 

Voltage gated K+ channels are composed of six transmembrane segments                              

( S1 to S5 ). TEA, CHTX and IBTX have the same binding site which lies in the S5 – S6 

linker. This region is built from 40 amino acids including two basic and four acidic ones 

[139]. By modifications in the aminoacid residues in this region the TEA and CHTX  

sensitivity can be changed dramatically. Changes at the residues 449 to 451 have the 

most marked effect [140, 141]. In glial cells low concentrations of TEA had no effect 

on inward rectifier, A-type, or delayed rectifier channels but effectively blocked BK 

channels [112]. We therefore used 1 mM TEA as a specific BK channel blocker in 

1321N1 glioma cells. The IC50 for TEA was determined to be 0.19 mM in our 

experiments. A similar value was observed in cells from other gliomas [4], meningiomas 

[86] and GH3 pituitary cells [109] also at low intracellular [Ca2+] of 10 or 20 nM. An 
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increase of TEA  to 10 mM did not further reduce the current amplitude. The amount of 

current inhibition in our experiments caused by 1 mM TEA lay in the range of that 

observed for 100 nM IBTX indicating no significant difference between 1mM TEA and 

100 nM IBTX potency at any voltage. 

In summary, the electrophysiological recordings and pharmacological experiments 

identified outward currents in 1321N1 cells to be mediated by BK channels. In 

addition the experiments confirmed that TEA at concentrations of 1 mM is a specific 

blocker of BK channels and can be used as a cheap tool for screening BK channel 

activity. 

 

 

5.2.3  BK channels in 1321N1 human astrocytoma cells are active under    

physiological conditions 

 

The prerequisite for a physiological function of BK channels is a significant open 

probability at physiological resting membrane potentials. Generally, BK channels 

have a low open probability in resting cells, but once the cell becomes depolarized 

the channels are activated to then dominate the membrane potential [142]. Only few 

channels of this type need to be active to mediate large K+ fluxes and thus it has 

profound effects on membrane potential oscillations [142]. 

Because whole cell recordings require unphysiologically strong depolarisations for 

BK channels to open even with 1 µM [Ca2+]i one could assume that these channels 

are not active in resting 1321N1 human glioma cells. However the conduction voltage 

relation in Figure 6D shows BK channel activity at physiological membrane potentials 

with 1 µM [Ca2+]i. To confirm this we chose a method that allowed testing BK channel 

activity at physiological membrane potentials at various [Ca2+]i with better resolution 

than whole cell recordings. 

Therefore we use an excised patch model to simulate BK channel activity around the 

physiological resting membrane potential. Physiological KCl concentrations were 

reversed so there were 130 mM KCl outside and 13 mM KCl inside. Thus large BK 

channel mediated inwardly rectifying K+ currents could be elicited while the clamped 

potential was maintained at – 20 mV and the Ca2+ concentration in the bath was 

varied. Our results demonstrate that there is marked BK channel activity at the 

resting membrane potential when physiologic Ca2+ concentrations are present.  
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The increase in open probability between 100 nM and 1 µM Ca2+ was significant. 

However the interpretation of excised patch experiments to determine BK channel 

activity around the typical resting membrane potential is difficult because no 

experimental condition can adequately simulate the balance between activating and 

inhibitory factors in vivo. What makes excised patch recordings especially 

problematic to interpret is the finding that BK channels are modulated by the 

cytoskeleton. Cytoskeletal alterations due to a proteolytic agent had an activating 

influence on BK channels and caused a moderate rise in Po, but patch excision and 

channel isolation from the natural environment provoked a strong increase in Po [84]. 

A study by Kraft et al. [86] on BK channels in human meningeoma cells also 

suggests the same. The application of cytochalasin D a drug that disassembles the 

cytoskeleton increased Po of BK channels in cell-attached patches very rapidly [86].   

 

Several studies proove that in addition to being voltage and Ca2+ sensitive BK 

channels are activated through many alternative intracellular signalling pathways. 

Investigations have identified activation by channel protein phosphorylation. When 

studying the effect of ethanol on BK channels in GH3 pituitary cells it was observed 

that ethanol significantly increased mean channel open time and channel open 

probability. This effect was blocked in the presence of protein kinase A (PKA) 

inhibitors suggesting that the effect of ethanol on BK channels is mediated by PKA 

stimulation and phosphorylation of the channels [143]. Recently it was found that 

protein kinases A and C are opponents in modulating glial BK channels. Stimulating 

the protein kinase A increased the open probability whereas exposure to an activator 

of protein kinase C strongly reduced the channel activity in Müller glial cells [90]. 

Moreover an activation of protein kinase C inhibited BK channels in rat pituitary 

tumour cells [89]. This indicates that BK channels are the effectors of different 

signaling pathways [90]. However the regulation of BK channels by protein kinases 

depends on the cell context since in transfected cells the expressed BK channel is 

not regulated by protein kinase activity [93]. Moreover somatostatin stimulates BK 

channels in rat pituitary tumor cells through lipoxygenase metabolites of arachidonic 

acid, which is additional evidence that protein phosphatases directly regulate K+ 

channel activity [144].  
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Other studies indicate that BK channels are subject to redox regulation [92, 115] 

because chloramine-T a substance that oxidizes methionin shifted the steady-state 

macroscopic conductance to a more positive direction. Regulation of the BK channel 

by methionine oxidation may be an important link between the membrane potential 

and metabolism [92]. The stimulation of the activity of BK channels by intracellular 

protons was also recently observed in smooth muscle cells. Alkalinisation of the 

cytosol markedly shifted the channels’ IV relation to the left while an increase of the 

intracellular proton concentration inhibited this channel [91]. In excised patch 

experiments these intracellular factors are eliminated.  

 

Generally in patch clamp experiments many channel regulating factors like those 

mentioned above present in vivo might be absent. Our excised patch experiments, 

however, are nonetheless a reasonable model for channel activity in 1321N1 cells at 

physiological membrane potentials. The most important conclusion that can be drawn 

from this model is the fact that BK channel activation seems to not necessarily 

require a marked depolarization of the membrane potential. Instead it is sufficient to 

provide a [Ca2+]i between 100 nM and 1 µM to the inner face of the membrane to 

activate these channels. This disputes the theory that voltage is the prime activator of 

BK channels [83] and is more in line with a study that found Ca2+ to be the stronger 

activator at physiological membrane potentials: DiChiara et al. [145] observed that 

the activation kinetics of dslo ( drosophila ) BK channels were strongly influenced by 

the [Ca2+]i, but were only minimally affected by membrane voltage. Current activation 

kinetics increased more than 60-fold in response to increases of [Ca2+]i in the range 

0.6 - 400 µM, but increase less than 2-fold by voltage changes from -60 to +80 mV. 

The hslo ( human ) BK channels were somewhat more sensitive to voltage but Ca2+ 

remained the more potent activator [145]. An ion channel that would require very 

strong membrane depolarisations for its activation would not likely have a physiologic 

function in nonexcitable cells. Indeed our whole cell experiments with 10 nM [Ca2+] 

would rather suggest that BK channels are not active at physiological membrane 

potentials in 1321N1 cells while with 1 µM there seems to be some activation. The 

excised patch experiments however demonstrated channel activity at physiological 

membrane potentials. A physiological role of BK channels in 1321N1 cells is 

therefore conceivable. 
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5.3  BK channels and their role in in cell proliferation  

 

Little work has been done to investigate the possible role of BK channels in 

neoplastic cells. Here, we were able to demonstrate in 1321N1 human astrocytoma 

cells that under certain conditions they play a crucial role for proliferation. Several 

growth factors may activate BK channels through one of the mechanisms mentioned 

above. BK channel activation is a signal, which induces proliferation. Since this 

channel is common to glioma cells it is striking that it seems to serve one specific 

function, which might be the promotion of proliferation induced by a certain category 

of growth factors. However this study also shows that there is a component of 

proliferation, which is independent of BK channel activity. 

 

 

5.3.2  Blockade of BK channels influences proliferation only under particular 

conditions 

 

If BK channel activation is causative for cell cycle progression, then it should be 

possible to block proliferation with specific BK channel blockers. Earlier studies have 

failed to demonstrate a growth inhibitory effect of IBTX in various different cell types, 

which express BK channels. Wondergem et al. [146] showed that neither IBTX nor 

CHTX could inhibit the growth of human bladder tumor cells (HBT-cells). For the 

proliferation of astrocytoma cells, neuroblastoma cells and meningeoma cells other 

studies also failed to show an inhibitory effect of IBTX and CHTX [4, 31, 32, 48, 86] 

[94]. On the other hand there are studies, which show that BK channel blockade 

inhibits proliferation. However this is the case only when they studied a component of 

proliferation that was stimulated by certain growth factors [35, 42, 43, 51, 112]. We 

were able to demonstrate that glioma cell proliferation could be blocked by specific 

BK channel inhibitors when 1321N1 cells were growth stimulated by an elevated 

[K+]e. Elevating the K+ concentration in the growth media from 5 to 20 mM resulted in 

an increase in the cell number of 20 %. after 5 days. BK channel inhibitors could 

block this K+-induced proliferation only. 
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K+-induced proliferation 

Analogous evidence that elevating the K+ concentration can enhance proliferation 

has been gathered for retinal glial cells ( Müller cells ) [147], astrocytes [148] and 

immature cerebellar granule cells [149]. In these studies the K+ concentration was not 

higher than 20 mM. On the other hand at very high concentrations ( > 60 mM ) [K+]o 

has a growth inhibitory effect [150]. We have performed experiments with 20, 50 and 

100 mM [K+]e. We observed that prolonged elevation of [K+]e promotes proliferation at 

[K+]e between 5 and 20 mM but significantly inhibits it at concentrations above 50 

mM. This is in accordance with the work of Canady et al. [150] who found a 

decreased DNA synthesis in cultured glial cells after long term exposure to [K+]e 

above 60 mM. Short term exposure to 60 mM [K+]e however stimulates glial cell 

proliferation [148]. At moderately elevated [K+]e ( 20 mM ) glial cell proliferation 

seems to be optimal in long term experiments as was also shown also in other 

studies [43, 51]. This dose response relation is valuable in guiding future 

experiments.  

 

That moderately elevated [K+]e can enhances brain tumor cell proliferation via the 

activation of a specific ion channel common to glioma cells is a new and exciting 

finding. Moreover, this finding is of particular relevance for CNS neoplasms in vivo. 

