Effect of SiO2 interlayer thickness in Au/SiO2/Si multilayer systems on Si sources and the formation of Au-based nanostructures

Si sources involved in the growth of Au-SiOx nanostructures are investigated through the rapid thermal annealing of gold thin films on SiO2/Si substrates with various SiO2 layer thicknesses (3, 25, 100, 500 nm) in a reducing atmosphere. This method reveals three Si sources whose involvement depends on the thickness of the SiO2 layers, i.e., Si diffusion from the substrate, and SiO from SiO2 decomposition and from Si active oxidation. Increasing thicknesses of the SiO2 layer hampers the Si diffusion and the decomposition of regions of the SiO2 layer, which decreases the concentrations of discovered regions weakening the Si active oxidation. These discovered regions appear in systems with a SiO2 layer of 25 or 100 nm, while they are absent for a 500 nm layer. Furthermore, Au-SiOx nanostructures of different shapes form in each system. Both behaviors indicate that the influence and transport mechanisms of the different Si sources are largely dependent on the thicknesses of the SiO2 layers and that they control the evolution of the Au-SiOx nanostructures. A clear understanding of the relationship between these thicknesses and the possible Si sources and their roles in the evolution of the nanostructures makes the tailored fabrication of nanostructures possible.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction: