Abstract Solvent free ionic liquid (IL) electrolytes facilitate high‐voltage supercapacitors with enhanced energy density, but their complex ion arrangement and through that the electrochemical properties, are limited by strong Coulombic ordering in the bulk state and like‐charged ion repulsion at electrified interfaces. Herein, a unique interfacial phenomenon resulting from the presence of carbon dioxide loaded in 1‐Ethyl‐3‐methylimidazoliumtetrafluorborate electrolyte that simultaneously couples to IL ions and nitrogen‐doped carbonaceous electrode is reported. The adsorbed CO 2 molecule polarizes and mitigates the electrostatic repulsion among like‐charged ions near the electrified interface, leading to an ion “bridge effect” with increased interfacial ionic density and significantly enhanced charge storage capability. The unpolarized CO 2 possessing a large quadrupole moment further reduces ion coupling, resulting in higher conductivity of the bulk IL and improved rate capability of the supercapacitor. This work demonstrates polarization‐controlled like‐charge attraction at IL–electrode–gas three‐phase boundaries, providing insights into manipulating complex interfacial ion ordering with small polar molecule mediators.
Solvent‐free ionic liquid (IL) electrolytes enable high‐voltage and high‐energy‐density applications. The proposed bridge effect with CO 2 loaded in an IL electrolyte acting as a mediator on the nitrogen‐doped electrode surface, alleviates the undesired Coulombic ordering and interfacial like‐charged ion repulsion. By breaking the limitation of interfacial ion packing density, this effect results in a significant enhancement of charge storage capability. image
License Holder: © 2023 Wiley‐VCH GmbH
Use and reproduction:
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.