One might speculate that in malignant tumors an extensive necrosis of part of the 

tumor cells and neurons generates an increase of [K+]e [151] which in turn promotes 

the proliferation of neoplastic cells. Unfortunately clinical data which proove this are 

lacking. However normal neuronal activity already causes [K+]e to rise from a 

baseline of 3 mM to levels over 10 mM [152, 153]. In epileptic tissue elevated [K+]e 

was detected during ictal activity  [154] and during anoxia and spreading depression 

a [K+]e  of 40 – 100 mM has been measured [151, 155-158]. Therefore neoplastic 

glial which come in close contact with normal neuronal tissue due to their marked 

tendency to spread within the brain will also likely be stimulated by elevated [K+]e 

released in their surroundings. It is thus conceivable that the enhanced growth of 

astrocytoma cells under conditions of elevated [K+]e are the rule rather than the 

exception in vivo and that previous studies on K+ channel blockers and proliferation 

failed to consider this possibility. It is furthermore conceivable that in vivo the K+-

induced component of proliferation might even be greater than the 21% found in our 
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study  since the rate of tumor cell proliferation in vitro depended mainly on the supply 

with high concentrations of FCS (10 %) unlikely to be seen in vivo.  

 

A role for BK channels for K+-dependent proliferation was recently found for cultured 

Müller glial cells [43]. Like in our study the authors found an inhibitory effect of IBTX   

( 100 nM ) and TEA ( 1 mM ) on DNA synthesis only at elevated [K+] ( 25 mM ) 

whereas no effect was seen at a K+ concentration of 5.8 mM.  A former study by 

Reichenbach et al. [51] yielded essentially the same results. Both studies are well in 

accordance with our findings of an effective block of 1321N1 astrocytoma cell 

proliferation by 1 mM TEA and 100 nM IBTX under depolarizing conditions with 20 

mM [K+]o in the culture medium.  

 

Growth factor-stimulated proliferation 

High [K+]e might just be one example of many factors that induce proliferation by 

activating BK channels: many growth factors lead to membrane depolarization and 

[Ca2+]i increase may thus activate BK channels. Such was shown for human 

astrocytoma cells following stimulation with muscarine that is a potent mitogene [46]. 

To identify the mechanisms by which growth factors enhance brain tumor growth is 

an important field of research because braintumors will be exposed to a multitude of 

growthfactors in their environment [10].  

Inhibition of growth factor-stimulated proliferation by BK channel blockers has 

been demonstrated in several studies. Wiecha et al. [42] showed that IBTX in human 

vascular endothelial cells inhibited proliferation stimulated by the basic fibroblast 

growth factor. In addition, Vaur et al. [35] demonstrated that TEA in concentrations of 

1 – 4 mM blocked proliferation of pituitary tumor cells by a specific cell cycle-block 

during the G1/S transition. Because only BK channels are sensitive to TEA in this 

concentration range while IK and SK channels require much higher doses of TEA 

[159] [160] the inhibition of proliferation was attributed to specific BK channel block. 

In Müller (retinal) glial cells iberiotioxin and TEA 1 mM were found to block EGF-

induced proliferation as well as proliferation induced by high [K+]e [43]. However there 

is also one study on this topic that presented conflicting data. VEGF-A ( vascular 

endothelial growth factor ) and bFGF ( basic fibroblast growth factor ) activated BK 

channels in HUVEC ( human vascular endothelial cells ) and strongly stimulated their 

proliferation. However IBTX did not inhibit this induction of proliferation indicating that 
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BK channel activity is not involved in VEGF-A- or bFGF-induced HUVEC proliferation 

[94]. The latter study must be interpreted with caution since only one BK channel 

blocker ( IBTX ) was used in the proliferation experiments. Our investigations of BK 

channel pharmacology revealed that IBTX and TEA (1 mM) blocked the outward 

currents in 1321N1 cells by 50 – 70 % only. The pool of channels not blocked by 

IBTX in HUVEC therefore might have still been large enough to account for the full 

proliferative response to VEGF-A- or bFGF. Therefore if one blocker does not 

produce an effect other blockers such as TEA or paxiline should also be tested. For a 

review on the pitfalls of testing the antiproliferative response of K+–channel blockers 

see [25]. 

Our results of K+-dependent growth inhibition in gliomas by BK channel blockers, 

which are in accordance with the studies on growth factor-dependent proliferation in 

other cells as mentioned above, strongly support a link between mitogen signalling 

and BK channels in human gliomas. We speculate that BK channels – although not 

crucial for basal serum dependent proliferation – are key players in proliferative 

activity, which is stimulated by a certain class of mitogens. These mitogens can 

activate BK channels through one of the many pathways discussed above.  

 

 

5.3.3  Possible mechanisms of involvement of BK channels in cell proliferation 

 

From the available studies the following hypothesis explaining the mechanism of the 

involvement of BK channels in cell proliferation can be constructed: 

Following membrane depolarization by certain growth factors voltage gated Ca2+ 

channels open and an initial Ca2+ spike occurs in close proximity to BK channels. 

