Optimal input design and parameter estimation for continuous-time dynamical systems

Diese Arbeit behandelt die Themengebiete Design of Experiments (DoE) und Parameterschätzung für zeitkontinuierliche Systeme, welche in der modernen Regelungstheorie eine wichtige Rolle spielen. Im gewählten Kontext untersucht DoE die Auswirkungen von verschiedenen Rahmenbedingungen von Simulations- bzw. Messexperimenten auf die Qualität der Parameterschätzung, wobei der Fokus auf der Anwendung der Theorie auf praxisrelevante Problemstellungen liegt. Dafür wird die weithin bekannte Fisher-Matrix eingeführt und die resultierende nicht lineare Optimierungsaufgabe angeschrieben. An einem PT1-System wird der Informationsgehalt von Signalen und dessen Auswirkungen auf die Parameterschätzung gezeigt. Danach konzentriert sich die Arbeit auf ein Teilgebiet von DoE, nämlich Optimal Input Design (OID), und wird am Beispiel eines 1D-Positioniersystems im Detail untersucht. Ein Vergleich mit häufig verwendeten Anregungssignalen zeigt, dass generierte Anregungssignale (OID) oft einen höheren Informationsgehalt aufweisen und mit genaueren Schätzwerten einhergeht. Zusätzlicher Benefit ist, dass Beschränkungen an Eingangs-, Ausgangs- und Zustandsgrößen einfach in die Optimierungsaufgabe integriert werden können. Der zweite Teil der Arbeit behandelt Methoden zur Parameterschätzung von zeitkontinuierlichen Modellen mit dem Fokus auf der Verwendung von Modulationsfunktionen (MF) bzw. Poisson-Moment Functionals (PMF) zur Vermeidung der zeitlichen Ableitungen und Least-Squares zur Lösung des resultierenden überbestimmten Gleichungssystems. Bei verrauschten Messsignalen ergibt sich daraus sofort die Problematik von nicht erwartungstreuen Schätzergebnissen (Bias). Aus diesem Grund werden Methoden zur Schätzung und Kompensation von Bias Termen diskutiert. Beitrag dieser Arbeit ist vor allem die detaillierte Aufarbeitung eines Ansatzes zur Biaskompensation bei Verwendung von PMF und Least-Squares für lineare Systeme und dessen Erweiterung auf (leicht) nicht lineare Systeme. Der vorgestellte Ansatz zur Biaskompensation (BC-OLS) wird am nicht linearen 1D-Servo in der Simulation und mit Messdaten validiert und in der Simulation mit anderen Methoden, z.B., Total-Least-Squares verglichen. Zusätzlich wird der Ansatz von PMF auf die weiter gefasste Systemklasse der Modulationsfunktionen (MF) erweitert. Des Weiteren wird ein praxisrelevantes Problem der Parameteridentifikation diskutiert, welches auftritt, wenn das Systemverhalten nicht gänzlich von der Identifikationsgleichung beschrieben wird. Am 1D-Servo wird gezeigt, dass ein Deaktivieren und Reaktivieren der PMF Filter mit geeigneter Initialisierung diese Problematik einfach löst.

This thesis addresses two topics that play a significant role in modern control theory: design of experiments (DoE) and parameter estimation methods for continuous-time (CT) models. In this context, DoE focuses on the impact of experimental design regarding the accuracy of a subsequent estimation of unknown model parameters and applying the theory to real-world applications and its detailed analysis. We introduce the Fisher-information matrix (FIM), consisting of the parameter sensitivities and the resulting highly nonlinear optimization task. By a first-order system, we demonstrate the computation of the information content, its visualization, and an illustration of the effects of higher Fisher information on parameter estimation quality. After that, the topic optimal input design (OID), a subarea of DoE, will be thoroughly explored on the practice-relevant linear and nonlinear model of a 1D-position servo system. Comparison with standard excitation signals shows that the OID signals generally provide higher information content and lead to more accurate parameter estimates using least-squares methods. Besides, this approach allows taking into account constraints on input, output, and state variables.
In the second major topic of this thesis, we treat parameter estimation methods for CT systems, which provide several advantages to identify discrete-time (DT) systems, e.g., allows physical insight into model parameters. We focus on modulating function method (MFM) or Poisson moment functionals (PMF) and least-squares to estimate unknown model parameters. In the case of noisy measurement data, the problem of biased parameter estimation arises immediately. That is why we discuss the computation and compensation of the so-called estimation bias in detail. Besides the detailed elaboration of a bias compensating estimation method, this work’s main contribution is, based on PMF and least squares for linear systems, the extension to at least slightly nonlinear systems. The derived bias-compensated ordinary least-squares (BCOLS) approach for obtaining asymptotically unbiased parameter estimates is tested on a nonlinear 1D-servo model in the simulation and measurement. A comparison with other methods for bias compensation or avoidance, e.g., total least-squares (TLS), is performed. Additionally, the BC-OLS method is applied to the more general MFM. Furthermore, a practical issue of parameter estimation is discussed, which occurs when the system behavior leaves and re-enters the space covered by the identification equation. Using the 1D-servo system, one can show that disabling and re-enabling the PMF filters with appropriate initialization can solve this problem.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:
All rights reserved