Abstract Two of the main weaknesses of modern electric double‐layer capacitors are the rather limited ranges of operating voltage and temperature in which these devices do not suffer from the occurrence of irreversible decomposition processes. These parameters are strongly interconnected and lowering the operating voltage when increasing the temperature is unavoidable, so as to protect the electric double‐layer capacitor from damage. With the aim to maintain the operating voltage as high as possible at elevated temperatures, in this study, the application of ethyl isopropyl sulfone as an electrolyte solvent for electric double‐layer capacitors is presented. It is shown that ethyl isopropyl sulfone‐based electrolytes display excellent thermal and electrochemical stability enabling high capacitance retention after floating tests for 500 h at 60 and 80 °C, e.g. 68% at 3.4 V at 60 °C. A possible reason for the above‐average stability is that decomposition products of ethyl isopropyl sulfone can deposit on the electrode surface which may act as a passivation layer and prevent further degradation.
Ethyl isopropyl sulfone is an interesting electrolyte solvent for electric double‐layer capacitors in high‐temperature surroundings. Forming a protective passive layer on the electrode surface, ethyl isopropyl sulfone offers high thermal and electrochemical stability for supercapacitors at temperatures of up to 80 °C and voltages of up to 3.4 V. image
License Holder: © 2023 Wiley‐VCH GmbH
Use and reproduction:
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.