Data-driven visual quality estimation using machine learning

Heutzutage werden viele visuelle Inhalte erstellt und sind zugänglich, was auf Verbesserungen der Technologie wie Smartphones und das Internet zurückzuführen ist. Es ist daher notwendig, die von den Nutzern wahrgenommene Qualität zu bewerten, um das Erlebnis weiter zu verbessern. Allerdings sind nur wenige der aktuellen Qualitätsmodelle speziell für höhere Auflösungen konzipiert, sagen mehr als nur den Mean Opinion Score vorher oder nutzen maschinelles Lernen. Ein Ziel dieser Arbeit ist es, solche maschinellen Modelle für höhere Auflösungen mit verschiedenen Datensätzen zu trainieren und zu evaluieren. Als Erstes wird eine objektive Analyse der Bildqualität bei höheren Auflösungen durchgeführt. Die Bilder wurden mit Video-Encodern komprimiert, hierbei weist AV1 die beste Qualität und Kompression auf. Anschließend werden die Ergebnisse eines Crowd-Sourcing-Tests mit einem Labortest bezüglich Bildqualität verglichen. Weiterhin werden auf Deep Learning basierende Modelle für die Vorhersage von Bild- und Videoqualität beschrieben. Das auf Deep Learning basierende Modell ist aufgrund der benötigten Ressourcen für die Vorhersage der Videoqualität in der Praxis nicht anwendbar. Aus diesem Grund werden pixelbasierte Videoqualitätsmodelle vorgeschlagen und ausgewertet, die aussagekräftige Features verwenden, welche Bild- und Bewegungsaspekte abdecken. Diese Modelle können zur Vorhersage von Mean Opinion Scores für Videos oder sogar für anderer Werte im Zusammenhang mit der Videoqualität verwendet werden, wie z.B. einer Bewertungsverteilung. Die vorgestellte Modellarchitektur kann auf andere Videoprobleme angewandt werden, wie z.B. Videoklassifizierung, Vorhersage der Qualität von Spielevideos, Klassifikation von Spielegenres oder der Klassifikation von Kodierungsparametern. Ein wichtiger Aspekt ist auch die Verarbeitungszeit solcher Modelle. Daher wird ein allgemeiner Ansatz zur Beschleunigung von State-of-the-Art-Videoqualitätsmodellen vorgestellt, der zeigt, dass ein erheblicher Teil der Verarbeitungszeit eingespart werden kann, während eine ähnliche Vorhersagegenauigkeit erhalten bleibt. Die Modelle sind als Open Source veröffentlicht, so dass die entwickelten Frameworks für weitere Forschungsarbeiten genutzt werden können. Außerdem können die vorgestellten Ansätze als Bausteine für neuere Medienformate verwendet werden.

Today a lot of visual content is accessible and produced, due to improvements in technology such as smartphones and the internet. This results in a need to assess the quality perceived by users to further improve the experience. However, only a few of the state-of-the-art quality models are specifically designed for higher resolutions, predict more than mean opinion score, or use machine learning. One goal of the thesis is to train and evaluate such machine learning models of higher resolutions with several datasets. At first, an objective evaluation of image quality in case of higher resolutions is performed. The images are compressed using video encoders, and it is shown that AV1 is best considering quality and compression. This evaluation is followed by the analysis of a crowdsourcing test in comparison with a lab test investigating image quality. Afterward, deep learning-based models for image quality prediction and an extension for video quality are proposed. However, the deep learning-based video quality model is not practically usable because of performance constrains. For this reason, pixel-based video quality models using well-motivated features covering image and motion aspects are proposed and evaluated. These models can be used to predict mean opinion scores for videos, or even to predict other video quality-related information, such as a rating distributions. The introduced model architecture can be applied to other video problems, such as video classification, gaming video quality prediction, gaming genre classification or encoding parameter estimation. Furthermore, one important aspect is the processing time of such models. Hence, a generic approach to speed up state-of-the-art video quality models is introduced, which shows that a significant amount of processing time can be saved, while achieving similar prediction accuracy. The models have been made publicly available as open source so that the developed frameworks can be used for further research. Moreover, the presented approaches may be usable as building blocks for newer media formats.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:
All rights reserved