This together with membrane depolarization opens BK channels and thus increases 

gK. The resulting hyperpolarization of the membrane potential constitutes the driving 

force for further Ca2+ entry from the extracellular space and moreover causes a 

liberation of Ca2+ from intracellular stores. Because voltage gated Ca2+ channels 

close when the membrane becomes hyperpolarized the Ca2+ influx from the 

extracellular space must be sustained by voltage independent pathways. Recently 

non-selective cation channels ( NSCC ) have been impicated as the mediators of 

such a prolonged Ca2+ influx. The resulting Ca2+ spike is the trigger mechanism for 

the progression of the cell through the G1 – S START point. The following data 
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support the hypothesis which was just presented: Two studies confirmed the 

activation of voltage gated Ca2+ channels following the exposure of cells to elevated 

[K+]e: In cerebellar granule cells elevated [K+]e caused an initial Ca2+ influx through L 

– type Ca2+ channels. The increase in DNA synthesis elevated [K+]e induced in these 

cells could be reduced by blockers of the L – type Ca2+ channel [149]. In glial cells 

this initial Ca2+ influx seems occur through T – type Ca2+ – channels. The growth 

stimulatory effect of high [K+]e on cultured retinal glial cells [43] could be reversed with 

with a Ca2+ channel blocker selective for T–type Ca2+ channels ( flunarizine ). BK 

channels therefore are gated by submembrane calcium peaks, which are due to a 

Ca2+ influx through voltage-gated Ca2+ channels closely colocalized with BK 

channels. Additionally BK channels are activated directly by elevated [K+]e. As 

pointed out by Ransom et al. (2001) [4] BK channel activity is proportional to the 

square root of [K+]e. In two other studies it was observed that the single channel 

conductance increased dramatically with elevating K+ in the bath solution [117, 161, 

162]. The liberation of mobilization of Ca2+ from intracellular sources following growth 

factor stimulation has also been documented. Catlin et al. [163] studied the Ca2+ 

response of 1321N1 cells to carbachol which is mediated by the M3 subtype of 

muscarinic receptors [163]. The authors observed an initial Ca2+ spike which was due 

to Ca2+ release from intracellular Ca2+ stores followed by a sustained elevation and 

oscillations which were dependent on Ca2+ influx from the extracellular space. The 

pathways for such a delayed and sustained Ca2+ influx seem to be voltage 

independent channels such as NSCC [27, 164]. Recently the Ca2+ channels involved 

in endothelin-1 ( ET-1 ) induced mitogenesis of C6 glioma cells were identified to be 

NSCC [27] ( Figure 14 ). 

 

 

5.3.4  BK channels and their role in cell migration 

 

For a glioma cell to spread within the brain parenchyma it requires among others two 

important abitities. It must shrink enormously to permeate the narrow spaces within 

the neuropil texture or to move along blood vessels. Furthermore it must have a 

mechanism that propulses the cellbody forward. The cells ability to permeate narrow 

spaces can be studied with the Transwell assay while the cells ability to locomote in  
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Figure 14 – The role of K+ channels in cell proliferation.  
Following membrane depolarization by growth factors or elevated [K+]e voltage gated Ca2+ channels 
open and account for the Ca2+ influx required for BK channel gating. Membrane depolarization and 
external K+ ions further facilitate BK channel gating. The rise in K+ conductance causes the membrane 
to hyperpolarize. This constitutes the driving force for Ca2+ influx through NSCC ( nonselective cation 
channels ). The hyperpolarized membrane potential also causes a rise in IP3 production and thus a 
release of Ca2+ from intracellular stores. A peak of [Ca2+]i is the trigger for the progression of the cell 
cycle through the START controll point between G1 an S phase.  
( Modified according to [ 184 ]  ).     
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the plane and the velocity with which this occurs can be studied with a timelapse 

setup.  

In the following paragraph the term migration connotes both the ability to shrink and 

the ability to move in a plane and through holes into the lower compartment of the 

Transwell chamber while the term motility connotes only the ability to move in a plane 

as studied with the timelapse technique although in other studies this term has 

occasionally been used to define oscillations of the cell membrane without cell 

locomotion observed for instance with an atomic force microscope. The term 

migrational velocity refers to the speed of cell locomotion measured with the 

timelapse technique and thus without spational restraints. It is also possible to study 

tumor invasion with the Transwell assay. For this purpose the filter membranes are 

coated with a matrix protein, which the cells then will digest if they are invasive. 

Strictly speaking therefore tumor invasion was not studied in our transwell 

experiments although some studies have referred to simple transwell permeation as 

invasion. 

 

This study examined the role of BK channels in the physiology of migration. It has 

been recently proposed that glioma cells upregulate chloride channels to secrete 

chloride accompanied by water thus shrinking to a size that allows them to permeate 

the narrow spaces in the brain [72]. The latter investigation looked at the effect of ion 

channel blockers on transwell permeation and glioma invasion into brain sclices 

using the U251MG human glioma cell line. Significant inhibitory effects for TEA 1 

mM, CLTX 1 µM and IBTX 10 nM was observed. With TEA and CLTX a 50 % effect 

was seen while IBTX could inhibit invasion by 20 %. It is doubtful that the study really 

prooves a role for chloride channels in the migration of glioma cells as recently CLTX 

was shown to not have any effect on chloride channels [73]. Moreover, in that study 

IBTX was applied in a dose that is too low to effectively block all BK channels but 

nevertheless it had a profound effect. For all these reasons we suspect that the three 

blockers used in the study by Soroceanu et al. (1998) [72] excerted their effect by 

blocking BK channels. It was therefore appropriate to again test the potential of TEA 

and 100 nM IBTX on glioma migration under the assumption that volume regulatory 

mechanisms involve BK channels in these cells.  
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We applied two techniques: the transwell assay to study glioma migration through 

narrow spaces and time-lapse videomicroscopy to study migrational velocity. First, 

we tested two specific blockers of BK channels, IBTX and 1 mM TEA. They both had 

neither a significant anti-migratory effect nor did they slow migrational velocity. TEA 

started to be effective only at concentrations higher than 5 mM. Soronaceanu et al. 

(1998) [72] also found no effect of BK channel blockers on the migrational velocity of 

glioma cells ( using the scrap motility assay ) however when migration through the 

narrow spaces of transwell membranes was studied IBTX and TEA were effective. 

TEA in a concentration of 1 mM was however able to halt glioma invasion into rat 

brain slices [72].  

 

There are several possible explanations for the discrepancy of our findings to those 

of the latter study. The main methodical difference in the transwell experiments 

between the two studies is that we used 10 % FCS in the migration assay buffer 

while the quoted authors studied migration under serumfree conditions. In our 

preliminary experiments we found 1321N1 cells to not migrate through transwell 

filters under serumfree conditions and therefore we choose to study migration in the 

presence of serum. It is unlikely that IBTX or TEA were deactivated in the presence 

of serum since the two blockers were able to effectively block K+-dependent 

proliferation in other experiments.  

The most likely explanation for the different outcome of the two studies is that there 

are two different mechanisms underlying invasion one being BK channel-dependent 

in the presence of low concentrations of FCS and one being independent of BK 

channel activity in the presence of high concentrations of FCS. Indeed the migration 

of human astrocytoma cells ( studying astrocytoma cells from the two human cell 

lines U-87MG and A172 ) was experimentally dissected into four separate 

components which rely on Ca2+  oscillations and the presence of serum to a varying 

degree: (i) a Ca2+-dependent / serum-independent component, (ii) a Ca2+-

independent / serum-dependent component, (iii) a Ca2+- and serum-independent 

component as well as (iv) a Ca2+-dependent and serum-dependent component [165]. 

One of the two cell lines in this study ( the U-87MG  human glioma cell line ) lacked 

the Ca2+-dependent and serum-independent component. Thus considering the great 

heterogeneity among astrocytoma cell lines there might be tumor cells which can 

migrate without depending on intracellular Ca2+ oscillations. In those cells which 



 65

depend on them to move Ca2+ oscillations might trigger a cyclic activity of KCa 

channels  including BK channels leading to cyclic cell shrinkage and swelling 

accounting thus for the propulsion of the cell. The interplay between KCa channels, 

[Ca2+]i and the cytoskeletton has been well explained in a review [53]. Interfering with 

this complexly orchestrated machinery of cell crawling at the level of the KCa 

channels was shown to halt MDCK cell migration [55].  

Possibly in our experiments the Ca2+-independent but serum-dependent component 

outweighed all other components of migration. When lower concentrations of FCS 

are applied then there might be a stronger weight on Ca2+- and BK channel- 

dependent migration. This hypothesis should be investigated in a followup study. It 

has to be remarked that 10 % FCS are not likely to be present in the brain interstitium 

and, analogous to experiments on glioma proliferation, investigations under more 

physiologic conditions should be undertaken. 

 

An alternative explanation for the ineffectivity of BK channel blockers on 1321N1 cell 

migration is that our cells have a large functional BK channel reserve which was not 

completely and constantly blocked in our experiments and only a small fraction of BK 

channes need to be active to maintain normal cell function. Only brief bursts of BK 

channels are necessary to expel enough K+ for a profound volume decrease. For 

MDCK cells it was calculated that per burst of high K+ channel activity as much as 20 

% of the cells´ total K+ can be expelled [166]. Moreover the rate of migration was 

proportional to the K+ channel activity [53]. Our investigations of BK channel 

pharmacology revealed that IBTX and TEA (1 mM) blocked the outward currents in 

1321N1 cells by 50 – 70 %. The pool of channels not blocked might still be large 

enough to account for intact volume regulation. The spare receptor theory predicts an 

increase in the IC50 for migration relative to K+ current inhibition: the concentration of 

an antagonist required to inhibit a response by 50 % ( EC50 ) will be greater than the 

Kd of the antagonist for its receptor if many spare receptors are present [167]. Thus it 

can be explained why TEA started to have an effect on both migrational velocity and 

transwell permeation only in concentrations of 5 mM.   

 

Finally at concentrations above 1 mM TEA might also have other targets than just BK 

channels. Because TEA can enter cells nonspecific inhibitory actions cannot be 

excluded. When studying lymphocyte proliferation, Schell et al. (1987) [168] found 
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that TEA excerted its antiproliferative effect by inhibiting the uptake of essential cell 

metabolites such as amino acids. The inhibitory effect of 5 mM TEA on 1321N1 cell 

migration should therefore be interpreted with great caution. Since with paxilline 

recently another very potent, highly specific BK channel inhibitor has become 

available [169], we would like to suggest that it is worthwhile to repeat experiments 

on invasion and migration with this drug. 

