We show that geodesic random walks on a complete Finsler manifold of bounded geometry converge to a diffusion process which is, up to a drift, the Brownian motion corresponding to a Riemannian metric.
10.1007/s12220-021-00723-z copy citation link
DOI (10.1007/s12220-021-00723-z)
https://doi.org/10.1007/s12220-021-00723-z
URN (urn:nbn:de:gbv:27-dbt-20230325-220331-005)
https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20230325-220331-005
License Holder: © The Author(s) 2021
Use and reproduction: