We study traces of weighted Triebel–Lizorkin spaces F p , q s ( R n , w ) $F^s_{p,q}(\mathbb {R}^n,w)$ on hyperplanes R n − k $\mathbb {R}^{n-k}$ , where the weight is of Muckenhoupt type. We concentrate on the example weight w α ( x ) = | x n | α $w_\alpha (x) = {\big\vert x_n\big\vert }^\alpha$ when | x n | ≤ 1 $\big\vert x_n\big\vert \le 1$ , x ∈ R n $x\in \mathbb {R}^n$ , and w α ( x ) = 1 $w_\alpha (x)=1$ otherwise, where α > − 1 $\alpha >-1$ . Here we use some refined atomic decomposition argument as well as an appropriate wavelet representation in corresponding (unweighted) Besov spaces. The second main outcome is the description of the real interpolation space ( B p 1 , p 1 s 1 ( R n − k ) , B p 2 , p 2 s 2 ( R n − k ) ) θ , r $\big (B^{s_1}_{p_1,p_1}\big (\mathbb {R}^{n-k}\big ), B^{s_2}_{p_2,p_2}{\big (\mathbb {R}^{n-k}\big )\big )}_{\theta ,r}$ , 0 < p 1 < p 2 < ∞ $0 0 $s>0$ sufficiently large, 0 < θ < 1 $0<\theta <1$ , 0 < r ≤ ∞ $0