 

Together with our data on BK channel involvement in mitogene-induced proliferation 

we like to propose the following theory: BK channel activation induces a proliferative 

response in 1321N1 glioma cells and thus halts migration (‘go or grow’). As pointed 

out in the introduction, the theory of a dichotomy of migration and proliferation is well 

established [101], i.e., that cells either crawl or divide. Thus the theory of a dichotomy 

of proliferation and migration was proven for the function of a single type of ion 

channel ( see also [46] ). 

 

 

5.4  Effect of EGF on BK channels 

 

Studies on several cell types including glioma cells reported that EGF is a potent 

mitogen [14, 107, 170-174] and studies, which linked it to motility and invasion 

promoting effects [9, 12-14, 98, 103, 104, 106, 107, 171, 172, 175, 176].  

 

In our study we looked at the effect of EGF on BK channels because there was 

indications that EGF signalling might involve the modulation of ion channels – 

especially KCa channels [44, 102, 173, 177].  

 

Direct evidence that BK channels are inducible by EGF stemmed from the 

observation that induction of a KCa channels in murine fibroblast cell lines depends on 

induction in nontransformed cells by EGF and PDGF and K+ channel blockers are 

able to inhibit cell proliferation [178] .  

We here showed that, after a 6 day exposure to EGF, a more than twofold increase 

in outward K+ currents could be observed indicating upregulation of K+ channels 

through EGF.  We could furthermore show that EGF significantly depolarized 1321N1 

cells after 6 days in culture. A previous study on osteoblasts also found a 
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depolarization of cells after prolonged ( 6 day ) exposure to EGF [179]. This effect 

could be reversed with 10 µM nifedipine indicating the involvement of Ca2+ -

dependent processes in the EGF response [179]. This is in accordance with data that 

showed that EGF increased Ca2+ influx [174, 180, 181], which may result in 

subsequent induction of DNA synthesis. Indeed, in one study on Müller glial cells it 

was observed that EGF induced DNA synthesis. Moreover measurements of [Ca2+]i 

revealed that EGF induced a prolonged elevation of [Ca2+]I in these cells. Both 

effects were fully reversed when either IBTX, 1mM TEA or flunarizine or a specific 

blocker of the T-Type Ca2+ channel was added. It was therefore concluded that BK 

channels regulate the EGF stimulated DNA synthesis of Müller cells via feedback 

regulation of Ca2+ entry [43]. On the other hand as already mentioned a study on the 

effect of VEGF-A  ( vascular endothelial growth factor ) and bFGF ( basic fibroblast 

growth factor ) on HUVEC ( human vascular endothelial cells ) revealed that both 

growth factors activated BK channels and at the same time strongly stimulated 

proliferation. However IBTX did not inhibit this induction of proliferation indicating that 

BK channel activity is not causative for VEGF-A- or bFGF-induced HUVEC 

proliferation [94]. As also pointed out already the latter study must be interpreted with 

caution because only IBTX as a BK channel blocker was tested.  

 

The exact mechanism by which [Ca2+]i is increased in the context of EGF-induced 

enhanced DNA synthesis is however largely undetermined. Activation of BK channels 

which accounts for a membrane hyperpolarization is one likely to be responsible for 

the Ca2+ influx. As pointed out earlier, membrane hyperpolariszation augments the 

electrochemical driving force for Ca2+ and leads to a Ca2+ influx through voltage-

independent pathways such as NSCC [182]. EGF-induced rapid hyperpolarisation 

followed by a constantly hyperpolarized membrane potential within 30 minutes of its 

application has been shown, for instance, in human fibroblasts and human carcinoma 

cells [44, 102]. This hyperpolarization was associated with a steep rise in [Ca2+]i. 

Coapplication of the K+ channel blocker quinidine did inhibit the hyperpolarization 

response. Thus it was concluded that an initial event following EGF receptor 

stimulation was an activation of KCa channels [102]. In another study that described 

growth factor signalling in fibroblasts the application of PDGF or FGF induced, after a 

lag (0.5-1 min), a [Ca2+]i increase composed of an initial, slow peak, sustained 

primarily by intracellular Ca2+ release followed by a plateau, sustained by Ca2+ influx 



 68

from the medium. The [Ca2+]i changes were paralleled by plasma membrane 

hyperpolarization mainly due to the activation of a K+ efflux through KCa channels. 

Our data indicate that EGF increases gK in 1321N1 cells. Initially this will 

hyperpolarize the cells. Since this hyperpolarization causes a sustained Ca2+ influx 

the cell can enter the cell cycle. The total membrane depolarization caused by long 

therm exposure to EGF might be due to other changes in the cells metabolism or its 

membrane properties.  
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6  Conclusions 

 

Electrophysiological recordings and pharmacological experiments identified 

depolarization induced outward currents in 1321N1 cells to be mediated by BK 

channels. In addition the experiments confirmed that TEA at concentrations of 1 mM 

is a specific blocker of BK channels and can be used as a cheap tool for screening 

BK channel activity. With excised patch recordings we demonstrate that there is 

marked BK channel activity at the resting membrane potential when physiologic Ca2+ 

concentrations are present. The increase in open probability between 100 nM and    

1 µM Ca2+ was significant. A significant open probability at physiological resting 

membrane potentials is the prerequisite for a physiological function of BK channels. 

The functional significance of BK channels for the disposition of glioma cells to 

migrate and proliferate was therefore studied.  

