Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximation

GND
1324038551
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Kropotin, Nikolai;
GND
1311339175
ORCID
0000-0003-2868-7927
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Fang, Yindong;
GND
1324038705
ORCID
0009-0002-5392-0209
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Yu, Chu;
GND
1060644495
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Seyring, Martin;
GND
1311072837
ORCID
0000-0001-8821-4529
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Freiberg, Katharina;
GND
112072807X
ORCID
0000-0002-8250-4696
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Lippmann, Stephanie;
ORCID
0000-0002-2645-1729
Affiliation
Integrated Computational Materials Engineering (ICME) Group, VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland
Pinomaa, Tatu;
ORCID
0000-0002-2308-744X
Affiliation
Integrated Computational Materials Engineering (ICME) Group, VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland
Laukkanen, Anssi;
Affiliation
Department of Physics and Centre for the Physics of Materials, McGill University, Montreal, QC H3A 2T8, Canada
Provatas, Nikolas;
GND
172946824
ORCID
0000-0003-2941-7742
Affiliation
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany(C.Y.);
Galenko, Peter K.

The prediction of the equilibrium and metastable morphologies during the solidification of Ni-based superalloys on the mesoscopic scale can be performed using phase-field modeling. In the present paper, we apply the phase-field model to simulate the evolution of solidification microstructures depending on undercooling in a quasi-binary approximation. The results of modeling are compared with experimental data obtained on samples of the alloy Inconel 718 (IN718) processed using the electromagnetic leviatation (EML) technique. The final microstructure, concentration profiles of niobium, and the interface-velocity–undercooling relationship predicted by the phase field modeling are in good agreement with the experimental findings. The simulated microstructures and concentration fields can be used as inputs for the simulation of the precipitation of secondary phases.

Cite

Citation style:
Could not load citation form.

Rights

License Holder: © 2023 by the authors.

Use and reproduction: