This paper presents a comprehensive analysis of a three-dimensional compliant tensegrity joint structure, examining its actuation, kinematics, and response to external loads. The study investigates a baseline configuration and two asymmetric variants of the joint. The relationship between the shape parameter and the parameters of the tensioned segments is derived, enabling the mathematical description of cable lengths for joint actuation. Geometric nonlinear static finite element simulations are performed to analyze the joint's response under various load conditions. The results reveal the joint's range of motion, the effect of different stiffness configurations, and its deformation behavior under external forces. The study highlights the asymmetric nature of the joint and its potential for targeted motion restriction. These findings advance the general understanding of the behavior of the considered tensegrity joint and provide valuable insights for their design and application in soft robotic systems.