In a first set of experiments study examined the role of BK channels in the physiology 

of migration with transwell assays and with timelapse videomicroscopy. We tested 

two specific blockers of BK channels, IBTX and 1 mM TEA. They both had neither a 

significant anti-migratory effect nor did they slow migrational velocity. TEA started to 

be effective only at concentrations higher than 5 mM. Little attention has been so far 

paid to the adaptative mechanisms that enable glioma cells to reduce their volume 

and migrate along the narrow gaps within the neuropil. In glioma cells the regulatory 

volume decrease is probably a consequence of mainly K+ and Cl- efflux through ion 

channels. To date however only few studies exist on the role of ion channels in 

glioma migration but from the results of our study it can be deduced that 1321N1 cell 

migration does not rely on BK channel function. However this does not exclude that 

other glioma cell lines employ BK channels to migrate. 

In a second set of experiments we were able to demonstrate that glioma cell 

proliferation could be blocked by specific BK channel inhibitors when 1321N1 cells 

were growth stimulated by an elevated [K+]e. Elevating the K+ concentration in the 

growth media from 5 to 20 mM resulted in an increase in the cell number of 20 %. 

Only this [K+]e induced proliferation could be blocked by specific BK channel 

blockers. This finding is of particular relevance for CNS neoplasms in vivo. One might 

speculate that in malignant tumors an extensive necrosis of part of the tumor cells 

and neurons generates an increase of [K+]e [151] which in turn promotes the 

proliferation of neoplastic cells. Unfortunately clinical data which proove this are 
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lacking. However normal neuronal activity already causes [K+]e to rise from a 

baseline of 3 mM to levels over 10 mM [152, 153]. In epileptic tissue elevated [K+]e 

was detected during ictal activity [154] and during anoxia and spreading depression a 

[K+]e  of 40 – 100 mM has been measured [151, 155-158]. Therefore neoplastic glial 

which come in close contact with normal neuronal tissue due to their marked 

tendency to spread within the brain will also likely be stimulated by elevated [K+]e 

released in their surroundings. It is thus conceivable that the enhanced growth of 

astrocytoma cells under conditions of elevated [K+]e are the rule rather than the 

exception in vivo and that previous studies on K+ channel blockers and proliferation 

failed to consider this possibility. 

In a final set of experiments we here showed that, after a 6 day exposure to EGF, a 

more than twofold increase in outward K+ currents could be observed indicating 

upregulation of K+ channels through EGF. We however were not able to conclusively 

demonstrate that this increase of gK+ is due to BK channel upregulation. We could 

furthermore show that EGF significantly depolarized 1321N1 cells after 6 days in 

culture. It is however still undetermined whether EGF stimulates the proliferation of 

1321N1 cells. 

In conclusion our data suggest that BK channel activation in 1321N1 cells is a crucial 

step in proliferation induced by certain mitogenes. The initial Ca2+ signal for the 

activation of BK channels could be derived from intracellular stores or through an 

initial short activation of voltage gated Ca2+ channels by a growth factor. The 

hyperpolarization that follows an increase in K+ conductance may be the driving force 

for further Ca2+ entry. The pathways for this delayed massive Ca2+ entry could be 

NSCC as it was shown for C6 glioma cells. The Ca2+ spike could be the actual trigger 

signal for the cell to enter the cell cycle. We therfore like to propose the following 

hypothesis: BK channel activation induces a proliferative response in 1321N1 glioma 

cells and thus halts migration ( ‘go or grow’ ). As pointed out in the introduction, the 

theory of a dichotomy of migration and proliferation is well established [101], i.e., that 

cells either crawl or divide. Thus our findings indicate that the theory of a dichotomy 

of proliferation and migration holds true for the function of a single type of ion channel 

in 1321N1 astrocytoma cells ( see also [46] ). 
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7  Summary 

 

Human glioma cells express a variety of voltage-gated ion channels including Na+ 

and K+ channels [1, 2, 123, 183]. BK channel currents were frequently observed 

suggesting an ubiquitous expression of these channels in cultured glioma cells [3, 4, 

123]. We confirmed the presence of BK channels in 1321N1 cells. The channels we 

observed in our patch clamp experiments displayed typical features of BK channels 

combining the properties of voltage– and ligand gated ion channels. BK channels 

were identified by blockade with the specific blocker IBTX and 1 mM TEA which at 

this concentration ( < 1 mM ) is known to be a specific BK channel blocker [51, 159]. 

Because BK channels require unphysiologically strong depolarisations to open even 

with 1 µM [Ca2+]i during whole cell recordings one might assume that these channels 

are not active in resting 1321N1 human glioma cells. Excised patch recordings 

however allowed us to demonstrate that BK channels in 1321N1 human astrocytoma 

cells are active at physiological membrane potentials. A physiological role of BK 

channels in 1321N1 cells is therefore conceivable.   

