Abstract Fused‐ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non‐fused‐ring electron donors, PF1 and PF2, which alternately consist of furan‐3‐carboxylate and 2,2′‐bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all‐thiophene‐backbone counterpart PT‐E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to ≈10 −4 cm 2 V −1 ·s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT‐E. Benefiting from the better physicochemical properties, the efficiencies of PF1‐ and PF2‐based devices are improved by ≈16.7% and ≈71.3% relative to that PT‐E‐based devices, respectively. Furthermore, the optimized PF2‐based devices with introducing PC 71 BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan‐3‐carboxylate is a simple yet efficient building block for constructing non‐fused‐ring polymers but also provides a promising electron donor PF2 for the low‐cost production of OSCs.
A simple structure non‐fused‐ring electron donor PF2 alternately consisting of furan‐3‐carboxylate and 2,2′‐bithiophene presents very small synthetic complexity of 9.7% as well as low material cost of ≈19.0 $ g −1 . More importantly, PF2 delivers a high efficiency of 12.4% coupled with strong operational stability. image
License Holder: © 2022 Wiley‐VCH GmbH
Use and reproduction:
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.