Dietary PUFA Preferably Modify Ethanolamine-Containing Glycerophospholipids of the Human Plasma Lipidome

GND
1016227620
ORCID
0000-0002-4063-6199
Affiliation
Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany;(C.D.);(G.J.)
Dawczynski, Christine;
ORCID
0000-0002-7180-8221
Affiliation
Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany;(J.P.);(C.S.)
Plagge, Johannes;
GND
1026503051
Affiliation
Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany;(C.D.);(G.J.)
Jahreis, Gerhard;
ORCID
0000-0003-4886-0811
Affiliation
Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;(G.L.);(M.H.)
Liebisch, Gerhard;
ORCID
0000-0002-3651-392X
Affiliation
Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;(G.L.);(M.H.)
Höring, Marcus;
ORCID
0000-0002-7631-444X
Affiliation
Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany;(J.P.);(C.S.)
Seeliger, Claudine;
Affiliation
Research Group Lipid Metabolism, ZIEL Institute for Food & Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany;(J.P.);(C.S.)
Ecker, Josef

The content of polyunsaturated fatty acids (PUFA) in complex lipids essentially influences their physicochemical properties and has been linked to health and disease. To investigate the incorporation of dietary PUFA in the human plasma lipidome, we quantified glycerophospholipids (GPL), sphingolipids, and sterols using electrospray ionization coupled to tandem mass spectrometry of plasma samples obtained from a dietary intervention study. Healthy individuals received foods supplemented with different vegetable oils rich in PUFA. These included sunflower, linseed, echium, and microalgae oil as sources of linoleic acid (LA; FA 18:2 n -6), alpha-linolenic acid (ALA; FA 18:3 n -3), stearidonic acid (SDA; FA 18:4 n -3), and docosahexaenoic acid (DHA; FA 22:6 n -3). While LA and ALA did not influence the species profiles of GPL, sphingolipid, and cholesteryl ester drastically, SDA and DHA were integrated primarily in ethanolamine-containing GPL. This significantly altered phosphatidylethanolamine and plasmalogen species composition, especially those with 38–40 carbons and 6 double bonds. We speculate that diets enriched with highly unsaturated FA more efficiently alter plasma GPL acyl chain composition than those containing primarily di- and tri-unsaturated FA, most likely because of their more pronounced deviation of FA composition from typical western diets.

Cite

Citation style:
Could not load citation form.

Rights

License Holder: © 2022 by the authors.

Use and reproduction: