Traces of some weighted function spaces and related non‐standard real interpolation of Besov spaces

Affiliation
Departamento de Ingeniería Geológica y Minera Escuela Técnica Superior de Ingenieros de Minas y Energía Universidad Politécnica de Madrid Calle de Alenza, 4 Madrid 28003 Spain
Besoy, Blanca F.;
GND
118052489
ORCID
0000-0002-2576-0300
Affiliation
Institute of Mathematics, Friedrich Schiller University Jena, 07737 Jena, Germany
Haroske, Dorothee D.;
GND
133515923
Affiliation
Institute of Mathematics, Friedrich Schiller University Jena, 07737 Jena, Germany
Triebel, Hans

We study traces of weighted Triebel–Lizorkin spaces F p , q s ( R n , w ) $F^s_{p,q}(\mathbb {R}^n,w)$ on hyperplanes R n − k $\mathbb {R}^{n-k}$ , where the weight is of Muckenhoupt type. We concentrate on the example weight w α ( x ) = | x n | α $w_\alpha (x) = {\big\vert x_n\big\vert }^\alpha$ when | x n | ≤ 1 $\big\vert x_n\big\vert \le 1$ , x ∈ R n $x\in \mathbb {R}^n$ , and w α ( x ) = 1 $w_\alpha (x)=1$ otherwise, where α > − 1 $\alpha >-1$ . Here we use some refined atomic decomposition argument as well as an appropriate wavelet representation in corresponding (unweighted) Besov spaces. The second main outcome is the description of the real interpolation space ( B p 1 , p 1 s 1 ( R n − k ) , B p 2 , p 2 s 2 ( R n − k ) ) θ , r $\big (B^{s_1}_{p_1,p_1}\big (\mathbb {R}^{n-k}\big ), B^{s_2}_{p_2,p_2}{\big (\mathbb {R}^{n-k}\big )\big )}_{\theta ,r}$ , 0 < p 1 < p 2 < ∞ $0 0 $s>0$ sufficiently large, 0 < θ < 1 $0<\theta <1$ , 0 < r ≤ ∞ $0

Cite

Citation style:
Could not load citation form.

Rights

License Holder: © 2022 Wiley‐VCH GmbH.

Use and reproduction: