This work aims to broaden knowledge about neutrophil biology in their interaction with fungi species that most frequently cause invasive fungal diseases (IFD). The questions addressed include the alteration of neutrophil morphology after interaction with Candida albicans or C. glabrata, revealing factors that modulate the production and composition of neutrophil-derived extracellular vesicles (EVs) obtained in confrontation assay with conidia of Aspergillus fumigatus and analysing EVs activity against this fungus. Alongside fundamental interests, those questions have important applied aspects in the medicine of IFD. In particular, for diagnostic purposes and infection process monitoring. The results of this work include: 1 a novel segmentation and tracking algorithm which is capable of working with low-contrast cell images, producing accurate cell contours and providing data about positions of clusters, which would improve further analysis; 2 a novel workflow algorithm for analysis of neutrophil continuous morphological spectrum without consensus-based manual annotation; 3 quantitative evidence that morphodynamics of isolated neutrophils depends on the infectious agent (C. albicans or C. glabrata) used in whole blood infection assay; 4 quantitative evidence that neutrophil-derived extracellular vesicles, obtained in confrontation assays with conidia of A. fumigatus could inhibit hyphae development and damage hyphae cell wall; 5 quantitative evidence that EVs inhibition activity is strain-specific.