Despite their stable expression in glioma cells a functional role of BK channels has so 

far not been identified. However, it is well known from studies with broad-spectrum K+ 

channel blockers that other K+ channels play an essential role during the progression 

of cells through the G1 phase of the cell cycle [25]. We observed that specific BK 

channel blockers inhibit proliferation of 1321N1 astrocytoma cells only under 

particular conditions: Elevating the K+ concentration in the growth media from 5 to 20 

mM resulted in an increase in the cell number of 20 %. after 5 days. BK channel 

inhibitors could block this K+-induced proliferation only. We moreover performed 

experiments with 20, 50 and 100 mM [K+]e and observed that prolonged elevation of 

[K+]e promotes proliferation at [K+]e between 5 and 20 mM but significantly inhibits it at 

concentrations above 50 mM. High [K+]e might just be one example of many factors 

that induce proliferation by activating BK channels: many growth factors lead to 

membrane depolarization and [Ca2+]i increase may thus activate BK channels. 

Inhibition of growth factor-stimulated proliferation by BK channel blockers has already 

been demonstrated in several studies in other cell types [35, 42, 43, 49, 51]. We 

therefore speculate that BK channels – although not crucial for basal serum 

dependent proliferation – are key players in proliferative activity, which is stimulated 
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by a certain class of mitogens. To identify the mechanisms by which growth factors 

enhance brain tumor growth is an important field of research since brain tumors will 

be exposed to a multitude of growth factors in their environment [10].  

 

Because ion channels modulators including some specific BK channel blockers were 

also observed to halt migration of glioma cells [46, 72], we studied the effect of 

specific BK channel blockers on 1321N1 migration. We found that specific block of 

BK channels does not influence migration of 1321N1 astrocytoma cells.  

 

Finally we looked at the effect of EGF on BK channels because there was indications 

that EGF signalling might involve the modulation of ion channels – especially KCa 

channels [44, 102, 173, 177]. We here showed that, after a 6 day exposure to EGF, a 

more than twofold increase in outward K+ currents could be observed indicating 

upregulation of K+ channels through EGF. We could furthermore show that EGF 

significantly depolarized 1321N1 cells after 6 days in culture. 

 

While it has been established that BK channels are common to almost all human 

tissue their functional role is only very vaguely characterized [4]. Because these 

channels in some experimental settings were shown to require strong depolarizations 

for gating the question arises whether in nonexcitable cells they are at all functional 

in nonexcitable cells [83]. Furthermore it is unresolved whether these channels 

display a common cellular function irrespective of the cell type in which they occur, or 

whether they have specific functions in different cell types. Even if these channels are 

ubiquitous they might be not functional and redundant in some cell types but 

essential for proper function or even survival in others. Therefore BK channels might 

well play an essential functional role in neopastic cells while being an item of 

peripheral importance in nonneoplastic cells. 
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9.4   Zusammenfassung 

 

Gliomzellen menschlicher Herkunft sind mit einer Reihe verschiedener 

spannungsabhängiger Ionenkanäle ausgestattet. Besonders BK Kanäle wurden in 

menschlichen Gliomzellinien regelmäßig beobachtet. Dies legt nahe, daß BK Kanäle 

auch in vivo ein fester Bestandteil solcher Zellen sind. Wir konnten das Vorkommen 

von BK Kanälen für 1321N1 Zellen bestätigen. Die Kanäle, die wir in unseren 

Experimenten charakterisierten, wiesen typische Merkmale von BK Kanälen auf : Sie 

öffneten erst bei Spannungen von mehr als +60 mV, waren ausgesprochen abhängig 

von [Ca2+]i, und liessen sich mit 100 nM IBTX sowie 1 mM TEA spezifisch blocken. 

Weil jedoch diese Kanäle eine so ausgeprägte Spannungsabhängigkeit zeigten, lag 

die Annahme nahe, daß diese Kanäle bei physiologischen Membranpotentialen 

geschlossen sind und deshalb auch keine physiologische Funktion haben können. 

Excised patch Experimente belegten jedoch, daß diese Annahme falsch ist. Anhand 

dieser Experimente, die eine gleichzeitige Variation von [Ca2+]i und des 

Membranpotentials erlauben, konnten wir zeigen, daß unter physiologischen 

Bedingungen diese Kanäle offen sein können. Dies ist die Bedingung für eine 

Funktion von BK Kanälen in menschlichen Gliomzellinien, welche bisher nicht 

untersucht worden war.  

Wir konnten beobachten, daß durch eine Erhöhung von [K+]e im Medium von 5 auf   

20 mM die Zellzahl nach 6 Tagen um 20 % zunahm. Diese Zunahme der Zellzahl 

konnte durch spezifische BK Kanal Blocker verhindert werden. Dieser Befund deutet 

auf eine Rolle der BK Kanäle bei der durch bestimmte Wachstumsfaktoren 

ausgelösten Proliferation hin. Der genaue Mechanismus, der der Beteiligung von BK 

Kanälen bei der Proliferation zugrundeliegt ist noch nicht aufgeklärt.  

Die Untersuchungen zur Migration von 1321N1 Zellen ergaben, daß hierbei BK 

Kanäle keine Rolle zu spielen scheinen. 

In einem dritten Teil von Experimenten untersuchten wir noch den Einfluß einer 

längerdauernden Kultivierung mit 10 ng/ml EGF auf die spannungsabhängigen 

Kaliumkanäle. Wir konnten beobachten, daß EGF die Zellen dauerhaft depolarisiert, 

aber gleichzeitig die spannungsabhängigen Kaliumauswärtsströme um mehr als das 

Doppelte anstiegen. Welche Rolle dieser Befund für die EGF induzierte Proliferation 

von Gliomzellen spielt, ist noch unklar.  

 


